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1 Introduction

An important question is while studying approximations of the solutions
of differential equations, whether the given problem has a stable solution
or chaotic behaviour. We study verified computational methods to check
regions the points of which fulfill the conditions of some given behaviour.

In this case the verification means mathematical strong verification.
In the computational part, rounding and other errors were considered.
Instead of real numbers, we can also calculate with intervals. In case the
bounds of the result interval are not computer representable, then they
are rounded outward.

Then, we show other technique—based on subset relations—which is
able to prove the existence of a topological horseshoe and chaotic behav-
iour. The collection of the subset relations Tj(Wj) ⊂ Uj forms a sufficient
condition for chaos in a region determined by the subset relations them-
selves (see Figure 1). In order to locate chaotic regions, one has to find
the subset relations to be checked.
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Figure 1: Some different Smale–horseshoes
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2 Chaotic regions of the Hénon map

The problem is usually solved by careful studying the given problem with
much human interaction, followed by an estimation of the Lipschitz con-
stant, bounding the rounding errors to be committed, and finally a num-
ber of grid points are checked one by one by a proper computer program
[15]. Instead of that, we introduce a new—interval arithmetic based—
automatized method.

2.1 A checking algorithm

We study verified computational methods to check and locate regions the
points of which fulfill the conditions of chaotic behaviour. The investigated
Hénon mapping is

H(x, y) = (1 + y − Ax2, Bx).

Zgliczyński [15] considered the A = 1.4 and B = 0.3 values and some re-
gions of the two dimensional Euclidean space: E = E1∪E2 = {(x, y) | x ≥
0.4, y ≥ 0.28}∪{(x, y) | x ≤ 0.64, |y| ≤ 0.01}, OL = {(x, y) | x < 0.4, y >
0.01}, OR = {(x, y) | y < 0}.

According to [15] Theorem 1 below ensures the chaotic behaviour for
the points of the parallelograms Q0 and Q1 with parallel sides with the x
axis (for y0 = 0.01 and y1 = 0.28, respectively), with the common tangent
of 2, and x coordinates of the lower vertices are xa = 0.460, xb = 0.556;
and xc = 0.558, xd = 0.620, respectively. The mapping and the problem
details (such as the transformed sides of the parallelograms, H7(a), H7(b),
H7(c), and H7(d)) are illustrated on Figure 2.

Theorem 1 (Zgliczyński). Assume that the following relations hold for
the given particular Hénon mapping:

H7(a ∪ d) ⊂ OR, (1)

H7(b ∪ c) ⊂ OL, (2)

H7(Q0 ∪ Q1) ⊂ R
2 \ E, (3)

then chaotic trajectories belong to the starting points of the regions Q0 and
Q1 (see Figure 2).

To check the inclusion relations required in Theorem 1 we have set up
an adaptive subdivision algorithm based on interval arithmetic. First the
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Figure 2: Illustration of the H7 transformation for the classic Hénon pa-
rameters A = 1.4 and B = 0.3 together with the chaotic region of two
parallelograms. The a, b, c, and d sides of the parallelograms are depicted
on the upper left picture of Figure 3.

algorithm determines the starting interval, that contains the region to be
checked:

[0.46000000000, 0.75500000000] × [0.01000000000, 0.28000000000].

Then the three conditions were checked one after the other. All of these
proved to be valid—as expected. The number of function evaluations (for
the transformation, i.e. for the seventh iterate of the Hénon mapping in
each case) were 273, 523, and 1613, respectively. The algorithm stores
those subintervals for which it was impossible to prove directly whether
the given condition holds, these required further subdivision to achieve
a conclusion (see Figure 3). The depth of the stack necessary for the
checking was 11, 13, and 14, respectively. The CPU time used proved to
be negligible, only a few seconds.

2.2 The accompanying optimization problem

We have proven that this algorithm is capable to provide the positive
answer after a finite number of steps, and also that the given answer is
rigorous in the mathematical sense. Once we have a reliable computer
procedure to check the conditions of chaotic behavior of a mapping it
is straightforward to set up an optimization model that transforms the
original chaos location problem to a global optimization problem.
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Figure 3: The parallelograms and the starting interval covered by the
verified subintervals for which either the given condition holds (in the
order of mentioning in Theorem 1), or they do not contain a point of the
argument set.

The key question for the successful application of a global optimization
algorithm was how to compose the penalty function. On the basis of earlier
experiences collected with similar constrained problems, we have decided
to add a nonnegative value proportional to how much the given condition
was hurt, plus a fixed penalty term in case at least one of the constraints
was not satisfied.
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As an example, consider the case when one of the conditions for the
transformed region was hurt, e.g. when (2), i.e. the relation

Hk(b ∪ c) ⊂ O1

does not hold for a given kth iterate, and for a region of two parallelo-
grams. In such a case the checking routine will provide a subinterval that
contains at least one point of the investigated region, and which contra-
dicts the given condition. Then we have calculated the Hausdorff distance
of the transformed subinterval Hk(I) to the set O1 of the right side of
the condition, maxz∈Hk(I) infy∈O1

d(z, y), where d(z, y) is a given metric,
a distance between a two dimensional interval and a point. Notice that
the use of maximum in the expression is crucial, with minimization in-
stead our optimization approach could provide (and has provided) result
regions that do not fulfill the given conditions of chaotic behaviour. On
the other hand, the minimal distance according to points of the aimed set
(this time O1) is satisfactory, since it enables the technique to push the
search into proper directions. In cases when the checking routine answered
that the investigated subinterval has fulfilled the given condition, we have
not changed the objective function.

Summing it up, we have considered the following bound constrained
problem for the T inclusion function of the mapping T :

min
x∈X

g(x), (4)

where

g(x) = f(x) + p

(

m
∑

i=1

max
z∈T (I)

inf
y∈Si

d(z, y)

)

,

X is the n–dimensional interval of admissible values for the parameters x
to be optimized, f(x) is the original, nonnegative objective function, and
p(y) = y + C if y is positive, and p(y) = 0 otherwise. C is a positive
constant, larger than f(x) for all the feasible x points, m is the number of
conditions to be fulfilled, and Si is the aimed set for the i-th condition.

The emerging global optimization problem has been solved by the clus-
tering optimization method.
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LO ZO FE PE T
12 4 13,197 4,086 17
12 1 12,913 3,365 16
12 1 13,569 4,303 19
12 2 12,918 3,394 16
12 1 14,117 5,083 18
12 3 21,391 7,400 25
12 2 12,623 3,296 16
12 0 15,388 6,221 30
12 3 13,458 3,858 15
12 2 14,643 5,002 16

Table 1: Numerical results of the search runs (Here LO stands for the
number of local optima found, ZO for the number of zero optimum values,
FE for the number of function evaluations, PE for the number of penalty
function evaluations, and finally T for the CPU time used in minutes.)

2.3 Applications

First, we have applied the global optimization model for the 5th iterate
Hénon mapping. Note that the less the iteration number, the more difficult
the related problem: no chaotic regions were reported for the iterates less
than 7 till now. After some experimentation, the search domain set for
the parameters to be optimized was:

A ∈ [1.00, 2.00], B ∈ [0.10, 1.00],

xa, xb, xc, xd ∈ [0.40, 0.64].

Table 1 presents the numerical results of the ten search runs.
We applied successfully this method to locate several chaotic regions of

Hénon map (see Figure 4), and gave a lower bound for topological entropy.
The topological entropy characterizes the mixing of points by the Hénon
map. The numerical results are published in [2, 3, 4, 6, 5, 10, 12].

In this section my work is an implementation of the algorithm, the
numerical results and integration of them.
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(a) 4th iterate of Hénon map.

(b) 2nd iterate of Hénon map.

(c) 6th iterate of Hénon map.

Figure 4: Chaotic regions of Hénon map with classical parameters.
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3 Chaotic behaviour of the forced damped

pendulum

Recently, a few papers considered real dynamical problems and give a
mathematical proof to chaotic behaviour. In this part we investigated a
forced damped pendulum as the mechanical model and proof a Chaotic
behaviour of them [13]. The curiosity thing in this problem that, we
can give a one-to-one correspondence the chaotic behaviour and the gross
behaviour of pendulum.

3.1 The forced damped pendulum

Consider a forced damped pendulum, i.e. we have a body on a weightless
solid rod, forced to move on a vertical circle around the center point (see
Figure 5). The mass and the length of the pendulum are equal to 1. We
have a not negligible friction depending on the speed of the pendulum with
a friction factor of b = 0.1. An external periodic force is applied to the
body, cos t, where t is the time (it is independent of all other factors).

The related second order differential equation is

x′′ = cos t − 0.1x′ − sinx,

where x is the angle of the pendulum, and x′ is the angle speed of the
pendulum. The corresponding system of first order differential equations
is

u′ = v,

v′ = cos t − 0.1v − sin u,

where u is the angle of the pendulum, and v is the angle speed of the
pendulum.

x′

x

Figure 5: Illustration of Pendulum
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We can formalize the chaotic behaviour in the following form:

Theorem 2 (J.H. Hubbard). Suppose we are given a biinfinite sequence
ǫk∈Z ∈ {−1; 0; 1}Z arbitrarily chosen. Then the forced damped pendu-
lum described by equation has at least one motion that corresponds to
the biinfinite sequence ǫk∈Z in the sense that during the time interval
[2kπ, 2(k + 1)π] the pendulum

• crosses the bottom position exactly once clockwise if and only if ǫk =
−1,

• does not crosses the bottom position at all if and only if ǫk = 0,

• crosses the bottom position exactly once counterclockwise if and only
if ǫk = 1,

and does not point downwards at the time instant t = 2kπ, k ∈ Z.

3.2 Proof of chaos in a forced damped pendulum

First, We report on the first steps made towards the computational proof of
the chaotic behavior of the forced damped pendulum. Although chaos was
long conjectured for this differential equation, and it has been considered
as plausible based on numerical simulation results, the rigorous proof is
still missing.

In the proof we will need certain quadrilaterals {Qk}k∈Z “long” in the
unstable and “short” in the stable directions so that there are “exceptional”
orbits of the Poincaré mapping P with the following properties:

• an exceptional orbit is contained in ∪k∈ZQk;

• an exceptional orbit visits the quadrilaterals consecutively:
if Pn(x0, x

′
0) ∈ Qk for some k, n ∈ Z, then either

Pn+1(x0, x
′
0) ∈ Qk−1 or Pn+1(x0, x

′
0) ∈ Qk or Pn+1(x0, x

′
0) ∈ Qk+1.

In the main step of the proof of chaotic behaviour we will show that
for an arbitrary consecutive order {Qik

}k∈Z of quadrilaterals there is an
exceptional orbit visiting the quadrilaterals in the prescribed order. To
this end we have to know forward images P (Qk) (see Figure 6) and prove
the existence of topological horseshoe.

We applied the earlier mentioned subdivision method, which is able to
prove the chaotic behaviour of the considered systems. The details of the
proof was published in [7, 8, 11]. In this section my work is a development
and implementation of the computer assisted proof.
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Figure 6: Forward Poincaré map in t = ±2π time points of Q0.

4 Investigation of Wright conjecture

E.M. Wright conjectured in a paper [14] published in 1955 that all solu-
tions of a delay differential equation converge to zero for a wide set of the
parameter α. He gave a proof of the statement for α values between 0 and
1.5 and conjectured to be true for further α values below π/2.

4.1 Technique to following trajectory

E.M. Wright considered the delay differential equation

z′(t) = −αz(t − 1)(1 + z(t)),

where α is a positive number, and the initial function φ(s) is a constant,
c > −1, i.e. φ(s) = c for s ∈ [−1, 0].

To simplify the further calculations use the substitution z(t) = ey(t)−1.
Then z′(t) = ey(t)y′(t) and z(t − 1) = ey(t−1) − 1. We obtain the delay
differential equation

y′(t) = −α
(

ey(t−1) − 1
)

,

where the initial function is φ(s) = c, s ∈ [−1, 0].
When α ≤ 1.5, it is known, that the trajectory converges to zero, and

when α ≥ π/2, the trajectory converges to different periodic solutions
too (see Figure 7). In the following only the α ∈ [1.5, π/2] cases are
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(a) In case of α = 1.5.
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(b) In case of α = 2.0.

Figure 7: Illustration of trajectories.

investigated. On the basis of the collected numerical experience, we can
expect that these solutions behave just like in the α ≤ 1.5 cases.

The analysis of the convergence to zero is very hard with numerical
methods, so we consider an easier problem. We are interested in checking
whether for all α ∈

[

3
2 , π

2

]

, there exists a unit length time segment where
the absolute value of the solution is less than 0.075.

Most verified techniques for solving ordinary differential equations ap-
ply a Taylor series. Our technique is based on the same idea too. The
Taylor–series is:

y(x) =
n−1
∑

k=0

(x − x0)
ky(k)(x0)

k!
+ rn.

Using the mean–value theorem, rn can be bounded by

rn =
(x − x0)

n

n!
y(n)(x∗),

for some x∗ ∈ [x0, x] (x0 ≤ x).

If we want a better approximation of the solution, we have to use higher
derivatives. We can characterize the higher derivatives with this formula:

y(k)(t) = −αy(k−1)(t − 1) +
k−1
∑

i=1

(

k − 2
i − 1

)

y(i)(t − 1)y(k−i)(t).
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To provide a mathematical proof, it is not enough to use Interval Arith-
metic, we have to use the formula in a correct form. We can use the
Taylor–series to bound the results:

Y (t1) =

n−1
∑

i=0

Y i(t0)
(t1 − t0)

i

i!
+ Y ([t0, t1])

n (t1 − t0)
n

n!
,

Y ([t0, t1]) =

n−1
∑

i=0

Y i(t0)
([0, t1 − t0])

i

i!
+ Y ([t0, t1])

n ([0, t1 − t0])
n

n!
.

In the algorithm, we use two fix length lists to store the solution bounds.
The first list contains the solution and the derivatives on time intervals,
which cover the unit length time segment. The other list stores the solution
and the derivatives in concrete time points. We calculate the new elements
of the lists with earlier discussed formula. The oldest elements are deleted
from the lists, and the new ones are inserted. This technique has three
parameters: step length, maximum derivate rank, and a precision of the
interval arithmetic.

We proved the above statement for some tiny intervals around certain
computer representable numbers, but we were not able to prove it for all
points of the α parameter interval. This method published in [1].

4.2 Proof for a conjecture

In this section we describe and prove the correctness of a new, even more
stronger bounding scheme that allows an efficient shrinking of the possible
extreme values of a periodic solution.

The present approach follows another line of thought, still it is a kind
of direct extension of that of Wright. Denote three subsequent zeroes of
the trajectory by t0, t′0, and t′′0 . Let us define functions bounding the
trajectories. The trajectory bounding functions are illustrated by dashed
lines on Figure 8.

The trajectory bounding functions will be sharpened sequentially, in an
iterative way, i.e. the bounding functions of the time interval (inc, 1) will be
used to improve the bounding function on the interval (dec, n), etc. Then,
the bounding function of the last interval, (inc, n) will be used to make the
inequalities for the interval (inc, 1) sharper, and so on. Those bounding
function improvements that are based on a single bounding function of
the earlier time interval are basically similar to the original technique used
by Wright. The sharpening steps using two bounding functions on the

12



t0 t′0 t′′0

pmpM

(inc, 1)

(dec, 1) (inc, n)

(dec, n)

y
(upper)
(inc,1) y

(upper)
(dec,n)

y
(lower)
(dec,1) y

(lower)
(inc,n)

y
(upper)
(dec,1)

y
(lower)
(inc,1)

Figure 8: The trajectory bounding functions shown as dashed lines.

argument interval apply a new, Taylor series based method. At start
we set the upper bounding functions to constant M , the lower bounding

functions to (−m) with the exceptions of y
(lower)
(inc,1) = 0 and y

(upper)
(dec,1) = 0.

For all the six bounding functions we subdivide the unit length intervals
to equal subintervals. On such a subinterval the bounding function is
represented by a conservative constant value.

The conditions we check at the end of each iteration cycle of the bound-
ing function sharpening procedure are

y
(upper)
(inc,1) (t0 + 1) < M and − m < y

(lower)
(dec,1) (t′0 + 1).

In case at least one of these conditions are fulfilled then the solution of
the investigated delay differential equation cannot have a periodic solution
with a maximal value of M and the minimal value of (−m) as assumed
for the given α parameter.

After the theoretical investigations the remaining problem to be solved
is to prove that for α values between 1.5 and π/2 no periodic solution ex-
ists with M and m absolute extreme values larger than a certain positive
number. We illustration the connection between this two part on Fig-
ure 9. We applied a multithread B&B procedure, which is able to prove
the remaining problem so—together with the theoretical part—we prove
Wright original conjecture. The computer part of the proof is published
in [9]. In this section my work is the estimation scheme—based on Wright’s
proof—and implementation of them.
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Figure 9: Illustration of the Theoretical part and Computer Aided part in
proof.
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