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1. Az Altalanositott n-Pal paradoxon

A fejezet az [5] cikk bovitett valtozata. Az egyenletek, tételek és kovetkez-
mények szamozasa a disszertacioban és a tézisfiizetben a konnyebb hivatkoz-
hatosag végett megegyezik.

P4l addig dobal egy nem sziikségképpen szabalyos érmét, mig fej nem
lesz. Ha ez elGszor a k-adik dobasra kovetkezik be, akkor Péter fizet Pal-
nak 7% dukatot, ahol r = 1/q, ¢ = 1 —p és p € (0,1) a fejdobas va-
loszintisége minden egyes dobasnal. Ez az altalanositott szentpétervari(p)
jaték, melyben tehdt ha X jeloli P4l nyereményét, akkor P{X = rk} =
¢"'p, k € N. Tegyiik fel, hogy n > 2 jatékos mindegyike, Pal;, Pél,,
..., Pal, pontosan egy altalanositott szentpétervari jatékot jatszik Péter-

rel; nyereményeik rendre Xi, Xo, ..., X,,. Jatékosaink, miel6tt jatszananak,
nyereménytiik elosztasara megegyezhetnek egy p, = (P1.n, P2ns- - - s Do) 0SZ-

tozkodasi stratégidban, melyben a komponensek nemnegativak és Gsszegiik
egy. Ennél a stratégianal Pal; kap pi,Xq1 + p2,Xo + -+ + pppX, duké-
tot, Paly kap pp,Xi + pinXo + -+ + P10 X, dukdtot, ..., Pal, pedig
Do X1+ P3nXo+ -+ DunXn_1+p1.n,X, dukitot kap. Az elosztas igazsagos
abban az értelemben, hogy minden Pal nyereménye ugyanolyan eloszlasi, és
ugyanazt az

Ap(pn) = E[pl,nXI + - +pn,an7X1]
= / [P{p1nXi+ 4 popXn >z} — P{X; >z} dz (1.1)
0

hozamot eredményezi, amennyiben ez az integral definialt, improprius Rie-
mann vagy Lebesgue értelemben. Egy p, stratégiat akkor neveziink megen-
gedettnek, ha minden komponense vagy 0, vagy ¢g-nak egész kitevds hatvanya.
Egy stratégia entropiaja a H,.(p,) = Z?Zl pjnlog, 1/p;, mennyiség.

1.1. Tétel. Tetszdlegesp € (0,1) ésn € N esetén a p,, osztozkoddsi stratégia
A,(p,) hozama pontosan akkor létezik improprius Riemann értelemben, ha
p,, megengedett. Ekkor Ay(p,) =t H.(p,).

A tételt a klasszikus, p = 1/2 esetben Csorgs és Simons [6] bizonyitotta.
Azt is megmutattak, hogy Xi, Xo, ..., X, flggetlen szentpétervari(1/2) val-
tozokhoz és tetszéleges p,, = (P1n,P2ns- - -+ Dnn) Megengedett stratégidhoz
elég b6 valoszintiségi mezén megadhatd egy X, szentpétervari véaltozo és
egy Y, nemnegativ véletlen valtozo, melyre T}, = pi X1 + popnXy + -+
PnnXn = Xp + Yp majdnem biztosan. Ebbdl kiovetkezik a T, >p X
sztochasztikus egyenlStlenség. Ezért az A;/o(p,) integrdlban az integran-
dus nemnegativ, vagyis A /2(p,) az erésebb, Lebesgue értelemben is létezik
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minden megengedett osztozkodasi stratégia esetén. Az alabbi tétel szerint a
sztochasztikus dominancia két jatékos esetén mindig teljesiil.

1.2. Tétel. A p € (0,1) paraméter tetszbleges értékére, ha py, = (q% q°)
megengedett stratégia valamely a,b € N esetén, akkor Tp, = ¢*X; + X,
sztochasztikusan nagyobb, mint X;.

Erdekes modon haromnal t6bb jatékos esetén a sztochasztikus dominancia
altaldban nem teljesiil.

1.3. Tétel. Hap=(n—1)/n, g =1/n ésn =r > 2 a jitékosok szima,
akkor S, = X1 + Xo + -+ + X, €s nX, sztochasztikusan nem dsszehasonlit-

hatdk.

Az 1.2 Tétel fényében az (1.1)-beli integrandus nemnegativ, valahany-
szor a p, stratégia megengedett, vagyis az A,(p,) hozam Lebesgue értelem-
ben is véges. Az 1.3 Tétel szerint azonban az A,(p,,) Lebesgue-integralként
val6 1étezése nem adodhat sztochasztikus egyenlétlenséghdl. Adodik azonban
méshogy.

1.4. Tétel. Tetszdleges p paraméterre az dltaldnositott szentpétervari(p) jd-
tékban barmely megengedett p,, = (P1.ns P2y - - - > Pnn) Stratégia esetén az (1.1)
formuldval definidlt A,(p,,) integrdl Lebesgue-integrdlként is létezik.

Az 1.1 Tételbdl kideriil, melyek azok a stratégidk, melyekkel Paljaink
jobban jarnak. Azonban nem minden p paraméter esetén van megengedett
stratégia, s6t majdnem minden paraméter esetén nincs. Ha a p paraméterhez
van megengedett stratégia, akkor p algebrai szam, vagyis ilyen p-bdl legfel-
jebb megszamlalhat6 sok van. Megmutathato, hogy mégis van ,elég sok”.

1.5. Tétel. A megengedett paraméterek halmaza sird a (0, 1) intervallumon.

Amikor adott szamu jatékos esetén van megengedett stratégia, termé-
szetes a kérdés: melyik a legjobb? Abban a specialis esetben, amikor p =
(m—1)/m valamely m > 2 egész esetén, a kovetkezs tétel adja meg a valaszt.
A tételben |y| az also-, [y] a felsGegészrészt, mig (y) az y tortrészét jeloli.

1.6. Tétel. Hap = (r—1)/r, n = rloel 4+ (r — 1)r, valamely r > 2 esetén
¢s 0 < r, <rlloenl 1 akkor minden p, megengedett stratégidra

b p *
Ap(pn) = gHT(pn) < a logrn - 510(”) =: A

p7n,



ahol 6,(u) = 1+ (r — 1)(log, u) — r{°&® y > 0. Tovdbbd egyenldség csak a
P, stratégia esetén dall, mely stratégia a komponensek sorrendjétdl eltekintve
egyértelmiden meghatdrozott:

1

p, = (pl,yw s 7pn7n) = (Tpnv <oy TPny Py - - >pn)> Pn = ma

ahol a p} és rp; értékd komponensek szdma rendre

rn—r “Ogr n-| rﬂOg'r n-‘ —n

myp(n) = ——————  és mg,(n) =

r—1 r—1

Végiil mutatunk egy stratégiagenerald algoritmust, mely megérzi a szto-
chasztikus dominanciat. Legyen p € (0, 1) megengedett paraméter, és tekint-
siink a (¢, q%,...,q%) és (¢",q%, ..., ¢") megengedett stratégiakat. Az
els6 stratégidba a ¢ komponens helyébe (g Tb1 gtz q@Fbm) et frva
egy (q¥,q%, ... q%+m=1) megengedett stratégiat kapunk, most mar n+m—1
jatékos esetén, ahol a dy > dy > --- > dp,4 1 SOTOZAL 8Z A1, ..., Q8 1,0 +
bi,...,a + by, ary1,...,a, monoton atrendezése. Akkor mondjuk, hogy a
Dn, = (Pin,- - Pun) stratégia sztochasztikusan domindns, ha py , X1 + -+ +
PnnXn >p Xi. Utolso tételiink szerint ezzel az algoritmussal sztochasztiku-
san dominans stratégiabol indulva ugyancsak dominédns stratégiat kapunk.
Igy az n = m = 2 &llapotbol indulva az 1.2 Tétel segitségével dominans
stratégidk seregét gyarthatjuk meg.

1.7. Tétel. Ha mind a (¢™,q%,...,q%) stratégia, mind a (¢, ", ..., ¢"")
stratégia sztochasztikusan domindns, akkor a generdlt (q¥,q®% ..., q%+m-1)
stratégia is az lesz.

2. Osszetartd aszimptotikus sorfejtések altala-
nositott szentpétervari nyereményekre

A fejezet a [2] cikk eredményeit tartalmazza.

Tovabb altalanositjuk a szentpétervari jatékot. Pal addig dobal egy nem
sziikségképpen szabalyos pénzérmét, amig az fej nem lesz. Ha ez a k-adik
dobasra kovetkezik be, akkor Péter fizet Palnak r*/¢ dukatot, ahol o € (0,2)
tetszbleges paraméter, p € (0, 1) a fej valoszintisége minden egyes dobasnal,
g=1—pésr=1/q.

Tetszbleges p € (0,1), a € (0,2) és v € (q,1] paraméterharmas esetén
tekintsiik a

o 1
WP = ~y1/a

o0 o0
m/a|ypy _ ry m/a ypoy a,p 29
{mgor {m qr’"]jLZT m (22)

m=1



korlatlanul oszthato véletlen valtozot, ahol ..., Y2 Y27 Y& Y7 Y97 ...
fiiggetlen Poisson eloszlast véletlen valtozok tgy, hogy az Y7 paramétere
pryq™ = py/(qr™), s5P pedig valos allando. Jeldlje Gy (2) = P{WS? < 2}
az eloszlas-,

o0

goupﬂ(t) = E(eitW$’P) = / e dGmpn(x) = ey;"”(t)’ t eR, (2.3)

[e.e]

pedig a karakterisztikus fiiggvényt, ahol a kitevs

—00 . L
o . Ure 1t’f‘a ufTa DY
ysP(t) = itsS? + E (exp{ > }— 1— ) + E (exp{ } 1) i
1=0 “

A karakterisztikus fiiggvény kitevGjének alakjabol azonnal kévetkezik, hogy
WP szemistabilis eloszlast « karakterisztikus kitevével. Ebb6l adodik, hogy
a G p eloszlas végtelen sokszor differencialhaté.

Tekintsiik osztozkodasi stratégiak egy {p, = (P1n,- .- DPnn) ooy soroza-
tat, melyre p,, = max{pi,,...,Pnn} — 0. Ebben a fejezetben az

So = Zp”“ H,,(p,) (2.8)

véletlen véaltozo aszimptotikus viselkedését vizsgaljuk, ahol H, ,(p,) a stra-
tégiatol fliggs allando. Az approximald szemistabilis eloszlésaink a

1/(1 «,
ap _ Z 1 knWIkp7 haa#l, (29>
o Ek:l pk,nWik 9 HLp(pn), ha o = 1,
véletlen véltozok lesznek, ahol a WP W'Y, ... WP valtozok a W™ fiig-

getlen példanyai, amit a (2.2) formulabdl kapunk a v = 1 helyettesitéssel. A
megfeleld karakterisztikus fiiggvény gq,p (1) = E(e™?.), az eloszlasfiigg-
vény pedig Gopp, () = P{Wp? < z}.

Adott p, = (pin,---,Pnn) stratégia esetén minden py, komponensre
definialjuk a v, = 1/(prnre1/Penl) € (¢, 1] paramétereket, melyek az
egyes komponensek két egymést kévet§ g-hatvany kozotti helyzetét hataroz-
zék meg. A (2.3) s a 8o pp (1) = E(e""r) formulak segitségével definialjuk
a gyP (1) fiiggvényt, mely a # 1 esetén

a 1 . « 2 iy Q . 1+é «
g7 (t) = Bapp, (1) [1 = 3 D PRalU O] 1Y p i (1)
k=1

k=1
t2 P "L 2
7p 2 «
+§{(51 ) +_—M}Zm :
q—q 1
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ahol 577 = p/(q — ¢"/*) a (2.2)-ben szerepld konstans, és a = 1 esetén
Lp(4) — 2 P 1

{ z il zp,m}].

’

Végiil tekintsiik azt a GpP(-) fliggvényt az egyenesen, mely a fenti ggP(¢)
fiiggvény inverz Fourier — Stleltjes transzformaltja, azaz

gor(t) = / e dGoP(r), tER. (2.15)

mn
—00

Az SpP linedris kombinaciokra vonatkoz6 eredményiink a kovetkezd
n

2.1. Tétel. Tetszdleges {p,, = (P1ns- - -, Dnn) tnen stratégiasorozat esetén

O(p2), ha 0 < o< 1/2,
sup ‘P{Sg’p <z}-— Gg’p(q:)‘ =< O(p/*), ha1/2 < o < 3/2;
T R n n
) O(PH=2/%) ha 3/2 < o < 2,
ahol p,, = max{pi n,...,Pnn} a komponensek maximuma.

Az egyenletes p¢ = (1/n,...,1/n) stratégiara a fenti tétel a [1] cikkben
szerepld eredményre redukalodik, azzal a kiilonbséggel, hogy ott egy korrek-
ci6s tag hianyzik. Azt, hogy ez a tag valéban javit a sorfejtés pontossagén,
legalabbis az o # 1 esetben, Pap [8] mutatta meg. Innen latszik, hogy tetszo-
leges p,, stratégia esetén az (2.15) definicié a Ga’p () approximalo fliggvény
megfelel§ altalanositasa.

Megjegyezziik, hogy a pi/,f . pil stilyok dsszege csak akkor egy, ha
a =1, igy a # 1 esetén a megfelel§ linearis kombinécio nem feleltethetd meg
egy osztozkodasi stratégidnak. Ugyanakkor, egy egyszeri transzforméacioval
a 2.1 Tétel atirhatd egy ekvivalens, természetesebb forméaba.

Megengedett stratégiak esetén minden py, , komponens értéke vagy 0, vagy
g-nak egész kitevés hatvanya, igy 1, = 1. Ezt a gg? definiciojaba befrva
lathatjuk, hogy megengedett stratégiak esetén van Valodl hatareloszlas, és
ekkor hagyoményos aszimptotikus sorfejtéseket kapunk. A 2.1 Tételben a
dominans tagokra fokuszalva adodik az alabbi



2.2. Kovetkezmény. Tetszdleges {p, }nen megengedett stratégiasorozatra,
€ (0,1) esetén

sup P{So‘p < :c} —

z€R

02, 11
ap,1<x> - G(()c7p,)1 (33')5 Zpi,n]

k=1

O®2), ha0<a<1/2
0@, ha1/2 < o < 1;

a =1 esetén

P 1
sup P{Slp <z} — | Gipa(z )+G§1p1%(a:)—2pznlogT —
z€R q =1 pk,n
(2,0) P’ - 2 2
-G T)=—= ¥ Dinlogr — || =0(D,):
1p1( )2q2 P k D ( )

végil ha o € (1,2), akkor

2

_A(2,0) p 1 2/a
Ga,p,l (3:) Ga,p,1<x){(q o ql/a) q— q2/a } 2 kz ]
{O(—l/a) hal< a<3/2,

rzeR

g

O(pA=29/) "ha 3/2 < a < 2.

3. Osszetartasi tételek linearis kombinacidokra
A fejezet a [6] cikk eredményeit targyalja.

Tekintsiik a W (¢, 1%, 0) szemistabilis véletlen valtozot, melynek karak-
terisztikus fliggvénye

2 00 o0
E(eitW(w?,wg,O)) _ exp{— %ﬁ +/0 B(¥f(u)) du —l—/o Bi(—=15 (w)) d“}’

ahol f3y(x) = e"* — 1 — 5, és

o M;(s) ,

ahol M;, M, nemnegativ, korlatos, jobbrol folytonos fliggvények a (0, 00)
intervallumon, melyek koziil legaldbb az egyik nem azonosan 0, és ha va-
lamelyik nem azonosan 0, akkor szigortian pozitiv infimuma van, valamint
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teljesiil az M;(cs) = M;(s) logaritmikus periodicitds valamilyen ¢ > 1 al-
landéval, tovabba a ;(s), 7 = 1,2, fiiggvények monoton novekvSek. Az
elgallitasban szerepls a € (0,2) paramétert a szemistabilis eloszlas karakte-
risztikus kitevGjének nevezziik. Megyesi [7] megmutatta, hogy ilyen modon
minden szemistabilis eloszlast meg lehet adni, egy additiv konstans erejéig.
Legyen V(4,05 0) = W (4, 45, 0)+0()%) (), ahol 0(x) valés llands,
a valtozo eloszlasfiiggvénye pedig Gye yg o(r) = P{V (¥, ¥5,0) < x}.

Tekintsiink egy F' eloszlasfiiggvényt, ami benne van a Gye yg o szemistabi-
lis eloszlas geometriai parcialis vonzastartomanyaban, és legyenek X7, X, ...
fiiggetlen, F' eloszlasu véletlen valtozok. Tekintsiik {p,} stratégidk egy so-
rozatat, melyre teljesiil a p,, = max{p;,:j =1,2,...,n} — 0 aszimptotikus
elhanyagolhatosagi feltétel. A fejezetben az

l/a n pl./a 1=pjn
J,n
P, = — Q(s)ds (3.8)
P Z p.]n Zl l(p_y,n) /p\j,n

véletlen valtozo aszimptotikus viselkedését vizsgaljuk, ahol [(-) egy 0-ban
lassu valtozasu fiiggvény, ami az F' eloszlasfiiggvény () kvantilisanak elGalli-
tasaban jelenik meg.

Jelolje A > 0 esetén a xp(s) = ¥(s/\) fliggvényt, és legyen 1/1?’)‘(5) =
Ao (s) = —M;(s/A)s™Y s > 0, ahol az M; figgvények (3.3) el6-
allitasbol valok, j = 1,2. Definialjuk a V, (M, M) véletlen valtozot és
karakterisztikus fiiggvényét a

Var(My, My) = V(4 457%,0) , B(eer(MutR)) — ouer® ¢ ¢ R, (3.9)

formulaval. A révidség kedvéért vezessiik be a 7v;, = 71/p,, jelolést, ahol a
7. fiiggvény hasonléan definialt, mint a szentpétervéri esetben. Legyen V-
az az egyértelmtien meghatarozott véletlen valtozo, melynek karakterisztikus
fiiggvénye

E(e"Vern) = / e dGop (2) = exp{ ij,n ya,w,n(t)}> teR, (3.11)

Jj=1

ahol Y, ~,,.(-) a (3.9) formulaban szerepls V. , véletlen véltozo karakterisz-
tikus fiiggvényének exponense. Ennek a résznek a {6 eredménye a kévetkezs
Osszetartasi tétel.

3.1. Tétel. Legyen {p, }5°, olyan stratégiasorozat, melyre p,, — 0. Ekkor

sup }P{Smpn < x} — Gamn(x)} — 0.

zeR



A (3.11) formula szerint az egyenletes pS = (1/n,1/n,...,1/n) stratégia
esetén teljesiil a Va,png Viyn (M, My) eloszlasbeli egyenléség, ezért ebben
az esetben a 3.1 Tétel a [3] cikkbeli 2. Tétel teljes Osszegekre vonatkozo,
legfontosabb specialis esetét adja vissza.

Megjegyezziik, hogy most is csak akkor beszélhetiink valodi osztozkodés-
rol, ha o = 1 és1(-) = 1, azaz ekkor lesz (3.8)-ban a komponensek Gsszege egy.
Ugyanakkor, egy transzformécioval most is atirhatjuk a 3.1 Tételt megfelels
alaktra.

Végiil megmutatjuk, hogy bizonyos specidlis stratégiasorozat esetén a
fenti Osszetartasi tétel hagyomanyos hatéareloszlas-tétellé redukilodik. Egy
{p,}52, stratégiasorozatot kiegyensilyozottnak neveziink, ha a

' intg=1,2,...,
lim inf mln{pj’ ], n} >0
n—oo max{p;j,:j=1,2,...,n}

feltétel teljesiil. Ez nagyjabol annyit jelent, hogy minden komponens szamit.

A klasszikus elmélet szerint, ha létezik hatareloszlas az egyenletes pS =
(1/n,1/n,...,1/n) stratégiasorozat mentén, akkor az sziikségképpen stabil.
Az alabbi kovetkezmény a szemistabilitds egyfajta lényegét ragadja meg:
megmutatjuk, hogy minden szemistabilis eloszlas elgall, mint olyan kiegyen-
salyozott stratégiasorozaton vett hatareloszlas, aminek lényegében két kii-
16nb6z6 komponense van.

3.1. Kovetkezmény. Tetszbleges k € (¢, 1] esetén_megadhaté olyan ki-
egyensilyozott {p, }°> | stratégiasorozat, melyre Sy 4 2, Ve (M, My), ahol
Ve (My, M) a (3.9) formuldval definidlt véletlen vdltozs. Tovabbd minden
n € {2,3,...} esetén a p, = (P10, P2ms-- -, Pun) Stratégia megkonstrudlhato

gy, hogy az elsé n — 1 komponens kézott csak kettd kiilonbozd szerepel.

Az itteni eredmények bizonyitasahoz sziikségiink van az Gsszetartas alta-
lanos elméletének kidolgozasara. Akkor mondjuk, hogy az X, és Y, véletlen
valtozok vagy F), és G, eloszlasfliiggvényeik dsszetartanak, ha L(F,,G,) — 0,
ahol L(-,-) a Lévy-metrikat jeloli.

3.3. Tétel. Ha az eloszldsfigguények {G,}52, sorozat sztochasztikusan kom-
pakt, akkor L(F,,G,) — 0 akkor és csakis akkor teljesiil, ha ¢, (t)—,(t) — 0
minden t € R esetén, ahol ¢, €s 1, a megfeleld karakterisztikus fiigguények.

A 3.1 Tétel bizonyitasanak {6 eszkoze a kovetkezs tétel, miszerint ha G,
abszolit folytonos minden n-re, és a strtségfiiggvények egyenletesen kor-

latosak, akkor az el6z6 tétel feltétele mellett az egyenletes konvergencia is
adodik.



3.4. Tétel. Tegyiik fel, hogy a {G,}5°, sorozat sztochasztikusan kompakt,
és megadhato egy K > 0 dllandd, melyre sup,,cy sup,er |G (z)| < K. Ekkor
F.(z)—G,(x) — 0 minden x € R esetén pontosan akkor, ha ¢, (t) — 1, (t) —
0 minden t € R esetén. Tovabba ekkor a konvergencia egyenletes, azaz
SUD, e | Pul) — Gol)] — 0.
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