
Applications of Adversarial
Robustness Analysis in Machine

Learning

PhD Thesis

István Megyeri

Supervisor: Dr. Márk Jelasity

Department of Computer Algorithms and Artificial Intelligence

Doctoral School of Computer Science

Faculty of Science and Informatics

University of Szeged

Szeged
2023

Contents

1 Introduction 7
1.1 Contributions . 10

2 Background 13
2.1 Notations . 13
2.2 Adversarial attacks and defenses . 14

2.2.1 Adversarial attacks optimization objectives 14
2.2.2 Targeted vs untargeted attacks 16
2.2.3 The adversary’s knowledge of the targeted model 16
2.2.4 A brief review of the employed white-box attacks 17
2.2.5 Measures on neural network robustness 19
2.2.6 Adversarial training . 20

3 Adversarial Robustness of Linear Models 21
3.1 Introduction . 21
3.2 Linear Models in High Dimensional Spaces 22
3.3 Linear Models and Regularization . 23
3.4 Experimental Results . 24

3.4.1 Binary Classification Problems 24
3.4.2 Methodology . 24
3.4.3 Results . 25

3.5 Conclusions . 26

4 Adversarial attacks on model sets 29
4.1 Model set attacks on MNIST and CIFAR-10 30

4.1.1 Introduction . 30
4.1.2 Algorithm . 30
4.1.3 Experiments . 31

4.2 Model set attacks on ImageNet . 35
4.2.1 Introduction . 35
4.2.2 Attacking Model Sets . 37
4.2.3 Adversarial Target Patterns . 42

i

4.2.4 Experiments . 43
4.3 Discussion and concluding remarks . 49

5 Combining Robust Classification and Robust out-of-Distribution Detec-
tion 55
5.1 Introduction . 56
5.2 Related work . 57
5.3 Combining our Two Objectives . 59

5.3.1 The Robust OOD Learning Problem 59
5.3.2 Score Functions . 60
5.3.3 Score Functions for a Dedicated OOD Class 61

5.4 OOD Detection, Adversarial Attack and Robust Training 62
5.4.1 Correct Evaluation Methodology 62
5.4.2 Training Objectives in Previous Work 63

5.5 Experimental setup . 64
5.5.1 Training . 64
5.5.2 Evaluation . 65
5.5.3 MNIST-Specific Settings . 66
5.5.4 CIFAR-10-Specific Settings . 67

5.6 Results on Robust Accuracy . 69
5.7 Results on OOD Robustness . 72
5.8 Background Class Representation vs. Parameter-Free Methods 73
5.9 Matching Score Functions . 74

5.9.1 Attacks on OOD Samples are most Effective when Attacking
and Detection Score Functions are the Same 74

5.9.2 OOD Detection and OOD Training Objective should Use the
same Score Function . 74

5.9.3 Ratio Models . 76
5.9.4 Models with Trainable Background Class 77

5.10 Generalization to Unseen OOD Datasets 77
5.10.1 Results with CIFAR-100 classes 78
5.10.2 Concluding Remarks on Generalization 83

5.11 Conclusions . 83

Bibliography 85

Summary 95

Összefoglalás 97

Publications 99

ii

iv

List of Figures

1.1 A sample adversarial image. Left: original image (prediction: ’Gila
monster’); Middle: adversarial perturbation; Right: adversarial image
(DenseNet201 prediction: ’custard apple’). The adversarial modifica-
tion is invisible to the human eye but it changes the neural network
prediction. 8

2.1 An illustration of a standard(left) and a robust(right, red curve) net-
work decision boundary taken from [46]. In the middle, adversarial
examples of a standard network are denoted by red stars. The robust
model shows the result of adversarial training where the perturbed
images were generated using the infinite norm(squares). 20

3.1 Normalized distance and accuracy as a function of regularization coef-
ficient and dimension for the MNIST-73 dataset (top) and the 2-GAUSS

dataset (bottom), and stopping threshold 10−4 (left) and 10−10 (right). 26
3.2 Convergence of normalized distance and accuracy in d = 28 × 28

dimensions for the MNIST-73 dataset (top) and the 2-GAUSS dataset
(bottom), with regularization coefficient α = 10−4 (left) and α = 10−1

(right). 27

4.1 Properties of the individual models (left), and multi-model attack statis-
tics, where the horizontal axis indicates the targeted models Ft (right). 34

4.2 Left: original image (prediction: ’Gila monster’); Middle: multi-model
perturbation; Right: adversarial image (predictions: MobileNetV2:
’bison’, MobileNet: ’balloon’, NASNetMobile: ’pole’, DenseNet121:
’acorn’, DenseNet169: ’washbasin, handbasin, washbowl, lavabo, wash-
hand basin’, DenseNet201: ’custard apple’). 35

4.3 Perturbation size and number of iterations for the individual models
as a function of maximum step size (η). The models are shown in the
order of increasing capacity. 46

4.4 Perturbation size and number of iterations for the mobile set as a func-
tion of the maximum step size (η) and QP solver heuristic. 47

1

2 List of Figures

4.5 Perturbation size and iterations for all the four attack patterns and the
three QP solver heuristics (η = 10). 48

4.6 The consistent attack pattern over the mobile set (abacus → dumb-
bell), dense set (abacus→ corn) and all the models (abacus→ dumb-
bell). 50

4.7 The random attack pattern over the mobile set (crib → [llama, thun-
der_snake, Norwich_terrier]), dense set (Australian_terrier→ [cornet,
lycaenid, malinois]), and all the models (abacus → [centipede, Pem-
broke, Band_Aid, bow-tie, EntleBucher, coyote, poncho]). 51

4.8 The reverse attack pattern over the mobile set (greenhouse→ projec-
tor), dense set (comic_book→ albatross) and all the models (comic_book
→ mongoose). 52

4.9 The diverse attack pattern over the mobile set (abacus→ [soft-coated-
wheaten_terrier, soft-coated_wheaten_terrier, apron]), dense set (comic_book
→ [sturgeon, black_stork, capuchin]), and all the models (Australian_terrier
→ [Saluki, borzoi, black_stork, Saluki, gorilla, kuvasz]). 53

5.1 Clean test accuracy and robust test accuracy (PGD20
10, ϵ = 8/255) on

the CIFAR-10 dataset. 69

5.2 OOD detection AUC over CIFAR-10 under three different kinds of at-
tack scenarios: no attack, only OOD samples are perturbed and both
in-distribution and OOD samples are perturbed. 70

5.3 OOD detection AUC over MNIST and CIFAR-10 under three different
kinds of attack scenarios: no attack, only OOD samples are perturbed,
and both in-distribution and OOD samples are perturbed. These at-
tacks are indicated on the vertical axis. Under each attack, the three
different OOD training objectives are indicated: None, ρuniout and ρlseout.
Under each training objective, 4 different score functions are indicated
that are used for attacking samples at detection time. The horizontal
axis indicates possible score functions used for detection. The CIFAR-
10 plot also includes the smallest and largest network architecture,
indicated on the horizontal axis. During training, DSN

out was used on
MNIST, and DT

out on CIFAR-10. 71

5.4 Robust test accuracy (PGD20
10, ϵ = 127.5/255 and ϵ = 8/255 for L2 and

L∞ norms, respectively) on the CIFAR-10 dataset. Removing the bot-
tleneck from the Wide-DenseNet-BC-16 increases performance. Ro-
bust accuracy is the best when ρuni is used as objective and DT is used
as OOD dataset, for both norms and all the investigated architectures. 71

List of Figures 3

5.5 OOD detection minimax AUC calculated over CIFAR-10 and CIFAR-
100, SVHN, DT , DSN and DU . We note that both in-distribution and
OOD samples are attacked with PGD20

10 using ϵ = 127.5/255 and ϵ =

8/255 for L2 and L∞ norms respectively. Minimax AUC calculation:
for all the possible score functions used for detection we computed
the minimum AUC value over all the possible score functions used for
the attack. We then took the maximum of these values, which gives
the minimax AUC. 73

5.6 OOD detection AUC for Ratio0.25 (left) and Ratio0.5 (right). The min-
imum AUC is marked with a border in each block per column and
the minimax AUC is indicated using a thick border. Three different
kinds of attack scenarios are shown: no attack, only OOD samples are
perturbed, and both in-distribution and OOD samples are perturbed.
These attacks are indicated on the vertical axis. Under each attack,
4 different score functions are indicated that are used for attacking
samples at detection time. The horizontal axis indicates possible score
functions used for detection. 75

5.7 OOD detection AUC for the Wide-Resnet architecture with the ℓ2 (left)
and ℓ∞ (right) threat models. The training used the sbgp score function
and DT

out as OOD dataset. The minimum AUC is marked with a border
in each block per column and the minimax AUC is indicated using a
thick border. Three different attack scenarios are shown: no attack,
only OOD samples are perturbed, and both in-distribution and OOD
samples are perturbed. These attacks are indicated on the vertical
axis. Under each attack, 7 different score functions are indicated that
are used for attacking samples at detection time. The horizontal axis
indicates possible score functions used for detection. 76

5.8 Minimum OOD detection AUC over MNIST and CIFAR-10 under com-
binations of OOD datasets used during training and detection. The
databases used for training are indicated on the vertical axis. The
training objectives were ρuniout in both cases. Under each training OOD
dataset, 4 different score functions are indicated that are used for de-
tection. The horizontal axis indicates OOD datasets used for evalua-
tion. The CIFAR-10 plot also includes the smallest and largest network
architecture, indicated on the vertical axis. 77

4 List of Figures

5.9 Minimum OOD detection AUC over CIFAR-100 for a combination of
norms, training datasets, architectures and training score functions
(vertical axis) and test OOD datasets (horizontal axis). Abbreviations:
AM: aquatic mammals, FC: food containers, F&V: fruit and vegeta-
bles, ED: household electrical devices, furniture: household furni-
ture, LC: large carnivores, MMOT: large man-made outdoor things,
NOS: large natural outdoor scenes, O&H: large omnivores and herbi-
vores, MSM: medium-sized mammals, NII: non-insect invertebrates,
SM: small mammals; T: Tiny, S: Synthetic Noise, U: uniform noise. . . 79

5.10 The probability that a given CIFAR-100 class sample is predicted as a
given CIFAR-10 class member. Both ℓ2 and ℓ∞ based adversarial train-
ing is shown using the WRN-28-10 architecture and the suni objective,
with DT as OOD training dataset. Best viewed in combination with
fig. 5.9. 80

List of Tables

1.1 The connection between the thesis chapters and publications. 10

4.1 Properties of data sets . 32
4.2 Regularization coefficients used to create model set 33
4.3 Networks used in the evaluation . 44
4.4 Model sets . 44
4.5 Untargeted individual model attack with η = 10 48
4.6 Untargeted model set attack with η = 10 49

5.1 DenseNet [31] architectures used for CIFAR-10 experiments. 67
5.2 Accuracy and ℓ2 robust accuracy values for CIFAR-10 Ratio [2] models. 67
5.3 Robust validation accuracy, clean test accuracy, and robust test accu-

racy for MNIST experiments . 69

5

6 List of Tables

Chapter 1

Introduction

Let us start with a short story that demonstrates well the topic of the dissertation and
also the current status of artificial intelligence research.

Clever Hans was a horse that gained fame in the early 20th century for apparently
being able to perform complex arithmetic and other intellectual tasks. The horse was
owned by a German mathematics teacher named Wilhelm von Osten, who claimed
to have taught him these skills.

Von Osten became a sensation in Germany, with many people flocking to see
the amazing horse. However, skeptics suspected that there was more to the horse’s
abilities than met the eye. A psychologist named Oskar Pfungst investigated the phe-
nomenon and concluded that Clever Hans was not actually performing arithmetic,
but was instead responding to subtle cues from his trainer and audience.

Pfungst discovered that von Osten was unwittingly providing the horse with cues,
such as body language or slight head movements that told it when the horse had
actually found the correct answer. Once this was realized and providing cues was
prevented, Clever Hans was no longer able to perform the same feats of arithmetic
when his trainer was not present or when he was blindfolded.

The case of Clever Hans became an important milestone in the history of psychol-
ogy, as it demonstrated the importance of experimental controls and the potential for
unconscious cueing to influence the behavior of both humans and animals.

Artificial intelligence has reached a similar milestone. A subfield called deep
learning gained significant popularity in the 2010s. While the concept of neural
networks and deep learning has existed for several decades, it was during this period
that several factors converged, leading to a surge in its popularity.

One of the main catalysts was the availability of large datasets and advancements
in computational power, which allowed researchers to train deeper neural networks
and process massive amounts of data more efficiently. And the development of spe-
cialized hardware, such as graphics processing units (GPUs), accelerated the training
of deep learning models.

7

8 Introduction

Figure 1.1: A sample adversarial image. Left: original image (prediction: ’Gila mon-
ster’); Middle: adversarial perturbation; Right: adversarial image (DenseNet201 pre-
diction: ’custard apple’). The adversarial modification is invisible to the human eye but
it changes the neural network prediction.

Another crucial factor was the breakthrough in performance achieved by deep
learning models in various challenging tasks. Deep learning architectures, such
as convolutional neural networks (CNNs) and recurrent neural networks (RNNs),
demonstrated superior performance in image recognition, speech recognition, nat-
ural language processing, and other domains, often surpassing traditional machine
learning approaches.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 played
a pivotal role in showcasing the power of deep learning. The winning team, led
by Geoffrey Hinton, utilized deep convolutional neural networks and significantly
outperformed other methods. This event served as a turning point and drew attention
from classical machine learning methods to the capabilities of deep learning.

The success and breakthroughs in deep learning, combined with the increas-
ing availability of open-source tools and libraries, made it more accessible to re-
searchers and practitioners. This accessibility, along with the growing interest from
both academia and industry, contributed to the rapid proliferation and popularity of
deep learning.

Since then, deep learning has continued to make strides in various fields, and its
popularity has only increased. It has become the dominant approach in many areas of
artificial intelligence and machine learning, shaping advancements in sectors ranging
from healthcare and finance to automotive and entertainment.

A few years after the ImageNet challenge, Szegedy et al. discovered intriguing
properties of these highly successful deep neural networks [71]. They found that
deep neural networks are discontinuous to a certain extent. They showed that it is
possible to cause the network to misclassify an image by applying a certain impercep-
tible perturbation, which is obtained by maximizing the network’s prediction error.

9

They coined the phrase adversarial examples for these perturbed and misclassified
images, which is now widely used in the literature. The presence of adversarial ex-
amples was also confirmed by Goodfellow et al. [23]. A sample of an adversarial
image shown in fig. 1.1.

Since these seminal papers on this topic appeared, several studies have demon-
strated that current deep learning models are highly sensitive to adversarial input
where very small adversarially constructed input perturbations can induce incorrect
behavior [1, 5, 7, 8, 13, 15, 16, 17, 23, 25, 33, 34, 35, 41, 44, 45, 47, 55, 56,
62, 70, 77, 79, 83, 84, 85, 88]. Further, it is possible to generate perturbations
that remain adversarial in the physical world as well i.e. after printing it on a T-
shirt [12, 17, 18, 20, 21, 42, 80, 81].

Here, we will focus on the problem of image classification. In it, the sensitivity
of the current models to adversarial input indicates that these models are not in
complete accord to human perception. Similar to Clever Hans, after this sensitivity
was noted the networks were no longer able to solve their given task.

In Chapter 3, we study the adversarial robustness of linear machine learning mod-
els where we propose novel insights, that provide an alternative explanation for the
adversarial sensitivity of linear models. We will focus on the effect of regularization
and dimensionality.

The original formulation of the problem in [71] assumes that we are given a
model and a correctly classified example. The attacker wishes to find a minimal per-
turbation of the example such that the model predicts any wrong label (untargeted
attack) or a given desired label (targeted attack). Since then, a large number of
methods have been proposed to create better adversarial examples [9, 57].

In Chapter 4, we will propose and study a more general version of this problem,
where we are given more than one model and an example. For each model, we will
specify whether the given model should correctly classify the example or predict any
wrong label or predict a fixed specific label. This formulation permits a wide variety
of adversarial constraints on a given model set.

There were also proposed many defense mechanisms [23, 46, 74], many of which
were proved to be ineffective in [9] while others remain robust [46, 87]. Among the
many defenses against input perturbation, adversarial training was found to be the
most effective. In a nutshell, adversarial training means that the model is trained over
the adversarially perturbed version of the training data to improve the robustness of
the model. Wang et al. provided a recent overview [76].

In Chapter 5, we will study robust out-of-distribution (OOD) detection. Adver-
sarially trained models are relatively robust to adversarial input but they might as-
sign high confidence to OOD samples and this represents a serious vulnerability in a
real-world application [65]. Besides this, OOD input is also open to adversarial per-
turbation, making OOD detection even harder. We will present a systematic design

10 Introduction

chapter 3 chapter 4 chapter 5
ESANN 2019 [50] •
ESANN 2020 [52] •
IJCNN 2020 [51] •
IJCNN 2021 [53] •
PRAI 2023(submitted for publication) [54] •

Table 1.1: The connection between the thesis chapters and publications.

space that covers most of the popular design choices for the various components of
robust classification and OOD detection. This allows us to draw several interesting
conclusions based on our empirical results.

1.1 Contributions

The ideas, figures, tables and results included in this thesis were published in scien-
tific papers (listed at the end of the thesis). In table 1.1, we indicate the connection
between the chapters and publications. Overall, the author is responsible for the
following contributions:

Chapter 2.: In this chapter, we demonstrated that even in the case of simple bi-
nary classification problems with linear models, the adversarial problem is real and it
strongly depends on regularization and the less obvious properties of high-dimensional
spaces. We performed an experimental evaluation and we showed that the optimal
regularization strength is very different for adversarial robustness and prediction ac-
curacy, and that the convergence of adversarial robustness is much slower than that
of the accuracy metric. Also, in higher dimensions an overly weak regularization
setting might result in a significantly harder optimization problem in some cases.
The related experimental design, implementation, and analysis of the results were
prepared by the author.

Chapter 3.: Here, we introduced an iterative algorithm to find small adversarial per-
turbations that fool multiple models simultaneously in a given pattern. This problem
formulation has many interesting applications, such as the generation of transferable
adversarial examples as well as generating a single perturbation such that all the
models in a given model set predict specified, different classes. The latter scenario
allows us to explore the decision boundaries of the model set from a new perspective.
The experimental design, evaluation, as well as the formalism of the problem and the

1.1 Contributions 11

algorithm, were carried out by the author.

Chapter 4.: The contribution of this chapter is that we defined a design space, where
one can systemically analyze the problem of robust OOD detection and robust clas-
sification. The main components were identied as the training objectives, detection
methods and attack methods for the combination of the robust OOD detection prob-
lem and the robust classification problem with the help of a set of score functions.
Also, we introduced a strong threat model in which both in-distribution and OOD
samples are adversarially perturbed to mislead OOD detection.

Moreover, we performed a thorough empirical evaluation of this framework. We
found that adding an adversarial OOD objective to the training method does not
harm robust in-distribution accuracy, in fact, a significant improvement can be seen
in some cases. This indicates that it is always safe to add such an objective.

We also found that it is impossible to pick a score function for robust OOD detec-
tion independently of how the model in question was trained. Instead, we get the
best results when training and detection is based on the same score function. In other
words, while non-robust OOD detection is more robust to the training procedure, in
robust OOD detection it is more important to align the detection method with the
training method, that is, to use the same score function in both. Also, a similar state-
ment can be formulated in terms of the OOD detection method and the attack on
this detection method. The most successful attack is performed using the same score
function as the one used by the detection method.

The unified treatment of the combined problems, implementation and the design
of the related experiments were all done by the author.

12 Introduction

Chapter 2

Background

This chapter presents the general notations used throughout this thesis. And, it gives
a concise summary of the relevant adversarial machine learning concepts such as the
kind of adversarial attacks, the network robustness measures, and defenses. This
information is required for the reader to understand our contributions and motiva-
tions.

2.1 Notations

Let us first introduce some basic notations. We are interested in supervised learning
more precisely in image classification task where a set of training instances is given
of the form (x, y), x ∈ Rd, y ∈ C. The image and the corresponding label from the set
of all the labels C are denoted by x and y respectively. Here, d denotes the dimension
of the image and the one-hot encoded vector of the label y is ey. For n examples
(xi, yi), xi ∈ Rd, yi ∈ C, i = 1, . . . , n and the theoretical distribution D from which
they are drawn from.

To solve the classification problem, we will apply deep neural networks. These
are denoted by the function f : Rd → R|C|, which returns the output of a deep multi-
layer neural network classifier with parameters θ without a softmax normalization
layer that is the so-called logits without any activation. When multiple networks are
assumed, f has subscript i.e. f1,f2 · · · . The j-th output value of the network on
a certain input is refered as f(x)j. In the case of a linear network namely logistic
regression, we shall use explicit forms as in eq. (2.1). Here, the set of parameters is
θ = {w, b} and σ denotes the activation function.

σ(wTx+ b) = 1/(1 + exp(−wTx+ b)) (2.1)

We could measure the magnitude of a vector v ∈ Rd with respect to the Euclidean
norm or infinity norm. These will be defined as in eq. (2.2) and eq. (2.3) respec-

13

14 Background

tively.

||v||2 =

√√√√ d∑
i=1

v2i (2.2)

||v||∞ = max(|v1|, . . . , |vd|) (2.3)

The neural network is typically trained via some gradient-based optimizer such
as SGD or Adam [4] to minimize the loss function L. For binary classification, we
use the negative log likelihood function eq. (2.4), where α is the regularization
coefficient.

min
w,b
L(w, b) = − 1

n

n∑
i=1

yi ·log(σ(wTxi+b))+(1−yi)·log(1−σ(wTxi+b))+α∥w∥22 (2.4)

For multi-class tasks we will use categorical crossentropy eq. (2.6), where the
softmax activation eq. (2.5) is applied to the network output which transforms the
logit vector to a probability distribution. Although any differentiable loss function
could be used. Note that, θ holds all the parameters of the deep neural network f .

softmax(l)j =
exp(lj)∑|C|
i=1 exp(li)

(2.5)

min
θ
L(f) = − 1

n

n∑
i=1

|C|∑
j=1

(eyi)j · log softmax(f(xi))j (2.6)

2.2 Adversarial attacks and defenses

2.2.1 Adversarial attacks optimization objectives

The adversarial robustness of deep neural networks characterizes the ability of a
neural network to maintain its accuracy and performance even when subjected to
deliberate adversarial attacks. Adversarial attacks carefully craft perturbations which
are applied to input data with the intention of fooling the neural network into making
incorrect predictions.

All the attack algorithms find the perturbation by solving an optimization prob-
lem. However, we can divide the algorithms into two subcategories based on the way
they tackle the amount of perturbation in their optimization problem.

Certain algorithms minimize the size of the perturbation with respect to some
norm measures and treat the misclassification as a constraint. Formally speaking, the

2.2 Adversarial attacks and defenses 15

optimization problem will have the form as in eq. (2.7).

min
δ
||δ||p

subject to argmax
j

(f(x+ δ)j) ̸= y
(2.7)

In eq. (2.7), the size of the perturbation is minimized while ensuring that the
given perturbation leads to misclassification. After solving this optimization problem,
we will have such a perturbation that changes the predicted class obtained by the
network f . However, the size of the perturbation can be arbitrary, meaning it might
be noticeable to humans.

Another popular form of defining the attack objectives is to directly maximize the
network’s loss function and apply some constraints on the size of the perturbation.
The constraints will require an input argument that defines the maximum size of
the allowed perturbation. This is commonly defined as epsilon(ϵ), indicating that it
should jave a relatively small value. These attacks should have an objective like that
in eq. (2.8)

max
δ
L(f(x+ δ), y)

subject to ||δ||p ≤ ϵ
(2.8)

The solution of eq. (2.8) will have a perturbation size of at most the predefined
ϵ. Therefore, the distortions should meet the requirement of being unnoticeable by
humans. However, the misclassification might not be achieved.

Common choices of p include the Euclidean norm(p = 2) defined in eq. (2.2) and
infinite norm(p =∞) defined in eq. (2.3).

Surprisingly, these problems are readily solved for most of the currently used net-
works, which shows the vulnerability of deep neural networks to such adversarial
attacks. It has been noticed that even imperceptible perturbations added to the input
can lead to significant changes in the network’s output. Adversarial attacks exploit
this vulnerability and they can have serious consequences in real-world applications,
such as misclassifying images, causing security breaches, and manipulating the be-
havior of autonomous systems.

As a defender, the goal is to find such networks that provide an output consistent
within the range of perturbations that are not imperceptible by humans.

16 Background

2.2.2 Targeted vs untargeted attacks

The attack objectives in section 2.2.1 are untargeted, so the attackers do not specifiy
what the wrong label should be, all the labels are accepted which differ from the
ground truth. However, in the case of multi-class classification, the mistakes might
not all have an equal impact. For example in a self-driving car, confusing a red light
and green light is a much more serious issue than recognizing a certain speed limit
as a lower or higher one.

For the above mentioned reasons, we might wish to specify the adversarial label
that we wish to achieve. The targeted version of eq. (2.7) and eq. (2.8) are in
eq. (2.9) and eq. (2.10) respectively.

min
δ
||δ||p

subject to argmax
j

(f(x+ δ)j) = t, t ∈ C \ y (2.9)

min
δ
L(f(x+ δ), t), t ∈ C \ y

subject to ||δ||p ≤ ϵ
(2.10)

2.2.3 The adversary’s knowledge of the targeted model

A defender might decide to retain certain information about its model in order to
increase the model robustness. The main categories based on the attacker’s level of
knowledge include:

• White-box attacks: In white-box attacks [7, 8, 15, 23, 45, 47, 56, 70], the
attacker has complete knowledge of the target model, including its architec-
ture, parameters, and training data. This allows them to craft highly effective
adversarial examples.

• Black-box attacks: In black-box attacks [1, 5, 13, 25, 34, 77, 83, 88], the at-
tacker has limited knowledge about the target model. They may have access
only to the inputs and outputs of the model without any knowledge of its in-
ternal features. Black-box attacks often involve querying the target model to
generate adversarial examples.

• Transfer attacks: Transfer attacks exploit the transferability of adversarial ex-
amples [16, 33, 35, 41, 44, 62, 84, 85]. They involve training a substitute
model with a similar architecture to the target model and generating adversar-
ial examples on the substitute model, which are then transferred to the target

2.2 Adversarial attacks and defenses 17

model.The substitute model’s training might also require the collection of train-
ing data and associated labels.

• Physical attacks: Physical attacks seek to fool machine learning systems de-
ployed in the real world [12, 17, 18, 20, 21, 42, 80, 81] For example, adversar-
ial stickers or patterns added to objects can cause misclassification in real-time
object recognition systems. The main challenge of a physical attack is to find
such a modification that fools the network consistently under various condi-
tions such as varying the viewing angle, color or shape variation.

.

2.2.4 A brief review of the employed white-box attacks

Here, we will review and formalize some white-box attacks that are applied in the
later chapters.

The fast gradient (sign) method(FGM) was introduced in [23] as a quick and
simple method to test the linearity of deep neural networks. FGM is a single-step
attack, where the gradient of the loss function with respect to the input data is used to
generate the perturbation. The gradient is simply scaled according to the predefined
epsilon to leverage the maximum allowed perturbation budget. FGM is part of the
loss-based attack algorithms so it will have a similar form to that in eq. (2.8). The L2

and L∞ version of the attack are given in eq. (2.11) and eq. (2.12), respectively.

δ = ϵ
∇x L(f(x), y)
||∇x L(f(x), y)||2

(2.11)

δ = ϵ sign(∇x L(f(x), y)) (2.12)

The magnitude of the perturbation introduced to the input data is controlled by ϵ.
The choice of epsilon affects the perceptibility of the adversarial examples. A smaller
epsilon value corresponds to imperceptible perturbations, while a larger epsilon value
allows for more noticeable modifications to the input.

Projected Gradient Descent(PGD) [46] is an iterative attack that extends FGSM
by performing multiple iterations of gradient calculation and perturbation updates.
For each iteration, the perturbation is clipped or projected onto a permissible range
defined by the epsilon value, ensuring that the perturbed input remains within the
allowed epsilon budget. The L2 and L∞ versions of the attack are given in algo-
rithm 1 and algorithm 2, respectively, where α is the step size and m is the number
of gradient steps.

PGD can be reinforced by repeating it with a different random initialization when
the initial run does not succeed in finding an adversarial perturbation. Similar to

18 Background

Algorithm 1 L2 Projected Gradient Descent Attack

1: Input: example x, label y, model f , perturbation size ϵ, step size α
2: δ0 ∼ Normal(0, 1)
3: δ0 ← ϵ δ0

||δ0||2
4: i← 1
5: while i ≤ imax do
6: δi ← δi−1 + α

∇δi−1
L(f(x+δi−1),y)

||∇δi−1
L(f(x+δi−1),y)||2 ▷ calculate adversarial direction

7: δi ← ϵ δi
||δi||2 ▷ enforce ∥δi∥2 ≤ ϵ

8: i← i+ 1
9: end while

10: return δimax ▷ the perturation

Algorithm 2 L∞ Projected Gradient Descent Attack

1: Input: example x, label y, model f , perturbation size ϵ, step size α
2: δ0 ∼ Uniform(−ϵ, ϵ)
3: i← 1
4: while i ≤ imax do
5: δi ← δi−1 + αsign(∇δi−1

L(f(x+ δi−1), y)) ▷ calculate adversarial direction
6: δi ← clip(δi,−ϵ,−ϵ) ▷ enforce ∥δi∥∞ ≤ ϵ
7: i← i+ 1
8: end while
9: return δimax ▷ the perturation

FGM, PGD also belongs the set of loss-based attacks which have a form similar to
that in eq. (2.8).

Next, we will introduce a distance-based attack called DeepFool [57] which fol-
lows the form of eq. (2.7). This attack attempts to generate adversarial examples
by iteratively perturbing the input data. It seeks to find the closest adversarial class
and perturb the input along that direction so as to cause a misclassification. The
distance to the decision boundary of the target model is measured by a linear ap-
proximation using the gradient. The basic steps of the DeepFool algorithm are stated
in algorithm 3, which can be repeated until the maximum iteration is reached or the
misclassification is achieved.

Instead of relying on a fixed perturbation budget like that in FGM and PGD, Deep-
Fool focuses on minimizing the distance for each step while ensuring the step is taken
in an adversarial direction. As a result, the found perturbation might be percepti-
ble as there is no explicit restriction on the size of perturbation. One advantage of
distance-based attacks is that they do not require a predefined epsilon value. Another
example of a distance-based attack is the C&W attack [9], but it is not applied in this
thesis we suggest that the reader peruse the article.

2.2 Adversarial attacks and defenses 19

Algorithm 3 DeepFool Attack

1: Input: example x, label y, model f
2: x0 ← x
3: i← 1
4: while argmaxj f(xi−1)j = y do
5: ki ← argmin

j∈C\y

|f(xi−1)j−f(xi−1)y |
||∇xi−1f(xi−1)j−∇xi−1f(xi−1)y ||2 ▷ find closest adversarial class

6: xi ← xi−1 +
|f(xi−1)ki−f(xi−1)y |(∇xi−1f(xi−1)ki−∇xi−1f(xi−1)y)

||∇xi−1f(xi−1)ki−∇xi−1f(xi−1)y ||22
▷ apply the update

7: i← i+ 1
8: end while
9: return xi−1 − x ▷ the perturation

2.2.5 Measures on neural network robustness

Measuring the adversarial robustness of deep neural networks is challenging due to
their nonlinear nature. Therefore it has not yet been standardized and it is an active
area of research various metrics have been proposed. Some commonly used metrics
include:

• The attack success rate: It measures the percentage of perturbed examples that
successfully fool the model, that is they are adversarial. A higher success rate
means a less robust network.

• Robust accuracy: This is the accuracy of the model on the perturbed examples.
A higher robust accuracy means a greater resilience to adversarial attacks. It is
equivalent to one minus the success rate.

• The magnitude of the adversarial perturbation: The size of perturbation is usu-
ally measured using some norms which reflect the magnitude of perturbations
introduced by adversarial attacks. Some commonly used options are the Eu-
clidean norm and infinity norm and a few less-used options are the zero norm
which represents the number of modified pixels, and the absolute norm which
measures the sum of the absolute differences. The magnitude is usually aggre-
gated over a set of examples by taking the mean or the median perturbation
magnitudes.

• Transferability: This measures the ability of perturbed examples generated on
a model to fool another model. A high transferability implies a vulnerability
that can be exploited by attackers.

Measuring the network adversarial robustness helps us to evaluate the effective-
ness of defense mechanisms and develop robust models that are resilient to adver-
sarial attacks.

20 Background

Figure 2.1: An illustration of a standard(left) and a robust(right, red curve) network
decision boundary taken from [46]. In the middle, adversarial examples of a standard
network are denoted by red stars. The robust model shows the result of adversarial
training where the perturbed images were generated using the infinite norm(squares).

2.2.6 Adversarial training

Many different defense strategies have been proposed since the seminal paper of
Szegedy et al [71], but only a few techniques have survived [73]. Even fewer de-
fenses are scalable to large problems. Currently, the most effective and somewhat
scalable methods for improving neural networks resilient to adversarial examples
are based on adversarial training.

Adversarial training employs a perturbed input during the training to improve
robustness to certain kind of attacks. It was first proposed in [46], where they
introduced a modified network loss function like that given in eq. (2.13).

min
θ
L(f) = − 1

n

n∑
i=1

max
δ

|C|∑
j=1

(eyi)j · log softmax(f(xi + δ))j (2.13)

The inner maximization is estimated by some attack algorithm such as PGD. It
can be also viewed as a min-max game between the network and the attacker, where
the network seeks to minimize its error on the perturbed input and the attack al-
gorithm attempts to generate a harmful perturbation during the training phase. An
illustration of adversarial training is given in fig. 2.1.

It is worth pointing out that adversarial training is not a foolproof solution and it
does not completely eliminate the existence of adversarial examples. It can signifi-
cantly improve the model’s resilience to common adversarial attacks, but determined
attackers can still find ways of creating more challenging adversarial examples.

Chapter 3

Adversarial Robustness of Linear
Models

Many machine learning models are sensitive to adversarial input, meaning that very
small but carefully designed noise added to correctly classified examples may lead to
misclassification. The reasons for this are still poorly understood, even in the simple
case of linear models. Here, we study linear models and offer a number of novel in-
sights. We focus on the effect of regularization and dimensionality. We show that in
very high dimensions adversarial robustness is inherently very low due to some math-
ematical properties of high-dimensional spaces that have received little attention so
far. We also demonstrate that—although regularization may help—adversarial ro-
bustness is harder to achieve than high accuracy during the learning process. This is
typically overlooked when researchers set optimization meta-parameters.

The chapter: It starts with an introduction and review of the related works, then
the role of dimension and regularization is discussed from a robustness point of view.
Next, the experimental results are presented and the final thoughts are summarized
in Section 3.5.

3.1 Introduction

The high sensitivity of most machine learning models to adversarial examples was
pointed out not long ago [23, 71]. A number of methods have been proposed to
create better adversarial examples [9, 57] as well as to provide defense mechanisms
against these [46, 74].

Here, we focus on the adversarial robustness of linear machine learning models.
The theoretical basis of the problem is still lacking. Some results are known e.g.
Fawzi et al. [19] offer bounds on robustness for the linear case based on the distance
of classes, but their study is orthogonal to ours. Goodfellow at al. [23] suggested
that higher-dimensional linear models are more sensitive because the same amount

21

22 Adversarial Robustness of Linear Models

of noise in each dimension can result in a larger Euclidean distance from the point
simply due to the larger number of dimensions, provided the sign of the noise is the
same as the sign of the value in the given dimension. However, we argue that the
Euclidean distance is of limited interest simply because classes and data points in
general will also have larger Euclidean distances from each other in higher dimen-
sions.

In this chapter, we propose novel insights, which provide an alternative explana-
tion to the adversarial sensitivity of linear models. We focus on the effect of regu-
larization and dimensionality. We will show that in very high dimensions adversarial
robustness is inherently very low due to the fact that a random hyperplane is very
close to any data point. This property which has received little attention so far, is
highly counter-intuitive.

We also point out that regularization has a profound effect on adversarial robust-
ness. From the point of view of prediction accuracy and adversarial robustness the
amount of regularization required will be different. We should add that the current
practice of setting meta-parameters based only on prediction accuracy might result
in very high sensitivity to adversarial examples. This is because the convergence of
robustness is much slower than that of accuracy and because robustness requires
stronger regularization.

We shall also provide a thorough experimental evaluation of our claims where we
study the effect of dimensionality, regularization, and the interaction of these two
factors. In this evaluation, we will use artificial datasets as well as a subset of the
MNIST dataset.

3.2 Linear Models in High Dimensional Spaces

We are given a set of training instances of the form (x, y), x ∈ Rd, y ∈ {0, 1}, and
we are looking for a hyperplane Pl(w) = {z|⟨w, z⟩ = 0} defined by w ∈ Rd such that
Pl(w) separates the data points with different labels. This plane is typically found
via optimizing a loss function based on the examples and w. Model optimization
typically starts with a random initial model, or, equivalently, an initial model that is
independent of the optimal model. The following result implies that such a random
model will be extremely close to any point in expectation, hence, it should also be
very close to each instance. This highly unintuitive property implies that a random
plane has a very high sensitivity to adversarial examples.

Proposition 1. Let w ∈ Rd define a random plane Pl(w) = {z|⟨w, z⟩ = 0}. Let wi

(i = 1, . . . , d) be i.i.d. random variables with P (wi = −1) = P (wi = 1) = 0.5. Let
dist(1, P l(w)) denote the distance between Pl(w) and the point 1 = (1, . . . , 1). Then we
have limd→∞ E(dist(1, P l(w))) = O(1).

3.3 Linear Models and Regularization 23

Proof. We have dist(1, P l(w)) = |⟨1, w⟩|/ ∥w∥2 = 1√
d
|∑d

i=1wi|. Also, we have
∑d

i=1wi →√
dN (0, σ2) due to the central limit theorem, where σ2 = 0.25 is the variance of wi.

The mean of |N (0, σ2)| is finite and it does not depend on d, so it is O(1); thus
E(1√

d
|∑d

i=1 wi|)→ 1√
d

√
dO(1) = O(1), which completes the proof.

Note that there exists a plane for which the distance from 1 is
√
d = O(

√
d),

namely when w = 1. However, according to the result above, a random plane is of
distance O(1) in expectation. The result is not specific to 1 because it is invariant
to rotation. The striking consequence is that a random plane will result in a high
sensitivity to adversarial examples, no matter how the classes are positioned. This
means that the optimal plane in terms of distance is very special, regardless of the
difficulty of the classification problem, so we suspect that this very special plane is
hard to find during optimization. Our experimental results are consistent with this
view.

3.3 Linear Models and Regularization

Here, we argue that regularization is closely related to the geometric properties out-
lined in Section 3.2. Assuming n examples (xi, yi), xi ∈ Rd, yi ∈ {0, 1}, i = 1, . . . , n,
let us now consider logistic regression where the goal is to approximate the data us-
ing the logistic function y ≈ σ(wTx + b) = 1/(1 + e−wT x+b). This will lead to a linear
separator defined by w and b and a logistic probability approximation as a function
of the distance from the separating hyperplane.

The loss function typically used to find the best model (that is, w and b) is the
negative log likelihood function L(w, b) = −∑n

i=1 yi · log(σ(xi;w, b))+(1−yi) · log(1−
σ(xi;w, b)). To handle noisy data, it is customary to add a regularization term to the
loss function. Here we focus on the so-called L2 regularization: L(w, b) + α∥w∥22,
where α is the regularization coefficient.

We would like to study the effect of regularization from the point of view of adver-
sarial robustness. L2 regularization results in preventing the length of w from grow-
ing indefinitely. This in turn results in preventing the derivative of the model from
growing indefinitely. To see this, consider the derivative σ(a ·x)′ = aσ(a ·x)σ(1−a ·x).
Clearly, increasing the length of w will make the logistic curve steeper. Without reg-
ularization, the model in practice becomes a step function so the loss function will
simply attempt to minimize the number of misclassified examples. With regulariza-
tion, all the examples will affect the orientation of the separating hyperplane.

This means that if regularization is not strong enough then noisy examples will
have too much influence, forcing the hyperplane out of optimal position, which in
turn will result in very high adversarial sensitivity according to the proposition pro-
vided in Section 3.2. Accordingly, we expect that for optimal robustness one will

24 Adversarial Robustness of Linear Models

have to use quite strong regularization.

3.4 Experimental Results

In order to evaluate the effect of dimensionality and regularization, we carried out a
systematic experimental study. Now let us describe the experimental setup and the
methodology in detail.

3.4.1 Binary Classification Problems

We will use two binary classification problems that are described below. The first
dataset is a subset of the MNIST dataset [39] that includes two classes: 3 and 7 (also
used by the authors of [23]). We will refer to this dataset as MNIST-73. It contains
about 6000 samples per class. The raw pixel values were normalized to the range
[0, 1].

We will also use an artificial dataset called 2-GAUSS. The two classes are defined
by the distributions N (1,Σ) and N (0,Σ), where 0 is the origin and Σ is the diagonal
matrix 4I, hence the variance is σ2 = 4, which is the same for each dimension. Note
that the Euclidean distance of the class centers is

√
d, where d is the dimension. Here,

we sampled 6000 instances per class.
For each dataset, 100/6 ≈ 16.7% of the data was separated to form a test set. In

the preprocessing step, the training data values were translated so as to have a zero
mean. The mean was estimated over the training set, and the test set was translated
as well using this value.

To examine the effect of the dimensionality on adversarial robustness, we will
use a range of input dimensions. The dataset 2-GAUSS can naturally be generated in
any dimensions. The MNIST-73 examples were scaled using image processing algo-
rithms. The original dimension of the images was 28×28. We performed preliminary
tests with different interpolation methods (cubic, linear, nearest-neighbor) that gave
similar results. Here, we applied the nearest-neighbor method.

3.4.2 Methodology

Our two main measures of interest are accuracy (i.e. the proportion of correctly clas-
sified examples) and the distance of the examples from the hyperplane normalized
by the dimension

√
d. The latter measure characterizes the sensitivity to adversar-

ial examples; namely the smaller the distance, the higher the sensitivity. Here, we
normalize the distance by

√
d for two reasons. First, it is more meaningful to mea-

sure sensitivity relative to the distance of the two classes, and the distance of the two
classes grows with

√
d. Second, in the case of image data, this also means that we

3.4 Experimental Results 25

characterize the sensitivity of each pixel, which is a more natural measure. We will
call this measure the normalized distance.

We used ADAM [4] as our optimizer with a minibatch size of 32. Since we were
interested in the actual optimal model (to avoid artifacts due to early stopping) we
ran the algorithm with an extremely small stopping threshold of 10−10. We will also
include results with a 10−4 stopping threshold that is often used as a default. We
can still study the effect of early stopping, since we record the convergence history
as well. In our plots, we will indicate the regularization coefficient used in the case
of d = 28 × 28, however, for different dimensionalities, the regularization value was
scaled proportional to d to make the strength of regularization in different dimen-
sions comparable.

3.4.3 Results

Figure 3.1 shows some of the results of our experiments. The MNIST-73 results
indicate that normalized distance and accuracy behave very differently in terms of
regularization. Most importantly, one is normally interested in prediction perfor-
mance, and the meta-parameters optimal for that purpose perform rather badly for
adversarial robustness. To optimize the distance, it is good to have a regularization
coefficient that is as large as possible, whereas accuracy displays a degrading trend
with increased regularization. These observations hold true regardless of the prob-
lem dimension. In other words, in each dimension we see that they have almost the
same values.

The 2-GAUSS problem behaves slightly differently because no noisy examples are
added and because in high dimensions there is a wide linear separation margin be-
tween the classes and this grows with d. The optimal values for distance and accu-
racy are found in almost every case. However, we noticed that for low regularization
values the optimizer struggles to find the optimum in high dimensions. For no regu-
larization, even the smaller stopping threshold is insufficient to find the theoretically
optimal model. This is because then the loss function is extremely flat. This effect is
closely related to the dimensionality d, and the problem is more severe with larger
values of d.

Let us also examine the dynamics of convergence during optimization, which is
shown in Figure 3.2. Clearly, the convergence of distance is significantly slower than
that of accuracy in each case. For the 2-GAUSS problem, this effect is more marked.
With α = 10−4, due to the wide separation margin and relatively large weights, the
loss function practically vanishes and gives only a very weak signal to the optimizer,
while the accuracy attains its optimum quite quickly.

With the MNIST-73 dataset we see there is a local optimum for distance when no
regularization is applied. This is due to the length of the parameter vector w gradu-

26 Adversarial Robustness of Linear Models

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0 1e−4 5e−4 1e−3 5e−3 1e−2 5e−2 1e−1 5e−1 1e0
 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

n
o
rm

al
iz

ed
 d

is
ta

n
ce

ac
cu

ra
cy

Regularization

d=10×10, dist
d=18×18, dist
d=28×28, dist
d=36×36, dist
d=10×10, acc
d=18×18, acc
d=28×28, acc
d=36×36, acc

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0 1e−4 5e−4 1e−3 5e−3 1e−2 5e−2 1e−1 5e−1 1e0
 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

n
o

rm
al

iz
ed

 d
is

ta
n

ce

ac
cu

ra
cy

Regularization

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0 1e−4 5e−4 1e−3 5e−3 1e−2 5e−2 1e−1 5e−1 1e0
 0.991

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

n
o
rm

al
iz

ed
 d

is
ta

n
ce

ac
cu

ra
cy

Regularization

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0 1e−4 5e−4 1e−3 5e−3 1e−2 5e−2 1e−1 5e−1 1e0
 0.991

 0.992

 0.993

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

n
o

rm
al

iz
ed

 d
is

ta
n

ce

ac
cu

ra
cy

Regularization

Figure 3.1: Normalized distance and accuracy as a function of regularization coefficient
and dimension for the MNIST-73 dataset (top) and the 2-GAUSS dataset (bottom), and
stopping threshold 10−4 (left) and 10−10 (right).

ally increasing. With the 2-GAUSS dataset we have no noisy examples that could make
the model go in the wrong direction as w grows due to the lack of regularization, so
this effect is not so marked.

3.5 Conclusions

In this chapter, we demonstrated that even in the case of simple binary classification
problems with linear models, the adversarial problem is real and it strongly depends
on regularization and the less obvious properties of high-dimensional spaces. We pre-
sented an experimental evaluation where we showed that the optimal regularization
strength is very different for adversarial robustness and prediction accuracy, and that
the convergence of adversarial robustness is much slower than that of the accuracy
metric. Also, in higher dimensions an overly weak regularization setting might result
in a significantly harder optimization problem in some cases.

3.5 Conclusions 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

ac
cu

ra
cy

/l
o
ss

α = 10
−4

 1 10 100 1000

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

n
o
rm

a
li

z
e
d
 d

is
ta

n
c
e

α = 10
−1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

ac
cu

ra
cy

/l
os

s

Updates

test accuracy
train accuracy

test distance
train distance

test loss
train loss

 1 10 100 1000
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

no
rm

al
iz

ed
 d

is
ta

nc
e

Updates

Figure 3.2: Convergence of normalized distance and accuracy in d = 28×28 dimensions
for the MNIST-73 dataset (top) and the 2-GAUSS dataset (bottom), with regularization
coefficient α = 10−4 (left) and α = 10−1 (right).

28 Adversarial Robustness of Linear Models

Chapter 4

Adversarial attacks on model sets

Machine learning models are vulnerable to very small adversarial input perturba-
tions. In this chapter, we study the question of whether the list of predictions made
by a list of models can also be changed arbitrarily by a single small perturbation.
Clearly, this is a harder problem since one has to simultaneously mislead several
models using the same perturbation, where the target classes assigned to the models
might differ. This attack has several applications over models designed by different
manufacturers for a similar purpose. One might want a single perturbation that acts
differently on each model; like only misleading a subset, or making each model pre-
dict a different label. Also, one might want a perturbation that misleads each model
the same way and thereby create a transferable perturbation. Current approaches
are not applicable for this general problem directly. Here, we propose an algorithm
that is able to find a perturbation that satisfies several kinds of attack patterns. For
example, all the models could have the same target class, or different random target
classes, or target classes designed to be maximally contradicting.

The chapter: It has two parts. Each part starts with an introduction and review of
the related works, then the attack algorithm and problem definition are described.
Next, the experimental results are presented and the final thoughts are summarized
in Section 4.3.

In section 4.1, we introduce an iterative heuristic algorithm inspired by the Deep-
Fool attack. We evaluate our method over the MNIST and CIFAR-10 data sets. We
show that it can find feasible multi-model adversarial perturbations, and that the
magnitude of these perturbations is similar to the single model case.

In section 4.2, we generalize our algorithm and evaluated using three model sets
consisting of publicly available pre-trained ImageNet models of varying capacity and
architecture. We demonstrate that, in all the scenarios, our method is able to find
visually insignificant perturbations that achieve our target adversarial patterns.

29

30 Adversarial attacks on model sets

4.1 Model set attacks on MNIST and CIFAR-10

4.1.1 Introduction

Here, we propose and study a more general version of this problem, where we are
given more than one model and an example. For each model, we specify whether
the given model should correctly classify the example or predict any wrong label or
predict a fixed specific label. This way, all the models specify a constraint on the
desired perturbation. We assume a white box scenario where all the models are fully
known.

This formulation allows for a wide variety of adversarial constraints on a given
model set. Here, we focus on two patterns of constraints with interesting applica-
tions. In the first case, we wish to find an adversarial example such that all the
models predict the same wrong label. This is related to the problem of finding ad-
versarial examples for ensembles of models in the hope that these examples would
also fool additional unseen black box models [44, 60, 75]. Known methods rely on
the traditional setup where the ensemble is treated as a single model that has to be
fooled. Unlike our approach, it always allows for multiple models in the ensemble
to predict the correct label or even other inconsistent labels, as long as the ensemble
decision is fooled.

The second pattern we study involves fooling a single model from the set, while
making sure the rest of the models keep predicting the correct label. To the best of our
knowledge, this is a novel scenario. In a sense, this is the inverse of the transferability
problem, where we are looking for adversarial perturbations that do not transfer to
other models, in a well-controlled manner. An interesting application is when an
attacker wants to fool the product of a specific manufacturer, while making sure all
the other products work correctly.

Our multi-constraint adversarial problem cannot be tackled with existing attack
approaches directly. We propose an iterative optimization algorithm inspired by the
DeepFool method [57]. We evaluate our method over the MNIST and CIFAR-10 data
sets. We show our approach can find feasible multi-model adversarial perturbations,
and that the magnitude of these perturbations is similar to the single model case.

4.1.2 Algorithm

Let us first introduce our notations. We assume a set of multi-class models f1, . . . , fm
where fi : Rd → RC . The models have C outputs that correspond to the possible
class labels. The classification of a given input x by a model fi is given by ki(x) =

argmaxj fi,j(x), where fi,j is the jth output dimension of fi. We are looking for
adversarial examples such that a given subset of the models is fooled while the rest
of the models are not.

4.1 Model set attacks on MNIST and CIFAR-10 31

Algorithm 4 Multi-model adversarial perturbation

1: Input: example x, targeted models Ft, protected models Fp

2: Assumption: ∀fj ∈ Ft ∪ Fp : kj(x) = ĉ, where ĉ is the correct class of x
3: x0 ← x
4: i← 0
5: while i < imax and [∃fj ∈ Ft : kj(xi) = ĉ or ∃fj ∈ Fp : kj(xi) ̸= ĉ] do
6: rt ← getStep(xi, {every class label except ĉ},Ft)
7: rp ← getStep(xi, {ĉ},Fp)
8: r ← rargmaxi∈{t,p} ∥ri∥2 ▷ the larger of rt and rp
9: xi+1 ← xi + r

10: i← i+ 1
11: end while
12: return xi ▷ the perturbed input

The basic idea behind the algorithm comes from the DeepFool method [57],
where we also implement a heuristic iterative optimization algorithm based on the
first order approximations of the decision boundaries. However, unlike DeepFool, we
deal with several models targeted simultaneously by several different attack patterns.
Our algorithm is shown in Algorithm 6. We assume that we are given an example
x that is classified correctly by all the models. The models in Ft have to be fooled
while those in Fp must not be. The loop runs until this goal is met. Within the loop,
we ask for two perturbation steps: one that fools all the models in Ft and one that
makes sure that all of the models in Fp predict the correct label. We apply the one
with the larger norm. The idea is that this way we first solve the harder problem and
then gradually satisfy the rest of the constraints.

A single iteration step is computed by Algorithm 5. The goal is to find a perturba-
tion for x such that all the models in F predict a common label c∗ ∈ C, where F and
C are parameters of Algorithm 5. In this version we present the untargeted version
of the algorithm where this common label is not given as input, it can be arbitrary.
The idea behind the algorithm is that for each label and each model we compute
one potential targeted step for the iteration like the DeepFool iteration step [57]. We
then pick the class label c∗ that minimizes the maximal perturbation size over all the
models. The maximal perturbation vector corresponding to this class label (where
the maximum is taken over the models) is returned.

Note that there are several cases that we do not elaborate on here, for example,
when some of the sets are empty. These can be handled in a natural way.

4.1.3 Experiments

We used the MNIST and CIFAR-10 data sets. The MNIST [39] data set consists of
grayscale 28×28 images of handwritten digits, from 0 to 9. The CIFAR-10 [37] data

32 Adversarial attacks on model sets

Algorithm 5 getStep

1: Input: example x, targeted classes C, targeted models F .
2: for c ∈ C do
3: for fi ∈ F such that ki(x) ̸= c do ▷ models predicting other than c
4: ŵi,c ← ∇fi,c(x)−∇fi,ki(x)(x) ▷ ≈ direction to class c
5: wi,c ← ŵi,c/∥ŵi,c∥2 ▷ ≈ normalized direction to class c
6: δi,c ← |fi,c(x)− fi,ki(x)(x)|/∥ŵi,c∥2 ▷ ≈ distance to class c
7: end for
8: mc = argmaxi δi,c ▷ index of model with maximal distance to c
9: end for

10: c∗ ← argminc δmc,c ▷ class where maximal distance from ki(x) is minimal
11: return δmc∗ ,c∗ · wmc∗ ,c∗ ▷ perturbation towards making all F predict c∗ ∈ C

Table 4.1: Properties of data sets

Training Set Test Set #features (d) Consistently Classified
MNIST 60 000 10 000 784 7860/9180/9443

CIFAR-10 50 000 10 000 3072 4335

set contains 32×32 RGB color images representing 10 classes of objects. The main
properties are shown in Table 4.1. The column “Consistently Classified” is explained
later on. As preprocessing, the features were normalized in both data sets to the
range [0, 1].

We created four model sets to test our multi-model attack method. Three sets
were created on MNIST. For each set, we fixed a network structure and used eight
different regularization parameters to train eight different weight sets for the net-
work. A fourth set was created on CIFAR-10, where we used one network structure
and eight different regularization parameters.

The three networks for the MNIST data set had one hidden layer of sigmoid neu-
rons of size 10, 100 and 1000, respectively, and a softmax output layer. On CIFAR-10
we trained a convolutional network with a shallow LeNet-like architecture. It uses
two blocks of two convolutional layers followed by max-pooling, followed by two
dense layers. Every layer has ReLU activation except the last one, which has a soft-
max activation. The dimensions of the first four convolutional layers of 3x3 filters,
and the last two dense layers are (32x32x32), (30x30x32), (15x15x64), (13,13,64),
512, and 10. This results in 1,250,858 parameters.

We used ADAM [4] as our optimizer with a minibatch size of 128 and a stopping
threshold of 10−10. The eight regularization parameters were different for each net-
work, as seen in Table 4.2. The reason is that we calibrated the range so that the last
setting is overly regularized.

The properties of the individual models in the model sets are shown in Figure 4.1

4.1 Model set attacks on MNIST and CIFAR-10 33

Table 4.2: Regularization coefficients used to create model set

0 1 2 3 4 5 6 7
MNIST 10 0 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2
MNIST 100 0 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3
MNIST 1000 0 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4 5e-4
CIFAR-10 0 1e-5 1e-4 1e-3 2e-3 3e-3 4e-3 5e-3

(left). We define robustness as the L2 norm of the untargeted adversarial pertur-
bation found by DeepFool, normalized by

√
d, where d is the input dimension. We

normalize with
√
d because, in the case of image data, this way we characterize the

sensitivity of each pixel irrespective of the resolution of the image, which is a more
natural measure. Recall, that each input feature has a value in the range [0, 1]. We
can see that robustness is increasing with regularization in all the cases, as expected.

The last column of Table 4.1 shows the number of test examples that were cor-
rectly classified by all the models in the respective model set, in the case of MNIST
in the order of the 10, 100 and 1000 neuron hidden layers. Our multi-model at-
tack method was evaluated on these consistent examples only. For each model set,
we computed the adversarial perturbation for all these test examples in 9 differ-
ent scenarios. This includes targeting each of the 8 different models in the model
set individually while protecting the rest of the models (that is, Ft = {fi} and
Fp = {f0, . . . , f7} \ Ft for i = 0, . . . , 7) as well as targeting all the models simul-
taneously (that is, Ft = {f0, . . . , f7} and Fp = {}). The number of iterations was
limited by imax = 1000. We used the models without the softmax activation, as was
done in [57].

All the attacks were successful for all the examples, except in the case of MNIST
with 10 hidden neurons, where the number of examples on which the attack was
not successful ranged from 16 to 278 out of the 7860 consistent examples, which
amounts to an 0.2% to 3.5% error rate. The results are shown in Figure 4.1 (right).
The required number of iterations of our attack method is rather small. Surprisingly,
the CIFAR-10 model set requires much fewer iterations than the MNIST sets despite
it containing larger models.

Quite surprisingly, the multi-model perturbations are very similar in size to those
of the single model (DeepFool) perturbations shown in the left column. This result
was not anticipated, because the models differ only in the applied regularization
coefficient, so they are fairly correlated, which would suggest that finding an adver-
sarial example that fools one model but not the others is hard. However, in all the
model sets, even for the most robust model (with large regularization) we can easily
find an adversarial example with very small perturbation that does not fool the rest

34 Adversarial attacks on model sets

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2

 3

 4

 5

 6

 7

M
N

IS
T

 1
0

,
ac

cu
ra

cy

ro
b

u
st

n
es

s
(x

1
0
0

)

Single Model Statistics

training accuracy
test accuracy
test robustness

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 1

 2

 3

 4

 5

 6

 7

 8

 9

it
er

at
io

n
s

ro
b
u

st
n

es
s

(x
1
0

0
)

Multi−Model Attack Statistics

iterations
test robustness

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 2

 3

 4

 5

M
N

IS
T

 1
0

0
,

ac
cu

ra
cy

ro
b

u
st

n
es

s
(x

1
0

0
)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2

 3

 4

 5

 6

it
er

at
io

n
s

ro
b

u
st

n
es

s
(x

1
0

0
)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 3

 4

 5

M
N

IS
T

 1
0

0
0
,
ac

cu
ra

cy

ro
b

u
st

n
es

s
(x

1
0

0
)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 3

 4

 5

 6

it
er

at
io

n
s

ro
b

u
st

n
es

s
(x

1
0

0
)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 1 2 3 4 5 6 7
 4

 5

 6

C
IF

A
R

−
1
0
,
ac

cu
ra

cy

ro
b
u
st

n
es

s
(x

1
0
0
0
)

regularization

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

all 0 1 2 3 4 5 6 7
 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

it
er

at
io

n
s

ro
b
u
st

n
es

s
(x

1
0
0
0
)

target model

Figure 4.1: Properties of the individual models (left), and multi-model attack statistics,
where the horizontal axis indicates the targeted models Ft (right).

4.2 Model set attacks on ImageNet 35

Figure 4.2: Left: original image (prediction: ’Gila monster’); Middle: multi-model
perturbation; Right: adversarial image (predictions: MobileNetV2: ’bison’, MobileNet:
’balloon’, NASNetMobile: ’pole’, DenseNet121: ’acorn’, DenseNet169: ’washbasin, hand-
basin, washbowl, lavabo, wash-hand basin’, DenseNet201: ’custard apple’).

of the models. In the CIFAR-10 dataset, the perturbation found for the “all targeted”
case has a somewhat larger magnitude than that for the other attacks. However, it is
still an extremely small (normalized) perturbation - amounting to less than 1.5% per
input feature.

4.2 Model set attacks on ImageNet

4.2.1 Introduction

In this section, we study a more general version of this problem, where we are given
a set of models trained on the same multi-class classification problem, as well as an
input example. We assume that our set contains independently trained standalone
models. That is, our focus is not on model ensembles. We could envisage the models
to be products of different manufacturers. Nevertheless, our results are applicable
to any set of models. We assume that the models are completely known; in other
words, we are concerned with the white box scenario.

Our formulation allows for a wide variety of attacks on a given model set. The
attacker may want every model to make the same mistake or (if, for example, hired
by one of the manufacturers) to make different mistakes. The scenario where all of
the models are made to predict the same wrong label is also related to the problem of
finding adversarial examples for ensembles of models in the hope that these examples
will also fool other unseen black box models [44, 60, 75]. In our version, however,
every single model will make the given wrong prediction; not only the ensemble as a
whole, where it might be enough to mislead, for example, the majority of the models
(depending on the ensemble decision method).

36 Adversarial attacks on model sets

An attacker may also be a nihilist who wants to achieve chaotic behavior. One
way of doing this would be to make every model predict different random labels for
the same input. One might think that a single perturbation that satisfies such harsh
conditions should be extremely hard to find or might not even exist. Figure 4.2 shows
such a perturbation, found by our algorithm. In a recent work, Song et al. investi-
gated random target labels [68] in a multi-label classification setting. However, our
setting is more challenging because we have a set of models trained on the same
multi-class classification task. For this reason, the intersection of arbitrary classes is
expected to be smaller than in a multi-label problem.

We propose a heuristic iterative algorithm to solve our multi-model adversarial
problem. The algorithm is inspired by the DeepFool method [58] in that we also
guide our search with the help of linear approximations of decision boundaries. We
evaluated our method over the ImageNet dataset [63] using three sets of pre-trained
models. We selected model sets so that we could evaluate different aspects of model
diversity such as architecture and capacity. Model capacity is interesting to consider,
since it has been shown that capacity alone could increase the robustness of individ-
ual models [46]. The diversity of the model architectures within the set is another
important factor. For example, in [60], Pang et al. used the ensemble of diverse
models to train a robust ensemble classifier. We expect that the diversity and the
capacity of the models play a key role in robustness, and a set that is diverse along
both dimensions is harder to attack.

We demonstrate that our algorithm can find feasible adversarial perturbations
that fool all the models according to the given pattern in all the scenarios we ex-
amined. The adversarial target patterns include predicting the same wrong label,
predicting different randomly selected labels, and predicting a set of labels that are
designed to be maximally inconsistent. We found that model sets that include models
with different architectures have a somewhat higher robustness than sets with simi-
lar architectures but with different capacity. However, in each case, the perturbations
we found are imperceptible to the human eye.

In section 4.1, we made preliminary steps towards tackling the multi-model prob-
lem. Our original contributions here are the following:

1. Formalizing the targeted multi-model adversarial perturbation problem.

2. Proposing and evaluating several novel algorithm variants for solving the multi-
model adversarial perturbation problem. These include the application of the
pseudo-inverse of the constraint matrix, the application of the aggregated gra-
dient instead of the maximal distance direction, the introduction of a step size
limit to reduce the perturbation size, and the introduction of a candidate class
list to manage problems with many classes.

3. Evaluating the algorithm over ImageNet using pre-trained publicly available

4.2 Model set attacks on ImageNet 37

deep networks.

4. Evaluating several adversarial patterns including the random label assignment
and two variants of ‘hard’ label assignments where the idea is to assign different
target labels to different models so that the required perturbation is maximally
inconsistent.

The outline of section 4.2 is as follows. In section 4.2.2 we describe our algo-
rithms in detail. In section 4.2.3 we present several designs for creating adversarial
target pattern. In section 4.2.4 we present our experimental evaluation.

4.2.2 Attacking Model Sets

Let us first introduce our notations. As mentioned in the Introduction, the problem
is defined over a set of models and an example to perturb. The example is given in
the form (x, y), where x ∈ Rd is the feature vector, and y ∈ C is its true label. The set
C contains the class labels and Cadv = C \ {y} is the set of possible adversarial target
labels for x.

The set of multi-class models is given as F = {f1, . . . , fm}, where fi : Rd → R|C|.
That is, the models have one output for every possible class label. We assume that
all the models are trained over the same multi-class problem. The classification of a
given input x by a model fi is given by ki(x) = argmaxj fi,j(x), where fi,j(x) is the
jth element of the vector fi(x).

Although not strictly required by the framework, we note that in our implemen-
tation we used the unnormalized output (that is, the output without the softmax
normalization) as our models fi. When it is possible, this makes sense, because the
normalization simply makes the gradients flatter without changing the ranking of the
labels.

The predicted labels of the models are given by K(x) = (k1(x), . . . , km(x)) ∈ Cm.
In this section, we define the set Cmadv as the set of all the possible adversarial patterns
for the model set F . Note that this way, we require here that all the models are
assigned an adversarial label. This is not a severe restriction, one could also allow
or even require some models to retain their true labels. An attacker will probably
have further specific restrictions on the desired target patterns, so the set of desired
adversarial patterns are given as a subset of all the patterns as P ⊆ Cmadv. Formally, we
are looking for a perturbation r∗ that has minimal L2 norm and makes the classifiers
predict one of the desired patterns:

r∗ = argmin
r
∥r∥2, subject to K(x+ r) ∈ P . (4.1)

The constraint of this optimization problem in (4.1) can be unrolled as a system of

38 Adversarial attacks on model sets

equations for a given pattern p ∈ P as

k1(x+ r) = p1
...

km(x+ r) = pm.

(4.2)

We can transform this system of equations into a system of inequalities using the
fact that the equations require that the adversarial label correspond to the maximal
element in the model’s output. Accordingly, for the ith equation ki(x + r) = pi, let
k̂i(x) = argmaxj ̸=pi

fi,j(x) be the label that is the most likely label among the labels
other than pi. This gives us the equivalent system of inequalities

f1,k̂1(x+r)(x+ r) ≤ f1,p1(x+ r)
...

fm,k̂m(x+r)(x+ r) ≤ fm,pm(x+ r),

(4.3)

where the equality holds when a point x + r is exactly on the decision boundary
between classes pi and k̂i(x + r). This can be considered as a generalization of the
formalization of the DeepFool [58] algorithm where, instead of a system of inequal-
ities, we have just a single inequality. In other words, in the model set there is only
one model.

Due to the nonlinearities of the functions fi,j(x+r), this problem cannot be solved
directly. As in the DeepFool algorithm, we substitute these functions with their first
order approximations around x, that is, fi,j(x + r) ≈ fi,j(x) + ∇fi,j(x)T · r, which
results in the following system of inequalities:

∇(f1,k̂1(x)(x)− f1,p1(x))
T · r ≤ f1,p1(x)− f1,k̂1(x)(x)

...
∇(fm,k̂m(x)(x)− fm,pm(x))

T · r ≤ fm,pm(x)− fm,k̂m(x)(x),

(4.4)

which is a set of linear constraints. The objective of the optimization problem is
quadratic, which means that we have a quadratic programming (QP) problem.

A naive view would be to solve this problem with an efficient QP solver, and—
since the linear constraints only approximate the actual constraints—iterate this pro-
cedure until the original set of constraints is satisfied. Using a QP solver, however,
introduces certain problems. First, although efficient solvers are known, we might
need to run them many times, which might become inefficient. Second, if there is no
feasible solution for the linear approximation, the original problem might still have
one, so we should create new approximations for each iteration. For these reasons,
instead we used three heuristics to approximate the solution of the QP problem. We
discuss these later on in more detail.

4.2 Model set attacks on ImageNet 39

Algorithm 6 Multi-model adversarial perturbation

1: Input: example x, models F , adversarial patterns P
2: x0 ← x
3: i← 0
4: while i < imax and K(xi) /∈ P do
5: for pk ∈ P do
6: rk ← approximateQP(xi, pk)
7: end for
8: r ← rargmink ∥rk∥2 ▷ rk with the smallest norm
9: r ← min(η/∥r∥2, 1) · r ▷ enforce ∥r∥2 ≤ η

10: xi+1 ← xi + r
11: i← i+ 1
12: end while
13: return xi ▷ the perturbed input

We are now ready to present the pseudocode of the algorithm, represented as
Algorithm 6. We assume that we are given an example x. The models in F have to
predict one of the patterns in P. Recall that if there are more than one pattern in P,
satisfying any of these patterns is considered a success. The outer loop runs until this
goal is met (or we reach the maximal number of iterations).

The inner loop iterates through the patterns, and calculates the heuristic solution
of the QP that is defined by the particular pattern. After calculating these approxi-
mate solutions rk, the one with the smallest norm is selected. If the magnitude of this
perturbation is larger than the allowed maximum step size η, then the perturbation
is normalized. This step offers some protection to the algorithm in cases where the
linear approximation has a large error. This perturbation size restriction technique is
partly related to trust region methods. Here, we use a fixed η parameter that controls
the size of the trusted region in a static manner. Changing η dynamically could offer
further improvements [82].

Heuristics to Solve the Inner QP Problem

Let us now describe three implementations of the method APPROXIMATEQP that is
used in the inner loop of Algorithm 6. Let us first normalize the inequalities in (4.4)
by dividing both sides by ∥∇(fi,k̂i(x)(x)− fi,pi(x))∥2. Let us introduce a new notation
to represent the normalized inequalities. On the left hand side, let

wi =
∇(fi,k̂i(x)(x)− fi,pi(x))

∥∇(fi,k̂i(x)(x)− fi,pi(x))∥2
(4.5)

40 Adversarial attacks on model sets

and on the right hand side, let

f ′
i,pi

=
fi,pi(x)− fi,k̂i(x)(x)

∥∇(fi,k̂i(x)(x)− fi,pi(x))∥2
. (4.6)

With these notations, equation i becomes wT
i · r ≤ f ′

i,pi
.

Note that the value f ′
i,pi

represents the gap between the class that is currently
predicted by model fi and the desired adversarial target class pi. Thus, we know
that at the beginning of the attack f ′

i,pi
≤ 0 and the equality holds exactly when the

predicted class is already the target class. From now on, all the heuristics below will
ignore the models where the target class is already predicted, and the algorithms will
work only with those equations that still have a negative right hand side.

MAX Here, the idea is that we first identify the model that has the largest gap
between its target class and the current class. We then approximate the minimal
perturbation that closes this gap, that is, that ’fixes’ this model. The idea is that
this way we first solve the hardest model and then gradually adjust for the rest of
the constraints. The approximation takes the linear approximation of the model, for
which the minimal perturbation can be computed in closed form. The formulation of
this heuristic is

j = argmax1≤z≤m−f ′
z,pz

rmax = −f ′
j,pj

wj.
(4.7)

Note that this computation is very similar to that of DeepFool, since here we have
a single model to consider (the one with the maximal gap), and on that model we
essentially run a DeepFool step.

AVG Here, we compute a direction that takes into account all the models, instead
of just choosing the one with the maximal gap. Recall, that the vector wi represents
the direction of the minimal perturbation required to ’fix’ model i, and ∥wi∥2 = 1

due to the normalization. We first compute the average of these directions, weighted
by the gap values. We then return a perturbation vector that points in this average
direction. The length of the returned vector is computed to be the maximum of the
gap values. The reason is that this way we are guaranteed not to overshoot, because
this step size is the minimal step size that potentially changes all the predictions. If
we use a smaller step size, there will be at least one model that will not predict the
target label. The formulation is

wavg =
∑m

z=1−f ′
z,pzwz

j = argmax1≤z≤m−f ′
z,pz

ravg = −f ′
j,pj

wavg

∥wavg∥2 .

(4.8)

4.2 Model set attacks on ImageNet 41

PINV When we have only one model, the minimal perturbation is computed as one
step of the Newton method, as done by DeepFool and by the MAX heuristic above as
well. We could also try to generalize this idea to multiple models by taking the set
of inequalities in (4.4) and demanding that equality holds in each inequality. Since
the number of variables will be usually larger than the number of equalities, the
system will be underdetermined. We can then still solve this set of equalities using
the pseudo-inverse technique as applied in [68].

This heuristic will return a perturbation that points towards the intersection of all
the decision boundaries, which may or may not be the smallest perturbation among
those that satisfy (4.4). In pathological cases, this intersection might be extremely
far from the optimal perturbation direction. In fact, there might not even be such
an intersection. Still, we include this algorithm for comparison with [68]. Also
this algorithm could potentially be fast (ignoring pathological corner cases), since in
every iteration we try to solve every constraint.

Consider the matrix W = (w1, · · · , wm)
T and vector F = (−f ′

1,p1
, · · · ,−f ′

m,pm)
T .

The system of equations is then W · r = F , so the perturbation returned by the PINV
algorithm is given by

rpinv = W+ · F, (4.9)

where W+ = (W TW)−1W T (assuming W has full rank) is the pseudo-inverse of
W . Note that it is known that rpinv will be the minimum norm solution if there is
a solution, and it will represent an approximation with minimal error if there is no
solution [22].

Time complexity

The number of iterations of the algorithm depends on many factors and hyperpa-
rameters. We evaluate this experimentally later on. Here, we focus on the time
complexity of a single iteration. To perform one iteration, the linear approximation
in (4.4) needs to be calculated for every p ∈ P. For each pattern p, we need to
compute the prediction and the gradient of each model, which means that we need
to propagate one forward pass and one backward pass through every network, if the
models are feedforward neural networks. Thus, the cost of one iteration is 2 ·m · |P|
network propagations. If P has only one element then the time complexity depends
only on m (the number of models). Note that these calculations can be parallelized
across the models as well as the patterns, and only the forward pass needs to be
performed before the backward pass.

42 Adversarial attacks on model sets

4.2.3 Adversarial Target Patterns

Our algorithm was formulated as a targeted attack, where the acceptable adversarial
patterns are given in the pattern set P. This set might contain a single pattern, which
is similar to the classical targeted attack. Although it would be possible to formulate
a modified algorithm for the untargeted case, one can achieve a similar effect by
including several carefully selected patterns in the target set.

In the following, we describe and motivate our four different designs for the pat-
tern set that we will use in our experimental evaluation. We assume that we are
given a fixed input x and the patterns are designed as a function of this input. Our
patterns include three targeted patterns and an untargeted one.

Some of the designs are based on a ranking of class labels C, based on the output
of all the models for a given input x. For a given input, each individual model defines
a ranking of the class labels based on the ordering of the values of the corresponding
output elements. The highest ranking class is predicted by the model. The idea is
that we wish to identify those class labels that are ’similar’ to the true class label and
hence that are ranked high by most of the models. Further, we are also interested in
those labels that are treated as very irrelevant by most of the models.

The ranking of the labels can be defined as a suitable aggregation of the rankings
of the individual models. Formally, the ranking of a class label c ∈ C for a given
example x and a classifier fi is denoted by qi,x(c) ∈ {0, . . . , |C| − 1}. In other words,
qi,x(c) is the rank of label c in the ranking defined by fi(x). For the predicted class
label we have qi,x(ki(x)) = 0. Note that any ranking aggregation could be used to
determine the common ranking. Here we used the Rank Product [6] aggregation
method, where the ranking of a label c is defined by the ordering of the geometric
mean rankings

RPx(c) =
m∏
j=1

qj,x(c)
1/m, ∀c ∈ C (4.10)

Random

Prandom contains only one element, that is, it defines a targeted attack. This single
pattern contains randomly generated adversarial class labels for all of the models.
This attack should be hard because the perturbed input should end up in the inter-
section of the different unrelated classes of the different models.

Reverse

Our goal here is to define a target pattern that is even harder than the random pat-
tern. Preverse will also contain only a single pattern. To create this pattern, we used
the ranking of the class labels described above. From this ranking, we selected the

4.2 Model set attacks on ImageNet 43

label that ranks the lowest, namely the label that is the most irrelevant among the
model set. We then demand that the pattern contain this label for all the models.

Diverse

As another attempt to define a pattern that is maximally hard, here Pdiverse has one
pattern that contains labels that rank low and, in addition, that are also inconsistent
with each other. We again use the low end of the ranking of the labels but this time
we consider the last 10 labels. Next, we compute the adversarial direction for this ten
labels for every model, using a single linear approximation (DeepFool) step. We now
have 10 directions for all the models. Out of this set, for every model we select the
direction such that the set of selected directions over all the models form a maximally
diverse set. We measured the diversity of a given candidate pattern with the help of
the average cosine similarity of every pair of directions. The pattern with the lowest
value is selected. In our evaluation, we performed an exhaustive search to find the
most diverse pattern.

Consistent

Here, we define an untargeted attack. This case is exceptional for two reasons. First,
we include more than one pattern in Pconsistent. Second, and most importantly, in this
case the pattern set will be dynamic; that is, we will update the set of target patterns
in every iteration using the method described here. For clarity of presentation, this
step is not included in the pseudocode of Algorithm 6.

The patterns can just target the same adversarial label for every model. In other
words, all the models are required to predict the same, adversarial label. We used
the top 10 adversarial labels in each cycle. The ranking of the labels is updated in
each iteration using the Rank Product method and the (already perturbed) input xi.

4.2.4 Experiments

We did experiments on models trained over the ImageNet [63] dataset that contains
RGB images with varying sizes. The images are labeled with one of 1000 class labels.
In the preprocessing stage, a 224× 224 image was cropped from the middle of every
original image.

Table 4.3 lists the pre-trained models we used along with references. The ta-
ble contains basic information about the architecture of the networks. To evaluate
our multi-model algorithm, we created model sets using these individual models.
The mobile set includes the three mobile networks. The members of the mobile set
have a similar capacity, that is, they have a similar number of parameters. However,

44 Adversarial attacks on model sets

Table 4.3: Networks used in the evaluation

Model Parameters Depth Correctly Classified
MobileNetV2 [64] 3.5M 88 7153
MobileNet [30] 4.2M 88 7257
NASNetMobile [89] 5.3M - 7832
DenseNet121 [32] 8.1M 121 7729
DenseNet169 [32] 14.3M 169 8095
DenseNet201 [32] 20.2M 201 8331

Table 4.4: Model sets

Model set Correctly Classified
Mobile 53
Dense 74
All 52

they have rather different network architectures. MobileNet uses depthwise separa-
ble convolutions and MobileNetV2 uses residual connections as well. NasNetMobile
contains non-human-designed blocks. The dense set contains the three variants of
DenseNet. These models have a similar architecture but have a different capacity.
Lastly, we also experimented with the union of the mobile and dense sets that con-
tain all the six models. We will refer to this set as ‘All’.

During our experiments, we evaluated the individual models as well as the three
model sets. In our evaluation, we worked with a set of 10,000 randomly selected
images taken from the training set for the individual models. The subset was the
same for every model. Out of this set of examples, we removed those examples that
were misclassified by the respective model. Table 4.3 shows the number of examples
that were classified correctly. These examples form the evaluation set for the given
model. Due to their larger cost, the model sets were evaluated on a smaller set,
that contains 100 randomly selected examples taken from the training set. Here, we
also used the same examples for every model set. Table 4.4 shows the number of
examples that were classified correctly by all the members of the given set. These
examples form the evaluation set for the given model set.

Our main figure of merit is perturbation size. We define perturbation size as the
L2 norm of the adversarial perturbation found, normalized by

√
d, where d = 224 ×

224 × 3 is the input dimension. We normalize by
√
d because in the case of image

4.2 Model set attacks on ImageNet 45

data, this way we characterize the average perturbation of each pixel irrespective of
the resolution of the image, which is a more natural measure. Recall, that each input
feature has a value in the range [0, 255].

The properties of the individual models can be seen in Figure 4.3. Note that for
individual models, our algorithm is equivalent to DeepFool when η = ∞. All the
attacks on all the correctly classified examples were successful, irrespective of the
value of η. Clearly, the perturbation size increases with model capacity. When setting
a smaller η, we get a smaller perturbation, but at the cost of more iterations. Inter-
estingly, the effect of η is much stronger on NASNetMobile than on any other model.
In this case, we can get a marked improvement over the DeepFool algorithm. This is
interesting, because DeepFool is often used to compute an upper bound on the sen-
sitivity of models, and in this case this upper bound could be improved significantly.
In general, setting a smaller η improves the perturbation size in each case to some
extent.

Next, we evaluated our multi-model algorithms on the mobile set to test the effect
of η, and the different QP solver heuristics. The results are shown in Figure 4.4. We
specified imax = 10, 000. Like before, all the attacks were successful, although the
required number of iterations is significantly larger than in the case of the individ-
ual models. A lower η results in a smaller perturbation and an increased iteration
number.

The PINV and the AVG heuristics need fewer iterations, as we expected. This
is because these heuristics take into account all the models in the model set in each
iteration. We can see that PINV results in the largest perturbation, again, as expected,
although the difference from the alternative heuristics is surprisingly small.

For the other two model sets (dense and all), we performed our experiments
with a fixed η = 10 maximum step size because, based on Figure 4.4, it offers a
good compromise between perturbation size and cost. The perturbation size and
the number of iterations over the three model sets and the four attack patterns can
be seen in Figure 4.5. The three heuristics are shown separately. All the attempted
attacks were successful. The perturbation size of every model set for the four patterns
is larger than that for the individual models. Also, significantly more iterations are
required.

The consistent pattern leads to the smallest perturbation size and the random
and reverse patterns give a larger perturbation, as expected. Surprisingly, the diverse
pattern is not consistently harder than the reverse pattern. In terms of the number
of iterations, there are significant differences among the attack patterns. The attacks
that are designed to be hard always require orders of magnitude more iterations than
the easiest (untargeted) attack.

It is interesting that the mobile set requires a larger perturbation than the dense
set. We expected the opposite, because the attack seemed to be harder if the models

46 Adversarial attacks on model sets

0.08

0.10

0.12

0.14

0.16

0.18

0.20

p
er

tu
rb

at
io

n
 s

iz
e

η = 5
η = 10
η = 20
η = ∞

2.0

4.0

6.0

8.0

10.0

12.0

14.0

MobileNetV2

MobileNet

NASNetMobile

DenseNet121

DenseNet169

DenseNet201

it
er

at
io

n
s

Figure 4.3: Perturbation size and number of iterations for the individual models as a
function of maximum step size (η). The models are shown in the order of increasing
capacity.

4.2 Model set attacks on ImageNet 47

 0

 1

 2

 3

 4

 5

 6

p
er

tu
rb

at
io

n
 s

iz
e consistent

random
reverse
diverse

 0

 5

 10

 15

 20

M
A

X

A
V

G

P
IN

V

M
A

X

A
V

G

P
IN

V

M
A

X

A
V

G

P
IN

V

M
A

X

A
V

G

P
IN

V

it
er

at
io

n
s

(/
1
0
0
)

η = ∞η = 20η = 10η = 5

Figure 4.4: Perturbation size and number of iterations for the mobile set as a function
of the maximum step size (η) and QP solver heuristic.

48 Adversarial attacks on model sets

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

p
e
rt

u
rb

a
ti

o
n

 s
iz

e

All
Mobile
Dense

 0

 100

 200

 300

 400

 500

 600

 700

consistent random reverse diverse

it
e
ra

ti
o

n
s

MAX

consistent random reverse diverse

AVG

consistent random reverse diverse

PINV

Figure 4.5: Perturbation size and iterations for all the four attack patterns and the
three QP solver heuristics (η = 10).

Table 4.5: Untargeted individual model attack with η = 10

Model Mean iterations
MobileNetV2 6.5
MobileNet 6.7
NASNetMobile 9
DenseNet121 8.3
DenseNet169 8.6
DenseNet201 9.2

in the set are similar, due to the requirement of unrelated classes having a non-empty
intersection. Combining all the six models further increases the perturbation size, but
it is still less than 1% on average for an input feature. As we will see later, such a
perturbation is still imperceptible.

To better illustrate the difference between the number of iterations required to
compute the attack for individual models and model sets, we present the average it-
eration number for these two cases in tables 4.5 and 4.6. We illustrate the untargeted
case, that is, the attack pattern was Pconsistent for the model set, and a simple untar-
geted DeepFool attack was used for the individual attacks. From these tables, we
see that the required number of iterations appears to be proportional to the number
of models in the set.

To illustrate the perturbations that our algorithm creates, we include an exam-
ple for all the combinations of our three model sets and four attack patterns in fig-
ures 4.6, 4.7, 4.8 and 4.9. The examples we include are the ones that have the largest

4.3 Discussion and concluding remarks 49

Table 4.6: Untargeted model set attack with η = 10

Model set MAX mean iter AVG mean iter PINV mean iter
Mobile set 25.9 16.9 14.9
Dense set 25.9 16.6 14.6
All 57.9 26.9 24.6

perturbation among the example inputs. The applied heuristic was MAX, and we set
η = 10. In all the images, the top row contains the original images, the middle row
contains the perturbation and the perturbed images are in the bottom row. In the
patterns, the order of the models is the same as in Table 4.3.

4.3 Discussion and concluding remarks

In this chapter, we proposed an iterative algorithm to find small adversarial perturba-
tions that fool a given set of models simultaneously in a given pattern. This problem
formulation has several applications including the generation of transferable adver-
sarial examples, as well as non-transferable examples that target only a specific model
and ensure that the other models are safe. Or we might generate a single perturba-
tion such that all the models in a given model set predict specified, different classes.

In section 4.1, we introduced an initial version of the algorithm which applies the
first-order approximation of the decision boundaries used in the DeepFool method.
We evaluated the algorithm on a number of model sets over MNIST and CIFAR-10
and generated transferable as well as non-transferable examples. We found that the
algorithm consistently produces small perturbations in all the cases we examined.
Perhaps the most interesting result is that small adversarial perturbations are present
even when a non-transferable adversarial example was generated for the most robust
model in the set, despite the fact that the models differed only in the regularization
coefficient.

In section 4.2, we show a generalized version of the method which has many
interesting applications, it is still able to generate transferable adversarial examples
as well as generating a single perturbation such that all the models in a given model
set predict specified, different classes. The latter scenario allows us to explore the
decision boundaries of the model set from a new perspective.

The algorithm can be regarded as a generalization of the DeepFool method to
model sets. Also, we improved the DeepFool algorithm itself by adding the step
size parameter. We evaluated our algorithm on three model sets using four attack
patterns over the ImageNet database. We found that the algorithm produces small

50 Adversarial attacks on model sets

Figure 4.6: The consistent attack pattern over the mobile set (abacus → dumbbell),
dense set (abacus→ corn) and all the models (abacus→ dumbbell).

4.3 Discussion and concluding remarks 51

Figure 4.7: The random attack pattern over the mobile set (crib → [llama,
thunder_snake, Norwich_terrier]), dense set (Australian_terrier → [cornet, lycaenid,
malinois]), and all the models (abacus → [centipede, Pembroke, Band_Aid, bow-tie,
EntleBucher, coyote, poncho]).

52 Adversarial attacks on model sets

Figure 4.8: The reverse attack pattern over the mobile set (greenhouse → projector),
dense set (comic_book→ albatross) and all the models (comic_book→ mongoose).

4.3 Discussion and concluding remarks 53

Figure 4.9: The diverse attack pattern over the mobile set (abacus → [soft-
coated-wheaten_terrier, soft-coated_wheaten_terrier, apron]), dense set (comic_book→
[sturgeon, black_stork, capuchin]), and all the models (Australian_terrier → [Saluki,
borzoi, black_stork, Saluki, gorilla, kuvasz]).

54 Adversarial attacks on model sets

and successful perturbations reliably in all the attack scenarios we examined. Here,
the most interesting result is that imperceptible adversarial perturbations were found
even when the labels were selected to make the problem as hard as possible. This
was surprising to us, even in the light of the vast literature on adversarial attacks.

The perturbation sizes over the three model sets offered some interesting insights
as well. The set with different model architectures (mobile set) needed somewhat
larger perturbations, but we expected just the opposite. Increasing the size of the
model set increased perturbation size as well. Nevertheless, all the perturbations we
found are imperceptible to the human eye.

Chapter 5

Combining Robust Classification and
Robust out-of-Distribution Detection

Classification models in machine learning often make over-confident but incorrect
predictions on input samples that do not belong to any of the output classes. Such
samples are called out-of-distribution (OOD) samples. This problem has received
considerable attention, because this represents a vulnerability similar to adversar-
ial input perturbation, where models make incorrect predictions on seemingly in-
distribution input samples that contain a very small but adversarial perturbation.
We are interested in models that are robust to both OOD samples and adversarially
perturbed in-distribution samples. Furthermore, we require that OOD detection be
robust to adversarial input perturbation. That is, OOD samples and in-distribution
samples should not have adversarial perturbations that makes them appear to be in-
distribution and OOD samples, respectively. Several related studies apply an ad-hoc
combination of several design choices to achieve similar goals. One can use several
functions over the logit or soft-max layer for defining training objectives, OOD detec-
tion methods and adversarial attacks. Here, we present a design-space that covers
such design choices, as well as a principled way of evaluating the networks. This
includes a strong attack scenario where both in-distribution and OOD examples are
adversarially perturbed to mislead OOD detection. We draw several interesting con-
clusions based on our empirical analysis of this design space. Most importantly, we
argue that the key factor is not the OOD training or detection method in itself, but
rather the application of matching detection and training methods.

The chapter: section 5.1 contains the introduction and section 5.2 summarizes the
related works. In section 5.3, we formalize our problem statement that is combining
robust classification and robust out of distribution detection. Using our framwerok,
in section 5.4 we higlight the main components. The experimental setup is detailed
in section 5.5. Result are summarized in sections 5.6 to 5.10 and concluding remarks
are in section 5.11.

55

56 Combining Robust Classification and Robust out-of-Distribution Detection

5.1 Introduction

Recently, robust out-of-distribution (OOD) detection also received considerable at-
tention [2, 27, 65]. Adversarially trained models are relatively robust to adversarial
input but they might assign high confidence to OOD samples. In a real-world appli-
cation, this also represents a serious vulnerability [65]. Besides, OOD input is also
open to adversarial perturbation, making OOD detection even harder. Recently, ad-
versarial training on both in-distribution and OOD samples was shown to be able to
increase the robustness of OOD detection [2, 65]. However, the proposed algorithms
are somewhat ad-hoc, as the underlying design-space for robust training, detection,
and attack methods has not been explicitly formalized and explored.

Here, we present a systematic design-space that covers most of the popular de-
sign choices for the various components. This includes the possible adversarial train-
ing objectives, robust OOD detection methods and adversarial attacks on both in-
distributions and OOD samples. This allows us to propose ideal combinations of
training and detection methods, and to explore the robustness to the various adver-
sarial attacks.

We draw several interesting conclusions based on our empirical results. Most
importantly, we argue that the key factor is not the OOD training or detection method
in itself, but rather the application of matching detection and training methods. This
observation is important especially when both the in-distribution and OOD samples
are adversarially perturbed. Also, it is interesting to note that among the detection
methods that we evaluate here, the widely used Maximum Softmax Probability [28]
baseline performed the poorest.

This chapter is a significantly revised and extended version of a conference publi-
cation [53]. The original contributions of this conference publication were

• the identification of the main components that can be used to systematically
build training objectives, OOD detectors and attack methods that cover most
algorithms from related work,

• an experimental analysis of this design-space that resulted in novel observations
regarding the best combinations of these components,

• an evaluation methodology for measuring the robustness of the models under
the strongest possible attack, where we measured the robust accuracy over the
in-distribution samples attacked based on the loss function, and the robust OOD
detection performance after attacking both in-distribution and OOD samples
based on the score function used by the OOD detector.

The novel contributions relative to this previous publication include

5.2 Related work 57

• the investigation of the popular approach of using a separate trainable class to
represent OOD inputs,

• the experimental evaluation of the framework over additional network archi-
tectures and specific network instances from related work to illustrate the im-
portance of using a correct evaluation methodology,

• the evaluation of ℓ2 norm attacks,

• and a detailed analysis of the fine resolution of OOD detection performance as
a function of the semantics of the OOD inputs.

5.2 Related work

Outlier, or OOD detection in classification has long been a topic of interest [24, 28,
29, 43]. Here, we focus on works where robustness to adversarial perturbation is
a goal as well. Augustin et al. [2] and Sehwag et al. [65] consider the problem of
combining robust classification and robust OOD detection, like we do. Sehwag et
al. investigated the robustness of multiple OOD detection methods and found that
existing OOD detectors are not robust. They proposed the adversarial training of
a classifier, in which the OOD samples are considered an extra class. Augustin et
al. used a different detection method for OOD samples. They require that the classi-
fier outputs a uniform class distribution on perturbed OOD samples. Our contribution
relative to these works is showing that training and detection have to be based on the
same criteria in order to get the best performance, as well as proposing a principled
evaluation method.

A number of studies make the assumption that adversarially perturbed in-distribution
samples and OOD samples (such as noise, for example) should be treated in a similar
fashion. In effect, these approaches wish to characterize clean in-distribution sam-
ples. Hein et al. [27] attempt to reduce OOD confidence via using an adversarial
training objective only for the OOD samples and show that this improves the detec-
tion of adversarial in-distribution samples as well. Stutz et al.[69] propose to train
the model to predict a uniform distribution for adversarial input and the correct class
for clean input and show that this approach improves the detection of OOD samples
as well. Lee et al. [40] assume that a pre-trained classifier is given. They wish to
detect non-clean examples based on the softmax distribution of this classifier. Here,
we assume that adversarially perturbed in-distribution samples must be assigned the
correct label of their clean version. This is a significantly harder requirement.

In [10], the authors propose ATOM (adversarial training with informative outlier
mining). ATOM also learns to classify clean in-distribution samples. The OOD sam-
ples are represented as a dedicated background class, meaning the classifier network

58 Combining Robust Classification and Robust out-of-Distribution Detection

has an additional output class for OOD samples. In contrast to our work, since ATOM
does not use adversarial training on in-distribution, the method is unable to clas-
sify perturbed in-distribution images. Moreover, the method fails to perform robust
OOD detection in the strongest configuration when in-distribution and OOD samples
are both attacked. This is because their training objective does not use perturbed
in-distribution images for adversarial OOD detection.

In [66, 67], robust training was used on in-distribution as well, combined with
three techniques. These included self-supervision, denoising layers, and a reconstruc-
tion loss using a decoder on the learned features. The authors claim that this modi-
fication will encourage the model to learn more semantic features that help identify
OOD samples. The method does not utilize any OOD data during training nor does
it use an adaptive attack to evaluate the proposed detection method. However, our
results indicate that matching the attacking objective and the detection method is
essential for reliable evaluation. In the hardest case of evaluation when both in-
distribution and OOD samples were attacked, this method was unable to detect OOD
samples, as confirmed by [3].

In [11], robust training is proposed on both in-distribution and OOD examples,
similarly to this work. The evaluation method the authors propose is sound and uses
adaptive attacks. On OOD samples, the applied loss function requires the model
to produce a uniform probability over the output classes. The authors tested two
detection methods. The first was based on the maximum softmax probability, and
the second was ODIN [43] that is also based on the maximum softmax value. In
contrast, our work suggests that the best performance is achieved when the training
objective and the detection method are based on the same scoring function.

In [3], the authors propose an adversarially trained discriminator to detect OOD
samples. The discriminator is trained using perturbed in-distribution and OOD sam-
ples as well as generated samples in the feature space. As a feature extractor, the
authors adversarially train a network over the in-distribution. This means that they
are also able to perform robust classification. The evaluation is sound and uses adap-
tive attacks for the detectors on both in-distribution and OOD samples. Based on
our experiments robust classification and robust OOD detection can boost each other
when both objectives are pursued at the same time. However, Azizmalayeri et al. do
not leverage this effect because the pre-trained feature extractor is not trained for
OOD detection.

One can also think of our work as an improvement of adversarial training [47]
with a more realistic, stronger threat model. Indeed, although not in the focus of the
present study, our extended adversarial training approach does improve adversarial
accuracy relative to the work of Madry at al. [47]. Maini et al. [48] also extend
adversarial training, but instead of using perturbed OOD samples, they apply a set
of different perturbations over the in-distribution samples. Stutz et al. [69] showed,

5.3 Combining our Two Objectives 59

however, that the approach of Maini et al. does not make models robust to attacked
OOD samples. Combining these two different ways of extending adversarial training
could be a direction for future work.

5.3 Combining our Two Objectives

We have two objectives that we want to achieve simultaneously: robust classification
and robust OOD detection. This raises a number of design issues. First of all, one
has to design the model in such a way so as to support both classification and OOD
detection at the same time. This can be done in many different ways. For example,
in feed forward neural networks, we need to decide whether to base OOD detection
on the logit layer or on the softmax layer, or whether to extend the classifier with an
extra class representing OOD samples or not. Second, we need to define a combined
loss function that represents both objectives. This function will likely be different for
OOD samples and normal samples.

In this section, we first present a framework in which these decisions can be
represented. We then analyze related work and show how the main different design
choices fit into this framework. This analysis will reveal that in related work the
design decisions are often ad hoc in the sense that the OOD detection method and
the training process are inconsistent, resulting in a suboptimal performance overall.
When using our framework, the appropriate pairing of the training and detection
method is evident.

5.3.1 The Robust OOD Learning Problem

Let us first introduce some basic notations. We are interested in the supervised clas-
sification task where each training example x ∈ Rd is drawn from an underlying
theoretical distribution Din (that is, x ∼ Din). Set C contains the possible labels,
and exactly one label y ∈ C is assigned to each training example in the training
dataset. Let K = |C| denote the number of classes. Since the label is assumed to be
a deterministic function of the example, we will also abuse the notation and write
(x, y) ∼ Din to indicate the label.

We are also given a set of unlabeled examples drawn from a distribution Dout

over Rd such that Dout and Din are sufficiently different. From the point of view
of the present study, a rigorous mathematical specification of the difference is not
necessary. Instead, the key property of Dout that we rely on is that the probability of
an example x̂ ∼ Dout having a correct label within C is vanishingly small.

Let the function fθ : Rd → RK denote the output of a feed forward neural network
classifier with parameters θ without the softmax normalization layer. In other words,
fθ returns the so-called logit layer.

60 Combining Robust Classification and Robust out-of-Distribution Detection

Robust classification can be formalized as a robust optimization problem [47].
Here, we are given a set of possible input perturbations, for example, ∆ = {δ :

||δ||∞ ≤ ϵ}. We want to minimize the loss of our classifier, assuming that the in-
put can be perturbed using any perturbation from ∆, that is, we wish to solve the
minimization problem minθ ρin(θ), where

ρin(θ) = E(x,y)∼Din
[max
δ∈∆
L(ey, fθ(x+ δ))]. (5.1)

Here, L(ey, fθ(x + δ)) is a loss function of example (x, y) and model parameters θ,
and ey is a one-hot encoded vector of the label y. From now on, we will assume that
the loss function is the categorical cross-entropy function

L(ey, f(x)) = −
K∑
i=1

(ey)i log σ(f(x))i (5.2)

although any differentiable loss function could be used. Here, function σ represents
the softmax function, that is,

σ(z)i =
exp(zi)∑K
j=1 exp(zj)

. (5.3)

The second objective is robustly detecting OOD samples from Dout. This needs a
different loss function that is defined for the OOD training examples. Let us define
a score function s(fθ(x)), such that we expect a low score for OOD samples and a
high score for in-distribution input. The score function is defined over the logit layer
output, that is, we have s : RK → R. Based on this score, we can define the OOD
training objective to be minθ ρout(θ), where

ρout(θ) = Ex∼Dout [max
δ∈∆

s(fθ(x+ δ))] (5.4)

When training the model on in-distribution and OOD samples simultaneously, the
two optimization problems are combined as

min
θ

ρin(θ) + λρout(θ) (5.5)

where λ is a weight parameter that controls the weight of in-distribution and OOD
training examples.

5.3.2 Score Functions

To instantiate the learning problem in eq. (5.5), one needs to select a score function.
Here, we present a set of common score functions.

5.3 Combining our Two Objectives 61

A common baseline method defined over the softmax output is the maximum
softmax probability (MSP) proposed in [28] as

smsp(fθ(x)) = ∥σ(fθ(x))∥∞, (5.6)

and another score function suni, defined as the cross-entropy of the softmax output
and the uniform distribution, was proposed in [29]

suni(fθ(x)) = L(1/K, fθ(x)), (5.7)

where 1 is the vector of all ones. Thus, both of these two score functions are defined
over the softmax output. Note that the maximum softmax probability is minimal
when the softmax output is uniform, so these score functions are closely related.

Another possibility is to use the logit output to define score functions. One such
option is

sml(fθ(x)) = ∥fθ(x))∥∞, (5.8)

that is, the maximum logit value. Although we have not found sml in related work,
we include this variant in our evaluation because it is related to smsp, the maximum
softmax value. The smooth approximation of sml can be computed using the Log-
SumExp function as

slse(fθ(x)) = log
K∑

j=1

exp(fθ(x)j). (5.9)

This score function was used in [24].

5.3.3 Score Functions for a Dedicated OOD Class

So far, we have implicitly assumed that there is no dedicated OOD class in the output
of the network. However, OOD detection can also be implemented using a K + 1-th
class in such a way that for OOD inputs we use the label y = K + 1.

In this setting, eq. (5.1) is still the same, however, specific score functions need
to be defined that focus on the K + 1-th class. One such score function is

sbgp(fθ(x)) = 1− σ(fθ(x))K+1, (5.10)

that is, the probability of the OOD class.

Here, we can also base the score function directly on the logit layer as well. One
possibility is the logit value itself, as

sbgl(fθ(x)) = −fθ(x)K+1, (5.11)

62 Combining Robust Classification and Robust out-of-Distribution Detection

and a second logit-based score function is the logit margin of the OOD class:

sbgd(fθ(x)) = −fθ(x)K+1 + max
i∈0...K

fθ(x)i. (5.12)

5.4 OOD Detection, Adversarial Attack and Robust Train-
ing

Having defined our framework, let us consider the three major components of train-
ing and evaluating a robust OOD network: the OOD detection method, the adversar-
ial attack method, and the robust training method. First of all, observe that all these
three components rely on a score function.

Clearly, during adversarial training, in eq. (5.4) we have to apply a score function
that is attacked in the inner-loop maximization step.

During evaluation, again, we need to select a score function that, similarly to
the inner loop of eq. (5.4), is used as the target of the attack. After the adversarial
perturbation, we need to select a third score function that is used for detection. In
the detection step, the score function is computed, and a decision is made based on
a suitable threshold.

5.4.1 Correct Evaluation Methodology

In the light of our formulation, to follow the correct methodology, one has to pay
attention to using the correct score functions. In particular, we propose the following
rules to be followed during the evaluation of a robust OOD network:

1. In the detection method, use the score function that was used during train-
ing because that is the score function that was made robust, thus, this score
function is expected to provide the best decision after any attack

2. When attacking OOD samples, use the score function that is used for detection,
because this way the worst-case performance can be measured

In our experimental evaluation, we will provide empirical evidence supporting
these two rules. Quite remarkably, in related work, these rules are not always fol-
lowed, and as a consequence, the detection performance can be improved using the
correct score function, as we shall demonstrate. We now look at examples of train-
ing and detection methods from related work, and show whether or not these are
suitably matched, in the light of these observations.

5.4 OOD Detection, Adversarial Attack and Robust Training 63

5.4.2 Training Objectives in Previous Work

In the first approach we discuss, the goal is to make the model output a uniform
distribution when an OOD input is presented [2, 29]. This is implemented using the
cross-entropy loss function with the uniform distribution as the true distribution:

ρuniout (θ) = Ex∼Dout [max
δ∈∆
L(1/K, fθ(x+ δ))], (5.13)

In [27], instead of the distance from the uniform distribution, the maximum softmax
probability was minimized for OOD samples. In this case, the optimum is the same,
namely the maximal probability is minimized by the uniform distribution.

We can fit this approach into our framework if we chose the score function suni.
This would suggest, as discussed in section 5.4, that the model trained this way
should use suni also for the detection of OOD examples. Interestingly enough, that
practice is not always followed in related work. For example, in both [2] and [29],
the detection is implemented using smsp (see section 5.3.2), although Hendrycks et
al. mention in the Appendix that suni might be more promising [29].

The second common representation is interpreting OOD samples as an extra back-
ground class [49, 65]. In this approach, the objective is simply given by

ρbgout(θ) = Ex∼Dout [max
δ∈∆
L(eK+1, fθ(x+ δ))] (5.14)

In our framework, that amounts to the applications of sbgp as score function. This
would suggest that the model trained this way should use sbgp (with an appropriate
threshold) for the detection of OOD examples. Again, in related work this is not
always the case. For example, Sehwag et al. [65] simply use the criteria whether
the background class is maximal or not, instead of thresholding sbgp. Also, they do
not use sbgp to attack OOD samples for testing robust OOD detection either, another
natural choice that we will discuss in the following sections. Instead, they apply a
targeted attack to maximize the label of a random in-distribution class.

We also experimented with a slight modification of this approach, where we do
not train extra parameters for the background class. Here, we use the same loss
as given in eq. (5.14), while freezing the logit of the extra class to be zero, that is,
fθ(x)K+1 = 0. As a result of training, the original classes from 1 to K can adapt to
this constant so that this constant is maximal when the input is OOD. This way, the
number of parameters will be the same as in the case of using ρuniout in eq. (5.13),
allowing for a fair comparison between the two approaches.

We will refer to this frozen-extra-class objective as ρlseout, because, as we argue

64 Combining Robust Classification and Robust out-of-Distribution Detection

below, in this case the score function is effectively slse. Indeed, using eq. (5.2),

L(eK+1, fθ(x)) = log
K+1∑
j=1

exp(fθ(x)j). (5.15)

Since fθ(x)K+1 = 0, this function is a monotonous function of the LogSumExp of
the in-distribution classes (that is, the classes up to K). This indicates that in fact
the decisive factor is whether the in-distribution classes have a small logit value, as
opposed to the extra background class (the (K+1)th class) having the maximal value.
Again, this would suggest that the model trained this way should use slse (with an
appropriate threshold) for the detection of OOD examples.

As a last note, the three approaches above (ρuniout , ρ
lse
out and ρbgout) are far from being

equivalent. The objective represented by ρlseout represents a larger degree of freedom,
because the score function is applied before softmax normalization and because the
uniform distribution is not enforced. While ρuniout and ρlseout have exactly the same num-
ber of parameters, in the case of the ρbgout objective the parameters of the background
class are learnable.

5.5 Experimental setup

We are interested in the effect of the possible combinations of the various training
objectives and score functions that we described previously, as well as the effect of
other hyper-parameters such as the choice of Dout and network capacity. In order
to understand this, we performed a systematic empirical study, in which we com-
bined training objectives and score functions, and used various hyper-parameters
and databases for in-distribution and OOD samples. The two databases we used to
represent in-distribution samples were MNIST [39] and CIFAR-10 [37].

We first describe those settings that were common to the MNIST and CIFAR-10
experiments in section 5.5.1 and section 5.5.2. We then lay out the settings specific to
the MNIST and CIFAR-10 experiments in section 5.5.3 and section 5.5.4, respectively.

We shall apply the PGD algorithm [38] in many different contexts. Let us intro-
duce the notation PGDa

b , where the superscript a denotes the number of iterations
and subscript b denotes the number of trials. We omit the subscript when there is
only one run.

5.5.1 Training

For preprocessing, we divided all the input values by 255, thus scaling the data into
the range [0, 1]d.

5.5 Experimental setup 65

In each setting, we used adversarial training [47] for both in-distribution and
OOD samples. The adversary during training was PGD (with database specific pa-
rameters defined later) that used the loss function in ρin for in-distribution samples,
and the score function in ρout for OOD samples, respectively. We held out 1000 in-
distribution samples as a validation set. We then selected the best model that was
found during training according to the robust accuracy over the validation set, that
is, the accuracy over the adversarially perturbed validation samples, as suggested
in [61]. The validation samples were attacked using the same adversary as used for
training in the case of CIFAR-10. For MNIST, we used a stronger adversary (PGD100

5)
because the training adversary (to be described below) was not able to reliably iden-
tify a unique maximum validation accuracy.

Throughout our evaluation, the training was performed with a batch size of 100,
that consisted of 50 in-distribution examples and 50 OOD examples. For the baseline
case when no OOD samples were used, the batch size was 50.

Let us now describe the training objectives that we evaluated. The generic for-
mula for the training objective is given in equation eq. (5.5). This formula contains
parameter λ that controls the relative weight of the in-distribution and OOD objec-
tive. We evaluated three possible values of λ: 0.1, 0.5, and 1.0. λ = 0.1 means that
the OOD samples will have the same contribution as any other in-distribution class
(recall that each dataset defines 10 classes), essentially treating the OOD samples as
a 11th class. Sehwag et al. [65] applied this weighting strategy. λ = 1.0 means the
distributions Din and Dout have equal importance. Hein et al. used this setting [27].

Apart from parameter λ, we also varied the OOD objective ρout. In particular, we
experimented with two possible OOD objectives presented in eqs. (5.13) and (5.15).
In total, the three values of λ and the two possible OOD objectives result in 6 = 3 · 2
trainings for every combination of dataset and network architecture (to be described
below).

5.5.2 Evaluation

We are interested in robust accuracy and robust OOD detection. Robust accuracy
was measured as the accuracy against an untargeted PGD adversary [47]. In the
attack, PGD maximized the loss used in ρin. The performance of the non-robust OOD
detection was measured using the area under curve (AUC) metric, as usual in related
work (for example, [2, 27]). AUC is equal to the probability that a randomly chosen
in-distribution sample x ∼ Din gets a larger score than a randomly chosen OOD
sample x̂ ∼ Dout. That is, AUC = P (s(fθ(x̂)) ≤ s(fθ(x))). If the AUC is close to one
then there exists a threshold that separates the OOD samples well. If the AUC is close
to 1/2 then separation is not possible.

Since AUC is sensitive to imbalanced classes, it was calculated using an equal

66 Combining Robust Classification and Robust out-of-Distribution Detection

number of samples from Din and Dout. More precisely, we used 1000 samples from
both distributions for each evaluation.

The robust version of OOD detection was evaluated by measuring the AUC after
attacking only the OOD samples, or both the in-distribution and OOD samples. In
this robust version, the in-distribution samples are attacked using PGD minimizing
the score of a given score function. In the case of the OOD samples, the same score
function was maximized by PGD.

During the evaluation of robust OOD detection, we combined the 4 functions
described in section 5.3.2, using them for both the attack and the detection method.
These represent 4 · 4 = 16 possible attack-detection combinations. In the case of the
ρbgout objective, in addition to these 4 functions we also tested the 3 functions listed in
section 5.3.3, which results in 7 · 7 = 49 attack-detection combinations.

5.5.3 MNIST-Specific Settings

We trained the same convolutional network that was used in [47]. It has two convo-
lutional layers with 32 and 64 filters, respectively. Each convolutional layer followed
by a 2x2 max-pooling layer. After the last pooling, two dense layers are applied with
1024 and 10 neurons. ReLu activation was used in each of the hidden layers.

We used Adam [36] as our optimizer with a learning rate of 10−4. We ran it for
100 epochs. The adversary during adversarial training was PGD40 with a step size of
α = 10−2 and ϵ = 0.3. Recall, that ϵ defines the set of possible input perturbations:
∆ = {δ : ||δ||∞ ≤ ϵ}.

We used two OOD datasets for training. The first one is the synthetic noise distri-
bution introduced in [27], we will refer to it as DSN

out . In a nutshell, half of the inputs
are generated uniformly at random and the other half is generated by permuting the
pixels of images from the training set. A Gaussian smoothing filter is applied for all
the images, followed by a global rescaling into [0, 1]d. The idea here is to preserve
as much as possible from the global statistics of the original images while destroying
the more complex features. The second OOD dataset was the KMNIST dataset[14].

For the evaluation of OOD detection, we used the test sets of the two OOD
datasets used for training and two additional datasets to test how OOD detection
generalizes to unseen distributions. The first was the Fashion-MNIST [78] test set
and the second was uniform noise within [0, 1]d, we will refer to it as DU

out. PGD100
50

was used for all the attacks (as in in [47]) with a step size of α = 10−2 and ϵ = 0.3,
except for Fashion-MNIST where we used ϵ = 0.1.

5.5 Experimental setup 67

Table 5.1: DenseNet [31] architectures used for CIFAR-10 experiments.

Model Parameters
Wide-DenseNet-BC (L=16, k=60) 1.1M
Wide-DenseNet-BC (L=28, k=60) 2.5M
Wide-DenseNet-BC (L=40, k=60) 4.3M
Wide-DenseNet-BC (L=52, k=60) 6.4M
Wide-DenseNet (L=16, k=60) 2.6M
Wide-DenseNet (L=52, k=60) 41.7M
Wide-ResNet (L=28, k=10) 36.5M
ResNet-50 23.5M

Table 5.2: Accuracy and ℓ2 robust accuracy values for CIFAR-10 Ratio [2] models.

Model accuracy robust accuracy(ϵ = 0.5)
Ratio0.25 0.9353 0.7198
Ratio0.5 0.9108 0.7487

5.5.4 CIFAR-10-Specific Settings

Here, we describe the architectures and model instances we applied, the training
algorithms, and the evaluation methodology.

Architectures

Here, we used a large number of architectures in order to be able to study the effect
of network size, and to be able to compare our measurements with related work.

We used several wide variants of DenseNet [31] using bottleneck layers and com-
pression (denoted by Wide-DenseNet-BC), with the parameters listed in table 5.1.
We also used a number of Wide-DenseNets with all the bottleneck layers removed
and no compression. We refer to this version as Wide-DenseNet.

To allow for a more direct comparison with related work, we include a number
of additional network architectures in some of our measurements. In [65] a Wide-
Resnet [86] variant was used while in [2] the authors applied the Resnet-50 [26]
architecture. We include these networks in our experiments.

We also evaluate two specific network instances: Ratio0.25 and Ratio0.5, used
in [2]. These are Resnet-50 networks pretrained on CIFAR-10. As a training OOD
dataset, the authors also used the 80 Million Tiny Images dataset [72]. During train-
ing a 7-step ℓ2 PGD attack was applied on the in-distribution with an ϵ = 0.25 and
0.5 for Ratio0.25 and Ratio0.5, respectively. In the inner loop of the robust OOD ob-
jective an ℓ2 PGD was applied but with 20 steps and ϵ = 1.0. Table 5.2 contains the

68 Combining Robust Classification and Robust out-of-Distribution Detection

performance of these models.
We were not able to obtain the network instances used in [65]. Therefore, we

trained and evaluated our own instances using the Wide-Resnet-28-10 [86] archi-
tecture and the proposed objective function, which was ρbgout (see eq. (5.14)). As
optimizer we used SGD with momentum 0.9 and an initial learning rate of 10−1. We
ran this optimizer for 200 epochs with a batch size of 128. The learning rate was
divided by 10 at 50% and 75% of the training, as was done in [47]. In addition,
we applied weight decay with a coefficient of 5 ∗ 10−4. We also applied standard
augmentation: mirroring and shifting similarly to [47].

Training

For all the DenseNet architectures, the optimizer we used was SGD with momentum
0.9 and an initial learning rate of 10−1. We ran this optimizer for 240 epochs. The
learning rate was divided by 10 at 50% and 75% of the training, as was done in [31].
In addition, we applied weight decay with a coefficient of 10−4. We also applied
standard augmentation: mirroring and shifting similarly to [47].

In related work, different threat models are used. For example, the ℓ2 attack
with an ϵ = 63.75/255 and 127.5/255 was used in [2], while a more common ℓ∞
threat model was applied in [65] with ϵ = 8/255. For a better comparison, we
experimented with both threat models. As an ℓ2 adversary, we used PGD7 with a step
size of α = 127.5/255/7 ∗ 2.5 and ϵ = 127.5/255 in both the in-distribution and OOD
objectives. Note that the number of steps is the same as in [2] for better comparison.

As an ℓ∞ adversary we used PGD10 with a step size of α = 2/255 and with ϵ =

8/255. Similarly to MNIST, we used two OOD datasets for training. Again, the first
one is the synthetic noise distribution DSN

out introduced in [27]. The second OOD
dataset was the 80 Million Tiny Images dataset [72], we will refer to it as DT

out.
This dataset was used also in [29] and [2]. This is a good choice because the global
statistics and the low-level features of the images are similar to those of the CIFAR-10
images, while the high-level features are different. This means that OOD detection
is forced to focus on high-level features, which in turn increases its robustness to
adversarial OOD inputs. Note that the CIFAR-10 dataset is actually a subset of the tiny
images set, so we removed the CIFAR-10 classes like it was done in [29]. Afterwards,
we separated a test set of 1000 samples.

Evaluation

For the evaluation of OOD detection, we used the test sets of the two OOD datasets
used for training and two additional datasets to test how OOD detection generalizes
to unseen distributions. The first was a set of 10,000 samples from the SVHN [59]
test set. The second was uniform noise within [0, 1]d. We will refer to it asDU

out. PGD20
10

5.6 Results on Robust Accuracy 69

Table 5.3: Robust validation accuracy, clean test accuracy, and robust test accuracy for
MNIST experiments

objective(ρout) Dout λ rob.val.acc. acc. rob.acc.
None 0.932 0.9895 0.9241

lse SN 0.1 0.935 0.9893 0.9277
lse K-MNIST 0.1 0.928 0.9897 0.9141
uni SN 1.0 0.93 0.9904 0.9144
uni K-MNIST 0.1 0.928 0.9887 0.9184

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

16 28 40 52

ac
cu

ra
cy

Network Depth (L)

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

16 28 40 52

ro
b

u
st

 a
cc

u
ra

cy

Network Depth (L)

None

Dout
SN

 +ρout
uni

Dout
T
 +ρout

uni

Dout
T
 +ρout

lse

Figure 5.1: Clean test accuracy and robust test accuracy (PGD20
10, ϵ = 8/255) on the

CIFAR-10 dataset.

was used for all the ℓ∞ attacks (as in [47]) with a step size of α = 2/255 and with
ϵ = 8/255. For the ℓ2 attacks we used PGD20

10 with a step size of α = 127.5/255/20∗2.5
and ϵ = 127.5/255, unless otherwise stated.

5.6 Results on Robust Accuracy

Here, our main observation shall be that robust accuracy is not reduced (MNIST) or
even improved (CIFAR-10) if a robust OOD adversarial objective is added to the adver-
sarial training.

To see this, let us first focus on the accuracy of the in-distribution samples, with
or without adversarial input perturbation. For the MNIST dataset, the results are
included in table 5.3. When computing the robust accuracy, the samples were per-
turbed by PGD100

50 , with ϵ = 0.3. The indicated λ values are the optimal choices
among the possible choices of λ for the given objective according to the robust accu-
racy on the validation set against a PGD100

5 adversary. The value “None” indicates
plain adversarial training without an OOD objective.

It is clear that adding the OOD objective does not reduce robust accuracy. We also

70 Combining Robust Classification and Robust out-of-Distribution Detection

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

16 28 40 52

A
U

C

Network Depth (L)

None Attacked

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

16 28 40 52

A
U

C

Network Depth (L)

OOD Attacked

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

16 28 40 52

A
U

C

Network Depth (L)

IN+OOD Attacked

None

Dout
SN

 +ρout
uni

Dout
T
 +ρout

uni

Dout
T
 +ρout

lse

AUC = 1/2

Figure 5.2: OOD detection AUC over CIFAR-10 under three different kinds of attack
scenarios: no attack, only OOD samples are perturbed and both in-distribution and
OOD samples are perturbed.

note that our reported value of 0.9241 is significantly higher than the one reported
in [47]. This is because of our better early stopping criterion based on a stronger
adversary used over the validation set.

Accuracy values for the CIFAR-10 dataset are shown in fig. 5.1. The OOD datasets
DSN

out and DT
out were described in section 5.5.4. We show the results with the best

choice of parameter λ according to the robust accuracy on the validation set against
a PGD10 adversary.

Robust accuracy is significantly improved compared to plain adversarial learning,
while clear accuracy remains approximately the same. It is also interesting to note
that increasing the network size in general increases robust accuracy, a well-known
fact that has been pointed out in [47] as well. The best choice is the uniform OOD
objective with the Tiny Images OOD dataset in this case.

Similar observations were reported in [2] for an l2 threat model (here, we use the
l∞ norm, as described before). However, our results highlight another important fac-
tor, namely the choice of the objective function. Although both ρuniout and ρlseout improve
the robust performance compared to plain adversarial training, ρuniout is a significantly
better choice.

This last observation is further supported by the results in fig. 5.4, that shows our
results with additional network architectures. Again, it is clearly visible that robust
accuracy improves as OOD data is utilized during the training and the best choice is
the objective ρuniout , with the Tiny dataset with respect to both threat models and all
the tested architectures.

A last remarkable observation is that comparing Wide-DenseNet-BC and Wide-
DenseNet with 16 layers reveals that removing the bottleneck layers from the DenseNet
architecture improves robust accuracy. This is in contrast with normal training where
bottleneck layers offer better generalization and hence higher accuracy [31].

5.6 Results on Robust Accuracy 71

NO

NO

NO

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE ML MSP UNI

None

uni

lse

N
o

n
e

N
o

n
e

u
n

i
u

n
i

ls
e

ls
e

N
o

n
e

O
O

D
 a

tt
a
c
k

e
d

IN
+

O
O

D
 a

tt
a
c
k

e
d

A
tt

a
c
k

s
 &

 M
o

d
e
ls

Detection method

MNIST

.97 .97 .96 .97

1 1 1 1

1 1 .99 .21

.77 .77 .75 .78

.77 .77 .75 .78

.81 .81 .70 .82

.78 .78 .76 .77

.99 .99 1 1

.99 .99 .99 1

.99 .99 .99 1

.99 .99 .99 1

1 1 .97 .19

1 1 .95 .35

1 1 .93 .35

1 1 .98 .09

.52 .52 .52 .54

.53 .52 .51 .54

.64 .64 .39 .66

.54 .54 .53 .52

.91 .95 .98 .99

.91 .95 .97 .99

.96 .97 .96 1

.93 .96 .98 .99

1 1 .95 .13

1 1 .90 .25

1 1 .84 .26

1 1 .96 .05

 0

 0.2

 0.4

 0.6

 0.8

 1

A
U

C

NO

NO

NO

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE ML MSP UNI LSE ML MSP UNI

16 52

None

uni

lse

N
o

n
e

N
o

n
e

u
n

i
u

n
i

ls
e

ls
e

N
o

n
e

O
O

D
 a

tt
ac

k
ed

IN
+

O
O

D
 a

tt
ac

k
ed

A
tt

ac
k

s
&

 M
o

d
el

s

Network Depth & Detection Method

CIFAR−10

.86 .88 .87 .86 .89 .90 .90 .89

.95 .94 .94 .95 .95 .95 .95 .95

.93 .94 .85 .84 .94 .95 .89 .89

.68 .70 .71 .68 .72 .73 .74 .72

.69 .69 .65 .69 .73 .73 .72 .73

.75 .72 .61 .75 .79 .77 .68 .79

.68 .70 .71 .68 .72 .73 .74 .72

.83 .81 .80 .83 .84 .84 .83 .84

.85 .81 .79 .85 .86 .84 .82 .86

.85 .81 .79 .85 .86 .84 .82 .86

.83 .81 .80 .83 .84 .84 .83 .84

.80 .81 .76 .75 .84 .85 .80 .80

.82 .80 .69 .74 .85 .84 .74 .79

.88 .85 .61 .74 .90 .88 .67 .79

.86 .85 .70 .66 .89 .88 .74 .73

.39 .42 .52 .39 .43 .45 .54 .43

.42 .41 .40 .42 .45 .45 .46 .45

.63 .53 .34 .63 .66 .60 .37 .66

.39 .42 .52 .39 .43 .45 .54 .43

.61 .61 .61 .61 .65 .65 .64 .65

.69 .60 .57 .69 .71 .64 .62 .71

.72 .62 .57 .72 .74 .66 .62 .74

.61 .61 .61 .61 .65 .65 .64 .65

.56 .58 .62 .56 .61 .65 .68 .63

.61 .57 .44 .55 .66 .63 .50 .61

.82 .73 .32 .61 .86 .77 .38 .67

.73 .70 .51 .38 .77 .73 .54 .45

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
U

C

Figure 5.3: OOD detection AUC over MNIST and CIFAR-10 under three different kinds
of attack scenarios: no attack, only OOD samples are perturbed, and both in-distribution
and OOD samples are perturbed. These attacks are indicated on the vertical axis. Under
each attack, the three different OOD training objectives are indicated: None, ρuniout and
ρlseout. Under each training objective, 4 different score functions are indicated that are
used for attacking samples at detection time. The horizontal axis indicates possible score
functions used for detection. The CIFAR-10 plot also includes the smallest and largest
network architecture, indicated on the horizontal axis. During training, DSN

out was used
on MNIST, and DT

out on CIFAR-10.

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

L
2
−

R
o

b
u

st
−

A
cc

u
ra

cy

Wide−DenseNet−BC (L=16, k=60)

NONE

ρ
bg

ρ
lse

ρ
uni

Wide−DenseNet (L=16, k=60)

Wide−DenseNet (L=52, k=60)

Wide−ResNet (L=28, k=10)

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

NONE D
SN

D
T

L
∞

−
R

o
b

u
st

−
A

cc
u

ra
cy

NONE D
SN

D
T

NONE D
SN

D
T

NONE D
SN

D
T

Figure 5.4: Robust test accuracy (PGD20
10, ϵ = 127.5/255 and ϵ = 8/255 for L2 and

L∞ norms, respectively) on the CIFAR-10 dataset. Removing the bottleneck from the
Wide-DenseNet-BC-16 increases performance. Robust accuracy is the best when ρuni is
used as objective and DT is used as OOD dataset, for both norms and all the investigated
architectures.

72 Combining Robust Classification and Robust out-of-Distribution Detection

5.7 Results on OOD Robustness

Let us now look at how the OOD training objectives affect the ability of the models to
detect OOD samples, under different kinds of adversarial attacks applied at detection
time. The main point we make in this section is that the OOD training objective has
the strongest positive effect on OOD detection when both in-distribution and OOD inputs
are attacked.

Figure 5.2 illustrates the effect of the three kinds of adversarial attacks: (1)
no attack (clean inputs), (2) only the OOD inputs are attacked and (3) both in-
distribution and OOD inputs are attacked. The adversary was PGD20

10 using ϵ =

8/255. The indicated AUC values are averages of AUC values computed over 13 test
OOD databases, given by the 10 classes of the SVHN dataset (each treated as a sepa-
rate OOD database) and the test sets of the databases DT

out, DSN
out and DU

out.
For a given OOD dataset we calculated the AUC value as a minimax value. This

value is the AUC of the best possible detection method assuming the best attack for each
detection method. In more detail, for all the 4 possible score functions used for detec-
tion, we computed the minimum AUC value over the 4 possible score functions used
for the attack. This way, for all the detection methods we have the best attack (worst
case AUC). We then took the maximum of these values, which gives the minimax
AUC.

What is clear is that for clean examples the training objectives have a relatively
little effect, although not using an OOD objective is consistently the worst option.
The harder the attack the larger the relative difference becomes between the model
that did not use any OOD objective during training and those that did. Here, the
decisive factor appears to be the OOD database used during training: DT

out seems to
be the best choice.

The same conclusion is valid also in the case of the MNIST dataset. This is evident
from fig. 5.3, where the OOD detection AUC values are illustrated in a finer resolution
for both MNIST and CIFAR-10. Here, compared to fig. 5.2, the AUC values are not
aggregated using the minimax technique but instead all the 4 · 4 = 16 combinations
of detection and attacking score functions are included individually. The values are
still averages over our test OOD datasets. For CIFAR-10 we used the same 13 sets
described above. For MNIST, we used 22 datasets, given by 10 classes of Fashion-
MNIST, 10 classes of K-MNIST, and the test sets of DSN

out and DU
out.

For MNIST as well, clearly, the harder the attack the larger the relative differ-
ence becomes between the models that did or did not use any OOD objective during
training.

Let us point out here, that our strongest attack is significantly stronger than the
attacks normally studied in related work, where in-distribution samples are not per-
turbed during the OOD detection task. Also, as fig. 5.2 reveals, the AUC barely

5.8 Background Class Representation vs. Parameter-Free Methods 73

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

L
2
−

R
o

b
u

st
−

A
U

C

Wide−DenseNet−BC (L=16, k=60)

NONE

ρ
bg

ρ
lse

ρ
uni

Wide−DenseNet (L=16, k=60)

Wide−DenseNet (L=52, k=60)

Wide−ResNet (L=28, k=10)

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

NONE D
ST

D
T

L
∞

−
R

o
b

u
s
t−

A
U

C

NONE D
ST

D
T

NONE D
ST

D
T

NONE D
ST

D
T

Figure 5.5: OOD detection minimax AUC calculated over CIFAR-10 and CIFAR-100,
SVHN, DT , DSN and DU . We note that both in-distribution and OOD samples are at-
tacked with PGD20

10 using ϵ = 127.5/255 and ϵ = 8/255 for L2 and L∞ norms respectively.
Minimax AUC calculation: for all the possible score functions used for detection we com-
puted the minimum AUC value over all the possible score functions used for the attack.
We then took the maximum of these values, which gives the minimax AUC.

improves when increasing the size of the network. It is possible that improvements
would appear only with much larger networks.

Finally, in fig. 5.5 we include experimental data with additional models and train-
ing objectives. Here, we present only the most adversarial scenario when both in-
distribution and OOD samples are attacked. The displayed values are averages over
113 test OOD datasets, thus here, we added the 100 classes of CIFAR-100 to our
usual set of OOD datasets. The results clearly show that AUC values are below ran-
dom guessing (that is, they are less than 0.5) when no OOD data was used for train-
ing, which indicates that the attacks are very successful. This is unlike the case of
non-robust OOD detection, where methods work acceptably well even without OOD
data [28, 43].

It is also clear that the OOD detection performance depends mostly on the archi-
tecture (larger models result in better robustness) and the OOD dataset used during
training (DT is the best in all the configurations).

5.8 Background Class Representation vs. Parameter-
Free Methods

As described in section 5.3, some score functions require a dedicated class out-
put [65], with the extra parameters represented by the weights of this extra output.
One may ask the question whether it is worth modifying the architecture and to train
extra weights? So far, we have seen that the training objective ρuniout performs quite

74 Combining Robust Classification and Robust out-of-Distribution Detection

well, so it is possible that the extra output with extra weights does not make a large
difference.

Figure 5.4 compares ρuniout , ρ
bg
out, and ρlseout from the point of view of robust accuracy.

The clear winner is ρuniout . Clearly, due to not having an extra class the adversarial
training objective over the OOD samples strengthens the in-distribution performance
as well, as we have in previous sections.

The robust minimax AUC is similar across the three investigated objectives, as
shown in fig. 5.5. It is an open question whether adding a more sophisticated OOD
head with more parameters, perhaps including several layers, would make a signifi-
cant difference. In any case, the ρuniout objective is competitive with ρbgout, and, overall,
the uniform loss objective is a better option due to the clearly superior robust accu-
racy over the in-distribution data.

5.9 Matching Score Functions

In section 5.4.1 we made the point that certain rules about matching score functions
need to be followed. Here, we present empirical evidence supporting this.

5.9.1 Attacks on OOD Samples are most Effective when Attacking
and Detection Score Functions are the Same

Ideally, we want to use the strongest possible attack when testing the robustness of
any machine learning model. However, so far, it has not been clear how the strongest
attack should be designed for a given OOD detection mechanism. In our framework
based on score functions, it is rather natural to assume that maximizing the score
function used for detection is the strongest attack.

This conclusion is supported by the data in fig. 5.3. As we can see, for all the
detection methods, the minimal AUC value belongs to the attack method that uses the
same score functions, in all the three attack scenarios, for all the training objectives,
for both MNIST and CIFAR-10.

5.9.2 OOD Detection and OOD Training Objective should Use the
same Score Function

In the framework based on score functions, we can examine the relationship between
the training objective and the detection method for OOD samples. A natural hypoth-
esis is that these two components should be based on the same score function in
order to enforce the best possible AUC value.

5.9 Matching Score Functions 75

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE ML MSP UNI LSE ML MSP UNI

None

O
O

D
 a

tt
ac

k
ed

IN
+

O
O

D
 a

tt
ac

k
ed

Ratio0.25 Ratio0.5

A
tt

ac
k
ed

 d
is

tr
ib

u
ti

o
n
 &

 a
tt

ac
k
 o

b
je

ct
iv

e

Ratio models & Detection Methods on CIFAR−10

.9406 .9473 .9495 .9406 .9419 .9480 .9495 .9419

.8371 .8375 .8360 .8371 .8471 .8483 .8468 .8471

.8425 .8361 .8310 .8425 .8523 .8412 .8322 .8523

.8429 .8363 .8310 .8429 .8538 .8413 .8311 .8538

.8375 .8379 .8364 .8375 .8475 .8488 .8473 .8475

.7273 .7173 .7100 .7273 .7516 .7488 .7460 .7516

.7473 .7093 .6865 .7473 .7698 .7315 .7088 .7698

.7540 .7143 .6864 .7540 .7787 .7368 .7084 .7787

.7276 .7177 .7104 .7276 .7521 .7492 .7464 .7521

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

A
U

C

Figure 5.6: OOD detection AUC for Ratio0.25 (left) and Ratio0.5 (right). The mini-
mum AUC is marked with a border in each block per column and the minimax AUC
is indicated using a thick border. Three different kinds of attack scenarios are shown:
no attack, only OOD samples are perturbed, and both in-distribution and OOD samples
are perturbed. These attacks are indicated on the vertical axis. Under each attack, 4
different score functions are indicated that are used for attacking samples at detection
time. The horizontal axis indicates possible score functions used for detection.

This conclusion can be verified in fig. 5.3. To see this, recall that we are interested
in the minimax AUC value, that is, we want to maximize the minimal AUC value
over the possible pairs of score functions used for OOD training and detection. In
other words, we assume that the attacker knows the detection method as well as
the training method and so she can pick the attack resulting in the minimal AUC.
In the table, for all pairs of training and detection score functions four attacks are
listed. The minimum of these is always maximal when the training and detection
score functions are the same.

76 Combining Robust Classification and Robust out-of-Distribution Detection

BGD

BGL

BGP

LSE

ML

MSP

NUL

BGD

BGL

BGP

LSE

ML

MSP

NUL

BGD BGL BGP LSE ML MSP NUL

None

O
O

D
 a

tt
ac

k
ed

IN
+

O
O

D
 a

tt
ac

k
ed

A
tt

ac
k

ed
 d

is
tr

ib
u

ti
o

n
 &

 a
tt

ac
k

 o
b

je
ct

iv
e

CIFAR−10 − L2 norm

.92182 .74015 .91620 .91482 .91438 .88117 .90751

.83751 .70033 .84404 .81719 .80463 .73939 .80591

.90325 .59962 .88840 .92240 .92506 .90061 .91964

.83887 .67898 .84017 .82129 .81477 .76891 .81131

.84836 .75819 .85446 .79764 .78760 .72807 .78138

.84925 .76387 .85798 .80111 .78702 .71277 .78485

.85813 .76929 .86819 .81454 .79725 .69877 .79838

.85110 .76564 .85739 .79790 .78765 .72679 .78110

.70257 .67555 .72995 .67140 .63435 .53936 .65561

.86256 .47042 .83980 .92384 .92812 .91573 .92753

.70875 .64214 .71749 .67943 .66644 .61697 .66713

.73389 .78890 .75874 .61949 .59733 .52131 .59173

.73501 .79817 .77284 .63513 .59322 .48398 .60678

.77279 .80554 .81352 .70305 .64416 .44124 .67713

.74195 .80289 .76795 .62034 .59739 .51855 .59112

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
U

C

BGD

BGL

BGP

LSE

ML

MSP

NUL

BGD

BGL

BGP

LSE

ML

MSP

NUL

BGD BGL BGP LSE ML MSP NUL

None

O
O

D
 a

tt
ac

k
ed

IN
+

O
O

D
 a

tt
ac

k
ed

A
tt

ac
k

ed
 d

is
tr

ib
u

ti
o

n
 &

 a
tt

ac
k

 o
b

je
ct

iv
e

CIFAR−10 − L
∞

 norm

.89766 .57558 .89165 .86583 .85777 .81344 .85245

.75601 .57730 .78062 .71851 .69552 .62296 .70563

.89313 .36731 .85903 .90714 .90525 .87466 .90253

.76517 .52171 .76701 .73237 .72476 .68803 .72221

.78047 .68969 .80298 .67557 .66379 .61678 .65573

.78037 .69667 .81164 .68544 .66265 .58734 .66512

.79261 .68812 .82899 .71193 .67915 .56603 .69131

.78526 .70067 .80843 .67608 .66371 .61488 .65534

.54825 .60301 .61094 .52136 .47137 .39081 .50692

.88823 .22177 .83724 .94847 .95046 .93165 .95170

.56445 .50367 .56323 .53962 .53895 .53752 .53245

.60800 .80552 .66732 .41646 .40734 .39325 .39084

.60878 .81202 .70113 .44824 .40654 .33588 .41894

.66309 .77730 .76642 .57142 .48519 .28487 .54258

.62128 .82398 .68494 .41764 .40743 .39069 .39038

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
U

C

Figure 5.7: OOD detection AUC for the Wide-Resnet architecture with the ℓ2 (left) and
ℓ∞ (right) threat models. The training used the sbgp score function and DT

out as OOD
dataset. The minimum AUC is marked with a border in each block per column and
the minimax AUC is indicated using a thick border. Three different attack scenarios are
shown: no attack, only OOD samples are perturbed, and both in-distribution and OOD
samples are perturbed. These attacks are indicated on the vertical axis. Under each
attack, 7 different score functions are indicated that are used for attacking samples at
detection time. The horizontal axis indicates possible score functions used for detection.

5.9.3 Ratio Models

The detailed OOD evaluation of the Ratio models [2] is shown in fig. 5.6. We can
see all the AUC values (not only the aggregated minimax AUC) without attack, with
OOD attacked, and with both in-distribution and OOD attacked. For a faithful OOD
evaluation, we followed the methodology in [2]. In particular, we used the same
OOD datasets, namely SVHN, CIFAR-100, LSUN_CR, Imagenet(CIFAR-10 classes ex-
cluded), Uniform Noise, and Synthetic Noise. As an attack, we used PGD100

5 in the ℓ2
threat model with a step size of α = ϵ/100∗2.5 with ϵ = .5 and ϵ = 1 for in-distribution
and OOD, respectively.

After fixing these parameters, we evaluated the combinations of all the detection
and attack score functions. For both networks, the results suggest that the attacks
are most effective when the attacking and detection score functions are the same,
supporting our conclusions in section 5.9.1. There is only one exception for this,
namely for the detection method based on the score function suni the attack based
on slse is slightly more effective, but using suni has practically the same strength,
the difference is negligible. Also, we can see again that the best option is to use
the same score function for detection that was used for training, as we have seen in
section 5.9.2.

Both ratio models were trained using the suni score function and evaluated with
the smsp detection method [2]. However, our results show that the best performance
is achieved when the suni or slse detection methods are used that are more in line

5.10 Generalization to Unseen OOD Datasets 77

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 Dout
U Dout

SN

F−MNIST K−MNIST

N
o

n
e

S
N

K
−

M
N

IS
T

T
ra

in
in

g
 O

O
D

 D
at

as
et

s
&

 D
ef

en
se

s

Test OOD Datasets

MNIST

.37 .77 .64 .70 .76 .64 .54 .78 .74 .55 .45 .40 .53 .50 .41 .58 .47 .43 .49 .42 .31 .01

.37 .77 .65 .70 .76 .64 .55 .77 .74 .55 .45 .39 .53 .50 .41 .58 .47 .43 .49 .41 .31 .01

.41 .61 .56 .63 .70 .42 .49 .38 .61 .43 .29 .32 .36 .27 .30 .44 .36 .27 .34 .25 .19 0

.37 .84 .65 .75 .76 .59 .56 .65 .75 .57 .41 .43 .55 .44 .40 .57 .49 .42 .54 .40 .38 .01

.93 .94 .93 .93 .93 .87 .93 .89 .93 .93 .91 .89 .90 .90 .89 .90 .87 .91 .90 .90 .89 .85

.98 .97 .98 .97 .98 .89 .98 .90 .98 .97 .96 .91 .92 .96 .93 .92 .89 .95 .94 .94 .97 .95

.99 .98 1 .98 1 .87 1 .88 .99 .99 .98 .90 .91 .98 .93 .91 .87 .95 .95 .94 1 1

1 1 1 1 1 .98 1 .98 1 1 1 .98 .99 1 .99 .99 .97 .99 .99 .99 1 1

.86 .88 .88 .89 .90 .89 .88 .93 .89 .90 .87 .88 .88 .85 .87 .89 .88 .85 .87 .88 .54 .50

.96 .97 .97 .97 .98 .91 .97 .95 .97 .96 .97 .96 .97 .96 .96 .97 .96 .95 .96 .97 .83 .79

.99 1 .99 .99 1 .85 1 .92 .99 .97 .99 .99 .99 .99 .99 .99 .97 .99 .99 .99 1 1

1 1 1 1 1 .96 1 .99 1 .99 1 1 1 1 1 1 .99 1 1 1 1 1

 0

 0.2

 0.4

 0.6

 0.8

 1

R
o

b
u

st
 A

U
C

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

LSE

ML

MSP

UNI

0 1 2 3 4 5 6 7 8 9
SVHN

Dout
T Dout

SN Dout
U

16

16

16

52

52

52

N
o

n
e

S
N

T

T
ra

in
in

g
 O

O
D

 D
at

as
et

s
&

 D
ef

en
se

s

Test OOD Datasets

CIFAR−10

.38 .40 .39 .39 .41 .40 .39 .39 .36 .36 .33 .39 .47

.41 .44 .42 .42 .43 .42 .42 .41 .39 .39 .33 .42 .39

.37 .41 .35 .37 .37 .35 .37 .36 .34 .35 .25 .35 .18

.38 .40 .39 .39 .41 .40 .39 .39 .36 .36 .33 .39 .47

.48 .48 .43 .45 .46 .45 .47 .41 .44 .43 .33 .47 .25

.50 .51 .45 .48 .48 .47 .49 .42 .46 .46 .33 .50 .25

.41 .42 .37 .40 .38 .38 .42 .34 .39 .39 .25 .41 .27

.48 .48 .43 .45 .46 .45 .47 .41 .44 .43 .33 .47 .25

.54 .54 .58 .60 .57 .59 .55 .54 .54 .54 .30 .98 .38

.56 .57 .59 .62 .58 .60 .57 .54 .55 .56 .30 .98 .36

.48 .49 .50 .53 .49 .51 .48 .45 .47 .48 .22 .98 .21

.54 .54 .58 .60 .57 .59 .55 .54 .54 .54 .30 .98 .38

.52 .55 .55 .58 .54 .56 .52 .48 .49 .52 .29 .99 .25

.53 .56 .56 .59 .55 .56 .53 .48 .50 .53 .30 .99 .25

.40 .43 .42 .45 .40 .42 .41 .36 .37 .40 .22 .99 .24

.52 .55 .55 .58 .54 .56 .52 .48 .49 .52 .29 .99 .25

.65 .69 .57 .58 .54 .57 .59 .58 .57 .56 .60 .50 .98

.62 .66 .55 .57 .53 .55 .57 .55 .56 .55 .56 .51 .97

.59 .62 .52 .54 .50 .52 .54 .52 .53 .52 .53 .48 .96

.65 .69 .57 .58 .54 .57 .59 .58 .57 .56 .60 .50 .98

.69 .73 .61 .62 .57 .62 .62 .57 .62 .60 .68 .54 .98

.68 .71 .60 .61 .57 .61 .62 .56 .61 .60 .65 .56 .98

.64 .68 .57 .58 .54 .57 .59 .53 .58 .57 .63 .53 .98

.69 .73 .61 .62 .57 .62 .62 .57 .62 .60 .68 .54 .98

 0

 0.2

 0.4

 0.6

 0.8

 1

R
o

b
u

st
 A

U
C

Figure 5.8: Minimum OOD detection AUC over MNIST and CIFAR-10 under combi-
nations of OOD datasets used during training and detection. The databases used for
training are indicated on the vertical axis. The training objectives were ρuniout in both
cases. Under each training OOD dataset, 4 different score functions are indicated that
are used for detection. The horizontal axis indicates OOD datasets used for evaluation.
The CIFAR-10 plot also includes the smallest and largest network architecture, indicated
on the vertical axis.

with the training objective. The significance of the proper detection method is largest
in the most adversarial case, when both the in-distribution and OOD inputs are at-
tacked. It is remarkable that simply replacing the score function with the one used
for training the model, (namely, suni) offers a 4% improvement of the robust AUC
value compared to the detection method based on smsp, which was used in [2].

5.9.4 Models with Trainable Background Class

Our results for the case of architectures with a trainable background class are shown
in fig. 5.7. Here, we used the same architecture as in [65], to verify that also in this
case, the best choice is following our proposed rules for choosing score functions.
Indeed, it can be verified based on our results that this is the case. In particular, the
best score function to use in all the components is sbgp in the case of both the ℓ2 and
ℓ∞ threat models.

5.10 Generalization to Unseen OOD Datasets

It is a central question whether robust OOD detection generalizes beyond the OOD
dataset that was used during the adversarial training. The current practice for evalu-
ating OOD detection is using as many datasets as possible and aggregating the met-
rics to have a single performance measure. Although the performance per dataset
is also often reported, finer details such as class-wise performance are hard to find.

78 Combining Robust Classification and Robust out-of-Distribution Detection

Here, we provide an evaluation at a finer level of detail, and we look at general-
ization to each individual class in the datasets involved. In this section, our main
conclusion is that the learned robust models do not generalize well for every possible
OOD class, despite having a good average performance.

Our first set of results related to this problem can be found in fig. 5.8. The values
shown in the table correspond to those of the most successful attacks, that is, the
table represents the worst case scenario. The most successful attack, as described
previously, is the scenario when both in-distribution and OOD samples are adversar-
ially perturbed, based on the same score function that is used for detection. The
databases are examined at a fine resolution, that is, we consider all the classes of the
unseen databases (see section 5.5.3 and section 5.5.4) as a separate database.

We can see that the models do not generalize equally well to each OOD dataset.
On MNIST, the models seem to be less effective in identifying some classes as OOD,
for example, Fashion-MNIST classes 5 (Sandal) and 7 (Sneaker). Similar observa-
tions can be made regarding the CIFAR-10 models. For example, SVHN classes 0 and
1 are identified as OOD much easier than the other classes.

We can also see that, overall, the DT
out dataset offers the best robust OOD per-

formance over CIFAR-10. However, it is remarkable that training with DT
out does not

generalize well to DSN
out (although it does generalize to the uniform distribution DU

out)
and the performance is not very impressive on the test set of DT

out either. On the other
hand, training with DSN

out is radically different: in that case the model clearly overfits
DSN

out without any generalization to DT
out or DU

out. This suggests that a mixture of mul-
tiple OOD datasets might be a better choice for representing OOD samples during
training.

5.10.1 Results with CIFAR-100 classes

To examine OOD generalization in an even finer detail, we present more experimen-
tal data over additional models and over the CIFAR-100 dataset, class-wise. Recall
that here, we treat each class as a separate OOD dataset so we have 100 values for
CIFAR-100 representing the OOD detection performance on each class. The min-
imum AUC values are displayed in fig. 5.9 in fine resolution, where each column
represents an OOD dataset (a class) that are grouped according to the CIFAR-100
superclasses.

Like in our previous results, the best OOD detection is achieved when the DT
out

dataset is used as the training OOD dataset, for both norms. In general, the conclu-
sions made in section 5.10 so far are supported by the larger, more detailed data.
However we can draw some additional conclusions. Namely, we can see great dif-
ferences across the CIFAR-100 superclasses. We identified four types of these super-
classes. We shall review these one by one below.

5.10 Generalization to Unseen OOD Datasets 79

T
S

U
S

V
H

N
A

M
fi

s
h

fl
o

w
e
rs

F
C

F
&

V
E

D
fu

rn
it

u
re

in
s
e
c
ts

L
C

M
M

O
T

N
O

S
O
&

H
M

S
M

N
II

p
e
o

p
le

re
p

ti
le

s
S

M
tr

e
e
s

v
e
h

ic
le

s
1

v
e
h

ic
le

s
2

b
g

b
g

b
g

b
g

b
g

b
g

b
g

b
g

u
n

i

u
n

i

u
n

i

u
n

i

u
n

i

u
n

i

u
n

i

u
n

i

ls
e

ls
e

ls
e

ls
e

ls
e

ls
e

ls
e

ls
e

D
-1

6
W

D
-1

6
W

D
-5

2
W

R
-2

8

D-16WD-16WD-52WR-28D-16WD-16WD-52WR-28

L2 norm

NoneSynthetic NoiseTiny

b
g

b
g

b
g

b
g

b
g

b
g

b
g

b
g

u
n

i

u
n

i

u
n

i

u
n

i

u
n

i

u
n

i

u
n

i

u
n

i

ls
e

ls
e

ls
e

ls
e

ls
e

ls
e

ls
e

ls
e

D
-1

6
W

D
-1

6
W

D
-5

2
W

R
-2

8

D-16WD-16WD-52WR-28D-16WD-16WD-52WR-28

L∞ norm

NoneSynthetic NoiseTiny

Training OOD Datasets & Training Objectives

T
e
s
t

O
O

D
 D

a
ta

s
e
ts

.3
7

.2
8

.3
4

.3
7

.2
2

.3
4

.3
4

.3
3

.3
1

.3
2

.3
2

.2
8

.3
1

.2
7

.3
0

.3
5

.2
9

.3
1

.3
1

.2
4

.2
8

.3
3

.3
2

.3
1

.3
1

.2
6

.3
2

.3
4

.3
0

.3
3

.3
7

.2
6

.3
7

.3
4

.3
9

.3
0

.2
9

.3
1

.3
1

.2
6

.3
3

.2
9

.2
6

.3
0

.2
6

.2
6

.3
5

.3
5

.3
6

.3
8

.3
4

.4
1

.3
0

.3
5

.2
5

.2
6

.2
5

.4
0

.3
0

.2
9

.2
6

.3
3

.3
1

.3
1

.3
8

.2
8

.3
3

.3
4

.3
1

.3
2

.2
8

.2
8

.2
7

.3
0

.2
6

.3
8

.2
5

.2
8

.3
0

.3
4

.2
5

.2
8

.2
9

.3
2

.3
4

.3
5

.3
8

.3
2

.4
1

.4
0

.3
7

.1
3

.3
0

.0
6

.2
9

.3
1

.2
7

.2
4

.3
1

.3
1

.4
2

.4
4

.4
2

.4
3

.4
4

.4
3

.4
3

.4
2

.3
9

.3
9

.3
4

.4
3

.4
8

.4
0

.2
8

.3
5

.3
7

.2
2

.3
3

.3
5

.3
4

.2
9

.3
1

.3
3

.2
8

.3
1

.2
9

.3
1

.3
5

.3
1

.3
2

.3
2

.2
9

.3
1

.3
5

.3
3

.3
3

.3
1

.3
0

.3
2

.3
2

.3
1

.3
1

.3
6

.2
6

.3
6

.3
5

.4
0

.3
2

.3
3

.3
4

.3
5

.2
8

.3
6

.3
3

.3
0

.3
4

.2
9

.2
6

.3
4

.3
4

.3
7

.3
7

.3
2

.4
5

.2
9

.3
3

.2
5

.2
7

.2
7

.4
1

.3
2

.3
2

.2
8

.3
8

.3
5

.3
5

.3
7

.3
0

.3
4

.3
8

.3
5

.3
4

.3
1

.3
0

.2
9

.3
2

.3
0

.3
9

.2
7

.3
1

.3
3

.3
3

.2
7

.3
2

.3
4

.3
6

.3
8

.3
5

.3
6

.3
2

.3
9

.4
2

.3
9

.1
4

.3
2

.0
7

.2
8

.3
0

.2
7

.2
4

.2
9

.3
2

.4
5

.4
6

.4
4

.4
5

.4
6

.4
6

.4
7

.4
1

.4
4

.4
2

.3
5

.4
6

.5
4

.3
7

.2
9

.3
2

.3
2

.2
1

.2
8

.2
9

.3
4

.3
1

.2
7

.2
7

.2
2

.2
6

.2
2

.2
4

.2
9

.2
7

.2
6

.2
7

.2
6

.2
4

.3
0

.2
5

.2
7

.2
6

.2
4

.2
9

.2
7

.2
5

.2
6

.3
1

.2
1

.3
2

.3
1

.3
6

.2
9

.2
9

.2
9

.3
4

.2
3

.3
1

.3
2

.2
8

.3
1

.2
4

.2
4

.3
0

.2
8

.3
5

.3
2

.3
5

.4
3

.3
0

.3
5

.2
6

.2
3

.2
5

.3
3

.3
0

.3
1

.2
6

.3
7

.3
1

.3
0

.3
1

.2
7

.2
9

.3
5

.3
6

.3
3

.2
6

.2
3

.2
4

.2
5

.2
4

.3
8

.2
4

.3
0

.3
0

.3
0

.2
3

.3
0

.3
1

.3
5

.3
6

.3
2

.3
3

.2
8

.3
5

.4
1

.3
5

.1
0

.2
3

.0
6

.2
5

.2
6

.2
5

.1
9

.2
6

.2
5

.4
2

.4
7

.4
3

.4
5

.4
6

.4
5

.4
5

.4
0

.4
1

.4
2

.3
1

.4
2

.3
1

.4
1

.3
2

.3
6

.3
8

.2
5

.3
7

.3
7

.3
7

.3
5

.3
5

.3
7

.3
2

.3
7

.2
9

.3
4

.3
9

.3
6

.3
6

.3
4

.3
5

.3
3

.3
7

.3
6

.3
5

.3
7

.3
3

.3
8

.3
7

.3
3

.3
5

.4
1

.3
1

.4
1

.4
1

.4
4

.3
5

.3
4

.3
5

.3
8

.2
8

.3
5

.3
5

.3
3

.3
5

.2
8

.3
2

.3
9

.3
8

.4
2

.4
2

.4
1

.4
6

.3
6

.4
2

.3
0

.2
8

.3
0

.3
8

.3
4

.3
4

.3
0

.3
9

.3
7

.3
5

.3
9

.3
3

.3
7

.4
0

.3
8

.4
0

.3
3

.3
1

.3
1

.3
2

.3
0

.4
2

.2
9

.3
4

.3
5

.3
5

.3
2

.3
4

.3
6

.3
8

.4
0

.3
7

.3
8

.3
6

.4
2

.4
4

.4
2

.1
6

.3
4

.1
1

.3
2

.3
8

.3
2

.2
7

.3
3

.3
3

.4
8

.5
2

.4
8

.4
9

.5
0

.4
9

.5
0

.4
8

.4
7

.4
6

.3
9

.4
9

.6
3

.3
9

.3
0

.3
5

.3
5

.2
0

.3
3

.3
2

.3
8

.3
5

.2
9

.3
1

.2
8

.3
0

.2
5

.3
0

.3
3

.2
8

.3
0

.3
2

.2
5

.2
8

.3
5

.3
1

.3
0

.3
0

.2
6

.3
1

.3
1

.2
8

.3
0

.3
4

.2
4

.3
4

.3
3

.4
0

.3
0

.3
0

.3
1

.3
3

.2
3

.3
5

.3
5

.3
2

.3
4

.3
0

.2
4

.3
3

.3
2

.3
6

.3
4

.4
8

.4
4

.2
8

.3
3

.3
1

.2
6

.2
6

.4
0

.3
1

.3
3

.2
9

.3
8

.3
5

.3
5

.3
5

.2
9

.3
1

.3
7

.3
6

.3
3

.3
0

.2
9

.2
9

.3
1

.2
8

.3
9

.2
5

.3
1

.3
2

.3
2

.2
7

.3
2

.3
3

.3
6

.3
9

.3
4

.3
7

.2
9

.3
8

.4
1

.3
6

.1
2

.2
7

.0
6

.2
7

.2
9

.2
4

.2
2

.2
9

.2
9

.6
9

.7
0

.7
2

.7
6

.6
9

.7
3

.7
0

.6
9

.6
8

.6
9

.3
3

1
.2

2

.3
5

.2
9

.3
1

.3
2

.1
9

.3
2

.3
0

.3
5

.3
5

.2
8

.2
8

.2
7

.2
9

.2
4

.2
8

.3
0

.2
5

.2
7

.2
8

.2
2

.2
5

.3
2

.2
7

.2
8

.2
8

.2
3

.2
9

.2
9

.2
5

.2
6

.3
1

.2
1

.3
2

.3
0

.3
2

.2
7

.2
7

.2
9

.3
0

.2
2

.3
0

.3
0

.2
7

.2
9

.2
5

.2
3

.3
0

.2
9

.3
4

.2
9

.4
4

.4
1

.2
7

.3
5

.2
9

.2
4

.2
3

.3
6

.2
6

.2
8

.2
4

.3
4

.2
9

.3
0

.3
3

.2
7

.3
0

.3
3

.3
2

.3
1

.2
5

.2
5

.2
4

.2
8

.2
4

.3
6

.2
3

.2
8

.2
9

.3
0

.2
3

.2
8

.2
8

.3
2

.3
4

.3
1

.3
4

.2
7

.3
4

.3
8

.3
3

.1
0

.2
4

.0
5

.2
5

.2
4

.2
3

.1
9

.2
7

.2
6

.5
7

.5
6

.5
9

.6
2

.5
8

.6
1

.5
7

.5
3

.5
7

.5
7

.3
2

.9
8

.2
9

.3
7

.2
6

.3
2

.3
4

.1
9

.3
0

.3
2

.3
2

.2
9

.2
8

.3
0

.2
8

.3
0

.2
5

.2
8

.3
2

.2
7

.2
9

.3
1

.2
4

.2
7

.3
3

.3
1

.2
9

.2
9

.2
5

.2
9

.3
0

.2
7

.2
8

.3
2

.2
3

.3
3

.3
2

.3
8

.2
9

.2
8

.3
0

.3
1

.2
3

.3
2

.3
1

.2
9

.3
1

.2
7

.2
2

.3
0

.2
9

.3
5

.3
2

.3
5

.4
2

.2
7

.3
0

.2
5

.2
5

.2
4

.3
8

.2
8

.3
0

.2
6

.3
5

.3
3

.3
3

.3
3

.2
8

.3
1

.3
4

.3
2

.3
2

.2
9

.2
7

.2
7

.3
0

.2
7

.3
6

.2
4

.2
9

.3
1

.3
1

.2
6

.3
0

.3
0

.3
4

.3
5

.3
3

.3
5

.2
9

.3
5

.3
8

.3
4

.1
1

.2
6

.0
6

.2
5

.2
5

.2
3

.2
0

.2
6

.2
8

.6
3

.6
3

.6
8

.7
1

.6
5

.6
8

.6
4

.6
4

.6
2

.6
3

.3
0

.9
9

.2
2

.4
0

.3
3

.3
6

.3
7

.2
3

.3
6

.3
4

.4
1

.3
7

.3
1

.3
4

.3
3

.3
5

.3
1

.3
4

.3
6

.3
1

.3
3

.3
2

.2
9

.3
1

.3
5

.3
7

.3
4

.3
5

.2
9

.3
3

.3
3

.3
1

.3
3

.3
7

.2
6

.3
6

.3
6

.4
4

.3
4

.3
2

.3
4

.3
6

.2
6

.3
6

.3
3

.3
1

.3
3

.2
9

.2
6

.3
4

.3
4

.3
6

.3
6

.4
9

.4
6

.3
0

.3
4

.3
2

.2
6

.2
6

.4
1

.3
1

.3
3

.2
8

.3
9

.3
5

.3
5

.3
7

.3
1

.3
5

.3
8

.3
6

.3
6

.3
3

.3
0

.3
0

.3
3

.3
0

.3
9

.2
6

.3
2

.3
3

.3
3

.2
8

.3
3

.3
4

.3
7

.3
8

.3
6

.3
7

.3
1

.3
9

.4
2

.3
7

.1
4

.3
2

.0
7

.3
0

.3
3

.2
7

.2
5

.3
0

.3
2

.7
0

.7
2

.7
5

.7
7

.7
2

.7
4

.7
0

.7
2

.6
8

.7
0

.3
6

1
.3

1

.3
8

.3
1

.3
4

.3
6

.2
3

.3
5

.3
4

.3
8

.3
6

.3
1

.3
2

.3
0

.3
2

.2
8

.3
2

.3
5

.2
9

.3
1

.3
0

.2
5

.2
9

.3
4

.3
2

.3
2

.3
1

.2
6

.3
4

.3
2

.2
9

.3
2

.3
7

.2
5

.3
6

.3
5

.3
9

.3
1

.2
9

.3
2

.3
4

.2
3

.3
3

.3
0

.2
9

.3
0

.2
6

.2
7

.3
5

.3
5

.3
8

.3
6

.4
3

.4
3

.2
9

.3
4

.2
7

.2
5

.2
6

.3
9

.3
0

.3
1

.2
6

.3
5

.3
2

.3
2

.3
7

.2
9

.3
4

.3
5

.3
5

.3
4

.2
9

.2
8

.2
7

.3
0

.2
8

.3
9

.2
5

.3
0

.3
1

.3
2

.2
6

.3
0

.3
1

.3
3

.3
6

.3
6

.3
7

.3
2

.4
0

.4
4

.3
8

.1
4

.3
1

.0
7

.3
0

.3
1

.2
5

.2
4

.3
1

.3
3

.6
1

.6
3

.6
4

.6
5

.6
2

.6
3

.6
1

.5
7

.5
8

.5
8

.3
6

.9
9

.4
8

.3
9

.3
3

.3
6

.3
7

.2
5

.3
4

.3
5

.3
9

.3
6

.3
1

.3
4

.3
1

.3
3

.3
0

.3
1

.3
6

.3
0

.3
1

.3
2

.2
9

.2
9

.3
5

.3
5

.3
3

.3
3

.2
8

.3
7

.3
2

.3
0

.2
9

.3
6

.2
5

.3
5

.3
5

.4
0

.3
4

.3
2

.3
3

.3
5

.2
6

.3
5

.3
3

.3
0

.3
3

.2
9

.2
6

.3
4

.3
2

.3
8

.3
8

.4
1

.4
5

.3
2

.3
3

.2
9

.2
6

.2
5

.3
9

.3
1

.3
3

.2
9

.3
8

.3
5

.3
4

.3
5

.3
0

.3
4

.3
8

.3
7

.3
7

.3
2

.3
0

.3
0

.3
2

.2
9

.3
9

.2
6

.3
2

.3
3

.3
4

.2
7

.3
2

.3
4

.3
6

.3
9

.3
4

.3
5

.3
2

.3
8

.4
1

.3
8

.1
2

.2
9

.0
8

.2
8

.3
2

.2
9

.2
2

.2
9

.2
9

.6
7

.6
6

.7
1

.7
3

.6
9

.7
2

.6
7

.6
7

.6
5

.6
6

.3
4

1
.3

0

.3
5

.2
3

.2
9

.2
7

.1
7

.2
2

.2
5

.3
3

.2
8

.2
3

.2
2

.2
1

.2
4

.2
0

.2
1

.2
3

.2
2

.2
0

.2
3

.2
2

.2
3

.2
6

.2
0

.2
2

.2
4

.1
9

.2
7

.2
2

.2
0

.1
8

.2
3

.1
8

.2
4

.2
5

.2
9

.2
7

.2
8

.2
6

.3
1

.2
2

.2
7

.3
1

.2
9

.2
9

.2
2

.1
7

.2
3

.2
1

.2
9

.2
5

.4
1

.4
0

.2
2

.2
9

.2
4

.2
0

.2
2

.2
8

.2
8

.3
1

.2
5

.3
7

.2
8

.2
8

.2
7

.2
6

.2
6

.3
2

.3
4

.3
1

.2
2

.1
9

.2
1

.2
1

.2
0

.3
4

.2
2

.2
9

.3
0

.2
6

.2
2

.3
1

.2
9

.3
5

.3
5

.2
7

.2
9

.2
3

.2
9

.3
7

.3
0

.0
8

.1
9

.0
8

.1
8

.2
2

.1
9

.1
2

.2
0

.2
1

.6
6

.6
9

.7
2

.7
4

.6
9

.7
2

.6
7

.7
0

.6
4

.6
6

.2
5

1
.0

5

.3
6

.2
5

.3
1

.3
1

.1
8

.3
0

.2
9

.3
3

.2
9

.2
7

.2
8

.2
7

.2
9

.2
5

.2
8

.3
0

.2
7

.2
7

.2
9

.2
6

.2
8

.3
1

.2
8

.2
8

.2
8

.2
5

.2
8

.2
9

.2
4

.2
5

.3
1

.2
3

.3
2

.3
2

.3
8

.2
9

.2
8

.3
0

.3
2

.2
4

.3
0

.3
1

.2
9

.3
0

.2
4

.2
2

.3
0

.2
7

.3
6

.3
2

.3
9

.4
2

.2
9

.3
6

.2
5

.2
5

.2
6

.3
1

.3
1

.3
1

.2
7

.3
6

.3
0

.3
0

.3
1

.2
7

.3
0

.3
5

.3
4

.3
3

.2
6

.2
3

.2
4

.2
6

.2
4

.3
7

.2
6

.2
9

.3
0

.2
8

.2
4

.3
0

.3
0

.3
4

.3
4

.3
2

.3
3

.2
6

.3
5

.4
0

.3
3

.1
1

.2
3

.0
7

.2
5

.2
6

.2
4

.1
9

.2
5

.2
5

.5
8

.6
2

.6
1

.6
3

.6
1

.6
0

.5
7

.5
8

.5
3

.5
6

.3
0

.9
9

.2
0

.3
8

.2
7

.3
1

.3
1

.1
9

.2
6

.2
8

.3
7

.3
2

.2
5

.2
4

.2
4

.2
6

.2
4

.2
3

.2
7

.2
7

.2
4

.2
6

.2
6

.2
5

.2
9

.2
9

.2
7

.2
6

.2
2

.3
0

.2
6

.2
3

.2
1

.2
8

.2
0

.2
9

.2
9

.3
7

.3
0

.2
9

.2
8

.3
3

.2
4

.3
0

.3
2

.3
0

.3
0

.2
4

.2
0

.2
4

.2
3

.3
2

.3
1

.3
6

.4
3

.2
7

.3
2

.2
3

.2
3

.2
4

.3
1

.3
0

.3
2

.2
7

.4
0

.3
1

.3
0

.2
9

.2
6

.2
9

.3
5

.3
6

.3
4

.2
6

.2
2

.2
4

.2
4

.2
3

.3
7

.2
4

.3
0

.3
0

.2
9

.2
5

.3
2

.3
1

.3
6

.3
7

.2
9

.2
9

.2
5

.3
1

.3
8

.3
0

.0
8

.2
0

.0
7

.2
1

.2
3

.2
3

.1
5

.2
1

.2
1

.6
3

.6
5

.6
9

.7
2

.6
6

.7
0

.6
4

.6
4

.6
3

.6
4

.3
1

1
.4

3

.4
0

.3
2

.3
6

.3
7

.2
5

.3
4

.3
4

.3
8

.3
6

.3
3

.3
4

.3
1

.3
6

.2
9

.3
2

.3
7

.3
3

.3
2

.3
3

.3
3

.3
6

.3
6

.4
1

.3
6

.3
6

.3
0

.3
7

.3
4

.2
9

.2
7

.3
7

.3
2

.3
8

.3
7

.4
2

.3
5

.3
4

.3
4

.3
7

.3
0

.3
5

.3
3

.3
3

.3
3

.2
7

.2
7

.3
4

.3
3

.3
8

.3
7

.4
5

.4
6

.3
3

.3
7

.2
9

.2
9

.2
9

.3
7

.3
5

.3
4

.2
9

.3
8

.3
4

.3
3

.3
8

.3
2

.3
5

.3
9

.3
8

.4
0

.3
1

.2
9

.3
0

.3
2

.3
0

.4
1

.3
0

.3
3

.3
4

.3
4

.2
9

.3
3

.3
4

.3
6

.3
9

.3
5

.3
5

.3
4

.3
9

.4
2

.3
8

.1
3

.3
0

.0
9

.2
8

.3
5

.3
0

.2
1

.2
9

.2
9

.6
7

.6
8

.7
3

.7
5

.6
9

.7
2

.6
6

.7
0

.6
5

.6
7

.3
7

1
.3

8

.3
9

.3
0

.3
5

.3
5

.2
4

.3
2

.3
3

.3
6

.3
3

.3
0

.3
0

.2
9

.3
2

.2
9

.3
0

.3
1

.3
1

.2
9

.3
1

.3
0

.3
1

.3
4

.3
4

.3
1

.3
3

.2
8

.3
6

.3
2

.2
9

.2
6

.3
2

.2
8

.3
4

.3
4

.3
7

.3
3

.3
2

.3
5

.3
7

.2
6

.3
4

.3
3

.3
0

.3
2

.2
7

.2
4

.2
9

.2
8

.3
5

.3
2

.4
1

.4
4

.3
0

.3
7

.2
4

.2
8

.2
8

.3
7

.3
3

.3
3

.2
9

.3
7

.3
3

.3
3

.3
8

.3
1

.3
3

.3
8

.3
7

.3
9

.2
8

.2
7

.2
7

.2
9

.2
8

.3
9

.2
9

.3
3

.3
4

.3
3

.2
8

.3
2

.3
2

.3
6

.3
8

.3
1

.3
1

.3
1

.3
4

.4
0

.3
7

.1
1

.2
7

.0
8

.2
5

.3
1

.2
7

.1
9

.2
6

.2
5

.6
4

.6
6

.6
7

.6
9

.6
5

.6
7

.6
3

.6
3

.6
0

.6
2

.3
9

1
.5

7

.4
2

.3
0

.3
6

.3
7

.2
4

.3
4

.3
6

.3
9

.3
4

.3
2

.3
4

.3
2

.3
5

.3
1

.3
2

.3
6

.3
5

.3
5

.3
5

.3
5

.3
6

.3
8

.3
9

.3
6

.3
7

.3
3

.3
9

.3
4

.3
4

.2
9

.3
7

.3
0

.3
8

.3
7

.4
4

.3
6

.3
5

.3
6

.3
9

.3
0

.3
7

.3
7

.3
5

.3
6

.3
2

.2
7

.3
4

.3
2

.4
0

.3
7

.4
2

.4
8

.3
3

.3
9

.2
8

.3
0

.3
0

.4
0

.3
6

.3
8

.3
3

.4
2

.3
8

.3
7

.3
9

.3
3

.3
6

.4
1

.3
9

.4
1

.3
3

.3
1

.3
3

.3
4

.3
2

.4
1

.3
1

.3
4

.3
7

.3
5

.3
1

.3
7

.3
7

.3
9

.4
1

.3
6

.3
5

.3
4

.3
8

.4
4

.3
9

.1
2

.2
8

.0
9

.2
8

.3
3

.3
0

.2
1

.2
8

.2
9

.6
1

.6
3

.6
6

.6
9

.6
5

.6
6

.6
2

.6
1

.5
8

.6
0

.3
4

1
.4

6

.3
9

.3
3

.3
5

.3
7

.2
9

.4
4

.5
1

.4
9

.4
8

.4
3

.6
6

.7
9

.7
9

.6
8

.7
2

.7
6

.6
3

.7
3

.6
6

.7
8

.8
0

.4
5

.8
8

.7
0

.8
1

.7
0

.7
0

.6
8

.7
2

.7
2

.5
6

.7
2

.5
9

.5
4

.7
9

.4
3

.3
5

.4
0

.3
9

.4
8

.3
5

.3
5

.3
5

.3
8

.3
1

.4
3

.5
1

.4
7

.7
2

.6
4

.6
8

.5
4

.5
6

.8
2

.6
6

.3
0

.2
7

.4
6

.3
1

.3
2

.2
8

.3
7

.3
7

.3
6

.3
8

.4
2

.5
1

.3
7

.3
8

.6
7

.5
9

.6
6

.6
2

.6
8

.6
9

.4
0

.3
4

.3
1

.4
2

.3
5

.4
3

.3
6

.3
5

.3
6

.3
8

.5
0

.4
3

.4
2

.4
7

.5
1

.5
3

.2
0

.4
4

.1
5

.3
1

.5
3

.4
9

.3
3

.3
2

.3
5

.6
6

.7
0

.5
7

.5
8

.5
4

.5
6

.5
9

.5
7

.5
7

.5
7

.6
5

.5
1

1

.3
6

.2
9

.3
4

.3
6

.2
6

.4
1

.4
3

.4
5

.4
5

.3
8

.5
8

.7
0

.7
3

.5
9

.6
5

.7
0

.5
5

.6
7

.6
0

.6
8

.7
8

.4
0

.8
5

.6
6

.7
7

.6
3

.6
3

.6
0

.6
5

.6
3

.5
1

.6
8

.5
3

.4
9

.7
4

.3
8

.3
2

.3
7

.3
6

.4
2

.3
2

.3
1

.3
1

.3
4

.2
9

.3
6

.4
3

.3
9

.6
3

.5
5

.6
1

.5
0

.4
9

.7
8

.5
8

.2
8

.2
5

.4
3

.2
9

.2
9

.2
5

.3
4

.3
4

.3
3

.3
5

.3
8

.4
6

.3
4

.3
5

.6
1

.5
2

.5
8

.5
5

.6
0

.6
3

.3
8

.3
0

.2
9

.3
5

.3
2

.3
7

.3
3

.3
3

.3
3

.3
4

.4
1

.3
8

.3
3

.4
0

.4
4

.4
8

.1
7

.3
7

.0
6

.2
9

.4
8

.4
1

.2
7

.3
0

.3
2

.6
6

.7
0

.5
8

.5
9

.5
5

.5
8

.6
0

.5
8

.5
8

.5
7

.6
0

.5
2

.9
8

.3
9

.3
1

.3
5

.3
8

.2
6

.4
3

.4
8

.4
6

.4
2

.3
8

.6
0

.6
7

.7
0

.5
9

.6
4

.6
8

.5
5

.6
6

.5
9

.6
8

.7
2

.4
6

.8
2

.6
4

.7
1

.6
2

.6
1

.5
9

.5
9

.6
2

.5
2

.6
0

.5
4

.5
2

.7
7

.4
4

.3
8

.4
2

.4
1

.4
1

.3
8

.3
8

.3
8

.4
0

.3
4

.3
7

.4
6

.4
4

.6
0

.5
7

.5
8

.5
6

.4
5

.6
7

.5
1

.3
2

.3
0

.5
0

.3
3

.3
5

.3
1

.3
8

.3
9

.3
9

.3
3

.4
1

.4
8

.3
9

.4
1

.6
1

.5
5

.5
8

.5
7

.6
1

.6
3

.3
4

.3
3

.3
2

.4
2

.3
6

.4
3

.3
8

.3
8

.3
6

.4
0

.4
8

.4
2

.4
2

.4
7

.5
2

.5
3

.1
9

.4
0

.0
9

.3
0

.4
3

.4
2

.3
1

.2
9

.3
5

.6
1

.6
6

.5
3

.5
4

.5
1

.5
3

.5
5

.5
2

.5
4

.5
3

.5
9

.4
4

1

.4
2

.3
4

.3
8

.3
9

.3
0

.4
7

.5
5

.5
0

.4
9

.4
6

.7
3

.8
2

.8
4

.6
8

.7
7

.7
8

.6
7

.7
6

.6
9

.8
2

.8
2

.4
9

.8
9

.7
2

.8
3

.7
5

.7
2

.7
0

.7
2

.7
5

.5
9

.7
1

.6
1

.5
8

.8
1

.4
5

.4
0

.4
5

.4
3

.4
8

.3
7

.3
9

.4
0

.4
2

.3
4

.4
6

.5
3

.5
1

.7
4

.6
5

.6
8

.5
7

.5
8

.8
0

.6
6

.3
1

.2
9

.5
0

.3
4

.3
5

.3
0

.3
9

.4
0

.4
0

.4
2

.4
7

.5
5

.4
0

.4
2

.6
8

.6
3

.7
0

.6
9

.7
4

.7
5

.4
3

.3
4

.3
4

.4
5

.3
7

.4
7

.4
0

.4
0

.3
8

.4
1

.5
4

.4
7

.4
5

.5
0

.5
3

.5
5

.2
3

.4
8

.1
3

.3
4

.5
5

.5
2

.3
7

.3
4

.3
7

.6
8

.7
0

.6
0

.6
1

.5
6

.5
9

.6
2

.5
8

.6
0

.5
9

.6
8

.5
5

1

.3
9

.3
1

.3
5

.3
6

.2
8

.4
1

.4
9

.4
6

.4
4

.4
1

.6
1

.7
3

.7
6

.6
2

.7
0

.7
4

.6
2

.7
1

.6
4

.7
7

.8
0

.4
3

.8
7

.6
9

.7
7

.6
9

.6
4

.6
4

.6
8

.6
6

.5
3

.7
1

.5
4

.5
3

.7
6

.4
0

.3
5

.4
0

.3
8

.4
6

.3
4

.3
4

.3
4

.3
7

.2
9

.3
8

.4
5

.4
2

.6
5

.5
9

.6
1

.5
2

.5
0

.7
8

.5
9

.2
8

.2
6

.4
5

.3
1

.3
1

.2
7

.3
6

.3
5

.3
4

.3
6

.4
1

.4
8

.3
7

.3
6

.6
1

.5
6

.6
4

.6
0

.6
6

.6
8

.4
0

.3
2

.3
1

.3
9

.3
4

.4
0

.3
5

.3
4

.3
5

.3
7

.4
5

.4
0

.3
6

.4
1

.4
6

.4
9

.1
9

.4
1

.0
8

.3
1

.4
9

.4
4

.3
0

.3
1

.3
3

.6
8

.7
0

.5
8

.5
9

.5
5

.5
8

.6
0

.5
7

.5
9

.5
7

.6
4

.5
3

.9
8

.3
9

.3
2

.3
5

.3
7

.2
9

.4
6

.5
1

.4
6

.4
3

.4
5

.6
6

.7
3

.7
6

.6
0

.7
0

.7
3

.6
3

.7
2

.6
5

.7
6

.7
7

.4
8

.8
5

.6
8

.7
6

.7
0

.6
5

.6
6

.6
6

.6
8

.5
5

.6
8

.5
8

.5
7

.7
8

.4
4

.4
0

.4
5

.4
1

.4
8

.3
7

.3
8

.3
8

.4
1

.3
4

.4
2

.4
9

.4
8

.6
5

.5
9

.6
0

.5
7

.5
1

.7
0

.5
6

.3
1

.3
0

.4
9

.3
5

.3
4

.3
0

.3
8

.3
9

.4
0

.3
6

.4
5

.5
2

.4
0

.4
1

.6
3

.5
7

.6
4

.6
1

.6
7

.6
7

.3
5

.3
6

.3
4

.4
4

.3
6

.4
3

.3
9

.3
8

.3
7

.4
0

.4
9

.4
3

.4
6

.4
8

.5
1

.5
5

.2
1

.4
7

.1
0

.3
3

.4
8

.4
6

.3
3

.3
0

.3
6

.6
4

.7
0

.5
6

.5
7

.5
3

.5
5

.5
7

.5
5

.5
6

.5
6

.6
1

.4
6

1

.3
9

.3
8

.3
5

.3
8

.3
3

.5
0

.5
6

.5
3

.5
1

.5
0

.7
1

.8
2

.8
3

.7
3

.7
9

.7
8

.6
9

.7
6

.7
0

.8
2

.8
3

.5
1

.9
0

.7
4

.8
3

.7
5

.7
3

.7
3

.7
5

.7
6

.6
0

.7
4

.6
2

.6
1

.8
1

.4
8

.4
3

.4
9

.4
4

.4
8

.3
6

.3
8

.3
8

.4
0

.3
2

.4
9

.5
7

.5
3

.7
3

.6
5

.6
6

.5
7

.5
8

.8
0

.6
7

.3
0

.2
8

.4
8

.3
4

.3
4

.2
8

.4
0

.3
9

.4
1

.3
7

.4
9

.5
5

.4
0

.4
2

.6
9

.6
1

.7
0

.6
7

.7
4

.7
4

.4
0

.3
9

.3
5

.4
8

.3
8

.4
1

.4
0

.3
8

.3
8

.4
0

.5
7

.5
3

.5
2

.5
4

.5
5

.5
7

.2
2

.5
3

.1
2

.3
5

.5
6

.5
2

.3
7

.3
3

.3
8

.7
0

.6
9

.6
1

.6
0

.5
7

.6
1

.6
3

.6
0

.6
1

.6
0

.6
8

.5
4

1

.3
8

.3
6

.3
4

.3
7

.3
4

.5
0

.5
5

.4
9

.4
9

.5
2

.7
0

.8
0

.8
0

.7
1

.7
7

.7
5

.6
7

.7
3

.6
9

.7
8

.8
0

.5
1

.8
6

.7
2

.8
0

.7
3

.7
0

.7
3

.7
5

.7
4

.5
8

.7
8

.6
0

.6
0

.7
5

.4
6

.4
2

.4
8

.4
3

.5
2

.3
5

.3
6

.3
6

.3
8

.3
1

.4
9

.5
6

.5
3

.7
0

.6
4

.6
2

.5
6

.5
6

.7
5

.6
3

.3
2

.3
1

.4
7

.3
5

.3
2

.2
8

.3
8

.3
7

.3
8

.3
9

.4
9

.5
5

.3
9

.4
0

.6
8

.5
8

.7
0

.6
5

.7
3

.7
2

.3
6

.4
1

.3
3

.4
6

.3
7

.4
0

.3
8

.3
7

.3
5

.3
8

.5
6

.5
4

.5
2

.5
4

.5
4

.5
6

.2
4

.5
4

.1
1

.3
7

.6
2

.5
2

.3
8

.3
5

.4
0

.7
1

.7
3

.6
0

.6
1

.5
6

.5
9

.6
3

.5
8

.6
3

.6
1

.6
6

.5
2

.9
9

.4
1

.3
5

.3
6

.3
8

.3
1

.4
8

.5
4

.4
8

.4
4

.4
7

.6
8

.7
7

.7
9

.6
8

.7
3

.7
3

.6
7

.7
3

.6
8

.8
1

.8
1

.5
1

.8
7

.7
1

.7
9

.7
4

.6
9

.7
0

.7
1

.7
1

.5
6

.7
1

.5
9

.5
9

.8
0

.4
7

.4
4

.4
7

.4
4

.5
0

.3
7

.3
8

.4
0

.4
0

.3
3

.4
4

.5
3

.5
0

.7
0

.6
1

.6
3

.5
9

.5
4

.7
7

.6
2

.3
2

.3
1

.4
9

.3
6

.3
5

.3
1

.4
2

.3
9

.4
0

.3
7

.4
9

.5
3

.4
2

.4
4

.6
7

.6
2

.6
9

.6
5

.7
2

.7
1

.3
7

.3
8

.3
5

.4
8

.3
8

.4
3

.4
0

.4
0

.3
9

.4
1

.5
4

.4
9

.4
9

.5
1

.5
5

.5
7

.2
1

.4
7

.1
1

.3
4

.5
4

.4
9

.3
5

.3
2

.3
6

.6
4

.6
7

.5
8

.5
7

.5
4

.5
7

.5
9

.5
6

.5
8

.5
8

.6
6

.4
9

1

.4
1

.3
8

.3
7

.3
9

.3
5

.5
0

.5
9

.5
1

.5
0

.5
2

.7
3

.8
4

.8
4

.7
4

.8
0

.8
1

.7
2

.7
8

.7
4

.8
5

.8
4

.5
3

.9
1

.7
4

.8
5

.7
9

.7
5

.7
7

.7
9

.8
0

.6
3

.8
1

.6
6

.6
4

.8
3

.4
7

.4
3

.4
8

.4
5

.5
2

.3
7

.3
8

.3
8

.3
9

.3
4

.5
4

.6
0

.5
8

.7
5

.6
9

.6
9

.5
9

.6
0

.7
9

.6
8

.3
2

.2
9

.5
0

.3
5

.3
6

.3
1

.4
2

.3
9

.4
0

.4
1

.5
0

.5
7

.4
1

.4
3

.7
1

.6
3

.7
3

.6
9

.7
7

.7
6

.4
2

.4
0

.3
6

.4
8

.3
8

.4
3

.4
0

.3
8

.3
9

.4
2

.6
2

.5
5

.5
4

.5
7

.5
6

.5
8

.2
7

.5
7

.1
1

.4
0

.6
2

.5
6

.4
5

.3
7

.4
3

.7
2

.7
4

.6
4

.6
5

.6
0

.6
5

.6
6

.6
3

.6
6

.6
5

.7
1

.5
5

1

.3
9

.3
4

.3
5

.3
7

.3
3

.4
9

.5
3

.4
9

.4
9

.4
7

.7
0

.7
8

.8
0

.6
9

.7
5

.7
6

.6
8

.7
5

.7
0

.8
0

.8
1

.5
0

.8
8

.7
2

.8
0

.7
4

.7
2

.7
2

.7
3

.7
5

.5
8

.7
5

.6
2

.5
9

.8
0

.4
4

.3
9

.4
6

.4
3

.5
0

.3
5

.3
7

.3
7

.3
9

.3
2

.4
8

.5
3

.5
1

.7
3

.6
5

.6
4

.5
8

.5
8

.8
0

.6
6

.3
0

.2
9

.4
9

.3
3

.3
4

.3
0

.3
9

.3
9

.3
8

.3
8

.4
6

.5
3

.4
0

.4
0

.6
7

.5
9

.6
9

.6
6

.7
3

.7
2

.4
0

.3
9

.3
3

.4
4

.3
7

.4
0

.3
8

.3
7

.3
7

.3
9

.5
4

.5
1

.4
8

.5
1

.5
2

.5
5

.2
4

.5
0

.1
0

.3
7

.5
5

.5
1

.3
8

.3
3

.3
7

.7
1

.7
5

.6
4

.6
5

.5
9

.6
4

.6
4

.6
5

.6
4

.6
3

.6
9

.5
8

.9
6

.4
4

.3
9

.4
0

.4
2

.3
6

.5
1

.5
8

.5
4

.5
0

.5
3

.6
9

.7
7

.7
9

.6
6

.7
6

.7
8

.7
1

.7
7

.7
4

.8
3

.8
2

.5
5

.8
7

.7
3

.8
1

.7
6

.7
4

.7
5

.7
5

.7
7

.6
2

.7
6

.6
4

.6
4

.8
2

.4
8

.4
7

.5
1

.4
9

.5
3

.4
1

.4
3

.4
2

.4
4

.3
9

.4
8

.5
4

.5
4

.7
2

.6
2

.6
6

.6
3

.5
7

.7
7

.6
0

.3
6

.3
3

.5
2

.3
8

.4
0

.3
5

.4
5

.4
4

.4
5

.4
3

.5
1

.5
7

.4
6

.4
6

.7
2

.6
2

.7
1

.6
7

.7
3

.7
3

.4
2

.4
3

.4
0

.5
1

.4
3

.4
7

.4
4

.4
4

.4
3

.4
5

.5
9

.5
5

.5
4

.5
4

.5
8

.6
0

.2
5

.5
4

.1
3

.3
9

.6
0

.5
0

.4
0

.3
6

.4
1

.6
9

.7
2

.5
9

.6
1

.5
7

.6
0

.6
3

.5
8

.6
2

.6
0

.6
8

.5
0

1

.4
8

.4
3

.4
7

.5
0

.3
4

.4
8

.4
6

.4
9

.4
7

.4
7

.4
9

.4
6

.4
9

.3
8

.4
7

.5
1

.4
1

.4
4

.4
2

.3
7

.4
6

.4
3

.4
6

.4
5

.4
7

.3
8

.4
6

.4
5

.4
5

.3
9

.5
0

.4
3

.5
3

.5
1

.5
0

.4
2

.3
8

.4
2

.4
4

.4
2

.4
4

.4
0

.3
8

.4
0

.3
7

.3
8

.5
0

.4
9

.6
1

.5
3

.5
0

.5
5

.4
8

.5
5

.4
0

.3
8

.3
5

.5
0

.4
4

.4
0

.3
7

.4
5

.4
4

.4
4

.5
1

.4
0

.4
9

.4
4

.4
3

.4
6

.4
1

.4
1

.4
0

.4
3

.3
9

.5
3

.3
9

.4
0

.4
0

.4
4

.3
5

.3
9

.4
1

.4
3

.4
5

.5
3

.5
5

.4
4

.5
4

.5
6

.5
6

.1
7

.4
6

.1
3

.4
1

.4
9

.4
1

.2
9

.4
4

.4
3

.5
6

.6
2

.5
7

.5
7

.6
1

.5
8

.5
6

.5
4

.5
1

.5
2

.4
8

.4
5

.3
3

.5
1

.4
6

.4
9

.5
2

.4
1

.5
0

.4
8

.4
9

.4
8

.4
8

.5
0

.5
0

.5
2

.4
4

.5
0

.5
5

.4
4

.4
6

.4
7

.4
0

.5
0

.4
9

.5
3

.5
0

.5
1

.4
2

.5
0

.5
0

.4
8

.4
2

.4
9

.4
9

.5
1

.5
2

.5
3

.4
9

.4
6

.4
8

.4
8

.4
6

.4
6

.4
3

.4
1

.4
4

.3
8

.3
9

.4
6

.4
6

.5
9

.5
3

.4
9

.5
5

.4
7

.5
6

.3
7

.4
1

.3
7

.5
3

.4
4

.4
2

.3
8

.4
7

.4
6

.4
7

.5
6

.4
5

.4
9

.4
9

.4
7

.5
2

.4
4

.4
4

.4
2

.4
6

.4
3

.5
2

.4
4

.4
4

.4
4

.4
5

.3
6

.4
2

.4
2

.4
6

.4
6

.5
0

.5
3

.4
6

.5
4

.5
6

.5
5

.1
9

.4
7

.1
4

.4
2

.5
2

.4
6

.3
1

.4
2

.4
2

.5
7

.6
4

.5
6

.5
4

.6
0

.5
6

.5
5

.5
8

.5
0

.5
2

.5
1

.3
9

.3
1

.4
9

.4
8

.4
9

.5
1

.4
3

.4
8

.4
9

.5
0

.5
2

.4
7

.4
7

.4
8

.5
0

.4
7

.4
8

.5
1

.4
6

.4
9

.4
8

.4
3

.4
8

.4
6

.5
2

.4
9

.4
9

.4
4

.5
2

.4
8

.4
9

.4
5

.5
1

.5
3

.5
3

.5
3

.5
4

.4
7

.4
5

.4
3

.4
6

.4
7

.4
7

.4
2

.4
2

.4
3

.3
9

.4
1

.5
1

.4
9

.6
2

.5
4

.5
5

.5
4

.5
0

.6
0

.4
1

.4
0

.4
1

.4
9

.4
7

.4
3

.4
0

.4
6

.4
6

.4
4

.5
6

.4
4

.5
0

.4
8

.4
7

.5
3

.4
2

.4
4

.4
1

.4
5

.4
3

.5
1

.4
3

.4
4

.4
2

.4
4

.3
6

.4
2

.4
4

.4
5

.4
7

.5
4

.5
6

.4
7

.5
5

.5
7

.5
5

.2
2

.4
9

.2
0

.4
4

.5
4

.4
6

.3
3

.4
6

.4
4

.5
4

.5
9

.5
4

.5
3

.5
8

.5
6

.5
4

.5
4

.5
1

.5
1

.5
2

.4
5

.0
6

.5
2

.4
9

.5
1

.5
3

.4
4

.5
2

.5
1

.4
9

.5
1

.5
1

.5
1

.4
8

.5
2

.4
6

.4
9

.5
7

.5
0

.5
2

.4
9

.4
8

.5
2

.5
0

.5
3

.5
1

.5
1

.5
1

.5
8

.5
4

.5
1

.4
6

.5
5

.5
4

.5
7

.5
6

.6
0

.4
8

.4
6

.4
8

.4
8

.5
1

.4
9

.4
6

.4
2

.4
7

.4
0

.4
5

.5
4

.4
8

.6
5

.6
0

.5
5

.5
7

.5
3

.6
2

.4
4

.4
4

.4
3

.4
8

.4
6

.4
6

.4
3

.4
9

.4
9

.4
7

.5
9

.4
6

.5
3

.5
2

.4
8

.5
9

.4
4

.4
5

.4
3

.4
6

.4
3

.5
5

.4
7

.4
6

.4
6

.4
7

.4
2

.4
4

.4
6

.4
8

.5
0

.5
4

.5
5

.5
0

.5
7

.5
8

.5
6

.2
4

.4
7

.2
0

.4
4

.5
8

.5
3

.3
2

.4
7

.4
3

.5
9

.6
8

.5
8

.5
8

.6
5

.5
9

.5
9

.6
0

.5
4

.5
6

.5
4

.5
1

.6
4

.5
1

.4
8

.5
0

.5
3

.3
6

.4
9

.4
9

.5
5

.5
1

.4
6

.5
1

.4
5

.4
9

.4
1

.4
7

.5
4

.4
2

.4
6

.4
7

.4
0

.4
8

.4
8

.5
0

.4
8

.4
7

.4
0

.4
8

.5
1

.4
8

.4
0

.5
0

.4
8

.5
3

.5
2

.5
4

.4
7

.4
4

.4
5

.4
6

.4
4

.4
7

.4
6

.4
8

.4
7

.4
5

.4
0

.5
0

.4
7

.6
1

.5
5

.6
5

.5
8

.4
8

.5
8

.4
7

.4
1

.3
8

.5
1

.4
5

.4
5

.4
2

.4
9

.4
7

.4
9

.5
6

.4
3

.5
0

.4
9

.5
1

.5
0

.4
7

.4
3

.4
3

.4
5

.4
2

.5
3

.4
1

.4
5

.4
3

.4
6

.4
4

.4
6

.4
6

.4
8

.5
3

.5
2

.5
5

.4
8

.5
6

.5
8

.5
6

.1
7

.4
8

.1
4

.4
1

.5
1

.4
3

.3
0

.4
3

.4
3

.8
5

.8
7

.8
8

.8
9

.8
6

.8
7

.8
6

.8
6

.8
3

.8
4

.5
1

1
.6

3

.5
1

.4
9

.5
0

.5
3

.3
8

.5
3

.5
0

.5
7

.5
5

.5
1

.5
1

.4
8

.5
0

.4
3

.4
9

.5
7

.4
3

.4
9

.4
8

.3
8

.4
9

.4
8

.5
0

.4
9

.5
0

.4
1

.4
9

.5
2

.5
0

.4
5

.5
3

.4
6

.5
5

.5
2

.5
8

.4
6

.4
5

.4
6

.4
8

.4
8

.4
6

.4
4

.4
1

.4
2

.4
0

.4
2

.5
3

.5
0

.6
2

.5
7

.6
1

.5
8

.5
0

.6
1

.4
7

.3
9

.3
5

.5
1

.4
1

.4
3

.3
9

.4
7

.4
6

.4
6

.5
5

.4
4

.5
0

.4
9

.4
9

.5
0

.4
1

.4
1

.3
9

.4
3

.3
8

.5
6

.4
3

.4
5

.4
3

.4
9

.3
6

.4
4

.4
3

.4
7

.4
9

.5
5

.5
6

.4
7

.5
8

.5
8

.5
6

.1
9

.4
8

.1
2

.4
3

.5
3

.4
7

.3
2

.4
5

.4
6

.6
9

.7
2

.7
1

.7
3

.7
4

.7
3

.6
9

.6
6

.6
7

.6
7

.5
1

1
.4

5

.5
1

.4
9

.4
9

.5
3

.4
1

.5
2

.4
8

.5
2

.5
2

.5
1

.4
9

.4
8

.5
0

.4
5

.4
9

.5
1

.4
1

.4
3

.4
6

.3
6

.4
5

.4
8

.5
2

.4
7

.4
9

.3
8

.5
1

.4
8

.4
6

.3
9

.4
9

.4
8

.5
2

.5
1

.5
2

.4
7

.4
5

.4
7

.4
9

.4
5

.4
6

.4
4

.4
1

.4
4

.3
8

.4
0

.4
8

.4
5

.6
3

.5
4

.5
7

.5
8

.5
2

.6
4

.4
6

.4
0

.3
5

.5
0

.4
3

.4
4

.4
1

.4
7

.4
5

.4
6

.5
3

.4
4

.5
1

.4
7

.4
8

.5
0

.4
0

.4
0

.3
9

.4
2

.3
9

.5
6

.4
3

.4
6

.4
4

.4
9

.3
4

.4
2

.4
2

.4
6

.4
8

.5
3

.5
5

.5
0

.5
8

.5
9

.5
4

.1
6

.4
5

.1
4

.4
0

.5
0

.4
5

.2
8

.4
2

.4
1

.8
6

.8
8

.8
7

.8
9

.8
7

.8
8

.8
5

.8
5

.8
4

.8
3

.5
1

1
.5

3

.5
4

.5
9

.5
3

.5
7

.4
7

.5
3

.5
3

.6
2

.5
8

.5
3

.5
3

.5
4

.5
6

.4
7

.5
4

.5
5

.4
6

.4
8

.5
0

.4
3

.5
2

.5
3

.5
5

.5
1

.5
3

.4
5

.5
4

.5
3

.5
0

.4
7

.5
1

.5
0

.5
5

.5
4

.5
4

.5
0

.5
0

.5
0

.5
1

.5
4

.5
0

.4
7

.4
8

.4
7

.4
6

.4
4

.5
2

.5
0

.6
6

.5
8

.7
2

.5
9

.5
4

.6
6

.5
3

.4
3

.3
9

.5
5

.4
6

.4
7

.4
4

.5
3

.5
1

.5
0

.5
7

.4
8

.5
4

.5
3

.5
3

.5
7

.4
7

.4
5

.4
5

.4
7

.4
4

.5
6

.4
7

.4
8

.4
7

.5
0

.4
4

.4
9

.4
9

.5
2

.5
5

.5
4

.5
5

.5
2

.5
8

.6
0

.5
7

.1
9

.4
7

.1
5

.4
3

.5
2

.5
0

.3
1

.4
4

.4
4

.9
0

.9
0

.9
2

.9
3

.9
1

.9
1

.8
9

.9
0

.8
8

.8
9

.5
4

1
.5

7

.5
4

.5
3

.5
4

.5
6

.4
5

.5
1

.5
0

.5
8

.5
7

.5
1

.5
1

.5
0

.5
2

.4
5

.5
0

.5
3

.4
5

.4
6

.5
0

.4
3

.4
8

.4
9

.5
0

.4
9

.5
1

.4
4

.5
2

.5
1

.4
6

.4
3

.5
2

.4
7

.5
3

.5
3

.5
1

.4
9

.4
9

.4
9

.5
0

.5
0

.4
9

.4
6

.4
7

.4
6

.4
3

.4
1

.5
1

.4
9

.6
6

.5
4

.6
3

.6
1

.5
2

.6
5

.4
6

.4
3

.4
1

.5
5

.4
7

.4
8

.4
4

.5
2

.5
0

.5
0

.5
9

.4
5

.5
1

.5
2

.5
2

.5
5

.4
6

.4
4

.4
5

.4
7

.4
4

.5
6

.4
4

.4
7

.4
6

.4
9

.4
0

.4
7

.4
7

.5
0

.5
3

.5
2

.5
5

.4
7

.5
6

.5
9

.5
7

.2
0

.4
8

.1
5

.4
4

.5
2

.4
6

.3
2

.4
5

.4
5

.7
7

.8
1

.8
1

.8
0

.8
1

.8
0

.7
5

.7
7

.7
2

.7
5

.5
3

1
.3

9

.5
3

.5
1

.5
2

.5
4

.4
5

.5
2

.5
1

.5
3

.5
4

.5
1

.5
0

.5
0

.5
4

.4
2

.5
0

.5
4

.4
5

.4
9

.4
7

.4
1

.4
9

.5
0

.5
1

.4
9

.5
0

.4
4

.5
3

.5
0

.4
8

.4
4

.5
2

.4
7

.5
3

.5
4

.5
2

.4
8

.4
8

.4
8

.4
8

.4
8

.4
9

.4
6

.4
4

.4
7

.4
2

.4
2

.5
1

.4
9

.6
3

.5
6

.5
7

.5
9

.5
1

.6
0

.4
4

.4
2

.4
0

.5
3

.4
7

.4
5

.4
2

.4
9

.4
9

.4
7

.5
6

.4
6

.5
2

.5
1

.5
0

.5
2

.4
4

.4
4

.4
3

.4
6

.4
3

.5
5

.4
4

.4
5

.4
6

.4
8

.3
9

.4
5

.4
6

.4
9

.5
1

.5
3

.5
5

.4
9

.5
7

.5
9

.5
8

.2
0

.4
9

.1
6

.4
4

.5
4

.4
9

.3
3

.4
4

.4
4

.8
6

.8
4

.8
6

.8
8

.8
5

.8
8

.8
5

.8
2

.8
2

.8
3

.5
2

1
.4

5

.5
0

.4
6

.4
8

.4
9

.4
1

.4
8

.4
9

.5
1

.4
9

.4
8

.4
7

.4
9

.5
0

.4
5

.4
7

.5
0

.4
6

.4
5

.4
7

.4
3

.4
9

.4
6

.5
2

.4
9

.5
1

.4
3

.5
1

.4
9

.4
7

.4
1

.4
7

.5
0

.5
0

.5
1

.5
0

.4
5

.4
6

.4
5

.4
8

.4
9

.4
2

.4
2

.4
2

.4
1

.3
7

.4
0

.4
7

.4
5

.6
0

.5
1

.5
9

.5
1

.4
9

.5
7

.4
1

.3
9

.3
7

.4
5

.4
4

.4
1

.3
8

.4
8

.4
3

.4
1

.5
1

.4
6

.5
0

.4
8

.4
7

.5
4

.4
0

.4
1

.3
9

.4
2

.4
0

.5
0

.4
5

.4
5

.4
4

.4
5

.3
6

.4
3

.4
1

.4
6

.4
6

.5
3

.5
5

.4
4

.5
3

.5
6

.5
1

.2
0

.4
7

.1
8

.4
2

.5
6

.4
8

.3
1

.4
4

.4
1

.8
6

.8
7

.8
7

.9
0

.8
8

.8
9

.8
6

.8
4

.8
4

.8
5

.4
9

1
.4

4

.4
8

.5
3

.4
8

.4
9

.4
5

.4
9

.4
9

.5
3

.5
7

.4
8

.4
7

.4
7

.5
0

.4
4

.4
5

.5
1

.4
7

.4
7

.4
9

.4
7

.4
9

.4
6

.5
1

.4
6

.4
8

.4
5

.5
4

.5
0

.4
8

.4
4

.4
9

.4
9

.5
3

.5
2

.5
2

.4
6

.4
4

.4
4

.4
6

.4
6

.4
5

.4
2

.4
1

.4
2

.3
8

.4
1

.4
8

.4
6

.6
1

.5
4

.6
2

.5
1

.5
2

.6
3

.4
8

.4
0

.3
9

.4
8

.4
5

.4
3

.3
9

.4
8

.4
6

.4
2

.5
3

.4
4

.5
0

.4
7

.4
8

.5
5

.4
1

.4
2

.4
0

.4
3

.4
1

.5
1

.4
3

.4
5

.4
4

.4
6

.3
6

.4
3

.4
3

.4
5

.4
7

.5
2

.5
4

.4
6

.5
3

.5
5

.5
1

.2
3

.4
7

.2
0

.4
3

.5
4

.4
9

.3
1

.4
4

.4
2

.6
5

.7
2

.7
0

.7
1

.7
2

.7
0

.6
4

.6
5

.6
0

.6
5

.4
5

1
.2

5

.4
2

.4
3

.4
2

.4
5

.3
6

.4
3

.4
3

.4
6

.4
8

.4
1

.4
3

.4
5

.4
8

.3
8

.4
4

.4
9

.4
0

.4
3

.4
4

.4
1

.4
8

.3
9

.4
9

.4
3

.4
6

.4
1

.4
7

.4
5

.4
3

.3
6

.4
0

.4
6

.4
4

.4
6

.4
7

.4
0

.4
0

.3
8

.4
0

.4
4

.3
9

.3
4

.3
5

.3
5

.3
1

.3
3

.4
1

.3
7

.5
4

.5
0

.4
4

.4
7

.4
1

.5
2

.3
5

.3
3

.3
3

.4
1

.3
8

.3
8

.3
4

.4
2

.3
9

.3
8

.4
7

.3
7

.4
3

.4
1

.4
3

.5
1

.3
4

.3
6

.3
5

.3
8

.3
5

.4
3

.4
1

.3
7

.3
6

.4
0

.2
8

.3
6

.3
8

.3
8

.4
0

.4
6

.4
8

.3
9

.4
6

.4
8

.4
6

.1
6

.4
3

.1
7

.3
6

.4
9

.4
4

.2
3

.3
8

.3
5

.8
2

.8
5

.8
4

.8
4

.8
5

.8
2

.7
8

.8
2

.7
5

.7
9

.5
1

1
.2

8

.5
5

.5
1

.5
4

.5
6

.4
8

.5
6

.5
5

.5
6

.5
3

.5
5

.5
6

.5
6

.5
8

.5
3

.5
4

.6
1

.5
2

.5
2

.5
2

.5
2

.5
6

.5
2

.5
5

.5
6

.5
5

.5
3

.6
0

.5
6

.5
6

.5
1

.5
5

.5
8

.5
7

.5
9

.5
7

.5
2

.4
9

.5
2

.5
3

.5
3

.5
0

.4
6

.4
4

.4
6

.4
2

.4
6

.5
2

.5
0

.6
5

.6
0

.6
7

.5
6

.5
2

.6
2

.4
7

.4
4

.4
1

.5
2

.4
5

.4
8

.4
4

.5
2

.5
1

.4
9

.6
1

.5
0

.5
4

.5
5

.5
2

.6
3

.4
7

.4
9

.4
7

.5
0

.4
9

.5
7

.5
1

.5
0

.4
9

.5
1

.4
3

.4
8

.4
8

.5
0

.5
2

.5
6

.5
8

.5
1

.5
8

.5
9

.5
9

.2
1

.5
1

.3
1

.4
2

.6
0

.5
4

.2
9

.4
4

.4
3

.8
1

.8
6

.8
3

.8
5

.8
5

.8
3

.8
0

.8
1

.7
5

.7
8

.5
5

1
.7

0

.5
7

.5
1

.5
5

.5
6

.4
5

.5
8

.5
8

.5
7

.5
5

.5
4

.5
7

.5
7

.5
9

.5
8

.5
7

.6
1

.5
3

.5
6

.5
4

.5
2

.5
9

.5
6

.6
1

.5
9

.6
0

.5
3

.6
3

.5
7

.5
7

.4
9

.5
6

.5
6

.5
8

.5
8

.6
0

.5
5

.5
3

.5
6

.5
7

.5
6

.5
0

.4
9

.4
6

.5
0

.4
1

.4
6

.5
3

.5
0

.6
6

.6
0

.5
9

.6
2

.5
3

.6
5

.4
3

.4
8

.4
5

.5
3

.5
0

.5
0

.4
6

.5
4

.5
0

.5
0

.6
1

.5
3

.5
7

.5
8

.5
5

.6
3

.4
7

.4
7

.4
6

.5
1

.4
8

.5
9

.5
4

.5
2

.5
2

.5
3

.4
3

.5
0

.4
9

.5
4

.5
4

.6
0

.5
9

.5
2

.6
0

.6
3

.6
1

.2
4

.5
5

.2
3

.4
6

.6
2

.5
2

.3
4

.4
9

.4
7

.6
8

.7
5

.7
0

.7
1

.7
3

.7
0

.6
4

.7
2

.5
8

.6
7

.5
2

1
.5

3

.5
1

.4
4

.5
0

.5
1

.3
9

.5
6

.5
3

.5
2

.4
8

.5
2

.5
5

.5
9

.6
0

.5
4

.5
7

.5
7

.5
2

.5
2

.5
4

.5
1

.6
2

.5
1

.6
1

.5
6

.6
0

.5
2

.6
0

.5
5

.5
4

.4
8

.5
2

.5
8

.5
5

.5
7

.5
7

.5
1

.4
9

.5
1

.5
1

.5
2

.4
6

.4
5

.4
6

.4
8

.4
1

.3
8

.4
6

.4
3

.6
3

.5
6

.5
1

.5
7

.4
6

.6
2

.4
0

.4
5

.4
0

.4
7

.4
4

.4
6

.4
5

.5
0

.4
9

.4
6

.5
8

.4
8

.5
5

.5
4

.5
4

.6
2

.4
6

.4
7

.4
6

.4
9

.4
7

.5
2

.5
1

.4
8

.4
7

.4
8

.4
3

.4
5

.4
7

.4
8

.5
2

.5
2

.5
3

.4
6

.5
3

.5
7

.5
8

.1
9

.5
0

.2
2

.4
0

.5
6

.4
9

.2
7

.4
2

.4
2

.7
7

.8
3

.8
0

.8
1

.8
1

.8
0

.7
5

.7
6

.7
2

.7
4

.5
6

1
.6

9

.5
2

.5
0

.5
1

.5
6

.4
4

.6
1

.6
8

.6
4

.6
4

.5
8

.8
1

.8
8

.8
9

.8
5

.8
4

.8
7

.8
0

.8
7

.7
8

.9
0

.9
0

.5
6

.9
5

.8
3

.9
1

.8
6

.8
6

.7
8

.8
6

.8
8

.7
5

.8
7

.7
6

.7
5

.9
4

.6
0

.5
0

.5
4

.5
7

.5
9

.5
0

.4
2

.4
1

.4
7

.4
1

.6
3

.7
6

.7
2

.8
8

.8
0

.7
7

.7
6

.7
4

.9
0

.7
8

.4
1

.3
9

.5
8

.4
5

.4
2

.3
9

.4
7

.4
7

.4
9

.6
0

.5
5

.6
7

.4
9

.5
1

.7
7

.7
7

.8
2

.8
0

.8
5

.8
4

.5
4

.4
7

.4
3

.5
4

.4
8

.4
7

.4
4

.4
4

.4
7

.4
9

.7
9

.7
4

.6
2

.7
2

.7
8

.7
5

.3
3

.6
9

.2
6

.5
0

.6
8

.6
1

.5
1

.5
0

.5
3

.8
5

.8
8

.7
7

.7
8

.7
4

.7
7

.7
8

.7
5

.7
8

.7
8

.8
0

.6
3

1

.5
4

.5
5

.5
2

.5
6

.4
8

.6
4

.6
9

.6
6

.6
6

.6
2

.8
2

.8
7

.8
9

.8
6

.8
6

.8
9

.7
9

.8
7

.7
9

.8
9

.9
0

.5
9

.9
4

.8
4

.9
1

.8
6

.8
8

.8
1

.8
4

.8
6

.7
6

.8
5

.7
7

.7
6

.9
3

.6
2

.5
4

.5
8

.5
9

.6
3

.4
7

.4
7

.4
3

.5
1

.4
1

.6
7

.8
0

.7
5

.9
0

.8
2

.8
1

.7
7

.7
7

.9
3

.8
3

.4
3

.3
8

.5
6

.4
5

.4
3

.3
9

.4
8

.4
7

.4
8

.5
7

.5
9

.7
0

.5
0

.5
5

.8
0

.7
6

.8
2

.7
9

.8
5

.8
3

.5
9

.5
3

.4
6

.6
0

.5
1

.4
7

.4
6

.4
3

.4
8

.4
9

.8
0

.7
6

.6
6

.7
5

.7
9

.7
5

.3
3

.6
9

.2
0

.5
1

.7
0

.6
6

.5
0

.5
2

.5
3

.8
4

.8
8

.7
7

.7
7

.7
7

.7
7

.7
8

.7
5

.7
6

.7
7

.7
8

.6
5

.9
9

.5
0

.5
2

.5
0

.5
4

.4
5

.6
3

.6
7

.6
4

.6
2

.6
0

.8
0

.8
3

.8
5

.7
9

.8
2

.8
5

.7
5

.8
3

.7
5

.8
5

.8
5

.6
1

.9
1

.8
0

.8
7

.8
2

.8
3

.7
7

.7
8

.8
3

.7
3

.7
9

.7
4

.7
3

.9
1

.6
3

.5
4

.5
9

.6
0

.6
1

.4
8

.4
9

.4
7

.5
4

.4
5

.6
2

.7
4

.7
1

.8
4

.7
7

.7
7

.7
7

.7
0

.8
8

.7
6

.4
4

.3
9

.6
1

.4
8

.4
3

.4
0

.5
1

.5
1

.5
3

.5
1

.5
8

.6
6

.5
3

.5
6

.7
6

.7
3

.7
8

.7
5

.8
0

.7
9

.5
1

.5
3

.4
7

.6
0

.5
2

.5
0

.5
0

.4
8

.4
9

.5
2

.7
5

.7
2

.6
4

.7
2

.7
7

.7
4

.3
3

.6
6

.1
9

.5
0

.6
4

.6
1

.5
0

.4
9

.5
3

.8
4

.8
8

.7
6

.7
6

.7
4

.7
6

.7
7

.7
7

.7
6

.7
6

.8
1

.6
5

1

.5
4

.5
7

.5
4

.5
7

.5
1

.6
4

.6
8

.6
7

.6
8

.6
3

.8
2

.8
9

.9
0

.8
7

.8
7

.9
0

.8
0

.8
7

.8
1

.8
9

.9
1

.6
1

.9
3

.8
3

.9
1

.8
6

.8
8

.8
4

.8
5

.8
8

.7
6

.8
7

.7
8

.7
7

.9
3

.6
3

.5
5

.6
0

.6
1

.6
8

.5
0

.4
4

.4
3

.4
8

.3
9

.7
0

.8
3

.7
7

.9
1

.8
4

.8
2

.7
8

.8
1

.9
5

.8
5

.4
3

.4
1

.5
8

.4
8

.4
6

.4
0

.4
8

.4
7

.4
7

.6
2

.5
8

.6
8

.5
3

.5
6

.8
0

.7
5

.8
4

.8
0

.8
6

.8
4

.5
9

.5
4

.4
8

.5
8

.5
1

.4
4

.4
6

.4
4

.4
9

.5
1

.8
2

.8
0

.7
1

.7
8

.8
1

.7
6

.3
6

.7
2

.2
2

.5
5

.7
2

.6
9

.5
4

.5
3

.5
5

.8
4

.8
8

.7
7

.7
6

.7
6

.7
6

.7
8

.7
7

.7
7

.7
7

.8
2

.6
0

1

.5
4

.5
1

.5
2

.5
4

.4
7

.6
1

.6
8

.6
3

.6
4

.5
9

.8
1

.8
7

.8
8

.8
2

.8
4

.8
6

.7
9

.8
5

.7
8

.9
0

.8
9

.5
7

.9
2

.8
1

.8
8

.8
5

.8
4

.7
8

.8
3

.8
5

.7
2

.8
5

.7
4

.7
5

.9
1

.6
0

.5
1

.5
6

.5
8

.6
0

.4
8

.4
7

.4
4

.4
9

.4
0

.6
1

.7
4

.6
9

.8
6

.7
8

.7
6

.7
4

.7
3

.8
9

.7
8

.4
2

.4
0

.5
7

.4
8

.4
6

.4
1

.5
1

.4
8

.4
8

.5
6

.5
8

.6
6

.5
2

.5
2

.7
7

.7
6

.8
1

.7
8

.8
4

.8
3

.5
5

.5
2

.4
5

.5
5

.4
9

.4
7

.4
6

.4
5

.4
9

.5
3

.7
1

.6
7

.5
9

.6
8

.7
4

.7
2

.3
1

.6
6

.1
6

.4
8

.6
7

.6
1

.4
7

.4
6

.5
1

.8
5

.8
7

.7
6

.7
7

.7
6

.7
6

.7
8

.7
3

.7
7

.7
8

.8
1

.6
6

.9
9

.5
2

.5
3

.5
1

.5
5

.4
6

.6
4

.7
0

.6
5

.6
2

.6
4

.8
3

.8
7

.8
9

.8
3

.8
6

.8
6

.8
0

.8
5

.7
8

.9
0

.8
9

.6
3

.9
3

.8
3

.9
0

.8
5

.8
6

.8
0

.8
0

.8
4

.7
5

.8
2

.7
7

.7
6

.9
2

.6
6

.5
8

.6
2

.6
2

.6
5

.5
0

.5
1

.4
9

.5
5

.4
4

.6
3

.7
6

.7
3

.8
7

.7
8

.7
8

.7
8

.7
3

.9
0

.7
9

.4
5

.4
0

.6
2

.4
9

.4
4

.4
0

.5
3

.5
1

.5
4

.5
4

.6
1

.7
1

.5
4

.5
9

.7
8

.7
6

.8
2

.7
8

.8
4

.8
2

.5
2

.5
5

.4
8

.6
2

.5
3

.5
0

.5
1

.4
8

.4
9

.5
3

.7
8

.7
4

.6
8

.7
4

.7
9

.7
7

.3
3

.6
7

.2
1

.5
1

.6
7

.6
5

.4
9

.5
0

.5
4

.8
2

.8
5

.7
3

.7
3

.7
2

.7
1

.7
4

.7
2

.7
4

.7
5

.7
8

.5
5

1

.5
2

.5
7

.5
1

.5
6

.5
2

.7
1

.7
4

.6
8

.6
6

.7
0

.8
8

.9
3

.9
3

.9
0

.9
1

.9
0

.8
6

.9
0

.8
6

.9
3

.9
2

.6
9

.9
6

.8
6

.9
3

.9
0

.9
0

.8
7

.8
8

.8
9

.8
0

.8
8

.8
1

.8
2

.9
3

.6
8

.6
1

.6
7

.6
5

.7
0

.4
8

.4
9

.4
8

.5
3

.4
4

.7
1

.8
4

.8
1

.9
0

.8
2

.8
0

.7
7

.7
7

.9
1

.8
3

.4
6

.4
1

.6
1

.5
1

.4
2

.3
8

.5
2

.5
2

.5
4

.5
8

.6
6

.7
4

.5
5

.5
8

.8
2

.8
0

.8
8

.8
5

.9
0

.8
7

.5
3

.6
1

.5
0

.6
7

.5
6

.5
1

.5
2

.4
9

.5
0

.5
1

.8
4

.8
4

.7
5

.8
0

.8
1

.7
9

.4
0

.7
9

.3
0

.5
7

.7
7

.6
9

.5
7

.5
6

.5
9

.8
4

.8
5

.7
9

.7
7

.7
5

.7
9

.7
8

.7
8

.7
9

.7
9

.8
3

.7
0

1

.5
0

.5
7

.4
9

.5
5

.5
1

.6
6

.7
2

.6
7

.6
9

.6
7

.8
5

.9
0

.9
0

.8
7

.8
9

.8
6

.8
4

.8
8

.8
2

.9
2

.9
1

.6
6

.9
3

.8
4

.9
1

.8
9

.8
7

.8
4

.8
4

.8
8

.7
8

.8
6

.7
9

.8
1

.9
2

.6
4

.5
7

.6
3

.6
3

.6
2

.4
7

.4
8

.4
6

.5
1

.4
2

.6
9

.8
1

.7
9

.8
9

.8
1

.8
0

.7
7

.7
8

.9
0

.8
1

.4
5

.4
0

.6
0

.5
1

.4
1

.3
7

.5
0

.5
0

.5
2

.5
6

.6
3

.7
1

.5
3

.5
8

.8
1

.7
8

.8
6

.8
2

.8
7

.8
5

.5
1

.5
8

.4
8

.6
5

.5
4

.4
8

.4
9

.4
8

.4
8

.5
0

.8
1

.8
1

.7
2

.7
7

.7
9

.7
8

.3
7

.7
4

.2
4

.5
5

.7
4

.6
8

.5
5

.5
2

.5
6

.8
2

.8
7

.7
8

.7
7

.7
6

.7
7

.7
8

.7
8

.7
8

.7
8

.8
1

.7
2

.9
6

.5
1

.5
7

.5
0

.5
4

.5
3

.6
8

.7
1

.6
6

.6
6

.6
8

.8
6

.9
0

.9
1

.8
7

.8
9

.8
7

.8
3

.8
7

.8
2

.9
0

.9
0

.6
6

.9
2

.8
4

.9
1

.8
8

.8
6

.8
4

.8
4

.8
8

.7
8

.8
4

.7
9

.7
9

.9
1

.6
5

.5
8

.6
4

.6
3

.6
9

.4
8

.4
7

.4
5

.5
1

.4
1

.7
1

.8
1

.7
8

.8
8

.8
0

.8
1

.7
6

.7
8

.8
7

.8
2

.4
4

.4
0

.5
9

.4
7

.4
1

.3
7

.5
1

.5
0

.5
1

.5
7

.6
5

.7
2

.5
4

.5
8

.8
0

.7
7

.8
4

.8
2

.8
6

.8
4

.5
2

.5
9

.4
8

.6
5

.5
4

.4
7

.5
0

.4
8

.4
9

.5
0

.8
3

.8
1

.7
3

.7
8

.7
9

.7
7

.4
0

.7
7

.2
7

.5
8

.7
2

.7
0

.5
8

.5
6

.5
9

.8
4

.8
5

.7
7

.7
5

.7
2

.7
6

.7
7

.7
6

.7
7

.7
8

.8
2

.6
8

.9
9

.5
5

.5
6

.5
4

.5
6

.5
2

.6
8

.7
4

.6
7

.6
6

.6
8

.8
8

.9
2

.9
3

.9
1

.9
1

.9
0

.8
5

.9
0

.8
7

.9
4

.9
2

.6
7

.9
6

.8
7

.9
3

.9
0

.9
1

.8
7

.8
9

.9
0

.8
0

.9
0

.8
2

.8
3

.9
4

.6
8

.5
8

.6
6

.6
3

.7
0

.5
0

.5
1

.4
9

.5
5

.4
8

.7
2

.8
5

.8
3

.9
1

.8
4

.8
3

.7
9

.8
0

.9
1

.8
3

.4
8

.4
4

.6
3

.5
1

.4
7

.4
2

.5
3

.5
3

.5
4

.6
0

.6
5

.7
5

.5
7

.6
0

.8
3

.8
1

.8
7

.8
5

.9
0

.8
8

.5
8

.6
1

.5
1

.6
6

.5
5

.5
3

.5
2

.5
0

.5
1

.5
2

.8
7

.8
6

.7
6

.8
1

.8
3

.8
0

.3
8

.7
6

.2
5

.5
6

.7
5

.7
0

.5
7

.5
5

.6
0

.8
5

.8
9

.8
1

.7
9

.7
8

.8
0

.7
9

.8
1

.8
0

.8
0

.8
5

.7
0

1

.5
0

.5
1

.4
8

.5
2

.4
9

.6
6

.7
0

.6
2

.6
2

.6
4

.8
4

.8
8

.8
9

.8
8

.8
7

.8
8

.8
1

.8
6

.8
1

.9
0

.8
9

.6
3

.9
4

.8
4

.9
0

.8
7

.8
7

.8
3

.8
4

.8
7

.7
7

.8
7

.7
8

.7
9

.9
3

.6
3

.5
2

.6
0

.6
0

.6
4

.4
5

.4
7

.4
5

.5
2

.4
2

.6
7

.8
0

.7
5

.8
9

.8
1

.7
5

.7
4

.7
5

.8
8

.8
0

.4
4

.3
7

.5
8

.4
6

.4
0

.3
8

.4
9

.5
0

.4
9

.5
7

.6
0

.6
8

.5
2

.5
2

.7
8

.7
7

.8
5

.8
1

.8
7

.8
5

.5
2

.5
8

.4
6

.5
9

.5
1

.4
9

.4
7

.4
5

.4
7

.4
8

.8
1

.8
0

.6
9

.7
6

.7
8

.7
5

.3
2

.6
7

.2
1

.4
9

.6
9

.6
4

.4
8

.5
1

.5
3

.8
8

.9
0

.8
0

.8
0

.7
9

.8
0

.8
1

.7
9

.8
1

.8
1

.8
4

.7
4

.9
9

.5
5

.5
5

.5
3

.5
7

.5
0

.6
6

.7
2

.6
5

.6
2

.6
6

.8
6

.8
8

.9
0

.8
6

.8
8

.8
9

.8
4

.8
9

.8
3

.9
4

.9
0

.6
7

.9
5

.8
4

.9
0

.8
9

.8
8

.8
4

.8
6

.9
0

.7
8

.8
5

.8
0

.8
1

.9
4

.6
7

.6
1

.6
4

.6
4

.6
7

.5
1

.5
3

.5
2

.5
7

.4
7

.7
1

.8
2

.7
9

.9
0

.8
3

.8
0

.8
1

.7
7

.9
1

.7
9

.4
9

.4
4

.6
3

.5
2

.4
7

.4
2

.5
5

.5
4

.5
6

.5
7

.6
4

.7
2

.5
7

.6
1

.8
2

.7
8

.8
4

.8
2

.8
7

.8
5

.5
5

.5
9

.5
2

.6
6

.5
5

.5
3

.5
3

.5
1

.5
2

.5
5

.8
6

.8
6

.7
3

.8
1

.8
4

.8
0

.3
6

.7
2

.2
0

.5
7

.7
1

.6
8

.5
6

.5
4

.5
8

.8
3

.8
5

.7
4

.7
3

.7
3

.7
3

.7
5

.7
1

.7
4

.7
3

.8
1

.6
4

1

 0
 0

.2
5

 0
.5

 0
.7

5
 1

R
o

b
u

s
t

A
U

C

Fi
gu

re
5.

9:
M

in
im

um
O

O
D

de
te

ct
io

n
AU

C
ov

er
CI

FA
R-

10
0

fo
r

a
co

m
bi

na
ti

on
of

no
rm

s,
tr

ai
ni

ng
da

ta
se

ts
,

ar
ch

it
ec

tu
re

s
an

d
tr

ai
ni

ng
sc

or
e

fu
nc

ti
on

s
(v

er
ti

ca
l

ax
is

)
an

d
te

st
O

O
D

da
ta

se
ts

(h
or

iz
on

ta
l

ax
is

).
Ab

br
ev

ia
ti

on
s:

AM
:

aq
ua

ti
c

m
am

m
al

s,
FC

:
fo

od
co

nt
ai

ne
rs

,F
&

V:
fr

ui
ta

nd
ve

ge
ta

bl
es

,E
D

:h
ou

se
ho

ld
el

ec
tr

ic
al

de
vi

ce
s,

fu
rn

it
ur

e:
ho

us
eh

ol
d

fu
rn

it
ur

e,
LC

:l
ar

ge
ca

rn
iv

or
es

,
M

M
O

T:
la

rg
e

m
an

-m
ad

e
ou

td
oo

r
th

in
gs

,
N

O
S:

la
rg

e
na

tu
ra

l
ou

td
oo

r
sc

en
es

,
O

&
H

:
la

rg
e

om
ni

vo
re

s
an

d
he

rb
iv

or
es

,
M

SM
:

m
ed

iu
m

-s
iz

ed
m

am
m

al
s,

N
II

:n
on

-in
se

ct
in

ve
rt

eb
ra

te
s,

SM
:s

m
al

lm
am

m
al

s;
T:

Ti
ny

,S
:S

yn
th

et
ic

N
oi

se
,U

:u
ni

fo
rm

no
is

e.

80 Combining Robust Classification and Robust out-of-Distribution Detection

airp
lan

e
au

to
m

o
b

ile
b

ird
cat

d
eer

d
o

g
fro

g
h

o
rse

sh
ip

tru
ck

airp
lan

e
au

to
m

o
b

ile
b

ird
cat

d
eer

d
o

g
fro

g
h

o
rse

sh
ip

tru
ck

beaver
dolphin
otter
seal
whale
aquarium fish
flatfish
ray
shark
trout
orchids
poppies
roses
sunflowers
tulips
bottles
bowls
cans
cups
plates
apples
mushrooms
oranges
pears
sweet peppers
clock
keyboard
lamp
telephone
television
bed
chair
couch
table
wardrobe
bee
beetle
butterfly
caterpillar
cockroach
bear
leopard
lion
tiger
wolf
bridge
castle
house
road
skyscraper
cloud
forest
mountain
plain
sea
camel
cattle
chimpanzee
elephant
kangaroo
fox
porcupine
possum
raccoon
skunk
crab
lobster
snail
spider
worm
baby
boy
girl
man
woman
crocodile
dinosaur
lizard
snake
turtle
hamster
mouse
rabbit
shrew
squirrel
maple
oak
palm
pine
willow
bicycle
bus
motorcycle
pickup truck
train
lawn-mower
rocket
streetcar
tank
tractor

 aq
u

atic
m

am
m

als
 fish

 flo
w

ers
 fo

o
d

co
n
tain

ers
 fru

it an
d

v
eg

etab
les h

o
u
seh

o
ld

 electrical
 d

ev
ices

h
o
u

seh
o
ld

 fu
rn

itu
re

 in
sects

 larg
e

carn
iv

o
res larg

e
m

an
-m

ad
e

 o
u
td

o
o
r

 th
in

g
s

 larg
e

 n
atu

ral
 o

u
td

o
o
r

 scen
es

 larg
e

o
m

n
iv

o
res

 an
d

h
erb

iv
o
res m

ed
iu

m
-

 sized
 m

am
m

als

n
o
n

-in
sect

in
v

erteb
rates

 p
eo

p
le

 rep
tiles

 sm
all

 m
am

m
als

 trees
v
eh

icles 1
v
eh

icles 2

L
∞

L2

7
5

-9
5

 0
 0

.2
5

 0
.5

 0
.7

5
 1

Figu
re

5.10:
The

probability
thata

given
CIFAR-100

class
sam

ple
is

predicted
as

a
given

CIFAR-10
class

m
em

ber.
Both

ℓ
2

and
ℓ∞

based
adversarialtraining

is
show

n
using

the
W

RN
-28-10

architecture
and

the
s
u
n
iobjective,w

ith
D

T
as

O
O

D
training

dataset.
Best

view
ed

in
com

bination
w

ith
fig.5.9.

5.10 Generalization to Unseen OOD Datasets 81

In our discussion, we will also refer to the data shown in fig. 5.10, where the
probabilities of the predicted CIFAR-10 classes for each CIFAR-100 class are shown
for both norms. (For clarity, here, only the largest WRN-28-10 model is shown,
trained with the ρuniout objective and the Tiny dataset as the OOD dataset.) These
prediction probabilities represent useful extra information to explain the observed
results.

Problematic Superclasses

Here, we list the superclasses which are not detected as OOD examples. That is, their
AUC score remains close to the random guessing baseline (0.5) for the majority of the
included classes, with respect to both norms. These superclasses are the following,
indicating similar CIFAR-10 classes in parenthesis:

• aquatic mammals (airplane, ship, bird, frog, dog)

• large carnivores (cat, deer, dog, frog, horse)

• large omnivores and herbivores (horse, deer, bird, dog)

• medium sized mammals (cat, dog, frog, airplane, deer)

• reptiles (frog, bird)

• small mammals (bird, deer, frog, dog)

The predicted labels of these classes (fig. 5.10) reveal that they are classified to
semantically similar CIFAR-10 classes, which explains why they are not detected as
OOD. For example, large carnivores, medium sized mammals, and small mammals
are frequently confused with CIFAR-10 mammal classes such as cat, dog and horse.
The majority of the large omnivores and herbivores were confused with the horse
and deer classes. A counterexample is the aquatic mammals superclass, which is
confused with airplanes, ships and birds.

It is interesting to see that these superclasses were unable to improve over the
random guessing baseline despite the increased model capacity, and the exhausting
search over the detection methods and the training OOD datasets.

Superclasses with an inhomogeneous AUC

Here, we list the superclasses where the OOD detection is inconsistent, despite the
semantic similarities within the superclass. The superclasses with the greatest vari-
ability are the following, indicating similar CIFAR-10 classes in parenthesis:

• fruit and vegetables (frog, cat, bird)

82 Combining Robust Classification and Robust out-of-Distribution Detection

• household furniture (ship, cat, bird, dog)

• large man-made outdoor things (ship, truck)

• large natural outdoor scenes (ship, frog, deer, airplane, bird)

• non-insect invertebrates (frog, bird)

• people (dog, cat)

• vehicles 1 and 2 (automobile, truck, ship)

Typically, in these superclasses, most classes are detected as OOD while a few
others are not. Examples of weakly detected classes (despite the overall good perfor-
mance within the superclasses) are mushrooms from the fruit and vegetables super-
class, and baby from the people superclass. Mushrooms are frequently confused with
frogs and babies with dogs.

There are more examples for the case when a given class is detected better than
the superclass average. Examples include the chair and wardrobe classes from the
household furniture superclass, road from the large man-made outdoor things super-
class, plain from the large natural outdoor scenes superclass, worm from non-insect
invertebrates superclass, bicycle and motorcycle from the vehicles 1 and law-mower
and rocket from vehicles 2 superclasses.

Easily Detectable Superclasses

Here, we list those superclasses that are well detected (AUC ≥ 0.7) indicating the
most similar CIFAR-10 classes in parenthesis:

• flowers (frog, dog, bird)

• food containers (bird, frog, dog, cat)

• fruit and vegetables (frog, cat, bird)

• household electrical devices (truck, dog, cat, bird)

• people (cat, dog)

A common property of these superclasses is that in CIFAR-10 there are no se-
mantically similar classes, although some classes do stand out in terms of prediction
probability, for example, flowers are most likely identified as the bird CIFAR-10 class.

5.11 Conclusions 83

Superclasses Detectable under ℓ2 but undetectable under ℓ∞

The fourth type of superclasses are those that are better detected assuming the ℓ2
attack model than with ℓ∞:

• fish (airplane, frog, ship)

• insects (bird, frog)

• large man-made outdoor things (ship, truck)

• trees (truck, airplane, deer)

The fact that such superclasses exist is very interesting because it indicates that
the attack model has a nontrivial influence on the generalizability of the adversarial
training in the context of OOD detection.

5.10.2 Concluding Remarks on Generalization

We have seen that measuring just an average detection performance over different
datasets is insufficient for truly understanding the performance of OOD detection. We
identified four types of OOD classes. A closer look at the undetectable and the easily
detectable classes showed that superclasses with less semantic similarity are easier to
detect as OOD, and vice versa. Quite importantly, this effect seems to be independent
of the model size and the training OOD dataset size. This suggests that, in contrast
to the currently accepted wisdom that emphasizes dataset and model size, semantic
similarity is the key factor in the case of OOD datasets. Another interesting finding is
the difference between the ℓ2 and ℓ∞ threat models from the OOD detection point of
view. The ℓ2 threat model seems to offer better generalization. The combination of
the two threat models appears to be a promising future direction.

5.11 Conclusions

We defined a design space, where one can define training objectives, detection meth-
ods and attack methods for the combination of the robust OOD detection problem
and the robust classification problem with the help of a set of score functions. Also,
we introduced a strong threat model in which both in-distribution and OOD samples
are adversarially perturbed to mislead OOD detection.

We performed a thorough empirical evaluation of this framework. We found that
adding an adversarial OOD objective to the training method does not hurt robust in-
distribution accuracy, in fact, a significant improvement can be seen in some cases.
This indicates that it is always safe to add such an objective.

84 Combining Robust Classification and Robust out-of-Distribution Detection

We also found that it is impossible to pick a score function for robust OOD detec-
tion independently of how the model in question was trained. Instead, we get the
best results when training and detection is based on the same score function. In other
words, while non-robust OOD detection is more robust to the training procedure, in
robust OOD detection it is more important to align the detection method with the
training method, that is, to use the same score function in both. Also, a similar state-
ment can be formulated in terms of the OOD detection method and the attack on
this detection method. The most successful attack is performed using the same score
function as the one used by the detection method.

We also pointed out that a deeper understanding of how OOD detectors generalize
to unseen distributions is an interesting direction for future research.

Bibliography

[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias
Hein. Square attack: A query-efficient black-box adversarial attack via random
search. In Computer Vision – ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIII, page 484–501, Berlin, Heidel-
berg, 2020. Springer-Verlag.

[2] Maximilian Augustin, Alexander Meinke, and Matthias Hein. Adversarial ro-
bustness on in- and out-distribution improves explainability. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision
- ECCV 2020 - 16th European Conf., Glasgow, UK, August 23-28, 2020, Proc.,
Part XXVI, volume 12371 of Lecture Notes in Computer Science, pages 228–245.
Springer, 2020.

[3] Mohammad Azizmalayeri, Arshia Soltani Moakar, Arman Zarei, Reihaneh
Zohrabi, Mohammad Taghi Manzuri, and Mohammad Hossein Rohban. Your
out-of-distribution detection method is not robust! In Alice H. Oh, Alekh Agar-
wal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Infor-
mation Processing Systems, 2022.

[4] Jimmy Ba and Diederik Kingma. Adam: A method for stochastic optimization.
In 3rd Intl. Conf. on Learning Representations (ICLR), 2015.

[5] Yang Bai, Yisen Wang, Yuyuan Zeng, Yong Jiang, and Shu-Tao Xia. Query effi-
cient black-box adversarial attack on deep neural networks. Pattern Recognition,
133:109037, 2023.

[6] Rainer Breitling, Patrick Armengaud, Anna Amtmann, and Pawel Herzyk. Rank
products: A simple, yet powerful, new method to detect differentially regulated
genes in replicated microarray experiments. FEBS letters, 573:83–92, 09 2004.

[7] Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov, and
Matthias Bethge. Accurate, reliable and fast robustness evaluation. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,

85

86 Bibliography

editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[8] N. Carlini and D. Wagner. Towards evaluating the robustness of neural net-
works. In 2017 IEEE Symp. on Security and Privacy (SP), pages 39–57, 2017.

[9] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of
neural networks. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pages 39–57. IEEE Computer Society,
2017.

[10] Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh Jha. Atom: Ro-
bustifying out-of-distribution detection using outlier mining. In Proceedings of
European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML PKDD), 2021.

[11] Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh Jha. Robust out-of-
distribution detection for neural networks. In The AAAI-22 Workshop on Adver-
sarial Machine Learning and Beyond, 2022.

[12] Shang-Tse Chen, Cory Cornelius, Jason Martin, and Duen Horng (Polo) Chau.
Shapeshifter: Robust physical adversarial attack on faster r-cnn object detec-
tor. In Michele Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil Hurley,
and Georgiana Ifrim, editors, Machine Learning and Knowledge Discovery in
Databases, pages 52–68, Cham, 2019. Springer International Publishing.

[13] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Improv-
ing black-box adversarial attacks with a transfer-based prior. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019.

[14] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Ya-
mamoto, and David Ha. Deep learning for classical Japanese literature. Tech-
nical Report cs.CV/1812.01718, arXiv, 2018.

[15] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples
with a fast adaptive boundary attack, 2020.

[16] Yinpeng Dong, Shuyu Cheng, Tianyu Pang, Hang Su, and Jun Zhu. Query-
efficient black-box adversarial attacks guided by a transfer-based prior. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(12):9536–9548,
2022.

Bibliography 87

[17] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust
physical-world attacks on deep learning visual classification. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018, pages 1625–1634. Computer Vision Foundation /
IEEE Computer Society, 2018.

[18] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust
physical-world attacks on deep learning visual classification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

[19] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of classifiers’ ro-
bustness to adversarial perturbations. Machine Learning, 107(3):481–508, Mar
2018.

[20] Weiwei Feng, Baoyuan Wu, Tianzhu Zhang, Yong Zhang, and Yongdong Zhang.
Meta-attack: Class-agnostic and model-agnostic physical adversarial attack. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 7787–7796, October 2021.

[21] Weiwei Feng, Nanqing Xu, Tianzhu Zhang, Baoyuan Wu, and Yongdong Zhang.
Robust and generalized physical adversarial attacks via meta-gan. IEEE Trans-
actions on Information Forensics and Security, pages 1–1, 2023.

[22] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, third edition, 1996.

[23] Ian J. Goodfellow and Jonathon Shlens Christian Szegedy. Explaining and har-
nessing adversarial examples. In 3rd Intl. Conf. on Learning Representations
(ICLR), 2015.

[24] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud,
Mohammad Norouzi, and Kevin Swersky. Your classifier is secretly an energy
based model and you should treat it like one. In Int. Conf. on Learning Repre-
sentations, 2020.

[25] Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian
Weinberger. Simple black-box adversarial attacks. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 2484–2493. PMLR, 09–15 Jun 2019.

88 Bibliography

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2016.

[27] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu net-
works yield high-confidence predictions far away from the training data and
how to mitigate the problem. In IEEE Conf. on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 41–50.
Computer Vision Foundation / IEEE, 2019.

[28] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and
out-of-distribution examples in neural networks. In 5th Int. Conf. on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conf. Track Proc.
OpenReview.net, 2017.

[29] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detec-
tion with outlier exposure. In Int. Conf. on Learning Representations, 2019.

[30] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Ef-
ficient convolutional neural networks for mobile vision applications. ArXiv,
abs/1704.04861, 2017.

[31] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proc. of the IEEE Conf. on Com-
puter Vision and Pattern Recognition, 2017.

[32] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017.

[33] Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Belongie, and Ser-Nam
Lim. Enhancing adversarial example transferability with an intermediate level
attack. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

[34] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adver-
sarial attacks with limited queries and information. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 2137–
2146. PMLR, 10–15 Jul 2018.

[35] Nathan Inkawhich, Wei Wen, Hai (Helen) Li, and Yiran Chen. Feature space
perturbations yield more transferable adversarial examples. In Proceedings of

Bibliography 89

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[36] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2014. cite arxiv:1412.6980Comment: Published as a Conf. paper at the
3rd Int. Conf. for Learning Representations, San Diego, 2015.

[37] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009.

[38] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine
learning at scale. In 5th Int. Conf. on Learning Representations, ICLR, 2017.

[39] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proc. of the IEEE, 86(11):2278–2324,
November 1998.

[40] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified frame-
work for detecting out-of-distribution samples and adversarial attacks. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 31,
pages 7167–7177. Curran Associates, Inc., 2018.

[41] Qizhang Li, Yiwen Guo, and Hao Chen. Practical no-box adversarial attacks
against dnns. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages
12849–12860. Curran Associates, Inc., 2020.

[42] Yanjie Li, Yiquan Li, Xuelong Dai, Songtao Guo, and Bin Xiao. Physical-
world optical adversarial attacks on 3d face recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
24699–24708, June 2023.

[43] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-
distribution image detection in neural networks. In Int. Conf. on Learning Rep-
resentations, 2018.

[44] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable
adversarial examples and black-box attacks. In Proc. 5th International Confer-
ence on Learning Representations (ICLR), 2017.

[45] Ye Liu, Yaya Cheng, Lianli Gao, Xianglong Liu, Qilong Zhang, and Jingkuan
Song. Practical evaluation of adversarial robustness via adaptive auto attack.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 15105–15114, June 2022.

90 Bibliography

[46] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
In 6th Intl. Conf. on Learning Representations (ICLR), 2018.

[47] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks.
In Int. Conf. on Learning Representations, 2018.

[48] Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial robustness against
the union of multiple perturbation models. In Hal Daumé III and Aarti Singh,
editors, Proc. of the 37th Int. Conf. on Machine Learning, volume 119 of Proc. of
Machine Learning Research, pages 6640–6650. PMLR, 13–18 Jul 2020.

[49] Michael McCoyd and David A. Wagner. Background class defense against ad-
versarial examples. In 2018 IEEE Security and Privacy Workshops, SP Workshops
2018, San Francisco, CA, USA, May 24, 2018, pages 96–102. IEEE Computer
Society, 2018.

[50] István Megyeri, István Hegedűs, and Márk Jelasity. Adversarial robustness of
linear models: Regularization and dimensionality. In Proceedings of the 27th
European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN), Bruges, Belgium, 2019.

[51] István Megyeri, István Hegedűs, and Márk Jelasity. Adversarial robustness of
model sets. In International Joint Conference on Neural Networks (IJCNN). IEEE,
2020.

[52] István Megyeri, István Hegedűs, and Márk Jelasity. Attacking model sets
with adversarial examples. In Proceedings of the 28th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESANN), Bruges, Belgium, 2020.

[53] István Megyeri, István Hegedűs, and Márk Jelasity. Robust classification com-
bined with robust out-of-distribution detection: An empirical a nalysis. In In-
ternational Joint Conference on Neural Networks (IJCNN). IEEE, 2021.

[54] István Megyeri, István Hegedűs, and Márk Jelasity. Combining robust classifica-
tion and robust out-of-distribution detection: An empirical analysis. In Progress
in Artificial Intelligence, 2023.

[55] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. Universal adversarial perturbations. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), July 2017.

Bibliography 91

[56] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: A simple and accurate method to fool deep neural networks. In Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2016.

[57] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: A simple and accurate method to fool deep neural networks. In The IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages 2574–2582,
June 2016.

[58] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: A simple and accurate method to fool deep neural networks. In The IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages 2574–2582,
June 2016.

[59] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y. Ng. Reading digits in natural images with unsupervised feature learn-
ing. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

[60] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adver-
sarial robustness via promoting ensemble diversity. In Proceedings of the 36th
International Conference on Machine Learning, (ICML), pages 4970–4979, 2019.

[61] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep
learning. In Hal Daumé III and Aarti Singh, editors, Proc. of the 37th Int. Conf.
on Machine Learning, volume 119 of Proc. of Machine Learning Research, pages
8093–8104. PMLR, 13–18 Jul 2020.

[62] Luke E. Richards, André Nguyen, Ryan Capps, Steven Forsyth, Cynthia Ma-
tuszek, and Edward Raff. Adversarial transfer attacks with unknown data and
class overlap. In Proceedings of the 14th ACM Workshop on Artificial Intelligence
and Security, AISec ’21, page 13–24, New York, NY, USA, 2021. Association for
Computing Machinery.

[63] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[64] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4510–4520, June 2018.

92 Bibliography

[65] Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel Cul-
lina, Mung Chiang, and Prateek Mittal. Analyzing the robustness of open-world
machine learning. In Proc. of the 12th ACM Workshop on Artificial Intelligence
and Security, AISec’19, page 105–116, New York, NY, USA, 2019. Association
for Computing Machinery.

[66] Rui Shao, Pramuditha Perera, Pong C Yuen, and Vishal M Patel. Open-set ad-
versarial defense. In European Conference on Computer Vision, pages 682–698.
Springer, 2020.

[67] Rui Shao, Pramuditha Perera, Pong C. Yuen, and Vishal M. Patel. Open-set ad-
versarial defense with clean-adversarial mutual learning. Int. J. Comput. Vision,
130(4):1070–1087, apr 2022.

[68] Q. Song, H. Jin, X. Huang, and X. Hu. Multi-label adversarial perturbations. In
2018 IEEE International Conference on Data Mining (ICDM), pages 1242–1247,
Nov 2018.

[69] David Stutz, Matthias Hein, and Bernt Schiele. Confidence-calibrated adversar-
ial training: Generalizing to unseen attacks. In Hal Daumé III and Aarti Singh,
editors, Proc. of the 37th Int. Conf. on Machine Learning, volume 119 of Proc. of
Machine Learning Research, pages 9155–9166. PMLR, 13–18 Jul 2020.

[70] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
In Int. Conf. on Learning Representations, 2014.

[71] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural net-
works. In 2nd Intl. Conf. on Learning Representations (ICLR), 2014.

[72] Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images:
A large data set for nonparametric object and scene recognition. IEEE Trans.
Pattern Anal. Mach. Intell., 30(11):1958–1970, November 2008.

[73] Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Mądry. On
adaptive attacks to adversarial example defenses. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS’20, Red
Hook, NY, USA, 2020. Curran Associates Inc.

[74] Florian Tramer, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. In
6th Intl. Conf. on Learning Representations (ICLR), 2018.

Bibliography 93

[75] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. In
Proc. 6th International Conference on Learning Representations (ICLR), 2018.

[76] Jia Wang, Chengyu Wang, Qiuzhen Lin, Chengwen Luo, Chao Wu, and Jian-
qiang Li. Adversarial attacks and defenses in deep learning for image recogni-
tion: A survey. Neurocomput., 514(C):162–181, dec 2022.

[77] Chen Wu, Ruqing Zhang, Jiafeng Guo, Maarten De Rijke, Yixing Fan, and Xueqi
Cheng. Prada: Practical black-box adversarial attacks against neural ranking
models. ACM Trans. Inf. Syst., 41(4), apr 2023.

[78] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms. Technical Report
cs.LG/1708.07747, arXiv, 2017.

[79] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan
Yuille. Adversarial examples for semantic segmentation and object detection.
In 2017 IEEE International Conference on Computer Vision (ICCV), pages 1378–
1387, 2017.

[80] Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen,
Pin-Yu Chen, Yanzhi Wang, and Xue Lin. Adversarial t-shirt! evading person
detectors in a physical world. In Andrea Vedaldi, Horst Bischof, Thomas Brox,
and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, pages 665–681,
Cham, 2020. Springer International Publishing.

[81] Xiao Yang, Chang Liu, Longlong Xu, Yikai Wang, Yinpeng Dong, Ning Chen,
Hang Su, and Jun Zhu. Towards effective adversarial textured 3d meshes on
physical face recognition. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4119–4128, June 2023.

[82] Z. Yao, A. Gholami, P. Xu, K. Keutzer, and M. W. Mahoney. Trust region based
adversarial attack on neural networks. In 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 11342–11351, June 2019.

[83] Fei Yin, Yong Zhang, Baoyuan Wu, Yan Feng, Jingyi Zhang, Yanbo Fan, and
Yujiu Yang. Generalizable black-box adversarial attack with meta learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1–13, 2023.

[84] Zhenqin Yin, Yue Zhuo, and Zhiqiang Ge. Transfer adversarial attacks
across industrial intelligent systems. Reliability Engineering & System Safety,
237:109299, 2023.

94 Bibliography

[85] Zheng Yuan, Jie Zhang, and Shiguang Shan. Adaptive image transforma-
tions for transfer-based adversarial attack. In Shai Avidan, Gabriel Brostow,
Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner, editors, Computer
Vision – ECCV 2022, pages 1–17, Cham, 2022. Springer Nature Switzerland.

[86] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR,
abs/1605.07146, 2016.

[87] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui,
and Michael I. Jordan. Theoretically principled trade-off between robustness
and accuracy. In International Conference on Machine Learning, 2019.

[88] Jie Zhang, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, Lei Zhang, and Chao
Wu. Towards efficient data free black-box adversarial attack. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 15115–15125, June 2022.

[89] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architec-
tures for scalable image recognition. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8697–8710, Los Alamitos, CA,
USA, jun 2018. IEEE Computer Society.

Summary

The PhD thesis presents methods that contribute to advancing the research field of
adversarial machine learning.

The dissertation consists of three major parts. In chapter 3, we analyzed the
robustness of linear models from regularization and dimensionality points of view.
chapter 4 presents attack algorithms that are able to generate such perturbation
which can mislead multiple models simultaneously. In chapter 5, we analyze de-
fense methods for the problem of robust classification and robust out-of-distribution
detection.

Adversarial Robustness of Linear Models

Many machine learning models are sensitive to adversarial input, meaning that very
small but carefully designed noise added to correctly classified examples may lead
to misclassification. The reasons for this are still poorly understood, even in the
simple case of linear models. In chapter 3, we study linear models and offer a
number of novel insights. We focus on the effect of regularization and dimension-
ality. We show that in very high dimensions adversarial robustness is inherently
very low due to some mathematical properties of high-dimensional spaces that have
received little attention so far. We also demonstrate that—although regularization
may help—adversarial robustness is harder to achieve than high accuracy during
the learning process. This is typically overlooked when researchers set optimization
meta-parameters.

Adversarial attacks on model sets

Machine learning models are vulnerable to very small adversarial input perturba-
tions. In chapter 4, we study the question of whether the list of predictions made by
a list of models can also be changed arbitrarily by a single small perturbation. Clearly,
this is a harder problem since one has to simultaneously mislead several models using
the same perturbation, where the target classes assigned to the models might differ.

95

96 Summary

This attack has several applications over models designed by different manufacturers
for a similar purpose. One might want a single perturbation that acts differently on
each model; like only misleading a subset, or making each model predict a different
label. Also, one might want a perturbation that misleads each model the same way
and thereby create a transferable perturbation. Current approaches are not applica-
ble for this general problem directly. In chapter 4, we propose an algorithm that is
able to find a perturbation that satisfies several kinds of attack patterns. For example,
all the models could have the same target class, or different random target classes,
or target classes designed to be maximally contradicting.

Combining Robust Classification and Robust
out-of-Distribution Detection

Classification models in machine learning often make over-confident but incorrect
predictions on input samples that do not belong to any of the output classes. Such
samples are called out-of-distribution (OOD) samples. This problem has received
considerable attention, because this represents a vulnerability similar to adversar-
ial input perturbation, where models make incorrect predictions on seemingly in-
distribution input samples that contain a very small but adversarial perturbation.
In chapter 5,we are interested in models that are robust to both OOD samples and
adversarially perturbed in-distribution samples. Furthermore, we require that OOD
detection be robust to adversarial input perturbation. That is, OOD samples and
in-distribution samples should not have adversarial perturbations that makes them
appear to be in-distribution and OOD samples, respectively. Several related studies
apply an ad-hoc combination of several design choices to achieve similar goals. One
can use several functions over the logit or soft-max layer for defining training objec-
tives, OOD detection methods and adversarial attacks. In chapter 5, we present a
design-space that covers such design choices, as well as a principled way of evaluat-
ing the networks. This includes a strong attack scenario where both in-distribution
and OOD examples are adversarially perturbed to mislead OOD detection. We draw
several interesting conclusions based on our empirical analysis of this design space.
Most importantly, we argue that the key factor is not the OOD training or detec-
tion method in itself, but rather the application of matching detection and training
methods.

Összefoglalás

A PhD értekezés olyan módszereket mutat be, amelyek hozzájárulnak az ellenséges
gépi tanulás kutatási területének előrehaladásához.

A disszertáció három fő részből áll. A 3. fejezetben lineáris modellek robosz-
tusságát elemezzük a regularizáció és a dimenzionalitás szempontjából. A 4. fe-
jezetben olyan támadási algoritmusokat mutat be, amelyek képesek olyan perturbá-
ciót generálni, amelyek egyszerre több modellt is félrevezethetnek. A 5. fejezetben
védekezési módszereket vizsgálunk a robosztus osztályozás és a robosztus outlier
detektálás problémájára.

Lineáris modellek ellenséges robusztussága

Számos gépi tanuló modell érzékeny az ellenséges bemenetre, ami azt jelenti, hogy
a helyesen osztályozott példákhoz hozzáadott nagyon kicsi, de gondosan megter-
vezett zaj téves osztályozáshoz vezethet. Ennek okai még mindig tisztázatlanok,
még az egyszerű lineáris modellek esetében is. A 3. fejezetben a lineáris mod-
elleket vizsgáljuk, és számos új meglátást kínálunk. A regularizáció és a dimenzion-
alitás hatására összpontosítunk. Megmutatjuk, hogy nagyon nagy dimenziókban az
ellenséges robusztusság eredendően alacsony a nagydimenziós terek néhány olyan
matematikai tulajdonsága miatt, amelyek eddig kevés figyelmet kaptak. Azt is meg-
mutatjuk, hogy - bár a regularizáció segíthet - az ellenséges robusztusságot nehezebb
elérni, mint a nagy pontosságot a tanulási folyamat során. Ezt jellemzően a kutatók
figyelmen kívül hagyják, amikor optimalizációs metaparamétereket állítanak be.

Ellenséges támadások modellhalmazok ellen

A gépi tanuló modellek sérülékenyek a nagyon kis bemeneti zavarokkal szemben. A
4. fejezetben azt a kérdést vizsgáljuk, hogy a modellek listája által készített előre-
jelzések listája is tetszőlegesen megváltoztatható-e egyetlen kis perturbációval. Ez
nyilvánvalóan nehezebb probléma, mivel egyidejűleg kell több modellt félrevezetni
ugyanazzal a perturbációval, ahol a modellekhez rendelt célosztályok eltérhetnek.

97

98 Összefoglalás

Ennek a támadásnak többféle alkalmazása is elképzelhető a különböző gyártók által
hasonló célra tervezett modellek esetében. Lehet, hogy egyetlen olyan perturbá-
ciót szeretnénk, amely minden modellre másképp hat; például csak egy részhalmazt
vezethetünk félre, vagy minden modell más-más címkét jósolhat. Az is előfordul-
hat, hogy olyan perturbációra van szükség, amely minden modellt ugyanúgy vezet
félre, és ezáltal egy hordozható perturbációt hoz létre. A jelenlegi megközelítések
nem alkalmazhatók közvetlenül erre az általános problémára. A 4. fejezetben egy
olyan algoritmust javasolunk, amely képes olyan perturbációt találni, amely többféle
támadási mintát is kielégít. Például az összes modellnek lehet ugyanaz a célosztálya,
vagy különböző véletlenszerű célosztályok, vagy olyan célosztályok, amelyeket úgy
terveztek, hogy hogy maximálisan ellentmondásosak legyenek.

A robusztus osztályozás és a robusztus outlier detekció
kombinálása

A gépi tanulásban alkalmazott osztályozási modellek gyakran túlságosan magabiztos,
de helytelen előrejelzéseket adnak olyan bemeneti mintákra, amelyek nem tartoznak
egyik kimeneti osztályba sem. Az ilyen mintákat eloszláson kívüli (outlier) minták-
nak nevezzük. Ez a probléma jelentős figyelmet kapott, mivel az ellenséges bemeneti
perturbációhoz hasonló sebezhetőséget jelent, amely során a modellek hibás előre-
jelzéseket tesznek a látszólag eloszláson belüli bemeneti mintákra, amelyek nagyon
kicsi, de ellenséges perturbációt tartalmaznak. Az 5. fejezetben olyan modellek
iránt érdeklődünk, amelyek mind az outlier mintákra, mind az ellenségesen pertur-
bált eloszláson belüli mintákra robusztusak. Továbbá megköveteljük, hogy az outlier
felismerés robosztus legyen az ellenséges bemeneti perturbációval szemben. Vagyis
az outlier minták és az eloszláson belüli minták esetén sem lehetnek olyan ellenséges
hatású perturbációk, amelyek miatt azok eloszláson belüli, illetve outlier mintáknak
tűnnek. Számos kapcsolódó tanulmány több tervezési lehetőség ad-hoc kombiná-
cióját alkalmazza hasonló célok elérése érdekében. A logit vagy softmax réteg felett
több függvényt is használhatunk a képzési célok, az outlier felismerési módszerek és
az ellenséges támadások meghatározására. Az 5. fejezetben bemutatunk egy olyan
tervezési teret, amely tartalmazza ezen választási lehetőségeket, valamint a hálóza-
tok kiértékelésének elvi módját adja meg. Ez magában foglal egy erős támadási for-
gatókönyvet, ahol mind az eloszláson belüli, mind az outlier példákat ellenséges mó-
don megzavarják, hogy félrevezessék az outlier észlelést. Ennek a tervezési térnek az
empirikus elemzése alapján számos érdekes következtetést vonunk le. A legfontosabb
tanulság, hogy a kulcstényező nem az outlier képzési vagy -felismerési módszer ön-
magában, hanem inkább a megfelelő felismerési és képzési módszerek alkalmazása.

Publications

Journal publications

[1] István Megyeri, István Hegedűs, and Márk Jelasity Combining Robust Classi-
fication and Robust out-of-Distribution Detection: An Empirical Analysis. In
Progress in Artificial Intelligence(submitted for publication), 2023.

Full papers in conference proceedings

[2] István Megyeri, István Hegedűs, and Márk Jelasity Adversarial Robustness of
Linear Models: Regularization and Dimensionality. In Proceedings of the 27th
European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN), 2019.

[3] István Megyeri, István Hegedűs, and Márk Jelasity Attacking Model Sets with
Adversarial Examples. In Proceedings of the 28th European Symposium on Artifi-
cial Neural Networks, Computational Intelligence and Machine Learning (ESANN),
2020.

[4] István Megyeri, István Hegedűs, and Márk Jelasity Adversarial Robustness of
Model Sets. In Proceedings of the 2020 International Joint Conference on Neural
Networks (IJCNN), IEEE, 2020.

[5] István Megyeri, István Hegedűs, and Márk Jelasity Robust Classification Com-
bined with Robust out-of-Distribution Detection: An Empirical Analysis. In Pro-
ceedings of the 2021 International Joint Conference on Neural Networks (IJCNN),
IEEE, 2021.

99

100 Publications

Further related publications

[6] Gergely Pap and István Megyeri Translational Robustness of Neural Networks
Trained for Transcription Factor Binding Site Classification. In Proceedings of
the 14th International Conference on Agents and Artificial Intelligence, 2019.

[7] Tibor Csendes, Nándor Balogh, Balázs Bánhelyi, Dániel Zombori, Richárd Tóth,
and István Megyeri Adversarial Example Free Zones for Specific Inputs and
Neural Networks. In Proceedings of the 11th International Conference on Applied
Informatics (ICAI), 2020.

[8] Dániel Zombori, Balázs Bánhelyi, Tibor Csendes, István Megyeri, and Márk
Jelasity Fooling a Complete Neural Network Verifier. In The 9th International
Conference on Learning Representations (ICLR), 2021.

[9] Ammar Al-Najjar and István Megyeri PCA improves the adversarial robustness
of neural networks. In Proceedings of the 30th European Symposium on Artifi-
cial Neural Networks, Computational Intelligence and Machine Learning (ESANN),
2022.

Further publications

[10] István Megyeri, János Csirik, and Zoltán Majó-Petri Utasszámlálás a városi
közösségi közlekedésben: mire lehet alkalmas több adat és a „free WiFi”?. In
Közlekedéstudományi Konferencia Győr 2019 Conference on Transport Sciences:
Alternatív-Autonóm-Kooperatív-Komparatív Mobilitás, 2019.

[11] István Megyeri, Melinda Katona, and László Nyúl A Novel Approach to Detect
Outer Retinal Tubulation Using U-Net in SD-OCT Images. In 15th International
Conference on Signal-Image Technology & Internet-Based Systems (SITIS), 2019.

[12] Mohammed Mohammed Amin and István Megyeri Improving keyword spot-
ting with limited training data using non-sequential data augmentation. In
The 12th Conference of PhD Students in Computer Science (CSCS), 2020.

[13] András Bánhalmi, Vilmos Bilicki, István Megyeri, Zoltán Majó-Petri, and János
Csirik Extracting Information from Wi-Fi Traffic on Public Transport. In Inter-
national Journal of Transport Development and Integration, 2021.

Acknowledgments

First of all, I would like to thank my supervisor, Dr Márk Jelasity, for directing and
supporting my research. He showed infinite patience during my studies and taught
me how science works.

I would also like to thank my colleagues and friends who helped me to realize the
results presented here and to enjoy the period of my studies. Special thanks to Dr.
István Hegedűs for his constant support during my studies. He was always open to
discussing whatever new ideas I had.

Next, I wish to thank my wife, son, and family for their constant love, patience,
and support throughout my education. It wouldn’t have been possible without them.

This study was also supported by the National Research, Development and In-
novation Office of Hungary through the Artificial Intelligence National Excellence
Program(grant 2018-1.2.1-NKP-2018-00008), by the Hungarian Ministry of Human
Capacities (grant 20391-3/2018/FEKUSTRAT), by grant TUDFO/47138-1/2019-ITM
of the Ministry for Innovation and Technology, Hungary, and by the project “Inte-
grated program for training new generation of scientists in the fields of computer
science”, no EFOP-3.6.3-VEKOP-16-2017-0002, funded by the European Union and
co-funded by the European Social Fund, by the Ministry of Innovation and Tech-
nology NRDI Office within the framework of the Artificial Intelligence National Lab-
oratory Program and the Artificial Intelligence National Excellence Program (grant
2018-1.2.1-NKP-2018-00008), as well as grant NKFIH-1279-2/2020, by the Euro-
pean Union project RRF-2.3.1-21-2022-00004 within the framework of the Artificial
Intelligence National Laboratory, and project no. TKP2021-NVA-09, implemented
with the support provided by the Ministry of Innovation and Technology of Hungary
from the National Research, Development and Innovation Fund, financed under the
TKP2021-NVA funding scheme.

101

	Introduction
	Contributions

	Background
	Notations
	Adversarial attacks and defenses
	Adversarial attacks optimization objectives
	Targeted vs untargeted attacks
	The adversary's knowledge of the targeted model
	A brief review of the employed white-box attacks
	Measures on neural network robustness
	Adversarial training

	Adversarial Robustness of Linear Models
	Introduction
	Linear Models in High Dimensional Spaces
	Linear Models and Regularization
	Experimental Results
	Binary Classification Problems
	Methodology
	Results

	Conclusions

	Adversarial attacks on model sets
	Model set attacks on MNIST and CIFAR-10
	Introduction
	Algorithm
	Experiments

	Model set attacks on ImageNet
	Introduction
	Attacking Model Sets
	Adversarial Target Patterns
	Experiments

	Discussion and concluding remarks

	Combining Robust Classification and Robust out-of-Distribution Detection
	Introduction
	Related work
	Combining our Two Objectives
	The Robust OOD Learning Problem
	Score Functions
	Score Functions for a Dedicated OOD Class

	OOD Detection, Adversarial Attack and Robust Training
	Correct Evaluation Methodology
	Training Objectives in Previous Work

	Experimental setup
	Training
	Evaluation
	MNIST-Specific Settings
	CIFAR-10-Specific Settings

	Results on Robust Accuracy
	Results on OOD Robustness
	Background Class Representation vs. Parameter-Free Methods
	Matching Score Functions
	Attacks on OOD Samples are most Effective when Attacking and Detection Score Functions are the Same
	OOD Detection and OOD Training Objective should Use the same Score Function
	Ratio Models
	Models with Trainable Background Class

	Generalization to Unseen OOD Datasets
	Results with CIFAR-100 classes
	Concluding Remarks on Generalization

	Conclusions

	Bibliography
	Summary
	Összefoglalás
	Publications

