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Chapter 1

Introduction

1.1 Microscopy image segmentation

Many of the experiments in life sciences can be analyzed using imaging technologies,
thus microscopy has become one of the fundamental tools in the pipelines of most
experiments in this field. This kind of analysis is often used to solve a specific task
such as counting the number of cells in images taken from cell cultures or biopsies
from human tissues, and quantify their shapes or textures that assumed to have im-
portant biological or medical relevance. Manually analyzing the images generated
from experiments using microscopy technology was not a big challenge until the re-
cent years: it was part of the daily life of a researcher. The manual approach has
two main drawbacks: experts have to spend their valuable time to perform these
tasks manually (for example counting instances), but other tasks, for example, clas-
sification of the instances based on their morphology has some subjective bias among
different scientist. With the emergence of systems biology and the automatization of
imaging pipelines, thousands of samples can be acquired daily with high resolution
microscopes. Thus, analyzing this amount of data is no longer practically feasible
without efficient algorithms that aim to also automatize the analysis tasks. Since
most of the measurement pipelines start from the quantification of nuclei instances
e.g. segmentation of the nuclei [13], we aim to concentrate on nuclei segmenta-
tion of biological images. That is, we are interested in separating the pixels of a
microscopy image into two classes: the pixels that are part of the nuclei instances
and the pixels that are not. Furthermore we also want to group the pixels of the
instances of the same group if they are representing the same object. We call the first
task as semantic segmentation and the latter is the instance segmentation. Several
software were developed for biological image analysis that includes the segmenta-
tion task. Such examples are the CellProfiler [15, 50] and ImageJ[2, 93]/Fiji[91].
These software offer classical image processing algorithms such as thresholding and
watershed segmentation [8, 9]. The user can define pipelines and adjust the param-
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2 Introduction

eters for a particular experiment. More advanced methods such as active contours
are also used for segmenting nuclei or cell instances. [5]. Active contour methods
offer a clear advantage over basic image processing primitives such as thresholding
or region growing since the contour is regularized by ensuring its smoothness prop-
erty thus the noise or non-relevant object parts can be excluded easily. These con-
tour based approaches were extended with shape priors for segmenting microscopy
images such as: circular shapes [67, 68], overlapping objects [66], spherical and
ellipsoid-like objects [70], or even higher-order priors that cut object clusters into
single objects. [69]. More recent methods use supervised approaches for microscopy
image segmentation. One of such examples is Ilastik [7, 97], that uses a random
forest[11] classifier to classify pixels based on their features while using minimal
pixel annotation. Later, multi-layered fully convolutional neural networks [58] were
applied for pixel classification of microscopy images. [88] These networks do not use
a two phase (feature extraction then classification) approach but they learn the fea-
ture extractor from the data directly by adjusting the weights of the convolutions in
each layer: the two stages are unified into a fully differentiable function (”end-to-end
learning” concept). Furthermore, thanks to the stacked convolution operations, the
network can condition the class of a single pixel on the features of pixels coming from
a much larger neighborhood constructing object clues conditioned on more global in-
formation. The current snapshot of the field is summarized in a recent review paper.
[38] Nuclei segmentation is not only interesting in 2D images but also in 3 dimen-
sions. Biological samples extracted from species are inherently 3-dimensional and
there is growing interest in creating in-vitro cell populations in 3D as they might be
a better model of human tissues compared to 2D cell populations. [24] Recent mi-
croscopy technology allows us to precisely image samples at multiple z-levels with
high axial resolution. The combination of such planar images leads to volumes that
can be analyzed as 3D volumes. A recent review summarizes current methods for
nuclei segmentation of 3D samples. [23, 82]

This thesis introduces methods developed for the above problems.

1.2 Structure of the document

The results are split into two parts:

• part I deals with active contour methods and level sets and introduced in chap-
ter 2, the results are in chapters 3, 4, 5 while

• part II summarizes our results in microscopy image segmentation with deep
learning introduced in chapter 6 and the results are in chapters 7, 8.



1.3 Thesis points 3

1.3 Thesis points

This section connects the thesis points and the chapters. Each chapter is supported by
at least one publication. See the summary for an overview of the connection between
the supporting publications and chapters.

• In our first thesis point, we propose a fast and accurate level set reinitializa-
tion method using the phase field functional that forms a local smooth phase
transition in the vicinity of the contour. The issue with the phase field however,
that it has a curvature driven component that moves the contour as a side ef-
fect. We eliminate this side effect from the phase field functional by combining
the gradient term with a second order smoothness. We empirically show that
the side effect is minimal compared to the competing methods while computa-
tionally inexpensive. The results are presented in chapter 3.

• In the second thesis point we introduce a 3D selective active contour model
developed for the analysis of 3D fluorescent images. The model uses prior ob-
ject parameters to selectively retrieve objects. We show how the priors work on
synthetic and real microscopy data. We also propose an open source annota-
tion software called 3D-Cell-Annotator, that uses the developed method and the
reinitialization method proposed in 3 combined with a local region data term
in 3D with efficient local level set implementation. We show that using the pro-
posed software, accurate segmentation can be created with significantly less
user effort. The selective model is presented in chapters 4 while the annotation
software is presented in chapter 5.

• The third thesis point introduces two automatic augmentation protocols for
nuclei segmentation of 2D images (multiple microscopy modalities) with con-
volutional neural networks. The first model, called nucleAIzer simulates mi-
croscopy masks by cell population simulation and then applies image-to-image
translation to simulate microscopy images. We show that training an instance
segmentation network on the combined synthesized samples and the initial
training dataset, the test accuracy increases. The method is presented in chap-
ter 7. Then, as a follow up research we fix the main weakness of the nucleAIzer
method. In particular, instead of synthesizing instance masks using traditional
parametric cell population simulation tools, we learn the distribution of objects
using a generative adversarial network. We show that by learning the masks
from the data, we can simulate much more realistic data (e.g. complex struc-
tures found in tissues) that is not trivial with simple parametric methods. We
combine the synthesized images with the initial training dataset and show that
the test accuracy increases. The method is presented in chapter 8.



4 Introduction

Our conclusions are summarized in chapter 9.
The contributions of the author are listed in the Summary.
The connection between the thesis points and the supporting publications

are listed in the Summary.
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Active contour based methods

5





Chapter 2

Active contour segmentation with
level sets

Image segmentation can be accomplished with basic methods such as thresholding,
region growing/watershed techniques to name a few. Such image processing algo-
rithms may be suitable for images where the objects can be separated easily from the
background. In our case, however, images are often noisy that is caused by the side
effects of the imaging pipeline. Therefore, we are interested in methods that are less
prone to such effects. In microscopy image analysis, we also have some prior infor-
mation about the objects to be retrieved such as their expected shape captured with
shape descriptors and their approximate size. We aim to include these information
into the segmentation process.

Active contour models [44] are proposed for object level segmentation of images.
The basic idea is that an initial closed curve is placed in the image, ideally close
to the target object, representing the segmentation by separating the plane to inner
and outer regions. The curve is then evolved by minimizing an energy given as a
functional. The original active contour energy [44] includes constraints of the curve
itself (internal forces) and image information (external forces) often called as data
term. The curve is defined using the vector valued function v(s) = ⟨x(s), y(s)⟩ where
s is the time parameter ∈ [0, 1] of the curve. Then, the total energy of the contour is
usually defined as:

E(v(s)) = Eint(v(s)) + Eimage(v(s)),

where the first term is chosen to return low energy for smoother curves, while the
external term

Eint(v(s)) = α

∫ 1

0

|v′(s)|2ds+ β

∫ 1

0

|v′′(s)|2ds,

depends on the image and designed to return lower energy when the curve matches

7



8 Active contour segmentation with level sets

the edges in the image:

Eimage(v(s)) = −γ
∫ 1

0

|∇I(x(s), y(s))|2ds.

In general form, the external force depends on some non-decreasing function of the
image e.g.:

g(∇I(x)) = 1

1 + |(Gµ,σ ∗ ∇I)(x)|2
.

Weights α, β and γ are used to balance between the forces and G is the Gaussian
filter.

This method of contour evolution is based solely on energy minimization and
can can be numerically solved by explicit representation (discretization) of the curve
with representative points, then the derivatives at each point are approximated using
finite differences. This method however, has several drawbacks: the initial topology
of the contour is assumed to be the same at the beginning and at the end of the
evolution. Thus, multiple objects cannot be retrieved. Furthermore, the weights for
each term must be tuned properly for success. While the topology change issue can
be eliminated by smart (and complex) contour surgery techniques, geometrical active
contours are proposed to eliminate the issue in an elegant way by defining the curve
evolution from a geometrical perspective as the name suggests. Instead of relying
solely on energy minimization, the geometrical approach can be viewed as solving a
PDE [16, 65].

To represent the curve implicitly, level sets [78] are used. Let u(t, x, y) is a C2

function (the level set) and the contour ∂C is the k-th level set of u: ∂C = {(x, y) :
u(t, x, y) = k}} and t is the time step, and usually k = 0. To move the curve in the
normal direction, one should solve the level set equation:

∂u

∂t
+ Vn|∇u| = 0, (2.1)

where Vn is a scalar field defines the speed at each point.
The new curve evolution equation [16] in the level set framework thus:

∂u

∂t
= g(x)|∇u|

(
∇ · ∇u
|∇u|

+ v
)
.

In other words, the equation 2 moves the curve represented as the k-level set
in the normal direction with speed depending on the mean curvature while g(·) is
responsible to stop the motion of the contour element, when the image feature is
reached, v compensates the divergence to be positive. The contour is not moved di-
rectly but the equations manipulate the level set function, which in turn moves the
curve. This formulation has two great advantages over the classical energy minimiza-
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tion formulation: the evolution does not depend on the particular parametrization of
the curve anymore, and more importantly, the topology changes are naturally han-
dled during the evolution of the level set as no explicit discretization of the curve
is involved in the process. For a more general analysis of the contour evolution
with curvature dependent motion, see the seminal work of Osher & Sethian on level
sets [78] and for a general discussion about the applications of level set methods in
different fields, see [77]. Another improvement over the energy-minimization based
formulation is the class of geodesic active contours [17]. This formulation connects
the energy based and geometric active contours by showing that the energy based
formulation is equivalent to minimizing the length of a geodesic curve on the im-
age in a Riemannian space. The functional is derived from variational principles
(the principle of least action and Fermat-principle) and the length of the curve to be
minimized is:

LR =

∫ 1

0

g(|∇I(C(q))|)C ′(q)dq =

∫ L(C)

0

g(|∇I(C(q))|)ds.

The resulting steepest descent equation is then embedded into the level set frame-
work, thus the topology is handled automatically.

Although implicit representation of the contour with level sets eliminates most of
the limitations of the contour tracing, it introduces its own limitations. Constructing
the level set can be done by initializing it to a variant of Heaviside function, but its
drawback is that it is not smooth. Other approaches are the signed distance functions,
in particular ϕ = 1± d2 or ϕ = ±d, where d is the distance from the contour, and the
level set is negative in the closed region and positive in the open. It has been shown,
that the level set evolution can introduce numerical errors on the level set itself and
the evolution converges to unexpected curves, thus the numerical errors should be
eliminated by reinitializing the level set periodically to signed distance function. In
chapter 3 we propose such a reinitialization method that shown to be superior over
competing methods.
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Chapter 3

Level set maintenance with phase
field based tecnhiques

3.1 Introduction

Active contours [44] have become one of the most widely-used techniques for im-
age segmentation. These methods represent the object to be segmented as a closed
curve. Early methods [44] discretized the curve to equidistant points, then moved
the points by minimizing an energy functional on the curve. These implementations
are often called front tracking methods in the level set literature because we track
the curve based on their representative points. Front tracking methods have several
difficulties. The first one is that the points should be redistributed during the contour
evolution periodically. The other issue is that it is extremely challenging to handle
the topology changes during the evolution. The problem of front tracking and topol-
ogy management is deeply investigated in [103]. Because of the difficulties of the
explicit curve representation, more recent methods [16, 65] represent the contour
using an implicit function called the level set ϕ defined on Ω ⊆ Rn. The contour
(front) ∂Ω is represented as the k-th isocontour of ϕ e.g. {x|ϕ(x) = k}, usually k = 0

and x lies in the inside region (Ω−) if ϕ(x) < k and in the outside if ϕ(x) > k (Ω+).
The level set is not only capable of representing the contour at a particular time, but
the whole contour evolution can be indirectly managed by manipulating the level
set using the level set equation. By solving equation 2.1, we can move the implicitly
represented contour in the normal direction. Level sets usually initialized to a signed
distance function (SDF): each point x ∈ Ω will get the value d(x) (distance of x from
the contour) adjusted with the sign depending on the location of x with respect to
the contour (x is in Ω+ or Ω−). SDFs are preferred over the variants of the Heaviside
function because of their smoothness around the contour, thus the quantities needed
for the contour evolution can be approximated properly near the front if |∇ϕ| = 1:

11
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N = ∇ϕ (3.1)

,
where N is the unit normal to the contour and

κ = ∆ϕ (3.2)

,
where κ is the mean curvature. SDFs can be easily constructed algorithmically by

first calculating the minimum distances

d(x) = min(|x− xC |), xC ∈ Ω (3.3)

and then setting the sign of d(x) at x depending on whether x in Ω+ or Ω−.
A main drawback of the level set method is that during the contour evolution, the
signed distance function property of the level set is not necessarily kept because of the
introduction of numerical errors, and the computed quantities for updating the level
set (the next contour position) become inaccurate. To ensure that the level set holds
the signed distance function property, one should reinitialize the level set periodically.
The SDF can be constructed using the method described above by first localizing the
contour (using contour plotting in 2D or with the marching cubes algorithm in 3D)
and then measuring the minimum distances. These exact reinitialization methods are
obviously time consuming. Approximate methods also proposed that are designed to
be included in the evolution equation and usually penalize the deviance from the
SDF when updating the level set. These methods, however, may add instability (see
[111]) and increase complexity [105]. More importantly, these approaches may
move the zero level set away from the expected stopping location. Furthermore,
depending on the application, accurate reinitialization is required for correct level
set evolution. It should be noted, that since we are only interested in moving the
contour, the speed function should be also computed only on the contour. The main
quantities needed (normal, curvature) therefore calculated based on the level set
values only in a small neighborhood around the front. This observation led to the
development of local level set methods [3].

The Ginzburg-Landau phase field model was used in image segmentation in [86]
as an alternative to the level sets. It possesses interesting advantages as greater topo-
logical freedom, the possibility of a ‘neutral’ initialization. Here we stress another as-
pect: phase field models automatically form narrow band, a useful property that can
only be achieved using additive regularization [105] in the case of Hamilton-Jacobi
formulation. Moreover, unlike the reaction-diffusion model [26, 111], it exhibits fast
shape recovery due to the double well potential term incorporated in its functional.
On the other hand, the Ginzburg-Landau phase field energy is proportional to the
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length of the contour that causes curvature dependent shrinking of the level sets. In
some cases they are rather destructive and the Euler’s elastica is used instead (e.g.
[70]).

The calculation of the fundamental quantities requires a smooth transition across
a certain neighbourhood of the zero level set. On the other hand, any method ded-
icated to this transitional shape maintaining should have the least possible inter-
ference with the segmentation PDE. Specifically, any curvature dependent behaviour
should be an intentionally designed part of the segmentation model itself. The Ginzburg-
Landau phase field obviously violates this ‘least possible interference’ requirement.
We propose the balanced phase field model [71] that eliminates the curvature driven
shrinking, while maintains the smooth transition around the zero level set and show
that the contour shrinking effect can be eliminated by compensating the curvature
dependent motion in the phase field update equation.

3.2 The Phase Field model

Similarly to the level sets, the phase field uses an order parameter ϕ to separate two
regions using an implicit real valued function over Ω. It is widely applied in mate-
rials science to model phase changes in materials, for example the solidification of
fluids or crystallization of metals. In particular we are interested in the movement of
the boundary (called interface in the phase field literature) between the two phases.
While the interface can be modeled directly as a zero-width transition (called sharp
interface model), it was shown to be not effective for example to model microstruc-
ture changes in crystals. [94]. In contrast, the phase field model, uses a diffuse
interface model, that is a smooth transition between the two phases and the inter-
face can be captured at a value half-way. This is in essence similar to level sets but
unlike of them, the order parameter of the phase field is designed to be a bounded
function where the inside and outside region is defined by the phase field values e.g.
−1 and 1. These two phases are defined by the extreme values of a so called double-
well potential. A common choice in image processing is ϕ = ϕ4

4
− ϕ2

2
with extrema

{−1, 1} 3.1.
Assuming that the used potential have extrema at values −1 and 1, if the ini-

tial phase field is initialized to values greater than 0 (inner region) and less than 0

(outer region), we minimize the Ginzburg-Landau functional to form the soft phase
transition. ∫∫

Ω

γ |∇ϕ|2 + λ

(
ϕ4

4
− ϕ2

2

)
dΩ. (3.4)

It has two terms: the second term forces the field to form the two phases, while
the first term minimizes the gradient of ϕ over Ω and it is already minimal at the
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Figure 3.1: A double well potential for the phase field model ϕ4

4
− ϕ2

2
usually used in

image processing.

two phases as the potential has minimum value there, and returns minimal value
when the transition is linear. This is exactly what we need: a linear level set in a
narrow band of the contour. In the following, we investigate the phase field model for
reinitialization purposes. The γ is a weight that influences the width of the transition.
3.2

3.2.1 Minimizing the contour energy using phase field

In the level set framework, the representation of contours is given by a level set
function of two variables ϕ (x, y). The quantities of the segmentation problem are
extracted from this function, such as the unit normal vector n = ∇ϕ

|∇ϕ| or the curvature

κ = −∇ ·
(

∇ϕ
|∇ϕ|

)
where ∇ is the gradient operator and “·” stands for the scalar (dot)

product, i.e. ∇ · v is the divergence of the vector field v. The level set function is
usually maintained on a uniform grid and its derivatives are approximated by finite
differences. Such calculation requires the level set function to be approx. linear
around a small neighborhood of the zero level.

We start our analysis with the following functional:∫∫
Ω

Do

2
|∇ϕ|2 + λo

(
ϕ4

4
− ϕ2

2

)
dA, dA = dxdy, (3.5)

where Do and λo are weights.
Albeit the energy (3.5) could be incorporated into any segmentation functional,
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(a) The 0-isocontour of ϕ.

(b) The values of ϕ at y = 50 (red line of
3.2a).

(c) ϕ on the whole Ω (the extreme values are −1 and 1).

Figure 3.2: Phase field representation of regions. Opposed to the sharp interface model,
the contour is represented as a smooth transition between the two phases.
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this would extremely complicate the analysis of such a complex system. There is
though another way using the phase field equation: that is using it in “shape main-
taining” role, solving its associated Euler-Lagrange equation independently of and
before the segmentation. In either case we wish the phase field equation ideally
to maintain the shape of ϕ without moving its level sets. This idea is similar to the
regularization of the level set by reinitialization or the diffusion phase of the reaction-
diffusion model.

First, we assess the results of the Ginzburg-Landau phase field analysis using
linear ansatz (see [86]). One can show that the width of the transition is

wo∗ =

√
15Do

λo

, (3.6)

and the energy of the transitional band is approximately proportional to the perime-
ter of the innermost (zero) level set. These approximations are valid wherever
wo∗ |κ| ≪ 1. The associated Euler-Lagrange equation is

−Do△ϕ+ λo

(
ϕ3 − ϕ

)
= 0 . (3.7)

3.3 Higher order smoothness terms for phase field model

In this section we examine a phase field ϕ (x, y) with Laplacian smoothness (△ϕ)2- as a
potential candidate for our purpose. Note that the origin of the energy can be chosen
freely. If the phase field satisfies the condition of constancy almost everywhere except
the regions of transitions, the origin is expediently chosen to be the energy level of
ϕ = ±1. In this case, the whole energy is equivalent to the energy of the transitions
and can be written as ∫∫

Ω

D

2
(△ϕ)2 + λ

(
ϕ4

4
− ϕ2

2
+

1

4

)
dxdy . (3.8)

The Euler-Lagrange equation associated with this functional is

D△△ϕ+ λ
(
ϕ3 − ϕ

)
= 0 . (3.9)

To estimate the energy (3.8) we use curvilinear coordinates.

3.3.1 Approximate system energy

In the vicinity of the curve r (s) (s is the arc length parameter), the plane can be
parameterized as R (s, p) = r (s) + pn (s), where n (s) is the unit normal vector of
the curve at s and p is the coordinate in the normal direction. The metric tensor
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components are the scalar (dot) products of the covariant basis vectors Rs = ∂R
∂s

,
Rp = ∂R

∂p
and takes the form [gik] = diag

[
(1− pκ)2 , 1

]
, where κ = κ (s) is the curva-

ture of the curve r at s given by the Frenet-Serret formula ns = −κe (e is the unit
tangent vector). The invariant infinitesimal area is dA =

√
gdsdt where g = det [gik].

Using these, the Laplacian △ϕ in the curved system (u1, u2) = (s, p) is given by the

Laplace-Beltrami operator △ϕ = 1√
g

∂
√
ggik ∂ϕ

∂uk

∂ui = 1
1−pκ

[
∂(1−pκ)−1 ∂ϕ

∂s

∂s
+

∂(1−pκ) ∂ϕ
∂p

∂p

]
(in the

general expression the components of the inverse metric
[
gik
]
= [gik]

−1 and the Ein-
stein summation convention are used). It can be rearranged as

△ϕ =
1

(1− pκ)2
∂2ϕ

∂s2
+

p

(1− pκ)3
dκ

ds

∂ϕ

∂s
+

∂2ϕ

∂p2
− κ

1− pκ

∂ϕ

∂p
. (3.10)

Now we choose r (s) to be the zero level set and use the following simplifications:

1. the constant level sets are equidistant to r (s) i.e. ϕ = const → ∂nϕ
∂sk∂pn−k = 0,

k ∈ [1, n] along the parameter lines p = const

2. the transition is confined to a stripe
(
−w

2
, w
2

)
along the zero level set contour

3. the osculating circle is significantly bigger than the stripe width: 1− pκ ≈ 1

then energy (3.8) expressed in the (s, p) system becomes∮ ∫ w
2

−w
2

D

2
(ϕ′′ − κϕ′)

2
+ λ

(
ϕ4

4
− ϕ2

2
+

1

4

)
dpds (3.11)

ϕ (s, p) = ϕ (p) and κ = κ (s) is the curvature measured on the zero level set and
prime notation is used for the derivatives wrt p.

3.3.2 Cubic ansatz

In the presence of the second derivative ϕ′′ in (3.11), the linear ansatz is not appli-
cable. The next simplest choice is a cubic ansatz with boundary conditions ϕ

(
−w

2

)
=

−1, ϕ
(
w
2

)
= 1 and ϕ′ (−w

2

)
= ϕ′ (w

2

)
= 0 . The function satisfying these conditions is

ϕ (p) = − 4

w3
p3 +

3

w
p . (3.12)

Its derivatives are:

ϕ′ = − 12

w3
p2 +

3

w
, ϕ′′ = − 24

w3
p, ϕ′′′ = − 24

w3
. (3.13)

The square of the approximate Laplacian, obtained from (3.10) is (ϕ′′ − κϕ′)2 =[
− 24

w3p− κ
(
− 12

w3p
2 + 3

w

)]2. The inner integral in (3.11) is symmetrical, therefore
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the terms having odd powers of p do not contribute to the energy. Integrating this
smoothness term results 24D

w

(
1
w2 +

κ2

10

)
. Now it can be seen that the appearance of

the curvature in the energy violates the assumptions 1 and 2 given in section 3.3.1.
The contribution of the second term κ2

10
= 1

10r2O
≪ 1

w2 is however, very modest thus
omitted in the subsequent calculations. Similarly, the inner integral of the phase
field double well potential term λ

(
ϕ4

4
− ϕ2

2
+ 1

4

)
is approximately 0.1λw, hence the

approximate energy of (3.11) is L
(
24D
w3 + λw

10

)
(L is the contour length). Deriving it

wrt w, the optimal width of the transitional region is

w∗ =
4

√
720D

λ
. (3.14)

3.3.3 The motion of the level sets

The Euler-Lagrange equation (3.9) can be expressed in the curvilinear system aligned
with the zero level set applying the Laplace-Beltrami operator once again to the equa-
tion (3.10) (and multiplying the result by

√
g = 1 − pκ). The Euler-Lagrange terms

having the derivatives of ϕ by the contour parameter s can be omitted in the result.
This approximate equation is

D
(
−Aϕ′ − 2κϕ′′′ − κ2ϕ′′ + ϕ′′′′)+ λ

(
ϕ3 − ϕ

)
= 0

A = 3p

(
dκ

ds

)2

+
d2κ

ds2
+ κ3 . (3.15)

The shape of the numerical solution for (3.15) is close to the cubic ansatz (see Fig.
3.4). Due to the assumed symmetry of the zero level set, its motion is governed by
−D

(
d2κ
ds2

+ κ3
)
ϕ′ − 2Dκϕ′′′ = 0 or using the cubic ansatz at p = 0 and (3.14):

48D

w3
∗
κ−

(
d2κ

ds2
+ κ3

)
3D

w∗
= 0 . (3.16)

Equation (3.16) describes either a static state wherever the curvature is identically
zero or shrinking proportional to the curvature where the radius rO of the osculating
circle is significantly bigger than the thickness of the transition and this width varies
slowly.

For contours with constant curvature a static solution would be at radius 48κ
w3

∗
=

3κ3

w∗
→ r = w∗

4
, however this is not the case. Around this curvature value neither the

assumption 1 − pκ ≈ 1 nor the cubic ansatz approximation are valid. Under these
circumstances the phase field function can no longer be modeled with cubic ansatz
(see Fig. 3.4 right column). The theoretical minimum value while the phase field is
shape-retaining is w∗

2
.
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Figure 3.3: Alteration of the phase field function in normal direction (thin blue line).
Left column: small curvature, the cubic ansatz (thick violet line) is valid. Right column:
high curvature, cubic approximation is invalid.

Therefore, we conclude that energy (3.8) does not fulfill our expectation stated in the
beginning of this section because it still has a curvature dependent term.

3.3.4 Motion of the level sets of the original model

Assuming again that the conditions that led to the simplified energy expression (3.11)
are valid, the Euler-Lagrange equation of the Ginzburg-Landau phase field (3.7) re-
duced to the normal direction using the Laplacian (3.10) at 1 − pκ ≈ 1 and ∂nϕ

∂sn
= 0

is: −Do (ϕ
′′ − κϕ′) + λo (ϕ

3 − ϕ) = 0. From this expression, the motion of the zero
level set is governed by

Doκϕ
′ = 0, (3.17)

that is a pure curvature-driven motion.

3.4 Phase field model for reinitialization purpose

The motion of the zero level set is basically curvature driven both for the Ginzburg-
Landau (3.17) and the higher order smoothness (3.16) models. This effect can
be eliminated by the appropriate combination of the smoothness terms (∇ϕ)2 and
(△ϕ)2. First we calculate the optimal width for the functional∫∫

Ω

D

2
|△ϕ|2 − Do

2
|∇ϕ|2 + λ

(
ϕ4

4
− ϕ2

2
+

1

4

)
dA . (3.18)
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The approximate energy - using simplifications 1.-3. introduced in section 3.3.1 - is

L

∫ w
2

−w
2

D

2
(ϕ′′ + κϕ′)

2 − Do

2
(ϕ′)

2
+ λ

(
ϕ4

4
− ϕ2

2
+

1

4

)
dp, (3.19)

where the length of the contour is L =
∮
ds is independent of w. Substituting the

cubic ansatz (3.12), the integral (3.19) (divided by L) becomes

24D

(
1

w3
+

κ2

10w

)
− 12Do

5w
+

λw

10
. (3.20)

The term dependent on the square of the curvature is again negligible, hence omitted.
From expression (3.20), the optimal width is given by derivation wrt w

λw4 − 24Dow
2 − 720D = 0 (3.21)

that can be solved for the optimal width w∗. The solution is

w∗ =

√
12

λ

(
−Do +

√
D2

o + 5Dλ
)
. (3.22)

Now we use the approximate Euler-Lagrange equation associated with (3.19)

D
(
−Aϕ′ − 2κϕ′′′ − κ2ϕ′′ + ϕ′′′′)+Do (ϕ

′′ − κϕ′) + λ
(
ϕ3 − ϕ

)
= 0 (3.23)

to derive condition for the curvature-independent solution (here A is defined in
(3.15)). From (3.23) the curvature-dependent term is eliminated with the condi-
tion: −Doϕ

′ − 2Dϕ′′′ .
= 0. Substituting the cubic ansatz (3.12) (at p = 0) we get:

−Do
3

w
+D

48

w3
= 0 → D =

w2

16Do

. (3.24)

The width (3.21) and the curvature (3.24) constraints determine the weights for
the solution with curvature driven shrinking effect removed. There are other terms,
e.g. terms included in factor A, but the influence of those is much weaker. In fact
the impact of the term D

(
d2κ
ds2

+ κ3
)

is similar to that of the solution of the Euler’s

elastica
∮

D
2
κ2ds with associated Euler-Lagrange equation: D

(
d2κ
ds2

+ 1
2
κ3
)
= 0. The

numerical tests confirm that the phase field used in this manner - satisfying equations
(3.21), (3.24) - essentially fulfills the “transitional shape maintenance” role while
standing still.
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3.4.1 Determining weights

Given two constraints (3.21), (3.24) for the energy (3.18), one of the weights can
be chosen freely (say Do = 1). The calculation of the remaining weights are as
follows. First determine the width: depending on the highest order of the derivatives
n (occurring either in the segmentation model or the phase field itself), we need
at least n + 1 grid points around the zero level set using finite central difference
schemes. This suggests about twice as big (as a cautious choice) thickness of the
phase field transition to remain within the range where it is approximately linear, i.e.
w ≧ 2 (n+ 1) is recommended. Second, solving (3.21) and (3.24), the weights the
functions of the width parameter w such as:

Do = 1, D =
w2

16
, λ =

21

w2
. (3.25)

The Euler-Lagrange equation associated with the proposed energy (3.18), using the
calculated weights (3.25) dependent on the width parameter w is therefore

w2

16
△△ϕ+△ϕ+

21

w2

(
ϕ3 − ϕ

)
= 0 . (3.26)

In (3.26) the Laplace operator can be expressed wrt the standard basis as △Φ =
∂2Φ
∂x2 + ∂2Φ

∂y2
, Φ ∈ {ϕ,△ϕ} and discretized on a uniform grid using finite differences. Its

gradient descent was used in the tests. The method can be efficiently implemented
as a 5 × 5 linear filter plus a point-wise cubic term acting on the uniform grid used
to discretize the level set function. The approximation rmin ≈ X (n+ 1) (where X is
the grid size that can be smaller or greater than a pixel) also determines the size of
the segmentable smallest image-feature.

3.5 Experimental Evaluation

In this section, we show that our balanced phase field model a) maintains a smooth
transition of the level set in a narrow band during the evolution, while b) it has min-
imal side effect on the contour at the same time. This section is organized as follows:
first, we compare the Ginzburg-Landau phase field model to the proposed one to
show that the latter has much better contour preserving performance. Next, we com-
pare the proposed model, the reaction diffusion model [111] and a reinitialization
method [80] on synthetic and real data.
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(a) The balanced phase field - interfaces are barely moved.

(b) The Ginzburg-Landau phase field: interfaces are displaced significantly.

Figure 3.4: Alteration after the same iteration numbers of the phase fields when w = 10.
Weights are set according to (3.25) and (3.6) for the balanced model and the Ginzburg-
Landau model respectively.

3.5.1 Stability tests: comparing to the Ginzburg-Landau model

The test environment is prepared to guarantee the synchronous snapshot production
for the illustrations: the simulation space is splitted in the middle such that the
phase field evolutions are governed by the proposed energy (3.18) on one side and
the Ginzburg-Landau energy (3.5) on the other.

For the first test, the pure phase field equations were used. Fig. 3.4 left shows
the initial contour preserving capability of the balanced phase field model compared
with the Ginzburg-Landau model on the right side.

The proposed phase field model was also applied to real data segmentation, using
a selective segmentation model [70]. The energy to be minimized is: E = αS+βP+

γD+ δE , where P = 1
2

[∮
dA− q

(∮
ds
)2]2 is the “plasma shape” prior (q is the shape

parameter, the ratio of the enclosed area and the square of the perimeter), the data
term of the original model was replaced by the simplest anisotropic edge energy
D =

∮
∇I · nds (see [46]); the E is the Euler elastica, while α, β, γ, δ are weights.

This segmentation model was chosen, because of its sensitivity to any size decreasing
effect due to the term S = 1

3

(∮
dA− A0

)3 which is used at its inflection point at
the preferred size A0. The initial contours were produced by simple thresholding.
Segmentation steps and the sequence of the phase field sectional values along a
horizontal line are shown in Fig. 3.5.

For the test X = 1 pixel grid size and w = 10 width values were used; the
maximum speed of the evolution by the segmentation model was set such that its
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(a) Segmentation result.
(b) Reinitializing in iterations 2, 5, 15 for
shape maintenance.

Figure 3.5: Evolution of the selective segmentation example (grid size: 1 pixel, w=10).
First columns: the balanced phase field model; Second columns: the Ginzburg-Landau
phase field models.

maximal value could not exceed the grid size. Preceding the segmentation step,
the gradient descent equation of (3.26) is iterated and the phase field is updated in a
reinitialization loop to recover a reasonably smooth interface. Then the segmentation
gradient descent moves the contour towards the solution (but deteriorates its shape).

The transitional-shape recovery and the segmentation results using the balanced
and the Ginzburg-Landau models, depending on the number of the phase field itera-
tions in the reinitialization step (denoted by n) are assessed here: At n = 2 neither the
balanced nor the Ginzburg-Landau models can be considered stable, at n = 5 both
models provide stable transition, however the Ginzburg-Landau model develops ex-
tremely steep slopes, while at n = 15, both models exhibit high degree of stability
as well as widths close to the designed/predicted ones. Regardless the number of
the phase field iterations used, the selective segmentation [70] combined with the
Ginzburg-Landau model ends up in the collapse of the contour, whilst its combination
with the balanced phase field model provides the expected solution.

3.5.2 Comparing to the Reaction-Diffusion model

The reaction diffusion model (RD) [111] is also proposed to diminish the interference
with the segmentation (active) model. The shape maintenance of the level set func-
tion is achieved by adding a diffusion term ε∆ϕ to the gradient descent of the active
model, therefore ϕt = ε∆ϕ + 1

ε
F |∇ϕ|, where ε is a small constant and F represents

the gradient descent equation of the active model. We first show that both the RD and
the proposed balanced phase field model fulfill the shape maintenance role. Next,
we show that RD moves the interface more significantly compared to the proposed
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(a) Direct implementation (no reinitialization e.g. simple Ginzburg-Landau model.). (DI)

(b) Reinitialization method. (RM)

(c) Reaction-Diffusion model. (RD)

(d) The balanced phase field model. (BPF)

Figure 3.6: Comparing different reintitialization methods. Columns from left to right:
initial level sets; second: level set during evolution (intersection at x = 50); third: final
level sets, fourth: final contours.
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Synthetic Real
RM RD BPF RM RD BPF

result mean 0.943 0.339 0.882 0.365 0.093 0.343
peak mean 0.948 0.983 0.975 0.608 0.802 0.794

Table 3.1: Segmentation accuracy of the synthetic and the real tests. Peak: the best
scores reached during the evolution. RD can not keep the accuracy of the active model
in long term, it has massive side-effects while the BPF behaves similarly to the reinitial-
ization method.

model. In case of RD, this shrinking side-effect eventually leads to the disappearing
of some objects. For the quantitative results, we borrowed a Jaccard-distance based
metric similar to the one used in the 2018 Data Science Bowl (DSB2018) competi-
tion. [1] The only modification is that we used the threshold levels t = 0.1 to t = 0.95

with steps 0.5 (inclusive).

Shape maintenance tests:

We compared three different models to ours. We tested the reaction diffusion method
(RD), the balanced phase field model (BPF), a reinitialization method (RM) [80] us-
ing the reinitialization equation: ϕt+S(ϕ0)(|∇ϕ|−1) = 0, where S(ϕ) = ϕ√

ϕ2+(|∇ϕ|∆x)2
,

(the same method as the one used in the RD paper and referred to as re-initialization.
(For the implementation, see the online supplementary material of that paper), and
lastly, no shape maintenance) (DI - direct implementation). The first test inherits
from Fig. 5 of the RD paper [111], ∆t1,∆t2 (used for the numerical solution of the
RD equation, see the RD paper for details) are 0.1. For the RM, ∆x and ∆y is 1 and
α = 0.5, while w = 8 in the BPF model. The force term in the gradient descent of the
active contour model is simply 1, grid dimensions: 100 × 100, number of iterations:
200. The results are shown in Fig. 3.6.

Synthetic tests:

The models are compared to each other by performing a level set evolution using 11
synthetic initial contours (subset of these masks are shown in Fig. 3.7) using 0 as
a force term in the active model. In this setting, we would assume that the initial
contours are not moving. A sample evolution is visualized in Fig. 3.7 using the RM,
RD and the BPF methods. The same test performed with all of the synthetic initial
contours. The quantitative results using the modified DSB2018 metric presented in
Fig. 3.8 left. The ground truth is the initial contour and the accuracy is measured
during the evolution on every image. Simple statistics summarizes the results in
Table 3.1 left.
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Real tests:

We also compared the methods to each other using the geodesic active contour model
(GAC) [17] on 51 real images containing nuclei extracted from the DSB2018 train-
ing set with random sampling. In the GAC model, the force term in the gradient
descent equation is: ∇ ·

(
g(I) ∇ϕ

|∇ϕ|

)
+ νg(I), where g(I) = 1

1+(∇G(15,1.5)∗I)2 is the edge
indicator function (the same as the one used in the RD paper for the tests). The
quantitative results with this model are presented in Fig. 3.8 right. The parameters
are unchanged. A sample test image used for this test is shown in Fig. 3.9. Simple
statistics presented in Table 3.1 right. The parameters left unchanged since the last
test, except the ∆t2 that is 0.001 in this case. In conclusion, the BPF outperformed
RD both for the synthetic and real tests and produced results that are comparable to
the RM method.

3.6 Summary

In this chapter we proposed and analyzed a balanced phase field model as an alter-
native to the Ginzburg-Landau level set framework. The proposed model exhibits
very fast shape recovery (essentially) without moving the level sets i.e. its interfer-
ence with the “active” (e.g. segmentation) PDE is negligible. This important property
makes this level set formulation suitable for accurate segmentation. Similar balanc-
ing could be used for any model that includes Laplacian smoothness term in their
gradient descent equation such as the reaction-diffusion model.
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(a) Test images for the synthetic tests.

(b) Evolution with the reinitialization method. (RM)

(c) Evolution with the reaction diffusion model. The model has serious side effect on the contours
causing that several small objects melt to big ones, then completely disappear. (RD)

(d) Evolution using the balanced phase field model. (BPF)

Figure 3.7: Left: sample synthetic masks encoding initial contours; right: level set
evolutions on a sample image from the left side with RM/RD/BPF from top to bottom,
respectively.
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Figure 3.8: Left: quantitative results for the synthetic test. From top to bottom: RM,
RD, BPF. Columns: first: accuracy on each image during the evolution, second: peak
(maximum acc. on an image, blue) and the final acc. for the images. Right: results on
patches extracted from the DSB2018 training set, GAC model (ν = 0.5). From top to
bottom: RM, RD, BPF.
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(a) The most accurate contours
achievable with each of the methods.

(b) The contours after 40k iterations
with different reinitialization methods.

Figure 3.9: Active contour evolutions with different reinitialization methods on a patch
from the DSB2018 dataset: red: BPF, green: RD, blue: RM. Even if the active model
is able to achieve good accuracy (Fig. 3.9a) the contour vanishes by the time if we
use the RD method (serious side effect on the active model). The proposed model has
contour preserving ability comparable to the reference method (marginal side effect on
the active model) (Fig. 3.9b).
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Chapter 4

A selective active contour model in 3D

4.1 Introduction

We approach the problem of segmenting single cells sharing similar morphologies us-
ing the 3D extension of the active contour framework [61, 110]. In [42], Molnar et
al. introduced a family of shape descriptors to capture objects with predefined area,
contour length, second moment, curvature or arbitrary combination of these. This
model was able to precisely capture circular, elliptical and amoeba-like cell shapes.
In this chapter we present novel energies capable to segment 3D objects satisfying
certain shape criteria. Our method [72] is based on minimizing functionals designed
to penalize shapes unfit to given parameters. We present a shape prior which forces
objects to assume a prescribed surface/volume ratio. Using this prior it was possible
to segment objects satisfying only the given parameters. This selective capability of
the model is demonstrated on synthetic and fluorescent microscopy images.

The outline of this chapter is the following. First, we briefly review the notations
and conventions in Section 4.2. The energy functionals used for segmentation are
constructed in Section 4.3, for which the corresponding Euler-Lagrange and level set
equations are given in Section 4.4. The tests are carried out in Section 4.5, while we
discuss the results and future work in Section 4.6.

4.2 Notations and conventions

Surfaces will be denoted by S ⊆ R3 or S(u, v) ∈ R3 in parametrized form, where
u and v are surface parameters. Su,Sv ∈ R3 will denote the partial derivatives in
the tangent space at S(u, v). Recall that Su × Sv is normal to the surface. The in-
ward pointing unit normal Su×Sv

|Su×Sv | is denoted by n. The sum curvature of the sur-
face is denoted by K, while KG is the Gaussian curvature. The integral

∫
dS =

31
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∫ √
|Su|2|Sv|2 − (Su · Sv)2dudv gives the surface area and

∫
dV = −1

3

∫
S · (Su ×

Sv)dudv gives the volume of a surface S, where dS and dV are the surface and volume
element respectively.

To handle topological changes in the evolving surfaces, a level set representation
is used. In this chapter, level set functions are denoted by ϕ = ϕ(t,x), where t ∈ R
and x = (x1, x2, x3) ∈ R3 are the time and space variables respectively. According
to this, ϕt denotes the partial derivative with respect to the time and ∇ϕ denotes
the spatial gradient ∇ϕ = (ϕx1 , ϕx2 , ϕx3). The Hessian matrix of ϕ is denoted by
H(ϕ) = (ϕxixj

)1≤i,j≤3.

4.3 Functionals for selective object segmentation

In this section we present the functionals used for selective object segmentation.

4.3.1 Size priors

Our functionals responsible for the size of the object will serve two purposes. The
minimizer functional will force the surface to shrink, while the ratio functional will
force it to assume a prescribed volume. For minimizer, we use

MV (S) =

∫
dV = −1

3

∫
S · (Su × Sv)dudv, (4.1)

which minimizes volume. The functional meant to force the objects towards certain
volume is defined by

RV (S) =
1

kV k
0

(∫
dV − V0

)k

, (4.2)

where V0 is the preferred volume and k ∈ N is arbitrary. We refer to (4.2) as the
volume prior. For even k, the functional prefers objects with volume V0. For odd k it
has an inflection at V0, thus while it prefers zero volume, it has no effect on objects
with volume V0.

4.3.2 Shape prior

To control the shape of the objects, we have to use a functional which penalizes
deviation from a given shape descriptor. For this purpose, we define a prior, which
was designed to prefer shapes with given surface/volume ratio and is defined by

SA(S) =
1

2V 2
0

[(∫
dS

) 3
2

− p

∫
dV

]2
, (4.3)
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where p is a fixed parameter and S0 is the preferred surface. The functional penalizes

the deviation from the ratio p = surface
3
2

volume . From now on, we refer to (4.3) as the
amoeba prior.

The minimal value of the amoeba parameter is p = 3
√
4π ≈ 10.6, which is

achieved only by spheres. Thus by setting the amoeba parameter to this value, we
can force objects towards spherical forms (Fig. 4.1).

Figure 4.1: Effects of the amoeba prior on various initial objects.

4.3.3 Smoothness terms

In order to avoid slow convergence or unstable behavior caused by the shape and
size priors, additional functionals can be introduced to regulate the solution. In
general, when higher-order derivatives are not present in the equations used for
segmentation, simple smoothness terms, for example surface or volume minimizers
can be used (see Section 4.3.1). Because of interference with other terms, these will
not work in our case. Instead we use the so-called Euler elastica, which measures
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the bending energy of the surface. In two dimensions, it has been applied e. g. to
impainting problems [19]. For a general survey on Euler elastica, see [73]. The
functional itself is defined by

E(S) = 1

2

∫
K2dS, (4.4)

where K is the sum curvature of the surface. It is worth to note that this is a dimen-
sionless quantity.

4.3.4 Data term

During the tests, we used the anisotropic data term (see [45])

D(S) =
∫
∇I · ndS, (4.5)

but in principle, a large range of data terms are feasible.

4.3.5 The composite functional for selective segmentation

In practice, the selective segmentation consists of two steps. First we find the in-
dividual objects in the image, then we turn on the shape and size priors for each
object if the presegmentation had converged. Alternatively, the active surfaces can
be initialized by thresholding. The two functionals we use are

L = αD + βMV (4.6)

and
L = αD + βSA + γRV + δE (4.7)

where SA is the amoeba prior, MV is the volume minimizing functional, RV is the
volume prior and E is the Euler elastica term used to guarantee stability and smooth-
ness.

It is important to note that the level set equations are applied for each individ-
ual connected component of the surface, thus the speed functions for the level set
evolution are only available at the points of the active surface.



4.3 Functionals for selective object segmentation 35

Figure 4.2: Selective segmentation based on the volume prior. The V0 in (4.2) was set
to prefer the middle-sized sphere on the image.

(a) A sphere and a cube

(b) A sphere and an ellipsoid

Figure 4.3: Selective segmentation based on the amoeba prior. The images to be seg-
mented are shown on the left, while the evolution of the active surfaces for distinct
values of p are presented on the right. In the funcional (5.7), the parameters were (a)
λ = 135, µ = 49, η = 1000, θ = 50 (b) λ = 135, µ = 49, η = 200, θ = 50
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4.4 Euler-Lagrange formalization and level set func-
tions

The extremal surface of a functional can be obtained by solving the corresponding
Euler-Lagrange equations. In our case, these equations will have the form

|Su × Sv|Qn = 0, (4.8)

where Q is some scalar field, depending on the particular functional. The exact forms
are specified in Section 4.4.1, while the methods of finding the solution is discussed
in Section 4.4.2.

4.4.1 Differential equations for the functionals

The scalar field Q in the general Euler-Lagrange equation (4.8) above for the volume
minimizing functional is Q = −1, we have Q = −K for the area minimizer and
Q = ∆I for the data term, where I is the image. Regarding the amoeba prior, we
have

Q =

[(∫
dS

) 3
2

− p

∫
dV

][
p− 3

2
K

(∫
dS

) 1
2
]
, (4.9)

where p = surface
3
2

volume is the given amoeba parameter describing the shape of the object.
For the Euler elastica term, we obtain

Q =
1

2
K3 − 2KGK +∇ · ∇K, (4.10)

where∇·∇ is the Laplace-Beltrami operator, which is a quantity of the tangent plane.
The Euler-Lagrange equation for the Euler elastica term is calculated in Appendix A.

4.4.2 Level set formalization

To obtain the extremal surfaces minimizing the functionals, we use level set functions
in combination with the gradient descent method. The Euler-Lagrange equations in
Section 4.4.1 can be translated directly to level set functions by making the substitu-
tions

Su × Sv 7→ ∇ϕ, n 7→ ∇ϕ
|∇ϕ|

. (4.11)

The curvatures of the implicit surface can be calculated with the well known formulas

K 7→ −∇ · ∇ϕ
|∇ϕ|

, KG 7→ |∇ϕ|−4

∣∣∣∣H(ϕ) ∇ϕT

∇ϕ 0

∣∣∣∣ . (4.12)
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4.5 Results

This section describes the results on synthetic and fluorescent microscopy data. We
present the effects of the amoeba prior on various initial shapes and the selection
capabilities of the priors.

4.5.1 Synthetic tests

Fig. 4.1 shows the effect of the amoeba prior. In these tests, the volume and amoeba
priors were used. During the evolution, the objects slowly morphed until they had
reached the prescribed shape parameter. To prevent the shapes from collapsing, the
volume prior (4.2) was used with k = 2.

Fig. 4.2 shows the selective segmentation capabilities of the model on synthesized
data using the volume prior (4.2) in combination with the data term. Three spheroids
were present in the picture, the model was parameterized to select the one in the
middle and was able to segment it out based on the prescribed volume.

Fig. 4.3 demonstrates the selective segmentation capabilities of the amoeba prior.
During these tests, the functional (5.7) was used. Our model was able to distinguish
between spheres, cubes and ellipsoids based on their amoeba parameter p. If the
shape prior is turned on, the objects are forced towards the prescribed p parameter.
If this is in conflict with the objects in the image, the volume prior (4.2) gets pushed
over its inflexion point, making the object to vanish.

4.5.2 Microscopy test

The selective segmentation results on a 3D confocal fluorescent microscopy image of
cells with different shapes demonstrates that our approach can be successfully used
in analyzing real microscopic images. Fig. 4.4 shows volume rendering of the real
images containing yeast cells. Fig. 4.5 presents the evolution of the surface while
selectively segmenting out the different cell types.
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Figure 4.4: Test image of two Candida albicans cells. The cell walls are stained using
the Alexa FluorTM 488 die. The left one is in pseudohyphae form (p = 22.7877), while
the one in the right side is a normal yeast form (p = 13.4637). The goal is to recongize
the two forms by segmenting them out selectively.

4.6 Conclusion and summary

In this chapter, using an energy minimization framework we proposed size and shape
priors for selective object segmentation. Our priors were capable of segmenting vari-
ous objects based on their size and shape. The derivation of the 3-dimensional Euler
elastica smoothness term is found in Appending . Moreover, the corresponding Euler-
Lagrange equations for the minimizing surfaces are also given.

Using active contour simulations, we showed that these priors work in practice.
We showed that the volume prior can capture the object with the predefined size,
while the objects with improper size are not retrieved. We also showed that using
only the shape prior, we can capture objects with the proper shape parameter and
our model can distinguish between cubes and spheres or spheres and ellipsoids. A
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(a) Surface evolution while segmenting out the
pseudohyphae form.

(b) Surface evolution while segmenting out the
yeast cell in normal form.

Figure 4.5: Selective segmentation of cells in the yeast microscopy image based on the
amoeba prior. In the funcional (5.7), the parameters were (a) λ = 0.005, µ = 49, η =
1770, θ = 50 (b) λ = 0.045, µ = 49, η = 1000, θ = 50.

simulation is also performed to visualize the morphing of the segmentation surface
shape when different target shape parameter targets are given.

Combining the volume and shape prior, we could distinguish between different
forms (having sphere like or elongated shape) of a yeast cell in a real 3D fluorescent
image. Our results can be also embedded in semi automatic segmentation tools to
annotate 3D images that we develop in the next chapter.
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Chapter 5

A semi-automatic segmentation
method for multicellular fluorescent
3D images

5.1 Introduction

In chapter 4 we introduced a 3D active contour model. The model incorporates a
shape prior and a size prior. It was shown that it can be used for selective object
segmentation by differentiating between objects with different shapes in real fluo-
rescent microscopy images of yeast cells in their different forms (shapes). (Figures
4.4 and 4.5) Our active contour model is implemented using the level set method to
efficiently handle topological changes during the contour evolution enabling multi-
ple object segmentation. As we discussed in chapter 2 (in the description of level set
methods), one has to reinitialize the level set to signed distance function periodically.
Reinitializing the contour is a costly process because one has to first extract the con-
tour, then the minimal Eucledian distance should be computed on the grid for each
point (exact reinitialization). To overcome this problem, approximate reinitialization
methods are developed. Depending on the application, however, approximate reini-
tialization often not suitable to solve the problem properly and one has to fall back
to exact distance computation. In our selective method, accuracy is crucial: among
the tested reinitialization methods, only the accurate reinitialization worked prop-
erly. We observed that when approximate reinitialization is used, the shape prior
simply did not have effect, that is, the shape of the contour did not converge to the
proper solution defined by the shape parameter. To solve this issue, we decided to
solve our PDEs in the phase field framework [86]. Then, in chapter 3 we introduced
a reinitialization method that can be computed efficiently. We showed that in con-
trast to previous reinitialization methods, our proposed phase field reinitialization
method has minimal side effect on the active model. In particular, we showed that

41
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other reinitialization methods often contain a movement dependent on the Lapla-
cian of the curve. When the reinitialization is executed, the curve is smoothed at the
same time. This effect is undesirable in our case, because this force works against
the shape prior. For example, when the shape prior defines an object with large sum
curvature. After eliminating most of the curvature driven motion from the phase
field functional, the selective segmentation model can be accurately and efficiently
implemented. Combining these results with a simple region based data term and
efficient level set implementation (local level set computation), we propose a user
guided 3D image annotation software: 3D Cell Annotator [102], similar to the anno-
tator tool previously proposed for 3D medical images in Slicer[109]. However, there
are a few major differences between Slicer and our tool. First, our method offers
more control to the user since shape priors (sphericity, surface volume, surface area)
can be defined before or even during the segmentation thus the surface evolution can
be guided explicitly while the segmentation plugin of Slicer offers only geodesic ac-
tive contours [17]. Second, our software is designed to retrieve objects from images
where multiple objects are present and they can also overlap. Using the priors, for
example, the user can prevent the surface evolution to fit on multiple objects by lim-
iting its volume and/or its sphericity. There are a few other tools proposed for similar
purposes, mostly relying on basic image processing primitives [23, 82]. We show that
while these software offer automatic instance segmentation, after their parameters
are tuned for the image, a similar accuracy can not be easily reached to our semi au-
tomatic active contour based software. Although our method needs user interaction
in semi automatic mode, a similar segmentation accuracy can be achieved to fully
manual drawing on 2D projections, but in significanly reduced annotation time. Our
active contour model is published as an open source library that uses CUDA acceler-
ation. A plugin is developed for the Medical Image Interaction Toolkit (MITK) [76]
providing a rich 3D user interface. The MITK plugin calls the active contour model
thrugh of its public API. See the ”Implementation details section” for the details.

5.2 The active contour model used

In this section, we use the results from chapter 4 for the description of the used
model. See the notations there.

5.2.1 The selective functional

There are four terms included in the functional of the selective active contour model.
Below we provide a concise summary. For the details, see the original paper [70].
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Volume prior

The volume prior prefers objects having a certain size and it is denoted by V0.

V(S) = 1

kV k
0

(∫
dV − V0

)k

(5.1)

The k is an arbitrary integer. If it is 2 then the contour tries to have a volume of
exactly V0 while if it is 3, it has an inflection at V0 therefore it prefers a volume of 0
except at V0 where the term has no effect.

Shape prior

The shape prior penalizes the deviation of the current surface from the preferred
shape p (plasma or amoeba value). The currently implemented shape prior is called
sphericity in 3D-Cell-Annotator but essentially it is the surface/volume ratio of the

surface that is calculated as p = area
3
2

volume
. The plasma value is minimal for the sphere,

that is p = 3
√
4π ≈ 10.6. We normalize the prior to assign 1.0 to the sphere so the

sphericity is given by p− 9.6.
The shape prior that considers the surface volume ratio is then:

S(S) = 1

2V 2
0

[(∫
dS

) 3
2

− p

∫
dV

]2
(5.2)

Smoothness term

A curvature based smoothness term is applied to prevent the instability of the surface
called Euler elastica. For the derivation of the Euler elastica in 3D, see the Appendix
A.

E(S) = 1

2

∫
K2dS, (5.3)

where the K is the sum curvature of the surface at a given point.

5.2.2 Data terms

Two different data terms are tested, but there is a wide range of possible ones to
choose from. The first one is the simple edge detector:

DE(S) =

∫
∇I · ndS, (5.4)

where the I is the image.
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The second one is a region based data term. It considers the mean intensities
in the rectangular prisms positioned both in the inner and the outer side of the sur-
face. In our setting the functional maximizes the intensity difference between the
inner and outer part. If this data term is used, then the algorithm has three more
parameters that define the size of the region (width, height and depth).

Φ(S,n) =
1

4pqr

(∫
ℜ+

I(p)dV −
∫
ℜ−

I(p)dV

)
, (5.5)

where dV = dξdζdη, ξ ∈ [−p, p], ζ ∈ [−q, q] and η ∈ [0, r]. p is in the local
coordinate system, therefore p = S+ ξe1 + ζe2 + ηn as it is visualised in fig. 5.1.

Therefore, we can use the local region as a data term in the selective model:

DR(S) =

∫
Φ(S,n)dS. (5.6)

Figure 5.1: Visualisation of the local region in 3D. The local Cartesian coordinate sys-
tem of the region is centered at the surface point S while the orientation is determined by
the unit normal vector of the surface n and the unit basis vectors e1, e2 of the tangential
plane of the surface.

Putting it all together: the composite functional

The composite functional therefore consists of the previously introduced terms and
becomes the following:

L = αD + βS + γV + δE , (5.7)

where each term has an arbitrary real weight that can be controlled from the interface
of the 3D-Cell-Annotator. The D can be either DE or DR depending on which data
term is used.
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Figure 5.2: Semi-automatic segmentation of a single-cell in a spheroid. The object
under segmentation is visualized by MITK using a 3-view projection. On the left side,
the user controls the surface evolution by interactively adjusting the parameters of the
selective segmentation model.

5.3 The proposed software

In this section, we briefly introduce the segmentation process and the implementa-
tion details. The detailed description of the proposed software with user manuals and
tutorials are available in the supplementary information of the published paper[102].

5.3.1 Semi-automatic segmentation process

After the MITK is loaded, the user loads the image. Any format can be used that
MITK otherwise recognizes. Once the 3D image is loaded, it is shown on a display
splitted to four parts. In the first three parts a 2D projection from different views is
shown (axial, coronal and sagittal planes). The user can navigate between the slices
in each of the projected views (on the depth axis). On the fourth view, the actual
segmentation is rendered as a surface in 3D. To annotate objects, the user selects
a the segmentation plugin where the annotator plugin can be activated by clicking
on its icon. Once the 3D-Cell-Annotator tool is activated, the control interface is
appearing.
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Annotating new objects

The user should first create a new label using the MITK’s multilabel segmentation
plugin. Then, using any of the segmentation tools, the user paints an initial contour
on the 3-view projection planes. The initial object can be exactly the flat segmenta-
tion drawn by the user, or a sphere having the same diameter of the drawn initial
segmentation. Once the 3D Cell Annotator plugin is activated, the segmentation is
executed by clicking on the appropriate button. The surface evolution is controlled
interactively by adjusting the parameters of the selective active contour model on the
right side (Figure 5.2). When the user satisfied with the results, it can accept the cur-
rent segmentation and the segmentation is painted to the segmentation canvas with
the intensity assigned to the label the user created using the multilabel segmentation
plugin.

Refining existing objects

The user can decide to refine an existing object. This can be done by first selecting
the object in the multilabel segmentation plugin. Then, the algorithm is initialized
using the selected (existing) segmentation. Once the user satisfied with the results,
the new segmentation can be accepted by clicking on the appropriate button, and the
existing segmentation is deleted for the object and the new is drawn to the canvas
(or both object can be kept if the user decides to).

5.3.2 Implementation details

The 3D selective active contour model is implemented in CUDA [75] with a local
level set method [95]: we first extract the contour using the marching cubes algo-
rithm [59], then the derivatives are computes in a narrow band of the contour. The
thickness of the narrow band is determined by the maximum order of the derivatives
used in the active model, the values farther from the contour are not needed for
moving the contour, thus these values are not computed. In the proposed software
we expect that the user annotates one object at a time, thus we do not use connected
component analysis.

C++ interface

The whole active contour algorithm is built as a shared library of combined CUDA de-
vice and host code, that exposes a simple API. See listing 1. The client calls the initial-
izer function segmentation_app_headless_init, then the function segmentation_ ⌋

app_headless_step is called in a loop that performs one gradient descent step. The
user can provide a SimpleConfig structure to update the active contour evolution
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properties such as hyperparameters and shape priors (volume, sphericity). The actual
dense level set can be requested by calling the segmentation_app_grab_level_set

function.

MITK integration

We implemented an interface for the algorithm to the Medical Insight Toolkit (MITK [76])
to visualize the surface evolution in 3D and let the user control the parameters, load
the 3D image, and export the segmentation results and open sourced the complete
software. Using the C++ interface, it can be easily embedded into compatible soft-
ware. 1

Dynamic level set

MITK loads the opened 3D image into the main memory, while the active contour
model runs on the GPU with limited dedicated memory on consumer machines (e.g.
laptops). To solve this issue, we only copy the region of interest to the GPU memory.
In particular, the bounding box of the actual contour is computed in each iteration,
and the minimal padding is applied needed for the level set transition (this deter-
mines the region of the image that should be minimally extracted.). Then, we add
more padding for flexibility and the resulting region of interest is copied to the GPU. If
the contour grows, and the determined minimum bounding box does not fit into the
previously cropped ROI, then a new crop is extracted. A similar mechanism is used
when the segmentation surface volume decreases. This adaptive approach minimizes
the computational time needed for one iteration of the active contour evolution.

Listing 1: The C++ interface selective.h for the selective active contour library.

typedef struct p_ObjectStat {

float vol;

float surf;

float plasma;

int gw, gh, gd;

} p_ObjectStat;

typedef struct p_int3 {

int x;

int y;

int z;

} p_int3;

1Source code: https://github.com/etasnadi/3DCellAnnotator

https://github.com/etasnadi/3DCellAnnotator
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/**

* Initializes the algorithm.

* image: an unsigned integer image, each pixel is an eight bit gray value.

* segmentation: an unsigned integer image, each pixel is a 16-bit label id.

It is the level set initializer depending on the configuration.

* labelId: selects the object provided in the previous label set image.

* pixelSize: unused

* imageSize: the dimensions of the image and the segmentation

* a_conf: the configuration

*/

EXPORT_SHARED int segmentation_app_headless_init(

const void* image, const void* segmentation,

int labelId, int pixelSize, p_int3 imageSize,

SimpleConfig a_conf);

/**

* Performs a simple evolution step. The configuration will be updated with

the one passed in the argument.

* Returns an object statistics.

*/

EXPORT_SHARED p_ObjectStat segmentation_app_headless_step(

SimpleConfig conf);

/*

* Returns the current level set as a float array. The level set size will be

placed in the output variable gsize, and the translation will be put to the

trans variable.

* The algorithm only maintains a level set where there is an object. The

frame will be extracted and may be updated during the segmentation. The

gsize variable tells the

* client the frame size, while the trans variable holds the translation

to the image origin to the frame origin.

*/

EXPORT_SHARED float* segmentation_app_grab_level_set(

p_int3& gsize, p_int3& trans);

/*

* Releases the resources allocated.

*/
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EXPORT_SHARED int segmentation_app_headless_cleanup();

5.4 Results

5.4.1 Evaluation metric

We measure the closeness of two objects (X and X) using the Jaccard similarity by
the total number of pixels minus the number of overlapping pixels over the number
of overlapping pixels:

Jaccard-similarity(X, Y ) =
|X ∩ Y |

|X|+ |Y | − |X ∩ Y |
. (5.8)

For multi-object images, the best matched objects are selected, then the Jaccard-
similarity of the matches are computed.

5.4.2 Datasets

We used three publicly available datasets for testing:

• A confocal dataset of 77 3D images, each contains exactly one single cell [84].

• A LSFM spheroid that contains 52 cells [32].

• A confocal mouse embryo image that contains 56 cells [89].

5.4.3 Competing methods

We compare the segmentation accuracy obtained with 3D-Cell-Annotator to com-
peting methods using basic image processing primitives: MINS [60], Pagita [33],
XPIWIT [6] and OpenSegSPIM [32]. See our review [82] for a detailed description
of these tools.

5.4.4 Single-cell dataset

As the ground truth is not available for the dataset, we asked three experts to an-
notate the data manually. The manual annotations are then averaged using publicly
available MATLAB tool [83]. We semi-automatically segmented each cell using 3D-
Cell-Annotator. The average Jaccard similarity between the expert annotations are
0.76. The Jaccard similarity of the segmentations obtained using 3D-Cell-Annotator
to the averaged annotations is 0.77, while the annotation time reduced from 8 hours
(fully manual annotation) to 4 hours (semi-automatic segmentation using 3D-Cell-
Annotator).
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5.4.5 Multicellular segmentation

On the spheroid dataset we have a ground truth annotation. We asked two experts
to reannotate the images. The average of the experts reached an accuracy of 0.658
(in terms of Jaccard similarity), and the distance of the annotations obtained by
3D-CellAnnotator from the experts are 0.689 and 0.677. We tested four competing
automatic segmentation tools for which we tuned the parameters. Although they
return the segmentations almost instantly, we could not reach accuracies larger than
0.563 and 0.449. On the embryo dataset, the accuracy between the average of two
experts and the ground truth is 0.80. The Jaccard similarity of the segmentations
obtained by our software to the experts are 0.802 and 0.799 while the annotation
time is reduced from 6 to 3 hours compared to fully manual annotation.
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Chapter 6

Machine learning based techniques

Here, we describe the limitations of active contour methods and introduce machine
learning and explain how we can use learning based techniques for single cell seg-
mentation.

6.1 Limitations of active contours

In part I an active contour method is introduced to segment objects based on prior
information: not only the shape priors can be considered here as priors, but even the
whole active contour framework. In the active contour framework, for example, we
assume that the objects can be represented as a smooth, closed curve (or a surface
in 3D). More importantly, we always used a data term (for example the one labeled
with 2) that connects the image and the contour itself. The data term is designed
to return large values when the contour is in a non-desired location (for example
located in the background) and minimal value at the object boundary. Edge-based
data terms assume that the magnitude of the gradient (|∇I|) of the image I is greater
at the boundary of the object and lower at homogeneous regions such as locations
in the background or in the inner region of the objects. This assumption may hold
for simpler images, however, on less trivial cases (e.g. images where objects have
blurry boundary), the data term should be conditioned on a bunch of pixels. This
observation led to the development of region based active contours [20, 70, 87].
The simplest region based data terms consider an inner and an outer region for each
contour location, then they return low values when the differences between the mean
or sum intensities in the regions are larger. A region based data term, however, in
theory, can compute an arbitrary function of the pixel intensities not limited only to
computing the sums or means. More recent models thus consider higher level region
intensity statistics to find the contour boundaries [12, 54]. Even if local statistics are
used for localizing object boundaries, we still rely on prior information (the intensity
difference or the chosen statistic). In part II: we loosen these assumptions on prior
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information and introduce machine learning based techniques for nuclei and single
cell segmentation to learn the model directly from the data. That is, the objects are
not modeled by using a prior statistic along the curve for separating the inner and
outer region for an object but learned directly from the data.

6.2 Supervised learning

Assume that we have a dataset D = {(xi, yi)}Ni=1 of consisting of N samples. Each
sample has M features xi ∈ X and an observed label yi ∈ Y. We have given a
hypothesis space H usually coupled with the learning algorithm, and our task is to
learn the best hypothesis explaining the data h : X → Y according to some error/loss
function ℓ : Y × Y → R to be minimized:

h∗ = argmin
h∈H

N∑
i=1

ℓ(h(xi), yi) (6.1)

Depending on the particular machine learning method, H can be the space of
linear functions y = xTw + b (when xi and yi are continuous) or all of the possible
decision trees (when xi and yi are discrete). When training supervised models, one
should select a number of samples where the labels are observed, and search for the
best hypothesis in the space of all hypotheses H. The goal however is to look for a
hypothesis that generalize well to data where the labels are not observed. One can
separate D into a training and a test set to mimic this process. The hypothesis is
fit on the training set and the accuracy is measured on the test. A better choice is
to use cross validation whenever possible: using cross-validation we are no longer
dependent on the selection of the training set, thus we can minimize the variance
among the performances of each fold making the found hypothesis less dependent on
a particular selection of the training set in each fold leading to more stable models. In
contrast to the active contours, the most important prior knowledge is the hypothesis
space.

6.3 Supervised image segmentation

While active contours can be naturally applied to image segmentation, supervised
learning is a general technique that can be exploited in image segmentation several
ways. We introduce the most popular of such techniques in microscopy image analy-
sis.
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6.3.1 Basic machine learning

In the active contour methods, the hypothesis space was the set of all possible closed
continuous planar curves in the image domain. When using classical supervised
methods, one can classify each of the pixels in the image and the class either can
be ’background’ or ’foreground’. This leads to a segmentation map that is called
semantic segmentation. Semantic segmentation, however, does not have the expres-
sive power to represent regions like active contours naturally do, thus a subsequent
processing step is needed to combine the image pixels into regions. A myriad of
methods are applied for this problem e.g. connected component analysis, watershed
segmentation, object splitting, graph-cut methods, and correlative clustering among
others. The resulting technique is often called instance segmentation to differentiate
between simple pixel labeling and single object retrieval. One can use a linear model
to classify pixels for separating the foreground and background e.g. logistic regres-
sion. However, it was shown, that decision trees are superior among other supervised
learning algorithms for tasks in systems biology including microscopy image analysis
[30]. A decision tree is usually regularized by minimizing its size to prevent overfit-
ting on the training data causing the limited expressive power of the trees. Random
decision forest classifiers shown to improve the training and test accuracy at the same
time by training multiple decision trees, then applying a voting mechanism during
prediction [37]. A seminal method in microscopy image segmentation uses a random
forest classifier to classify pixels based on intensity, edge and texture based features.
The resulting semantic segmentation map then can be further processed to achieve
instance segmentation using the above mentioned methods. One major limitation of
these models is that we still have to design proper feature extraction for each task.

6.3.2 Deep learning

Linear models can not represent complex decision surfaces. Multilayer perceptrons
(or artificial neural networks) are multi-layered linear models consisting several non
linear models (units), where the output of a particular layer is given to the input
of the subsequent layer, except for the input layer and the output layer. The non-
linearity is achieved by applying a threshold function (or activation function) on the
output of the unit e.g. y = max(xTw + b, 0) (known as liner rectifier) or a function
from the sigmoid family. The simplest model consinsts of an input an output and a
hidden layer placed between the two. The network is fully connected that means,
each unit in a layer receives input from all units in the previous layer and not from
units in other layers. It was shown that even with one hidden layer, arbitrary decision
surfaces can be modelled. The network capacity can be increased by adding more
unit in each layer (increasing the width) or increasing the number of hidden layers
(increasing the depth). The network is fully differentiable and it can be trained us-
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ing backpropagation. The features are first extracted, and the values are fed to the
inputs to the neural network. However, this two step learning has a major drawback:
determining the exact features for each task needs expert knowledge. It is not always
exactly known that what combination of features lead to the best generalizing mod-
els. Since the capacity of artificial neural networks can be increased easily (by adding
more units), one can show the image pixels directly to the input of the network. This
one-step training eliminates the need of manual feature design because in this way
the machine learning model not only conditioned on the joint distribution of the fea-
tures and the labels but directly on the input data. Thus, the network can ’learn’ the
functions previously identified by experts, or may learn novel features. End-to-end
learning with multilayer perceptrons still have at least one drawback: the number of
parameters can be very high because of the fully connected nature of the network
topology that causes difficulties in training but also reduces the generalization abil-
ity of the model. One can reduce the number of units in the network by employing
shared weights: one unit is used to process multiple parts of the image presented
to the network. This approach leads to a decreased number of units thus fewer pa-
rameters and a more regularized network. The connections, however, can be further
decreased by connecting the units only to proximal inputs at the previous layer. With
these two improvements, each unit can be thought of convolutions, thus this fam-
ily of networks are called convolutional neural networks (CNNs). CNN architecture
is invented in 1980 by Fukushima et al. and LeCun used backpropagation to train
them in 1989 [29, 51]. With the advent of General Purpose GPU (GPGPU) computing
CNNs are trained on GPUs achieving 10x-50x performance compared to CPU train-
ing. Ciresan et al. proposed DanNet in 2011 and won several image classification
benchmarks by a large margin [22]. Not much later, an equivalent model is trained
by Krizhevsky et al. and the authors showed superior performance on natural image
classification on ImageNet (outperformed the second best submission by more than
10 percents in error rate) [25, 48]. It is known that deeper networks have better
generalization ability, however gradient based optimization is more challenging of
such deep networks because of the chain rule of differentiation. An effective solution
for this problem is the selective connection of the layers using so called skip connec-
tions [98]. The authors shower that they can train neural networks with hunderds of
layers by using the gradients from the top layers thrugh the skip connections in the
bottom of the network, and they popularized this invention as Highway networks.
Later, the special case of the highway networks is proposed as ResNets that won the
ImageNet 2015 challenge in natural image classification [35].
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6.3.3 Convolutional neural networks for image segmentation

We saw that CNNs improve the classification accuracy on natural image benchmarks.
The input of the network is an image and an output is a vector that encodes the
probability distribution of the labels conditioned on the input by the parameters of
the CNN. In such architectures, most of the layers are convolutional layers outputting
dense feature maps replacing the classical feature extraction pipelines. The feature
maps are extracted in the last convolutional layer, then several fully connected layers
are used for determining the class probability distribution [96]. For segmentation,
the last convolutional feature map can be used to supervise the values on pixel level,
thus the network transforms the input image to semantic segmentation directly with
convolutional and downsampling layers. The main issue here is that the last spa-
tial size of the last convolutional layer is often a small fraction of the input signal
(e.g. 1/8 or less). This is a problem, because the network can only output coarse
segmentation maps. The solution is to use skip connections but not only for the
mere purpose of eliminating the vanishing gradients issue but to use fine-grained
features from layers closer to the input when predicting the class distribution of a
pixel in the output segmentation map [58]. In other words, the skip connections are
essential, because subsequent feature pooling layers downsample the input feature
map to extract compact feature representation from the input needed for construct-
ing abstract clues at the cost of losing fine features from higher levels. This may
led to coarse semantic segmentations, thus the responsibility of skip connections is
to retain as much information as possible and then fuse abstract knowledge with
fine pixel level feature representation for constructing each element of the semantic
segmentation map. An improvement of the latter method is the DeepLab network,
that uses atrous convolution to reduce the downsampling ratio of the network thus
predicting more fine-grained segmentation maps. The method uses fully connected
conditional random fields to further refine the quality of the output [21]. Another
improvement learns the pooling layers as well [4]. A similar method uses a sym-
metric network consisting of an encoder (downsampling after convolutions) and a
decoder (upsampling after convolutions) with skip connections called U-Net [88].
It showed superior performance on several biological image analysis benchmarks in
instance segmentation. The network assigns the label foreground or background for
each pixel. During supervision, in the target segmentation map, the instances are
separated by background pixels and a higher weight is associated for them in the
loss forcing the network to concentrate on classifying the separating pixels properly.
During prediction a connected component analysis is performed on the resulting seg-
mentation to extract the instances. These networks produce pixel level outputs, then
combine the predicted pixels to regions as a post processing step. The downside of
this two-step approach is that the detection part cannot be efficiently done without
breaking the gradient flow.
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Another class of methods e.g. region based CNNs (R-CNNs [31]) consist of sev-
eral subnetworks each having their own responsibility in the instance segmentation
process. The first network is responsible to extract dense features, then object bound-
ing boxes are fitted on the feature map using a shallow network in a sliding-window
fashion followed by the non-maximum suppression, and a subsequent semantic seg-
mentation network is used for semantic segmentation in each fitted bounding box.
On the Data Science Bowl 2018 nuclei segmentation challenge, the top performing
entry used an ensemble of U-Nets and several other teams focused on smart data
augmentation strategies and used simple Mask R-CNN (a variant of R-CNN) [1, 34].
To see how such models perform on the nuclei segmentation task, see a recent re-
view [38]. In the following chapter, we introduce data augmentation strategies to
improve the test accuracy on the multi-modal DSB 2018 [14] dataset by generating
augmented images automatically, then we learn the whole augmentation process by
a combination of networks.



Chapter 7

Automatic domain adaptation using
image style transfer

7.1 Introduction

In this chapter, we propose a data-driven image augmentation protocol called nu-
cleAIzer [39] for nuclei segmentation that uses the test set in order to augment the
initial training set. Our goal is to enrich the starting training set with images similar
to the test set bridging the distribution gap, hence we classify our method as domain
adaptation. We expect that if a model is trained such way, it will perform better on
the task. Our method is tested on the dataset published for the Data Science Bowl
2018 nuclei segmentation competition (DSB 2018) [14]. The dataset consists of two
subsets, the stage1 and the stage2. The first stage of the competition is shared with
the community to develop the model and contains 670 images and also the corre-
sponding segmentation mask for each image in the training set, while it has 65 test
samples. For the second stage, the training set is the same, but there are different 65
images for testing. The dataset consists of microscopy images with several different
modalities. In the training set(test set) 80.6% (67.9%) of the images are fluores-
cent stained images, 0.6% (4.7%) are hematoxylin and eosin (H&E) stained tissue
(nuclei instances stained in the tissue are purple, while the bacgkround has a pink
shade), 15.5% (15.1%) has purple and white shade (tissue), 0.9% (11.3%) contains
fluroescent images with larger than usual nuclei and 2.4% (0.9%) are brightfield
microscopy images. Our method potentially synthesize samples that are completely
missing from the training set by a form of self learning using weak labels.
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7.2 The proposed method

Our proposed method consists of several processing steps. We also use external data
to reach a baseline accuracy, and then the main dataset is used to fine tune the
model. See figure 7.1 and pseudocode 1 for the details. First, the instances Mweak are
detected in the elements of the test set using an instance segmentation network [34]
(mpreseg) on the external training data S0. Then, the images are resized to have the
instances uniform expected size s. The next step is the synthesis of artificial images.
We do it for each different modality in the test set Stest: the most distinctive styles
in the dataset are identified by first clustering the microscopy images in Stest. Next,
an image-to-image translation [41] model is trained on the elements of the training
and test set (using the weak instances generated by mpreseg) that maps the masks
into the corresponding microscopy images. Then, we measure the parameters of the
instance masks in each style (e.g. expected number of instances, shape features and
distribution of the object locations and sizes), and we synthesize instance masks using
the computed parameters by copying objects from the training set masks combined
with an external nucleus database M0 to empty canvases. Using the synthesized
instance masks and the learned image-to-image translation model, we synthesize
the corresponding microscopy image for each synthesized mask. The synthesized
samples are then combined with the starting training set, then the weak instance
segmentation network mpreseg is fine tuned on the augmented enriched training set.

The method starts by training mpreseg on the external dataset S0.

7.2.1 Sample uniformization

In the first step, we uniformize samples in the training and test set. For doing that,
one should know the approximate object sizes, compute the expected object size, and
then resize the images and the masks to have the expected object size uniform across
the dataset. This preprocessing step may increase the accuracy of the model and it is
not uncommon in the nuclei segmentation community, at least a different model uses
similar resize strategy. [99]. This is trivial for the training set, but obviously not for
the test set where the ground truth instances are not observed. Although the expected
object sizes in biological image analysis is known in special cases, for example when
the same type of tissue/cell is imaged with known imaging pipeline parameters (e.g.
microscopy magnification level), the purpose of the DSB 2018 challenge is to develop
a foundational model that can be generally applied to different images [14]. Hence,
in the general case, the expected object size is not known for the test set. Therefore
we opt to determine the object sizes in Stest by using mpreseg.
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7.2.2 Style identification

To enrich the training set with relevant examples, we have to identify the styles in
the test set, that is, each style represents a distinct image modality. The styles are
first manually identified in the training set Strain, then the features are extracted
using CellProfiler [15, 50]. A shallow neural network is then trained to model the
equivalence relation across the styles. That is, the network is trained to predict 1 for
features extracted from similar images in the training set, and 0 otherwise. During
prediction, we use this network for the elements of the test set and construct a sim-
ilarity matrix. The clusters are then identified by applying adaptive k-means on the
similarity matrix (k=134 in our experiment for DSB 2018 stage 2 test set).

7.2.3 Image-to-image translation task

After we identified the distinct styles Stest,clus in the test set, we learn an image-to-
image translation (pix2pix [41]) model mpix2pix that is trained to transform masks
into the microscopy images. Since we have no ground truth for the test set, we use
the weak instances Mweak for the source of the pix2pix transformation.

7.2.4 Synthesizing novel samples from the test distribution

For each of the 134 identified clusters in the DSB 2018 test set, we have a style
model that is trained to transform the weak labels to the microscopy images. For
synthesizing novel samples, we still have to acquire the masks that will be fed to the
image-to-image translation network. To synthesize the masks, we use two methods.
The first one simply draws objects from an external nuclei database M0 with uniform
random positions and sizes (having the expected size s). The second one is a para-
metric cell population simulation tool developed for simulating cell populations (and
for some cases also the textures) [53]. Using the latter tool one can define simple
parameters for the masks including number of objects, mean object size and the clus-
tering coefficient (that tries to capture the local groupings of objects often observed
in cell cultures). These parameters are computed style-wise on the test set. We used
to generate around 50% of the masks using the first method and the remaining with
the latter (and we get l = 20 synthesized samples for each style). Then, the image-to-
image translation network is used to synthesize the corresponding microscopy images
by feeding the synthetic masks into mpix2pix in inference mode.

7.2.5 Training

We used a top-down region based convolutional neural network (Mask R-CNN [34])
for the segmentation task. The presegmentation mpreseg model is trained on external
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data S0, and we fine-tuned the model on the DSB 2018 training set Strain enriched by
the synthesized samples generated by our method. The combined dataset is further
augmented to reduce overfitting thus increasing the test accuracy. The algorithm is
summarized in 1

ALGORITHM 1
The pseudocode of the nucleAIzer method. S0 is an external annotated dataset, Strain,
Stest is the actual dataset (DSB 2018 [14]), M0 is an external nucleus database,
s is the expected nucleus size after size uniformization, l is the number of images
synthesized for each identified modality (style).

1: procedure NUCLEAIZER(S0, Strain, Stest, M0, s, l)
2: mpreseg ← MASK R-CNN-TRAIN(S0)
3: Mweak ← MASK R-CNN-INFERENCE(Stest)
4: Strain ← RESIZE-IMAGES(Strain, s)
5: Stest ← RESIZE-IMAGES(Stest,Mweak, s)
6: mclus ← CLUSTER NETWORK-TRAIN(Strain)
7: Stest,clus ← K-MEANS(mclus, S

test)
8: for c = 1 to |Stest,clus| do
9: mpix2pix,c ← PIX2PIX-TRAIN(Stest,clus

c ,Mweak)
10: M synth,clus

c ← SYNTHESIZE-MASKS(M test,clus
c ,Mweak, l)

11: M synth,clus
c ←M synth,clus

c ∪ SIMCEP(M test,clus
c , l)

12: Isynth,clusc ← PIX2PIX-INFERENCE(M synth,clus
c )

13: S ← S ∪ (Isynth,clusc ,M synth,clus
c )

14: end for
15: Saug ← AUGMENT(S)
16: mnucleAIzer ← MASK R-CNN-TRAIN(Saug) return mnucleAIzer

17: end procedure

7.3 Results

7.3.1 Evaluation metric

We evaluate the segmentation accuracy using the DSB 2018 score. The same metric
used in the competition. To compute the metric, one should match each predicted
object to each ground truth object:

IoU(x, y) =
x ∩ y

x ∪ y
=

x ∩ y

|x|+ |y| − |x ∩ y|
. (7.1)

Then, the optimal assignment is computed on the resulting similarity matrix using
the Hungarian method [49, 92]. The matching is then discretized by thresholding the
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IoU scores on threshold levels T = 0.5, ..., 0.95 with step size 0.05. On each threshold
level, we compute the DSB score:

DSB-score(t) =
TP(t)

TP(t) + FP(t) + FN(t)
, (7.2)

where TP(t) is the number of true positives with IoU score at least t, FP(t) is the
number of false positives, and FN(t) is the number of objects missed at threshold
level t (assuming that TP(t) + FP(t) + FN(t) > 0), otherwise the DSB-score(t) is 0.

The final DSB score is the average of the DSB scores at each threshold level, that
is:

DSB-Score(T ) =
|T |∑
t=1

DSB-Score(Tt)

|T |
. (7.3)

7.3.2 Baselines

We compared our method to a six other methods. The Ilastik pixel classification
method [7] uses a random forest classifier to classify pixels based on feature infor-
mation extracted for each pixel in the image. The resulting classification map is then
thresholded and the resulting regions are found by computing the connected compo-
nents. The resulting objects are split by analyzing the contour geometry if necessary.

Unet4nuclei is a U-Net [88] based nuclei segmentation method described in [14].
GVF (gradient vector flow [107]) is an active contour method with a preprocessed

edge map. The GVF algorithm smoothes the gradient information to the regions far
from the objects, thus the contour can move towards the object even in background
(homogeneous) regions where the data term is 0. In that case, without the GVF, the
only force that could theoretically move the contour would be the smoothing term.

CP is the CellProfiler baseline open sourced by the DSB 2018 organizers. It con-
sits of different pipelines for each image type. The organizers claim that no single
pipleine is likely to exist that can process all the modalities optimally. However, deep
learning models are expected to work on all image types [14].

7.4 Results

The results are presented in table 7.1. If we compare the presegmentation model
trained on external data and the Mask R-CNN row, that is the presegmentation model
fine tuned on the target dataset, the initial 0.468 (0.438) improves to 0.542 (0.621)
on the stage 1test (stage2 test). When we also use the synthetic data generated by
our pipeline, we can further improve the accuracy to 0.585 (0.633) on stage 1 test
(stage 2 test).
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fluo hist stage1 test stage2 test
presegmentation (mpreseg) 0.654 0.351 0.468 0.438
CP 0.599 0.255 0.333 0.528
Unet4nuclei 0.653 0.052 0.138 -
GVF 0.519 0.039 0.258 0.168
Mask R-CNN 0.676 0.381 0.542 0.621
Mask R-CNN + style learning 0.626 0.421 0.585 0.633

Table 7.1: Segmentation resutls on different subsets with different methods. The subset
fluo means that the model is evaluated only on the fluorescent subset of the dataset,
while hist is the tissue part of the dataset.

7.5 Summary

We first trained a model on external data that can already achieve reasonably good
DSB score when fine tuned on the actual dataset. We then developed a method that
incoroporates the unlabeled samples from the test into the training by generating
weak labels for them using the presegmentation model. We showed that our strategy
is effective on the DSB 2018 stage1 and stage 2 since it can improve the accuracy on
both subsets.
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Chapter 8

Structure preserving adversarial
generation of labeled training
samples for single cell segmentation

8.1 Introduction

Data augmentation is one of the simplest ways to improve the generalization ca-
pability of convolutional neural networks. The motivation behind data augmenta-
tion is the fact that using the appropriate transformations one can generate artificial
elements from the original dataset that are feasible to boost the networks’ perfor-
mance. Such common transformations used in biological image analysis are simple
affine transformations like rotation, translation, scaling and nonlinear transforma-
tions, for example elastic deformations that equally affect both the input and target
image. Other transformations like addition of (Gaussian) noise or intensity trans-
formations affect the input image only and leave the segmentation untouched. In
contrast to these transformations, our approach uses generative adversarial networks
and image-to-image translation to synthesize novel samples that mimic the original
dataset therefore it can be considered a fully data-driven approach. First, a state of
the art GAN is used (StyleGAN2-ada in our case [43]) to learn the distribution and
shape of the instances in the mask images of the training set by applying a general
encoding technique to encode the masks in order to be able to be learnt by the net-
work. Then, synthetic masks are generated using the learnt GAN model. In parallel
to the GAN training, an image-to-image translation task is solved using the pix2pix
method [41] to learn the translation from the target masks to the microscopy images
in the training dataset. Then, the pix2pix models are used to construct the corre-
sponding synthetic microscopy image for each synthesized mask image. The synthe-
sized training samples can be used for initial pre-training or can be concatenated to
the original dataset and the network can be trained on the combined dataset. In

67
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the latter case, the network will be optimized not only to the original dataset but
also to the synthetic images that may be suboptimal in certain cases. Therefore, we
train the instance segmentation network on the synthetic images first, to initialize
the weights, then the original dataset is used to fine-tune the pretrained network.
We also tested the performance of our method when training with only a subset
of the annotated images. In this case, we found that merging the training set and
the synthesized samples substantially improves the segmentation accuracy. By com-
bining our method with traditional augmentation techniques (intensity transforms
combined with nonlinear deformation), we found that we can achieve slightly higher
instance segmentation accuracy compared to the case when only augmentations are
used in the pre-training then fine-tuning policy.

8.2 Related work

Our proposed method aims to solve two subproblems: (1) the implicit generation
of cell instance masks without any expert knowledge by learning the underlying
distribution of the training set using a traditional GAN and (2) synthesizing the
corresponding microscopy images to the generated masks which in turn shown to
boost generalization capability when training instance segmentation networks. Sim-
ulating cell populations. For the first task, there are a handful number of methods
proposed: the SIMCEP method [53] aims to generate realistically looking cell pop-
ulations in two-steps, in which the first step the instances are modeled using para-
metric curves with small displacement in each time-step sampled from a uniform
distribution. Then, the generated objects are placed on a canvas with random co-
ordinates sampled from a parametric distribution. Another interesting tool is the
Cytopacq [101, 106] method that aims to simulate the whole imaging pipeline. The
approach is also capable of generating 3D digital ‘phantoms’ of HL-60 cells (among
others) by deforming a sphere or ellipsoid using fast level set methods with random
noise. Although these approaches can model simple cell populations, the position of
the objects is still drawn from simple parametric distributions. In contrast, our goal is
to learn virtually any distribution of the objects along with their shapes and relative
positions from the training dataset and generate new cell populations from the same
distribution. This is especially useful when the layout of the objects on the masks
follows a specific pattern that can not be easily modeled using simple parametric
distributions.

Exploiting GANs for augmentation. Several methods exist in the literature that
successfully exploited GANs to improve the generalization capability of convolutional
neural networks. Most of the methods aim to solve segmentation or classification
tasks for biomedical images. Applying GANs for the segmentation of medical images
may be more straightforward as usually only one or a few well defined target objects
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may be segmented with approximate locations known prior while in biological image
analysis, usually an unknown number of instances shall be recognized from one or
multiple classes. In medical image analysis, a common approach is to simply merge
the input image and the corresponding segmentation of each sample in the training
set, then learn the joint distribution using a generative model. The synthetic im-
ages and their corresponding masks then can be synthesized using the learned model
[10, 18]. The segmentation mask is merged with the image channel, then feeds the
resulting images to a progressive growing GAN (PG-GAN). The method works on CT
and MRI datasets. Another work aims to exploit unlabelled samples from an MRI
dataset to estimate the parameters of elastic deformations and intensity transforma-
tions in order to adapt the training set to the test set using conditional GANs [18].
It has been shown that meaningful representation can be learned from unlabelled
samples of microscopy images by feeding all of the available images into a GAN,
then copying the discriminator weights into the encoder part of a U-Net that is then
fine-tuned on the annotated dataset [64]. A similar work uses CycleGAN to adapt CT
images from public annotated datasets usually containing contrast images to their
non-contrast version to reduce the domain gap between the public datasets and the
practically as important non-contrast cases (when injecting the contrast agent into
the patient is not feasible) [90]. The segmentation network is then trained on the
original non-contrast images and the synthetic non-contrast images originally com-
ing from the public contrast dataset are used as augmentation. The authors claim
that this method dramatically improves on the segmentation accuracy. The effec-
tiveness of GAN based augmentation is shown in classification tasks as well. X-ray
images can be used to synthesize images with the desired pathologies in order to
generate samples for less abundant classes [100]. DCGANs and conditional GANs
can be used to improve classification of lesions found in liver CT slices. In the basic
GAN settings, one distribution is learned for each class, while in the conditional GAN
setting, a class-conditional distribution is learned from the whole dataset [27, 28].
Using GANs to generate chest X-ray images to improve the accuracy of cardiovascular
abnormality detection is also shown to be effective [62]. Another work proposes a
nuclei segmentation model for segmentation of histopathology images where both
the synthetic data generation and the segmentation is trained adversarially, although
they randomly sample nuclei instances and simply draw them on the canvas ran-
domly with respect to the expected shape parameters for the particular organ. Then,
an unpaired image-to-image translation model is trained (CycleGAN) to learn the
mapping from the generated masks to real images [63]. Similarly, [39] is a nuclei
segmentation method, where an initial segmentation model is used to generate weak
labels for the test set. Then, an image-to-image translation model is trained to map
the mask to the microscopy images. The synthetic masks are created by sampling
nuclei instances from a mask database, then placing them at random positions on
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the canvas. Generating synthetic masks with a GAN then using a conditional GAN
to synthesize the corresponding microscopy image is also exploited [79]. Although
this approach is similar to ours, there are major differences: (1): the method only
generates binary masks with fragmented and clustered synthetic ground truth in-
stances. In contrast, our mask representation generates real instances using GANs
where the objects can share boundaries to challenge the downstream instance seg-
mentation networks. (2): the method uses U-Net [88] as a downstream solver and
uses pixel level metric, while our approach is designed for instance segmentation
to match instances.Cross-modality image style transfer can also be used to enrich
the underrepresented modalities in a multimodal dataset [56]. After clustering the
images into 6 types using K-means based on color features extracted from the HSV
space, a multimodal unpaired image-to-image translation task (DRIT [52]) is solved:
the images are first encoded with the domain invariant content encoder network
that captures the nuclei information from the images, while the attribute encoder
captures the image style. Using the latent vectors coming from the content encoder
and the styles extracted using the attribute encoder, synthetic images with different
modalities can be generated with the same content (nuclei positions) to compensate
for the modality imbalance in the dataset. On the synthetic images, the top sub-
missions from the DSB 2018 competition are tested. The latter method is similar
to ours as it also targets an instance segmentation problem but represents the con-
tent implicitly (as latent vectors), while our proposed method explicitly generates the
synthetic masks and then uses (paired) image-to-image translation to generate the
corresponding images. Table 8.1 summarizes the methods.

8.3 Datasets

We used two single-cell datasets for testing the proposed method (Figure 8.1). One
is a salivary gland tumor dataset referred to as salivary gland (the nuclei and a tu-
mor marker IHC stained) [74], while the other is a fluorescently stained fallopian
tube tissue (membrane and nuclei staining) named fallopian [74]. In both of the
datasets, the objects follow a specific layout that could be hard to explicitly gener-
ate using classic algorithms but using our approach, we can generate samples that
are closer to the training dataset. (Figure 8.5) We also show qualitatively that us-
ing the StyleGAN2-ada generator, we are able to draw synthetic samples from this
distribution, without any explicit parameterization or algorithm. (Figure 8.4)

Salivary gland tumor dataset (salivary gland)

The dataset consists of 10 annotated 3-channel images with resolution of 600x800
and contains a total of 1058 labeled cells. 5+5 folds are formed (5 for each exper-
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Figure 8.1: Datasets: top: salivary gland, bottom: fallopian tube. The datasets are
from the article [74]. The right side shows the input image crops, the corresponding
labeled masks, and the structure representation of the masks first proposed in [99].
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Reference Domain Task Unlabeled? Metric

[10] Medical images Segmentation No DSC

[18, 90] Medical images Segmentation Yes DSC

[27, 28, 62, 100] Medical images Classification No ACC

[64] Microscopy Instance segmentation Yes Dice coeff.

[63] Microscopy Instance segmentation No AJI

[39] Microscopy Instance segmentation Yes DSB

[79] Microscopy Semantic segmentation No IoU

[56] Microscopy Instance segmentation No DSB

Proposed Microscopy Instance segmentation No DSB

Table 8.1: A summary of the related works. The ”Unlabeled?” value is ”Yes” if the
method uses the unlabeled samples (test set) as well. DSC means: Dice Similarity
Coefficient, ACC: classification accuracy, AJI: Average Jaccard Index, DSB: Data Science
Bowl 2018 standard metric [14] briefly introduced in subsection 8.5.3, IoU: Intersection
over Union.

iment), each fold contains 8 images for training and 1+1 images for validation and
testing. (Figure 8.1, top)

Fallopian tube dataset (fallopian tube)

This dataset originally consisted of 8 images and 1818 annotated cells split into 30
parts with varying sizes. Only the parts reaching the resolution 256x256 pixels are
kept, therefore we finally got 17 images. The number of cells are counted in each part
and are distributed to 8 groups to each contain roughly equal numbers of annotated
cells. From the 8 groups, 4+4 folds are formed, each fold contains 6 groups for
training and 1+1 groups for validation and testing. (Figure 8.1, bottom)

8.4 Our method

Our method implements the GENERATE-SYNTHETIC-SAMPLES procedure. (Pseudocode
2) It operates on the training dataset S = (I,M), I = {ii}Ni=1, M = {mi}Ni=1 of sam-
ples consisting of the input microscopy images and the corresponding segmentation
masks. Each pixel in the segmentation image encodes the instance ID with the inten-
sity, while the intensity 0 encodes the background.
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ALGORITHM 2
The pseudocode of our method. It crops M overlapping patches from the input
samples, then synthesizes and returns K samples that are assumed to be similar to
the crops extracted from the N input images.

1: S ← ({ii}, {mi})Ni=1

2: procedure GENERATE-SYNTHETIC-SAMPLES(S, K)
3: ({icj}, {mc

j})Mj=1 ← EXTRACT-CROPS(S))
4: mStyleGAN2−ada ← STYLEGAN2-ADA-TRAIN(ENCODE({mc

j}))
5: {ms

k}Kk=1 ← DECODE(STYLEGAN2-ADA-GENERATE(mStyleGAN2−ada, K))
6: mpix2pix ← PIX2PIX-TRAIN({mc

j}, {icj})
7: {isk} ← PIX2PIX-GENERATE(mpix2pix, {ms

k})
return (isk,m

s
k)

8: end procedure

8.4.1 Data preprocessing

We first extract overlapping crops of size 256x256 from the input images and masks
using the EXTRACT-CROPS function. (Pseudocode 2.) A crop (with the corresponding
image) is kept if it contains at least a few distinct objects, otherwise it is discarded.
We also add the orthogonally rotated transformations of each crop to the dataset.

8.4.2 Synthetic mask generation

Generative Adversarial Networks (GANs). In traditional GANs the goal is to learn
the mapping G : z → y where z is the element of the distribution of the training set.
The learning employs two networks, the generator (G) and the discriminator (D),
where both networks simultaneously improve to perform better in generating images
(G) that can not be distinguished from the real images by the discriminator, and the
discriminator trained to do that task more successfully. Thus, the value function
is V (G,D) = logD(y) + log(1 − D(G(z)). V is minimized with respect to D and
maximized with respect to G by doing one gradient update in each step. After the
training has converged, G is used to generate samples from the distribution of the
dataset and D is discarded. In the StyleGAN and its variants, the architecture of G is
modified such that it progressively upsamples the image being generated while adds
details to it. In each upsampling step, a style vector is used which is constructed by a
multi-layered fully connected network from z.

Modeling the distribution of the instances. To generate the synthetic masks, we
learn the distribution of the instances in the original dataset and then use the learned
model to generate objects from the distribution Previous works generate the syn-
thetic masks by sampling objects from a cell database and then placing them on an
empty canvas after applying random transformations on them (rotation, resize, etc.)
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Figure 8.2: The proposed model. a): the crops from the original dataset with the input
microscopy images and their corresponding ground truth masks. b): learning an image-
to-image translation model mpix2pix to translate the masks into the microscopy images
in the training set. c): a StyleGAN2-ada model mStyleGAN2−ada is trained on the heat-
flow representations of the masks in the training set. d): The learned GAN model is then
used to generate heat-flows from the distribution learned from the training set which is
then converted back into labeled masks. e): The learned style transform model is then
applied on the synthetic masks. f): the synthetic dataset with the synthetic masks and
the corresponding microscopy images (non-curated images). See pseudocode 2. for the
details.

[39, 63]. We argue that this way, we can not easily model complex distributions
where the instances follow unique global structures as in our case (Figure 8.1). This
is often the case in tissue samples. Therefore, we train a GAN on the masks to model
not only the shape of the objects but their relative locations and orientations. As our
method is intended to work on small annotated datasets, we have to train a GAN with
a limited number of samples. Fortunately, recent GANs offer non-leaking data aug-
mentation to learn from limited-size datasets [43]. In our proposed pipeline, we use
the StyleGAN2-ada framework for all of the experiments: first a model mStyleGAN2−ada

is learned using the STYLEGAN2-ADA-TRAIN function, then the synthetic samples are
drawn using the learned model

Mask generation

A naive solution would be to feed the binarized version of the instance masks ({mc
j})

directly into the GAN where all of the cells share the same label [79], while the back-
ground is marked with zeros (that is, the ENCODE function in pseudocode 1. is the
threshold functional with threshold parameter 1). This strategy is suitable for tasks
where only one or a few objects should be segmented, but in instance segmenta-
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tion, especially in nuclei segmentation of tissues where objects densely located, this
strategy has two main limitations: (1) instances that share boundaries with other
instances are indistinguishable from each other, therefore touching cells can not be
modeled. (2) we observed that if a model is trained on the binarized masks, the net-
work generates lots of fragmented objects similarly to the presented graphical results
where the authors also used binary mask representation [79].

We also experimented with the labeled masks where each object is encoded with a
unique intensity value (the ENCODE function is identity). Although this way the gen-
erated cell instances are not fragmented, small intensity variance can be observed
in almost each generated object that is nearly impossible to fix, and consequently,
touching objects can not be modeled. This happens because the input has an in-
herently discrete property that is not respected by the StyleGAN2-ada as it learns
the proper (continuous) distribution of pixels that results in perceptually appealing
results, but no terms in the loss forces the dynamics of the learning to respect the
discrete nature of the dataset. Results and common failure modes of these naive
approaches are presented on Figure 8.3.

Structure representation

To overcome the issues above, we choose to encode our labeled masks into a dense
and continuous structure representation to solve both problems. In theory, many rep-
resentations could work (see the note below), but we found Cellpose’s [99] heat flow
simulation as the most robust for our task: first, the centroid of each cell is deter-
mined, and a constant heat is applied to that point in an iterative manner (Figure 8.1,
right). The heat distribution is captured at the end of this iterative process, and the
objects are represented using the gradients of the final heat distribution. Reconstruc-
tion is done by following the gradients in each pixel: if two different pixels converge
to the same position, then they are representing the same object. We convert each
mask into their vector-flow representation and feed them to the StyleGAN2-ada dur-
ing training. The converted masks are encoded in three channels, where the first two
channels represent the gradient of the flow (dx and dy) in each pixel, and the third
channel encodes the object probability. The main advantage of this representation
is that the instance masks can be represented as 3-channel images and there is no
need to modify the StyleGAN2-ada to feed the masks in the vector-flow format. The
vector-flow representation naturally solves the problem (1) since the pixels near the
touching region converge to the reference points (centroids) of the objects they are
part of. Based on our experiments, problem (2) is also solved, as we did not observe
the fragmented objects in the generated vector-flows (Figure 8.3). After training the
StyleGAN2-ada with the flows, we generate synthetic flows and decode them with
the mentioned tracking algorithm.

Our method does not explicitly depend on the Cellpose representation. In theory,
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any representation may work that can encode a labeled mask into a dense image.
We also experimented with the gradient vector flow representation [107], but found
that the Cellpose representation has higher tolerance on the inaccuracies generated
by the GAN.

Generating the microscopy images from the masks

The pix2pix method solves the image-to-image translation task using modified con-
ditional GANs. Compared to a regular conditional GAN, the pix2pix method adds
the dependency on the condition not only to the generator but also the discrimina-
tor. Thus, the value function becomes V (G,D) = logD(x, y) + log(1 −D(x,G(x, z)),
where the x is the condition (the source image), y is the target image and z is random
latent vector. The loss function minimizes D and maximizes G by doing one gradient
update for each input for both networks in each step. Once the training converges,
the generator represents the mapping (x, z)→ y.

Parallel to training the StyleGAN2-ada model, we learn mpix2pix using image-to-
image translation on the training set [41] that will be later used to transform the syn-
thesized masks into their corresponding synthetic microscopy images. One can learn
the mapping of the vector flow representation of the microscopy images directly (the
first parameter of PIX2PIX-TRAIN is the raw output of STYLEGAN2-ADA-GENERATE)
but we observed that learning the translation from the raw labeled masks into their
corresponding microscopy images leads to better image quality on the datasets we
are working on. After both the image-to-image translation task and the synthetic
mask generation task is completed, the pix2pix model is used to translate the syn-
thetic masks into the corresponding synthetic microscopy images, and both sets are
returned. The whole pipeline is shown on Figure 8.2. and pseudocode 2.

8.4.3 Training the downstream task

The synthesized images and masks can be used to augment the training set used to
generate the synthetic samples. We use the StarDist and Cellpose instance segmen-
tation methods to demonstrate that the synthesized samples can improve the gener-
alization capability of these networks. Although we tested with the networks above,
our method does not depend on any particular instance segmentation method. In the
following, we briefly introduce both methods.

StarDist instance segmentation

The masks in the training set are processed, and each object in the mask is converted
into a star-convex polygon by first selecting the centroid of an object and then mea-
suring the length of the rays connecting the contour of an object and its centroid. The
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angle between adjacent rays is equal and fixed for the entire dataset. The network
consists only of convolutional layers (“U-Net” and ”ResNet” are proposed), where
the layer exactly before the top one branches to predict the probability map and
the distance map. Both the probability and distance feature maps have spatial size
proportional to the input size (or equal size if downsampling is not used). The proba-
bility map contains the object probability scores for each representative location, and
the distance map at the same location represents the ray lengths encoding a candi-
date object (that is defined for the entire map). The training uses cross entropy loss
to supervise the probability scores while uses mean squared error for the distances.
During prediction, non maximum suppression is used to find the best candidates.

Cellpose

The method uses the heat-flow representation to encode each object in a labeled
mask to a different image containing 3 channels: the probability map and a vector
field encoding the flow. Since the heat-flow can be converted back to a labeled mask,
the instance segmentation problem can be solved as a dense prediction task: the
method uses a fully convolutional architecture (a “U-Net”-like network is used) to
predict the flows that are converted back into labels.

8.5 Results

In this section, we first introduce how the mask generation fails when the inter-
mediate representation is used (the GAN is trained on the binary or labeled masks
directly). Then, we generate synthetic samples using the SIMCEP method and com-
pare it to the proposed GAN based method. We quantitatively and qualitatively assess
the synthetic image and mask quality and use the Fréchet Inception Distance (fID)
metric in the former case. Lastly we trained a StarDist and a Cellpose model on each
of the datasets to measure the improvement of the segmentation quality when the
synthetic training samples are used.

8.5.1 Naive approaches for GAN training (ablation experiments)

We trained StyleGAN2-ada on binary and labeled masks (the ENCODE function is the
thresholding or identity, respectively). The binary training is tested on the masks
of DSB 2018 dataset, where only a few instances touch each other per image. We
also tested the quality of the synthetic masks when the network trained on the raw
labeled images of the salivary gland dataset. In the latter, the instances follow a
denser layout (compared to the DSB 2018 containing mainly cell cultures), and most
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Figure 8.3: Common errors when training StyleGAN2-ada directly on the masks. Top:
the StyleGAN2-ada was trained on the binarized masks from the DSB2018 dataset. Bot-
tom: trained on the labels of the salivary gland dataset directly. Common issues when
training directly on the binarized masks: a: the objects can not be separated, the Stlyle-
GAN generates blobs instead of instances. b: holes between the objects. c: fragmented
objects with blurry boundaries. When training on the labels, the common issues are:
a’: holes in the objects, b’: non-uniform intensities represent an object, therefore the
reconstruction is nearly impossible. c’: nuclei blobs, containing mixed intensities. (The
input is grayscale in the labeled case, the colors are only added for better visualization).

of the instances share boundaries with others. Figure 8.3 presents the most common
failure modes when training the network with these strategies.

StyleGAN2-ada training

To train the StyleGAN2-ada model (mStyleGAN2−ada), we used 256x256 pixel sized
overlapping tiles extracted from each dataset. Only tiles containing at least 3 objects
are kept.

The best model is selected based on Fréchet Inception Distance (fID) computed
based on the pretrained ImageNet weights [25, 36]. Although ImageNet is a natural
image dataset, it is shown that the features extracted by the model on medical images
are also meaningful to assess the generated image quality [43]. We observed that
models with fID < 100 produce synthetic masks that are numerically correct (they
can be reconstructed by following the gradients without any significant error in the
reconstructed mask). As the training progresses, the fID score may decrease but the
variability of the objects may become less diverse, therefore visual assessment may
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also be needed.
In the case of the salivary gland dataset, the model used is trained from scratch,

while the fallopian model is also tested by fine-tuning the salivary gland model for
saving time and computational costs and also to demonstrate transfer capability of
StyleGAN2-ada on the datasets.

Training from scratch. When training from scratch, the StyleGAN2-ada reaches
the fID 54.33 at step 6500 on the salivary gland dataset, while the model converges
on the fallopian tube after 12140 steps and reaches the lowest fID 56.45.

Transfer learning. When we used the checkpoint at step 5000 (5 million crops
passed through the network) from the salivary gland model, we could fine-tune the
network on the fallopian tube, and the network needs only 1800 steps (compared
to the 12140 when trained from scratch) to reach the minimum score 46.61 that is
also substantially better (17.4% lower distance from the ground truth compared to
uninitialized training).

Fine-tuning with limited subsets. We used the salivary gland model at checkpoint
6400 (the best model on salivary gland) to fine tune on the crops extracted from a
limited number of training images from the fallopian tube dataset. We observed that
the model has a good enough score even when less than 50% of the training set is
used. See the details in Supplementary material II: Table 2, 3.

8.5.2 Evaluation of the synthesized masks

Synthesized mask quality. We compare the masks generated using the SIMCEP method
to our GAN based generation strategy by transforming each dataset (ground truth,
generated by SIMCEP and ours) to the structure representation, and then compute
the Fréchet Inception Distance (fID) of the generated datasets to the ground truth
flows. We adjusted each possible hyperparameter of the SIMCEP to the parameters
of the ground truth dataset (mean number of cells in each mask, min/max cell ra-
dius, estimated number of clusters) and generated a dataset of similar size to the
ground truth. It is clearly demonstrated that the SIMCEP generator can achieve sub-
stantially better scores if the objects have simple structure but it fails to generate
complex structures. This is obvious from the fID reached by the method and by vi-
sually inspecting the generated masks. When using the GAN based mask generation
approach, the increase in the fID score is 3-fold on the salivary gland dataset and it
is still 2x when comparing the fallopian masks to the ground truth. (Figure 8.4,8.5)
This is not surprising as the salivary gland dataset has a richer cell structure layout.
(Figure 8.1)

Synthesized microscopy image quality. We also compare the quality of the gen-
erated microscopy images when the learned style models are applied to the masks
generated by SIMCEP and on the masks generated by our GAN based method. Again,
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Figure 8.4: Synthesized flows, the reconstructed masks and their corresponding mi-
croscopy images generated by our method.

the fID score is substantially better on the fallopian dataset when using SIMCEP, as
the cell structures found in this dataset are less complex. On the other hand, the
fID scores are much worse when comparing the generated images from the salivary
gland dataset to its ground truth. When using the masks generated by our method, a
2-fold increase can be observed in the fID scores for both datasets. (Figure 8.4,8.5)

Our quantitative and qualitative results (Figure 8.4,8.5) show that our approach
is useful when the layout of the objects follows a complex distribution and it can not
be easily approximated using the SIMCEP method. In contrast, the StyleGAN2-ada
generator implicitly learns the distribution of the objects in the training set that can
be used later to generate more realistic microscopy images compared to what can be
achieved by utilizing the masks generated using the SIMCEP method.

To synthesize the microscopy images from the generated masks, we use the pix2pix [41]
with default parameters found in the public repository of the method. The pix2pix
models were trained for 600 and 300 epochs on the salivary gland and the fallop-
ian, respectively. We used the result of the model of the last epoch to synthesize the
microscopy images.
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Figure 8.5: Quantitative evaluation of the synthesized masks and their correspond-
ing microscopy images generated by SIMCEP and the proposed model. The plot in the
right column shows the Fréchet Inception Distance (fID) between the synthetic mask
(microscopy image) and ground truth mask (microscopy image). From top to bottom:
distance between ground truth mask and SIMCEP synthesized mask, distance between
ground truth microscopy image and simulated microscopy image using pix2pix with
SIMCEP synthesized mask input, distance between ground truth mask and StyleGAN2-
ada synthesized masks, distance between ground truth microscopy image and simulated
microscopy image using pix2pix with StyleGAN2-ada synthesized mask input.
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8.5.3 Instance segmentation results

We trained StarDist and Cellpose models on both datasets. Two experiments are per-
formed. In the first, we pretrain the instance segmentation network on the synthe-
sized images only, then the network is fine-tuned on the raw dataset. In the second
experiment, we merged the raw dataset and the synthesized samples. We executed
the pix2pix and instance segmentation network training with different training-set
sizes to test the effectiveness of our method on an even more limited number of
samples.

StarDist training: No-augmentation and pretrain models are trained through 100
epochs with batch size 4 and learning rate 0.003 and number of rays: 32. For the
fine-tuning we limited the training for 20 epochs, as the models usually converged
after only a few epochs. We used the last model from the pretraining as the initial
weights in the transfer learning experiment.

Evaluation metrics. We used a standard nuclei segmentation metric to evaluate
the performance of our model [14]. The metric matches the predicted and ground
truth objects, and computes their intersection over union (IoU). Then the size of true
positives, false positives and false negative sets are computed on each IoU threshold
from 0.5 to 0.9 with step size 0.05. The metric then computes the mean accuracy
(TP over TP + FP + FN) over the thresholds.

Transfer learning results

We trained StarDist and Cellpose models on both datasets. Tables 1 & 2 show the
instance segmentation results using the DSB 2018 metric. Each number is the av-
erage performance of the folds trained independently 3 times. The augmentations
are applied on the fly. We do not use the elastic deformations on the Cellpose masks
as the flows for the deformated masks should have been computed before each step
that is computationally too expensive. (Table 8.2.)

We measure the generalization capability of our approach by also comparing it to
basic augmentation pipelines. We used augmentations affecting only the input image
and geometric transformations that affect both the input images and the correspond-
ing masks. We apply random joint intensity change with coefficient sampled from
uniform distribution U(0.6, 2) and added bias sampled from U(−0.2, 2) and apply
standard Gaussian noise with strength 0.02. We observed that using this augmenta-
tion protocol alone degrades the performance in most of the cases. The interested
reader can check the numbers in the Supplementary material. We apply random ro-
tations and flips in each dimension with probability 0.5 independently. We also use
elastic deformations applied in the original U-Net paper [88, 104].
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Salivary gland Fallopian tube

StarDist Cellpose StarDist Cellpose

raw training set 0.3443 0.4867 0.2484 0.3822

augmentation 0.3854 - 0.3310 -

fine tune + augmentation 0.3893 0.4876 0.3567 0.3864

Table 8.2: Segmentation results with StarDist and Cellpose.

Fallopian tube / subsets

ne
tw

or
k

sy
nt

he
ti

c

3 6 9 13

CP + 0.2754 (+0.0434) 0.2906 (+0.062) 0.3132 (+0.0247) 0.3122 (+0.093)

CP - 0.2320 0.2844 0.2885 0.3029

SD + 0.2837 (+0.0930) 0.3056 (+0.0415) 0.3154 (+0.0256) 32.30 (+0.0162)

SD - 0.1906 0.2641 0.2898 0.3068

Table 8.3: Fallopian tube subset experiment results: the numbers are the mean of the
accuracies computed on each fold. (The baseline numbers for the Cellpose are signifi-
cantly lower compared to Experiment 1, since we disabled the input uniformization for
a more fair comparison with StarDist.)

Subset experiments

We formed another 5 folds for both datasets and progressively eliminated images
from the training set and synthesized the samples with the reduced dataset sizes. For
the salivary gland dataset, we tested with 8 images (100% of the annotated images),
5 images (62,5%) and 3 images(37,5%). For the fallopian tube dataset, we consid-
ered 9 images as the 100% and used subsets of size 3 and 6. The segmentation task is
then evaluated by merging the samples to the original dataset. We also observed, that
the standard deviation of the accuracies of the repeated experiments on each fold is
significantly lower, when the synthetic samples are used (see the supplementary for
the actual numbers). (Tables 8.3 and 8.4.)
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Salivary gland / subsets
ne

tw
or

k

sy
nt

he
ti

c
3 5 8

CP + 0.3866 (+0.1261) 0.4215 (+0.1596) 0.4358 (+0.1062)

CP - 0.2605 0.2619 0.3295

SD + 0.2867 (+0.038) 0.3021 (+0.0378) 0.3079 (+0.0291)

SD - 0.2487 0.2643 0.2788

Table 8.4: Salivary gland subset experiment results: the numbers are the mean of the
accuracies computed on each fold. (The baseline numbers for the Cellpose are signifi-
cantly lower compared to Experiment 1, since we disabled the input uniformization for
a more fair comparison with StarDist.)

8.6 Summary

We introduced a synthetic sample generation strategy for instance segmentation
which consists of the generation of the synthetic masks using a generative adversar-
ial network (StyleGAN) and their corresponding synthetic microscopy images using
image-to-image translation (pix2pix). Our methodology generates the labeled masks
explicitly and they can also be used for other tasks as well. We proposed a general
encoding technique and showed that the instances can be learned directly from the
data using the StyleGAN2-ada. We showed that the distribution of the instances on
the masks generated by the GAN are more similar to the ground truth distribution
compared to the masks generated by classical methods like the SIMCEP, and the GAN
generation is especially useful when the underlying structure of the objects are more
complex than cell cultures like in our case. We qualitatively showed that the naive
training of GANs on binary masks or the raw labels lead to suboptimal results as
fragmented objects are often produced even in images from simple cell cultures and
the reconstruction of the labels are almost impossible from the GAN output, but the
mask encoding overcomes these issues. We also showed that the generated samples
can be used to improve on the accuracy of the downstream instance segmentation
task especially when only a very limited number of samples are available, compared
to the case when only the raw dataset is used for training.



Chapter 9

Conclusion

In this thesis, we developed algorithms for microscopy image segmentation. The
common in the developments is that we extract single cells, or their nucleus. Because
we approached a problem with techniques from two subfields of computer science,
we split the text into two parts. The first part focuses on active contour methods
while the second part improves methods in deep learning.

In the active contour part (part I), we first concluded that implicit represen-
tation of the contour using the level set framework is preferred for implementation
because of its multiple advantages. However, the level set framework has an impor-
tant issue: durint the contour evolution, numerical errors are introduced and the
level set deviates from the signed distance function.

In the first thesis point, we focused on solving this issue. We use the phase field
functional that forms a smooth transition in the vicinity of the contour acting as a
signed distance function locally. The phase field model, however, has a major issue:
it contains a curvature dependent term, thus it significantly moves the contour after
performing enough iterations. We experimentally showed that objects can disappear
after applying phase field regularization many times even if the normal velocity is
zero in the level set equation. We solved this issue by using an appropriate com-
bination of the original gradient based term and a second order smoothness. The
resulting differential equation can be implemented efficiently.

In the second thesis we develop the 3D extension of the selective active con-
tour model. We show that we can retrieve objects selectively by using the volume
prior and a shape prior that measures the complexity of the objects (sphericity). The
model is combined with a region based data term that, for each surface point, mea-
sures the mean intensity differences in two cube shaped regions inside and outside
of the surface aligned to the surface normal. The resulting 3D active contour model
is embedded into the Medical Image Insight Toolkit (MITK) and can be used as an
annotation tool. The user can manipulate the priors during the surface evolution to
fit exactly to one object. Although the proposed software can decrease the annotation
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time dramatically compared to fully manual 2D annotation, the software still needs
lots of intervention from the user. The software did not exploit the combination of
the geometrical models with data driven techniques. For example, the proposed data
term considers intensity differences acting as a prior while an improved model might
model the data term using a convolutional neural network. The idea of combining
deep learning and geometrical models are not new. For example, [57, 81] model the
contour as a Graph Convolutional Neural Network and in multiple forward step, the
discretized contour approaches the target object. [40] models the velocity function
to move the contour in the normal direction. Another method [55] moves the con-
trol points of a Catmull-Rom spline for interactive annotation. The user can move
the control points of the spline and the new splines are predicted using the model. A
recent preprint proposes a web based software to segment any object in an image by
only a few clicks. [47] Such deep learning models are developed for mostly general
image segmentation, however they do no incorporate prior information into the seg-
mentation process that is one of the main strength of active contours derived from
variational principles. A future work may successfully incorporates the advantages
of both fields in a single model preferably in 3D.

In the deep learning part (part II), we introduced an automatic augmentation
protocol for convolutional neural networks. Our first method, the nucleAIzer sim-
ulates instance masks containing nucleus objects using traditional cell population
simulation methods (e.g. objects are drawn on an empty canvas to random locations
drawn from a parametric distribution) and an image-to-image translation model is
used to transform instance masks to microscopy images. The image-to-image trans-
lation model is trained on the test set where the instance masks are acquired using
an instance segmentation model trained on external data. We showed that by us-
ing synthesized samples, the test accuracy is improved on the DSB 2018 [14] nuclei
segmentation dataset compared to the cases when training on the initial dataset.

In a follow up research, we fixed the main issue of the previous model, and pro-
posed a method to learn the instance masks from the data using a recent GAN model.
The latter model is shown to be able to synthesize instance masks of microscopy im-
ages of complex cellular structures in tissue images (that would be hard to capture
using parametric distributions). We showed on two tissue dataset that the synthe-
sized samples are closer to the ground truth dataset by considering their Fréchet
Inception Distances. We combined the initial dataset with the synthesized samples
and showed with two instance segmentation networks that the augmentation pro-
tocol improves the test accuracy compared to the case when only the raw training
dataset is used.

Although we and others observed increase in test accuracy by GAN based aug-
mentation protocols, we also observed that the improvement is largely dependent on
the synthesized microscopy image quality. Thus, the weakness of our results is that
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we did not incorporate the test set in the loss function in the learning phase similarly
to another method in the medical image analysis field. [18] The latter method tries
to synthesize intensity difference maps and deformation fields using a GAN condi-
tioned on the samples of the training set. The synthesized intensity difference map is
added to the microscopy image, while the deformation field is applied on the mask
as well. The GAN is trained to synthesize deformation fields and intensity maps that
when applied on the input, the synthesized distribution is close to the test set. This
result directly incorporates the test set into the learning process, while the nucleAIzer
method exploits it through a form of semi supervised-learning. Considering a wider
field, ideas from the neural architecture search may be borrowed. Recent method not
only try to optimize the neural network architecture, but their hyperparameters and
even the augmentation protocol. [85] Another method tries to find optimal augmen-
tation policy using reinforcement learning [112] or by representation learning [108]
although the improvement is not dramatic. Insights from these approaches might be
a good future direction for searching augmentation policies automatically.
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Appendix A

The Euler-Lagrange equation of the
Euler elastica

Here we describe the derivation of the Euler-Lagrange equation associated with a
more general problem: the arbitrary function of the sum curvature with Lagrangian
L = F (K) |N|, is provided. Basic knowledge of classical differential geometry is
assumed.

Additional notations: The contravariant basis vectors are denoted by Su, Sv

(Si · Sk = δik, δik = 1 if i = k, 0 otherwise). From here on i, k, l ∈ {u, v}. The
direct (dyadic) product of two vectors u, v is defined such that (uv) ·w = u (v ·w).
Metric and inverse metric components are denoted by gik = Si · Sk and gik = Si · Sk

respectively. The Christoffel symbols for the embedded surfaces can be defined by
Γl
ik = Sl · Sik, where Sik being the second partial derivative of the position vector.

The sum and the Gaussian curvatures as formulated by Gauss are

K =
gvv (Suu · n)− 2guv (Suv · n) + gvv (Svv · n)

|N|2
, (A.1)

KG =
(Suu · n) (Svv · n)− (Suv · n)2

|N|2
, (A.2)

where the denominator is the square of the normal vector N = Su × Su and |N|2 is
the determinant of the metric |N|2 = guugvv − g2uv. The basic differential geometry
formulae used for the derivation of the Euler Lagrange equation are collected below.
An arbitrary vector w ∈ R3 can be decomposed at the surface points using either the
covariant or the contravariant basis as

w = wuSu + wvSv + w⊥n

w = wuS
u + wvS

v + w⊥n, (A.3)

where wi = Si ·w, wi = Si ·w and w⊥ = n·w. The relations between the contravariant
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and covariant basis are

Si = giuS
u + givS

v

Si = giuSu + givSv. (A.4)

Note that the contravariant basis can also be expressed by the following cross prod-
ucts:

Su =
1

|N|
Sv × n, Sv =

1

|N|
n× Sv. (A.5)

The second partial derivatives of the position can be decomposed as vector is

Sik = Γu
ikSu + Γv

ikSv + (Sik · n)n, (A.6)

where I = SuSu + SvSv + nn being the identity tensor (I·w = w · I ≡ w, w ∈ R3).
From (A.6)

Sik · Sl = Γu
ikgul + Γv

ikgvl. (A.7)

The (right) gradient of any quantity X restricted to the surface is defined by X∇ .
=

∂X
∂u

Su+ ∂X
∂v

Sv. The divergence of a vector field Y is defined by Y ·∇ .
= ∂Y

∂u
·Su+ ∂Y

∂v
·Sv.

Simple calculation shows that the sum curvature can be expressed as the negative of
the divergence of the unit normal vector:

K = −nu · Su − nv · Sv = n · Su
u + n · Sv

v. (A.8)

The following basic identities are directly follow from the definitions:

∂guk
∂Su

= Sk (A.9)

∂ |N|
∂Sk

= |N|Sk (A.10)

∂Sik ·N
∂Su

= |N| [(Sik · n)Su − Γu
ikn] , (A.11)

e.g. for (A.10), formulae (A.5) are used. The partial derivatives of n and|N| (from
(A.10)) are:

nk = − (n · Suk)S
u − (n · Svk)S

v (A.12)

|N|k = |N| (Γ
u
uk + Γv

vk) . (A.13)

In (A.12), decomposition (A.3) and Si ·n ≡ 0→ nk ·Si = −n ·Sik, in (A.13) identities
|N|k = ∂|N|

∂Su
· Suk + ∂|N|

∂Sv
· Svk are used. Starting with an equivalent expression to

(A.1) K = K |N|
|N| (to replace Sik ·n with Sik ·N in the numerator) and using formulae
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(A.9,A.10):
∂K

∂Su

=2
(Svv · n)Su − (Suv · n)Sv

|N|2

− gvvΓ
u
uu − 2guvΓ

u
uv + guuΓ

u
vv

|N|2
n

− 2KSu.

(A.14)

Note that applying the first line of (A.4), the (half of the) first term of (A.14) can be
alternatively written as

guu (Svv · n)− guv (Suv · n)
|N|2

Su

+
guv (Svv · n)− gvv (Suv · n)

|N|2
Sv.

(A.15)

The Euler-Lagrange equation: the equation for the Lagrangian having second
order derivatives can be arranged as:

∂

∂u

(
− ∂L

∂Su

+
∂

∂u

∂L

∂Suu

+
1

2

∂

∂v

∂L

∂Suv

)
+

∂

∂v

(
− ∂L

∂Sv

+
∂

∂v

∂L

∂Svv

+
1

2

∂

∂u

∂L

∂Suv

)
.

(A.16)

The calculations for the first three terms are as follows: a) ∂L
∂Su

= |N| ∂F
∂K

∂K
∂Su

;
expanding the right side

∂L

∂Su

= |N|
(
F − 2K

dF

dK

)
Su

+ 2
dF

dK

(Svv · n)Su − (Suv · n)Sv

|N|

− dF

dK

gvvΓ
u
uu − 2guvΓ

u
uv + guuΓ

u
vv

|N|
n,

(A.17)

where (A.14) is used; b) ∂
∂u

∂L
∂Suu

+ 1
2

∂
∂u

∂L
∂Suu

= Sv · ∂
∂u

(
dF
dK

Sv

|N|n
)
− Su · ∂

∂v

(
dF
dK

Sv

|N|n
)

,
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using ∂L
∂Suu

= dF
dK

gvv
|N|n, 1

2
∂L

∂Suv
= − dF

dK
guv
|N|n, and expanding the right side

∂

∂u

∂L

∂Suu

+
1

2

∂

∂u

∂L

∂Suu

=
d2F

dK2

(
gvv

∂K

∂u
− guv

∂K

∂v

)
n

|N|

+
dF

dK

2guvΓ
u
uv − guuΓ

u
vv − gvvΓ

u
uu

|N|
n

+
dF

dK

−gvv (Suu · n) + guv (Suv · n)
|N|

Su

+
dF

dK

−gvv (Suv · n) + guv (Svv · n)
|N|

Sv,

(A.18)

where the second term is the sum given by the derivatives of the covariant basis
vectors Si (using (A.7)) and the denominator |N| (using (A.13)), whilst the third an
fourth terms come from the derivatives of the unit normal vector n (using (A.12)).
Adding (A.17,A.18) and using (A.15), the following terms remain:

∂

∂u

∂L

∂Suu

+
1

2

∂

∂v

∂L

∂Suv

− ∂L

∂Su

=
d2F

dK2

(
gvv

∂K

∂u
− guv

∂K

∂v

)
n

|N|

+
dF

dK

(Suv · n)Sv − (Svv · n)Su

|N|

+ |N|
(
K

dF

dK
− F

)
Su.

(A.19)

Applying same steps for the second three terms of (A.16) the result is identical to
(A.19) with the indices u, v swapped. Summing up the terms in the normal direction,
the Euler-Lagrange equation (A.16) takes the form
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|N|
(
K

dF

dK
− F

)
(Su

u · n+ Sv
v · n)

+ 2
dF

dK

(Suv · n)2 − (Suu · n) (Svv · n)
|N|

+
d3F

dK3

[
gvv
|N|

(
∂K

∂u

)2

− 2
gvv
|N|

∂K

∂u

∂K

∂v
+

guu
|N|

(
∂K

∂v

)2
]

+
d2F

dK2

[
gvv
|N|

∂2K

∂u2
− 2

gvv
|N|

∂2K

∂u∂v
+

guu
|N|

∂2K

∂v2

]
+

d2F

dK2

∂K

∂u

[
− gvv
|N|

Γu
uu + 2

gvv
|N|

Γu
uv −

guu
|N|

Γu
vv

]
+

d2F

dK2

∂K

∂v

[
− gvv
|N|

Γv
uu + 2

gvv
|N|

Γv
uv −

guu
|N|

Γv
vv

]
.

(A.20)

Similar calculation shows that the components in the tangent plane are all zero. In
(A.20) the first term includes the sum curvature (A.8), the second term the Gaus-
sian curvature (A.2). Simple calculation shows that the sum of the last four lines
is the (|N| times the) divergence of the gradient i.e. the Laplace-Beltrami of dF

dK
:

∂
∂u

[(
∂
∂u

dF
dK

)
Su +

(
∂
∂v

dF
dK

)
Sv
]
· Su + ∂

∂v

[(
∂
∂u

dF
dK

)
Su +

(
∂
∂v

dF
dK

)
Sv
]
· Sv (the relation be-

tween the metric and inverse metric
[
gik
]
= [gik]

−1 is used). Finally the Euler-
Lagrange equation associated with the Lagrangian L = F (K) |N| can be written
as

|N|
[(

K
dF

dK
− F

)
K − 2

dF

dK
KG +∇ · ∇ dF

dK

]
n = 0, (A.21)

where ∇ ·∇ is a usual notation for the Laplace-Beltrami operator. An alternative for-
mula to (A.21) can be written as |N|

[(
K dF

dK
− F

)
K − 2 dF

dK
KG +

(
dF
dK
∇∇

)
· ·I−1

]
n =

0, where I stands for the first fundamental form i.e. the metric tensor with com-
ponents gik and “··” is the double scalar product operator (the result is the sum of
the products of the corresponding components of the tensors involved in the opera-
tion). Using similar steps, one can deduce Euler-Lagrange equation for the arbitrary
function of the Gaussian curvature, that turns to be

|N|
[
2K

(
F − dF

dKG

)
+KG

(
dF

dKG

∇∇
)
· ·II−1

]
n = 0, (A.22)

where II stands for the “second fundamental form” with components Sik · n.
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Summary

Systems biology is an emerging interdisciplinary field that analyzes biological pro-
cesses in a holistic way. Recent years, developments in microscopy technology have
led to the possibility to acquire thousands of images of parallel experiments in a sin-
gle day. The manual examination of such amount of data by experts is no longer
practical. Therefore, efficient algorithms are needed to do the tasks instead of hu-
mans. In this thesis, we focused on the analysis of such microscopy images at single
cell level using active contour methods (part I) and deep learning (part II).

Active contour methods and level sets

In fluorescent microscopy, cell components are painted using fluorescent dies that
are excited using a light source emitting a particular wavelength of light and the
resulting signal is recorded by a digital camera. Furthermore, confocal microscopes
can image the biological sample at multiple depth levels with high axial resolution.
This means, that one can acquire 2D images of a single nuclei instance at several
e.g. 5-10 depth levels and construct a 3D volume of it. The motivation behind the
3D analysis of single cells is that it is believed that growing cell cultures in the 3D
space (spheroids, organoids)[24] might be a much better model of living tissues that
can be exploited in e.g. drug discovery to reduce the amount of experiments to be
executed in animal models.

In chapter 4, we developed an active contour based method [72] to retrieve nu-
cleus instances in 3D. We extended a 2D selective active contour model [70] that
uses shape priors during the contour evolution. Such priors are the surface area,
object volume, or the sphericity that is derived from the former two. We showed on
synthetic and real microscopy experiments that using the proposed priors, we can
selectively retrieve objects with different shapes.

For the numerical implementation, we represent the segmentation surface implic-
itly using the level set method [78]. The main advantage of the implicit represen-
tation is that the topology changes during the active contour evolution is handled
automatically. One drawback, however, is that one has to periodically reinitialize the
level set to signed distance function because of the numerical errors. In many cases,
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approximate level set maintenance is sufficient, however, in our 3D selective active
contour model, accurate reinitialization is needed to implement the shape prior. Ac-
curate reinitialization needs the computation of exact Eucledian distances on the
whole grid that makes the method inefficient in practice. To solve the problem, we
proposed a local level set method [71] based on the phase field theory in chapter
3, that provides accurate and fast reinitialization. Our method is shown tho have
minimal effect on the active contour model opposed to competing reinitialization
methods.

In chapter 5, we combined the results of chapter 4 and chapter 3, combined
a region based data term in 3D with the selective active contour model, and pro-
vided an efficient implementation of a 3D segmentation software called 3D-Cell-
Annotator [102]. The resulting tool allows the annotation of 3D images containing
multiple single cells, even in cases, where multiple objects are touching each other.
Although competing tools provide results almost instantly, even if their hyperparame-
ters are optimized by us, their segmentation accuracy is significantly lower compared
to what can be achieved by fully manual segmentation, or by the proposed annota-
tion software. Compared to the fully manual annotation, our measurements show
that the time needed for the annotation of a full image can be halved when it is done
by the proposed tool and the segmentation accuracy remains similar.

Deep learning

In part II we propose automatic augmentation protocols for the nuclei segmentation
of 2D microscopy images with convolutional neural networks.

Chapter 7 proposes a method called nucleAIzer [39] to enrich the microscopy
images of rare modalities in the DSB 2018 nuclei segmentation dataset [14]. Our
proposed method uses traditional parametric cell population simulation tools to sim-
ulate nuclei masks of microscopy images. Then, by using an instance segmentation
model trained an external dataset, weak labels are generated to the test set, and
an image-to-image translation model is trained to transform the weak nuclei masks
into microscopy images. The synthesized nuclei masks are then transformed into mi-
croscopy images with the learned image-to-image translation model. We show that
training on the combined set of the initial dataset and the synthesized samples, the
instance segmentation accuracy on the test set of DSB 2018 increases.

In chapter 8 we present a follow up research for previous automatic augmentation
algorithm. The main weakness of the nucleAIzer method is that the instance masks
are synthesized using a traditional parametric cell population simulation method [53].
This is not a problem until we plan to segment nucleus instances of cell cultures as
they can be approximated with ellipsoidal shapes and their location can be modelled
with parametric distributions. We develop a method to simulate instance masks of
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datasets where complex cell structures are observed. Our method is shown to be able
to synthesize discrete instance masks of rich and complex cellular structures using a
state of the art GAN. We train an image-to-image translation model on the training
set to synthesize the corresponding microscopy images to the instance masks gener-
ated by the GAN. We show that the combination of the synthesized samples and the
initial dataset leads to increased segmentation accuracy on the test set.

Author contributions

• Author contributions for thesis point I

– I combined the proposed balanced phase field [BPF] model with differ-
ent active contour models (geometric active contours, selective active con-
tours in 2D and 3D), development of the numerical solution and their
implementation (on GPU architecture & MATLAB).

– Implementation of competing methods:

* an improved accurate PDE based reinitialization method [RM] (Peng
et al., 1999)

* the Reaction-Diffusion reinitialization method [RD] (Zhang et al., 2013).

– Design and execution of the empirical validation process:

– Microscopy experiments: implemented the geodesic active contour & plugged
in the balanced phase field model. Selected single cells from the DSB 2018
nuclei segmentation dataset, compared the BPF vs RD vs RM, computed
peak segmentation accuracy and mean accuracy.

– Synthetic experiments: generated synthetic binary masks, simulated the
comparing methods (BPF vs RD vs RM) without any active contour model,
measured the peak and mean IoU between the initial segmentation.

– Re-executed the “dumbbell” experiment in the RD paper and tested with
competing methods, evaluated and compared the movement of the (0-
iso)contour.

• Author contributions for thesis point II

– Adopted the theory of selective active contours from 2D (Molnar et al.,
2016) to 3D. Developed the numerical solution for the selective active
contour model in 3D on GPU architecture (except for the initial imple-
mentation that is: marching cubes surface extraction, working volume
prior functional, Euler elastica and a simple edge based data term with
OpenGL visualization)
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– Working on the more problematic and complex shape prior, investigation
of the convergence issues (that turned out it can be solved with accurate
level set reinitialization), showed that it can efficiently solved by periodi-
cally minimizing the phase field functional (but causing side effects on the
surface that is significantly reduced in thesis point I).

– Implementation of several level set reinitialization methods to be used
when computing the shape prior:

* Eikonal equation,

* Chamfer-distance,

* Eucledian (exact) reinitialization.

– Testing the numerical stability of the implemented level set reinitialization
methods when the shape prior is used in the active contour model.

– Worked on a fast and efficient GPU connected components algorithm for
object single object extraction.

– Virtual level set management (per object speed function) for selective ob-
ject retrieval.

– Optimized local level set method and experimenting with narrow band
techniques for efficient implementation on GPU.

– Synthetic experiment: testing the selectivity using the volume prior.

– Testing the selectivity on a real 3D microscopy image. Advising the acquisi-
tion of 3D images with a confocal microscope, selecting candidate regions
that contained real yeast cells in different forms. Increased z-resolution by
adding synthetic slices using optical flow. Prepared the figures for visual-
izing the surface evolution and volume rendering the microscopy image.

– Conceptualized & designed a 3D annotation process with the volume prior
and the shape prior.

– Combined a 3D local region data term with the 3D selective active con-
tour model, computing the fundamental quantities, implemented required
matrix ops on GPU.

– Created a GPU dynamic library with a C++ interface.

– Created an MITK plugin that communicates with the GPGPU (general pur-
pose GPU) library, surface rendering in MITK, surface visualization on
the projection planes, multilabel segmentation support, segmentation im-
port/export, live parameter updates on a GUI.

– Design and implementation of a contour-adaptive level set management
procedure that minimizes the memory and computation needs for the an-
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notation process. It can be greatly exploited when the objects to be seg-
mented are small, but the image is significantly larger, that is the case in
the segmentation of multicellular 3D cell cultures.

• Author contributions for thesis point III

– I was responsible for the application of image-to-image translation (pix2pix)
when developing our method (called nucleAIzer) for the Data Science
Bowl competition.

– Generated weak segmentations for the test set of the DSB 2018 dataset
using a previously trained Mask R-CNN model.

– Trained pix2pix models on the identified clusters.

– Synthesized microscopy images for the given masks in each cluster using
the learned pix2pix model.

– Developed a Python package that measures the prediction accuracy.

– Developed a single script that executes the elements of the pipeline.

– Took part in the development of the online interface https://nucleaizer.
org.

– I developed an open source plugin for the Napari image analysis software
https://www.napari-hub.org/plugins/napari-nucleaizer.

– Identified the main weakness of the nucleAIzer method and conceptual-
ized a new method that learns the discrete masks directly from the data.

– Experimented with DCGAN to simulate binary masks.

– Experimented with DCGAN and StarDist mask encoding.

– Developed a GVF (Gradient Vector Flow) based encoding and decoding al-
gorithm. Experimented with StyleGAN2-ada and the GVF-based encoding
(results are not presented as it turned out that the Cellpose representation
is more stable when decoding the generated images by the GAN).

– Experimented with StyleGAN2-ada and Cellpose encoding that turned out
to be the proper solution to synthesize discrete masks.

– Identified two in-house dataset (tissues having complex structures) that
can show the advantage of the GAN based instance mask generation namely
salivary gland tumor and fallopian tube.

– Synthesized instance masks with a classical parametric cell population
simulation tool SIMCEP for comparison.

– Modified the fID computation code in StyleGAN2-ada to compare two ex-
isting image datasets and measured the fID between the SIMCEP masks

https://nucleaizer.org
https://nucleaizer.org
https://www.napari-hub.org/plugins/napari-nucleaizer
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Thesis point
I II III

[1] •
[2] •
[3] •
[4] •
[5] •
[6] •
[7] •
[8] •

Table A.1: Connection between the author’s publications and the thesis points. The
author’s publications are listed in a separate bibliography at the end of the thesis in the
chapter ”The author’s relevant publications”.

& ground truth masks vs masks generated by our method and the ground
truth masks.

– Experimented with the classical approach (learning the joint distribution
of the masks and the microscopy images).

– Applied the pix2pix model that is trained on the initial dataset to synthe-
size microscopy images for the masks on both datasets.

– Synthesized microscopy images using the SIMCEP masks, showed that the
quality is inferior to our method.

– Created cross-validation folds, executed the method on each fold 3 times
with StarDist and Cellpose instance segmentation method to test if the
method improves on the segmentation accuracy (when fine tuning the in-
stance segmentation networks with the initial dataset trained on the syn-
thesized samples only).

– Performed subset experiments: trained 10 independent models on each
fold on multiple subsets of both datasets with both StarDist and Cellpose
(subset experiments).

– Showed that the StyleGAN2-ada can be fine-tuned effectively from (con-
verges after only feeding 1000kimg to the network) the salivary gland tu-
mor to the fallopian tube dataset (that needs only a few hours compared
to 1-2 days when trained from scratch).

– Empirically showed that using fine-tuning with limited subsets, the model
can achieve relatively good fID.
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A rendszerbiológia a közelmúltban rohamosan fejlődő interdiszciplináris terület az
élettudományokban, mely a biológiai, élettani folyamatokat, rendszereket egészében
vizsgálja. Az alkalmazott társtudományok a matematika, és részterületei, informati-
ka, fizika, és mérnöki tudományok. A mikroszkópok rohamos fejlődésével lehetővé
vált egyszerre több száz ḱısérlet párhuzamos lefolytatása, és azokról napi több ezer
automatizált, nagy felbontású kép késźıtése, melyek lehetővé teszik a biológiai fo-
lyamatok egysejt-szintű vizsgálatát. A nagy mennyiségű képi adat elemzése azonban
nem fizibilis megfelelő automatizáció nélkül. Jelen munkában olyan automatizált
informatikai módszereket dolgoztunk ki, amelyekkel ezen felvételeket egysejt szin-
ten tudjuk vizsgálni. A disszertáció logikailag két részre van bontva. Az I. részben
a differenciálgeometrián alapuló akt́ıv kontúr módszereket dolgotzunk ki, mı́g a II.
részben a statisztikai alapú (deep learning) módszerekkel foglalkozunk.

Akt́ıv kontúr modellek és a level set módszer

A fluoreszcens mikroszkópiában a sejtek egyes komponensei (például sejtmembrán,
sejtmag) fluoreszcens festékekkel vannak megjelölve, amelyek bizonyos hullámhosszú
fénnyel gerjesztve láthatóvá válnak a mikroszkópba éṕıtett digitális kamera számára.
A konfokális mikroszkóptechnológiában történt fejlesztések ezen ḱıvül lehetővé te-
szik azt, hogy a biológiai mintákról több mélységi szinten késźıtsünk felvételeket.
A mikroszkópok ezen felbontása hasonló nagyságrendű lehet, mint a śıkbeli fel-
bontás. A különböző szinteken késźıtett képeket sorrendben összefűzve ezek után 3-
dimenziós képet kapunk, amelyen egy sejt akár 5-10 szeleten is látható. A motáviáció
amögött, hogy 3 dimenzióban vizsgálunk képeket egysejt szinten az, hogy az utóbbi
időkben kezdtek el elterjedni a 3 dimenziós sejtkultúrák. [24] Ezekben a biológiai
modellekben a területen dolgozó szakértők azt feltételezik, hogy ha a 2 dimenziós
sejtkultúrák helyett 3 dimenziós technikákat alkalmazunk, akkor azok jobban szi-
mulálják az élelőlények szöveteiben végbemenő folyamatokat, ı́gy alkalmasak lehet-
nek egyes állatḱısérletek kiváltására, ı́gy csökkentve például a gyógyszerkutatásokhoz
szükséges ḱısérletek számát. Az I. részben az ilyen t́ıpusú felvételek példány alapú
szegmentálásához fejlesztünk ki akt́ıv kontúr alapú módszereket.
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A 4. fejezetben egy 3D szelekt́ıv akt́ıv kontúr alapú módszert [72] fejlesztettünk,
arra a célra, hogy a 3 dimenziós képeken sejtmagok körvonalait meghatározzuk. A
módszer a már létező 2-dimenziós szelekt́ıv akt́ıv kontúr modell [70] 3D adaptációja:
a szelekt́ıv modell lényege, hogy térfogat, felület, és alakléıró priorok (az előző kettő
függvénye. gömbszerűség) alapján határozzuk meg azt, hogy milyen tulajdonságú
objektumokat szeretnénk a képből kinyerni. Demonstráltuk szintetikusan generált
képeken és egy valós mikroszkópos felvételen, hogy a priorok hogyan működnek.

A numerikus implementációhoz a level set módszert [78] használtuk, amelynek
a legnagyobb előnye az, hogy az akt́ıv kontúr evolúció közben a topológiát auto-
matikusan kezeli szemben az energia minimalizálás alapú eredeti akt́ıv kontúr mo-
dellel. A level set módszer egyik lényeges limitációja, hogy a kontúr indirekt repre-
zentálásához felhasznált level set függvény a differenciálegyenlet megoldása során
fellépő numerikus hibák miatt egyre jobban elvesźıti az előjeles távolságfüggvény
(signed distance function) tulajdonságát. Mivel a kontúr sebességét meghatározó
mennyiségeket (normálvektor, gradiens, görbület) a level set függvényből számı́tjuk
ki, ı́gy ezen numerikus hibák hatással vannak magára a kontúrra. A megoldás a level
set függvény rendszeres reinicializációja előjeles távolságfüggvénnyé. Ennek azon-
ban az a hátránya, hogy a pontos távolságfüggvény kiszámı́tása időigényes feladat,
a közeĺıtő megoldások viszont nem minden esetben kieléǵıtőek. A 3. fejezetben
ezért egy phase field alapú megoldást dolgozunk ki [71], amely a kontúr környe-
zetében természetes módon előálĺıtja az előjeles távolságfüggvényt. A módszer egyet-
len hátránya, hogy a phase field funkcionál minimalizálása közben a kontúr elmoz-
dul, azaz nem neutrális. Ezt az elmozdulást a phase field Euler-Lagrange egyen-
letében lévő Laplace tag okozza. A módszerünk lényegében egy új másodrendű tag,
és az eredeti gradiens-függő tag megfelelő kombinációjával kompenzálja ezt az el-
mozdulást.

Az 5. fejezetben a 4. fejezetben kifejlesztett akt́ıv kontúr modellt kombináljuk
a 3. fejezetben javasolt phase field reinicializációs módszerrel és egy félig auto-
matizált szegmentáló módszert javaslunk 3 dimenziós felvételek annotálására. A
módszer a legjobban az orvosi felvételek szegmentálására használatos Slicer akt́ıv
kontúr pluginjével álĺıtható párhuzamba. A Slicer akt́ıv kontúr pluginja azonban csak
egy geodéziai akt́ıv kontúr modellt tartalmaz, mı́g a mi módszerünk a szelekt́ıv akt́ıv
kontúr modellt javasolja a feladatra. Az utóbbinak az előnye, hogy a felhasználó az
akt́ıv kontúr evolúciót menet közben tudja befolyásolni a priorok és az egyenletben
szereplő tagok súlyainak változtatásával. A szelekt́ıv modellt az MITK nevű orvosi
képfeldolgozó szoftverbe ágyaztuk be, és nýılt forráskódú szoftverkéne publikáltunk
3D-Cell-Annotator [102] néven.
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Deep learning alapú módszerek

A dissszertáció II. része 2 dimenziós mikroszkópfelvételek szegmentálásával folgal-
kozik konvolúciós neurális hálózatokkal: olyan augmentációs eljárásokat mutatunk
be, amelyekkel sikeresen növeltük a szegmentáció pontosságát a teszt halmazon. A
két bemutatott eljárásban az a közös, hogy mindkét esetben az image-to-image trans-
lation módszerrel hozunk létre szintetikus mikroszkópos képeket a szintetikusan ge-
nerált diszkrét maszkokhoz.

A 7. fejezetben a nucleAIzer [39] nevű módszerünket mutatjuk be. Az eljárás a
Data Science Bowl 2018 verseny [14] keretében lett kifejlesztve sejtmagok példány
alapú szegmentálásához heterogén képeken. A bemutatott eljárás egy előzőleg be-
tańıtott régió alapú szegmentáló módszerrel (R-CNN) gyenge szegmentációkat hoz
létre a teszthalmaz egyes képeihez. Mivel az adatbázis heterogén képekből áll, me-
lyeket különböző technológiákkal hoztak létre (fénymikroszkóp, fluoreszcens mik-
roszkópkép, szöveti kép, stb), ezért az első lépés a teszthalmaz képeinek a klasz-
terezése. Ehhez a tańıtó adathalmaz elemeiből egyszerű jellemzőket nyerünk ki,
majd egy egy rejtett réteggel rendelkező neurális hálózatot tańıtunk be arra, hogy
megállaṕıtsa két kép között a hasonlóságot a jellemzők alapján. A betańıtott modellt
alkalmazzuk a teszthalmaz képeire, majd a keletkező hasonlósági mátrix alapján azo-
kat a k-means algoritmus seǵıtségével klaszterezzük. Az egyes klasztereken a gyenge
szegmentációkat tartalmazó maszkok és a hozzájuk tartozó képek alapján image-to-
image translation [41] modelleket tańıtunk, majd szintetikus maszkokat generálunk,
és a betańıtott modellek seǵıtségével létrehozzuk a szintetikus maszkokhoz tartozó
szintetikus képeket. Az generált példákat hozzáadjuk a tańıtóhalmazhoz, majd a
modellt a kibőv́ıtett adathalamzon tańıtjuk. Ennek a módszernek az egyik gyenge
pontja az, hogy a maszkokat egy egyszerű parametrikus módszerrel [53] álĺıtottuk
elő. Ez megfelelő lehet abban az esetben, ha sejtkultúrákat szeretnénk szimulálni,
vagy olyan szöveteket, amelyekben a sejtek egyszerű eloszlással szimulálhatóak.

A 8. fejezetben prezentálunk két olyan szöveti képekből álló adatbázist, amelyben
komplexebb struktúrák figyelhetők meg. Ezeken a képeken a sejtek elhelyezkedését
nem lehet egyszerű parametrikus modellekkel reprezentálni. A módszerünk a masz-
kokon található objektumok eloszlásainak reprezentálására egy GAN [43] modellt
használ, melyet a maszkokból származtatott hőeloszlás térképeken tańıtunk be. Meg-
mutattuk, hogy egy megfelelő kódolási technika elengedhetetlen ahhoz, hogy a GAN
modelleket diszkrét maszkok szimulására lehessen használni. A mi módszerünkkel
szintetikusan generált maszkok és a tańıtópéldákban szereplő maszkok eloszlása szig-
nifikánsan közelebb van egymáshoz, mintha azokat egy parametrikus módszer [53]
seǵıtségével hoztuk volna létre. A mikroszkópos képek generálásához ebben az eset-
ben is az image-to-image translation modelleket tańıtunk a tańıtó adathalmaz eleme-
in, majd a szintetikusan generált maszkokra alkalmazzuk azokat. Megmutattuk, hogy
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amennyiben a szintetikus képeket is felhasználjuk a tańıtáshoz, akkor jobb eredményt
érünk el a teszthalmazon.

A tézispontok összefoglalása magyar nyelven

A tézispontok részletes kifejtése az 1. fejezet 1.3 szekciójában olvasható a disszertáció
nyelvén. Jelen szekcióban a tézispontok tömör összefoglalása következik.

A munka három tézispontot tartalmaz. Ezek közül az első kettő a disszertáció
I. részét fedi le, mı́g a harmdaik tézispont eredményei a disszertáció II. részében
vannak bemutatva.

• Az első tézispontban egy gyors és pontos level set reinicializációs módszert ja-
vaslunk, amely a phase field elméleten alapul. Empirikusan megmutatjuk, hogy
az eredeti phase field funkcionál a kontúrt elmozditja, noha level set reinica-
lizációként használva a feladata csupán az lenne, hogy a kontúr környezetében
visszaálĺıtsa a level set előjeles távolságfüggvény-tulajdonságát. A phase field
funkcionál Euler-Lagrange egyenletéből látható, hogy ezt a hatást a Laplace
összetevő okozza. A javasolt módszer az eredeti gradiens, és egy másodrendű
tag megfelelő kombinációjával kompenzálja ezt a görbületfüggő mozgást. Em-
pirikusan bebizonýıtjuk, hogy a mi módszerünk jelentősen kisebb hatást fejt
ki a kontúrra, mint a többi közeĺıtő reincializációs módszer, és hasonló tu-
lajdonságokkal b́ır, mint a pontos reinicializációs módszerek, ugyanakkor a
számı́tási igénye sokkal kisebb. Az eredmények a 3. fejezetben vannak részletesen
kifejtve.

• A második tézispontban egy 2D szelekt́ıv akt́ıv kontúr módszert adaptálunk 3
dimenzióra. A szelekt́ıv akt́ıv kontúr módszer a térfogatot, a felületet, illet-
ve ezek kombinációjaként előálló alakléıró jellemzőket használja fel az akt́ıv
kontúr evolúció során. Bemutatjuk, hogy a javasolt priorok 3 dimenzióban is
működnek. A kifejlesztett akt́ıv kontúr módszert kombináljuk az első tézispontban
javasolt reinicializációs módszerrel, és egy lokális régió alapú adattaggal. Az
eredményként előálló algoritmust beéṕıtjük egy 3 dimenziós orvosi képfeldolgozó
szoftverbe (MITK). Az előálló módszerrel hasonló pontossággal lehet 3 dimen-
ziós képeken objektumokat annotálni, mintha a kontúrokat 2D szeletenként raj-
zolnánk meg, ugyanakkor a mi általunk kidolgozott szoftver jelentősen lerövid́ıti
az annotálási időt. Releváns fejezetek: 4, 5.

• A harmadik tézispontban két augmentációs eljárást dolgozunk ki. Az eljárások
az image-to-image translation módszert használják arra, hogy szimulált objektum-
maszkokhoz rendeljenek hozzá mikroszkópos képeket. Megmutatjuk, hogy a
szintetikusan generált mikroszkópos képek hozzáadása a tańıtó-adathalmazhoz
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jav́ıtja a modell általánośıtó képességét. Az első módszer a DSB 2018 sejt-
mag detekciós adatbázisra lett kifejlesztve, melyben a maszkokat egy para-
metrikus sejtpopuláció szimulációs módszerrel álĺıtjuk elő. Ennek azonban
a hatékonysága limitált, ugyanis egyszerű parametrikus módszerekkel nagy
kih́ıvást jelent a komplexebb szöveti struktúrákban megfigyelhető objektum-
eloszlások szimulálása. Ezért egy további módszert mutatunk be, amely kiküszöböli
az első módszer ezen limitációját, és egy GAN alapú eljárást javaslunk a masz-
kok szimulációjára. Releváns fejezetek: 7, 8.

A tézis szerzőjének hozzájárulásai a tézispontokban fel-
sorolt eredményekhez

• Hozzájárulások az első tézisponthoz:

– A javasolt phase field modellt [BPF] beágyaztam különböző akt́ıv kontúr
modellekbe (geodéziai akt́ıv kontúr modell, szelekt́ıv akt́ıv kontúr modell
2D és 3D megvalóśıtása), az egyenletek numerikus megoldása GPU-n és
MATLAB-ban.

– Az összehasonĺıtott modellek implementálása:

* egy fejlett, parciális differenciálegyenlet alapú reinicializációs módszer
implementálása [RM] (Peng et al., 1999)

* a Reaction-Diffusion reinicializációs módszer implementálása method
[RD] (Zhang et al., 2013).

– A javasolt reinicializációs módszer validálási folyamatának megtervezése
és végrehajtása:

– Mikroszkópos tesztek (valós adatok): egy geodéziai akt́ıv kontúr modellbe
ágyaztam be a javasolt phase field reinicializációs módszert. Kiválasztottam
a DSB 2018 sejtdetekciós adathalmazból objektumokat (mindegyik kivágott
kép egy sejtet tartalmaz), összehasonĺıtottam a BPF, a RD és az RM módszereket
úgy, hogy kiszámı́tottam a maximális átfedést (IoU, intersection over union)
amely az akt́ıv kontúr evolúció során elérhető volt az egyes reinicializációs
módszerekkel.

– Létrehoztam szintetikus bináris maszkokat, amelyekkel inicializáltam a
kontúrt. A sebességfüggvényt identikusan 0-ra álĺıtottam, és a reinicia-
lizációs módszerek stabilitását teszteltem. A hipotézis szerint azon módszerek,
amelyek mellékhatást fejtenek ki a kontúrra, elegendő számú iteráció végrehajtása
után jelentősen megváltoztatják a kezdeti kontúr topológiáját, noha a se-
besség mindenhol 0 (kis objektumok eltűnnek, közeli objektumok ”össze-
olvadnak”).
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– Reprodukáltam a RD cikkben található 3 dimenziós súlyzó alakú objek-
tummal “dumbbell” végrehajtott ḱısérletet (3D akt́ıv kontúr), mely egy
görbület által hajtott folyamatot szimulál. Összehasonĺıtottam, hogy mi
történik az egyes reinicializációs módszerek esetén. A teszt kimutatta,
hogy ugyananakkora számú iteráció végrehajtása után a RD reinicializáció
használatával a folyamat ”előrébb tart” a kezdeti állapothoz képest, mint a
RM vagy a BPF esetében, az RD modellben található simasági tag mellékhatásaként.

• Hozzájárulások a második tézisponthoz:

– A 2D szelekt́ıv akt́ıv kontúr modellt (Molnar et al. 2016) adaptáltam 3 di-
menzióra. A hatékony numerikus megoldás érdekében a módszert GPU-n
implementáltam (kivéve a kezdeti implementációt, ami a marching cubes
algoritmusból, a térfogat priorból, a simasági tag implementációjából, és
egy egyszerű él-alapú adattagból, és OpenGL vizualizációból állt).

– Az alak prior kifejesztésén dolgoztam (az objektum térfogatának és felületének
a függvénye). A numerikus hibákat vizsgáltam, különböző reinicializációs
módszereket teszteltem. Megmutattam, hogy az Euklideszi távolság alapján
újrainicializált level set függvénnyel ezen numerikus hibák kiküszöbölhetőek,
és a felület felveszi az alakléıró számmal meghatározott alakot. Továbbá
megmutattam, hogy az első tézispontban javasolt phase field reinicializációs
módszer használatával az alak prior hasonlóan megvalóśıtható.

– Megvalóśıtottam a GPU implementációját különböző reinicializációs módszereknek:

* Eikonal differenciálegyenlet,

* Chamfer-távolság,

* Euklideszi (egzakt) reinicializáció.

– Teszteltem az alak priort a megvalóśıtott reinicializációs módszerekkel.

– Megvalóśıtottam egy algoritmust, amellyel GPU- kiszámı́tottam a level
set által reprezentált kontúr összefüggő komponenseit, az objektumok ki-
nyerésének a céljából.

– Külön sebességfüggvényt alkalmaztam az egyes kinyert objektumokra, ı́gy
megvalóśıtva a szelekt́ıv szegmentálást.

– Megvalóśıtottam egy hatékony lokális level set algoritmust, amely csak a
felület kis környezetében tartja karban a level set függvényt, ezáltal je-
lentősen csökkentettem azon pontok számát, ahol a sebességfüggvényt
újra meg kell határozni.

– Demonstráltam egy szintetikus képen, hogy a térfogat prior meg tudja
különböztetni az objektumokat térfogat alapján (csak azok a komponen-
sek maradnak meg, amelyeknek a térfogata megegyezik az előre meg-
határozott térfogattal).
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– Egy valós 3 dimenziós mikroszkópos képen mutattam meg, hogy a sze-
lekt́ıv akt́ıv kontúr modell működik. Élesztő sejtekről késźıttettünk 3 di-
menziós képeket egy nagy felbontású konfokális mikroszkóppal, kiválasztottam
a régiót, amely két sejtet tartalmaz, az egyik élesztősejt gömb alakot vesz
fel, mı́g közvetlenül mellette egy másik pedig hosszúkás formájú. Növel-
tem a kép felbontását a z-dimenzió (mélység) mentén egy optikai áramlás
algoritmus alkalmazásával.

– Kitaláltam és megterveztem egy 3 dimenziós képeket egysejt szinten an-
notáló folyamatot, melyből egy szoftvert hoztam létre.

– A szoftverhez a szelekt́ıv akt́ıv kontúr modellt párośıtottam az első tézispontban
javasolt phase field reinicializációs módszerrel, és egy fejlett, régió alapú
adattaggal, melyet ugyancsak GPU-n valóśıtottam meg.

– Létrehoztam a GPU-n futó kódból egy dinammikusan betölthető könyvtárat,
és egy C++ interfészt.

– Késźıtettem egy plugint az MITK orvosi képfeldolgozó szoftverhez, amely-
ben egy felhasználó iterfész seǵıtségével lehet iránýıtani a szelekt́ıv akt́ıv
kontúr evolúciót a priorok, és az egyenlet egyes tagjainak a beálĺıtásával,
mely a folyamat közben is dinamikusan változtatható. A szegmentált
felület az MITK-ban van felületként renderelve, illetve a felület metszetei
a háromnézeti paneleken is meg vannak jeleńıtve 2 dimenzióban.

– Megvalóśıtottam egy adapt́ıv algoritmust, amely az aktuális kontúr környe-
zetét dinamikusan nyeri ki, és csupán a szükséges részleteken tartja karban
a level set függvényt.

• Hozzájárulások a harmadik tézisponthoz:

– A pix2pix image-to-image translation módszert alkalmaztam a Data Sci-
ence Bowl 2018 verseny alatt ahhoz, hogy szintetikus tańıtópéldákat hoz-
zunk létre, amelyek a hipotézisünk szerint növelik majd a kezdeti modell
általánośıtó képességét a teszt halmazra vonatkozóan.

– Egy kezdeti szegmentáló hálóval ”gyenge” szegmentációkat generáltam a
teszt halmaz elemeihez.

– A teszthalmaz klaszterein pix2pix modelleket tańıtottam, amelyek a masz-
kokat mikroszkópos képekké transzofmálják.

– A szintetikus maszkokhoz létrehoztam a szintetikus mikroszkópos képeket
az előzőleg betańıtott pix2pix modell seǵıtségével.

– Leimplementáltam a kiértékelési metrikát.

– Részt vettem a https://nucleaizer.org kifejlesztésében, amelyen ke-
resztül a felhasználók be tudják küldeni a képeiket, majd a modellünk

https://nucleaizer.org
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seǵıtségével kiszegmentáljuk azokat, és elérhetővé tesszük az eredményeket
a felhasználók számára.

– Késźıtettem egy szkriptet, amely a módszer minden elemét lefuttatja.

– Egy plugint késźıtettem a Napari képanaĺızis szoftverhez, amelyből lehet a
modellt futtatni. https://www.napari-hub.org/plugins/napari-nucleaizer.

– Kidolgoztam a nucleAIzer módszer továbbfejlesztését, amelyben összetett
struktúrájú szöveti képek diszkrét maszkjait szimulálhatjuk.

– A binarizált maszkok tanulása DCGAN seǵıtségével.

– DCGAN tańıtása a StarDist (Schmidt et al., 2019) módszerben léırt maszk-
reprezentáció használatával.

– Kidolgoztam egy GVF (Gradient Vector Flow) alalpú kódoló-dekódoló módszert
a diszkrét maszkok GAN-nal való reprezentálásához.

– A StyleGAN2-ada modellt tańıtottam különböző maszk-reprezentációkon,
melyekből bemutattam, hogy a Cellpose cikkben bemutatott hőeloszlás
reprezentáció dekódolható a GAN-nal való generálás után.

– Kiválasztottam két adathalmazt, amely komplex szöveti struktúrákat tar-
talmaz (salivary gland tumor és fallopian tube adathalmazok).

– Létrehoztam szintetikus kéepeket a SIMCEP nevű parametrikus sejt-szimulációs
módszerrel, hogy összehasonĺıtsam a generált maszkokon található objek-
tumok eloszlását a StyleGAN által generált maszkokon található objektu-
mok eloszlásával.

– Módośıtottam a StyleGAN2-ada módszer kiértékelő kódját, amely két el-
oszlás közötti fID értékeket számı́tja ki az ImageNet által kinyert jellemzők
alapján, hogy két adathalmaz is összehasonĺıtható legyen.

– Alkalmaztam a pix2pix modellt (amit az eredeti tańıtó-adathalamzon tańıtottam
be), hogy a szintetizált maszkokhoz hozzárendeljem a mikroszkópos képeket.
A szintetizált képeket létrehoztam mind a SIMCEP, mind a StyleGAN által
generált maszkokhoz.

– Megmutattam, hogy az fID távolság tekintetében a szintetizált maszkok
közelebb vannak az eredeti adathalmaz maszkjaihoz, mint a SIMCEP módszerrel
generált maszkok. Ugyanezt az eredményt kaptam a szintetizált mik-
roszkópos képekre is.

– Felosztottam az adathalmazt részekre, hogy keresztvalidációt végezhessek.
Minden foldban az eredeti képekhez hozzáfűztem a foldon tańıtott model-
lekből szintetetizált példányokat (maszk, és mikroszkópos kép). Minden
foldon isntance segmentation modelleket tańıtottam (StarDist és Cellpo-
se), az eredményeket kiértékeltem.

https://www.napari-hub.org/plugins/napari-nucleaizer
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– Az eredeti tańıtó adathalmazból kiválasztottam részhalmazokat, és az azo-
kon keresztvalidációval tańıtottam StarDist és Cellpose modelleket mindkét
adathalmazon. A kiértékelés megmutatta, hogy minden esetben javulás
érhető el a teszthalmazon, amennyiben a szintetikus képeket is használjuk.

– Bemutattam, hogy a StyleGAN-ada modell effekt́ıven tańıtható transfer
learning módszerrel. A salivary gland tumor adathalmazon inicializáltam
a modellt, majd a fallopian tube adathalmazon tovább tańıtottam. A mo-
dell már 1000kimg iteráció után is elfogadható pontosságot ér el az fID
metrikát használva, ugyanezt elvégeztem a részhalmazokból kinyert masz-
kokon is.



122 Magyar nyelvű összefoglaló
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