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A mathematical modelling of partial symmetries appearing in 
the nature may be done by partial bijections. The partial bijec- 
tions of a given set constitutes a semigroup. Inverse semigroups 
are abstract counterparts of subsemigroups of such semigroups 
closed under taking inverses. Semilattices (inverse semigroups 
containing only idempotents) and groups (inverse semigroups with 
a unique idempotent) play an important role in investigations of 
inverse semigroups. A semilattice can be assigned to every inverse 
semigroup very naturally, because the idempotents of an inverse 
semigroup form a semilattice. In the sequel we denote the set of 
idempotents of an arbitrary semigroup S by E ( S ). Furthermore, 
inverse semigroups always have a smallest congruence, denoted 
by a, such that the factor semigroup modulo this congruence is 
a group. This group is called the greatest group homomorphic 
image of the inverse semigroup. Another possibility of assigning a 
group to an inverse semigroup arises if the semigroup is a monoid. 
Namely, if M is an arbitrary monoid, the so-called H-class of 
the identity forms a subgroup, which is denoted by U( M) in the 
sequel. On the other hand, there are several ways to produce in­
verse semigroups from semilattices and groups. One of these ways 
is taking a semidirect product of a semilattice by a group.

The aim of this dissertation is to generalize some results con­
necting inverse semigroups and semidirect products to a wider 
class of semigroups, namely, to the class of orthodox semigroups. 
The idempotents of an orthodox semigroup need not commute, so 
they form a band instead of a semilattice. This is why we try to 
construct orthodox semigroups by taking semidirect products of 
bands by groups. In the sequel, we call a semidirect product of 
a band by a group simply a semidirect product. Of course, if we 
deal with inverse semigroups, then by a semidirect product, we 
mean a semidirect product of a semilattice by a group. If B  is a 
band, and G is a group acting on B then we denote by B * G the 
semidirect product of B by G.

1



Prelim inaries - inverse sem igroups

The notion of an E-unitary inverse semigroup has been intro­
duced by D. B. McAlister. These semigroups play an important 
role in the theory of inverse semigroups. One of the reasons is 
that several natural examples of inverse semigroups are E-unitary 
(i. e. free inverse semigroups). Another reason is that every in­
verse semigroup is an idempotent separating homomorphic image 
of an E-unitary inverse semigroup as the following theorem of 
D. B. McAlister reveals.

Theorem  2.5. [McAl] Every inverse semigroup has an E-unitary 
cover.

The semidirect product-like structure of E-unitary inverse semi­
groups was described by D. B. McAlister in the aforementioned 
article. By making use of this result, L. O’Carroll has proved the 
following theorem.

Theorem  2.6. [OCa] Every E-unitary inverse semigroup is em­
beddable into a semidirect product of a semilattice by a group.

As a consequence of the previous two theorems, every inverse 
semigroup is an idempotent separating homomorphic image of a 
subsemigroup of a semidirect product.

S. Y. Chen and H. S. Hsieh, by generalizing the notion of fac- 
torizibility of rings, have introduced the notion of a factorizable 
inverse monoid, and have proved the following theorem.

Theorem  2.7. [CH] Every inverse semigroup is embeddable into 
a factorizable inverse monoid.

D. B. McAlister [McA2] has proved indirectly that factorizable 
inverse monoids are exactly the (idempotent separating) homo­
morphic images of monoid semidirect products. This result to­
gether with the previous one implies that every inverse semigroup
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is embeddable into an idempotent separating homomorphic im­
age of a semidirect product. Such embeddings always give rise to 
E-unitary covers. The following theorem by D. B. McAlister and 
N. R. Reilly shows that this way every E-unitary cover arises.

Theorem  2.8. [MR] Let S  be an inverse semigroup, and, let 
i : S ^  M  be an embedding of S  into a factorizable inverse 
monoid M . Then the subsemigroup

{(s ,g ) G S x U(M ) : si < g})

of the direct product S  x U( M) is an E-unitary cover of S. Con­
versely, every E-unitary cover of S  is isomorphic to a semigroup 
of this kind.

D. B. McAlister [McA2] has introduced the notion of almost 
factorizable inverse semigroups as well (under the name of cover­
ing semigroups), and he has shown that almost factorizable inverse 
semigroups are just the idempotent separating homomorphic im­
ages of semidirect products. The connection between almost fac­
torizable inverse semigroups and factorizable inverse monoids is 
revealed in the following theorem by M. V. Lawson.

Theorem  2.12. [La2] I f M  is a factorizable inverse monoid then 
M  \  U (M ) is an almost factorizable inverse semigroup. Con­
versely, every almost factorizable inverse semigroup arises in this 
way from a factorizable inverse monoid.

Prelim inaries - orthodox sem igroups

Some of the results formulated for inverse semigroups were gen­
eralized in the 1980’s. The following theorem, generalizing Theo­
rem 2.5, have been proved independently by M. B. Szendrei and 
K. Takizawa.

Theorem  2.13. [Szel],[Ta] Every orthodox semigroup has an 
E-unitary cover.
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We say that an E-unitary regular semigroup S is embeddable if 
it is embeddable into a semidirect product of a band by a group. 
If the band part of the semidirect product can be chosen from the 
variety generated by the band of idempotents of S, then we call 
S closely embeddable. The following theorem due to B. Billhardt 
shows that Theorem 2.6 cannot be generalized for the whole class 
of orthodox semigroups.

Theorem  2.14. [Bi] There exists an E-unitary regular semigroup 
that is not embeddable into a semidirect product of a band by a 
group.

M. B. Szendrei has given an equivalent condition of embed- 
dability, and by making use of this condition, she has proved the 
following theorems.

Theorem  2.15. [Sze2] Every E-unitary regular semigroup having 
a regular band of idempotents is closely embeddable.

Theorem  2.16. [Sze3] The idempotent separating homomorphic 
images ofbifree orthodox semigroups are closely embeddable. Con­
sequently, every orthodox semigroup has a closely embeddable E ­
unitary cover.

The last theorem can be seen as a common generalization of 
Theorems 2.5 and 2.6.

E -un ita ry  covers over group varieties

In this section of the dissertation we sharpen the results of The­
orem 2.14 by showing that, given a non-trivial group variety V 
distinct from the variety of all groups, there exists an E-unitary 
regular semigroup such that its greatest group homomorphic im­
age is in V, but it has no embeddable E-unitary cover over V.
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Our construction requires the notion of graph-semigroups, which 
can be defined by making use of generalized Cayley graphs of 
groups and of band varieties.

Theorem  3.1. Every E-unitary regular semigroup is isomorphic 
to a graph-semigroup.

By applying the previous theorem, one can construct a wide 
class of E-unit ary covers of an E-unit ary regular semigroup from 
group homomorphisms.

Theorem  3.3. Let S  be an E-unitary regular semigroup. Then 
every group G together with a surjective homomorphism p : G ^  
S /a  determines an E-unitary cover of S  over G. Conversely, 
every E-unitary cover of S  contains a regular subsemigroup which 
is also an E-unitary cover of S, and which is isomorphic to an 
E-unitary cover arising from a group G and a homomorphism p 
in this way.

By making use of the previous theorem and the embeddability 
condition by B. Billhardt, one can prove the following theorem.

Theorem  3.8. For every non-trivial group variety V  that is 
different from the variety of all groups, there exists an E-unitary 
regular semigroup such that its greatest group homomorphic image 
is in V , but it has no embeddable E-unitary cover over V.

A lm ost factorizable orthodox  sem igroups

We say that an orthodox monoid M  is factorizable if for every 
s E M, there exists e E E (M ) and u E U(M ) such that s = eu. 
The following theorem can be proved in the same way as for inverse 
monoids.

Theorem  4.1. Let M  be an orthodox monoid. Then the following 
are equivalent:
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(i) M  is factorizable,

(ii) M is an idempotent separating homomorphic image of a 
semidirect product of a band monoid by a group,

(iii) M is a homomorphic image of a semidirect product of a band 
by a group.

If S is a semigroup and s G S then multiplying each element by 
s on the right, and also on the left, we obtain two transformations 
of S. The associativity of the multiplication of S determines a link 
between these two transformations. A generalization of these pairs 
leads to the notion of the translational hull of S, which consists of 
certain linked pairs of transformations of S. The translational hull 
of a semigroup S is a monoid, and we denote its group of units by 
E(S). We say that an orthodox semigroup S is almost factorizable 
if for every s G S, there exists e G E (S ) and (A, p) G E(S) such 
that s =  ep. An orthodox semigroup S is called weakly coverable 
if it is a homomorphic image of a semidirect product.

Theorem  4.3. An orthodox semigroup is almost factorizable if 
and only if it is an idempotent separating homomorphic image of 
a semidirect product of a band by a group.

In case of inverse semigroups, homomorphic images of semidi­
rect products are the same as idempotent separating homomorphic 
images. As the following statement shows, this fails for orthodox 
semigroups.

S ta tem en t 4.5. There exists a weakly coverable combinatorial 
completely 0-simple orthodox semigroup, which is not almost fac­
torizable.

The previous statement shows that the investigation of weak 
coverability of orthodox semigroups is more complicated than that 
of inverse semigroups. However, it is easy to see that the greatest
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inverse semigroup homomorphic image of each weakly coverable 
inverse semigroup is necessarily almost factorizable. In a special 
subclass being close to inverse semigroups this condition is suffi­
cient.

Theorem  4.10. A generalized inverse semigroup is weakly cov­
erable if and only if its greatest inverse semigroup homomorphic 
image is almost factorizable.

The following statement shows that the previous condition 
is not sufficient for characterizing weak coverability of orthodox 
semigroups in general.

S ta tem en t 4.12. There exists an orthodox semigroup which is 
not weakly coverable, but whose greatest inverse semigroup homo­
morphic image is almost factorizable.

Em bedding orthodox sem igroups

In this section of the dissertation, by making use of Theorem 
2.16, we prove that every orthodox semigroup is embeddable into 
an almost factorizable orthodox semigroup. Let S be an ortho­
dox semigroup, and let T  be an E-unit ary cover of S such that 
T is an idempotent pure homomorphic image of a bifree orthodox 
semigroup. Denote by a  an idempotent separating congruence of 
T such that T /a  =  S. By the proof of Theorem 2.16, T is embed­
dable into a semidirect product B * G where the band B is in the 
variety generated by the band of idempotents of T. Investigat­
ing the previous embedding, one can show that the congruence a 
extends to B * G. This extension need not be idempotent separat­
ing, however, by factoring out B* G by an appropriate idempotent 
pure congruence, we obtain a semidirect product B  * G such that 
T is embeddable into B * G. Furthermore, a  extends to an idem- 
potent separating congruence of B * G. With such an argument, 
we can prove the following theorem.
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Theorem  5.9. Every orthodox semigroup is embeddable into an 
almost factorizable orthodox semigroup.

Let S  be an orthodox semigroup, and let i : S  ^  F  be an em­
bedding of S into an almost factorizable orthodox semigroup F. 
Furthermore, let p : B  * G ^  F  be a surjective idempotent sep­
arating homomorphism from a semidirect product B * G onto F. 
Then the subsemigroup {(e,g) G B * G : (e,g)p G Si^ of B * G 
is an E-unitary cover of S. We say that an E-unitary cover T of 
S arises from an embedding into an almost factorizable orthodox 
semigroup if it is isomorphic to an E-unitary cover of this kind. 
Notice that during the proof of the previous theorem, we have 
shown that certain E-unitary covers arise from embeddings into 
almost factorizable orthodox semigroups. If the band of idem- 
potents of the orthodox semigroup is regular, this statement is 
proved by the author to be true for all covers.

Theorem  5.11. [Ha3] Every E-unitary cover of an orthodox 
semigroup with regular band of idempotents arises from an em­
bedding into an almost factorizable orthodox semigroup.
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