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Chapter 1

Introduction

Throughout history, viral epidemics of variable intensity and frequency created havoc
and panic all across the world. Numerous factors, including farming and industrial-
ization, climate change, resource depletion, deforestation, and modifications to nat-
ural topography, contribute to viral epidemics. For instance, influenza, smallpox,
measles, and yellow fever put an enormous burden on economies [3]. Nipah virus
(NiV) is a zoonotic virus meaning that it is transmitted between species from animals
to humans and causes outbreaks of fatal disease in humans [4]. After the first iden-
tification of the virus in pig-farming villages in Peninsular Malaysia, outbreaks were
seen in Singapore, Bangladesh, and India [5, 6, 7]. Nationwide hospitals in Malaysia
received more than 200 patients, many of whom passed away. The killing of sev-
eral pigs to contain the epidemic and the shutdown of farms caused havoc in the pig
farming sector. Numerous workers at butcher shops in neighboring Singapore also
suffered. Although clinical and epidemiological characteristics first led researchers
to assume Japanese encephalitis – a viral encephalitis linked to pigs that are com-
mon in Southeast Asia – a separate illness may have been to blame [8, 9, 10]. In
South-East Asia, NiV infection has become an alarming threat due to high mortal-
ity, periodicity, the unsatisfactory effect of antiviral drugs, and treatment depending
on symptomatic patients of the disease [11, 12]. A number of countries including
Cambodia, Ghana, Indonesia, Madagascar, the Philippines, and Thailand may be at
risk for infection according to WHO [13]. Moreover, WHO has included the Nipah
virus in its blueprint list including ten diseases and pathogens to be prioritized for
R&D [14]. The animal host reservoir for NiV is the fruit bat (genus name Pteropus)
also known as the flying fox. Different routes of human transmission include direct
transmission from fruit bats, indirect transmission from fruit bats via other animal
species, and human-to-human transmission [15, 16, 17, 18]. Fruit partially eaten by
bats may be dropped or thrown into pigsties infecting pigs by consuming the contam-
inated fruit [19]. Pig-to-human transmission mostly results from close contact with
sick pigs or their contaminated tissues [13, 20].
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2 Introduction

Human-to-human transmission was reported in the Malaysian outbreaks in March
1999, especially in families of affected index cases and more than 300 health care
workers in the three hospitals that looked after 80% of encephalitis patients [21, 22].

NiV’s emergence and dissemination are caused by a number of variables. Different
tactics have been developed throughout the infected area to deal with and improve
surveillance and awareness, with a focus on personal hygiene. In spite of the threat
it poses, up to now, very little mathematical modeling work has been done on Nipah
fever transmission. It is also important to note that most of the Nipah models did
not consider various important characteristics of the disease, such as transmission
from bats and pigs, which, however, play a crucial role in the spread of the disease.
Moreover, several of the earlier works did not concentrate on the dynamics of the pro-
posed models but rather considered optimal control problems. To describe the spread
of Nipah fever in a more realistic way, in this thesis, we propose two compartmental
models considering all possible ways of transmission of NiV among animals and hu-
mans: we consider transmission from bats, pigs, and human-to-human transmission.
The NiV outbreak is characterized by both periodic and sporadic spillover incidents.
To account for this, a compartmental model has been developed to incorporate the
periodic nature of the environment in which the outbreak occurs.

1.1 Structure of the dissertation

My thesis is concerned with mathematical models for the spread of Nipah virus dis-
ease in constant and periodic environments. In addition, it presents an epidemic
model for a zoonotic disease with a general nonlinear incidence, motivated by our
model for Nipah transmission. Furthermore, a compartmental model is studied de-
scribing the transmission dynamics of some diseases where transmission from corpses
of deceased infected is possible – such as in the case of the Nipah virus.

Chapter 2 delves into the fascinating realm of mathematical modeling in epidemi-
ology, offering readers a succinct yet comprehensive overview. This chapter serves
as an essential foundation for understanding the subsequent discussions in the next
chapters.

Chapter 3 is devoted to introducing the reader to the Nipah virus, providing a
concise yet enlightening depiction of the virus itself, its captivating outbreak history,
as well as its intricate modes of transmission. Furthermore, this chapter unravels the
pathogenic background of the Nipah virus, providing insights into its behavior and
impact on human health.

Chapter 4 provides a novel SIRS model to describe the dynamics of Nipah virus
transmission, considering human-to-human as well as zoonotic transmission from
bats and pigs.

In Chapter 5, motivated by the model described in Chapter 4, we establish and
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study an SIRS epidemic model for a zoonotic disease with a general nonlinear inci-
dence rate. We derive a Lyapunov function for the global asymptotic stability of the
unique endemic equilibrium.

In Chapter 6, we present a non-autonomous mathematical model for the spread
of Nipah virus disease taking into account the periodic nature of various model pa-
rameters, such as transmission rate from bats and the bats’ birth and death rates.

In Chapter 7, we formulate a compartmental model for the spread of a disease
with an imperfect vaccine available, also considering transmission from deceased
infected in general. The global dynamics of the system are completely described
by constructing appropriate Lyapunov functions. We perform numerical simulations
to assess the importance of transmission from the deceased considering the data
collected from three infectious disease Ebola virus disease, COVID-19, and Nipah
fever to support our analytical results.
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Chapter 2

Mathematical modeling in
epidemiology

The integration of mathematics into epidemiology has created novel and exciting
possibilities for research into the prevalence and causes of disease and illness in
communities. To analyze and predict the spread of various diseases, as well as to
design effective strategies for their control, researchers and scientists have created
an innovative and stimulating field using mathematical tools. A real-world system or
phenomenon, typically expressed in terms of mathematical equations like linear and
non-linear differential equations can be defined as a mathematical model. Numer-
ous applications of mathematical models include physics, engineering, economics,
statistics, and biology.

Compartmental modeling is an effective technique used to depict the movement
of individuals between various groups in a population. The population is often di-
vided into different compartments according to criteria like age, health status, and
other pertinent attributes in order to apply this modeling technique.

It is firmly established that in modern times diseases are primarily transmitted
through contact with viruses or bacteria. However, the idea that unseen living or-
ganisms are responsible for causing illness dates back to ancient times, with Aristotle
(384 BCE–322 BCE) being among the earliest writers to explore this concept.

John Graunt (1620–1674) was the first scientist who tried to quantify causes of
death and provide a method for assessing the relative chances of dying from differ-
ent conditions, which was published in his book ”Natural and Political Observations
made upon the Bills of Mortality” in 1662. The Bills of Mortality were weekly listings
of the deceased people in London’s parishes and his analysis led to the foundation
of modern epidemiological theory. Dutch scientist Antonie van Leeuwenhoek (1632–
1723) utilized microscopes to explore microbes for the first time in the 17th century.
The hypothesis regarding the germ of disease, which holds that it is the root cause
of many diseases, was initially put forth by German physician Jacob Henle (1809–
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1885) in the latter period of the 19th century. This theory was further developed by
renowned figures such as Robert Koch (1843–1910), Joseph Lister (1827–1912), and
Louis Pasteur (1822–1875) during the late 1800s and early 1900s [23]. Anesthetic
and medical hygiene were first attempted by English physician John Snow, whose
contribution is highly significant and is regarded as the founding of the science of
epidemiology. For the majority of diseases, the method of infection transmission is
currently understood. People develop immunity against diseases some disease like in-
fluenza, measles, rubella, and chickenpox spread by viral agents, while it is not seen
for diseases caused by bacterial pathogens, like tuberculosis, meningitis, and gon-
orrhea. Certain diseases, such as malaria, employ an indirect transmission method
where they are propagated among individuals through the intermediation of vec-
tors. These vectors, often insects, acquire the disease from an infected human and
subsequently transmit it to other individuals. Another vector method for HIV/AIDS
transmission that involves back-and-forth transmission between males and females
is heterosexual transmission [24].

In 1760 Swiss mathematician Bernoulli proposed the first epidemiological math-
ematical model describing an infectious disease to study the impact of immuniza-
tion with cowpox upon the expectation of life of the immunized population and
discussed the importance of variolation [25, 26]. Smallpox treatment and preven-
tion were major challenges during the time when the disease was still widespread.
The idea of using particles from the lesion for smallpox vaccination to acquire im-
munity was extremely debatable due to the potential harm and fatality associated
with it. It was debatable whether the advantages of widespread vaccination out-
weighed the risks involved. After the first summarized solution to the problem of
conflicting hazards, he has done a more thorough examination which was presented
in the Royal Academy of Science in Paris and published in 1766. Bernoulli supported
the assertion that the benefits of vaccination outweighed the risks of the illness and
the associated fatalities. His research offers a thorough comprehension of the small-
pox disease’s historical significance. The three consecutive works of Kermack and
McKendrick’s [27, 28, 29] involved creating mathematical models to investigate the
transmission of infectious diseases. The reformulation of the Kermack–McKendrick
model by Diekmann et al. [30] has reignited interest in epidemic models during the
SARS epidemic of 2002–3, the concern about a potential H5N1 influenza epidemic
in 2005, the H1N1 influenza pandemic of 2009, and the Ebola outbreak of 2014.

The SIS, SIR, SIRS, SEIR, SEIRD, and SIRWS are typical examples of compart-
mental models, and the dynamics are described by a system of ordinary differential
equations. A brief description of the compartments is given below.

• S(t) is used to represent the individuals who are at risk of developing a partic-
ular health condition or disease, or those susceptible to the disease of the pop-
ulation. Various reason for susceptibility includes genetic trend environmental
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exposures, lifestyle factors, or a combination of these. Some people may be
more susceptible to infectious diseases because of weak immune systems or
preexisting health conditions. For instance, for chronic diseases like diabetes or
heart disease, some individuals may be more sensitive due to lifestyle choices
like food and exercise or hereditary factors.

• I(t) denotes the individuals of the population who have contracted a disease or
infection caused by a virus, bacteria, parasite, or other microorganisms. They
are capable of spreading the disease through direct contact, airborne transmis-
sion, or contaminated objects to those in the susceptible category. Depending
on the nature of the infection and the individual’s immunity, symptoms may or
may not be seen in infected individuals.

• R(t) is the compartment used for the individuals, who have previously been
infected with a disease and have returned to a healthy state due to immuniza-
tion. Individuals may be fully recovered or partially recovered with some resid-
ual symptoms influenced by various factors, for example, the severity of the
illness, the individual’s immune response, and the availability of effective treat-
ments. Partially recovered individuals are able to be infected again or transmit
the infection to others.

• E(t) refers to people of the compartment who have come into contact with
disease-causing microorganisms and have had the potential for infection. In-
dividuals from this compartment do not necessarily will become infected or
develop symptoms, rather it means they have had contact with the infectious
agent. Asymptomatic and symptomatic are the two main groups of this com-
partment depending on the developing symptoms of the disease. Exposed peo-
ple are important for contact tracing and implementing appropriate measures
to prevent the further spread of the disease

• D(t) represents the compartment of those people who have passed away from
natural causes or diseases in mathematical epidemiology. This compartment is
important in some cases as a corpse can transmit disease.

• W (t) represents a group of individuals whose immunity against a particular
disease gradually diminishes over time. This compartment is often included in
epidemiological models to capture the dynamics of individuals whose immune
protection weakens but can still be boosted upon repeated exposure to the
pathogen. This compartment is crucial in studying the long-term effects of
immunity and the potential for reinfection within a population.

In 1927, W. O. Kermack and A. G. McKendrick [27] created the SIR model in which
they considered a fixed population [31]. This model may be applied to diseases like
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diphtheria, typhoid fever, measles, mumps, smallpox, and chickenpox that cause per-
manent immunity after recovering from the disease [26]. The SIR model must adhere
to certain assumptions and limitations, such as boundary conditions, much like every
other mathematical model. These limitations specify the conditions under which it
is possible to employ the SIR model in real-world applications. The assumptions are
discussed below:

(A1) The population size is constant as the population involved in the infection is
closed with no additions or leakage of individuals. This presumption may be
met by an epidemic that spreads quickly and is short-lived, during which time
key events like births, deaths, and migration have little to no impact on the
disease’s course.

(A2) People in the population encounter one another randomly in that both the prob-
ability and the intensity of contact with one another throughout time, regard-
less of geographic and demographic circumstances, stay constant. For the SIR
dynamic system, which is controlled by the same transmission and recovery pa-
rameters, and, this is a strong assumption of homogeneity. Such a homogeneity
assumption might be conveniently broken in real life. In the literature on in-
fectious diseases, modeling with heterogeneous dynamics of infection is thus a
significant and active study subject.

(A3) Only infection can lead to immunity in a susceptible individual; there is no
vaccination. In other words, a susceptible compartment has only one exit, the
infected compartment, and there is nowhere else that a person at risk could
go. The person is no longer susceptible to the virus for the rest of the study
period if that individual has been treated, The recovered compartment is the
final stage of the infection dynamics because there is no connection between it
and the susceptible compartment.

(A4) The infection has no latent phase, meaning that it spreads immediately after
exposure. This is a crucial difference between the SIR model and the SEIR
model. In actuality, this latency of infection actually refers to the timing of
being contagious rather than symptomatic.

(A5) The underlying infection is assumed to evolve in completely neutral environ-
ments without any mitigation efforts through external interventions, such as a
public health policy of social exclusion, effective medication, or quick testing
kits for diagnosis. This is because the SIR model has constant transmission and
recovery parameters that are not time-varying.

(A6) The population size is sufficient to support an adequate number of incidences,
such as infections, deaths, and recovered patients, enabling the precise and
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steady estimation of the SIR model parameters. A well-trained model with
trustworthy data is required to not only make an accurate prediction but also
to appropriately estimate the prediction uncertainty [32].

Governments often deploy a variety of control measures during an epidemic to slow
the disease’s spread. The fact that the transmission and recovery rates are no longer
stable across time directly results from these outside interventions. Thus, a key gen-
eralization of the SIR model is to allow for varying degrees of mitigation actions, such
as social exclusion, transit restrictions, the requirement of masks, and city lockdown.

Incorporating seasonality is a property of a transmission rate that is advantageous.
It is common knowledge that particular winter months are when infectious diseases
spread the quickest. Particularly, seasonal patterns in the behavior of several coro-
naviruses that cause respiratory infectious illnesses are associated with variations in
temperature and humidity [33, 34]. A better long-term prediction of an epidemic
would result from the model taking into account such seasonal regularity. Season-
ality must be taken into consideration as public awareness of pandemic projection
gradually moves from the short term to the long term.

When an epidemic persists for a long time before it is contained, the assumption
of a fixed population size is constrictive. For the SIR model’s time-varying compart-
ment sizes to be accurately characterized in this situation, natural birth, and death
dynamics must be included. In this way, SIR model with vital dynamics can be de-
fined.

In practical applications, the SIR model has some drawbacks. As a result, modifi-
cations to this fundamental type that take into consideration various disease mecha-
nisms and presumptions have received a lot of attention in the literature. The com-
monly used SEIR model includes an exposed compartment between the susceptible
and infected compartments to account for an incubation time. One could think of
the exposed compartment as a waiting area for virus carriers who are preparing to
infect the populace. The essential premise is that those in this exposed group who
are not currently contagious but have received the virus will eventually do so. Most
infectious disorders that are appropriate for the SIR model in the literature today are
thought to fit in the SEIR model.

Long-term immunity to all infectious illnesses does not always develop. After re-
gaining health, people could build immunity for a while before losing it and being
susceptible once more. Thus, following a predetermined period of immunity, re-
stored individuals re-enter the susceptible compartment. The SIRS and SEIRS model
of disease evolution is a common term. People who touch or come into contact
with a corpse from a communicable disease run the risk of contracting the disease.
The most dangerous jobs are those that have a lot of interaction with dead bodies.
Infected bodies can be safely embalmed and viewed by the grieving, barring a few
contagious diseases. Using the proper infection control techniques will help to reduce
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the infectious risks that come with dead bodies. So necessarily dead compartment
should take into account; in this way, the SIRD or SEIRD model is introduced. The
transmission patterns of infectious illnesses for which immunity is transient are cap-
tured by SIRS models. A model may incorporate the immune system’s strengthening
with repeated exposure by adding an additional compartment for people with waning
immunity and thus SIRWS model [35] can be formed. Vaccination programs play a
vital role to eradicate infectious diseases. Target vaccine coverage that will eradicate
an infectious pathogen can be predicted using the straightforward compartmental
model. The SVIR model [36] is constructed to determine the vaccination coverage
rate necessary to completely eradicate an infection, investigate the effects of vaccine-
induced immunity that deteriorates over time, and examine the interactions between
vaccine-susceptible and vaccine-resistant strains of infectious agents.

W. H. Hamer [37] postulated that the rate at which infections spread would be
determined by two key factors: the number of individuals who are susceptible to the
disease and the number of individuals who are already infected. He also introduced
the concept of a mass action law, which could be used to quantify the rate at which
new infections would occur. This idea of Hamer’s has since become a fundamental
principle in the development of compartmental models for disease transmission.

Ross [38] developed a basic compartmental model which was the first instance
where the concept of the basic reproduction number was introduced and it is worthy
to note that this name was given by MacDonald [39] in his work on malaria [23].
The number of secondary cases that one infected individual would generate in an
entirely susceptible population is the basic reproduction number and it is commonly
denoted by R0. The length of the infectious period, the likelihood of infecting a
susceptible person during one encounter, and the number of additional susceptible
people contacted per unit of time all play a role in this. R0 may thus be significantly
different for various infectious diseases as well as for the same disease in various
populations [40]. This number has since become a crucial concept in mathematical
epidemiology, which is concerned with understanding how infectious diseases spread
through populations. Despite being developed many years ago, the concept of the
basic reproduction number remains a central idea in modern epidemiology.

The parameters birth rate, infection rate, and recovery rate are used in the es-
timation of R0. For the computation of basic reproduction number revolution took
place when the Next Generation Matrix (NGM) method was given by Diekmann et
al. [30, 41]. One can easily calculate R0 following the recipe of [30, 41] using NGM
with large domain and the NGM with small domain. The threshold value of R0

is unity. Some conclusions are drawn based on this threshold value, notably that
if R0 < 1, infections are eliminated and if R0 > 1, the disease is still endemic in
the population [42]. Disease control organizations typically aim to lower R0 un-
til it drops below unity, which can be done by endorsing specific interventions and
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developing methods.
Stability analysis comes next when a dynamical system’s equilibrium has been

established. In order to complete the analysis, the well-known Hartman–Grobman
theorem of linearization is used [43, 44]. The stability of equilibria is determined by
the theorem using the sign of the real component of each and every eigenvalue of the
characteristic polynomial. The qualitative behavior of the solution curves at the equi-
librium points can be determined based on the sign. For instance, the solution curves
will move in the direction of the equilibrium point is locally asymptotically stable,
if every eigenvalue has a negative real portion. Using this theorem, we are able to
determine the stability condition of the disease-free equilibrium and endemic equilib-
rium in terms of R0. Sometimes it is hard to find out the condition from eigenvalues
for stability due to the complexity of the model. The well-known Routh–Hurwitz
stability criterion [45, 46] may be used to perform stability analysis of equilibria for
higher-order characteristic polynomials of the Jacobian matrix. The criterion does
not involve a direct computation of the characteristic polynomial’s roots; rather, it
analyzes the stability of equilibria by concentrating only on its coefficients.

A general non-autonomous epidemic refers to an infectious disease outbreak that
occurs in a population where the transmission dynamics are not constant for the fac-
tors influencing the spread of the disease, such as contact rates, population density,
and interventions, vary over time. Public health interventions, natural or man-made
events, seasonal variations in human behavior or interactions with one another, and
other factors all have an impact on non-autonomous epidemics and all these have a
significant effect on both the incidence and severity of the disease. In contrast to au-
tonomous epidemics, where the transmission dynamics remain constant throughout
the outbreak. Periodic fluctuations are a regular occurrence in the spread of diseases,
as is well-known. Determining and computing the basic reproduction numbers of pe-
riodic epidemic models is a natural and crucial problem. To understand the effects
of recurring contacts or migratory patterns on the spread of disease, the global dy-
namics of a periodic epidemic model with patch structure are examined by Wang et
al. [47] which can be followed by anyone to analyze the periodicity of an epidemic
model.
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Chapter 3

Nipah virus

Nipah Virus (NiV) is an RNA virus (Henipavirus genus, Paramyxovirinae subfamily,
Paramyxoviridae family, order Mononegavirales) and a member of Henipavirus genus,
which also includes the recently discovered Cedar virus and the Hendra Virus (HeV)
[1]. Henipaviruses are naturally stored in bats [48]. NiV and HeV are known to
induce fatal neurologic and/or respiratory disease, whereas Cedar virus has not been
confirmed to be harmful to any animals [49]. Since NiV can cause a wide range of
illnesses in both humans and animals, including mild to deadly respiratory illnesses
and encephalitis [50], it is one of the diseases on the WHO’s priority list of those
that need immediate attention in terms of research and development [14]. Due to its
zoonotic and human-to-human transmission, NiV is extremely harmful to a variety of
mammals and is thought to have pandemic potential [51]. Pteropus bats, the virus’s
reservoir, are found all over the world and future spillover occurrences are expected
to take place in new communities where they live. The latest instance of this is a
recent outbreak in a new geographic region in Kerala, India [52]. The comparatively
low number of patients and challenges with diagnosis have limited research into this
condition. As a virus with a biological safety level 4 (BSL 4) classification, NiV, access
to such laboratories is limited in many countries [53].

Nipah virus can endure in some fruit juices or mango fruit for up to three days
and at least seven days in date palm sap. In fruit bat urine, the virus has a half-life
of 18 hours. In the environment, NiV is comparatively stable and can survive for
one hour at 70°C, but viral concentration will be reduced in this case. Heating it for
more than 15 minutes at 100°C completely inactivates it [54]. The survivability of
the virus in its natural environment may alter based on the various circumstances.
Soaps, detergents, and commercially available disinfectants like sodium hypochlorite
can easily inactivate NiV [55]. In human NiVs obtained from multiple outbreaks in
Malaysia, India, and Bangladesh, a number of variations have been found. Similar
to this, distinct genetic variants were found in the NiVs isolated from Chiroptera
samples collected in various locations [7, 56, 57]. NiV-B and NiV-M strains have
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been found using genomic sequencing, and NiV-B is thought to have greater fatality
rates [56, 58]. The outbreaks in diverse regions are brought on by the two NiV
strains. It was reported that outbreaks in Malaysia were said to be caused by NiV-M,
while epidemics in Bangladesh and India were by NiV-B [56]. Figure 3.1 illustrates
the Nipah virus’s diagrammatic structure [1].

Figure 3.1: Nipah virus structure [1].

3.1 History of outbreak

Japanese Encephalitis (JE) is the most common type of viral encephalitis that affects
people in Asia and 529 cases including 35 deaths were recorded in Malaysia from
1989 to 1998 with sporadic occurrence [59, 60]. At the end of September 1998, a
group of patients were diagnosed with acute febrile encephalitis. These patients were
connected to pig farming in the suburb of Ipoh City within the Kinta district of Perak
state in Peninsular Malaysia [8, 61]. In the same district, respiratory sickness and
encephalitis in pigs occurred prior to the epidemic of febrile encephalitis in humans
[62]. Classical swine fever was formerly assumed to be the cause of the pigs’ disease.
The Institute of Medical Research, Ministry of Health’s initial examinations into the
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causes of acute encephalitis in 28 individuals in the initial outbreak area suggested
that the JE virus was responsible for human mortality [63]. The Ministry of Health
proactively implemented a number of control measures based on the management of
the JE epidemic to battle the outbreak in the Kinta district and subsequently across
the entire nation [64].

3.1.1 Malaysia

The outbreak spread to a town named Sikimat Negeri Sembilan by December 1998,
and by February 1999, a similar disease in pigs and humans was observed in the
biggest pig-farming region in the Negeri Sembilan state called Sungai Nipah village
and Bukit Pelandok [8]. Noted that the spread of the outbreak was associated with
the movement of pigs from the Kinta district and between farms [65, 66]. Famous
virologists from the University of Malaya discovered the novel paramyxovirus, Nipah
Virus (NiV) in early March 1999, was isolated from the Cerebrospinal Fluid (CSF) of
an encephalitic patient from Sungai Nipah village and subsequently identified as the
aetiological agent responsible for the outbreak [8, 50]. Between September 29, 1998,
and December 1999; 283 cases of febrile encephalitis including 109 dead (38.5%)
were reported to the Malaysian Ministry of Health, where the state of Negeri Sembi-
lan reported the highest number of cases (231) and fatalities (86), followed by Perak
with 28 cases and 15 deaths while Selangor had 24 cases and eight deaths [8]. The
mortality rate was close to 40% and 16 days was the mean duration of illness from
starting of symptoms to death. Positive viral cultures from the CSF and significant
brain-stem involvement were linked to mortality [67]. With the killing of over a
million pigs and extensive pig population surveillance, the outbreak in Malaysia was
brought to an end [68, 69].

3.1.2 Singapore

During March 13–19, 1999, abattoir workers in Singapore who had contact with
pigs from Peninsular Malaysia’s epidemic areas were reported to have a cluster of 11
instances of respiratory and encephalitic sickness, with one death. The outbreak in
Singapore came to an end after Malaysian pig imports were outlawed on March 19,
1999, and the closure of abattoirs [10, 68].

3.1.3 Bangladesh

The northern and central regions of Bangladesh saw the majority of the Nipah cases
and outbreaks occurred from December to May, which is Bangladesh’s winter sea-
son [6]. In April and May 2001, nine fatal febrile neurologic diseases were re-
ported in the Meherpur District of Bangladesh. Japanese encephalitis, dengue fever,
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and malaria were initially ruled out by preliminary investigations by the Ministry of
Health, Bangladesh, and the World Health Organization (WHO), but 2 of 42 serum
samples collected from village residents in May 2001 revealed reactive antibodies to
Nipah virus antigen in tests conducted at the U.S. Centers for Disease Control and
Prevention (CDC). However, there was no thorough examination of this outbreak.
Eight recorded fatalities and a cluster of febrile illnesses with neurologic symptoms
with similar clinical symptoms occurred in January 2003 in nearby villages in Nao-
gaon District, around 150 miles from the village in Meherpur District [70].

Figure 3.2: Number of reported Nipah virus cases and deaths by year, 1 January 2001
– 13 February 2023, Bangladesh [2].

Between 2001 and 2007, 17 other NiV transmission cases, ranging from single
sporadic human cases to clusters of 2–4 humans were identified in addition to the
outbreaks [71]. Despite the fact that incidences of the Nipah virus are generally al-
ways reported from seven districts across two divisions in Bangladesh, there have
already been 11 cases and eight deaths (fatality rate (73%)) confirmed in 2023,
which is rare compared to the previous seven years. The highest cases have been
documented since 2015, when there were 15 cases total, including 11 deaths [2].
For the prevention and control of the spread of NiV, the Government of Bangladesh
has given some guidelines considering bats to human and human-to-human trans-
mission. These strategies include awareness programs, early case detection through
different surveillance, case management, and infection control measures in house-
holds, communities, and hospitals [72].
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3.1.4 India

In Siliguri, West Bengal, India, during January and February 2001, a febrile disease
outbreak connected to altered sensorium was noted. Laboratory examinations failed
to identify an infectious agent at the time of the outbreak. Due to Siliguri’s proximity
to Bangladesh, where NiV infection outbreaks have recently been reported, clinical
samples taken during the Siliguri outbreak were retrospectively examined for NiV
infection evidence. With a mortality rate of 68%, this catastrophic outbreak claimed
the lives of 45 out of 66 confirmed cases. The genuine index patient’s information
was not available [7]. However, there were no reports of any animal involvement
and the dissemination was primarily nosocomial. After that, there was another out-
break took place in the Nadia district, West Bengal in 2007, all five patients who
tested positive for the virus perished within 10 days of infection, resulting in a fatal-
ity rate of 100% [73]. Surprisingly the third Nipah outbreak was reported in May
2018 in Kerala’s Kozhikode and Malappuram districts, which are more than 1,200
km southwest of previous Indian and Bangladeshi outbreaks. There were 17 deaths
and 18 confirmed cases as of 1 June 2018 [74].

3.2 Symptoms, diagnosis, and treatment

The incubation time during the Malaysian outbreak ranged from 4 days to 2 months,
but it was 10 days in Bangladesh [73, 75]. In Kerala, the incubation period was be-
tween 6 and 14 days, with a median of 9.5 days [76]. The onset of this illness starts
through respiratory symptoms, including coughing, a sore throat, and respiratory
distress, succeeded by a period of 3–14 days characterized by fever and headaches.
Following this, the ensuing phase characterized by brain swelling (encephalitis) is
marked by common symptoms such as drowsiness, disorientation, and mental con-
fusion. This stage can progress rapidly, leading to a coma within 24-48 hours if left
untreated.

Though death may occur in 40–75% of instances however survivors of NiV infec-
tion have reported long-term negative effects such as encephalopathy, cerebral atro-
phy, change in behavior, ocular motor palsies, cervical dystonia, weakness, and facial
paralysis. Moreover, there have been reports of infections that manifest symptoms
and occasionally even cause death months or even years after contact [13, 77, 78].

Since the initial Nipah virus symptoms are ambiguous, the diagnosis is frequently
missed at the time of presentation. This can make it difficult to provide an accurate
diagnosis and presents problems with outbreak identification, timely and efficient
infection control measures, and activities related to outbreak response. Nipah virus
can be detected in two ways. In the primary stage of the illness, real-time poly-
merase chain reaction (RT-PCR) can be used to detect Nipah virus infection in the
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blood, urine, cerebrospinal fluid, and throat and nasal swabs and Enzyme-linked
immunosorbent assay (ELISA) for antibody detection is another test during illness
and after recovery [79].

Though the Nipah virus is on a priority disease list for the WHO Research and
Development Blueprint [14], there are currently no medications or vaccines that
are specifically designed to treat Nipah virus infection. For the treatment of severe
respiratory and neurologic problems, intensive supportive care is advised [13].

3.3 Reservoir

Bats serve as reservoir hosts for several high-risk pathogens, including Nipah, rabies,
and Marbug viruses, furthermore, no significant pathogenic alterations in the bat
population are linked to such viruses [80, 81]. They are primarily found in places
near farms and orchards, where they eat fruits and nectar, limiting the barrier of
spillover of the viruses [82]. The bats are proven to be connected to the NiV epi-
demics observed in many parts of the world and are indigenous to tropical and sub-
tropical portions of Asia, East Africa, Australian continents, and some oceanic islands
[82, 83]. NiV poses a serious threat to both human and animal health due to a num-
ber of factors, such as the fact that its bat reservoir hosts are extensively dispersed
throughout Asia and are found in areas with dense populations of both people and
livestock. This results in frequent outbreaks and widespread spillover occurrences
[84]. The main reservoir for henipaviruses in Asia and Australia appears to be a sin-
gle genus of frugivorous bats called Pteropus also known as fruit bats or flying fox.
In several countries in South and Southeast Asia, including Bangladesh, Cambodia,
East Timor, Indonesia, India, Malaysia, Papua New Guinea, Vietnam, and Thailand,
epidemics of the Nipah viral disease have been linked to the Pteropus bat species
[40, 83, 85, 86, 87, 88, 89, 90, 91]. The pig proved to be an effective amplifying
host for the virus. Other animals, like the cat, dog, horse, and goat have reportedly
displayed signs of illness furthermore, it is thought that diseased pigs were the orig-
inal hosts for these species and that all other hosts, with the exception of pigs, are
essentially ”dead-end” hosts. One victim contracted the ailment from his pet dogs,
which later succumbed to the illness [68, 92].

3.4 Nipah virus transmission

Diverse ways are seen to contract either humans or animals with the disease. It is odd
how different hosts have multiple paths for transmission that vary based on location
due to many factors, such as differing breeding practices and dietary customs [1].
Different routes of human transmission include direct transmission from fruit bats,
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indirect transmission from fruit bats via other animal species, and human-to-human
transmission [15, 16, 17, 93]. In-depth research is required to comprehend the viral
circulation between fruit bats, pigs, and humans along with the processes of NiV
transmission from bats to pigs, pigs to humans, and from humans to humans.

3.4.1 Bats to humans and pigs

The main route of bat-to-human transmission was found to be eating fresh date palm
sap during investigations into NiV-related outbreaks in Bangladesh [51, 94]. Date
palm sap is frequently utilized for fresh consumption and fermenting in Bengali cul-
ture. In Bangladesh, the top section of the date palm tree’s bark is shaved, allowing
the sap to soak into clay pots overnight, that are attached to the tree [95]. Pteropus
spp. bats are known to regularly consume the shaved bark and commonly contami-
nate the sap with saliva, urine, and excrement, according to a prior NiV study [96].
It is also known that Pteropus spp. bats occasionally excrete and secrete NiV [97, 98].
Additionally, fermented date palm sap is used to create alcoholic beverages known
as toddy, tari, and palm wine throughout Asia, Australia, and Africa [99, 100]. Pigs
are raised for their economic value, and fruit trees are also grown on farms and
in their vicinity for shade. Fruits attract Pteropus spp. bats, and as a result,NiV is
spread to pigs and people. When pigs eat fruit that has been bitten by NiV-carrying
bats, they become infected and are thought of as biological reservoirs for the disease.
Additionally, the data showed that Pteropus spp. have a significant seroprevalence of
anti-Nipah virus antibodies. This suggests that the virus has evolved sufficiently to
allow for transmission among Pteropus bats [1].

3.4.2 Pigs to humans and bats

Humans can catch the illness from infected pigs, which serve as the virus’s interme-
diate host [101]. The biological promiscuity caused by frequent interaction between
people and pigs and their excrements is undoubtedly the primary risk factor for trans-
mission in this area. In Malaysia, a large proportion of pigs are raised in pig farms,
where the NiV infection can spread between animals. Moreover, slaughterhouses
also contribute to the spread of the illness because they are locations where the NiV
virus can move from pig to man. Transmission from pigs to bats is not seen in any
literature [10, 93]. Because of the transcontinental movement of tainted pig meat,
the virus was spread from animals in one region of the world to people in another.

3.4.3 Humans to humans and animal

NiV shed from Pteropus spp. may infect one or more people, and the chain of trans-
mission may then continue via person-to-person contact to become an epidemic
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[102]. Patient handling and coming into contact with an infected person’s excre-
tion are risk factors for infection [103]. It was reported that, during an outbreak in
Siliguri, India, in 2001, 45 (75%) of 60 patients, many of whom were medical profes-
sionals had a history of hospital exposure to patients infected with Nipah virus [7]. At
the same time a case-control study conducted during an outbreak in Meherpur Dis-
trict, Bangladesh, revealed that patients were more likely to have reported touching
the secretions of other patients, and their attendants during their illness were more
likely to contract the Nipah virus [70]. NiV transmission from humans to animals is
not found in any literature.

3.5 Previous modelling studies

Pathological and epidemiological studies of the Nipah virus disease were perceived,
but very few mathematical models are available for it which are presented as follows.
Biswas [104] proposed a simple SIR model to investigate the disease propagation and
control strategy of NiV infections. Numerical simulations have been utilized to depict
the dynamics of NiV infections, showcasing the patterns and behavior observed in the
spread of the disease. Sultana et al. [11] develop a dynamic model of NiV infections
with a population of variable size and two control mechanisms, where raising aware-
ness and providing treatment are seen as controls with the best possible pairing to
save costs. We prove the existence of the best controls, and the best controls are
described by the Pontryagin maximal principle. An SEIR based on a mathematical
model incorporating the quarantine of infectious individuals influenced by the avail-
ability of isolation centers and surveillance coverage was formulated and analyzed
by Mondal et al. [12]. They assumed birth and death rate are not equal. Among the
several possible control parameters, they considered the number of quarantined in-
dividuals and the enhanced personal hygiene as a result of the public enlightenment
program. A two-layered compartmental model for humans and bats was proposed
by Nita et al. [105]. They found that the number of NiV-affected individuals can
be reduced by using control on them and bats. Agarwal et al. [106] developed a
mathematical model comprising seven compartments, encompassing virus dynam-
ics, flying foxes, and humans. Notably, their model assumes the absence of a cure
for this particular disease. Zewdie et al. [107] put forth a SIRD model to exam-
ine the influence of unguarded contact with deceased bodies of infected individuals
prior to burial or cremation, as well as the rate of disposal, on the dynamics of Ni-
pah virus infection. The model is thoroughly analyzed, and the basic reproduction
number is calculated to assess the severity and potential spread of the disease. Raza
et al. [108] proposed a stochastic SEIR model for the Nipah virus where they used
the non-standard finite difference (NSFD) method for numerical simulation. In this
model, they have established that the stochastic NSFD is an efficient, cost-effective
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method that accommodates all the desired feasible properties. [109], the authors
examined a compartmental model that incorporated bats, humans, and an interme-
diate host. Most recently, Evergen et al. [110] proposed a SIRD model with Caputo
fractional derivative. This paper aims to highlight a numerical model of the Nipah
virus (NiV) and its emphasis on investigating the impact of fractional order deriva-
tives on the model’s behavior. Specifically, the goal is to assess how the presence of
fractional derivatives affects the spread of the NiV disease in terms of memory and
heredity effects. In [111], the authors developed a mathematical model comprising a
nonlinear fractional-order system of differential equations to examine the dynamics
and optimal control strategies for the Nipah virus using the Caputo derivative. Simi-
larly, Baleanu et al. [112] considered a fractional order model that incorporated the
potential transmission pathway of unsafe contact with an infectious corpse.
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Chapter 4

Global dynamics of a compartmental
model for the spread of Nipah virus

Nipah virus, which originated in South-East Asia is a bat-borne virus causing Nipah
virus infection in humans. This emerging infectious disease has become one of the
most alarming threats to public health due to its periodic outbreaks and extremely
high mortality rate. We establish and study a novel SIRS model to describe the dy-
namics of Nipah virus transmission, considering human-to-human as well as zoonotic
transmission from bats and pigs as well as loss of immunity. We determine the ba-
sic reproduction number which can be obtained as the maximum of three threshold
parameters corresponding to various ways of disease transmission and determine in
which of the three species the disease becomes endemic. By constructing appropri-
ate Lyapunov functions, we completely describe the global dynamics of our model
depending on these threshold parameters. Numerical simulations are shown to sup-
port our theoretical results and assess the effect of various intervention measures.

4.1 Introduction

The Nipah virus is a highly contagious zoonotic pathogen that primarily affects both
animals and humans, with fruit bats (specifically, the Pteropus genus) acting as the
natural reservoir. Transmission can occur through direct contact with infected bats
or through the consumption of fruits contaminated with bat urine or saliva. Fur-
thermore, reports of human-to-human transmission have been made, notably during
outbreaks in medical facilities. The symptoms of Nipah virus infection can range from
mild to severe and the mortality rate of Nipah virus infection can be significant, with
reported rates ranging from 40% to 75% during outbreaks. In South-East Asia, NiV
infection has become an alarming threat due to high mortality, periodicity, the unsat-
isfactory effect of antiviral drugs, and treatment depending on symptomatic patients
of the disease [11, 12]. Since there is currently no specific treatment for Nipah virus
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infection, so supportive care and management of symptoms are the main approaches
employed. Prevention and control measures involve avoiding direct contact with bats
or their excreta, practicing good hygiene, implementing infection control measures
in healthcare settings, and conducting surveillance and early detection of cases.

To describe the spread of Nipah fever in a more realistic way, in this chapter, we
propose a compartmental model considering all possible ways of transmission of NiV
among animals and humans: we consider transmission from bats, pigs, and human-
to-human transmission. In Section 4.2, we introduce our compartmental model.
In Section 4.3, we calculate the basic reproduction number, determine some basic
properties of the model, and in Section 4.4 we study the local and global dynamics
of the model. In Section 4.5, we perform numerical simulations: we fit the model to
data from the 1998–99 outbreak in Malaysia and we assess the effects of changing
various disease-related parameters. The chapter is closed by a short discussion of the
results in Section 4.6.

4.2 Model formulation

As mentioned in the introduction, our aim is to include disease transmission among
three species. More precisely, we develop a compartmental model considering trans-
mission from bats to humans, bats to pigs, bats to bats, pigs to humans, pigs to pigs,
and from humans to humans. That is, we do not consider transmission from humans
to any of the two animal species and pig-to-bat transmission either as these ways of
transmission have a negligible probability.

Figure 4.1: Flow chart of NiV transition. Red arrows indicate NiV transition among
Humans, Bats, and Pigs.

In this work, populations of all three species are divided into susceptibles, in-
fected, and recovered, furthermore, we also include the possibility of immunity loss,
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hence, we consider a system consisting of three SIRS models, coupled by intraspecies
transmission. The total human population N(t) at time t is divided into susceptibles
(S(t)), infected (I(t)) and recovered (R(t)). Hence,

N(t) = S(t) + I(t) +R(t).

The total pig (intermediate host) population Np(t) at time t is divided into sus-
ceptible (Sp(t)), infected (Ip(t)) and recovered (Rp(t)) individuals, so that

Np(t) = Sp(t) + Ip(t) +Rp(t),

similarly the total bat population (host reservoir) Nb(t) at time t is divided into sus-
ceptible (Sb(t)), infected (Ib(t)) and recovered (Rb(t)) individuals, such that

Nb(t) = Sb(t) + Ib(t) +Rb(t).

We denote the birth and death rates of humans by Λ and µ, respectively. There is
also a disease-induced death rate, denoted by δ. Rates of human-to-human, pig-to-
human and bat-to-human transmission are denoted by βI , βph and βbh, respectively.
The rate of transmission among bats is denoted by βb, while that of transmission
among pigs by βp. Transmission from bats to pigs is given by βbp.

Infected humans are transferred to the recovered compartment at the rate γ

(i.e. the average duration of the infectious period is 1/γ days) and θ is the rate of loss
of temporary immunity acquired by recovered individuals, meaning that recovered
individuals remain immune for 1/θ days on average. We define all other parame-
ters for pigs and bats in an analogous way, for these parameters, we introduce the
subscripts p and b, respectively. The transmission diagram of our model is shown in
Figure 4.2. A complete description of the model parameters is summarized in Table
4.1.

The system of differential equations established considering the above assump-
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Figure 4.2: Transmission diagram. Blue arrows indicate the transition from one com-
partment to another, and green arrows and red arrows indicate new entry and outflow
for humans, bats, and pigs respectively. Light blue, gray, and lemon yellow colored
ellipses depict compartments for humans, bats, and pigs, respectively.

tions takes the form

S ′(t) = Λ− βIS(t)I(t)− βphS(t)Ip(t)− βbhS(t)Ib(t)− µS(t) + θR(t),

I ′(t) = βIS(t)I(t) + βphS(t)Ip(t) + βbhS(t)Ib(t)− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t),

(4.1a)

S ′
p(t) = Λp − βpSp(t)Ip(t)− βbpSp(t)Ib(t)− µpSp(t) + θpRp(t),

I ′p(t) = βpSp(t)Ip(t) + βbpSp(t)Ib(t)− (µp + δp + γp)Ip(t),

R′
p(t) = γpIp(t)− (µp + θp)Rp(t),

(4.1b)

S ′
b(t) = Λb − βbSb(t)Ib(t)− µbSb(t) + θbRb(t),

I ′b(t) = βbSb(t)Ib(t)− (µb + δb + γb)Ib(t),

R′
b(t) = γbIb(t)− (µb + θb)Rb(t),

(4.1c)

with nonnegative initial conditions.
It is important to note that due to the asymmetric transmission possibilities among

the three species, subsystem (4.1c) can be decoupled from the rest of the equations
of (4.1), furthermore, the subsystem consisting of equations (4.1b) and (4.1c) can
also be decoupled from the human equations.
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Table 4.1: Description of parameters of model (4.1).

Parameters Description
Λ Recruitment rate for humans

Λp,Λb Recruitment rate for pigs, bats respectively
µ Natural death rate of humans

µp, µb Natural death rate of pigs, bats
δ Disease-induced death rate for humans

δp, δb Disease-induced death rate for pigs and bats respectively
γ Recovery rate for humans

γp, γb Recovery rate for pigs and bats respectively
βI Transmission rate from infected to susceptible humans
βp Transmission rate from infected to susceptible pigs
βb Transmission rate from infected to susceptible bats
βph Pig-to-human transmission rate
βbh Bat-to-human transmission rate
βbp Bat-to-pig transmission rate
1/θ Average length of immunity for humans

1/θp, 1/θb Average length of immunity for pigs and bats respectively

4.3 Basic properties

4.3.1 Nonnegativity and boundedness

For system (4.1) it is necessary to prove that all the state variables are nonnegative
and all the solutions of the system with positive initial conditions have a positive
invariant solution. Thus we start with the following lemma.

Lemma 1. All solutions of model (4.1) started from nonnegative initial conditions will
remain nonnegative for all forward time and will eventually approach the forward in-
variant set Γ = {S, I, R, Sp, Ip, Rp, Sb, Ib, Rb ∈ R3

+×R3
+×R3

+ : 0 < N ≤ Λ/µ, 0 < Np ≤
Λp/µp, 0 < Nb ≤ Λb/µb}.

Proof. It can easily be proved that all existing solutions starting from nonnegative ini-
tial conditions remain nonnegative for all time t > 0. For the total human population
N(t) we have

N ′(t) = S ′(t) + I ′(t) +R′(t) = Λ− µN(t)− δI(t).

Clearly,

N ′(t) ≤ Λ− µN(t).
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If the initial value of the total population N(0) = N0, then it follows that

N(t) ≤ Λ

µ
−
(
Λ

µ
−N0

)
e−µt.

So N(t) ≤ Λ
µ

as t > 0. Applying a similar argumentation as above, we can prove
that Np(t) ≤ Λp/µp and Nb(t) ≤ Λb/µb. Hence the region is positively invariant and it
attracts all solutions of the equations of the system.

4.3.2 Derivation of the basic reproduction number

To calculate the basic reproduction number R0 of (4.1), we follow the general ap-
proach established in [30, 42]. For model (4.1) the infectious states are I, Ib and
Ip. We can create the transmission vector F representing the new infections and
the transition vector V which denotes the outflow from the infectious compartments
in (4.1) are given by

F =

βISI + βphSIp + βbhSIb
βpSpIp + βbpSpIb

βbSbIb

 , V =

 (µ+ δ + γ)I

(µp + δp + γp)Ip
(µb + δb + γb)Ib

 .
Model (4.1) has a unique disease-free equilibrium, given by

E0 =
(
S, I, R, Sp, Ip, Rp, Sb, Ib, Rb

)
=
(

Λ
µ
, 0, 0, Λb

µb
, 0, 0, Λp

µp
, 0, 0

)
.

Substituting the value the disease-free equilibrium E0, we compute the Jacobian F

from F given by

F =


βIΛ
µ

βphΛ

µ
βbhΛ
µ

0 βpΛp

µp

βbpΛp

µp

0 0 βbΛb

µb


and the Jacobian V from V given by

V =

γ + δ + µ 0 0

0 γp + δp + µp

0 0 γb + δb + µb

 ,
from which the next generation matrix can be calculated as

FV −1 =


βIΛ

µ(γ+δ+µ)

βphΛ

µ(γp+δp+µp)
βbhΛ

µ(γb+δb+µb)

0 βpΛp

µp(γp+δp+µp)

βbpΛp

µp(γb+δb+µb)

0 0 βbΛb

µb(γb+δb+µb)

 .
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The eigenvalues of the next generation matrix are βIΛ
µ(γ+δ+µ)

, βpΛp

µp(γp+δp+µp)
, βbΛb

µb(γb+δb+µb)
.

According to [30, 42], the basic reproduction number R0 is the spectral radius of
FV −1, hence in our model the basic reproduction number is given by

R0 = max
{
R1

0,R2
0,R3

0

}
,

where

R1
0 =

βIΛ

µ(γ + δ + µ)
,

R2
0 =

βpΛp

µp(γp + δp + µp)
,

R3
0 =

βbΛb

µb(γb + δb + µb)
.

4.3.3 Existence of endemic equilibria

In this subsection, we will determine the existence of endemic equilibria depending
on the parameter values. Due to the asymmetric nature of transmission among the
three species, we may have various equilibria corresponding to scenarios where Ni-
pah virus infection is only endemic among the human population, where the disease
is endemic in humans and pigs, or where the infection is endemic in all three species.

Lemma 2. The human-only endemic equilibrium Ê :=
(
Ŝ, Î , R̂, Ŝp, 0, R̂p, Ŝb, 0, R̂b,

)
exists if and only if R1

0 > 1.

Proof. Let us assume that the disease is not endemic among pigs and bats. In this
case, by omitting the terms corresponding to infection from animals to humans we
get the system

S ′(t) = Λ− βIS(t)I(t)− µS(t) + θR(t),

I ′(t) = βIS(t)I(t)− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t),

(4.2a)

S ′
p(t) = Λp − µpSp(t) + θpRp(t),

R′
p(t) = − (µp + θp)Rp(t),

(4.2b)

S ′
b(t) = Λb − µbSb(t) + θbRb(t),

R′
b(t) = − (µb + θb)Rb(t).

(4.2c)
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The reduced system (4.2) has the equilibrium
(
Ŝ, Î , R̂, Ŝp, 0, R̂p, Ŝb, 0, R̂b

)
where

Ŝ = (γ+δ+µ)
βI

,

Î = (θ+µ)(βIΛ−µ(γ+δ+µ))
βI(δθ+γµ+δµ+θµ+µ2)

=
µ(θ+µ)(γ+δ+µ)(R1

0−1))

βI(δθ+γµ+δµ+θµ+µ2)
,

R̂ = γ(βIΛ−µ(γ+δ+µ))
βI(δθ+γµ+δµ+θµ+µ2)

=
γµ(γ+δ+µ)(R1

0−1))

βI(δθ+γµ+δµ+θµ+µ2)
,

Ŝp =
Λp

µp
, R̂p = 0, Ŝb =

Λb

µb
, R̂b = 0,

from which it can clearly be seen that this equilibrium exists if and only if R1
0 > 1.

Lemma 3. The human- and pig-endemic equilibrium Ẽ :=
(
S̃, Ĩ , R̃, S̃p, Ĩp, R̃p, S̃b, 0, R̃b

)
exists if R2

0 > 1.

Proof. This case corresponds to the situation when the disease is not endemic among
bats, it only affects humans and pigs, hence, in this case, we can omit the terms
corresponding to infection from bats from the right-hand sides of model (4.1) to
obtain

S ′(t) = Λ− βIS(t)I(t)− βphS(t)Ip(t)− µS(t) + θR(t),

I ′(t) = βIS(t)I(t) + βphS(t)Ip(t)− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t),

(4.3a)

S ′
p(t) = Λp − βpSp(t)Ip(t)− µpSp(t) + θpRp(t),

I ′p(t) = βpSp(t)Ip(t)− (µp + δp + γp)Ip(t),

R′
p(t) = γpIp(t)− (µp + θp)Rp(t),

(4.3b)

S ′
b(t) = Λb − µbSb(t) + θbRb(t),

R′
b(t) = − (µb + θb)Rb(t).

(4.3c)

We let the right-hand side of all eight equations equal to zero. From the subsystem
(4.3c) for bats, we again obtain (S̃b, R̃b) = (Λb

µb
, 0). From the subsystem (4.3b) for

pigs, we get

S̃p =
(γp+δp+µp)

βp
,

Ĩp =
(θp+µp)(βpΛp−µp(γp+δp+µp))

βp(δpθp+γpµp+δpµp+θpµp+µ2
p)
,

R̃p =
γp(βpΛp−µp(γp+δp+µp))

βp(δpθp+γpµp+δpµp+θpµp+µ2
p)
,
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which can be written as

S̃p =
(γp+δp+µp)

βp
,

Ĩp =
µp(θp+µp)(γp+δp+µp)(R2

0−1)

βp(δpθp+γpµp+δpµp+θpµp+µ2
p)
,

R̃p =
γpµp(γp+δp+µp)(R2

0−1)

βp(δpθp+γpµp+δpµp+θpµp+µ2
p)
.

This implies that Ĩp, R̃p are positive if and only if R2
0 > 1. Then substituting Ĩp into

the place of Ip(t) in the human equations (4.3a) we obtain

S ′(t) = Λ− βIS(t)I(t)− βphS(t)Ĩp − µS(t) + θR(t),

I ′(t) = βIS(t)I(t) + βphS(t)Ĩp − (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t).

(4.4)

To obtain equilibria of the latter system (4.4), we need to solve the algebraic system
of equations

0 = Λ− βISI − βphSĨp − µS + θR,

0 = βISI + βphSĨp − (µ+ δ + γ)I,

0 = γI − (µ+ θ)R.

(4.5)

Solving for R in terms of I from the third equation of (4.5) and replacing into the
first equation, we get

S =
Iγθ + Λ(θ + µ)

(βII + βphĨp + µ)(θ + µ)
. (4.6)

Using (4.6), the second equation of (4.5) can be written as

I2βI(γµ+ (δ + µ)(θ + µ)) + I(βphĨpγµ+ (δ + µ)(θ + µ)

+ µ(γ + δ + µ)(θ + µ)(1−R1
0))− βphĨpΛ(θ + µ) = 0,

a quadratic equation of I. Since the discriminant of this equation is positive and
the product of the constant term and that of the leading coefficient is negative, the
equation has a unique real positive solution. Hence, a unique equilibrium Ẽ with
endemicity in humans and pigs exists.

Lemma 4. The endemic equilibrium E∗ :=
(
S∗, I∗, R∗, S∗

p , I
∗
p , R

∗
p, S

∗
b , I

∗
b , R

∗
b

)
with the

disease being endemic in all three species exists if and only if R3
0 > 1 and R2

0 > 1.

Proof. In this case, we assume that NiV transmission to humans occurs from both
animal species. To calculate the endemic equilibrium, we set the right-hand side of
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all equations to zero. From the subsystem(4.1c) for bats we get

S∗
b =

(γb + δb + µb)

βb
,

I∗b =
(θb + µb)(βbΛb − µb(γb + δb + µb))

βb(δbθb + γbµb + δbµb + θbµb + µ2
b)

=
µb(θb + µb)(γb + δb + µb)(R3

0 − 1)

βb(δbθb + γbµb + δbµb + θbµb + µ2
b)
,

R∗
b =

γb(βbΛb − µb(γb + δb + µb))

βb(δbθb + γbµb + δbµb + θbµb + µ2
b)

=
γbµb(γb + δb + µb)(R3

0 − 1)

βb(δbθb + γbµb + δbµb + θbµb + µ2
b)
.

We may substitute the value of I∗b into the subsystem(4.1b) for pigs. Similarly, as
before, the pigs subsystem has a unique fixed point. Substituting the value of I∗p into
the first three equations, we get the following subsystem for humans:

S ′(t) = Λ− βIS(t)I(t)− βphS(t)I
∗
p − βbhS(t)I

∗
b − µS(t) + θR(t),

I ′(t) = βIS(t)I(t) + βphS(t)I
∗
p + βbhS(t)I

∗
b − (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t).

(4.7)

Similarly, as in the proof of the previous lemma, we can see that the endemic equi-
librium exists if R3

0 > 1 and R2
0 > 1.

4.4 Stability analysis

4.4.1 Local stability of the equilibria

Theorem 5. The disease-free equilibrium E0

(
Λ
µ
, 0, 0, Λp

µp
, 0, 0, Λb

µb
, 0, 0

)
is locally asymp-

totically stable if R1
0 < 1,R2

0 < 1,R3
0 < 1, while E0 is unstable if any one of the

inequalities altered.

Proof. The Jacobian of system (4.1) evaluated at the disease-free equilibrium takes
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the form

J (E0) =



−µ −βIΛ
µ

θ 0 −βphΛ

µ
0 0 −βbhΛ

µ
0

0 j22 0 0
βphΛ

µ
0 0 βbhΛ

µ
0

0 γ −θ − µ 0 0 0 0 0 0

0 0 0 −µp −βpΛp

µp
θp 0 −βbpΛp

µp
0

0 0 0 0 j55 0 0
βbpΛp

µp
0

0 0 0 0 γp −θp − µp 0 0 0

0 0 0 0 0 0 −µb −βbΛb

µb
θb

0 0 0 0 0 0 0 j88 0

0 0 0 0 0 0 0 γb −θb − µb


,

while the eigenvalues of J (E0) are −µ, θ − µ, j22 =
βIΛ−µ(γ+δ+µ)

µ
,−µp,−θp − µp,

j55 =
βpΛp−µp(γp+δp+µp)

µp
,−µb,−θb − µb, j88 =

βbΛb−µb(γb+δb+µb)
µb

. So the disease-free equi-

librium is locally asymptotically stable if βIΛ−µ(γ+δ+µ)
µ

= (γ + δ + µ)(R1
0 − 1) < 0,

βpΛp−µp(γp+δp+µp)

µp
= (γp + δp + µp)(R2

0 − 1) < 0 and βbΛb−µb(γb+δb+µb)
µb

= (γb + δb +

µb)(R3
0 − 1) < 0. So the disease-free equilibrium is locally asymptotically stable if

R1
0 < 1,R2

0 < 1 and R3
0 < 1. If any of these three altered then that eigenvalue

will be positive means the disease-free equilibrium is unstable. This completes our
proof.

4.4.2 Global stability of the equilibria

First, by applying the fluctuation lemma (see for example [113]), we show that the
disease free equilibrium is globally asymptotically stable if the basic reproduction
number is less than 1. For a bounded function f on R+, we introduce the notations

f∞ = lim sup
t→∞

f(t) and f∞ = lim inf
t→∞

f(t).

Theorem 6. The disease-free equilibrium E0

(
Λ
µ
, 0, 0, Λp

µp
, 0, 0, Λb

µb
, 0, 0

)
is globally asymp-

totically stable Γ := {(S(t), I(t), R(t), Sp(t), Ip(t), Rp(t), Sb(t), Ib(t), Rb(t)) ∈ R9
+} if

R0 < 1.

Proof. In the previous subsection, we showed that the disease-free equilibrium E0 is
locally asymptotically stable if the basic reproduction number is less than one, hence
it is sufficient to prove that E0 is globally attractive in the positively invariant and
attractive set ϕ.

Let (Sb(t), Ib(t), Rb(t)) be a solution of the subsystem (4.1c). According to the
fluctuation lemma there exists a sequence {tn} such that tn → ∞ we have R(tn) →
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R∞, and R′(tn) → 0 as n→ ∞. From the equation for recovered bats we have

R′
b(tn) = γbIb(tn)− (µb + θb)Rb(tn),

then letting n→ ∞ implies 0 ≤ γbI
∞
b − (µb + θb)R

∞
b and hence R∞

b ≤ γbI
∞
b

µb+θb
. Again by

the fluctuation lemma, there exists a sequence un → ∞ such that Ib(un) → I∞b , and
I ′b(un) → 0 as n→ ∞. From the equation for infected bats, we have

I ′b(un) = βbSb(un)Ib(un)− (µb + δb + γb)Ib(un),

which implies 0 ≤ βbΛb

µb
I∞b −(µb+δb+γb)I

∞
b using Lemma 1 and hence 0 ≤ (R3

0−1)I∞b .
Since R3

0 < 1, we have I∞b = 0. It follows that R∞
b = 0. Applying once again the

fluctuation lemma, there exists a sequence vn → ∞ such that S(vn) → S∞, and
S ′(vn) → 0 as n→ ∞. From the equation for susceptible bats, we get

S ′
b(vn) = Λb − βbSb(vn)Ib(vn)− µbSb(vn) + θbRb(vn).

Using that I∞b = 0 and R∞
b = 0 and letting n → ∞ we get (Sb)∞ = Λb

µb
≥ S∞

b . It
follows that limt→∞ S(t) = Λb

µb
if R3

0 < 1. Hence, for the bats subsystem we have
that limt→∞(Sb(t), Ib(t), Rb(t)) =

(
Λb

µb
, 0, 0

)
holds for all solutions of (4.1c). Applying

these results in subsystem (4.1b) for pigs and following a similar calculation, we
can prove limt→∞(Sp(t), Ip(t), Rp(t)) =

(Λp

µp
, 0, 0

)
if R2

0 < 1. Finally, for the human
subsystem (4.1a) one can prove that limt→∞(S(t), I(t), R(t)) =

(
Λ
µ
, 0, 0

)
if R1

0 < 1 in
an analogous way. Hence, the disease-free equilibrium E0 is globally asymptotically
stable if R0 < 1.

Theorem 7. The human-only endemic equilibrium Ê :=
(
Ŝ, Î , R̂, Ŝp, 0, R̂p, Ŝb, 0, R̂b

)
is

globally asymptotically stable in

Γ := {(S(t), I(t), R(t), Sp(t), Ip(t), Rp(t), Sb(t), Ib(t), Rb(t)) ∈ R9
+}

if R1
0 > 1, R2

0 < 1 and R3
0 < 1.

Proof. In proving the global asymptotic stability of the equilibrium Ê, we first take
advantage of the fact that if R2

0 < 1 and R3
0 < 1 and there is no disease among

bats and pigs, then the three species do not affect each other, hence, the subsystems
corresponding to each species can be decoupled from the rest of equations. Moreover,
the subsystems for bats and pigs can be reduced to the single equations for S ′

b(t) and
S ′
p(t), respectively. That is, we only have to consider the equations

S ′
b(t) = Λb − µbSb(t) and S ′

p(t) = Λp − µpSp(t),

which clearly have the globally asymptotically stable equilibria
(
Λb

µb

)
and

(Λp

µp

)
, re-
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spectively. Now, we can turn to the human subsystem consisting of the first three
equations of (4.1), however, without transmission from animals. For the convenience
of constructing a Lyapunov function, following [114, 115] we consider an equivalent
subsystem by letting N(t) = S(t) + I(t) +R(t). Then we can write the subsystem for
humans as

N ′(t) = Λ− µN(t)− δI(t),

I ′(t) = βII(t)(N(t)− I(t)−R(t))− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t),

(4.8)

and the equilibrium for humans Ê :=
(
Ŝ, Î , R̂

)
for the system (4.2) gives the bound-

ary equilibrium of (4.7). Clearly, N̂ , Î and R̂ satisfy the following equations.

Λ− µN̂ − δÎ = 0,

βI Î(N̂ − Î − R̂)− (µ+ δ + γ)Î = 0,

γÎ − (µ+ θ)R̂ = 0.

We define the Lyapunov function V (t) as

V (t) =
βI
2δ

(N − N̂)2 +

(
I − Î − Î ln

I

Î

)
+
βI
2γ

(R− R̂)2.

Thus the derivative of the Lyapunov function can be computed along the solution of
the system of equations (4.7) considering no disease is transmitted from bats and
pigs are given by

V ′(t) =
βI
δ
(N − N̂)N ′ +

(
1− Î

I

)
I ′ + βI

γ
(R− R̂)R′

=
βI
δ
(N − N̂)(µN̂ + δÎ − µN − δI)

+
(
1− Î

I

)
(βII(N − I −R)− βII(N̂ − Î − R̂))

− βI
γ
(R− R̂)(γI − γÎ + (µ+ θ)R̂− (µ+ θ)R),

=
βI
δ
(N − N̂)

[
− µ(N − N̂)− δ(I − Î)

]
+ βI(I − Î)(N − N̂ − I + Î −R + R̂)

+
βI
γ
(R− R̂)

[
γ(I − Î)− (µ+ θ)(R− R̂)

]
≤− βI(N − N̂)(I − Î) + βI(I − Î)(N − N̂)− βI(I − Î)(R− R̂)

+ βI(R− R̂)(I − Î)

= 0.
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Furthermore, the equality V ′(t) = 0 holds only if N = N̂ , I = Î, and R = R̂. Thus,
the endemic equilibrium Ê, is the only positive invariant set to the system (4.7) con-
tained entirely in Γ := {(S(t), I(t), R(t), Sp(t), Ip(t), Rp(t), Sb(t), Ib(t), Rb(t)) ∈ R9

+}.
Therefore, it follows from the Lyapunov method that, since endemic equilibrium for
the equivalent system is stable, hence the positive endemic equilibrium for the origi-
nal system is globally asymptotically stable if R1

0 > 1.

Theorem 8. The equilibrium Ẽ :=
(
S̃, Ĩ , R̃, S̃p, Ĩp, R̃p, S̃b, 0, R̃b

)
, where the disease is

endemic among humans and pigs, is globally asymptotically stable in

Γ := {(S(t), I(t), R(t), Sp(t), Ip(t), Rp(t), Sb(t), Ib(t), Rb(t)) ∈ R9
+}

if R2
0 > 1 and R3

0 < 1.

Proof. In case R3
0 < 1, there is no disease among bats, then only pig-to-pig, pig-to-

human and human-to-human infection occurs. Without bat-to-pig infection, we can
first decouple the equations for the pigs from the remaining equations. Similarly to
the previous theorem, by letting Np(t) = Sp(t) + Ip(t) + Rp(t) we may consider an
equivalent system for the pigs given as

N ′
p(t) = Λp − µpNp(t)− δpIp(t),

I ′p(t) = βpIp(t)(Np(t)− Ip(t)−Rp(t))− (µp + δp + γp)Ip(t),

R′
p(t) = γpIp(t)− (µp + θp)Rp(t).

(4.9)

We can observe that subsystem (4.9) has the same structure as system (4.8). Follow-
ing the procedure of Theorem 8 we can show that (S̃p, Ĩp, R̃p) is a globally asymptot-
ically stable fixed point of (4.9). Let us now substitute the limiting value Ĩp of Ip(t)
into the human subsystem to obtain

S ′(t) = Λ− βIS(t)I(t)− βphĨpS(t)− µS(t) + θR(t),

I ′(t) = βIS(t)I(t) + βphS(t)Ip(t) + βbhS(t)Ib(t)− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t).

We note that this system is now different from the reduced pig system and from the
reduced human subsystem studied in the previous theorem. Namely, a new type of
movement appears from the S compartment to the I compartment, which is given as
S(t) multiplied by a constant. By introducing again N(t) = S(t) + I(t) +R(t), we get
the equivalent system

N ′(t) = Λ− µN(t)− δI(t),

I ′(t) = (βII(t) + βphĨp)(N(t)− I(t)−R(t))− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t).

(4.10)
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We define the Lyapunov function W (t) as

W (t) =
1

2δ
(N − Ñ)2 +

∫ I

Ĩ

u− Ĩ

βIu+ βphĨp
du+

1

2γ
(R− R̃)2.

The derivative of the Lyapunov function along solutions of system (4.10) is given by

W ′(t) =
1

δ
(N − Ñ)N ′ +

I − Ĩ

βII + βphĨp
I ′ +

1

γ
(R− R̃)R′

=
1

δ
(N − Ñ)(µÑ + δĨ − µN − δI)

+ (I − Ĩ)

[
(N − Ñ)− (I − Ĩ)− (R− R̃)

− (µ+ δ + γ)

(
I

βII + βphĨp
− Ĩ

βI Ĩ + βphĨp

)]
+

1

γ
(R− R̃)(γI − γĨ + (µ+ θ)R̃− (µ+ θ)R)

=
1

δ
(N − Ñ)

[
−µ(N − Ñ)− δ(I − Ĩ)

]
+ (I − Ĩ)(N − Ñ)− (I − Ĩ)2

− (I − Ĩ)(R− R̃)− (I − Ĩ)

(
I

βII + βphĨp
− Ĩ

βI Ĩ + βphĨp

)
+

1

γ
(R− R̃)

[
(γ(I − Ĩ)− (µ+ θ)(R− R̃)

]
≤− (N − Ñ)(I − Ĩ) + (I − Ĩ)(N − Ñ)− (I − Ĩ)(R− R̃)

− (I − Ĩ)

(
I

βII + βphĨp
− Ĩ

βI Ĩ + βphĨp

)
+ (R− R̃)(I − Ĩ).

So W ′(t) ≤ 0 since the function I
βII+βphĨp

is continuous and monotonically increas-

ing in I. i.e. W (t) < 0. Furthermore, the equality W ′(t) = 0 holds only if N = Ñ , I =

Ĩ, and R = R̃. i.e. W (t) = 0 Thus, the endemic equilibrium Ẽ is the only positive in-
variant set to the system contained entirely in Γ := {(S(t), I(t), R(t), Sp(t), Ip(t), Rp(t),

Sb(t), Ib(t), Rb(t)) ∈ R9
+}. Therefore, it follows from the direct Lyapunov method that,

since endemic equilibrium for the equivalent system is stable, hence the endemic
equilibrium Ẽ of the original system is globally asymptotically stable if R2

0 > 1 and
R3

0 < 1.

Theorem 9. The endemic equilibrium E∗ :=
(
S∗, I∗, R∗, S∗

p , I
∗
p , R

∗
p, S

∗
b , I

∗
b , R

∗
b

)
is glob-

ally asymptotically stable if R3
0 > 1.

Proof. Let us now assume that the disease is endemic among bats and pigs, then NiV
transmission occurs from both these two species. The subsystem (4.3c) for bats can
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be decoupled from the rest of the equations. Similarly to the previous theorems, we
consider an equivalent system of (4.3c) by letting Nb(t) = Sb(t) + Ib(t) +Rb(t). Then
we get a system for bats that has the same structure as (4.8). Following Theorem
7, it can be shown that the endemic equilibrium (S∗

b , I
∗
b , R

∗
b) is a globally asymptot-

ically stable equilibrium of the subsystem for bats. Substituting I∗b into the subsys-
tem (4.3b) for pigs we get a similar subsystem in Theorem 7. Following Theorem
7 we conclude that the endemic equilibrium E∗ is globally asymptotically stable if
R3

0 > 1.

The results concerning the existence and stability of the equilibria are summarized
in Table 4.2.

Table 4.2: Existence and stability properties of equilibria. E0 denotes disease-free equi-
librium, Ê denotes equilibrium where the disease is only endemic among humans, Ẽ
denotes equilibrium where the disease is only endemic among humans and pigs, E∗ de-
notes equilibrium where the disease is endemic among humans, pigs, and bats.

Reproduction numbers E0 Ê Ẽ E∗

R1
0 < 1,R2

0 < 1,R3
0 < 1 GAS - - -

R1
0 > 1,R2

0 < 1,R3
0 < 1 unstable GAS - -

R2
0 > 1,R3

0 < 1 unstable unstable GAS -

R3
0 > 1 unstable unstable unstable GAS

4.5 Numerical simulations

In this section, we perform numerical simulations to validate our model and assess
the efficiency of various possible intervention strategies. It is important to note that
due to the low number and relatively small volume of outbreaks so far, available data
on parameters and epidemic spread are rather scarce, hence, it is a difficult task to
find data or give precise estimations regarding model parameters. It is worth men-
tioning that all numerical simulations were performed using Wolfram Mathematica.

4.5.1 Fitting to data from the 1998–99 outbreak in Malaysia

We start by fitting our model to real-world data. We have to note that due to the
large number of parameters and to the uncertainty of several parameter values, we
cannot expect to obtain a single parameter set perfectly fitting the epidemic data.
Our aim can rather be only to approximate reasonably well the real scenario and
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obtain parameter ranges such that the real parameter values fall into these ranges
with a high probability. As an example, we chose the outbreak in early 1999 in the
Malaysian state Negeri Sembilan [65]. In fact, the outbreak in Malaysia started in
September 1998 and affected the three states Perak, Negeri Sembilan and Selangor
inducing 265 cases of acute encephalitis with 105 deaths. However, as most cases
occurred in the spring 1999 in Negeri Sembilan, we only consider this period of the
outbreak. An interesting characteristic of the epidemic was that the Muslim majority
was not affected by the disease as it was mainly transmitted to humans by pigs,
hence, we restrict our simulations to the Chinese minority [101, 116].
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Figure 4.3: The best fitting solution plotted with 12 weeks data for Negeri Sembilan
state, Malaysia started from February 3, 1999

.

We use Latin Hypercube Sampling to create a representative sample of parameter
values and start a solution of model (4.1) with each of these 10,000 parameter sets.
Then we use the least squares method to find the parameter values offering the best
fit to real data regarding the cumulative number of infected. Figure 4.3 shows the
best fitting solution plotted along with epidemic data.

4.5.2 Sensitivity analysis

We have conducted another analysis using the Latin Hypercube Sampling along with
the Partial Rank Correlation Coefficient (PRCC) method with 10, 000 Monte Carlo
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simulations per run. Using the variation of parameter values, the PRCC method as-
sists us to quantify the effect of changing the various parameter values on the model’s
feedback, hence, establish statistical relationships between the input parameters and
the outcome value. Note that increasing parameters with positive PRCC values re-
sults in the growth of the number of cumulative cases, increasing parameters with
negative PRCC will result in a smaller number of cumulative cases. Furthermore,
parameters with larger PRCC values are regarded to be most critical for the model.

Transmission rate from infected to susceptible humans (βI )

Transmission rate from infected to susceptible pigs (βp)

Transmission rate from infected to susceptible bats (βb)

Pig-to-human transmission rate (βph)

Bat-to-human transmission rate (βbh)

Bat-to-pig transmission rate (βbp)

Recovery rate for humans (γ)

Recovery rate for pigs (γp)

Recovery rate for bats (γb)

Figure 4.4: Partial Rank Correlation Coefficients (PRCC).

The input parameters considered for our PRCC analysis included all transmission
rates (βI , βp, βb, βph, βbh, βbp) and recovery rates (γ, γp, γb) while the output parameter
was chosen as the cumulative number of infected until the end of the time period
under consideration in the fitting. The results obtained and shown in Figure 4.4
demonstrate that the parameters with the largest effect are transmission from in-
fected pigs to susceptible pigs βp, pigs-to-humans transmission rate βph, bats-to-pigs
transmission rate βbp and recovery rates for pigs γp. Hence, parameters related to
the intermediate host of NiV, i.e. pigs are seen to be the most important parameters
among those that might be subject to control measures.

4.5.3 Effect of possible control measures

The PRCC analysis described in the previous section indicates which might be the
most efficient tool to reduce the number of infected. In this subsection, we investi-
gate numerically the extent of changes in the number of cases caused by modifying
model parameters corresponding to various intervention measures. In Figure 4.5 we
plot the cumulative number of infected humans for three different values of selected
parameters, while the rest of the parameters are the values obtained in the fitting
and shown in Table 4.3. Figure 4.5a suggests that decreasing transmission from pigs
to humans may contribute significantly to a decrease in the number of human in-
fections. On the other hand, Figures 4.5b and 4.5c suggest that transmission from
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bats and transmission among humans has a smaller importance than transmission
from pigs. Finally, Figure 4.5d shows that increasing the pigs’ death rate by introduc-
ing their culling should also be an efficient tool to prevent further infections among
humans.
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(a) Number of infected cases for various values
of βph. Baseline = 4.52495× 10−6,
Increased = 5.52495 × 10−6, Decreased =
3.52495× 10−6.
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(b) Number of infected cases for various val-
ues of βbh. Baseline = 3.775596 × 10−7,
Increased = 5.775596 × 10−7, Decreased =
1.775596× 10−7
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(c) Number of infected cases for various val-
ues of βI . Baseline = 1.3989714 × 10−8,
Increased = 2.3989714 × 10−8, Decreased =
0.3989714× 10−8
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(d) Number of infected cases for various val-
ues of µp. Baseline = 0.002747, Increased =
0.005556, More increased = 0.011111

Figure 4.5: Cumulative infected cases for various values of disease parameters.

It is important to emphasize, that these results confirming the important role of
pigs in disease transmission are not only in accordance with the results of the PRCC
analysis but also with observations. Several studies confirm that the primary reason
for human Nipah infection during 1998–1999 in Malaysia was the close contact with
pigs, especially sick pigs though there might have been secondary exposures by other
infected animals, see e.g. [8, 18, 73]. It is noteworthy that the outbreak in Malaysia
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was controlled by the culling of more than 1 million pigs in the outbreak area and
immediately surrounding areas [69, 92].

For this reason, we studied the impact of decreasing the number of pigs by culling
at different rates (see Figure 4.6. Culling was assumed here to be instantaneous.
For this, we have continued our simulation for a given time period (in Figure 4.6a
20 days, in Figure 4.6b 40 days, in Figure 4.6c 60 days from the beginning of the
epidemic) and then imposed different rates of culling to see the degree of changes of
cumulative infection. Figure 4.6 suggests that culling has a notable influence on re-
ducing disease burden. Figure 4.6 also shows the importance of timely interventions.
The effects of interventions in an early period of the epidemic are much more signifi-
cant than those of control measures introduced later. E.g., a complete culling of pigs
may decrease the number of infected by approximately to its quarter if done after
20 days, to its half if done after 40 days, and to three quarters after 60 days. In the
latter case, there is only a small difference in the results obtained by culling differ-
ent fractions of the pig population, while if the interventions are introduced earlier,
higher culling rates provide significantly better results in decreasing the cumulative
number of infected.

Table 4.3: Parameters for model (4.1) providing the best fit.

Parameter Baseline (Range) Unit Source
Λ 6.69852 day−1 [117]
Λb 0.411 day−1 Assumed
Λp 300.3 day−1 [92]
µ 0.0000379 day−1 [117]
µb 0.00013699 day−1 Assumed
µp 0.002747 day−1 [118]
βI 1.39897× 10−8(2.0× 10−9, 1.0× 10−7) day−1 [107]
βp 1.20377× 10−7 (0.0000000671, 0.000001857) day−1 Fitted
βb 0.0.0000155344 (0.00000671, 0.00001857) day−1 [84]
βph 4.52495× 10−6 (2.0× 10−7, 2.0× 10−5) day−1 Fitted
βbh 3.7756× 10−7 (1.0× 10−8, 1.0× 10−6) day−1 Fitted
βbp 1.67739× 10−6 (1.0× 10−7, 1.0× 10−5) day−1 Fitted
θ 0.00153737 (0.033, 0.001) day−1 Fitted
θp 0.000651486 (0.001, 0.00033) day−1 Fitted
θb 0.000444376 (0.001, 0.00033) day−1 [84]
γ 0.0225626 (0.015625, 0.03125) day−1 [4]
γp 0.0692084 (0.01, 0.1) day−1 [13]
γb 0.0750248 (0.01, 0.1) day−1 Fitted
δ 0.0436999 (0.015625, 0.046875) day−1 [13]
δp 0.000374955 (0.0001, 0.001) day−1 [119]
δb 0.000622043 (0.0001, 0.001) day−1 Fitted
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(a) Culling at day 20 of the epidemic.
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(b) Culling at day 40 of the epidemic.
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(c) Culling at day 60 of the epidemic.

Figure 4.6: Number of cumulative infected cases for various culling rates of pigs and
different time of culling.
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4.6 Discussion

In this work, we established a compartmental model to describe the spread of Nipah
virus infection, considering the role of the reservoir species fruit bats and the inter-
mediate host pigs as well as loss of immunity of recovered individuals, assuming that
intraspecies transmission is only one-directional, from bats to pigs and humans and
from pigs to humans. The latter property allowed us to decouple first the equations
for bats, then those for pigs, to arrive at a limit equation for humans. Both the limit
subsystem for pigs and the one for humans yield us a novel type of model with a lin-
ear term describing the movement from susceptibles to infected due to intraspecies
transmission.

We determined all possible equilibria of the system and calculated three threshold
parameters which determine the global dynamics of the system by determining in
which of the three species the disease becomes endemic. By providing appropriate
Lyapunov functions, we were able to completely describe the global dynamics of
our model. We note that the novel structure of the limit systems mentioned in the
previous paragraph demanded the construction of a novel Lyapunov function.

We also performed numerical studies to validate our model, to determine the
key parameters regarding disease transmission, and to study the effect of possible
intervention measures. Our results suggest that the most important parameters are
those related to the intermediate host pigs, which is in accordance with observations
during 1998–99 Malaysian outbreak.

Our study certainly has its limitations. For technical reasons, we chose to include
only three compartments for each of the three species. A more realistic description
of the disease would include an exposed compartment. Temperature, humidity, and
climatic conditions may impact Nipah virus survival and transmission. Higher tem-
peratures and increased rainfall can potentially boost virus dissemination, leading
to elevated infection rates. Consideration of these environmental parameters might
be an element of future studies. The numerical study of the model is made difficult
by the limited knowledge of various disease parameters. The study of an extended
system and its application to more fully known data might be the subject of a future
work.



Chapter 5

Global stability in an SIRS model with
zoonotic transmission, nonlinear
incidence rate and temporary
immunity

We establish and study an SIRS epidemic model for a zoonotic disease with a general
nonlinear incidence rate assuming that the animal population has already reached
an endemic equilibrium. Due to the zoonotic transmission, there is no disease-free
equilibrium and no threshold dynamics can be observed. Using a transformation of
variables, we derive a Lyapunov function for the global asymptotic stability of the
unique endemic equilibrium.

5.1 Introduction

Zoonotic spillover is the transmission of pathogens from vertebrate animals to hu-
mans [120, 121]. The risk of spillover events is related to the interaction of humans
with different animal species and pathogens they host, including handling, poaching,
and consumption of meat from wild animals [122]. In recent times, there has been
an increase in the occurrence rate of novel zoonotic illnesses. Approximately, 60% of
known and 75% of emerging human infectious diseases can be spread from animals
[123]. Some of the most important zoonotic diseases include Ebola virus disease,
many strains of bird flu and swine flu, COVID-19, West Nile fever, Lassa fever, and
Nipah fever. Transmission might occur via direct or indirect contact, contaminated
food, or vectors. In most of the mathematical models for zoonotic diseases, animals
are included by considering analogous compartments as for humans. Our aim is to
establish a simple, but general model for zoonotic diseases, incorporating many char-

45
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acteristics of them and assuming that the animal population has already reached an
endemic equilibrium, making it possible to only consider human compartments es-
tablishing a novel type of model. To formulate and study the proposed model, we are
motivated by the recent works [114, 115, 124], where SIR and SIRS type models
were introduced with a general nonlinear incidence function.

J. Li et al. [115] introduced a new technique for showing the global asymptotic
stability of the endemic equilibrium by introducing a variable transformation and
constructing a more general Lyapunov function. A similar method was applied by
T. Li et al. [124] for a model with transfer from the infectious to the susceptible class
and later by Chen et al. [114] incorporating temporary immunity and relapse. Moti-
vated by these models we derived the Lyapunov function in our model for nonlinear
incidence with zoonotic spillover and temporary immunity.

5.2 Model formulation

A simple SIRS model for a zoonotic disease can be established as

S ′(t) = Λ− f(I)S(t)− fz(Ia(t))S(t)− µS(t) + θR(t),

I ′(t) = f(I)S(t) + fz(Ia(t))S(t)− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t),

(5.1a)

S ′
a(t) = Λa − fa(Ia(t))Sa(t)− µaSa(t) + θaRa(t),

I ′a(t) = fa(Ia(t))Sa(t)− (µa + δa + γa)Ia(t),

R′
a(t) = γaIa(t)− (µa + θa)Ra(t),

(5.1b)

where S stands for susceptible, I for infected, R for recovered humans. Human-to-
human transmission is described by a nonlinear incidence function f and zoonotic
transmission by fz. Human birth and death rates are denoted by Λ and µ respec-
tively. There is also a disease-induced death rate, denoted by δ. Infected humans are
transferred to the recovered compartment at the rate γ and θ is the rate of loss of tem-
porary immunity acquired by recovered individuals. Compartments and parameters
of the animal subsystem are introduced in an analogous way, with a lower index a.
Note that in this work we assume that the disease is only transmitted from animals
to humans but not the opposite way as unlike e.g. arthropod-borne diseases, it is
typical that animal-to-human transmission occurs via droppings of infected animals
or eating fruits contaminated by them, hence, transmission in the other direction
does not happen. This way, the animal subsystem (5.1b) can be decoupled from
the human subsystem (5.1a). It follows from [114, Theorem 3] that depending on
the basic reproduction number, either the disease-free or the unique endemic equi-
librium (S∗

a, I
∗
a , R

∗
a) of the animal subsystem is globally asymptotically stable. In the



5.3 Basic properties and existence of an endemic equilibrium 47

present work, we assume that the disease is endemic among animals, hence, all so-
lutions with positive initial conditions tend to the endemic equilibrium. Moreover,
we can make the assumption that the animal population has already reached this
equilibrium. This way, by substituting the limit value I∗a of infected animals into the
human subsystem (5.1a) and introducing the parameter ξ := fz(I

∗
a), we may rewrite

the human subsystem (5.1a) as

S ′(t) = Λ− f(I)S(t)− ξS(t)− µS(t) + θR(t),

I ′(t) = f(I)S(t) + ξS(t)− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t),

(5.2)

with nonnegative initial conditions. Note that the above system differs from the
general compartmental epidemiological models for the term ξS(t) in the first two
equations. Such a term is corresponding to direct transmission from susceptibles to
infected does not appear in usual models.

5.3 Basic properties and existence of an endemic equi-
librium

The following lemma concerning the nonnegativity and boundedness of solutions of
(5.2) can easily be shown.

Lemma 10. All solutions of model 5.2 with nonnegative initial conditions have a posi-
tive invariant solution in the region Ω = {S, I, R ∈ R3

+ : 0 < N ≤ Λ/µ}.

Proof. It can easily be proved that all solutions started from nonnegative initial con-
ditions remain nonnegative for all time t > 0. For the total human population
N(t) = S(t) + I(t) + R(t) we have N ′(t) = S ′(t) + I ′(t) + R′(t) = Λ− µN(t)− δI(t).

Clearly N ′(t) ≤ Λ−µN(t). If the initial value of the total population N(0) = N0, then
it follows that N(t) ≤ Λ

µ
−
(
Λ
µ
−N0

)
e−µt, hence, N(t) ≤ Λ

µ
for t > 0. This means that

the region Ω is positively invariant and it attracts all solutions of the equations of the
system.

Due to the special formulation of the model including a direct transmission from
susceptibles to infected corresponding to transmission from animals, unlike most epi-
demiological models, system (5.2) does not have a disease-free equilibrium. Accord-
ingly, it is not possible to determine a basic reproduction number, and the thresh-
old dynamics usually encountered in epidemiological systems cannot be observed
either in the present case. Before we discuss the existence of endemic equilibria,
we make some assumptions on the nonlinear incidence function f(I)S following
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[114, 115, 124]. The function f is assumed to be a locally Lipschitz function at least
on R+ = [0,∞) satisfying

(H1) f(0) = 0 and f(I) > 0 for I > 0;

(H2) f(I)
I

is continuous and monotonically nonincreasing for I > 0.

Lemma 11. Model (5.2) has a unique endemic equilibrium.

Proof. To find an endemic equilibrium E∗(S∗, I∗, R∗) of (5.2), we need to solve the
algebraic system of equations given by

Λ− f(I∗)S∗ − ξS∗ − µS∗ + θR∗ = 0,

f(I∗)S∗ + ξS∗ − (µ+ δ + γ)I∗ = 0,

γI∗ − (µ+ θ)R∗ = 0.

(5.3)

From the last equation of (5.3), we have R∗ = γI∗

µ+θ
and adding the first two equations

we get Λ−µS∗+θR∗−(µ+δ+γ)I∗ = 0. Now using both of these expressions, we get
S∗ = 1

µ

(
Λ− µ2+δµ+γµ+θµ+δθ

µ+θ
I∗
)
, so S∗ will be positive if and only if I∗ < Λ(µ+θ)

µ2+δµ+γµ+θµ+δθ
.

Substituting S∗ into the second equation of (5.3) we obtain that for the endemic
equilibrium E∗, I∗ is a positive root of ϕ(I) on the interval

(
0, Λ(µ+θ)

µ2+δµ+γµ+θµ+δθ

)
, where

ϕ(I) =
f(I) + ξ

µ

(
Λ− µ2 + δµ+ γµ+ θµ+ δθ

µ+ θ
I

)
− (µ+ δ + γ)I

=
f(I)

I

I

µ

(
Λ− µ2 + δµ+ γµ+ θµ+ δθ

µ+ θ
I

)
+
ξ

µ

(
Λ− µ2 + δµ+ γµ+ θµ+ δθ

µ+ θ
I

)
− (µ+ δ + γ)I.

Consider now the function ϕ̄(I) = ϕ(I)
I

which clearly has the same positive zeros as
ϕ. By assumption (H2), ϕ̄ is nonincreasing in the interval

(
0, Λ(µ+θ)

µ2+δµ+γµ+θµ+δθ

)
. So

limI→0+ ϕ̄(I) = Λξ
µ
> 0 and ϕ̄

( Λ(µ+θ)
µ2+δµ+γµ+θµ+δθ

)
= −(µ + δ + γ)I < 0. By the inter-

mediate value theorem, we obtain that ϕ̄ has a unique positive root in the interval(
0, Λ(µ+θ)

µ2+δµ+γµ+θµ+δθ

)
. Hence, (5.2) has a unique endemic equilibrium.

5.4 Global asymptotic stability of the endemic equilib-
rium

Theorem 12. The endemic equilibrium E∗ is a globally asymptotically stable equilib-
rium of (5.2).

Proof. For the convenience of constructing a Lyapunov function consider an equiva-
lent system of (5.2) by letting N(t) = S(t) + I(t) +R(t). Then we can write
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N ′(t) = Λ− µN(t)− δI(t),

I ′(t) = (f(I) + ξ)(N(t)− I(t)−R(t))− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t),

(5.4)

and the endemic equilibrium E∗ :=
(
S∗, I∗, R∗) for the system (5.2) gives the en-

demic equilibrium of (5.4) where N∗ = S∗+I∗+R∗. Moreover, N∗, I∗, and R∗ satisfy
the following equations,

Λ− µN∗ − δI∗ = 0,

(N∗ − I∗ −R∗)− (µ+ δ + γ)
I∗

f(I∗) + ξ
= 0.

γI∗ − (µ+ θ)R∗ = 0.

(5.5)

Using (5.4) and (5.5) we can write

N ′(t) = − µ(N −N∗)− δ(I − I∗),

I ′(t) = (f(I) + ξ)
[
(N −N∗)− (I − I∗)− (R−R∗)− (µ+ δ + γ)

(
I

f(I)+ξ
− I∗

f(I∗)+ξ

)]
,

R′(t) = γ(I − I∗)− (µ+ θ)(R−R∗).

(5.6)

We define the Lyapunov function V (t) for the system (5.6)as

V (t) =
1

2δ
(N −N∗)2 +

∫ I

I∗

u− I∗

f(u) + ξ
du+

1

2γ
(R−R∗)2.

The derivative of the Lyapunov function V (t) along trajectories of (5.6) can be com-
puted as

V ′(t) = 1
δ
(N −N∗)N ′ + I−I∗

f(I)+ξ
I ′ + 1

γ
(R−R∗)R′

= 1
δ
(N −N∗)(−µ(N −N∗)− δ(I − I∗))

+ (I − I∗)
[
(N −N∗)− (I − I∗)− (R−R∗)− (µ+ δ + γ)

(
I

f(I)+ξ
− I∗

f(I∗)+ξ

)]
+ 1

γ
(R−R∗) (γ(I − I∗)− (µ+ θ)(R−R∗))

≤ − (N −N∗)(I − I∗) + (N −N∗)(I − I∗)− (I − I∗)(R−R∗)

− (µ+ δ + γ)(I − I∗)
(

I
f(I)+ξ

− I∗

f(I∗)+ξ

)
+ (I − I∗)(R−R∗)

= − (µ+ δ + γ) (I∗)2

f(I∗)+ξ

(
I
I∗

− 1
) [ I(f(I∗)+ξ)

I∗(f(I)+ξ)
− 1
]
.

So V ′(t) ≤ 0 since the nonlinear incidence function f(I) is continuous and monoton-
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ically increasing. Furthermore, the equality V ′(t) = 0 holds only if N = N∗, I = I∗,
and R = R∗. Therefore, it follows from the direct Lyapunov method that, since the
endemic equilibrium for the equivalent system (5.4) is globally asymptotically stable,
hence the endemic equilibrium E∗ is a globally asymptotically stable equilibrium of
the original system (5.2).

Theorem 12 shows that the endemicity of the disease among animals will result in
the disease becoming endemic among humans as well in case of a zoonotic spillover.

5.5 Discussion

In this work, we have introduced a simple novel compartmental model for zoonotic
disease. Assuming that the animal population is already in an endemic equilibrium
state, we only consider zoonotic transmission as a linear term corresponding to the
movement of susceptibles to the infectious class due to transmission from animals,
instead of including the usual compartments for the animals as well. Apart from the
zoonotic transmission, the model also includes waning immunity of recovered and we
consider a general incidence rate. Our new model is related to the SIRS type models
studied in [114, 115, 124], however, the appearance of the new term corresponding
to zoonotic transmission makes our new model different from those. Furthermore,
the global dynamics is different from earlier works as due to the zoonotic transmis-
sion, no disease-free equilibrium exists and one cannot observe the usual threshold
dynamics determined by the basic reproduction number. Motivated by the above
works, we perform a transformation of variables which facilitates us to define a Lya-
punov function. This enables us to prove that the unique endemic equilibrium of our
model is globally asymptotically stable independently of the parameters. The model
can be generalized in various directions, such as including more compartments, first
of all, an exposed class, or assuming a periodic behavior of the animal population
instead of being in an equilibrium. These ideas are left as a basis of future work.



Chapter 6

A compartmental model for the
spread of Nipah virus in a periodic
environment

Nipah virus (NiV) is a zoonotic virus that causes outbreaks of fatal disease in humans.
Fruit bat also known as the flying fox is the animal host reservoir for NiV. It is known
to cause illness in pigs which are considered an intermediate host. In this chapter,
we propose a model for Nipah virus disease transmission taking into account all
human-to-host animal transmission as well as the loss of immunity in those who
have recovered. Furthermore, we take into consideration seasonal effects such as
varying transmission rate from bats and birth rate of bats. We studied the existence
and uniqueness of a disease-free ω-periodic solution and later deals with the basic
reproduction number and stability analysis. To support the analytical results we
provide some numerical examples and assess the effect of parameter changes on
disease dynamics, which might help to understand how to avoid a yearly periodic
recurrence of the disease.

6.1 Introduction

With about 60% of human infections originating from animals [125], zoonotic dis-
eases pose one of the greatest health threats as shown by the recent outbreaks of e.g.
Severe Acute Respiratory Syndrome coronavirus (SARS-CoV-2), Ebola virus, Mid-
dle East respiratory syndrome coronavirus (MERS-CoV). One of the most menacing
emerging zoonotic diseases, Nipah virus disease is highly infectious and spreads in
the community via infected animals, infected people or contaminated food and ob-
jects, causing severe neurological and respiratory disease with high mortality rates
in some instances [53]. Nipah virus, whose animal host reservoir is the fruit bat also
known as the flying fox, causes lethal encephalitis in humans and has recently been

51
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reported from Malaysia, Bangladesh, Singapore, and India [5, 6, 20].

Since the outbreak, very few mathematical models are available for the studies of
the Nipah virus disease. A basic SIR model with optimal control was presented by
Biswas in [104]. A dynamic model of NiV infections with variable size population and
two control strategies was formulated by [11]. Incorporating quarantine of infectious
individuals, [12] analyzed an SEIR model where birth and death rates were assumed
unequal. [105] presented a two-layered model for humans and bats. [106] presented
a mathematical model of seven compartments, including virus dynamics, flying foxes,
and humans. They considered that this disease has no recovered individuals. The role
of deceased individuals who died from Nipah fever and considering no bat population
a model was introduced by [107]. [126] concentrated on an optimal control study
of some adjustable parameters for a coupled pig-human Nipah virus disease model.
Recently, [110] proposed a numerical model of the Nipah virus (NiV) into focus
on tracing the fractional order derivative’s influence, considering transmission from
dead bodies. Barua et al. [127] proposed a three-layered model where transmission
from bats and pigs was also considered.

The above literature review demonstrates that despite the threat posed by Nipah
virus disease, so far only little research has been done regarding its transmission.
Furthermore, most of the models did not consider all important characteristics of
the disease and several studies focused on optimal control problems rather than the
dynamics of the proposed models. Another important aspect of transmission, which
has not been considered in models for Nipah transmission is the periodicity of the
environment. The only location where spillover events can be reliably seen annually
is Bangladesh, where seasonal patterns of consuming raw date-palm-sap in the “Ni-
pah belt” correlate with outbreak timing and distribution (November to April) [128].
Data from a six-year multidisciplinary research of bats reveal that one of the causes
of outbreaks in Pteropus bats is driven by a gradual loss of immunity, culminating in
periods of interepizootic activity lasting several years [84]. Furthermore, the bats’
reproduction also shows periodicity as studies reported that the bats’ mating season
occurs from July to October and mothers give birth to one or two newborns from
February to March [129].

Motivated by the above, in the present work we propose a model for Nipah virus
disease transmission in a periodic environment in which all possible ways of trans-
mission among humans, the reservoir species bats, and the intermediate host pigs
are considered. A generalization of the basic reproduction number was defined by
Bacaër and Guernaoui [130] as the spectral radius of an integral operator acting on
the space of continuous periodic functions. The proof of the existence and stability of
the disease-free ω-periodic solution and the periodic solution was first established by
Wang and Zhao [47]. The persistence of a class of seasonally forced epidemiological
models is investigated by Rebelo et al. [131]. The methods established in the above
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papers have since been improved and applied to study the spread of many infectious
diseases; see, e.g. [132, 133, 134, 135, 136, 137, 138]. Following them, we study
the existence and uniqueness of a disease-free ω-periodic solution in Section 6.3,
while Section 6.4 deals with the basic reproduction number and stability analysis. In
Section 6.5, we provide some numerical examples to support the analytical results
and to assess the effect of parameter changes on disease dynamics, which might help
to understand how to avoid a periodic yearly recurrence of the disease. The paper is
closed with a short discussion.

6.2 Model formulation

We develop a compartmental model considering all possible transmissions from ani-
mals to humans, animals to animals, and from humans to animals with periodicity.

Total human population N(t) at time t is divided into susceptibles (S(t)), exposed
(E(t)), infected (I(t)) and recovered (R(t)). Hence,

N(t) = S(t) + E(t) + I(t) +R(t).

The total population of pigs (intermediate host) Np(t) at time t is divided into
susceptible (Sp), exposed (Ep(t)), infected (Ip(t)) and recovered (Rp(t)) individuals,
so that

Np(t) = Sp(t) + Ep(t) + Ip(t) +Rp(t).

Similarly the total bat population (animal host reservoir) Nb(t) at time t is di-
vided into susceptible (Sb), exposed (Eb(t)), infected (Ib(t)) and recovered (Rb(t))

individuals, such that

Nb(t) = Sb(t) + Eb(t) + Ib(t) +Rb(t).

We denote the birth and death rates of humans by Π and µ, respectively. There
is also a disease-induced death rate, denoted by δ. The force of infection for hu-
mans to humans, pigs, and bats for NiV transmission is given by βI, βhpI, βpI and
βhbI respectively. Again force of infection for Niv transmission from pigs to humans,
pigs, and bats is expressed here as βphIp, βpIp and βpbIp. Furthermore, the force of
infection for Niv transmission from bats to humans, pigs, and bats is expressed here
as βbh(t)Ib, βbIb and βbp(t)Ib. Here the parameters are the effective contact rate of
susceptible individuals, who become infected from either humans or animals who
became NiV infected.

Here the average duration of the infectious period is 1/γ days, so infected indi-
viduals are transferred to the recovered compartment at the rate γ and θ is the rate
of loss of temporary immunity acquired by recovered individuals, meaning that re-
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covered individuals remain immune for 1/θ days on average. We define all other
parameters for pigs and bats and apply the subscript p and b respectively for them.
Note that time-dependent parameters in this model are βbh(t), βbp(t) and Πb(t).

The transmission diagram of our model is shown in Figure 6.1. A complete de-
scription of the model parameters is summarized in Table 6.1. With the above nota-
tions, our model takes the form

dS

dt
= Π− βSI − βphSIp − βbh(t)SIb − µS + θR,

dE

dt
= βSI + βphSIp + βbh(t)SIb − νE − µE,

dI

dt
= νE − (µ+ δ + γ)I,

dR

dt
= γI − (µ+ θ)R,

(6.1a)

dSp

dt
= Πp − βpSpIp − βhpSpI − βbp(t)SpIb − µpSp + θpRp,

dEp

dt
= βpSpIp + βhpSpI + βbp(t)SpIb − νpEp − µpEp,

dIp
dt

= νpEp − (µp + δp + γp)Ip,

dRp

dt
= γpIp − (µp + θp)Rp,

(6.1b)

dSb

dt
= Πb(t)− βbSbIb − βhbSbI − βpbSbIp − µbSb + θbRb,

dEb

dt
= βbSbIb + βhbSbI + βpbSbIp − νbEb − µbEb,

dIb
dt

= νbEb − (µb + δb + γb)Ib,

dRb

dt
= γbIb − (µb + θb)Rb.

(6.1c)

The following initial conditions are associated with the system (6.1), define

ϕ = (S(0), E(0), I(0), R(0), Sp(0), Ep(0), Ip(0), Rp(0), Sb(0), Eb(0), Ib, Rb(0)),

where S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, Sp(0) > 0, Ep(0) ≥ 0, Ip(0) ≥ 0, Rp(0) ≥
0, Sb(0) > 0, Eb(0) ≥ 0, Ib(0) ≥ 0, Rb(0) ≥ 0.
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Figure 6.1: Transmission diagram. Red dashed arrows indicate the transition from one
compartment to another. Green arrows and gray indicate new entry and exit for death
respectively. The blue arrow represents virus transmission. Light blue, gray, and yellow
colored boxes depict compartments for humans, bats, and pigs respectively.

6.3 The disease-free periodic solution

6.3.1 Existence and uniqueness of the disease-free ω-periodic so-
lution

In this section, we will study the existence and uniqueness of the disease-free periodic
solution of system (6.1). For this let us consider the subsystem (6.1a) for humans.
For the total human population, we have the linear differential equation

N ′
h(t) = Π− µNh(t)− δI(t) ≤ Π− µNh(t). (6.2)

Clearly, Nh(t) is bounded and equation (6.2) has a unique, globally asymptotically
stable equilibrium N∗

h = Π/µ. Similarly one can prove that the pig subsystem (6.1b)
has a unique, globally asymptotically stable equilibrium N∗

p = Πp/µp and Np(t) is
bounded.

Now let us consider the subsystem (6.1c) for bats. To find the disease-free periodic
solution of this subsystem, we consider the equation for susceptible bats in case of
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Table 6.1: Description of parameters of model (6.1).

Parameters Description
Π Recruitment rate for humans

Πb(t),Πp Recruitment rate for bats, pigs
µ Natural death rate of humans

µb, µp Natural death rate of bats, pigs
δ Disease-induced death rate for humans

δp, δb Disease-induced death rate for pigs and bats respectively
γ Recovery rate for humans

γp, γb Recovery rate for pigs and bats respectively
β Human-to-human transmission rate
βhp Human-to-pig transmission rate
βhb Human-to-bat transmission rate
βp Pig-to-pig transmission rate
βph Pig-to-human transmission rate
βpb Pig-to-bat transmission rate
βb Bat-to-bat transmission rate

βbh(t) Bat-to-human transmission rate
βbp(t) Bat-to-pig transmission rate
1/θ Average length of immunity for humans

1/θp, 1/θb Average length of immunity for pigs and bats respectively

no disease transmission in the form

S ′
b(t) = Πb(t)− µbSb(t), (6.3)

with initial condition

Sb(0) = Sb0 :=
e−µbω

∫ ω

0
eµbξΠb(ξ)dξ

1− e−µbω
.

For this initial value problem, we have

S∗
b (t) = e−µbt

(
Sb0 +

∫ t

0

eµbξΠb(ξ) dξ

)
> 0,

which is globally attractive in R+. Thus system (6.1) has a unique disease-free peri-
odic solution

E∗ = (S∗
h, 0, 0, 0, S

∗
p , 0, 0, 0, S

∗
b (t), 0, 0, 0),

where S∗
h = Π/µ and S∗

p = Πp/µp .
To introduce the following result, we set hL = supt∈[0,ω) h(t) for a positive, contin-

uous ω-periodic function h(t).
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Lemma 13. There is N∗
b =

ΠL
b

µb
> 0 such that each solution in R12

+ of (6.1) eventually
enters

GN∗ = {(S,E, I, R, Sp, Ep, Ip, Rp, Sb, Eb, Ib, Rb) ∈ R12
+ :

Nh ≤ N∗
h , Np ≤ N∗

p , Nb ≤ N∗
b },

and for each Nb(t) ≥ N∗
b , GN∗ is positively invariant for system (6.1). Also, we have

lim
t→+∞

(Nb(t)− S∗
b (t)) = 0.

Proof. It can be easily seen from (6.1) that for the bat subsystem, we have

N ′
b(t) = Πb(t)− µbNb(t)− δbIb(t) ≤ ΠL

b − µbNb(t) ≤ 0, if Nb(t) ≥ N∗
b ,

which implies that GN∗ , Nb(t) ≥ N∗
b , is positively invariant and eventually, each for-

ward orbit enters GN∗. To finish the proof, define

y(t) = Nb(t)− S∗
b (t), t ≥ 0.

Hence, we have y′(t) = −µby(t) which implies limt→∞ y(t) = 0. Hence, the proof is
complete.

6.4 Basic reproduction number and stability analysis

6.4.1 Basic reproduction number

For the numerical approximation of the basic reproduction number in periodic envi-
ronment let us recall the following theorem from Wang and Zhao [47].

Theorem 14 ([47, Theorem 2.1]). The following statements are valid.

(i) If ρ(W (ω, λ)) = 1 has a positive solution λ0, then λ0 is a eigenvalue of operetor L,
and hence R0 > 0.

(ii) If R0 > 0, then λ0 = R0 is a unique solution of ρ(W (ω, λ)) = 1.

(iii) R0 = 0 if and only if ρ(W (ω, λ)) < 1 for all λ > 0.

Now we will follow the technique introduced by [47], we have the disease-free
periodic equilibrium

E∗ =
(Π
µ
, 0, 0, 0,

Πp

µp

, 0, 0, 0, S∗
b (t), 0, 0, 0

)
,
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of system (6.1) for appropriate parameter values. We introduce the basic reproduc-
tion number R0 for system (6.1) with

F(t,X (t)) =



βSI+βphSIp+βbh(t)SIb
0

βpSbIp+βhpSpI+βbp(t)SpIb
0

βbSbIb+βhbSbI+βpbSbIp
0
0
0
0
0
0
0

,

and

V−(t,X (t)) =



(ν+µ)E
(µ+δ+γ)I
(νp+µp)Ep

(µp+δp+γp)Ip
(νb+µb)Eb

(µb+δb+γb)Ib
βSI+βphSIp+βbh(t)SIb+µS

(µ+θ)R
βpSpIp+βhpSpI+βbp(t)SpIb+µpSp

(µp+θp)Rp

βbSbIb+βhbSbI+βpbSbIp+µbSb

(µb+θb)Rb


, V+(t,X (t)) =



0
νE
0

νpEp

0
νbEb
Π+θR
γI

Πp+θpRp

γpIp
Πb(t)+θbRb

γbIb


,

where X = (E, I, Ep, Ip, Eb, Ib, S, R, Sp, Rp, Sb, Rb)
T . Here E, I, Ep, Ip, Eb, Ib are the

infected compartment and S,R, Sp, Rp, Sb, Rb are the uninfected compartment. Now
let us check the conditions (A1)–(A5) from [47, p. 701]. System (6.1) is equivalent
to

X ′(t) = F(t,X (t))− V(t,X (t)) = f(t,X (t)), (6.4)

where V(t,X (t)) = V−(t,X (t)) − V+(t,X (t)). We also introduce here the matrix
function M(t) = (∂fi(t,X

∗(t))
∂Xj

)(7≤i,j≤12) where fi(t,X (t)) is the i-coordinate of f(t,X (t))

and Xi is the i-th component of X . The function M(t) has the form

M(t) =


−µ θ 0 0 0 0
0 −µ−θ 0 0 0 0
0 0 −µp θp 0 0
0 0 0 −µp−θp 0 0
0 0 0 0 −µb θb
0 0 0 0 0 −µb−θb

. (6.5)

We denote ΦM(t) as the monodromy matrix of dz
dt

=M(t)z and we will use the nota-
tion ρ(ΦM(t)) for the spectral radius of ΦM(ω). Hence, ρ(ΦM(t)) < 1, which implies
that X ∗(t) is a linearly asymptotically stable solution in the disease-free subspace
X = (0, 0, 0, 0, 0, 0, 0, 0, 0, S, Sp, Sb) ∈ R12

+ . This implies that the condition (A6) holds
as well.

We introduce the 6×6 matrix functions F (t),V (t) given as F (t)=
(∂Fi(t,X ∗(t))

∂Xj

)
1≤i,j≤6

and V (t) =
(∂Vi(t,X ∗(t))

∂Xj

)
1≤i,j≤6

with Fi and Vi denoting the i-th coordinate of the vec-
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tor function F and V respectively. The two vector functions can be calculated as

F (t) =


0 βS∗ 0 βphS

∗ 0 βbh(t)S
∗

0 0 0 0 0 0
0 βhpS

∗
p 0 βpS∗

p 0 βbp(t)S
∗
p

0 0 0 0 0 0
0 βhbS

∗
b (t) 0 βpbS

∗
b (t) 0 βbS

∗
b (t)

0 0 0 0 0 0

,
and

V (t) =


µ+ν 0 0 0 0 0
−ν γ+δ+µ 0 0 0 0
0 0 µp+νp 0 0 0
0 0 −νp γP+δp+µp 0 0
0 0 0 0 µb+νb 0
0 0 0 0 −νb γb+δb+µb

.
Note that F (t) is a non-negative matrix function, while −V (t) is cooperative.

Suppose X(t, s), t ≥ s, is the evolution operator of the linear system

dx

dt
= −V (t)x.

Thus, for s ∈ R, X(t, s) satisfies the equation

dX(t, s)

dt
= −V (t)X(t, s), ∀t ≥ s,X(s, s) = I,

where I denotes the 6× 6 identity matrix.
Assume ψ(s) is the distribution of infected, ω-periodic in s. Then, F (s)ψ(s) pro-

vides the rate of new cases due to those infected who were introduced at time s. For
t ≥ s, the term X(t, s)F (s)ψ(s) provides us the distribution of the infectious indi-
viduals who newly became infected at time s and who are still infected at time t.
Therefore,

g(t) :=

∫ t

−∞
X(t, s)F (s)ψ(s)ds =

∫ ∞

0

X(t, t− a)F (t− a)ψ(t− a)da,

gives the distribution of accumulative new infections at t generated by all infected
ψ(s) who was introduced at any time s ≤ t.

Let us assume that Cω is the ordered Banach space of ω-periodic functions from R
to R6, provided with the usual maximum norm ∥·∥∞ and introduce the positive cone

C+
ω := {ψ ∈ Cω : ψ(t) ≥ 0, ∀t ∈ R}.

Define the linear next infection operator L : Cω → Cω by

(Lψ)(t) =

∫ ∞

0

X(t, t− a)F (t− a)ψ(t− a)da, ∀t ∈ R, ψ ∈ Cω.

Then, the basic reproduction number of (6.1) is R0 := ρ(L), the spectral radius of L
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[47]. Let W (t, λ) be the monodromy matrix of the linear ω-periodic equation

dω

dt
=

(
−V (t) +

F (t)

λ

)
ω, ∀t ∈ R,

with parameter λ ∈ (0,∞). Now we will apply Theorem 14 to numerically calculate
the basic reproduction number of system (6.1).

6.4.2 Local stability of the disease free solution

Based on the results in the previous subsection, we can formulate the following the-
orem concerning the local stability properties of the disease-free periodic solution E∗

of model (6.1). Before we state the main result of this subsection, we recall Theorem
2.2 from [47].

Theorem 15 ([47, Theorem 2.2]). The following statements are valid:

(i) R0 = 1 if and only if ρ(ΦF−V (ω)) = 1;

(ii) R0 > 1 if and only if ρ(ΦF−V (ω)) > 1;

(iii) R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.

Theorem 16. The disease-free periodic solution E∗ of (6.1) is locally asymptotically
stable if R0 < 1, whereas it is unstable if R0 > 1.

Proof. The Jacobian matrix of (6.1) calculated at E∗ is given by

J(t) =

[
F (t)− V (t) 0

A(t) M

]
,

with M(t) defined in (6.5) and A(t) given by

A(t) =



0 −βS∗ 0 −βphS∗ 0 −βbh(t)S∗

0 γ 0 0 0 0

0 −βhpS∗
p 0 −βpS∗

p 0 −βbp(t)S∗
p

0 0 0 γp 0 0

0 −βhbS∗
b (t) 0 −βpbS∗

b (t) 0 −βbS∗
b (t)

0 0 0 0 0 γb


.

By [139], E∗ is a locally asymptotically stable periodic solution if ρ(ΦM(ω)) < 1 as
well as ρ(ΦF−V (ω)) < 1 hold. From condition (A6), we have ρ(ΦM(ω)) < 1. It then
follows that the stability of E∗ is determined by ρ(ΦF−V (ω)). Hence, E∗ is locally
asymptotically stable if ρ(ΦF−V (ω)) < 1 , and unstable if ρ(ΦF−V (ω)) > 1. By using
Theorem 15, we complete the proof.
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6.4.3 Global stability of the disease-free solution

We will show the global asymptotic stability of the disease-free periodic solution E∗

for R0 < 1. We will need the following result.

Lemma 17 ([140, Lemma 2.1]). Let µ = 1
ω
ln ρ(ΦA(·)(ω)). Then there exists a positive,

ω-periodic function ν(t) such that eµtν(t) is a positive solution of x′ = A(t)x.

Theorem 18. The disease-free periodic solution E∗ of (6.1) is globally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

Proof. From Theorem 15, we know that if R0 > 1, then E∗ is unstable and if R0 < 1,
then E∗ is locally asymptotically stable. Therefore, it is only left to show that for
R0 < 1, E∗ is globally attractive. Because I(t) ≥ 0, Ip(t) ≥ 0 and Ib(t) ≥ 0 from
Lemma 13, it can be shown that

N ′
h(t) = Π− µNh(t)− δI(t)

≤ Π− µNh(t),

N ′
p(t) = Πp − µpNp(t)− δpIp(t)

≤ Πp − µNp(t),

which implies that

lim sup
t→∞

N(t) ≤ Π

µ
= S∗,

and

lim sup
t→∞

Np(t) ≤
Πp

µ
= S∗

p .

Therefore, there exists a T > 0 such that S(t) ≤ Nh(t) ≤ S∗ + ϵ, and Sp(t) ≤ Np(t) ≤
S∗
p + ϵ, and from Lemma 13, Sb(t) ≤ Nb(t) ≤ S∗

b (t) + ϵ, for an arbitrary positive ϵ.
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Using these estimations for system (6.1), we get

dE

dt
≤ (βI + βphIp + βbh(t)Ib)(S

∗ + ϵ)− νE − µE,

dI

dt
= νE − (µ+ δ + γ)I,

dR

dt
= γI − (µ+ θ)R,

dEp

dt
≤ (βpIp + βhpI + βbp(t)Ib)(S

∗
p + ϵ)− νpEp − µpEp,

dIp
dt

= νpEp − (µp + δp + γp)Ip,

dRp

dt
= γpIp − (µp + θp)Rp,

dEb

dt
≤ (βbIb + βhbI + βpbIp)(S

∗
b (t) + ϵ)− νbEb − µbEb,

dIb
dt

= νbEb − (µb + δb + γb)Ib,

dRb

dt
= γbIb − (µb + θb)Rb,

(6.6)

for t > T . Let Mϵ(t) be the 6× 6 matrix function defined by



−µ− ν β(S∗ + ϵ) 0 βph(S
∗ + ϵ) 0 βbh(t)(S

∗ + ϵ)

ν −γ − δ − µ 0 0 0 0

0 βhp(S
∗
p + ϵ) −µp − νp βp(S

∗
p + ϵ) 0 βbp(t)(S

∗
p + ϵ)

0 0 νp −γP − δp − µp 0 0

0 βhb(S
∗
b (t) + ϵ) 0 βpb(S

∗
b (t) + ϵ) −µb − νb βb(S

∗
b (t) + ϵ)

0 0 0 0 νb −γb − δb − µb


.

Let us consider the auxiliary equation

dU(t)

dt
=Mϵ(t)U(t), (6.7)

where U(t) = (E(t), I(t), Ep(t), Ip(t), Eb(t), Ib(t)). From Theorem 14 we have R0 <

1 if and only if ρ(ΦF−V (ω)) < 1. It is clear that limϵ→0ΦMϵ(ω) = ΦF−V (ω). As
ρ(ΦF−V (ω)) is continuous, we can choose ϵ > 0 small enough such that ρ(ϕMϵ(ω)) <

1. Now following Lemma 17, we have that there is an ω-periodic positive function p(t)
such that p(t)eξt is a solution of (6.7) and ξ = 1

ω
ln ρ(ΦMϵ(ω)) < 0. For any h(0) ∈ R6

+,
we can choose k∗ such that h(0) ≤ k∗p(0) where h(t) = (E(t), I(t), Ep(t), Ip(t), Eb(t),

Ib(t))
T . Now applying the comparison principle [141, Theorem B.1], we get h(t) ≤
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p(t)eξt for all t > 0, from which we get

lim
t→∞

(E(t), I(t), Ep(t), Ip(t), Eb(t), Ib(t))
T = (0, 0, 0, 0, 0, 0)T .

One can easily find that Nh(t) → N∗
h , Np(t) → N∗

p , and Nb(t) → N∗
b as t → ∞. Let

ϵ > 0, we can find tϵ > 0 such that I(t) ⩽ ϵ, Ip(t) ⩽ ϵ and Ib(t) ⩽ ϵ for all t ⩾ tϵ.
Then, the equation for R′(t), R′

p(t) and R′
b(t) of (6.1) gives

R′(t) ⩽ γϵ− (µ+ θ)R(t),

R′
p(t) ⩽ γpϵ− (µp + θp)Rp(t),

R′
b(t) ⩽ γbϵ− (µb + θb)Rb(t),

for large t. From where R(t) → 0 , Rp(t) → 0 and Rp(t) → 0 as t → +∞. Thus the
equations for S ′(t), S ′

p(t) and S ′
b(t) in system (6.1) provide that

lim
t→∞

S(t) = S∗, lim
t→∞

Sp(t) = S∗
p , lim

t→∞
(Sb(t)− S∗

b (t)) = 0.

The proof is complete.

Existence of positive periodic solutions

To show the existence of positive periodic solutions, we first introduce the notations

X :=
{
(S,E, I, R, Sp, Ep, Ip, Rp, Sb, Eb, Ib, Rb) ∈ R12

+

}
,

X0 :=

{
(S,E, I, R, Sp, Ep, Ip, Rp, Sb, Eb, Ib, Rb) ∈ X :

E > 0, I > 0, Ep > 0,

Ip > 0, Eb > 0, Ib > 0

}
,

and

∂X0 := X\X0.

Let us define the Poincaré map P : R12
+ → R12

+ corresponding to (6.1) as

P(x0) = u(ω, x0), x0 ∈ R12
+ ,

where u(t, x0) is the single solution of (6.1) started with initial condition x0 ∈ R12
+ .

Then,
Pm(x0) = u(mω, x0), for all m ≥ 0.

Proposition 19. The set X0 and ∂X0 are both positively invariant w.r.t. the flow defined
in (6.1).

Proof. Let us consider the initial condition ϕ ∈ X0. By solving (6.1) for all t > 0, we
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get that

S(t) = e
∫ t
0 (−µ−a1(s))ds

(
S(0) +

∫ t

0

e
∫ ξ
0 (µ+a1(s))ds(Π + θR(ξ)) dξ

)
> 0,

E(t) = e−(µ+ν)t

(
E(0) +

∫ t

0

e(µ+ν)sa1(s)S(s)ds

)
> 0,

I(t) = e−(γ+δ+µ)t

(
I(0) + ν

∫ t

0

e(γ+δ+µ)sE(s)ds

)
> 0,

R(t) = e−(θ+µ)t

(
R(0) + γ

∫ t

0

e(θ+µ)sI(s)ds

)
> 0,

Sp(t) = e
∫ t
0 (−µp−a2(s))ds

(
Sp(0) +

∫ t

0

e
∫ ξ
0 (µp+a2(s))ds(Πp + θpRp(ξ)) dξ

)
> 0,

Ep(t) = e−(µp+νp)t

(
Ep(0) +

∫ t

0

e(µp+νp)sa2(s)Sp(s)ds

)
> 0,

Ip(t) = e−(γp+δp+µp)t

(
Ip(0) + νp

∫ t

0

e(γp+δp+µp)sEp(s)ds

)
> 0,

Rp(t) = e−(θp+µp)t

(
Rp(0) + γp

∫ t

0

e(θp+µp)sIp(s)ds

)
> 0,

Sb(t) = e
∫ t
0 (−µb−a3(s))ds

(
Sb(0) +

∫ t

0

e
∫ ξ
0 (µb+a3(s))ds(Πb(t) + θbRb(ξ)) dξ

)
> 0,

Eb(t) = e−(µb+νb)t

(
Eb(0) +

∫ t

0

e(µb+νb)sa3(s)Sb(s)ds

)
> 0,

Ib(t) = e−(γb+δb+µb)t

(
Ib(0) + νb

∫ t

0

e(γb+δb+µb)sEb(s)ds

)
> 0,

Rb(t) = e−(θb+µb)t

(
Rb(0) + γb

∫ t

0

e(θb+µb)sIb(s)ds

)
> 0,

where

a1(t) = βI(t) + βphIp(t) + βbh(t)Ib(t),

a2(t) = βpIp(t) + βhpI(t) + βbp(t)Ib(t),

a3(t) = βbIb(t) + βhbI(t) + βpbIp(t).

Thus X0 is a positively invariant set. Since X is positively invariant and ∂X0 is
relatively closed in X, then it is clear that ∂X0 is positively invariant.

Lemma 20. If R0 > 1, then there exists a σ > 0 such that for any x0 ∈ X0, with
∥x0 − E∗∥ < σ we have

lim sup
m→∞

d(Pm(x0), E∗) ≥ σ.

Proof. By Theorem 15 we have ρ(ΦF−V (ω)) > 1 if R0 > 1. Then we can choose an
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η > 0 such that ρ(ΦF−V−Mη(ω)) > 1 where the matrix function Mη(t) is defined as

Mη(t) =



0 βη 0 βphη 0 βbh(t)η

0 0 0 0 0 0

0 βhpη 0 βpη 0 βbp(t)η

0 0 0 0 0 0

0 βhbη 0 βpbη 0 βbη

0 0 0 0 0 0


.

Let us use the notation ϕ for an initial condition of (6.1). The continuous dependence
of the solutions on initial values implies that we can find a σ = σ(η) > 0 such that
for arbitrary ϕ ∈ X0 with ∥ϕ− E0∥ ≤ σ,

∥u(t, ϕ)− u(t, E0)∥ ≤ η, for 0 ≤ t ≤ ω,

holds, moreover,

lim sup
m→∞

d(Pm(x0), E0) ≥ σ. (6.8)

Indeed, suppose by contradiction that (6.8) is not true, then

lim sup
m→∞

d(Pm(x0), E0) < σ,

hence, it follows from the above that

∥u(t,Pm(ϕ))− u(t, E0)∥ < η, for all m ≥ 0, t ∈ [0, ω].

For an arbitrary t ≥ 0, let us write t as t = mω + t̂, where t̂ ∈ [0, ω) and m =
[
t
ω

]
, the

integer part of t
ω

. We obtain

∥u(t, x0)− u(t, E0)∥ = ∥u(t̂,Pm(x0))− u(t̂, E0)∥ < η, for all t ≥ 0.

From this, we have

S(t) ≥ S∗ − η, Sp(t) ≥ S∗
p − η, Sb(t) ≥ S∗

b (t)− η

and hence for ∥ϕ− E0∥ < σ, we get

dE

dt
≥ (βI + βphIp + βbh(t)Ib)(S

∗ − η)− νE − µE,

dI

dt
= νE − (µ+ δ + γ)I,
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dR

dt
= γI − (µ+ θ)R,

dEp

dt
≥ (βpIp + βhpI + βbp(t)Ib)(S

∗
p − η)− νpEp − µpEp,

dIp
dt

= νpEp − (µp + δp + γp)Ip,

dRp

dt
= γpIp − (µp + θp)Rp,

dEb

dt
≥ (βbIb + βhbI + βpbIp)(S

∗
b − η)− νbEb − µbEb,

dIb
dt

= νbEb − (µb + δb + γb)Ib,

dRb

dt
= γbIb − (µb + θb)Rb.

Introduce now the auxiliary linear system

U ′(t) = (F (t)− V (t)−Mη(t))U(t), (6.9)

with U(t) = (E(t), I(t), Ep(t), Ip(t), Eb(t), Ib(t)).
Now we have ρ(F (t)− V (t)−Mη(t)) > 1, while from Lemma 17 we know that there
exists a positive, ω-periodic function p1(t) such that h(t) = eξtp1(t) is a solution of
(6.9) and ξ = 1

ω
ln ρ(ΦF−V +Mη(ω)) > 0. Let t = nω and n be a non-negative integer,

we get
h(nω) = enωξp1(nω) → (∞,∞,∞,∞,∞,∞,∞,∞,∞)T .

For any h(0) ∈ R9
+, we can choose a real number n0 > 0 such that h(0) ≥ n0p1(0)

where
h(0) = (E(t), I(t), R(t), Ep(t), Ip(t), Rp(t), Eb(t), Ib(t), Rb(t))

T .

Applying the comparison principle [141, Theorem B.1], we obtain h(t) ≥ p1(t)e
ξt for

all t > 0, which implies that

lim
t→∞

(E(t), I(t), R(t), Ep(t), Ip(t), Rp(t), Eb(t), Ib(t), Rb(t))
T

= (∞,∞,∞,∞,∞,∞,∞,∞,∞)T .

This leads to a contradiction that completes the proof.

Theorem 21. Let R0 > 1. Then system (6.1) has at least one positive periodic solution
and there exists an ϵ1 > 0 such that

lim inf
t→∞

(E(t), I(t), R(t), Ep(t), Ip(t), Rp(t), Eb(t), Ib(t), Rb(t))
T ≥

(ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1)
T ,
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for all ϕ ∈ X0.

Proof. First, we prove that the Poincaré map P is uniformly persistent with respect
to (X0, ∂X0), as from this, applying [142, Theorem 3.1.1], it follows that the solution
of (6.1) is uniformly persistent with respect to (X0, ∂X0). From Proposition 19, we
have that both X and X0 are positively invariant, and ∂X0 is relatively closed in X.
Furthermore, from Lemma 13 it follows that system (6.1) is point dissipative. Let us
introduce

M∂ = {ϕ ∈ ∂X0 : Pm(ϕ) ∈ ∂X0,∀m ≥ 0}.

To apply the theory developed in [142] (see also [140, Theorem 2.3]), we first show
that

M∂ = {(S, 0, 0, Sp, 0, 0, Sb, 0, 0) : S ≥ 0, Sp ≥ 0, Sb ≥ 0}. (6.10)

Let us note that M∂ ⊇ (S, 0, 0, Sp, 0, 0, Sb, 0, 0) : S ≥ 0, Sp ≥ 0, Sb ≥ 0. It is sufficient to
prove that M∂ ⊂ {(S, 0, 0, Sp, 0, 0, Sb, 0, 0) : S ≥ 0, Sp ≥ 0, Sb ≥ 0}, i.e., for arbitrary
initial condition ϕ ∈ ∂X0, E(nω) = 0 or I(nω) = 0 or R(nω) = 0 or Ep(nω) = 0 or
Ip(nω) = 0 or Rp(nω) = 0 or Eb(nω) = 0 or Ib(nω) = 0 or Rb(nω) = 0 or for all n ≥ 0.

Assume by contradiction the existence of an integer n1 ≥ 0 for which

(E(n1ω), I(n1ω), R(n1ω), Ep(n1ω), Ip(n1ω), Rp(n1ω), Eb(n1ω), Ib(n1ω)

Rb(n1ω)) > (0, 0, 0, 0, 0, 0, 0, 0, 0).

Then, by putting t = n1ω into the place of the initial time t = 0 in Proposition 19, we
get that S(t) > 0, E(t) > 0, I(t) > 0, R(t) > 0, Sp(t) > 0, Ep(t) > 0, Ip(t) > 0, Rp(t) >

0, Sb(t) > 0, Eb(t) > 0, Ib(t) > 0, Rb(t) > 0. This is in contradiction with the positive
invariance of ∂X0.

By Lemma 20, P is weakly uniformly persistent w.r.t. (X0, ∂X0). Lemma 1 guar-
antees the existence of a global attractor of P. Then E∗ is an isolated invariant set in
X and W s(E∗) ∩X0 = ∅. Each solution in M∂ tends to E∗ and it is clearly acyclic in
M∂.

By [142, Theorem 1.3.1 and Remark 1.3.1], we can deduce that P is uniformly
(strongly) persistent w.r.t. (X0, ∂X0). Hence, there exists an ϵ1 > 0 such that

lim inf
t→∞

(E(t), I(t), R(t), Ep(t), Ip(t), Rp(t), Eb(t), Ib(t), Rb(t))
T

≥ (ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1)
T ,

for all ϕ ∈ X0.

By [142, Theorem 1.3.6], P has a fixed point ϕ̃ ∈ X0, and hence system (6.1)
has at least one periodic solution u(t, ϕ̃) with

ϕ̃ = (S̃(0), Ẽ(0), Ĩ(0), R̃(0), S̃p(0), Ẽp(0), Ĩp(0), R̃p(0)S̃b(0), Ẽb(0), Ĩb(0), R̃b(0)) ∈ X0.
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Now, let us prove that S̃(0), S̃p(0) and S̃b(0) are positive. If (S̃(0) = 0, S̃p(0) = 0,
S̃p(0)) = 0, then we obtain that S̃(0) > 0 and S̃p(0) > 0 and S̃b(0) > 0 for all
t > 0. However, using the periodicity of solution, we have S̃(0) = S̃(nω) = 0 ,
S̃p(0) = S̃p(nω) = 0 andS̃b(0) = S̃b(nω) = 0, that is a contradiction and hence the
statement of the theorem is proved.

6.5 Numerical simulation

To illustrate our analytical results we perform some numerical simulations. These
simulations will also give us suggestions regarding the changes in model parameters
which might lead to a yearly periodic recurrence of Nipah virus disease and how to
avoid such a recurrence. The periodic transmission rates are described by functions
of the form

βx

{
sin(4t/365 ∗ Π) + a, 0 ≤ t ≤ 365/4 mod 365,

a, 365/4 < t < 365 mod 365
,

where x ∈ bp, bh, βx is a baseline value for the transmission rate and a is a positive
constant. The periodic function describing the birth rate of bats is defined in a similar
way, taking into account the breeding season of the bats.

We show three examples corresponding to different values of the basic reproduc-
tion number. To numerically approximate this value, we follow the method described
in [143].

In our first example, the basic reproduction number has the value R0 = 0.85, i.e.
it is significantly smaller than 1. The parameter values corresponding to this example
can be found in the first column of Table 6.2, while the number of infected humans,
pigs and bats is plotted in Figure 6.2. One can see that – just like expected based on
our analytical results – the disease will die out in all three species and the population
reaches a (globally asymptotically stable) disease-free steady state.

In Example 2, we consider another set of parameters with which the reproduction
number is still below 1, however, in this case, the value R0 = 0.98 is very close to the
threshold value. In this case, one can see that again the disease goes extinct in all
three species, as expected from the analytical results. The results of the numerical
simulations for the three species are shown in Figure 6.3.

In our last example, shown in Figure 6.4, the applied parameter values (shown
in the last column of Table 6.2) result in a basic reproduction number R0 = 3.2 with
value larger than 1. In this case, we can see that the disease persists and the figures
suggest that all solutions tend to an endemic periodic solution corresponding to the
annual recurrence of the disease. Comparing the parameter values applied in our last
example with those of the two previous cases, one can see that a significant increase
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(c) Extinction of infection in bats.

Figure 6.2: Extinction of NiV when R0 = 0.85 < 1 with parameter values in Table
6.2(Example 1)
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(c) Extinction of infection in bats.

Figure 6.3: Extinction of NiV when R0 = 0.98 < 1 with parameter values in Table 6.2
(Example 2)
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Figure 6.4: Persistence of NiV when R0 = 3.2 > 1 with parameter values in Table 6.2
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Table 6.2: Parameters for model (6.1) providing values for extinction and persistence
(unit per days

Parameter
Value for extinction

Value for persistence Source
Example 1 Example 2

Π 6.69852 6.69852 6.69852 [117]
Πp 300.3 300.3 300.3 [92]
Πb 0.411 0.411 0.411 Assumed
µ 0.0000379 0.0000379 0.0000379 [117]
µp 0.002747 0.002747 0.002747 [118]
µb 0.00013699 0.00013699 0.00013699 Assumed
β 2.28× 10−9 2.0× 10−9 9.0× 10−9 [107]
βph 1.3× 10−8 2.0× 10−8 2.0× 10−8 Assumed
βbh 1.0× 10−6 1.0× 10−6 1.04× 10−6 Assumed
βp 6.71× 10−8 6.71× 10−8 1.32× 10−6 Assumed
βhp 7.0× 10−8 7.0× 10−8 7.0× 10−8 Assumed
βbp 1.0× 10−7 1.0× 10−7 3.01× 10−6 Assumed
βb 6.71× 10−6 6.71× 10−6 1.88× 10−5 [84]
βhb 7.0× 10−10 7.0× 10−10 7.0× 10−10 Assumed
βpb 7.0× 10−10 7.0× 10−10 7.0× 10−10 Assumed
ν 0.01 0.01 0.01 [75]
νp 0.01 0.01 0.01 [118]
νb 0.01 0.01 0.01 Assumed
θ 0.033 0.033 0.0333 Assumed
θp 0.001 0.001 0.000861 Assumed
θb 0.0000146 0.000993 0.001 [84]
γ 0.02544 0.015625 0.0177 [4]
γp 0.01 0.01 0.0499 [13]
γb 0.0225 0.0197 0.01 Assumed
δ 0.04025 0.02065 0.0343 [13]
δp 0.00232 0.000325 0.000265 [119]
δb 0.000746 0.000575 0.000501 Assumed

in all transmission rates was needed to obtain a situation where the disease remains
endemic, along with an increase of the length of the infectious period. On the other
hand, the simulations suggest that keeping the transmission rates as low as possible
is sufficient to prevent us from huge seasonal outbreaks of the disease.

6.6 Discussion

In this study, we developed a three-species compartmental model to characterize the
spread of the Nipah virus infection among bats, pigs, and humans, taking into ac-
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count all possible directions of transmission between the three species. To make our
model more realistic, we included periodicity in our model considering the periodic
birth rate of the reservoir species bats and periodic transmission rates due to the sea-
sonal nature of date palm sap consumption, an important way of disease transmission
from bats to humans. We also included the loss of immunity in those who have re-
covered, as according to studies conducted on bats, one of the factors contributing
to outbreaks in Pteropus bats is the gradual loss of immunity over the course of six
years.

Using the methods established by Wang and Zhao, we calculated the basic repro-
duction number (R0) and determined the existence and uniqueness of a disease-free
ω-periodic solution. We showed that this solution is globally asymptotically stable
if R0 is less than 1, while it is unstable otherwise. In the latter case, the disease
becomes endemic in the three populations, and we also proved the existence of at
least one positive periodic solution. To support the analytical findings and evaluate
the impact of parameter changes on disease dynamics, we present several numerical
examples. For three values of R0, we performed numerical simulations to highlight
our analytical findings with reference to the NiV disease. When R0 < 1 and the sim-
ulations in the first two examples supported the conclusion that the disease has been
eradicated in people, pigs, and bats. This is consistent with the mathematical expec-
tations and points to a disease-free solution. With R0 > 1, however, the simulations
showed sustained disease transmission in the final example, pointing to an endemic
periodic solution that corresponds to periodic recurrence. The simulations showed
that higher transmission rates and longer infectious periods were necessary for the
disease to remain endemic when comparing the parameter values between the exam-
ples. On the other hand, simulations showed that reducing transmission rates could
successfully stop significant seasonal disease outbreaks. These examples may assist
readers understand how to prevent the disease from recurring on an annual basis.

Our work certainly has its limitations. One of the more important is the lack of
sufficient data as fortunately, up to now, there have not been any very large-scale
Nipah outbreaks in humans. A future better understanding of the characteristics of
this disease will contribute to more precise models which might include some ad-
ditional compartments, i.e. convalescent, infected with relapsed onset, or deceased
who may contribute to disease transmission. Temperature, humidity, and climatic
conditions can impact the survival and transmission of the Nipah virus, with higher
temperatures and increased rainfall that potentially increase virus dissemination and
infection rates. Future research should take these environmental aspects into ac-
count to fully comprehend the dynamics of disease. Due to the poor understanding
of the many disease parameters, the numerical analysis of the model is difficult. Fu-
ture studies should concentrate on examining an extended system that takes into
account other variables and makes use of extensive and well-supported data in or-
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der to address this. To improve comprehension, enable more precise predictions,
and permit recommendations for disease control and prevention efforts, the model’s
scope should be expanded and credible data should be included.



Chapter 7

Global dynamics of a compartmental
model to assess the effect of
transmission from deceased

During several epidemics, transmission from deceased people significantly contributed
to disease spread, but mathematical analysis of this transmission has not been seen
in the literature numerously. Transmission of Ebola during traditional burials was
the most well-known example, however, there are several other diseases such as
hepatitis, plague or Nipah virus that can potentially be transmitted from disease vic-
tims. This is especially true in the case of serious epidemics when healthcare is
overwhelmed and the operative capacity of the health sector is diminished, such as it
could be seen during the COVID-19 pandemic. We present a compartmental model
for the spread of a disease with an imperfect vaccine available, also considering trans-
mission from deceased infected in general. The global dynamics of the system are
completely described by constructing appropriate Lyapunov functions. To support
our analytical results, We perform numerical simulations to assess the importance of
transmission from the deceased considering the data collected from three infectious
disease Ebola virus disease, COVID-19, and Nipah fever.

7.1 Introduction

Several infectious diseases caused by pathogenic microorganisms (e.g. bacteria, viruses,
parasites, or fungi) can be spread directly or indirectly, from person to person, how-
ever, apart from infection from infectious individuals, also corpses of those deceased
due to a given epidemic may pose a risk of transmission, especially under special cir-
cumstances like natural disasters [144], an overwhelmed health care system [145],
or due to traditional funerary practices [146].

75
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Various examples can be mentioned for this phenomenon. Deaths from dis-
eases such as plague, cholera, typhoid fever, tuberculosis, anthrax, smallpox, and
influenza pose a substantial risk to health though most agents do not survive long
in the human body after death [147]. Contracting dead bodies from tuberculosis,
blood-borne viruses (e.g. hepatitis B and C and HIV), and gastrointestinal infections
(e.g. cholera, E. coli, hepatitis A, rotavirus diarrhea, salmonellosis, shigellosis, and
typhoid/paratyphoid fevers) with persons who are involved in close contact with the
dead – such as health care workers, military personnel, rescue workers, volunteers,
and others – may be exposed to chronic infectious hazards [144, 148].

Ebola virus disease (EVD or Ebola) is a severe illness in humans that is found
primarily in the African continent. EVD can be transmitted between humans through
contact with blood, secretions, organs, or other bodily fluids of infected or dead
humans or animals, and has become especially known for the role of traditional buri-
als in disease transmission. Some of the early symptoms of this deadly disease are
fever, exhaustion, aches and pains, and loss of appetite. People who exhibit Ebola
symptoms should seek medical attention right once, and treatment options include
hospital-provided medications and oral or intravenous fluids [149, 150, 151]. In-
fluenza remains active in the environment for only one day and HIV remains active
in dead bodies kept at 2°C between 6–15 days, therefore corpses can transmit disease
and cause death if not handled safely [147]. Recently the world has seen a devastat-
ing COVID-19 pandemic and due to the massive transmission of the virus, infection
in humans has led to an unexpected situation in global health. Infected individu-
als with this disease experience mild, moderate, or severe clinical symptoms. Fever,
fatigue, dry cough, shortness of breath, etc. are some of its most typical symptoms
[152]. It can also be transmitted via human contact or aerial droplets [153]. After
postmortem and forensic tests of the corpse, it was observed that the SARS-CoV-2
persists in the human body months after death and should be infectious for weeks
(see e.g. [154, 155]). Nipah virus (NiV) is a zoonotic virus that was first identified
when a cluster of patients associated with pig farming in Peninsular Malaysia in late
September 1998. Close contact with a person who has been infected with the NiV,
direct contact with infected animals, such as bats or pigs, or their body fluids (such
as their blood, urine, or saliva), eating food products that have been contaminated
by the body fluids of infected animals (such as palm sap or fruit contaminated by an
infected bat) is the transmission route of this virus. Sporadical outbreaks of NiV have
been seen in South and Southeast Asia [50, 156].

Though not strictly the phenomenon studied in our work, it is interesting to
mention that during the 14th-century plague pandemic, also known as the ‘Black
Death’ was not only spread from dead bodies but also was used as biological war-
fare. Namely, the Mongol army hurled plague-infected cadavers into the besieged
Crimean city of Caffa. This disease was transmitted to the sieged inhabitants and
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fleeing survivors from that area, spreading plague from Caffa to the Mediterranean
Basin [157].

Numerous mathematical models are available in literature where a compartment
for the deceased can be found, but few of them considered infection transmitted from
corpses (see for instance [107, 149, 158, 159, 160, 161]). However, several stud-
ies considered pathological phenomena, and review articles on transmission from
corpses can be found [162, 163, 164, 165, 166, 167, 168, 169, 170]. For this reason,
we are interested to study the transmission of pathogens from the deceased in gen-
eral. This paper is organized in accordance with the following: formulation of our
model and description of the parameters are presented in Section 7.2. In Section 7.3,
model analysis and in Section 7.4 the basic reproduction number, equilibrium points,
and their stability are presented. Numerical simulations are discussed in Section 7.5.
Finally, the overall discussion is presented in Section 7.6 as a conclusion.

7.2 Model formulation

To develop our model, we first divide the total actively-mixing human population
(e.g. for EVD, total human population excluding the Ebola-deceased individuals)
population, denoted by N(t) at time t, into the following compartments: susceptibles
(S(t)), vaccinated (V (t)), exposed (newly-infected but not infectious) individuals
(E(t)), infectious individuals with clinical symptoms of the disease (I(t)) and recov-
ered (R(t)). Hence,

N(t) = S(t) + V (t) + E(t) + I(t) +R(t).

There is an additional compartment D introduced for deceased humans who passed
away due to virus infection and have not been buried yet.

We denote the birth and natural death rates by Λ and µ, respectively. A frac-
tion ρ (with 0 < ρ < 1) of newborns not vaccinated after birth enter the susceptible
compartment, while the remaining fraction enters the vaccinated compartment. The
force of infection is given by λ(t) = (β1I(t) + β2D(t)), where the parameter β1 rep-
resents the effective contact rate of susceptible individuals to get an infection from
visibly infected individuals and β2 is the effective unprotected contact rate of suscep-
tible individuals, who become infected from dead bodies. Since vaccines are not fully
efficient enough for a disease so we consider vaccine efficiency, which is modeled by
introducing the parameter η ∈ [0, 1]. Infected individuals progress from the exposed
to the infectious compartment at rate σ, and further, they leave the visibly infected
compartment at rate γ (i.e. the average duration of the latent period is 1/σ days and
that of the infectious period is 1/γ days). Disease-induced death affects individuals in
the infected compartment. A fraction 0 < δ < 1 of those leaving the infectious com-
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partment will die due to the infection and arrive in the D class, while the remaining
fraction recovers and moves to the recovered compartment R. Infected corpses are
buried at the rate α, i.e. the average time until the burial equals 1/α days. Besides

Figure 7.1: Transmission diagram. Blue arrows indicate the transition from one com-
partment to another, and green arrows and black arrows indicate new entries and re-
leased for death respectively.

vaccination right after birth, we also consider v as the vaccination rate of adults and
with that, susceptible individuals are transferred to the vaccinated compartment. The
transmission diagram of our model is shown in Figure 7.1. A complete description
of the model parameters is summarized in Table 7.1. With the above notations and
assumptions, our model takes the form

S ′(t) = ρΛ− (β1I(t) + β2D(t))S(t)− vS(t)− µS(t),

V ′(t) = (1− ρ)Λ− η(β1I(t) + β2D(t))V (t) + vS(t)− µV (t),

E ′(t) = (β1I(t) + β2D(t))(S(t) + ηV (t))− (σ + µ)E(t),

I ′(t) = σE(t)− (γ + µ)I(t),

R′(t) = (1− δ)γI(t)− µR(t),

D′(t) = δγI(t)− αD(t).

(7.1)

The following initial conditions are associated with the system (7.1): S(0) > 0, V (0) ≥
0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0. We note that system (7.1) is similar to the
model studied in [160], where the compartment of low-risk susceptibles corresponds
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to our vaccinated compartment. Apart from the main difference, the presence of vac-
cination of susceptible individuals (i.e. movement from the S class to the V class,
which term clearly cannot be present in [160] due to the different meaning of the
corresponding compartments), another important difference is that we use mass ac-
tion incidence, which allows us to prove global asymptotic stability of the endemic
equilibrium without additional conditions.

To obtain our analytical results described in Sections 7.3 and 7.4, for technical
reasons we will omit vaccination of adults, hence, we study the reduced system

S ′(t) = ρΛ− (β1I(t) + β2D(t))S(t)− µS(t),

V ′(t) = (1− ρ)Λ− η(β1I(t) + β2D(t))V (t)− µV (t),

E ′(t) = (β1I(t) + β2D(t))(S(t) + ηV (t))− (σ + µ)E(t),

I ′(t) = σE(t)− (γ + µ)I(t),

R′(t) = (1− δ)γI(t)− µR(t),

D′(t) = δγI(t)− αD(t)

(7.2)

with the initial conditions S(0) ≥ 0, V (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0.
We note that the assumption of omitting vaccination of older individuals is not merely
technical: in the case of several childhood diseases, vaccination almost entirely takes
place within a short time after birth and vaccination of older individuals is negligible.

Table 7.1: Description of parameters of model (7.1).

Parameters Description
Λ Recruitment rate
ρ Fraction of unvaccinated at birth
µ Natural death rate
β1 Transmission rate from infectious
β2 Transmission rate from deceased
η Vaccination efficiency

1/σ Incubation period
1/γ Length of infectious period
1/α Average time until burial
δ Fraction of lethal cases
v Adult vaccination rate
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7.3 Basic properties

7.3.1 Positivity and boundedness of solutions

For system (7.2), it is necessary to prove that all the state variables are non-negative
and all the solutions of the system with positive initial conditions have a positive
invariant solution. Thus we have the following lemma.

Lemma 22. All solutions of system (7.2) with non-negative initial conditions will enter
the invariant region ϕ = {S, V, E, I, R,D ∈ R6

+ : 0 < N ≤ Λ/µ}.

Proof. It can be easily proved that all existing solutions starting from non-negative
initial conditions remain non-negative for all time t > 0. We already know that the
total human population of individuals is N = S + V + E + I +R. Then we have

N ′(t) = S ′(t) + V ′(t) + E ′(t) + I ′(t) +R′(t) = Λ− µN(t)− δγI(t),

from which

N ′(t) ≤ Λ− µN(t)

follows. If the initial value of the total population N(0) = N0, then we obtain that

N(t) ≤ Λ
µ
−
(

Λ
µ
−N0

)
e−µt.

So N(t) ≤ Λ
µ

as t > 0 and this implies I(t) ≤ Λ
µ

. Now we can write the sixth equation
of (7.2) as

D′(t) ≤ δγ
Λ

µ
− αD(t),

calculating in a similar fashion to the above, we can see that D(t) ≤ Λδγ
αµ

as t > 0.
Hence the region is positively invariant and attracts all solutions of the equations of
the system.

7.3.2 Derivation of the basic reproduction number

To calculate the basic reproduction number R0 of (7.2), we follow the general ap-
proach established in [30, 42]. In model (7.2), the infectious states are E, I and D.
The transmission vector F representing the new infections and the transition vector
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V denoting the outflow from the infectious compartments in (7.2) are given by

F =

(β1I + β2D)(S + ηV )

0

0

 , V =

 (σ + µ)E

−σE + (γ + µ)I

αD − δγI

 .
The model (7.2) has a unique disease-free equilibrium, given by

E0 =
(

ρΛ
µ
, (1−ρ)Λ

µ
, 0, 0, 0, 0

)
.

Substituting the corresponding coordinates of the disease-free equilibrium E0, we
compute the Jacobian F from F as

F =

0 β1

(
ρΛ
µ
+ η (1−ρ)Λ

µ

)
β2

(
ρΛ
µ
+ η (1−ρ)Λ

µ

)
0 0 0

0 0 0


and the Jacobian V from V given by

V =

µ+ σ 0 0

−σ γ + µ 0

0 −γδ α

 ,
from which the next generation matrix can be calculated as

FV −1 =


(αβ1+β2γδ)Λ(η(1−ρ)+ρ)σ

αµ(γ+µ)(µ+σ)
(αβ1+β2γδ)Λ(η(1−ρ)+ρ)

αµ(γ+µ)
β2Λ(η+ρ−ηρ)

αµ

0 0 0

0 0 0

 .
The eigenvalues of the next generation matrix are 0, 0, (αβ1+β2γδ)Λ(η(1−ρ)+ρ)σ

αµ(γ+µ)(µ+σ)
. Accord-

ing to [30, 42], the basic reproduction number R0 is the spectral radius of FV −1,
hence we obtain

R0 =
(αβ1 + β2γδ)Λ(η(1− ρ) + ρ)σ

αµ(γ + µ)(µ+ σ)
.

7.4 Existence of equilibria and stability analysis

7.4.1 Existence of endemic equilibrium

To determine the existence of endemic equilibria, we let the right-hand sides of all
equations in (7.2) to be equal to zero. Solving the last three equations we get E =
I(γ+µ)

σ
, R = Iγ(1−δ)

µ
and D = Iγδ

α
. Substituting these values in the first three equations,
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the system becomes

S

(
I

(
β1 +

β2γδ

α

)
+ µ

)
= Λρ,

IV

(
β1 +

β2γδ

α

)
η + V µ = Λ(1− ρ),

(γ + µ)(µ+ σ)

σ
=

(
β1 +

β2γδ

α

)
(S + ηV ).

(7.3)

Solving the first two equations of (7.3) for S and V in terms of I, we get S =
αΛρ

I(αβ1+β2γδ)+αµ
and V = αΛ(1−ρ)

I(αβ1+β2γδ)η+αµ
. Substituting these values in the third equation

of (7.3) we get the quadratic equation

aI2 + bI + c = 0,

where

a = (γ + µ)(µ+ σ)(αβ1 + β2γδ)
2η,

b = (αβ1 + β2γδ) (αµ(1 + η)(γ + µ)(µ+ σ)− ηΛσ(αβ1 + β2γδ)) ,

= (αβ1 + β2γδ) (αµ(1 + η)(γ + µ)(µ+ σ)− Λσ(αβ1 + β2γδ)(η + ρ− ηρ)

+ Λσ(ρ− ηρ)(αβ1 + β2γδ)),

= (αβ1 + β2γδ)(αµη(γ + µ)(µ+ σ) + αµ(γ + µ)(µ+ σ)(1−R0)

+ Λσρ(1− η)(αβ1 + β2γδ)),

c = − αµ(αβ1 + β2γδ)Λσ(η(1− ρ) + ρ) + α2µ2(γ + µ)(µ+ σ),

= α2µ2(γ + µ)(µ+ σ)(1−R0).

Clearly, c < 0 holds if and only if R0 > 1. As a > 0 independently of the parame-
ters, using Vieta’s formulas, we obtain that for R0 ≥ 1, there is exactly one positive
solution of the quadratic equation, while if R0 < 1, there is no positive solution.
Therefore, there is no endemic equilibrium if R0 < 1 and there exists a unique en-
demic equilibrium if R0 ≥ 1.

7.4.2 Local stability of the equilibria

Theorem 23. The disease-free equilibrium E0

(
ρΛ
µ
, (1−ρ)Λ

µ
, 0, 0, 0, 0

)
is locally asymptoti-

cally stable if R0 < 1, while E0 is unstable if the inequality is altered.

Proof. The Jacobian of system (7.2) evaluated in disease-free equilibrium takes the
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form

J (E0) =



−µ 0 0 −β1Λρ
µ

0 −β2Λρ
µ

0 −µ 0 −β1ηΛ(1−ρ)
µ

0 −β2ηΛ(1−ρ)
µ

0 0 −µ− σ β1Λ(η+ρ−ηρ)
µ

0 β2Λ(η+ρ−ηρ)
µ

0 0 σ −γ − µ 0 0

0 0 0 γ − γδ −µ 0

0 0 0 γδ 0 −α


,

The system is locally asymptotically stable if all the eigenvalues of J (E0) have a
negative real part. The characteristic equation of J (E0) is

Φ(λ) := (λ+ µ)3(λ3 + C1λ
2 + C2λ+ C3) = 0,

where

C1 = α + γ + 2µ+ σ > 0,

C2 = (γ + µ)(µ+ σ)(1−R0) + ασ + αγ + 2αµ+
β2Λγδ(η(1− ρ) + ρ)

αµ
,

C3 = (αγµ+ αµ2 + αγσ + αµσ)(1−R0)

Here C2 and C3 will be positive if R0 < 1, Furthermore,

C1C2 − C3 = (α + γ + µ+ σ)

×
[
(γ + µ)(µ+ σ)(1−R0) + ασ + αγ + 2αµ+ β2(ηΛ(1−ρ)+Λρ)

αµ

]
−
[
(αγµ+ αµ2 + αγσ + αµσ)(1−R0)

]
=
[
(α + γ + µ+ σ)(γ + µ)(µ+ σ)− (αγµ+ αµ2 + αγσ + αµσ)

]
(1−R0)

+ (α + γ + µ+ σ)
[
ασ + αγ + 2αµ+ β2(ηΛ(1−ρ)+Λρ)

αµ

]
=
[
γ2µ+ 2γµ2 + µ3 + γ2σ + 3γµσ + 2µ2σ + γσ2 + µσ2

]
(1−R0)

+ (α + γ + µ+ σ)
[
ασ + αγ + 2αµ+ β2(ηΛ(1−ρ)+Λρ)

αµ

]
Again C1C2 − C3 > 0 if R0 < 1. Thus, the Routh–Hurwitz criteria are satisfied
if R0 < 1 and in this case all the eigenvalues of the characteristic equation have
negative real parts. Hence, E0 is stable and is unstable if R0 > 1. This completes our
proof.

7.4.3 Global stability of the equilibria

In this subsection, we will show the global asymptotic stability of one of the two
equilibria, depending on the basic reproduction number. First, we need the following
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auxiliary result.

Lemma 24. For the limit superior of S(t) and V (t), the inequalities

S∞ ≤ ρΛ

µ
and V ∞ ≤ (1− ρ)Λ

µ

hold.

Proof. According to the fluctuation lemma (see e.g. [113]), there exists a sequence
{tn} such that tn → ∞ we have S(tn) → S∞ , and S ′(tn) → 0 as n → ∞. Thus, we
can say

S ′(tn) = ρΛ− (β1I(tn) + β2D(tn))S(tn)− µS(tn) ≤ ρΛ− µS(tn),

which implies

0 ≤ ρΛ− µS∞

and from this

S∞ ≤ ρΛ

µ
.

The other inequality can be shown in an analogous way.

Theorem 25. The disease-free equilibrium E0

(
ρΛ
µ
, (1−ρ)Λ

µ
, 0, 0, 0, 0

)
is globally asymptot-

ically stable in Γ := {(S, V,E, I, R,D) ∈ R6
+} if R0 < 1 .

Proof. From the calculation of the basic reproduction number for our model, we have
the matrices F ,V , F , and V associated with system (7.2). One can easily calculate

V −1 =


1

µ+σ
0 0

σ
(γ+µ)(µ+σ)

1
γ+µ

0
γδσ

α(γ+µ)(µ+σ)
γδ

α(γ+µ)
1
α

 .
Following [171, Theorem 2.1] and using the notations therein, we have the disease
compartments x = (E, I,D) and the disease-free compartments y = (S, V,R). Then
we define the function ϕ(S, V, E, I, R,D) appearing in [171, Theorem 2.1] in the
form

ϕ(S, V, E, I, R,D)T = (F − V )x−F(x, y) + V(x, y)

=

(
(β1I + β2D)(ηΛ(1− ρ) + Λρ− µS − ηµV )

µ
, 0, 0

)
.

The function ϕ will be positive if and only if S + ηV < Λρ
µ
+ Λη(1−ρ)

µ
holds. However,

from Lemma 3 we know that for any ϵ > 0 there exists a T large enough such
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that S < Λρ
µ

+ ϵ and V < Λ(1−ρ)
µ

+ ϵ for all t > T . Therefore, the function ϕ will
be positive for t large enough. Therefore, each condition mentioned in the above
theorem is satisfied, and ϕ > 0 for t > T . Let ωT ≥ 0 be the left eigenvector of the
nonnegative matrix V −1F corresponding to R0. It follows from the theorem that if
ϕ ≥ 0, F ≥ 0, V −1 ≥ 0 and R0 ≤ 1 then the function ωTV −1x, where x stands for
the infectious compartments, is a Lyapunov function for the model (7.2). Hence the
theorem is proved using LaSalle’s invariance principle [172].

Theorem 26. The endemic equilibriumE∗ :=
(
S∗, V ∗, E∗, I∗, R∗, D∗) is globally asymp-

totically stable in Γ := {(S(t), V (t), E(t), I(t), R(t), D(t)) ∈ R6
+} if R0 > 1.

Proof. Let us define the Lyapunov function V (t) as

V (t) =
S∗

E∗

(
S

S∗ − 1− ln
S

S∗

)
+
V ∗

E∗

(
V

V ∗ − 1− ln
V

V ∗

)
+

(
E

E∗ − 1− ln
E

E∗

)
+

(β1I
∗ + β2D

∗)(S∗ + ηV ∗)I∗

σ(E∗)2

(
I

I∗
− 1− ln

I

I∗

)
+
β2(S

∗ + ηV ∗)(D∗)2

δγI∗E∗

(
D

D∗ − 1− ln
D

D∗

)
Consider the function g : R −→ R defined as g(x) = 1 − x + ln x, here x > 0 leads to
g(x) ≤ 0, while if x = 1 then g(x) = 0. So for any x > 0 we get x − 1 ≥ lnx. The
derivative of the Lyapunov function along solutions of system (7.2) can be calculated
as

V ′(t) = S∗

E∗
1
S∗

(
1− S∗

S

)
S ′ + V ∗

E∗
1
V ∗

(
1− V ∗

V

)
V ′ + 1

E∗

(
1− E∗

E

)
E ′

+ (β1I∗+β2D∗)(S∗+ηV ∗)I∗

σ(E∗)2
1
I∗

(
1− I∗

I

)
I ′ + β2(S∗+ηV ∗)(D∗)2

δγI∗E∗
1
D∗

(
1− D∗

D

)
D′

= S∗

E∗
1
S∗

(
1− S∗

S

)
((β1I

∗ + β2D
∗)S∗ + µS∗ − (β1I + β2D)S − µS))

+ V ∗

E∗
1
V ∗

(
1− V ∗

V

)
(η(β1I

∗ + β2D
∗)V ∗ + µV ∗ − η(β1I + β2D)V − µV )

+ 1
E∗

(
1− E∗

E

) (
(β1I + β2D)(S + ηV )− (β1I∗+β2D∗)(S∗+ηV ∗)E

E∗

)
+ (β1I∗+β2D∗)(S∗+ηV ∗)I∗

σ(E∗)2
1
I∗

(
1− I∗

I

) (
σE − σE∗I

I∗

)
+ β2(S∗+ηV ∗)(D∗)2

δγI∗E∗
1
D∗

(
1− D∗

D

) (
δγI − δγI∗D

D∗

)
= S∗
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From the previous calculation, it is clear that V ′(t) ≤ 0. Furthermore, the equality
V ′(t) = 0 holds only if S = S∗, V = V ∗, E = E∗, I = I∗, and D = D∗. Thus,
the endemic equilibrium E∗, is the only positive invariant set to the system (7.2)
contained entirely in Γ := {(S(t), V (t), E(t), I(t), R(t), D(t)) ∈ R6

+}. Therefore, it
follows from LaSalle’s invariance principle [172] that every solution of system (7.2)
with initial conditions in Γ converges to the endemic equilibrium point, E∗, as t→ ∞.
Hence, the positive equilibrium is globally asymptotically stable if R0 > 1.

To support our analytical results, we present some numerical simulations show-
ing the two possible scenarios concerning the global dynamics of system (7.2). We
chose baseline parameter values realistic for Ebola and shown in Table 7.2 with the
exception of Λ and µ, which are chose to have the value Λ = µ = 0.0388 as, for
better visibility of the results, we decided to scale the population to 1 in this simu-
lation. With these parameter values, we obtain R0 = 1.31554, corresponding to the
disease becoming endemic and the the endemic equilibrium being globally asymp-
totically stable. Changing the values of the two transmission rates to β1 = 0.273 and
β2 = 1.226, the basic reproduction number is decreased to 0.805877, hence, in this
case, the disease dies out and the disease-free equilibrium is globally asymptotically
stable. The case of the disease dying out is shown in Figure 7.2a, while the situation
of the disease becoming endemic in the population is depicted in Figure 7.2b.

7.5 Assessing the effects of transmission by deceased
on disease spread

In this section, we perform numerical simulations to assess the effects of disease
transmission via contact with the corpses of those deceased due to an infectious
disease. Using the baseline values for the available parameter values as listed in
Table 7.2, we utilize the Latin Hypercube Sampling method to find the parameter
values which provide the best fit to the data. This is a computational technique used
in statistics to estimate the simultaneous variation of various model parameters to
construct a representative sample set of n-tuples of parameters (n is the number
of parameters fitted) taking values from given ranges. The estimated values of the
fitted parameters of the model are given in Table 7.2. Although, as mentioned in
the introduction, there is a risk of becoming infected this way with several infectious
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Figure 7.2: Global dynamics of model (7.2) for different values of R0.

diseases, however, the situation might be very different in various cases. Hence, in
our simulations, we will consider three infectious diseases with significantly different
concerns regarding transmission from the deceased. The three diseases studied in
this section are Ebola virus disease, COVID-19, and Nipah fever.

Table 7.2: Parameters value of the model (7.2).

Parameters Ebola and Ref. COVID-19 and Ref. Nipah and Ref.
Λ 11826/week [117] 184.83 /day [117] 19.57/day [117]
µ 0.00054/week [117] 0.000033/day [117] 0.00004145/day [117]
β1 2.375 ×10−8 /week [173] 2.0 ×10−8/day [174] 5.93× 10−7/day [12, 110]
β2 9.71 ×10−8/week [158, 161] 3.42 ×10−9/day [Assumed] 5.08× 10−7/day [107, 110]
η – 0.03 [175] –

1/σ 1.498 weeks [176, 177] 5.2 days [178] 8.34 days [179]
1/γ 0.175 weeks [180] 10 days [181] 11.1 days [12]
1/α 0.762 weeks [182] 3 days [Assumed] 1.71 days [Assumed]
δ 0.69 [176, 183] 0.02 [184] 0.76 [107]

The role of transmission from the deceased is widely known in the case of Ebola
as during the large outbreak in 2014 outbreak, several articles in the news reported
about the traditional funeral ceremonies which included touching and kissing the
deceased. For this reason, we chose this disease as our first example, considering
a baseline scenario similar to the first weeks of 2014–16 epidemic in Liberia, Sierra
Leone, and Guinea.

This situation corresponds to a case where transmission from the deceased highly
contributes to the number of new infections, while the total number of infected is
moderate with respect to the total population. Furthermore, as there was no vaccine
available at the time of the epidemic, we exclude vaccination from our model in this
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Figure 7.3: Model (7.2) applied to Ebola data of the first 38 weeks of the 2015 epidemic
in Guinea, Liberia, and Sierra Leone

case and use model (7.2) for the simulation. Figure 7.3 shows the solution of model
(7.2) with parameters given in Table 7.2 applied to Ebola data of the first 38 weeks
of the 2015 epidemic in Guinea, Liberia, and Sierra Leone. Figure 7.4 shows the
expected result of changes in parameter values connected to transmission from the
deceased. Namely, we consider a change in the transmission rate β2, corresponding to
a reduction of contacts with deceased and decreasing the probability of transmission
by increasing hygiene, then a change in the average time until burial, 1/α, and finally,
a parallel change of the two parameters. The three panels of the figure compare
the baseline situation to an increase and a decrease of the parameters. The results
suggest that the transmission rate from the deceased is a very important parameter
in view of the number of infected: an increase of this value can result in much
higher numbers of cases, while a successful introduction of an intervention measure
affecting this parameter can be very useful in reducing disease burden (see Figure
7.4a). Figure 7.4b suggests that although less impactful than β2, the time until the
burial is also an important parameter, and encouraging fast and safe burials might
save plenty of people from infection.

Another recent epidemic where transmission from the deceased is possible is the
COVID-19 pandemic [185, 186], for this disease, we take the situation in Finland
from 3 Jan 2021 to 21 Nov 2021 [187], after the introduction of vaccination as an
example. So we have used model (7.1) for the simulation. Although various re-
ports have confirmed this way of transmission, it is much less important than in the
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(c) Baseline β2 = 8.82 × 10−8, α = 1.31. In-
creased β2 = 8.92× 10−8, α = 1.21. Decreased
β2 = 8.72× 10−8, α = 1.41.

Figure 7.4: Number of Ebola virus infected cases for changing β2 and α along with their
parallel application.

case of Ebola. One can identify two main possibilities for disease transmission from
deceased: one is for those who lived in the same household with the deceased indi-
vidual, and another way is in health care facilities. The latter is especially crucial in
case of a large epidemic when the health system is overwhelmed and it is difficult to
handle the corpses. Such situations arose in several countries during the COVID pan-
demic [167, 188, 189]. Unlike Ebola, in this case, it is not the high transmission rate,
but the high number of infections and victims that provide a risk of the occurrence of
an elevated number of infections due to contact with the infected deceased. Accord-
ingly, as our simulations shown in Figure 7.6 suggest, in comparison with the total
number of infected, infections via contact with victims of the epidemic are relatively
small. However, due to the magnitude of the pandemic, even in this case, several
cases and deaths can be spared if proper attention is paid to avoiding direct contact



7.5 Assessing the effects of transmission by deceased on disease spread 91

Cumulative infected cases

0 10 20 30 40
36 000

38 000

40 000

42 000

44 000

46 000

48 000

50 000

t (days)

Figure 7.5: Model (7.1) applied to COVID-19 data from spring 2021 in Finland

with victims of the epidemic.
Our third example is Nipah fever, a highly lethal emerging disease that appears in

the WHO Blueprint list of epidemic threats needing urgent R&D action [169]. Drink-
ing raw date palm sap, contaminated by Virus from urine or saliva of Pteropus fruit
bats, is one of the main transmission routes to humans in Bangladesh, however, it
was reported that corpse-to-human transmission is also an important way of disease
spread due to caregivers being exposed to bodily secretions of infected deceased dur-
ing ritual bathing of the corps and traditional burial practices [169]. In comparison
with the other two diseases, the number of infections is much lower, however, ac-
cording to various studies (see [107, 110, 169]), transmission from deceased might
significantly contribute to new infections, like Ebola, so we have used model (7.2)
for simulation. As there is no certified vaccine for NiV, we chose the Siliguri outbreak
in early 2001 as an example, a solution approximating data of this epidemic [190] is
shown in Figure 7.7. Although less significant than in the case of Ebola, again we can
see important changes in the number of infections. Even a small increase in the value
of both parameters can increase the number of infected individuals significantly in
comparison with the total number of infected.

7.5.1 PRCC analysis

To compare the effects of varying the values of deceased-related parameters with
those of other parameters, we performed PRCC analysis, a statistical measure used
to determine the strength and direction of the linear relationship between two vari-
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(b) Baseline α = 0.333.
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(c) Baseline β2 = 3.429× 10−9, α = 0.333.
Increased β2 = 6.429× 10−9, α = 0.25.
Decreased β2 = 0.429× 10−9, α = 1.

Figure 7.6: Number of COVID-19 cumulative infected cases for changing β2 and α along
with their parallel application.

ables, while controlling for the effects of other variables. The results for all three
epidemics are shown in Figure 7.9. One can see that the PRCC values are in ac-
cordance with the results shown in the simulations of the previous subsection. The
values show that among the three diseases, it is Ebola for which transmission from
deceased contributes the most to the number of infections, while for COVID-19, a
very mild effect is shown. The same holds for the average time of burial. As for
parameters unrelated to transmission from deceased, we see that transmission from
infected has the highest impact, while the length of infectious period is shown to be
less important for Ebola, while significant for the other two diseases. Most certainly,
the vaccination rate has a very high negative effect on the number of infections in
the case of COVID-19.
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Figure 7.7: Model (7.2) applied to the 2001 Nipah outbreak in Siliguri, India.

7.6 Conclusions

We established a compartmental model to assess the importance of transmission due
to contact with victims of an epidemic, a phenomenon known to occur in many in-
fectious diseases, including Ebola haemorrhagic fever, COVID-19, and plague. The
model also includes vaccination, one of the most important tools to protect ourselves
from infection. In our work, vaccination is assumed to be imperfect, i.e., those who
have received the vaccine can still become infected, however, with a lower probabil-
ity. We first performed theoretical analysis for a special case of the model, namely,
when vaccination takes place after birth and vaccination of adults are neglected.
After determining some basic properties of the model and calculating the basic re-
production number, we applied a result by van den Driessche and Shuai to show
global asymptotic stability of the disease-free equilibrium in the case R0 < 1, while
constructing an appropriate Lyapunov function allowed us to prove the same for the
endemic equilibrium in case R0 > 1.

Following the analytical results, we performed numerical simulations to estimate
the disease burden due to infection via contact with deceased individuals. To do so,
we selected three recent epidemics with different characteristics. The three diseases
chosen were Ebola, COVID-19, and Nipah fever. Both Ebola and Nipah fever are
known for an important contribution of infections by deceased to the total number
of cases. This phenomenon is less typical for COVID-19. For this latter disease, it
is the immense number of cases that might result in a significant number of infec-
tions caused by contact with deceased infected. On the other hand, up to now, the
world has not experienced Ebola or Nipah outbreaks of the scale of the COVID pan-
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(a) Baseline β2 = 0.00000051. Increased β2 =
0.00000057. Decreased β2 = 0.00000044.
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(b) Baseline α = 0.583336. Increased α =
0.5. Decreased α = 1.
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(c) Baseline β2 = 0.00000051, α = 0.583336.
Increased β2 = 0.00000057, α = 0.5. Decreased
β2 = 0.00000044, α = 1.

Figure 7.8: Number of Nipah virus infected cases for changing β2 and α along with
their parallel application.

demic. The numerical results are in accordance with the known characteristics of the
diseases and show that in the case of Ebola and Nipah, where traditional funeral cer-
emonies contribute to transmission from deceased, this way of spread might result in
a significant increase of the number of infected. People should keep away from con-
tact with the bodies of people who have died from Ebola and avoid funeral or burial
practices that involve touching the body of someone who is suspected or confirmed
to have had Ebola disease. At the same time, the simulations suggest that for such
epidemics, a very efficient way to reduce the epidemic spread is to diminish this way
of transmission as much as possible. On the contrary, generalizing the results of our
simulations regarding the COVID-19 epidemic, we may conclude that if corpses are
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(a) PRCC for Ebola. (b) PRCC for COVID-19.

(c) PRCC for Nipah.
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Figure 7.9: Partial Rank Correlation Coefficients (PRCC).

handled in a safe and adequate way and contact of susceptibles with them is reduced,
then even in the case of a large-scale epidemic, one may more or less eliminate the
contribution of deceased to disease spread. Furthermore, guidelines from WHO and
CDC for an epidemic are to be followed to eradicate the disease.

Our work certainly has its limitations. First of all, we decided to create a general
model which might not include some characteristics of a special disease. However,
this allowed us to obtain analytical results on the global dynamics of the system
which might not be possible in case of a very complex model taking into account all
specialties of the given disease. Establishing and studying such more realistic models
can be considered a future work.
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Summary

The PhD thesis examines the transmission dynamics of the Nipah virus by using com-
partmental models, both autonomous and non-autonomous, with time-dependent
(periodic) parameters. The basic reproduction number (R0) describes the dynamics
of the system, which has also been demonstrated in our autonomous model to be a
threshold parameter with respect to disease extinction or persistence. For periodic
compartmental models, R0 is defined as the spectral radius of an integral operator
acting on the space of continuous periodic functions. Our goal is to demonstrate
that for R0 < 1, the disease-free periodic solution of our recently developed models
is globally asymptotically stable, whereas, for R0 > 1, the disease remains endemic
and there exists at least one positive ω-periodic solution. Additionally, a modeling
analysis to assess the effect of disease transmission from deceased individuals and an
SIRS epidemic model for a zoonotic disease with a general nonlinear incidence rate
assuming that the animal population has already reached an endemic equilibrium
are analyzed in this dissertation.

In Chapter 2, we discuss mathematical modeling in epidemiology. It explores the
historical journey of this field, tracing its evolution up to the present day. The chap-
ter covers the fundamentals of various compartmental models used to understand
infectious diseases, highlighting their practical applications in different scenarios.

Chapter 3 serves as a comprehensive introduction, which meticulously provides
a concise and illuminating description of various aspects related to the Nipah virus,
such as its intriguing origin and identification. Within this chapter, the outbreak
history associated with this virus and its impact on public health, and its implications
for disease management are provided. Symptoms exhibited by individuals infected
with the Nipah virus, its clinical manifestations, and diagnosis are described. Lastly,
this chapter comes up with the reservoirs of the Nipah virus and an overview of
previous studies.

Nipah virus is a serious threat to public health, especially in South-East Asia,
and its recurring outbreaks and alarmingly high fatality rate have raised widespread
concerns, making it one of the most worrisome infectious diseases in existence. To
capture the dynamics of Nipah virus transmission, in Chapter 4 we develop and eval-
uate a novel SIRS model that takes into account the role of the intermediate host
pigs and the reservoir species fruit bats as well as the loss of immunity of recov-
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ered individuals, and assuming that interspecies transmission is only one-directional,
from bats to pigs and humans and from pigs to humans. With the use of the latter
property, we were able to decouple the equations for pigs and bats in order to arrive
at an equation for the limit of humans. We obtain a unique type of model with a
linear term explaining the transition from susceptibles to infected due to interspecies
transmission from both the limit subsystems for pigs and humans.

We identified all possible equilibria of the system and calculated three threshold
parameters that, by identifying which of the three species the disease becomes en-
demic in, define the overall dynamics of the system. We were able to fully explain
the overall dynamics of our model by supplying suitable Lyapunov functions. In or-
der to validate our model, identify the critical factors affecting illness transmission,
and investigate the impact of potential intervention strategies, we also carried out
numerical experiments. Our findings are consistent with observations made during
the Malaysian outbreak in 1998–1999 and point to the intermediate host pigs as the
most crucial characteristics.

In Chapter 5 we develop a straightforward, innovative compartmental model for
zoonotic diseases. We only take into account zoonotic transmission as a linear term
corresponding to the movement of susceptibles to the infectious class as a result
of transmission from animals, rather than including the typical compartments for
the animals as well, presuming that the animal population is already in an endemic
equilibrium state. The model takes into account a general incidence rate as well as
the declining immunity of recovered patients in addition to zoonotic transmission.
Our new model differs from those because a new term µ for zoonotic transmission
has emerged. Additionally, the global dynamics differ from past studies in that no
disease-free equilibrium occurs as a result of zoonotic transmission, and the typical
threshold dynamics indicated by the basic reproduction number cannot be observed.
We alter variables in order to define a Lyapunov function, which is inspired by earlier
studies. This allows us to demonstrate that our model’s singular endemic equilibrium
is globally asymptotically stable, regardless of the parameters.

In Chapter 6 we propose a model for Nipah virus disease transmission in a peri-
odic environment, taking into account all human-to-host animal transmission as well
as the loss of immunity in those who have recovered. We studied the existence and
uniqueness of a disease-free ω-periodic solution and later deal with the basic repro-
duction number and stability analysis showing that the disease-free periodic solution
is globally asymptotically stable if the basic reproduction number is less than 1, while
the disease persists in the population otherwise. To support the analytical results
we provide some numerical examples and assess the effect of parameter changes on
disease dynamics, which might help to understand how to avoid a yearly periodic
recurrence of the disease.

In order to evaluate the significance of transmission resulting from contact with
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the deceased of an epidemic, a phenomenon known to occur in many infectious dis-
eases, including Ebola haemorrhagic fever, COVID-19, and plague, in Chapter 7 we
construct a compartmental model. One of the most crucial methods for preventing
illness is included in the model as vaccination. In our research, we consider vacci-
nation to be imperfect, meaning that those who have received the shot still have a
chance of contracting the disease. The model’s exceptional situation, in which vac-
cination occurs after birth and adult vaccination is disregarded, was the focus of our
initial theoretical investigation. In light of the analytical findings, we ran numerical
simulations to calculate the illness burden resulting from interaction with deceased
people. To do this, three diseases picked were Nipah fever, COVID-19, and Ebola. It
is well known that fatal infections from both Ebola and Nipah fever significantly con-
tribute to the overall number of cases. For COVID-19, this condition is less common.
With regard to the latter disease, it is the vast number of cases that could lead to a
sizable number of infections brought on by contact with diseased corpses. However,
there haven’t yet been any Ebola or Nipah epidemics of the same size as the COVID
pandemic. People should avoid coming into contact with the remains of Ebola vic-
tims and refrain from touching the bodies of those who have either been confirmed
or suspected of having the disease during funeral or burial rituals. The simulation
also implies that minimizing this method of transmission as much as possible is a
highly effective technique to stop the spread of the epidemic. Contrarily, extrapolat-
ing from the outcomes of our simulations regarding the COVID-19 epidemic, we may
draw the conclusion that, even in the case of a widespread epidemic, one may largely
eliminate the contribution of the deceased to the disease if corpses are handled in a
safe and appropriate manner and contact with susceptibles with them is minimized.

The dissertation is based on the following four scientific papers, the last three of
which are submitted to journals, and the first one is accepted.

(1) Saumen Barua, Attila Dénes. Global dynamics of a compartmental model for
the spread of Nipah virus. Accepted in Heliyon.

(2) Saumen Barua, Attila Dénes. Global stability in an SIRS model with zoonotic
transmission, nonlinear incidence rate and temporary immunity. Submitted.

(3) Saumen Barua, Mahmoud A. Ibrahim, Attila Dénes. A compartmental model
for the spread of Nipah virus in a periodic environment. Submitted.

(4) Saumen Barua, Attila Dénes. Global dynamics of a compartmental model to
assess the effect of transmission from deceased. Accepted in Mathematical Bio-
sciences.
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Összefoglalás

A doktori értekezés a Nipah-v́ırus terjedési dinamikáját vizsgálja autonóm és időfüggő
(periodikus) paraméterekkel rendelkező nemautonóm, kompartmentmodellek seǵıt-
ségével. A rendszer dinamikáját a reprodukciós szám (R0) ı́rja le, amelyről autonóm
modellünkben is belátjuk, hogy küszöbparaméterként szolgál a betegség kihalása
vagy fennmaradása szempontjából. Periodikus kompartmentmodellek esetén az R0

a folytonos periodikus függvények terén ható integráloperátor spektrálsugaraként
definiálható. Célunk annak bizonýıtása, hogy R0 < 1 esetén az általunk nemrég kife-
jlesztett modell betegségmentes periodikus megoldása globálisan aszimptotikusan
stabil, mı́g R0 > 1 esetén a betegség endémiás és legalább egy pozit́ıv ω-periodikus
megoldás létezik. Ezen túlmenően a disszertációban egy olyan modellt is vizsgálunk,
amelyben a betegségben elhunytak által történő fertőzések hatását tanulmányozzuk,
valamint egy általános, nemlineáris incidenciarátával rendelkező zoonotikus betegség
SIRS járványmodelljét vizsgáljuk, feltételezve, hogy az állatpopuláció már elérte az
endémiás egyensúlyt.

A 2. Fejezetben a matematikai járványtani modellekről nyújtunk rövid áttekintést.
Ismertetjük e kutatási terület történetét, nyomon követve fejlődését egészen nap-
jainkig. A fejezet a fertőző betegségek megértéséhez használt különböző kompart-
mentmodellek alapjait tárgyalja, kiemelve azok gyakorlati alkalmazását különböző
szituációkban.

A 3. Fejezet átfogó bevezetésként szolgál, amely részletesen, tömören és világosan
ismerteti a Nipah-v́ırussal kapcsolatos különböző tényeket, például annak érdekes
eredetét és léırását. Ebben a fejezetben ismertetjük a Nipah-v́ırus okozta járványok
történetét és a közegészségügyre gyakorolt hatását, valamint a betegség kezelésének
lehetőségeit. A Nipah-v́ırussal fertőzött személyek által mutatott tünetek, a betegség
klinikai képe és a diagnózis ismertetése. Végül ez a fejezet a Nipah-v́ırus számára
rezervoárként szolgáló fajok és a korábbi tanulmányok áttekintésével zárul.

A Nipah-v́ırus komoly veszélyt jelent a közegészségügyre, különösen Délkelet-
Ázsiában, és a visszatérő járványok, valamint a riasztóan magas halálozási arány
széles körben aggodalmat keltett, ı́gy ez az egyik legaggasztóbb fertőző betegség.
A Nipah-v́ırus terjedési dinamikájának léırására a 4. Fejezetben egy új SIRS-modellt
dolgozunk ki és vizsgálunk, amely figyelembe veszi a köztes gazda sertések és a re-
zervoárfaj denevérek szerepét, valamint a gyógyult egyedek immunitásvesztését, és
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feltételezi, hogy a fajok közötti terjedés csak egyirányú, a denevérekről a sertésekre
és az emberekre, illetve a sertésekről az emberekre. Ez utóbbi tulajdonság fel-
használásával sikerült szétválasztani a sertésekre és a denevérekre vonatkozó egyen-
leteket, hogy az emberekre vonatkozó határegyenlethez jussunk. Egyedülálló t́ıpusú
modellt kapunk, amelyben a fajok közötti átvitel miatt a fogékonyakból a fertőzöttek
osztályába való átmenetet léıró lineáris tag mind a sertésekre, mind az emberekre
vonatkozó határérték-alrendszerekből származik.

Az 5. Fejezetben a zoonotikus betegségek egyszerű, innovat́ıv kompartmentmo-
delljét dolgoztuk ki. A zoonotikus terjedést csak lineáris tagként szerepel, amely a
fogékonyaknak az állatokról történő átvitel következtében a fertőző osztályba való
átkerülésének felel meg, ahelyett, hogy az állatokra vonatkozó kompartmenteket is
figyelembe vennénk, feltételezve, hogy az állatpopuláció már endémiás egyensúlyi
állapotban van. A modell a zoonotikus általános incidenciafüggvényt tartalmaz,
valamint figyelembe veszi a gyógyult betegek csökkenő immunitását is. Az új mo-
dellünk abban különbözik az eddigiektől, hogy a zoonotikus átvitelt egy új µ para-
méter ı́rja le. Emellett a globális dinamika annyiban különbözik a korábbi tanul-
mányoktól, hogy a zoonotikuss átvitel következtében nem alakul ki betegségmentes
egyensúly, és nem figyelhető meg a reprodukciós szám által meghatározott tipikus
küszöbdinamika. Ahhoz, hogy egy új, korábbi tanulmányok által ihletett Ljapunov-
függvényt konstruálhassunk, a változókat transzformáljuk, ami lehetővé teszi szá-
munkra annak bizonýıtását, hogy modellünk egyetlen, endémiás egyensúlya a para-
méterektől függetlenül globálisan aszimptotikusan stabil.

A 6. Fejezetben egy, a Nipah-v́ırus periodikus környezetben történő terjedését
léıró modellt adunk meg, amely figyelembe veszi az ember és a gazdaszervezet
állatfaj közötti átvitelt, valamint a gyógyult állatok immunitásának csökkenését. Meg-
vizsgáltuk a betegségmentes ω-periodikus megoldás létezését és unicitását, majd
meghatároztuk a reprodukciós számot és a rendszer stabilitási tulajdonságait vizs-
gáltuk, megmutatva, hogy a betegségmentes periodikus megoldás globálisan aszimp-
totikusan stabil, ha a reprodukciós szám kisebb, mint 1, mı́g egyébként a betegség
fennmarad a populációban. Az analitikus eredmények alátámasztására néhány nu-
merikus példát mutattunk, és vizsgáltuk a paraméterek változásának hatását a beteg-
ség dinamikájára, ami seǵıthet megérteni, hogyan lehet elkerülni a betegség évenkén-
ti periodikus ismétlődését.

A 7. Fejezetben egy kompartmentmodellt álĺıtunk fel annak érdekében, hogy vizs-
gáljuk a járványban elhunytakkal való érintkezésből eredő átvitel jelentőségét, amely
jelenség számos fertőző betegség, többek között az Ebola, a COVID-19 és a pestis
esetében ismert. A betegségek megelőzésének egyik legfontosabb módszere, a vakci-
nálás is szerepel a modellben. Kutatásunkban az oltásról feltesszük, hogy nem nyújt
tökéletes védelmet, ami azt jelenti, hogy az oltottak is elkaphatják a betegséget.

Elméleti vizsgálatunk középpontjában a modell speciális esete állt, amelyben az
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oltás a születés után történik, és a felnőttkori oltást figyelmen ḱıvül hagyjuk. Az anali-
tikus eredmények fényében numerikus szimulációkat végeztünk az elhunytakkal való
interakcióból eredő fertőzések becslésére. Ehhez három betegséget választottunk ki:
a Nipah-lázat, a COVID-19-et és az Ebolát. Köztudott, hogy mind az Ebola, mind
a Nipah-láz halálos kimenetelű fertőzései jelentősen hozzájárulnak az összes meg-
betegedés számához. A COVID-19 esetében ez az jelenség kevésbé gyakori. Ami
az utóbbi betegséget illeti, az esetek nagy száma az, ami a betegségben elhunytakkal
való érintkezésből eredő fertőzések jelentős számához vezethet. A COVID-járványhoz
hasonló méretű Ebola- vagy Nipah-járvány azonban még nem volt.

Az embereknek kerülniük kell az Ebolában elhunytakkal való érintkezést, és a
temetési szertartások során tartózkodniuk kell az igazoltan vagy gyańıthatóan fertő-
zöttek testének megérintésétől. Szimulációink arra is utalnak, hogy a járvány ter-
jedésének megálĺıtására rendḱıvül hatékony módszer, ha az átvitel ezen módját a
lehető legkisebbre csökkentjük. Ezzel szemben a COVID-19 járványra vonatkozó sz-
imulációnk eredményeiből levonhatjuk azt a következtetést, hogy még egy széles
körű járvány esetén is nagymértékben csökkenthető az elhunytak hozzájárulása a
betegséghez, ha a holttesteket biztonságosan és megfelelő módon kezelik, és mini-
malizálják a velük való érintkezést.

A disszertáció a következő négy tudományos dolgozaton alapul, amelyek közül
az utolsó hármat közlésre benyújtottuk különböző folyóiratokhoz, az elsőt pedig
közlésre elfogadták.
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[10] S. Barua, B. Das, A. Dénes, A compartmental model for COVID-19 to assess
effects of non-pharmaceutical interventions with emphasis on contact-based
quarantine. 14th Joint Conference on Mathematics and Computer Science Cluj-
Napoca, Romania, November 24–27, 2022.
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