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1. Az általánosított n-Pál paradoxon
A fejezet az [5] cikk bővített változata. Az egyenletek, tételek és következ-
mények számozása a disszertációban és a tézisfüzetben a könnyebb hivatkoz-
hatóság végett megegyezik.

Pál addig dobál egy nem szükségképpen szabályos érmét, míg fej nem
lesz. Ha ez először a k-adik dobásra következik be, akkor Péter fizet Pál-
nak rk dukátot, ahol r = 1/q, q = 1 − p és p ∈ (0, 1) a fejdobás va-
lószínűsége minden egyes dobásnál. Ez az általánosított szentpétervári(p)
játék, melyben tehát ha X jelöli Pál nyereményét, akkor P{X = rk} =
qk−1p, k ∈ N. Tegyük fel, hogy n ≥ 2 játékos mindegyike, Pál1, Pál2,
. . ., Páln pontosan egy általánosított szentpétervári játékot játszik Péter-
rel; nyereményeik rendre X1, X2, . . . , Xn. Játékosaink, mielőtt játszanának,
nyereményük elosztására megegyezhetnek egy pn = (p1,n, p2,n, . . . , pn,n) osz-
tozkodási stratégiában, melyben a komponensek nemnegatívak és összegük
egy. Ennél a stratégiánál Pál1 kap p1,nX1 + p2,nX2 + · · · + pn,nXn duká-
tot, Pál2 kap pn,nX1 + p1,nX2 + · · · + pn−1,nXn dukátot, . . ., Páln pedig
p2,nX1 + p3,nX2 + · · ·+ pn,nXn−1 + p1,nXn dukátot kap. Az elosztás igazságos
abban az értelemben, hogy minden Pál nyereménye ugyanolyan eloszlású, és
ugyanazt az

Ap(pn) = E[ p1,nX1 + · · ·+ pn,nXn, X1]

=

∫ ∞

0

[
P{p1,nX1 + · · ·+ pn,nXn > x} −P{X1 > x}] dx (1.1)

hozamot eredményezi, amennyiben ez az integrál definiált, improprius Rie-
mann vagy Lebesgue értelemben. Egy pn stratégiát akkor nevezünk megen-
gedettnek, ha minden komponense vagy 0, vagy q-nak egész kitevős hatványa.
Egy stratégia entrópiája a Hr(pn) =

∑n
j=1 pj,n logr 1/pj,n mennyiség.

1.1. Tétel. Tetszőleges p ∈ (0, 1) és n ∈ N esetén a pn osztozkodási stratégia
Ap(pn) hozama pontosan akkor létezik improprius Riemann értelemben, ha
pn megengedett. Ekkor Ap(pn) = p

q
Hr(pn).

A tételt a klasszikus, p = 1/2 esetben Csörgő és Simons [6] bizonyította.
Azt is megmutatták, hogy X1, X2, . . . , Xn független szentpétervári(1/2) vál-
tozókhoz és tetszőleges pn = (p1,n, p2,n, . . . , pn,n) megengedett stratégiához
elég bő valószínűségi mezőn megadható egy Xpn

szentpétervári változó és
egy Ypn

nemnegatív véletlen változó, melyre Tpn
= p1,nX1 + p2,nXn + · · · +

pn,nXn = Xpn
+ Ypn

majdnem biztosan. Ebből következik a Tpn
≥D X1

sztochasztikus egyenlőtlenség. Ezért az A1/2(pn) integrálban az integran-
dus nemnegatív, vagyis A1/2(pn) az erősebb, Lebesgue értelemben is létezik
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minden megengedett osztozkodási stratégia esetén. Az alábbi tétel szerint a
sztochasztikus dominancia két játékos esetén mindig teljesül.

1.2. Tétel. A p ∈ (0, 1) paraméter tetszőleges értékére, ha p2 = (qa, qb)
megengedett stratégia valamely a, b ∈ N esetén, akkor Tp2

= qaX1 + qbX2

sztochasztikusan nagyobb, mint X1.

Érdekes módon háromnál több játékos esetén a sztochasztikus dominancia
általában nem teljesül.

1.3. Tétel. Ha p = (n − 1)/n, q = 1/n és n = r > 2 a játékosok száma,
akkor Sn = X1 +X2 + · · ·+Xn és nX1 sztochasztikusan nem összehasonlít-
hatók.

Az 1.2 Tétel fényében az (1.1)-beli integrandus nemnegatív, valahány-
szor a p2 stratégia megengedett, vagyis az Ap(p2) hozam Lebesgue értelem-
ben is véges. Az 1.3 Tétel szerint azonban az Ap(pn) Lebesgue-integrálként
való létezése nem adódhat sztochasztikus egyenlőtlenségből. Adódik azonban
máshogy.

1.4. Tétel. Tetszőleges p paraméterre az általánosított szentpétervári(p) já-
tékban bármely megengedett pn = (p1,n, p2,n, . . . , pn,n) stratégia esetén az (1.1)
formulával definiált Ap(pn) integrál Lebesgue-integrálként is létezik.

Az 1.1 Tételből kiderül, melyek azok a stratégiák, melyekkel Páljaink
jobban járnak. Azonban nem minden p paraméter esetén van megengedett
stratégia, sőt majdnem minden paraméter esetén nincs. Ha a p paraméterhez
van megengedett stratégia, akkor p algebrai szám, vagyis ilyen p-ből legfel-
jebb megszámlálható sok van. Megmutatható, hogy mégis van „elég sok”.

1.5. Tétel. A megengedett paraméterek halmaza sűrű a (0, 1) intervallumon.

Amikor adott számú játékos esetén van megengedett stratégia, termé-
szetes a kérdés: melyik a legjobb? Abban a speciális esetben, amikor p =
(m−1)/m valamely m ≥ 2 egész esetén, a következő tétel adja meg a választ.
A tételben byc az alsó-, dye a felsőegészrészt, míg 〈y〉 az y törtrészét jelöli.

1.6. Tétel. Ha p = (r− 1)/r, n = rblogr nc + (r− 1)rn valamely r ≥ 2 esetén
és 0 ≤ rn ≤ rblogr nc − 1, akkor minden pn megengedett stratégiára

Ap(pn) =
p

q
Hr(pn) ≤

p

q
logr n− δp(n) =: A∗p,n,
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ahol δp(u) = 1 + (r − 1)〈logr u〉 − r〈logr u〉, u > 0. Továbbá egyenlőség csak a
p∗n stratégia esetén áll, mely stratégia a komponensek sorrendjétől eltekintve
egyértelműen meghatározott:

p∗n = (p∗1,n, . . . , p
∗
n,n) = (rp∗n, . . . , rp

∗
n, p

∗
n, . . . , p

∗
n) , p∗n =

1

rdlogr ne
,

ahol a p∗n és rp∗n értékű komponensek száma rendre

m1,p(n) =
rn− rdlogr ne

r − 1
és m2,p(n) =

rdlogr ne − n

r − 1
.

Végül mutatunk egy stratégiageneráló algoritmust, mely megőrzi a szto-
chasztikus dominanciát. Legyen p ∈ (0, 1) megengedett paraméter, és tekint-
sünk a (qa1 , qa2 , . . . , qan) és (qb1 , qb2 , . . . , qbm) megengedett stratégiákat. Az
első stratégiába a qak komponens helyébe (qak+b1 , qak+b2 , . . . , qak+bm)-et írva
egy (qd1 , qd2 , . . . , qdn+m−1) megengedett stratégiát kapunk, most már n+m−1
játékos esetén, ahol a d1 ≥ d2 ≥ · · · ≥ dn+m−1 sorozat az a1, . . . , ak−1, ak +
b1, . . . , ak + bm, ak+1, . . . , an monoton átrendezése. Akkor mondjuk, hogy a
pn = (p1,n, . . . , pn,n) stratégia sztochasztikusan domináns, ha p1,nX1 + · · · +
pn,nXn ≥D X1. Utolsó tételünk szerint ezzel az algoritmussal sztochasztiku-
san domináns stratégiából indulva ugyancsak domináns stratégiát kapunk.
Így az n = m = 2 állapotból indulva az 1.2 Tétel segítségével domináns
stratégiák seregét gyárthatjuk meg.

1.7. Tétel. Ha mind a (qa1 , qa2 , . . . , qan) stratégia, mind a (qb1 , qb2 , . . . , qbm)
stratégia sztochasztikusan domináns, akkor a generált (qd1, qd2, . . . , qdn+m−1)
stratégia is az lesz.

2. Összetartó aszimptotikus sorfejtések általá-
nosított szentpétervári nyereményekre

A fejezet a [2] cikk eredményeit tartalmazza.
Tovább általánosítjuk a szentpétervári játékot. Pál addig dobál egy nem

szükségképpen szabályos pénzérmét, amíg az fej nem lesz. Ha ez a k-adik
dobásra következik be, akkor Péter fizet Pálnak rk/α dukátot, ahol α ∈ (0, 2)
tetszőleges paraméter, p ∈ (0, 1) a fej valószínűsége minden egyes dobásnál,
q = 1− p és r = 1/q.

Tetszőleges p ∈ (0, 1), α ∈ (0, 2) és γ ∈ (q, 1] paraméterhármas esetén
tekintsük a

Wα,p
γ =

1

γ1/α

{ −∞∑
m=0

rm/α
[
Y p,γ
m − pγ

qrm

]
+

∞∑
m=1

rm/α Y p,γ
m

}
+ sα,pγ (2.2)
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korlátlanul osztható véletlen változót, ahol . . . , Y p,γ
−2 , Y

p,γ
−1 , Y

p,γ
0 , Y p,γ

1 , Y p,γ
2 , . . .

független Poisson eloszlású véletlen változók úgy, hogy az Y p,γ
m paramétere

prγqm = pγ/(qrm), sα,pγ pedig valós állandó. JelöljeGα,p,γ(x) = P{Wα,p
γ ≤ x}

az eloszlás-,

gα,p,γ(t) = E
(
eitWα,p

γ
)

=

∫ ∞

−∞
eitx dGα,p,γ(x) = ey

α,p
γ (t), t ∈ R, (2.3)

pedig a karakterisztikus függvényt, ahol a kitevő

yα,pγ (t) = itsα,pγ +
−∞∑

l=0

(
exp

{
itr

l
α

γ
1
α

}
− 1− itr

l
α

γ
1
α

)
pγ

qrl
+

∞∑

l=1

(
exp

{
itr

l
α

γ1α

}
−1

)
pγ

qrl
.

A karakterisztikus függvény kitevőjének alakjából azonnal következik, hogy
Wα,p
γ szemistabilis eloszlású α karakterisztikus kitevővel. Ebből adódik, hogy

a Gα,p,γ eloszlás végtelen sokszor differenciálható.
Tekintsük osztozkodási stratégiák egy {pn = (p1,n, . . . , pn,n)}∞n=1 soroza-

tát, melyre pn = max{p1,n, . . . , pn,n} → 0. Ebben a fejezetben az

Sα,ppn
=

n∑

k=1

p
1/α
k,n Xk − p

q
Hα,p(pn) (2.8)

véletlen változó aszimptotikus viselkedését vizsgáljuk, ahol Hα,p(pn) a stra-
tégiától függő állandó. Az approximáló szemistabilis eloszlásaink a

Wα,p
pn

=

{ ∑n
k=1 p

1/α
k,n W

α,p
1,k , ha α 6= 1,

∑n
k=1 pk,nW

1,p
1,k − p

q
H1,p(pn), ha α = 1,

(2.9)

véletlen változók lesznek, ahol a W α,p
1,1 ,W

α,p
1,2 , . . . ,W

α,p
1,n változók a Wα,p

1 füg-
getlen példányai, amit a (2.2) formulából kapunk a γ = 1 helyettesítéssel. A
megfelelő karakterisztikus függvény gα,p,pn

(t) = E(eitWα,p
pn ), az eloszlásfügg-

vény pedig Gα,p,pn
(x) = P{W α,p

pn
≤ x}.

Adott pn = (p1,n, . . . , pn,n) stratégia esetén minden pk,n komponensre
definiáljuk a γk,n = 1/(pk,nr

dlogr 1/pk,ne) ∈ (q, 1] paramétereket, melyek az
egyes komponensek két egymást követő q-hatvány közötti helyzetét határoz-
zák meg. A (2.3) és a gα,p,pn

(t) = E(eitWα,p
pn ) formulák segítségével definiáljuk

a gα,ppn
(t) függvényt, mely α 6= 1 esetén

gα,ppn
(t) = gα,p,pn

(t)

[
1 − 1

2

n∑

k=1

p2
k,n

[
yα,pγk,n

(t)
]2

+ itsα,p1

n∑

k=1

p
1+ 1

α
k,n yα,pγk,n

(t)

+
t2

2

{
(sα,p1 )2 +

p

q − q2/α

} n∑

k=1

p
2
α
k,n

]
,
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ahol sα,p1 = p/(q − q1/α) a (2.2)-ben szereplő konstans, és α = 1 esetén

g1,p
pn

(t) = g1,p,pn
(t)

[
1 − 1

2

n∑

k=1

p2
k,n

[
y1,p
γk,n

(t)
]2 − it

p

q

n∑

k=1

p2
k,n y

1,p
γk,n

(t) logr
1

pk,n

+
t2

2

{
p2

q2

n∑

k=1

p2
k,n log2

r

1

pk,n
+

1

q

n∑

k=1

p2
k,n

}]
.

Végül tekintsük azt a Gα,p
pn

(·) függvényt az egyenesen, mely a fenti gα,ppn
(t)

függvény inverz Fourier – Stieltjes transzformáltja, azaz

gα,ppn
(t) =

∫ ∞

−∞
eitx dGα,p

pn
(x), t ∈ R. (2.15)

Az Sα,ppn
lineáris kombinációkra vonatkozó eredményünk a következő

2.1. Tétel. Tetszőleges {pn = (p1,n, . . . , pn,n)}n∈N stratégiasorozat esetén

sup
x∈R

∣∣∣P
{
Sα,ppn

≤ x
}−Gα,p

pn
(x)

∣∣∣ =





O
(
p 2
n

)
, ha 0 < α < 1/2,

O
(
p 1/α
n

)
, ha 1/2 ≤ α < 3/2;

O
(
p (4−2α)/α
n

)
, ha 3/2 ≤ α < 2,

ahol pn = max{p1,n, . . . , pn,n} a komponensek maximuma.

Az egyenletes p¦n = (1/n, . . . , 1/n) stratégiára a fenti tétel a [1] cikkben
szereplő eredményre redukálódik, azzal a különbséggel, hogy ott egy korrek-
ciós tag hiányzik. Azt, hogy ez a tag valóban javít a sorfejtés pontosságán,
legalábbis az α 6= 1 esetben, Pap [8] mutatta meg. Innen látszik, hogy tetsző-
leges pn stratégia esetén az (2.15) definíció a Gα,p

p¦n (·) approximáló függvény
megfelelő általánosítása.

Megjegyezzük, hogy a p
1/α
1,n , . . . , p

1/α
n,n súlyok összege csak akkor egy, ha

α = 1, így α 6= 1 esetén a megfelelő lineáris kombináció nem feleltethető meg
egy osztozkodási stratégiának. Ugyanakkor, egy egyszerű transzformációval
a 2.1 Tétel átírható egy ekvivalens, természetesebb formába.

Megengedett stratégiák esetén minden pk,n komponens értéke vagy 0, vagy
q-nak egész kitevős hatványa, így γk,n = 1. Ezt a gα,ppn

definíciójába beírva
láthatjuk, hogy megengedett stratégiák esetén van valódi határeloszlás, és
ekkor hagyományos aszimptotikus sorfejtéseket kapunk. A 2.1 Tételben a
domináns tagokra fókuszálva adódik az alábbi
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2.2. Következmény. Tetszőleges {pn}n∈N megengedett stratégiasorozatra,
α ∈ (0, 1) esetén

sup
x∈R

∣∣∣∣∣P
{
Sα,ppn

≤ x
}−

[
Gα,p,1(x) − G

(0,2)
α,p,1(x)

1

2

n∑

k=1

p2
k,n

]∣∣∣∣∣

=

{
O(p 2

n), ha 0 < α ≤ 1/2,

O(p 1/α
n ), ha 1/2 < α < 1;

α = 1 esetén

sup
x∈R

∣∣∣∣∣P
{
S1,p

pn
≤ x

}−
[
G1,p,1(x) +G

(1,1)
1,p,1(x)

p

q

n∑

k=1

p2
k,n logr

1

pk,n

− G
(2,0)
1,p,1(x)

p2

2q2

n∑

k=1

p2
k,n log2

r

1

pk,n

]∣∣∣∣∣ = O(pn);

végül ha α ∈ (1, 2), akkor

sup
x∈R

∣∣∣∣∣P
{
Sα,ppn

≤ x
}−

[
Gα,p,1(x)−G(2,0)

α,p,1(x)

{
p2

(q − q1/α)2
+

p

q − q2/α

}
1

2

n∑

k=1

p
2/α
k,n

]∣∣∣∣∣

=

{
O(p 1/α

n ), ha 1 < α ≤ 3/2,

O(p (4−2α)/α
n ), ha 3/2 < α < 2.

3. Összetartási tételek lineáris kombinációkra
A fejezet a [6] cikk eredményeit tárgyalja.

Tekintsük a W (ψα1 , ψ
α
2 , 0) szemistabilis véletlen változót, melynek karak-

terisztikus függvénye

E(eitW (ψα
1 ,ψ

α
2 ,0)) = exp

{
− σ2

2
t2 +

∫ ∞

0

βt(ψ
α
1 (u)) du+

∫ ∞

0

βt(−ψα2 (u)) du

}
,

ahol βt(x) = eitx − 1− itx
1+x2 , és

ψαj (s) = −Mj(s)

s1/α
, s > 0, j = 1, 2, (3.3)

ahol M1, M2 nemnegatív, korlátos, jobbról folytonos függvények a (0,∞)
intervallumon, melyek közül legalább az egyik nem azonosan 0, és ha va-
lamelyik nem azonosan 0, akkor szigorúan pozitív infimuma van, valamint
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teljesül az Mj(cs) = Mj(s) logaritmikus periodicitás valamilyen c > 1 ál-
landóval, továbbá a ψj(s), j = 1, 2, függvények monoton növekvőek. Az
előállításban szereplő α ∈ (0, 2) paramétert a szemistabilis eloszlás karakte-
risztikus kitevőjének nevezzük. Megyesi [7] megmutatta, hogy ilyen módon
minden szemistabilis eloszlást meg lehet adni, egy additív konstans erejéig.
Legyen V (ψα1 , ψ

α
2 , 0) = W (ψα1 , ψ

α
2 , 0)+θ(ψα1 )−θ(ψα2 ), ahol θ(ψ) valós állandó,

a változó eloszlásfüggvénye pedig Gψα
1 ,ψ

α
2 ,0

(x) = P{V (ψα1 , ψ
α
2 , 0) ≤ x}.

Tekintsünk egy F eloszlásfüggvényt, ami benne van a Gψα
1 ,ψ

α
2 ,0

szemistabi-
lis eloszlás geometriai parciális vonzástartományában, és legyenek X1, X2, . . .
független, F eloszlású véletlen változók. Tekintsük {pn} stratégiák egy so-
rozatát, melyre teljesül a pn = max{pj,n : j = 1, 2, . . . , n} → 0 aszimptotikus
elhanyagolhatósági feltétel. A fejezetben az

Sα,pn
=

n∑
j=1

p
1/α
j,n

l(pj,n)
Xj −

n∑
j=1

p
1/α
j,n

l(pj,n)

∫ 1−pj,n

pj,n

Q(s) ds (3.8)

véletlen változó aszimptotikus viselkedését vizsgáljuk, ahol l(·) egy 0-ban
lassú változású függvény, ami az F eloszlásfüggvény Q kvantilisának előállí-
tásában jelenik meg.

Jelölje λ > 0 esetén a λψ(s) = ψ(s/λ) függvényt, és legyen ψα,λj (s) =

λ−1/α
λψ

α
j (s) = −Mj(s/λ)s−1/α, s > 0, ahol az Mj függvények (3.3) elő-

állításból valók, j = 1, 2. Definiáljuk a Vα,λ(M1,M2) véletlen változót és
karakterisztikus függvényét a

Vα,λ(M1,M2) = V (ψα,λ1 , ψα,λ2 , 0) , E(eitVα,λ(M1,M2)) = eyα,λ(t), t ∈ R, (3.9)

formulával. A rövidség kedvéért vezessük be a γj,n = γ1/pj,n
jelölést, ahol a

γx függvény hasonlóan definiált, mint a szentpétervári esetben. Legyen Vpn

az az egyértelműen meghatározott véletlen változó, melynek karakterisztikus
függvénye

E
(
eitVα,pn

)
=

∫ ∞

−∞
eitx dGα,pn

(x) = exp

{
n∑
j=1

pj,n yα,γj,n
(t)

}
, t ∈ R, (3.11)

ahol yα,γj,n
(·) a (3.9) formulában szereplő Vα,γj,n

véletlen változó karakterisz-
tikus függvényének exponense. Ennek a résznek a fő eredménye a következő
összetartási tétel.

3.1. Tétel. Legyen {pn}∞n=1 olyan stratégiasorozat, melyre pn → 0. Ekkor

sup
x∈R

∣∣P{
Sα,pn

≤ x
}−Gα,pn

(x)
∣∣ → 0.
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A (3.11) formula szerint az egyenletes p¦n = (1/n, 1/n, . . . , 1/n) stratégia
esetén teljesül a Vα,pn

D
= Vα,γn(M1,M2) eloszlásbeli egyenlőség, ezért ebben

az esetben a 3.1 Tétel a [3] cikkbeli 2. Tétel teljes összegekre vonatkozó,
legfontosabb speciális esetét adja vissza.

Megjegyezzük, hogy most is csak akkor beszélhetünk valódi osztozkodás-
ról, ha α = 1 és l(·) ≡ 1, azaz ekkor lesz (3.8)-ban a komponensek összege egy.
Ugyanakkor, egy transzformációval most is átírhatjuk a 3.1 Tételt megfelelő
alakúra.

Végül megmutatjuk, hogy bizonyos speciális stratégiasorozat esetén a
fenti összetartási tétel hagyományos határeloszlás-tétellé redukálódik. Egy
{pn}∞n=1 stratégiasorozatot kiegyensúlyozottnak nevezünk, ha a

lim inf
n→∞

min{pj,n : j = 1, 2, . . . , n}
max{pj,n : j = 1, 2, . . . , n} > 0

feltétel teljesül. Ez nagyjából annyit jelent, hogy minden komponens számít.
A klasszikus elmélet szerint, ha létezik határeloszlás az egyenletes p¦n =

(1/n, 1/n, . . . , 1/n) stratégiasorozat mentén, akkor az szükségképpen stabil.
Az alábbi következmény a szemistabilitás egyfajta lényegét ragadja meg:
megmutatjuk, hogy minden szemistabilis eloszlás előáll, mint olyan kiegyen-
súlyozott stratégiasorozaton vett határeloszlás, aminek lényegében két kü-
lönböző komponense van.

3.1. Következmény. Tetszőleges κ ∈ (c−1, 1] esetén megadható olyan ki-
egyensúlyozott {pn}∞n=1 stratégiasorozat, melyre Sα,pn

D−→ Vα,κ(M1,M2), ahol
Vα,κ(M1,M2) a (3.9) formulával definiált véletlen változó. Továbbá minden
n ∈ {2, 3, . . .} esetén a pn = (p1,n, p2,n, . . . , pn,n) stratégia megkonstruálható
úgy, hogy az első n− 1 komponens között csak kettő különböző szerepel.

Az itteni eredmények bizonyításához szükségünk van az összetartás álta-
lános elméletének kidolgozására. Akkor mondjuk, hogy az Xn és Yn véletlen
változók vagy Fn és Gn eloszlásfüggvényeik összetartanak, ha L(Fn, Gn) → 0,
ahol L(·, ·) a Lévy-metrikát jelöli.

3.3. Tétel. Ha az eloszlásfüggvények {Gn}∞n=1 sorozat sztochasztikusan kom-
pakt, akkor L(Fn, Gn) → 0 akkor és csakis akkor teljesül, ha φn(t)−ψn(t) → 0
minden t ∈ R esetén, ahol φn és ψn a megfelelő karakterisztikus függvények.

A 3.1 Tétel bizonyításának fő eszköze a következő tétel, miszerint ha Gn

abszolút folytonos minden n-re, és a sűrűségfüggvények egyenletesen kor-
látosak, akkor az előző tétel feltétele mellett az egyenletes konvergencia is
adódik.
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3.4. Tétel. Tegyük fel, hogy a {Gn}∞n=1 sorozat sztochasztikusan kompakt,
és megadható egy K > 0 állandó, melyre supn∈N supx∈R |G ′

n(x)| ≤ K. Ekkor
Fn(x)−Gn(x) → 0 minden x ∈ R esetén pontosan akkor, ha φn(t)−ψn(t) →
0 minden t ∈ R esetén. Továbbá ekkor a konvergencia egyenletes, azaz
supx∈R |Fn(x)−Gn(x)| → 0.
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