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1. Bevezetés és célkitűzések 

A földfelszín egyedülálló erőforrás, amely azt a teret határolja, amiben a gazdasági 

tevékenységek és a környezeti folyamatok zajlanak, továbbá a környezeti erőforrások és a 

gazdasági javak fellelhetők. A földfelszín használatának módja határozza meg az élelem-, 

anyag- és energiaellátást. Azonban a Föld és erőforrásai végesek, így egyre nehezebben 

szolgálják ki a növekvő emberi szükségleteket (élelmiszer, víz, lakhely, szolgáltatások). Emiatt 

a földfelszín használata gyakran változik, amit a városi területek és az infrastruktúra bővülése 

jellemez, valamint a mezőgazdasági területek térhódítása a gyepek, szavannák és erdők 

rovására. Ezek a területhasználati változások a felszínborításra is kihatnak, és annak mélyreható 

átalakulását, pl. a természeti erőforrások, a természetes ökoszisztémák kiterjedésének 

csökkenését, a talajok funkcióinak romlását, és a termékenység hanyatlását. eredményezik 

(UNSD, 2013). 

A felszín két elsődleges aspektusa, a felszínborítás és a területhasználat különálló, de 

összefüggő fogalom. Mindkettő kulcsfontosságú információforrás a földrajzi, társadalmi, és 

gazdasági folyamatok megértésében. A felszínborítási és területhasználati térképek, a belőlük 

levezetett térbeli információk és statisztikák fontosak a természeti erőforrásokkal és a 

környezettel (mezőgazdaság, agráripar, erdőgazdálkodás, ásványok, víz, halászat stb.), emberi 

erőforrásokkal (pl. oktatás, egészségügyi szolgáltatások és infrastruktúra), természeti 

katasztrófák és katonai konfliktusok megelőzésével és enyhítésével, a bűnmegelőzéssel és 

bioüzemanyag-gyártással kapcsolatos szakpolitika kialakításához és tervezéséhez (UNSD, 

2013). 

A felszínborítási és területhasználati térképek és a belőlük levezetett információk 

széleskörű felhasználása miatt fontos a tartalmilag pontos térképek gyors előállításához 

szükséges módszertan fejlesztése. A tematikus térképkészítés módszertani fejlesztése, már a 

légifelvételezés korai alkalmazása óta a távérzékelés tudományának elsődleges feladata. A Föld 

műholdas megfigyelése, a szisztematikus visszatérésekkel és a nagy területekre kiterjedő 

lefedettséggel, megnyitotta az utat a műholdképek automatikus és szisztematikus elemzésének 

lehetősége előtt, és ezáltal a különböző műholdképekből automatikusan előállítható tematikus 

térképek készítésére (Inglada, 2016). A műholdas szenzorok folyamatos bővülésének, 

fejlődésének köszönhetően, napjainkra az egyre jobb geometriai, spektrális és időbeli felbontású 

távérzékelt adatok, valamint a széleskörű, multi- és interdiszciplináris módszertan biztos alapot 

szolgáltat a legkülönbözőbb térképezési feladatokhoz. A műholdas távérzékeléssel olyan 

naprakész, nagy területeket lefedő, a terepi felvételezésnél jóval olcsóbban előállítható felvételek 

állnak rendelkezésünkre, amelyek kellő alapot biztosíthatnak a földrajzi vizsgálatokhoz, így a 

felszínborítás és területhasználat térképezéséhez is.  
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A közepes felbontású távérzékelt (pl. Landsat TM, ETM+, OLI, Sentinel MSI) adatok 

alapján térinformatikai módszerek felhasználásával készített felszínborítási és területhasználati 

térképek még olyan régiókban is új eredményeket nyújthatnak, ahol a meglévő digitális térképi 

adatbázisok megújítása és frissítése nem jelent problémát. Azonban a fejlődő régiókban a 

távérzékelés által szolgáltatott adatok és módszerek nélkül nem lehetséges a felszínborítás és a 

területhasználat térképezése, ezáltal a társadalmi és környezeti folyamatok és kölcsönhatások 

hatékony monitoringja és vizsgálata sem. Emellett a műholdas távérzékelés már az 1970-es 

évektől biztosít megfelelő térbeli, spektrális és időbeli felbontású digitális felvételeket, amelyek 

így hosszú időskálán rendelkezésre állnak, és felhasználhatók a naprakész információk 

szolgáltatása mellett, a folyamatok nyomon követésére, illetve a változások idősoros 

elemzésére is (Wulder et al., 2022). 

A felszínborítás és a területhasználat műholdfelvételek alapján történő térképezése számos 

technikai, módszertani kihívást hordoz magában, ezért az új algoritmusok és az új szenzorok 

adta lehetőségekkel a képfeldolgozási módszerek is folyamatosan fejlődnek. Az utóbbi 

évtizedben a képfeldolgozási módszerek bővülésével a térinformatikai szakemberek a 

rendelkezésre álló téradatokból további új térbeli információkat nyerhettek ki. Azonban a 

felszínborítás távérzékeléses térképezéséhez képest a területhasználati térképek előállításához 

szükséges módszertan kevésbé kutatott téma. Emiatt a kutatásom alapvető célja a felszínborítás 

és területhasználat nagy pontosságú osztályozáshoz szükséges módszertan koncepciójának 

kialakítása. 

A kutatásaim során ezt a célkitűzést két különböző irányból vizsgáltam meg. Egyrészt az 

osztályozáshoz felhasználható, jelenleg legelterjedtebb képosztályozó eljárások kiválasztása 

és alkalmazása irányából, másrészt az osztályozáshoz felhasználható adatok kiválasztása 

szempontjából. A 2010-es évek áttörést hoztak a műholdas távérzékelésben felhasználható 

adatforrások terén, nagyrészt az Európai Űrügynökség (European Space Agency – ESA) által 

felügyelt Sentinel programnak köszönhetően. A megnövekedett számú közepes térbeli 

felbontású multispektrális optikai és mikrohullámú földmegfigyelő műholdakkal (Landsat-8, 

Landsat-9, Sentinel-1A, Sentinel-1B, Sentinel-2A, Sentinel-2B) a felhasználók számára 

rendkívül sokféle, eltérő térbeli, spektrális, időbeli és radiometrikus felbontással rendelkező 

adat áll rendelkezésre a Föld felszínéről. Továbbá, az új elsődleges adatforrásokból több, új, 

eddig nem használt derivátumok kerültek meghatározásra. A rendelkezésre álló adatok és 

derivátumaik számának növekedésével az egyes térképkészítési feladatokhoz felhasznált 

optimális adatok kiválasztásának kérdése is egyre inkább előtérbe került. Ennek egyik oka, 

hogy az adatok együttes használata komoly kapacitásbeli kihívásokat jelent, a másik komoly 

ok, hogy az osztályozásához használt gépi tanulást alkalmazó algoritmusok hatékonysága nincs 
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egyértelműen kapcsolatban a felhasznált adatok számával és felbontásaikkal (térbeli, spektrális, 

radiometrikus, időbeli). Ezek az algoritmusok a felhasznált adatok információ mennyiségét 

értékelik és azokat, amelyek markáns információtöbblettel nem rendelkeznek, hátrébb sorolják 

a betanításnál vagy akár el is hagyják őket. Ezek alapján az adatbázis építése során, a bemenő 

adatok halmazának optimális meghatározásához kapcsolódóan az alábbi célokat jelöltem ki: 

(1) A felszínborítási osztályok és a spektrális reflektancia között közvetlen kapcsolat áll 

fenn, amely geoinformatikai és távérzékeléses módszerekkel jól mérhető és az egyes 

kategóriák jól elkülöníthetők. Azonban ez a kapcsolat a területhasználat esetén, 

annak összetettsége miatt már nem olyan egyértelmű (Anderson et al., 1976). Ezért 

dolgozatomban célul tűztem ki, a spektrális reflektancia és a területhasználati 

kategóriák közötti kapcsolat statisztikai vizsgálatát. A kutatásom során arra a 

kérdésre kerestem a választ, hogy a reflektancia értékek és a területhasználati 

kategóriák között létezik-e olyan erős összefüggés, amely lehetővé teszi, hogy a 

műholdfelvételek alapján ezeket az osztályokat megfelelő pontossággal 

lehatárolhassuk. 

(2) A távérzékelt adatok osztályozása során legtöbbször használt az elsődleges 

adatforrást kiegészítő bemenő adatok, a műholdképek spektrális sávjaiból levezetett 

indexek és adattranszformációk (Ayala-Izurieta et al., 2017; Fragoso-Campón et al., 

2018). Ezen derivátumok mindegyikére igaz, hogy az elsődleges, többnyire a 

spektrális sávok felhasználásával, matematikai úton hozhatók létre. Ennek 

köszönhetően a kiszámításuk általában gyorsan kivitelezhető, így könnyen 

alkalmazhatók az egyes elemzésekben. Ezért az osztályozások során legtöbbször 

ezeket a metrikákat használják a spektrális sávok kiegészítéséhez. Azonban ezen 

derivátumok hatása az osztályozásra nem teljesen egyértelmű, több ellentmondásos 

eredmény is született már a témában (Kobayashi et al., 2020; Li et al., 2011). Ezért 

célul tűztem ki, hogy megvizsgáljam, hogy a spektrális indexek és az 

adattranszformációk felhasználásával a területhasználat osztályozás teljesítménye 

(pontossági értékek, futtatási idők) növelhető-e.  

(3) A távérzékelt adatok osztályozása során, ritkábban használt az elsődleges adatforrást 

kiegészítő bemenő adat, a műholdképek képelemei környezetéből kinyert 

információ. Ilyen információk lehetnek a pixel környezetét jellemző textúra adatok 

vagy az adott területen található tájat leíró metrikák, tájmetriai mutatók (Mezősi és 

Fejes, 2004). Ezek az előállításukból eredően a spektrális értékekből nem vezethetők 

le, ezért új dimenzióval rendelkező, többlet információt tartalmaznak, ami alkalmas 

lehet a különböző osztályozások, így a felszínborítás és területhasználat 
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osztályozások pontosságának növelésére. Ezen adatoknak a felszínborítással való 

kapcsolatával és az osztályozásban történő felhasználásával már több kutatás 

foglalkozott (Fichera et al., 2012; Li et al., 2011; Szilassi et al., 2017). Azonban a 

sok osztályt tartalmazó területhasználat osztályozásokban a tájmetriai és textúra 

paraméterek felhasználásának hatása még nem teljesen ismert. Ezért célul tűztem 

ki, hogy megvizsgáljam, a képelem környezetéből kinyerhető adatok alkalmasak-

e a területhasználat osztályozás pontosságának növelésére. 

(4) Az utóbbi évtizedben, a távérzékelésben megjelenő új, egyre jobb térbeli, spektrális 

és időbeli felbontással rendelkező adatforrások nem csak a különböző adatfúziós 

osztályozási eljárások előtt nyitották meg az utat, hanem a kedvezőbb időbeli 

felbontásoknak köszönhetően a multitemporális vizsgálatoknak is. Ennek 

köszönhetően lehetőség nyílik nem csupán a kisebb időablakos idősoros elemzések 

elvégzésére, hanem folyamatos megfigyelőrendszerek kialakítására is. Emellett, a 

képosztályozásba is fontos szerepet kapnak az éven belüli felvételek, amelyek az 

időbeli különbségekből származó eltérés miatt jelentős többletinformációval 

rendelkeznek. Az információtöbblet miatt a több időpontban készült képek együttes 

használata a képosztályozásokban már régóta alkalmazott technika (Costăchioiu és 

Datcu, 2010; Fragoso-Campón et al., 2018; Bui és Mucsi, 2021). Azonban a 

nagyszámú osztályt tartalmazó, területhasználat osztályozásokban az optimális 

felvételek száma, és a köztük lévő időtávolság nagysága még nem meghatározott. 

Ezért célul tűztem ki, egy kiválasztott műhold, eltérő időpontban készült 

felvételeinek különböző kombinációkban történő felhasználásának vizsgálatát, a 

felvételek és köztük lévő optimális időablak meghatározását.  

(5) A közelmúltban a műholdas távérzékelésben történt fejlesztéseknek köszönhetően a 

különböző típusú adatok (optikai-, radarfelvételek, magassági adatok) és 

tulajdonságaikból (térbeli, spektrális, időbeli felbontás) olyan információhalmaz jön 

létre, amellyel a képosztályozások nagy pontossággal kivitelezhetők. Az ilyen 

adatkombinációt felhasználó kutatások száma az új adatforrások megjelenésével 

jelentősen megnőtt (Balzter et al., 2015; Garg et al., 2021; Li et al., 2011; T. Zhou 

et al., 2018). Azonban a sok kategóriát tartalmazó (pl. CORINE), területhasználat 

osztályozásokban az ideális adatkombinációk még nem egyértelműen 

meghatározottak. Ezért célul tűztem ki, hogy vizsgáljam a spektrális sávok és a 

független elsődleges adatforrások kettős kombinációkban történő 

felhasználásának hatását a felszínborítás és területhasználat osztályozás 

pontosságára vonatkozóan. 
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Az osztályozó eljárásokkal kapcsolatban az alábbi kérdésekre kerestem a választ: 

(6) A távérzékeléses képelemzés az adatok minőségi javulásának és a különböző 

informatikai módszerek fejlődésének köszönhetően egy folyamatosan fejlődő 

tudományág, amihez már számos alkalmazást fejlesztettek ki. A jól ismert 

statisztikai megközelítések mellett több módszer a gépi tanulás területéről származó 

technikákon alapul (Waske et al., 2009). Ennek két fő oka közül az egyik, hogy 2014 

óta több, nagyobb térbeli, spektrális és időbeli felbontású földmegfigyelési 

platformot hoztak létre, amelyek különböző hullámhossz-tartományokon 

működnek, a láthatótól a mikrohullámúig. Ezeknek a rendszereknek köszönhetően 

a távérzékelés minden eddiginél részletesebb információkat szolgáltat a 

földfelszínről és annak környezeti állapotáról. Ezek osztályozása igen bonyolult és 

összetett, amit a régebbi, jól ismert osztályozók (pl: ISODATA, Maximum-

likelihood, k-legközelebbi szomszéd) csak korlátozottan képesek megoldani 

(Richards, 2005). Másrészt, az utóbbi évtizedben a mesterséges intelligencia 

tudományához tartozó gépi tanulás (machine learning) és mély tanulás (deep 

learning) osztályozó eljárások (tartóvektor-gép – support vector machine, döntési fa 

– decision tree, véletlen erdő – random forest, gradiens-növelő gépek – gradient-

boosting machines, mély neurális hálók – deep neural networks) és alkalmazási 

módszereik száma dinamikusan növekedett, ami napjainkban is folytatódik. A gépi 

tanulási algoritmusok egyik leggyakoribb alkalmazási módja a távérzékelésben az 

irányított osztályozás, amely talán a legszélesebb körben alkalmazott 

képosztályozási módszer (Waske et al., 2009). Mindegyik gépi tanulási 

algoritmusnak megvannak a maga előnyei és hátrányai, így a különböző 

osztályozási szituációkban különböző hatékonysággal alkalmazhatók. Napjainkra, a 

különböző adatforrások száma miatt, a lehetséges osztályozási szituációk 

(adatfúziók, derivátumok, tanítóadatok, másodlagos adatok, jellemző kinyerés stb.) 

száma szinte korlátlan, így a legjobb algoritmus meghatározása csak adott korlátok 

között lehetséges. Ennek figyelembevételével célul tűztem ki, a szakirodalomban 

jelenleg leggyakrabban használt, többosztályos gépi tanulásos osztályozó 

algoritmusok és egy hagyományos osztályozó algoritmus összevetését a 

felszínborítás és területhasználat térképezésében. További célom volt 

meghatározni közülük, azt az algoritmust, amivel a CORINE Land Cover 

adatbázis 3. hierarchia szintű nomenklatúrájával a legnagyobb pontosságú 

felszínborítási/területhasználati térképek készíthetők el. 
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(7) Napjainkra az egyes osztályozási algoritmusok alkalmazásával előállított 

felszínborítási/területhasználati térképek pontossága mellett az algoritmusok 

teljesítménye is egy kritikus szempont az eredmények értékelése során. Az 

algoritmusok teljesítménye több tényezőből felépülő összetett mutató, amely 

magába foglalja a különböző adathalmazokon (tanító, teszt, validáló) számított 

pontossági értékeken túl a tanítási hiba mértékét, a becslések megbízhatóságát, a 

modellépítési időt és az ezzel szorosan összefüggő paraméterbecslési időt, és az 

ismeretlen adatokon történő becslési időt. Az algoritmusok teljesítményének 

fontossága megnövekedett az utóbbi években a rendelkezésre álló adatok számának 

növekedése, az osztályozandó terület nagysága és a minél gyorsabb információk 

biztosításának követelménye miatt. Emiatt megnövekedtek a teljesítményelvárások, 

mind a sebesség (pl.: nagy adatkockák, operatív megfigyelő rendszerek és közel 

valós idejű alkalmazások esetében), mind a pontosság és a megbízhatóság terén is. 

Az említett elvárások növekedése miatt a pontosságok összehasonlításán túl, célul 

tűztem ki az egyes algoritmusok és az általuk generált modellek teljesítményének 

vizsgálatát, a modellek és az azok létrehozását leíró adatok és az eredményül 

kapott térképek elemzését.  

(8) A távérzékelt adatokra épülő térképezési feladatoknál már a kezdeti idők óta 

felmerülő követelmény az adott módszer alkalmazhatósága nagyobb területen vagy 

adathalmazon (Anderson et al., 1976). Azóta erre a kérdésre már több válasz is 

született különböző módszerek formájában, amikkel számos regionális, nemzeti, 

kontinentális vagy akár globális lefedettségű térképet állítottak elő. Az ilyen, 

nagyobb területeket bemutató térképek szükségesek a különböző léptékű 

folyamatok, mint például a klímaváltozások okainak és következményeinek 

megértéséhez, és az ezekhez társuló tudományos tevékenységekhez. Az ilyen jellegű 

kutatások sokszor használt adatai a felszínborítási és területhasználati térképek, így 

az ezek előállítását célzó módszereknél is felmerülő kérdés a módszer 

kiterjesztésének, skálázhatóságának lehetősége és mértéke. A rendelkezésre álló 

nagy mennyiségű, egyre jobb felbontási tulajdonságokkal rendelkező felvételező 

rendszereknek köszönhetően, az adatsűrűség növekedése feldolgozási problémaként 

jelenik meg. A kiterjeszthetőség és az adatsűrűség növekedése által generált 

kihívás miatt célom volt az algoritmusok skálázhatóságának vizsgálata, azaz a 

bemenő adatok számának és/vagy az osztályozni kívánt terület nagyságának 

növekedésével járó pontosságváltozás elemzése.
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2. Irodalmi áttekintés 

2.1. Felszínborítás és a területhasználat fogalma, jelentősége 

A Föld szárazföldi felszínének elemzése során a felszínborításról és a területhasználatról 

gyűjtött információk meghatározó jelentőségűek lokális, nemzeti és nemzetközi szinten 

egyaránt (Wulder et al., 2018). Ezt a két fogalmat sokszor használják szinonimaként, bár 

jelentésükben fontos eltérések vannak. Általános megfogalmazás szerint, a felszínborítás a Föld 

felszínének biofizikai lefedettségére utal, ezáltal térbeli információt nyújt a földfelszín, a 

domborzat, a klíma és a talaj kapcsolatáról (FAO, 1997). A felszínborítási térkép osztályain a 

felszínen lévő természetes vagy mesterséges objektumokat értjük, mint például erdők, vizek, 

mesterséges felszínek. A felszínborítási kategóriák meghatározása elég egyértelműnek tűnhet, 

de (Comber et al., 2005) rámutattak arra, hogy a kategóriák definícióiban lehetnek különbségek 

a földrajzi adottságok közötti eltérések miatt. Ilyen lehet pl. az erdők fogalmában, egy európai 

lombhullató erdő és egy dél-amerikai őserdő között. 

A területhasználat a felszínborításnál összetettebb fogalom, mivel a területhasználat egy 

adott terület társadalmi-gazdasági hasznosítását mutatja meg (FAO, 1997). Az adott területen 

élő emberek tevékenységeinek hatására kialakuló egyedi területeket/objektumokat jelentik. 

Ilyenek lehetnek egyes városi övezetek: ipari, kereskedelmi, logisztikai, rekreációs, lakó vagy 

különböző mezőgazdasági művelésék: szántó, gyümölcsös, szőlős, legelő vagy más egyéb 

tevékenység miatt kialakuló területek: meddőhányók, építési területek. A területhasználat 

fogalmából adódik, hogy minden társadalmi, gazdasági, politikai komplexnél eltérő kategóriák, 

és a megegyező nevű kategóriák lehatárolásánál is különbségek lehetnek (pl.: nyugat-európai 

belváros és indiai belváros, észak-amerikai ipari terület és ázsiai ipari terület stb.). A 

területhasználat, specifikus kategóriáinak köszönhetően, széleskörű betekintést nyújt az emberi 

tevékenység környeztet módosító tevékenységébe, továbbá a társadalom és környezete közötti 

kapcsolatába és kölcsönhatásaiba.  

Ezeknek a kölcsönhatásoknak és az emberi tevékenységnek az eredménye a 

területhasználat változása, amely a legtöbb esetben magával hozza a felszínborítás 

megváltozását is (Turner et al., 1995). A felszínborítás és a területhasználat változásai 

különböző lokális és globális folyamatokra fejtik ki hatásukat, mint például a szén körforgása, 

a hidrológiai körforgás és a biodiverzitás csökkenése stb. (Foley et al., 2005). A felszínborítás 

és a területhasználat változások folyamatos gyorsulásával, amit főleg a városok terjeszkedése, 

a gazdasági növekedés, és az implicit-explicit módon növekvő emberi szükségletek okoznak, a 

felszínborítás és területhasználat térképezése és a változások nyomon követése kulcsfontosságú 

eszközzé vált a környezetvédelmet és a fenntartható fejlődést célzó tervezési munkákban. 

Emellett ezen adatbázisok több tudományos kutatásban is alapinformációnak számítanak, mint 
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például a mezőgazdaságban (Bezdan et al., 2019; Pérez-Hoyos et al., 2020), a hidrológiában 

(Liaqat et al., 2021; Tobak et al., 2019), az ökológiában (Csikós és Szilassi, 2021b) és a 

változásvizsgálatokban (Szilassi, 2017). A széleskörű felhasználási lehetőségeik miatt a 

megbízható, pontos felszínborítási és területhasználati térképek előállítása egy alapvető feladat 

a távérzékelésben (Townshend, 1992). 

2.2. A távérzékelés szerepe a felszínborítás és területhasználat osztályozásban 

A felszínborítási térképek készítése volt a mozgatórugója a térbeli adatok gyűjtésével, 

feldolgozásával és értelmezésével foglalkozó földrajzi információs rendszerek létrehozásának 

az 1960-as évek elején (Tomlinson, 1967), amiből a 2000-es évek elejére a geoinformatika 

tudománya (GI Science) fejlődött ki. A távérzékelési technológia fejlődése révén a 

felszínborítási és területhasználati térképek előállításához szükséges elsődleges térbeli adatok, 

elsősorban a Landsat program globális lefedést biztosító, közepes felbontású műholdfelvételei 

az 1980-as évek közepétől rendelkezésre állnak (Townshend et al., 1991).  

A felszínt borító anyagok által visszavert energiát mérik a műholdak szenzorjai, így a 

felszínborításra jellemző reflektancia értékek számíthatók. A területhasználat és a reflektancia 

értékek közötti kapcsolat azonban már nem ennyire egyértelmű. Ennek oka a már említett 

definícióból és a területi különbségekből ered, ami miatt a területhasználati kategóriák száma 

sokkal nagyobb, mint a felszínborítási kategóriáké. Az osztályok magas száma miatt a 

kategóriák nevezéktani értelemben, tartalmilag hasonlók (így szétválaszthatóságuk alacsony), 

ami tovább nehezíti az osztályozást. Továbbá a területhasználati kategóriák lehatárolása sok 

esetben nem egyértelmű, távérzékelési szempontból egymást nem kizáró csoportok. Emiatt a 

pixelek spektrális információi sok esetben nem nyújtanak elegendő alapot az osztályozások 

nagy pontosságú elvégzéséhez (Bruzzone et al., 1997; Rodriguez-Galiano és Chica-Olmo, 

2012; Wilkinson, 2005).  

A pontosság javítása érdekében új adatokat kell bevonni az osztályozásba, ami 

csökkentheti az osztályozás teljesítményét (előkészítési, futtatási idő növekedése). Ezért annak 

érdekében, hogy megtaláljuk a megfelelő egyensúlyt az osztályozás pontossága és 

teljesítménye között, a megfelelő változók kiválasztása kulcsfontosságú kérdés lett, így a 

kutatások egyik fő témájává is vált. A távérzékelésben az osztályozás és az ahhoz felhasznált 

adatok és változók kiválasztása alapvetően adatvezérelt: függ a célterületre rendelkezésre álló 

különböző adatok típusától, az egyes típusú adatokból rendelkezésre álló felvételek számától, 

és ezen adatok tulajdonságaitól (térbeli és spektrális felbontás). Ezek alapján tudjuk 

meghatározni az osztályozásba bevonható lehetséges adat variációkat, mint a különböző 

szenzorok felvételeit együttesen alkalmazva (Garg et al., 2021; T. Zhou et al., 2018), több, 

különböző időpontban, azonos szenzorral készült képeket kombinálva (Bui és Mucsi, 2021; 
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Fragoso-Campón et al., 2018; Gudmann és Mucsi, 2019), vagy az eredeti képből új jellemzőket 

(indexek, textúrák, transzformációk) kinyerve (Gudmann et al., 2019, 2020; Gudmann és 

Mucsi, 2019; Pflugmacher et al., 2019; T. Zhou et al., 2018).  

Napjainkra egyre több, ingyenesen elérhető közepes felbontású távérzékelt adatforrás 

áll rendelkezésünkre a felszínborítás/területhasználat térképezéséhez, melyek tulajdonságai 

(térbeli, spektrális, időbeli felbontás, közel 50 évet lefedő archívum) egyre kedvezőbb alapot 

biztosítanak a nagypontosságú osztályozásokhoz, változáselemzésekhez. Azonban az egyre 

jobb tulajdonságú szenzorok és a belőlük kinyert változókból előállított adathalmazok 

dimenziója hatalmas kihívást jelent a feldolgozás szempontjából. Ezen adathalmazok 

felhasználása a felszínborítás/területhasználat osztályozásban a hagyományos, többnyire 

lineáris (pixel, szubpixel alapú) osztályozó eljárásokkal nem hoznak kellően pontos és 

megbízható eredményeket. Erre a kihívásokkal teli feladat megoldására használhatók fel a gépi 

tanulás (machine learning) osztályozó algoritmusai. A különböző algoritmusokat, mint például 

a döntési fákat (decision tree), véletlen erdőket (random forest), tartó-vektor gépeket (support 

vector machine), mesterséges neurális hálókat (artifical neural networks) vagy gradiens-növelő 

gépeket (gradient boosting machines) tesztelhetjük és 

összehasonlíthatjuk. 

2.3. A gépi tanulás és algoritmusai a 

képfeldolgozásban 

A gépi tanulás a mesterséges intelligencia 

(artificial intelligence) tudományágának része, aminek 

olyan módszerek előállítása a célja, amelyek az 

adatokból tanulás által ismétlődően optimalizálják saját 

teljesítményüket (1. ábra) (Waske et al., 2009). A 

mesterséges intelligencia kutatása az 1950-es 

kezdődött, azt a kérdést kutatva, hogy tud-e a 

számítógép gondolatot létrehozni? A kérdés 

megválaszolása érdekében, Alain Turing, a fogalmi viták helyett létrehozott egy később róla 

elnevezett elméleti gyakorlatot (TURING, 1950), és innentől számíthatjuk a mesterséges 

intelligencia tudományát (Haugeland, 1989). Az általános megfogalmazása szerint a 

mesterséges intelligencia: erőfeszítések arra, hogy automatizáljuk azon intellektuális 

feladatokat, amiket alapvetően emberek végeznek el (Chollet, 2017).  

1. ábra Mesterséges intelligencia, 

gépi tanulás, és mély tanulás, 

(Chollet, 2017) alapján. 



Gudmann András Viktor – Disszertáció, 

Szegedi Tudományegyetem, Földtudományok Doktori Iskola 

12 

 

A gépi tanulás az 1990-es években kezdett el fejlődni és gyorsan a legnépszerűbb része 

lett a mesterséges intelligencia tudományának (Chollet, 2017). A gépi tanulás ahelyett, hogy 

szabályok sorozatát alakítaná ki, amelyek nagyban függenek az adott minta adatsortól, egy 

olyan modellt próbál felépíteni, ami képes felismerni az adathalmazban lévő mintázatokat. Ezek 

a minták kisebb mértékben függenek az 

adathalmaztól, és más adatsoron is sikeresen 

lehet alkalmazni őket. A gépi tanulás a 

következő kérdésre keresi a választ: képes a 

gép megtanulni önmagától, hogyan kell egy 

feladatot megoldani? Azaz ahelyett, hogy 

manuálisan határoznánk meg szabályokat, a 

gép képes-e az adatok alapján saját 

szabályokat létrehozni? A gépi tanulás 

során a felhasználó a bemenő és a várt adatokat adja meg, amelyek alapján az algoritmus 

formulákat alkot (2. ábra). Emiatt a gépi-tanulásos rendszerek nem külsőleg vannak 

programozva, hanem betanítva vannak.  

A gépi tanulásnak több közös metszete (módszerek, algoritmusok) van a statisztikával 

és az adatbányászattal, de mindegyik tudomány különbözik a másiktól, főleg céljaik miatt. A 

statisztika egy rendszert próbál megérteni az arról rendelkezésre álló adatok alapján, míg az 

adatbányászat célja a meglévő, hatalmas mennyiségű (petabyte, exabyte …) adatokból minél 

hatékonyabb módon információk kinyerése. Ezekkel ellentétben a gépi tanulás szabályokat, 

összefüggéseket keres egy adott, kisebb nagyságú adathalmazban, a feladatok automatizálása 

céljából (Karimi, 2014).  

 

2. ábra Hagyományos programozás és a gépi 

tanulás paradigmája (Chollet, 2017) alapján. 

3. ábra Algoritmusok besorolása (Waske et al., 2009) alapján. 
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A távérzékelésben a gépi tanulást többféle feladatra használhatjuk, úgymint az 

osztályozás, a regresszió, a klaszterezés (csoportosítás), a tulajdonság kinyerés, a 

dimenziócsökkentés és a sűrűség becslés (Waske et al., 2009). A bemenő adatok alapján 

háromféle csoportba sorolhatjuk a gépi tanulás módszereit: irányított algoritmusok (amelyeknél 

egyes eseteket ismerünk, van előzetes tudásunk az adatról, és azok fel vannak címkézve), 

irányítatlan algoritmusok (nincs előzetes tudásunk) és félig automatikus algoritmusok (a 

betanítás nem csak az ismert esetek alapján történik).  A távérzékelésben a gépi tanulási 

algoritmusokat legtöbbször irányított osztályozáshoz alkalmazzák (Waske et al., 2009). Az 

irányított, gépi tanulást alkalmazó osztályozó algoritmusok közül főleg a nem-parametrikus 

algoritmusokat szokták használni a szakemberek, melyek megfelelően alkalmazhatók a 

kiegyensúlyozatlan és nem normális eloszlású adathalmazokon is (3. ábra). Ezen algoritmusok 

közül azokat mutatom be részletesen a következő fejezetekben, amelyeket a kutatásomban 

felhasználtam, mint a tartó-vektor gép, a mesterséges neurális háló, a döntési fa, a véletlen erdő 

és a hisztogram-alapú gradiens-növelő fa. 

A tartó-vektor gép (Support Vector Machine – SVM) egy alapvetően bináris osztályozó 

eljárás, amely a Vepnik-Chervonenkis dimenzióelméleten és a minimális strukturális kockázati 

kritériumon alapul (Cortes és Vapnik, 1995). A bináris 

tartó-vektor gép egy hipersíkkal választja szét az 

adathalmazt, amelyet döntési határnak is nevezünk. Az 

eljárás alapproblémája az, hogy a lehetséges végtelen 

számú döntési határ közül olyat találjon az adattérben, 

amely a legnagyobb margóval rendelkezik (a hipersíkhoz 

legközelebbi pontok távolsága a lehető legnagyobb legyen), 

éppen ezért nevezik gyakran maximális margójú 

osztályozónak (maximal margin classifier) is (Boser et al., 

1992). A módszer egyedi jellege, hogy a döntési határt a tanuló esetek egy részhalmazának 

segítségével reprezentálja, amelyeket tartó-vektoroknak (support vector) nevezünk (4. ábra) 

(Tan et al., 2006). A nagy margóval rendelkező döntési határoknak általában jobb az 

általánosítási hibájuk, mint a kis margóval rendelkezőknek. Intuitívan, ha a margó kicsi, akkor 

a döntési határ bármilyen kis perturbációjának elég jelentős hatása lehet az osztályozásra. A kis 

margóval rendelkező döntési határokat létrehozó osztályozók ezért hajlamosabbak a modell 

túlillesztésre és korábban nem látott eseteken gyakran rosszul általánosítanak (Tan et al., 2006). 

A tartó-vektor gép betanulási fázisában, bináris osztályozási probléma esetén egy 

egyenes egyenletének w és b paramétereit keressük (5. ábra): 

𝑤 ∗ 𝑥 + 𝑏 = 0 

4. ábra A tartó-vektor gép két 

lehetséges döntési határa (Tan et 

al., 2006) alapján. 
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Ezeket a paramétereket úgy kell megválasztanunk, hogy az alábbi két feltétel 

teljesüljön: 

𝑤 ∗ 𝑥 + 𝑏 ≥ 1, ℎ𝑎 𝑦 = 1 

𝑤 ∗ 𝑥 + 𝑏 ≤ −1, ℎ𝑎 𝑦 = −1 

Ezek a feltételek fogalmazzák meg, hogy az összes tanulóesetnek, amik a négyzet 

osztályba tartoznak (y=1), a hipersík felső margóján (𝑤 ∗ 𝑥 + 𝑏 = 1) vagy felette kell lenniük. 

Míg, a kör kategóriába tartozó összes tanulóesetnek (y=–1) a hipersík alsó margóján (𝑤 ∗ 𝑥 +

𝑏 = −1)  vagy alatta kell lennie. Ezen feltételek mellett teljesülnie kell annak az elvnek is, hogy 

a döntési határ margója a lehető legnagyobb legyen. Ezt úgy lehet elérni, hogy minimalizáljuk 

az alábbi célfüggvényt: 

𝑓(𝑤) =
‖𝑤‖2

2
 

Ezt az elvet figyelembe véve egy lineáris 

tartó-vektor gép tanulási feladatát így 

összegezhetjük: 

𝑚𝑖𝑛
𝑤

‖𝑤‖2

2
 

𝑎ℎ𝑜𝑙 𝑡𝑒𝑙𝑗𝑒𝑠ü𝑙: 𝑦𝑖(𝑤 ∗ 𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2, … . , 𝑁 

Ez a konvex optimalizálási probléma a 

legegyszerűbben a Lagrange-szorzó módszerrel 

oldható meg (Tan et al., 2006). Abban az esetben, 

ha nem találunk megfelelő hipersíkot az 

adathalmaz felosztására (nem szeparálható eset), azaz nem megoldható az optimalizáló 

probléma, bevezethetünk egy új paramétert. A nem megfelelő hipersík okozta hibák elkerülése 

érdekében az algoritmus felépítése során paraméterként állíthatjuk be az elfogadható hibát (cost 

– C). Ezzel a paraméterrel befolyásolható, hogy a döntési határon túlra is eshet ellentétes 

kategóriájú pont, és  az milyen 

távolságra lehet a döntési határtól 

(minél nagyobb a távolság, annál 

nagyobb a hiba) (Bodon és Buza, 

2014). A tartó-vektor gépeknek két fő 

típusa van, a lineáris és a nem-lineáris 

tartó-vektor gépek. A lineáris tartó-

vektor gépeknél a döntési határ 

mindig egy egyenes (két 

dimenziónál), sík (három dimenziónál), vagy egy hipersík (több mint 3 dimenziónál). A nem-

6. ábra Az adattér átvetítése magasabb dimenziójú 

térbe (Bodon és Buza, 2014). 

5. ábra A tartó-vektor gép döntési 

határainak és margóinak egyenletei (Tan et 

al., 2006). 
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lineáris tartó-vektor gépeknél az eredeti adattér lineárisan nem szeparálható, így transzformálás 

segítségével olyan adattér hozható létre, ahol az esetek már elkülöníthetőek (6. ábra). A 

transzformáció után az adatérre egy olyan lineáris hipersík illeszthető, amely az eredeti 

bemeneti térben nem lineáris. A nem-lineáris tartó-vektor gépek alkalmazásának 

megkönnyítése érdekében, a transzformálást beleépíthetjük az eredeti pontokon értelmezett 

távolság függvénybe (kernelbe) (Bodon és Buza, 2014). Ezt az eljárást kernel trükknek is 

hívják, aminek köszönhetően a számítások az eredeti térben végezhetők el, így az algoritmus 

számítási igénye sokkal kisebb lesz, míg a dimenzió-problémával kapcsolatos kérdéseket 

elkerülhetjük (Tan et al., 2006). A kernel trükkhöz köthetően, a nem-lineáris tartó-vektor gépek 

költség paramétere mellett, másik alapvető paraméter a magasabb dimenziószámú térbe vetítést 

helyettesítő kernel (Bodon és Buza, 2014). A gyakorlati tapasztalatok alapján, a nem-lineáris 

tartó-vektor gépekkel magasabb pontosság érhető el, azonban nagy esetszámú adathalmazok (> 

10 000) esetén az adattranszformációk miatt a teljesítményük visszaesik, így ezekben az 

esetekben a lineáris változat alkalmazása ajánlott. A tartó-vektor gépek nagyon jól működnek 

sokdimenziós adatokkal, elkerülik a dimenzió problémát, ezért alkalmasak adatbányászati 

célokra is (Tan et al., 2006). A távérzékelésben a bináris osztályozási problémák száma csekély, 

így a tartó-vektor gépek felhasználása nem az alapvető bináris elválasztással történik, hanem 

többosztályos megoldásokkal. Ezek közül a leggyakrabban használt megoldások az egy az egy 

ellen szabály (one-against-one), amely minden egyes páronkénti osztály-kombinációt 

különválaszt, és az egy az összes ellen szabály (one-against-all), amely az egyes osztályok 

többiekhez képesti elkülönítésén alapul. A tartó-vektor gépek sokdimenziós adatokon nyújtott 

megfelelő teljesítménye miatt, főleg kis méretű hiperspektrális, multitemporális felvételeken és 

többforrású adathalmazokon alkalmazzák (Waske et al., 2009).  

A mesterséges neurális hálók alapvető ötlete ugyanazon a felvetésen alapul mint a többi, 

biológiai rendszert utánzó módszernek: A biológiai rendszerek az évmilliók fejlődésének 

köszönhetően rendkívül hatékonyan és kifinomultan működnek, így megfigyelésükkel és 

mesterséges úton történő létrehozásukkal hasonlóan hatékony szisztémákat tudunk létrehozni 

(Altrichter et al., 2006). Azonban a többi biológiai rendszerhez képest az emberi agy egy 

fölöttébb összetett, nemlineáris és párhuzamosan működő információ feldolgozó egység, 

különféle számítási kapacitásokkal (mintázat felismerés, érzékelés, érzékelt adatok 

feldolgozása, motorikus funkciók irányítása) (Haykin, 2009). Ennek a komplex rendszernek 

vizsgálataiból indult ki a mesterséges neurális hálók létrehozásának ötlete az 1940-es években. 

A első kutatások az agyban lévő idegrendszer felépítésének és számítási modelljének 

meghatározására irányultak (McCulloch és Pitts, 1943). Ezek alapján hoztak létre egy olyan 

számítási modellt, ami az emberi agyhoz hasonlóan működik. A számítási modell az emberi 
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agy idegsejtjeinek és hálózatának szerkezetét utánozza, ami neuronokból, dentrinekből és 

axonokból áll. A mesterséges neurális hálók ezt a szerkezetet lemásolva, az emberi idegrendszer 

struktúrájának és működésének analógiájára kiépített számítási mechanizmusok. Ebből 

kifolyólag nem értelmezni próbálnak egy jelenséget (és törvényszerűségeket megállapítani), 

hanem a bemenő adatok alapján matematikai úton próbálják azt újra előállítani, azaz fekete 

dobozként működnek. Emiatt működésükhöz csak adatokra van szükségük, további ismeret a 

jelenségről és annak felépítéséről és működési mechanizmusáról nem szükséges (Altrichter et 

al., 2006). 

A legelső, gyakorlatban hasznosítható neurális hálózatok a többrétegű perceptron hálók 

(multilayer perceptron network) voltak, amik az 1950-es évek végén jelentek meg és az 1960-

as évek végéig uralták a mesterséges neurális hálók tudományát. A többrétegű perceptron és 

neurális hálók fejlődését azonban visszavetette, hogy ezek a hálózatok még csak lineárisan 

szeparálható osztályozási feladatokat tudtak megoldani, így felhasználatóságuk erősen 

korlátozott volt (Altrichter et al., 2006). A kutatásoknak az 1980-as években két különálló ötlet 

adott új lendületet. Az egyik John Hopfield munkája volt, a statisztikus mechanika 

felhasználhatósága a visszacsatolt (rekurrens) neurális háló terén. Ezáltal lehetővé vált 

különböző optimalizálási feladatok megoldása. A másik, a többrétegű perceptronok 

betanításánál használható hiba-visszaterjesztési algoritmus (backpropagation) kifejlesztése. Az 

eljárást először 1974-ben Paul Werbos írta le disszertációjában (Werbos, 1974), azonban 

először csak az 1980-as évek közepén alkalmazták és publikálták tudományos folyóiratban 

(Hagan Demuth, Howard B., Beale, Mark H., 1996). A hiba-visszaterjesztési algoritmusnak 

köszönhetően a többrétegű perceptron hálózatok képesek lettek nemlineáris problémák 

megoldására, ami megnyitotta az utat a széleskörű alkalmazásukra, amik új korszakot jelentett 

a neurális hálózatok fejlesztésében. Ennek új lendületet adtak a 2010-es évek elején elindult 

mélytanulásos (deep learning) neurális hálók, amik akár több tíz vagy akár száz rejtett réteget 

is felhasználnak. Az ilyen hálók felhasználásával már az ember szintjéhez hasonlóan tudunk 

képosztályozást, beszédfelismerést, kézírás digitalizációt elvégezni, továbbá számos más 

területen is jelentős előrelépést értek el, mint a gépi fordítás, a szöveg-beszéd átalakítás, a 

digitális asszisztensek és az autonóm vezetés (Chollet, 2017).  
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A mesterséges neurális hálók alapvetően három kulcsfontosságú tulajdonossággal 

rendelkeznek. (1) Általában nagyszámú, egyszerű, lokális feldolgozást végző számítási 

eszközökből (neuronokból) állnak, amik nagymértékben össze vannak kapcsolva. (2) Tanulási 

algoritmussal rendelkeznek, ami meghatározza az információfeldolgozás módját. (3) Képesek 

a betanított információt felhasználni az ezt lehetővé tévő előhívási algoritmussal. A neuronok 

egy több-bemenetű és egy-kimenetű eszközök, amelyek a bemenetekből valamilyen függvény 

alkalmazásával új értékeket hoznak létre. A neuronok közül a legelterjedtebb változat, a 

memória nélküli neuron (perceptron) (7. ábra). Ennél a neuronnál az xi bemenetek wi súlyokkal 

összegződnek és a b (bias – torzítás) értékkel együtt adják ki az összegzett bementet, vagy más 

néven ingert (s). Így kerülnek felhasználásra az aktivációs függvényben (ƒ), ami megadja a 

kimenetet (y) (Altrichter et al., 2006). Ezek a neuronok önmagukban nem alkalmasak komplex 

feladatok kiszámítására, ezért szükséges őket (rejtett) rétegekbe összerendezve, párhuzamosan 

használni (8. ábra). A rétegekbe rendezett neuronok 

meghatározott topológiájú összekapcsolásával alakíthatunk 

ki neurális hálózatokat. A rejtett rétegek és a rétegekben lévő 

neuronok száma határozza meg a háló tanulási kapacitását. 

A neurális hálók működésében két fázist tudunk jól 

elkülöníteni. Az első a tanulási, amelynek során a neurális 

hálót alakítjuk ki a meglévő bemenő és kimenő adataink 

(bemenő és kimenő) segítségével. A tanulási fázisban iteratív 

módon a hálózatba beépítjük és eltároljuk az adatainkban lévő 

ismert és rejtett információkat. Eredményül egy betanított 

hálót kapunk, amivel képesek vagyunk új adatokat 

7. ábra Memória nélküli neuron (perceptron) felépítése, (Altrichter et al., 2006) és (Haykin, 

2009) alapján. 

8. ábra Egyszerű, egyrétegű 

neurális háló. 
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feldolgozni. A második fázis az előhívási fázis, melynek során új, ismeretlen adatokat 

dolgozunk fel a betanított hálónk segítségével, aminek a végén új eredményeket kapunk 

(Altrichter et al., 2006).  

Az egyszerű elemekből történő felépülése, az aktivációs függvénynek és a hiba-

visszaterjesztésnek köszönhető nem-linearitása és adaptivitása nagyban hozzájárult, hogy a 

mesterséges neurális hálók a távérzékelésben is hamar elterjedjenek. Több különböző neurális 

hálót alkalmazó módszert fejlesztettek ki az évek során, különböző feladatok megoldására, mint 

a minta felismerés, objektum azonosítás, képosztályozás (Chollet, 2017). A képosztályozásban 

főleg a többrétegű perceptron hálót alkalmazzák hiba-visszaterjesztési algoritmussal, valamint 

konvolúciós neurális hálót (Convolutional Neural Network – CNN). A neurális háló 

felépítésének köszönhetően minden adatforráshoz különböző súlyok alkalmazhatóak, ezért 

hasznosak a több adatforrásból épülő alkalmazásokban pl. a multitemporális (Zhu et al., 2021) 

és különböző szenzorokat felhasználó osztályozások (Ienco et al., 2019; Seydi et al., 2020). 

Emellett a neurális hálók alkalmazásával olyan osztályozási fogatókönyvekben is nagy 

pontosságot lehet elérni, ahol eddig nem sikerült elfogadható megoldást találni. Azonban az 

előnyei ellenére a teljesítménye nagyban függ a megfelelő számú és minőségű tanító adattól 

(Waske et al., 2009). A nagyszámú bemenő adat mellett, a betanítási fázis hardveres 

erőforrásigénye is jelentős, ami a mélytanulásos neurális hálók megjelenésével még tovább 

nőtt. Azonban a betanítási fázis után a modell az új adatok becslésénél már nagyon gyors. Ezért 

a neurális hálók meghatározása (rejtett rétegek száma, neuronok száma, aktivációs függvény, 

optimalizációs módszer, kiesési ráta, tanulási ráta), a modellépítő paramétereinek 

optimalizálása, illetve a hálók célorientált beállítása mélyebb felhasználói ismereteket 

igényelnek.  

 

9. ábra Egy döntési fa egyszerűsített szerkezete. 
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A döntési fa algoritmus alapötlete, hogy bonyolult összefüggéseket egyszerű döntések 

sorozatára vezeti vissza. Ezt az ötletet algoritmusként már 1977-ben megfogalmazta Swain és 

Hauska (Swain és Hauska, 1977). A döntési fa egy hierarchikus osztályozási módszer, ami egy 

fára hasonlít (gyökérből, ágakból, csomópontokból és levelekből áll) (9. ábra). A módszer az 

adatokat úgy osztályozza, hogy azokat rekurzívan egyre kisebb és homogénebb részekre bontja 

szét. A részekre bontás addig történik, amíg az összes pixel egy olyan csoportba nem kerül, ami 

teljesen elkülönül a többi osztálytól vagy az előre meghatározott feltételek nem teljesülnek 

(Jiang et al., 2010)⁠. Egy ismeretlen minta osztályozásakor a fa gyökeréből kiindulva a 

csomópontokban feltett kérdésekre adott válaszoknak megfelelően addig lépked lefelé a fában, 

amíg egy levélbe nem ér. A döntési szabályok sorozatának eredményét a levél címkéje 

határozza meg (Bodon és Buza, 2014)⁠. Egyszerűségének köszönhetően a döntési fa a nyers adat 

értelmezésének, megjelenítésének, és az adatban rejlő minták és fontos információk 

kinyerésének egyik leghatékonyabb módja. 

A döntési fa tartalmaz egy gyökér csúcsot, megadott számú belső csúcsot és leállítási 

csúcsokat. A gyökeret és a belső csúcsokat egységesen nem-leállítási csúcsoknak nevezzük. A 

leállítási csúcsok maguk az osztályozás végső eredményeit mutatják. Az azonos szinten lévő 

csúcsokat, amelyek ugyanakkora távolságra helyezkednek el a gyökértől, együttesen rétegnek 

nevezzük (Swain és Hauska, 1977)⁠ (9. ábra). A nem-leállítási csúcsokban egy-egy attribútum 

értékének vizsgálata történik, a csúcsok közötti élek e vizsgálat eredményével (az adott 

attribútum megfelelő értékével) vannak felcímkézve, míg a leállítási csúcsok magát a döntést 

(vagyis a megfelelő osztályt reprezentáló attribútum értékét) tartalmazzák (Bényász, 2010). A 

döntési fa modell tanítási fázisa egy elválasztási eljárás. Első lépésben a teljes tanító adathalmaz 

áll rendelkezésünkre, ez lesz a gyökér, az első csúcs. Az adathalmaz szétválasztása során egy 

felhasználó által választott metrikával (pl. Gini index, entrópia) megkeressük azt az 

attribútumot, amellyel legjobban szeparálható az adathalmaz. Ezután a kiválasztott attribútum 

minden lehetséges értékével elágazást készítünk, és ezekkel osztjuk szét az adathalmazt. 

Amelyik értékkel optimális az elválasztás, az kerül a végleges modell csomópontjába/csúcsába. 

Ez a szétválasztási folyamat addig ismétlődik, amíg a modell el nem ér egy megállítási 

kritériumot vagy a végződésben lévő összes eset egy osztályba nem tartozik (Bodon és Buza, 

2014). ⁠ Megállítási kritériumok: 

• Nincs több attribútum, ami alapján az elemeket tovább tudjuk osztani. Ekkor a 

csomóponthoz tartozó osztály az lesz, amelyikhez a legtöbb tanítópont tartozik. 

• Az adott mélység elért egy előre meghatározott korlátot. (modell nagyság) 

• Nincs olyan vágás, ami javítani tudna az aktuális osztályozáson. 

• A végződés elérte a minimális nagyságot. (minimális végződés nagyság) 
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Általában a gyökérhez közel az osztályozáshoz szükséges legfontosabb változók 

helyezkednek el, mivel segítségükkel lehet a legjobban szeparálni az adathalmazt. A 

kiválasztott fa struktúra és a bemeneti tulajdonságok határozzák meg a modell teljesítményt és 

a hatékonyságot (Swain és Hauska, 1977)⁠. A modell hatékonyságát javíthatjuk metszéssel, 

amely során eltávolítjuk (összevonjuk magasabb szintre) az összes olyan végződést, amely nem 

növeli az összpontosságot, ezáltal a döntési fa mérete csökkenthető, futási ideje, illetve a 

túltanítás mértéke is csökken. Az optimális döntési fa a lehető legkisebb méret mellett 

(legkevesebb réteggel rendelkezik), a lehető legnagyobb pontossággal rendelkezik és a tanító 

és tesztadaton is közel azonos teljesítményt nyújt. 

A döntési fa előnyös tulajdonsága, hogy a gyökérből a leállítási csúcsokba vezető 

szabályok sorozatát összeolvasva könnyen értelmezhetjük az eredményeket. Ennek 

köszönhetően az osztályozás eredményei mindenki számára érthető módon reprezentálhatjuk. 

További előnye, hogy egyszerű működésének köszönhetően robusztusan viselkedik nagy 

adathalmazokon is, különböző adatelosztási jellemzők mellett is. A távérzékelt képi adatok 

jellemzői és a forrásadatok dimenziói különböző statisztikai eloszlással és skálákkal 

rendelkezhetnek, amelyek osztályozásánál a döntési fa jobb eredményeket ad, mint a 

hagyományos parametrikus osztályozók (Jiang et al., 2010). Azonban az új adatok és 

módszerek mellett a döntési fa már csak alaposztályozóként jelenik meg az együttes 

osztályozókban (ensemble learners). A további két eljárás is ezen az algoritmuson alapuló 

együttes osztályozó.  

A véletlen erdő egy együttes osztályozási módszer, amelyet kimondottan a döntési fa 

osztályozókhoz terveztek és a 2010-es évek elején nőtt meg a népszerűsége. A véletlen erdő 

döntési fák olyan halmaza, amely a döntési fák által leadott előrejelzéseket kombinálja, egy 

többségi szavazási séma segítségével (Tan et al., 2006) (10. ábra). Az erdő általánosított hibája 

két paramétertől függ. Az egyik, hogy az egyes önálló osztályozók mennyire pontosak és a 

különböző osztályozók mennyire függetlenek egymástól, azaz az erdőben lévő egyes fák 

erejétől és a köztük lévő korrelációtól (Breiman, 2001).  

  

10. ábra Véletlen erdő osztályozó algoritmus modellje. 
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A modellépítő eljárás során az általánosított hiba csökkentése érdekében, a 

véletlenszerűség növelésével a fák közötti korreláció csökkenthető. Ennek egyik módja a 

’zsákolás’ (bagging) alkalmazása, amely során az eredeti tanulóhalmazból véletlenszerűen 

választott mintákat viszünk a modellépítő eljárásba (Breiman, 1996). A zsákolás ismétlődően 

egyenletes eloszlás szerint úgy mintavételez, hogy az egyes mintahalmazok ugyanolyan 

méretűek legyenek, de az egyes esetek többször is szerepelhetnek az adathalmazokban, míg 

mások nem kerülnek be a mintaadatok közé (Tan et al, 2011). A zsákolás használata mellett 

szól, hogy a véletlen attribútum kiválasztással együtt használva növeli a pontosságot és lehetővé 

teszi a teljes együttes osztályozó általánosított hibájának, pontosságának és korrelációjának 

folyamatos becslését. Ezeket a becsléseket zsákon kívüli becsléssel (out of bag) lehet 

kiszámítani, melynek lényege, hogy az egy zsákolás által kiválasztott részadathalmazon 

betanított modell pontosságát a tanító adathalmaz maradék esetein (amik nem kerültek a 

zsákba) futtatjuk le és vizsgáljuk meg annak pontosságát. 

A modellépítő eljárás számára több paramétert kell megadni: (1) a „zsák” nagyságát (P), 

azaz, hogy a teljes adathalmazhoz képest mekkora méretű adathalmazt válaszon ki 

véletlenszerűen egy fa létrehozásához; (2) az erdő nagyságát (N), hogy mennyi fát hozzon létre 

az algoritmus, illetve, (3) mennyi attribútumot (M) használjon fel az eljárás az egyes fák 

létrehozásakor (Breiman, 2001). A modellépítő eljárás minden egyedi osztályozó esetében 

először zsákolással választ ki egy véletlenszerű adathalmazt az eredeti tanító adathalmazból. A 

véletlen tulajdonság kiválasztással előállítja a betanításhoz szükséges adathalmazt, amelyen 

végrehajtja a modell metszés nélküli betanítását. A P nagyságú véletlenszerűen kiválasztott 

adaton, M számú attribútum segítségével az N db létrehozott döntési fa mindegyike lead egy 

szavazatot és végeredménynek a leggyakoribbat döntést fogjuk kapni (Breiman, 2001). A 

modell teljesítményének (modellépítési idő, becslési idő) növelése érdekében, az eredeti 

koncepcióval szemben, korlátozhatjuk az egyes fák nagyságát különböző paraméterek 

segítségével: a fa maximális mélységének, a nem leállítási csúcsban lévő vágáshoz szükséges 

minimális esetek számának, a lehetséges leállítási csúcsok számának vagy a bennük lévő 

minimális esetszám meghatározásával. Ezen modellépítő paraméterek alkalmazásánál meg kell 

találni azokat az optimális beállításokat, amelyekkel a legkisebb pontosságvesztés mellett a 

legnagyobb teljesítmény növekedést érhetjük el. 

A véletlen erdő előnye a döntési fához képest, hogy robusztusabb az adathalmazban 

lévő zajra és a túltanításra, képes kiegyensúlyozatlan és hiányos adathalmazokat is kezelni, 

miközben az osztályozási pontossága nem romlik (Pal, 2005). Ezenkívül a modellben lévő 

egyes fák a döntési szabályt minden egyes csomópontban a bemeneti adatoknak csak egy 

véletlenszerűen kiválasztott jellemző részhalmaza alapján határozzák meg. A jellemzők 
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számának csökkentésével minden egyes felosztásnál egyszerűsödik az egyes fák számítási 

komplexitása, amely a számítási kapacitás szempontjából előnyös módszert eredményez. Ez 

teszi lehetővé a véletlen erdő számára, hogy nagy dimenziós adathalmazokat kezeljen (Waske 

et al., 2009). Ezen tulajdonságainak köszönhetően a távérzékelt adatok képosztályozásában 

gyakori kiegyensúlyozatlan, zajos, nagy dimenziós adatokon is jó teljesítményt nyújt. Hátránya, 

hogy a modell építése több időt vesz igénybe, és nagyobb hardveres követelményeket támaszt. 

Valamint a modellbe már nem látunk bele közvetlenül, csak az összesített előrejelzéseket 

kapjuk meg eredményül, azaz már nem tekinthető „White-boksz” modellnek.  

A gradiens-növelő gép egy olyan együttes módszer, amely különböző gyenge 

alaptanulókat (döntési fákat és neurális hálókat) használ osztályozási vagy regressziós feladatok 

megoldásához (Friedman, 2001). A gradiens-növelő gép a modellt előrefelé lépcsőzetes módon 

építi fel, ami lehetővé teszi egy tetszőleges differenciálható veszteségfüggvény optimalizálását 

(Friedman, 2002). A gradiens-növelő fa a gradiens-növelő gép egy fajtája, ahol az alaptanuló 

egy döntési fa, legtöbb esetben egy regressziós fa, ezért is szokták sokszor gradiens-növelő 

regressziós fának nevezni (Gradient Boosted Regression Tree) (Olexó, 2018). A gradiens 

növelés során, iteratív módon olyan új modelleket tanítunk be, amelyek a korábbi modellek 

gyenge pontjainak kezelésére specializálódnak (Chollet, 2017).  

 

A modellépítési fázisban, az adathalmazunk célváltozójából számított konstans értékhez 

(pl. átlag, medián) képest számított eltéréseket (negatív gradiens) határoz meg esetenként, 

valamilyen felhasználó által választott veszteségfüggvény segítségével (11. ábra). Ezen 

11. ábra A gradiens-növelő gép felépítése, döntési fák alkalmazásával, mint alap tanulók. 
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eltérések becslésére, a magyarázó változók felhasználásával épít fel egy döntési fát, amelynek 

a mérete valamilyen mértékben korlátozott (általában a maximális mélysége). A célváltozó 

konstans értékével, a döntési fa szabályai által megadott esetek eltérési értékeivel és egy 

konstans tanulási értékkel (tanulási ráta) együtt kerülnek meghatározásra a köztes becsült 

értékek. A becsült értékekből számított eltérések felhasználásával épül fel a következő döntési 

fa és számíthatók ki az új becsült értékek a már említett módon. A modellépítési fázis addig 

tart, amíg a felhasználó által megadott iterációk (döntési fák) számát el nem éri a modellépítés 

(Olexó, 2018). Az előbb bemutatott regressziós feladattól eltérően, az osztályozás során a 

modell az adathalmazunk célváltozójából nem konstans értéket határoz meg, hanem a 

célváltozó átlagos valószínűségét. Az átlagos valószínűséghez képest tudunk eltéréseket 

meghatározni esetenként, valamilyen felhasználó által választott veszteségfüggvény 

segítségével. A gradiens-növelő fa algoritmus a véletlen erdőhöz hasonló tulajdonságokkal 

rendelkezik ugyanazon alaptanulónak köszönhetően. Ilyen tulajdonság a jól skálázhatóság, 

robusztusság az adathalmazban lévő hiányokra és zajokra. Azonban a gradiens-növelő fa, a 

sztochasztikus gradiensnövelés módszerének köszönhetően a legtöbb esetben felülmúlja a 

véletlen erdő teljesítményét (pontosság, futási idő). Ezt jól mutatja, hogy 2014-ig a kaggle 

(https://www.kaggle.com/) versenyeken domináns véletlen erdőt a gradiens-növelő gépek, 

illetve azok extrém gradiens-növelő változataik (XGBoost) váltották le (Chollet, 2017). A mély 

tanulásos mesterséges neurális hálók mellett, jelenleg ez a leggyakrabban használt módszer. Az 

általam alkalmazott hisztogram-alapú gradiens-növelő fa, a gradiens-növelő fa olyan változata, 

amely a bemenő adatokat egész szám alakú részekre bontja, amiken az algoritmus egész értékű 

adatstruktúrákat (hisztogramokat) tud használni. Ezzel a módszerrel az algoritmus 

nagyságrendekkel gyorsabb, mint a sima gradiens-növelő fa, főleg a tízezer mintánál nagyobb 

mintán alkalmazzuk.  

2.4. Felszínborítás és területhasználat osztályozási módszerek a távérzékelésben, hazai 

és nemzetközi példákon keresztül 

A felszínborítás és területhasználat térképezés a műholdas távérzékelés alapvető 

feladata már a tudomány kialakulása óta. A térképezési feladat automatizálásához szükséges 

képosztályozási módszerek keresése és fejlesztése a feladattal egyidős. Egyik kulcsproblémáját 

a felszínborítás és területhasználat fogalmából eredő regionális és értelmezésbeli eltérések 

okozzák, ami miatt a térképezéshez használt, egységes standardizált osztályozási rendszer 

kialakítása komoly kihívást jelent. Az első fontosabb ilyen, az Anderson által az Egyesült 

Államok Geológiai Szolgálata (United States Geological Survey – USGS) számára létrehozott 

4 hierarchikus szintből álló osztályozási rendszer (Anderson et al., 1976). Az egyes hierarchia 

szinteken lévő osztályokat, különböző felbontású távérzékelt adatok, és a belőlük levezethető 
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objektumok alapján különíti el. A hierarchiában lefelé haladva az egyes szintek előállításához 

100-20 méter, 20-5 méter, 5-1 méter és 1 méter alatti térbeli felbontású adatokat szükségesek. 

A nomenklatúrában az első szinten lévő 9 osztály felszínborítási, míg a többi hierarchia szinten 

lévők már területhasználati kategóriák. Ez adta az alapot az azóta megjelenő számos regionális 

és globális osztályozási rendszernek. 

A globális osztályozási rendszerek közül az Egyesült Nemzetek Szervezetének 

Élelmezésügyi és Mezőgazdasági Szervezete (FAO) hozta létre az első 8 osztályos, széleskörű, 

standardizált a priori osztályozási rendszert, amely döntési szabályok kombinációjával 

határozza meg az egyes felszínborítási osztályokat. A rendszer kialakításának köszönhetően, 

méretaránytól független és a felhasználók igényeihez alkalmazkodik (Gregorio és Jansen, 

2000). Ez az osztályozási rendszer is hozzájárult a későbbi GLC2000-es (Global Land Cover 

2000) adatbázis létrehozásához, amiben több mint 30 kutató csoport együttesen vett részt és 

hozott létre egy globális lefedettségű felszínborítási térképet. Az adatbázis alapját egy 14 

hónapos időszak (1999.11.01–2000.12.31) SPOT 4 műholdfelvételei szolgáltatták. Az 

adatbázis létrehozásakor a különböző csoportok eltérő osztályozási módszert alkalmaztak a 

helyi feltételeknek megfelelően (Bartholomé és Belward, 2005). Ehhez képest előrelépést 

hozott a Friedl és munkatársai által kidolgozott osztályozási módszer, amely a 2000 – 2001-es 

években készített MODIS műholdfelvételek képosztályozásával hozott létre globális 

felszínborítási térképet (Friedl et al., 2002). Egy 18 osztályt tartalmazó nomenklatúrát 

használtak fel képosztályozáshoz, amely elvégzéséhez egyváltozós döntési fa (C 4.5) és 

mesterséges neurális háló (ARTMAP) módszereket teszteltek. A rendszerben végül a döntési 

fa algoritmust implementálták, mivel a neurális háló nehezen tudta kezelni a hiányzó és zajos 

adatokat (főleg a felhőzet miatt) (Friedl et al., 2002). Szintén döntési fa osztályozó algoritmust 

alkalmaztak kínai kutatók a GlobeLand30 adatbázis létrehozásakor (Chen et al., 2014). A 

döntési fa osztályozót egy hierarchikus osztályozási szisztémában kombinálták egy objektum 

alapú módszerrel, a 10 felszínborítási kategória lehatárolásához. Az adatbázis létrehozásakor 

az egyes osztályokat egymás után nyerték ki a felvételekből és a már kinyert kategóriákat 

maszkolták a felvételekből. Az adatbázis alapját a 2000 és 2010 között készült Landsat 

műholdfelvételek adták és kiegészítő adatként a Huan Jing-1 (HJ-1) felvételeit is felhasználták 

(Chen et al., 2014).  

Az első fontosabb regionális adatbázisokat az 1990-es években állították elő. Az 

Egyesült Államok Geológiai Szolgálata által létrehozott Nemzeti Felszínborítási Adat 1992 

(National Land Cover Data 92 – NLCD92) Landsat-5 műholdképek alapján készült. A 

projektben klaszterező irányítatlan osztályozást alkalmaztak a műholdfelvételeken, majd a 

kialakított pixelcsoportokat ortofotók segítségével azonosították be. Az osztályozás 
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eredményeképp létrehozott adatbázis 21 tematikus osztályt tartalmaz és az USA 48 államát fedi 

le (Vogelmann et al., 2001). A következő NLCD adatbázis módszertanán módosítottak és egy 

előre meghatározott 16 osztályos nomenklatúra alapján döntési fa osztályozó segítségével 

készítették el az adatbázisokat (Homer et al., 2007). Az európai osztályozási rendszerek és 

adatbázisok közül a CORINE Land Cover, 3 szintű és 44 osztályos osztályozási rendszerét 

(Büttner et al., 2000) és a nemzeti és EU szinten is alkalmazható EAGLE (EIONET Action 

Group on Land Monitoring) modellt (Arnold et al., 2013) kell megemlíteni. Az EAGLE modell 

a tájat olyan felszínborítás komponensek segítségével írja le, amelyek teljeskörűek és 

kölcsönösen kizárják egymást. Az Európai Környezetvédelmi Ügynökség (EEA) 

koordinációjával készült CORINE Land Cover (CLC) adatbázis kontinentális szintű 

felszínborítási térkép, amely az Európai Közösség területéről szolgáltat információt 1990 óta. 

Ezt az adatbázist a későbbiekben részletesen bemutatom. A meglévő CLC adatbázisok 

kiegészítése céljából az EEA öt nagyfelbontású (20 m térbeli felbontású) réteget (HRL) 

készített el Európa 39 országára. Ilyen rétegek az imperviousness (talajfedés mértéke), forest 

(lombkorona fedettség és erdő típus), natural and semi-natural grasslands (füves területek), 

wetlands (vizenyős területek), water bodies (állandó vízfelületek) stb.. A rétegek elkészítési 

módja a réteg típusától függően változott (NDVI vizsgálat, szegmentáció, fél-automatikus 

osztályozás) (Langanke, 2016b, 2016c, 2016a, 2017). 

A CLC adatbázis előállítására és az eredeti adatbázis előállításából származó hátrányok 

leküzdésére már több automatikus vagy fél-automatikus osztályozási módszert alakítottak ki. 

Ezek a módszerek a CLC nomenklatúra egy részének vagy egészének felhasználásával lokális 

vagy kontinentális léptékű térképek előállítására irányultak. Esch és társai fél-automatikus és 

objektum orientált osztályozást felhasználva hoztak létre térképeket, és az osztályozás 

eredményeit vizuális interpretációval segítették (Esch et al., 2004). A vizsgálatban 

multispektrális műholdképek (Landsat-7) és a képekből szegmentálás útján előállított textúra 

rétegek szolgáltatták az osztályozás alapját. Ahol az osztályozás nem volt elég pontos vagy a 

pixelek osztályozatlanok maradtak, az osztályozás eredményeinek javítása érdekében vizuális 

interpretálást alkalmaztak. A kidolgozott módszer a nomenklatúra első szintjén 90%-os 

pontosságot eredményezett, viszont a 2. és 3. szinten akadályok adódtak a kategóriák 

elkülönítésében. Balzter és társai már véletlen erdő algoritmust alkalmazva, a CLC 

nomenklatúra 2. és 3. hierarchia szintjén lévő osztályok kombinálásával hoztak létre térképet 

(Balzter et al., 2015). Az osztályozáshoz Sentinel-1, SRTM adatokat és belőlük számított 

derivátumokat használtak fel. A módosított nomenklatúrával és az összes adat felhasználásával 

(Sentinel adatok, SRTM digitális magassági modell, lejtőszög, kitettség) 68,4%-os 

összpontosságot értek el. Szintén véletlen erdő osztályozó módszert használt Malinowski és 
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társai, kontinentális léptékű, CLC nomenklatúra alapú osztályozáshoz, amely optikai Sentinel-

2-es felvételeken alapult (Malinowski et al., 2020). Az osztályozás során, a 2017-es évből 

származó multitemporális adatok és a belőlük kiszámított, összes 2 sávos index kombinációt 

felhasználva 13 osztályt határoltak le. Az eredmények alapján 86,1%-os összpontosságot értek 

el kontinentális szinten, azonban egyes osztályok csupán 50% alatti pontossági értéket értek el 

(ideiglenes hó, mocsári növényzet és lápok). 

Magyarország területére (Kosztra et al., 2016) készített nagyfelbontású (20 m) CLC 

adatbázist hazai és európai felszínborítás és területhasználat adatok konverziójával. A CLC 

osztályok létrehozásához az EAGLE mátrixot használták, aminek segítségével meghatározták 

a CLC kategóriákat leíró felszínborítás, területhasználat és egyéb információkat. Ezt követően 

a hazai és európai felszínborítás és területhasználat adatokból lekérdezések segítségével hozták 

létre a nemzeti CLC osztályait. A teljes pontosságra 3. szinten 75,4%-ot, 1. szinten 88,7%-ot 

kaptak. Szintén Magyarország területére hoztak létre a felszínborítást is leíró ökoszisztéma 

alaptérképet Tanács és társai (Tanács et al., 2019). Az alaptérképet 2015/16/17-es 

magyarországi és európai adatbázisok (MePAR, VINGIS, ESZIR-OEA stb.) együttes 

felhasználásával 20m-es térbeli felbontással készítették el. Az alaptérkép 3 szintes 

nomenklatúrája a MAES-, az EUNIS- és a magyar ÁNÉR-rendszer kategóriáira támaszkodva 

lett kialakítva. A létrehozott térkép átlagos pontossága az összevont kategóriák esetében 97,4%. 
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3. Felhasznált adatok 

3.1. Coordination of information on the environment (CORINE) Land Cover (CLC) 

A CLC programot az 

egységes környezeti politika 

kialakításának elősegítése 

érdekében indította el az 

Európai Közösség 1985-ben. 

A program célja, hogy 

adatokat állítson elő a 

Közösség tagországainak 

felszínborításáról, amit 

mindig az adott tagország erre 

szakosodott szerve állít elő, 

vizuális interpretációval.  A 

módszer előnye, hogy az 

interpretálást végző 

szakemberek a kép több 

tulajdonságát is figyelembe 

tudják venni (szín, tónus, 

textúra, méret, alak) és több 

kiegészítő információforrást 

is igénybe vehetnek 

(nagyfelbontású 

műholdképek, ortofotók, 

terepbejárás, helyszín leírások) 

a kérdéses területek besorolásához. Az elkészült nemzeti felszínborítási térképeket integrálják 

az egységes európai adatbázisba. A legkisebb térképezési egysége 25 hektár, vonalas részeknél 

a minimális szélesség 100 méter. Az adatok felhasználhatósága és összevethetősége érdekében 

a térképeket egy egységes háromszintes nomenklatúra alapján készítik el. A nomenklatúrája 

első szinten 5, a második szinten 15, a harmadik szinten 44 darab osztályt tartalmaz (Mari és 

Mattányi, 2002) (1. táblázat). A CLC program keretében eddig 5 adatbázis készült el: 1990-es, 

2000-es, 2006-os, 2012-es és 2018-as évekre. Az adatbázisok mindegyike ingyenesen elérhető 

a Copernicus Land Monitoring Service honlapjáról (https://land.copernicus.eu/pan-

european/corine-land-cover). A kutatásom során az összes eddigi CLC adatbázist 

felhasználtam különböző módon (12. ábra). 

12. ábra A Pesti hordalékkúp-síkság a CLC18-as adatbázis 

alapján 

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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1. táblázat A CLC nomenklatúrája. 

1. 

Mesterséges 

felszínek 

1.1. Lakott területek 
1.1.1 Összefüggő településszerkezet 

1.1.2 Nem összefüggő településszerkezet 

1.2. Ipari, kereskedelmi területek és 

közlekedési hálózatok 

1.2.1 Ipari vagy kereskedelmi területek 

1.2.2 Út - és vasúthálózat és csatlakozó területek 

1.2.3 Kikötők 

1.2.4 Repülőterek 

1.3. Bányák, lerakóhelyek és építési 

munkahelyek 

1.3.1 Nyersanyag kitermelés 

1.3.2 Lerakóhelyek, meddőhányók 

1.3.3 Építési munkahelyek 

1.4. Mesterséges, nem mezőgazdasági 

zöldterületek 

1.4.1 Városi zöldterületek 

1.4.2 Sport-, szabadidő- és üdülőterületek 

2. 

Mezőgazdas

ági területek 

2.1. Szántóföldek 

2.1.1 Nem öntözött szántóföldek 

2.1.2 Állandóan öntözött területek 

2.1.3 Rizsföldek 

2.2. Állandó növényi kultúrák 

2.2.1 Szőlők 

2.2.2 Gyümölcsösok, bogyósok 

2.2.3 Olajfa ültetvények 

2.3. Legelők 2.3.1 Rét, legelő 

2.4. Vegyes mezőgazdasági területek 

2.4.1 Egynyári kultúrák állandó kultúrákkal vegyesen 

2.4.2 Komplex művelési szerkezet 

2.4.3 Elsődlegesen mezőgazdasági területek jelentős 

természetes növényzettel 

2.4.4 Mezőgazdasági-erdészeti területek 

3. Erdők és 

természetköz

eli területek 

3.1. Erdők 

3.1.1 Lomblevelű erdők 

3.1.2 Tűlevelű erdők 

3.1.3 Vegyes erdők 

3.2. Cserjés és/vagy lágyszárú 

növényzet 

3.2.1 Természetes gyepek, természetközeli rétek 

3.2.2 Törpecserjés, cserjés területek, fenyérek 

3.2.3 Keménylevelű (szklerofil) növényzet 

3.2.4 Átmeneti erdős-cserjés területek 

3.3. Növényzet nélküli, vagy kevés 

növényzettel fedett nyílt területek 

3.3.1 Homokos tengerpartok, dűnék, homok 

3.3.2 Csupasz sziklák 

3.3.3 Ritkás növényzet 

3.3.4 Leégett területek 

3.3.5 Gleccserek, örök hó 

4. Vizenyős 

területek 

4.1. Belső (szárazföldi) vizenyős 

területek 

4.1.1 Szárazföldi mocsarak 

4.1.2 Tőzeglápok 

4.2. Tengermelléki vizenyős területek 

4.2.1 Tengermelléki mocsarak 

4.2.2 Sólepárlók 

4.2.3 Ár-apály által érintett területek 

5. 

Vízfelületek 

5.1. Kontinentális vizek 
5.1.1 Folyóvizek, vízi utak 

5.1.2 Állóvizek 

5.2. Tengeri vízfelületek 

5.2.1 Tengerparti lagúnák 

5.2.2 Folyótorkolatok 

5.2.3 Tenger és óceán 



Gudmann András Viktor – Disszertáció, 

Szegedi Tudományegyetem, Földtudományok Doktori Iskola 

29 

 

 Az adatbázis fontosságát és alkalmazhatóságát jól mutatja a széleskörű felhasználása, 

mint pl. a változás vizsgálatok (Cole et al., 2018; Feranec et al., 2010; Szilassi, 2017), ’urban 

sprawl’ (Kovács et al., 2019; Steurer és Bayr, 2020), aszály és belvíz monitoring (Bezdan et 

al., 2019; Tobak et al., 2019; van Leeuwen et al., 2017), tájökológiai kutatások (Csikós és 

Szilassi, 2021a; Mander et al., 2018). A felsorolt előnyei mellett az adatbázisok több korláttal 

is rendelkeznek. Az előállítás módszere miatt az adatbázis pontossága nagyban függ az 

interpretáló szakmai tudásától, és így erősen szubjektív a végeredmény, illetve maga a folyamat 

is időigényes (éves lépték). A térképezési egység nagysága miatt az adatbázis a kisléptékű 

vizsgálatokban korlátozottan felhasználható, illetve felhasználásához előzetes pontosítás 

szükséges. Az előállítási módszer és a térképezési egység nagyban befolyásolja az adatbázisok 

tematikus pontosságát, ami >=85%. A nomenklatúra nem csupán felszínborítási kategóriákat 

tartalmaz, hanem több területhasználati kategóriát is, mint pl. a 1.2.1-es osztály „Ipari vagy 

kereskedelmi területek”, 1.3.3-as osztály „Építési munkahelyek” vagy a 1.4.2-es osztály „Sport-

, szabadidő- és üdülő területek”. Ezenkívül a nomenklatúra, főleg a minimális térképezési 

egység miatt, tartalmaz több olyan osztályt, amely más kategóriák elegyéből állnak, mint pl. 

2.4.2-es osztály „Komplex művelési szerkezet”, 2.4.3-as osztály, „Elsődlegesen mezőgazdasági 

területek, jelentős természetes formációkkal” vagy a 3.1.3-as osztály, „Vegyes erdők”. Büttner 

pontossági vizsgálata a CLC2000-es adatbázison megmutatta, hogy az adott adatbázis 87,0% ± 

0,7%-os megbízhatósággal rendelkezik, így nem sokkal túllépve a garantált >85% tematikus 

pontosságot. A pontossági hibák meghatározásakor arra jutott, hogy az osztályozási hibák 78%-

a 3. hierarchia szinten lévő kategóriák között jelentkeztek (Büttner et al., 2016). Ezenfelül az 

ezen a szinten lévő kategóriák lehatárolási nehézségeit az osztályok közötti Jeffries-Matusita 

szeparabilitás értékek is jól mutatják. A Jeffries-Matusita (JM) távolság maximális 

távolságértéke 1414, ekkor a tanulók teljes mértékben elkülöníthetők az adott sávban, míg a 

minimuma 0, ekkor nem különíthetők el a tanulók (Dabboor et al., 2014). A JM távolságot 

mindkét általam használt CLC adatbázisra (CLC00, CLC18) kiszámítottam az adatbázisok 

alapját képező Landsat-7-es, és Sentinel-2-es műholdfelvételek felhasználásával. Az általam 

kiszámolt osztályok közötti minimális szeparabilitás értékek megmutatják, az adott sáv/ok 

felhasználásával legnehezebben elválasztható eseteket. Továbbá az átlagos szeparabilitás 

értékek megmutatják, hogy a legtöbb esetben milyen nehéz az elkülöníthetőség.  
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A JM távolságok megmutatják, hogy az egyes spektrális sávok alapján a minimális 

elválaszthatóság igen alacsony, azaz egyes osztályok nem választhatóak el egymástól (13. 

ábra). Az összes adat felhasználásával az osztályok minimális elválaszthatósága javul, azonban 

így sem éri el a lehetséges maximum felét se. Az átlagos szeparabilitás értékek alapján az 

osztályok gyengén választhatóak el az egyes sávok alapján, azonban az összes sáv 

felhasználásával már elfogadhatóvá válik a szeparabilitás érték (14. ábra). A Sentinel-2-es 

adatok felhasználása a CLC18-as adatbázis elválaszthatóságának vizsgálatakor javulást 

mutatott. A minimális és átlagos szeparabilitás érték a hat mintaterület alapján 595, és 1219, 

ami kb. 100 és 200 pontos javulást jelent. 

 

13. ábra A mintaterületekre kiszámolt minimális JM távolság átlaga, nomenklatúra szintenként, a 

CLC00-ás adatbázis és a Landsat-7 sávjai alapján. 

14. ábra A mintaterületekre kiszámolt átlagos JM távolság átlaga, nomenklatúra szintenként, a 

CLC00-ás adatbázis és a Landsat-7 sávjai alapján. 
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3.2. Landsat felvételek 

A kutatásomhoz különböző, közepes felbontású multispektrális és mikrohullámú 

műholdkép forrásokat választottam ki. Ezek a műholdképek alapján történt a CLC adatbázisok 

létrehozása is, így megfelelő alapot biztosítottak a CLC nomenklatúrát felhasználó 

osztályozásaim elvégzéséhez. A műholdfelvételek két nagyobb programhoz tartoznak, az 

amerikai Landsat és az európai Sentinel földmegfigyelési programhoz. 

A Landsat program 1970-ban indult az Egyesült Államok Geológiai Szolgálatának és 

az Amerikai Egyesült Államok Nemzeti Repülési és Űrhajózási Hivatalának (National 

Aeronautics and Space Administration – NASA) közös vállalkozásaként (Emery és Camps, 

2017). A program célja a Föld felszínének megfigyelése és a természeti erőforrásainak kutatása, 

feltérképezése. A program indulása óta 9 műholdat építettek, amelyek közül az elsőt 1972-ben 

állították pályára, a legutolsót, a Landsat-9-est, pedig 2021. szeptember 27-én (Masek et al., 

2020). Így ez a program szolgáltatja a világ leghosszabb ideje folyamatosan gyűjtött 

távérzékelési adatkollekcióját (U.S.Geological Survey, 2016). A Landsat programban lévő 

műholdak műszereinek tulajdonságait úgy alakították ki, hogy egymással összevethetők 

legyenek (közel azonos spektrális tartományokat lefedő sávok, hasonló geometriai és 

radiometrikus tulajdonságok), ezáltal egy időben folytonos adatbázist hozzanak létre (Wulder 

et al., 2016).  A műholdképek közepes térbeli (30, 60, 80 méter) és spektrális (4-11 sáv), 

valamint 16 napos időbeli felbontással rendelkeznek (U.S. Geological Survey, 2012). Emellett 

a műholdképek lefedik a Föld egész felszínét és szabadon elérhetőek minden felhasználó 

részére (Wulder et al., 2019). A Landsat programot, tulajdonságainak köszönhetően, széles 

körben használják: mezőgazdasági alkalmazásokban (Das et al., 2021; Di et al., 2021), erdészeti 

kutatásokban (Morin et al., 2021; Pelletier et al., 2021), vízgazdálkodásban (Baughman és 

Conaway, 2021; van Leeuwen et al., 2017), földhasználat és területhasználat térképezésben 

(Bui és Mucsi, 2021; Liska et al., 2017) és városi környezet megfigyelésében (Henits et al., 

2017; Kovács et al., 2019). 

A Landsat-7-es műhold a Landsat program hetedik műholdja, amelyet 1999. április 15-

én lőttek ki a kaliforniai Vandenberg légibázisról. A Landsat-7-es műhold a sikertelenül 

felbocsátott Landsat-6-os műhold továbbfejlesztett szenzorját kapta meg, az Enchanced 

Thematic Mapper Plus-t (ETM+), amely az infravörös és látható fény tartományában összesen 

8 sávban rögzít adatokat (U.S. Geological Survey, 2019a). A Landast 8-as műhold a Landsat 

program nyolcadik műholdja, melyet 2013. február 11-én indítottak el egy Atlas 5-ös rakétával 

a kaliforniai Vandenberg légibázisról. A Landsat-8 műhold két sávmenti pásztázó (push-

broom) felvételező rendszerrel lett felszerelve: Operational Land Imager (OLI) és a Thermal 

Infrared Sensor (TIRS). Az OLI szenzor a látható és infravörös fény tartományában összesen 9 
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sávban rögzít adatokat, és a folytonosság fenntartása érdekében, ezen sávok többségének 

spektrális kiosztása majdnem teljesen megegyezik a Landsat-7-es műhold ETM+ szenzorának 

kiosztásával. A TIRS szenzor  2 termális sávja a Landsat-7-es műhold termális sávjának 2 külön 

intervallumában érzékelnek és gyűjtenek adatokat (U.S. Geological Survey, 2019b). A 

spektrális sávok térbeli felbontása 30, a termális sávé/sávoké 60 vagy 100 és a pankromatikusé 

15 méter (2. táblázat). A felvételezések időbeli felbontása 16 nap. A műholdak által készített 

standard kép 185 km ×180 km nagyságú területet fed le, amelyet a Worldwide Reference 

System-2-ben (WRS-2 referencia rendszer) kategorizálnak (233 pálya, 248 sor)  (Mucsi, 2004). 

A Landsat-7-es műholdfelvételek alapján készítették el a CLC00-es adatbázis. Az adatbázis 

létrehozásához felhasznált, Magyarországra vonatkozó képek a 2000-es év három egymást 

követő hónapjából (június, július és augusztus) származnak. A műholdfelvételeket a CORINE 

adatbázis számára, az IMAGE 2000 projekt keretein belül dolgozták fel. A feldolgozás 

eredményeképp a felvételek geometrikus pontossága a multispektrális sávokban 25 méterre, a 

pankromatikus sávban 12,5 méterre javult (European Commision, 2005). A Landsat-8-as 

műholdfelvételek a CLC18-as előállítása során kisebb hangsúlyt kaptak. Az előállítási projekt 

során csupán a Sentinel-2-es adatok hiánypótlójaként használták azokon a területeken, ahol 

nem álltak rendelkezésre megfelelő minőségű Sentinel-2-es műholdképek. A képek felbontását 

a felhasználásuk előtt nem javították (Buttner és Kosztra, 2017).  

2. táblázat A Landsat-7 ETM+ és Landsat-8 OLI és TIRS szenzorok sávkiosztása és 

térbeli felbontása. 

Sáv 
Hullámhossz (μm) Térbeli felbontás (m) 

Landsat-7 Landsat-8 Landsat-7 Landsat-8 

Ultrakék - 0,43–0,45 - 30 

Kék 0,45–0,515 0,45–0,51 30 30 

Zöld 0,525–0,605 0,53–0,59 30 30 

Vörös 0,63–0,69 0,64–0,67 30 30 

Közeli infravörös 0,75–0,9 0,85–0,88 30 30 

Közepes infravörös I, 1,55–1,75 1,57–1,65 30 30 

Közepes infravörös II, 2,09–2,35 2,11–2,29 30 30 

Pankromatikus 0,52–0,9 0,50–0,68 15 15 

Cirrus - 1,36-1,38 - 30 

Termális infravörös I, 

10,4–12,5 
10,6–11,19 

60 
100 

Termális infravörös I, 11,5–12,51 100 

A Landsat felvételeket az Earth Resource Observation and Science (EROS) Center 

Processing Architecture (ESPA) online felületéről (https://espa.cr.usgs.gov/) töltöttem le 

2.szintű feldolgozottsággal (a felvételek intenzitásértékei felszíni reflektancia és troposzféra 

felső hőmérséklet értékek) (3. táblázat). A Landsat-7 adatok 7 sávot (6 spektrális és 1 termális), 
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míg a Landsat-8 adatok 11 sávot (9 spektrális és 2 termális) tartalmaznak. A Landsat-8 

felvételek cirrus és pankromatikus sávjait nem használtam fel, így összesen 9 spektrális sávot 

vontam be a vizsgálataimba. A L2A feldolgozottsági szintű műholdfelvételek spektrális 

sávjainak felszíni reflektancia értékekei és termális sávjainak troposzféra felső hőmérséklet 

értékei -9999-től 20000-ig terjedő intervallumban vehetnek fel értékeket (a negatív értékek a 

háttér miatt lehetségesek) (U.S. Geological Survey, 2020). Az előfeldolgozást QGIS 3.16 és 

ERDAS Imagine 2020 szoftverkörnyezetben végeztem el. A könnyebb kezelhetőség érdekében 

az előfeldolgozás során a különálló fájlokban tárolt spektrális és termális sávokat egy fájlba 

egyesítettem. Az adatok valós tartományon kívüli (a 0 – 10 000-ig terjedő intervallumban nem 

beleeső) értékeit korrigáltam egy általam készített ERDAS modellel (a minimum-maximum 

értékekre változtattam a nem valós értékeket). A korrigált adatokból kötegelt művelettel 

kivágtam a hat mintaterületet. 

3. táblázat A kutatáshoz felhasznált Landsat műholdfelvételek. 

Műhold Dátum Pászta Sor Csempe által lefedett mintaterületek 

Landsat-7 

2000.05.16 187 27 

Pesti hordalékkúp-síkság 

Hevesi ártér 

Tétényi-fennsík 

Gödöllői-dombság 

2000.08.20 187 27 

2000.10.23 187 27 

2000.04.21 188 27 

2000.05.07 188 27 

2000.06.08 188 27 

2000.07.10 188 27 

2000.08.11 188 27 

2000.10.14 188 27 

2000.04.28 189 27 

Felső-őrség 

Balatoni-riviéra 

2000.07.01 189 27 

2000.08.18 189 27 

2000.10.21 189 27 

Landsat-8 

2017.08.09 189 27 Felső-őrség 

2017.08.11 187 27 Hevesi ártér 

2017.08.18 188 27 

Pesti hordalékkúp-síkság 

Tétényi-fennsík 

Gödöllői-dombság 

2017.08.25 189 28 Balatoni-riviéra 
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3.3. Sentinel felvételek 

A Sentinel program célja az elöregedett földmegfigyelő műholdak (mint például az ERS 

program műholdjainak) lecserélése olyan következő generációs műholdakra, amik megfelelnek 

a modern kutatások kihívásainak. A programot az ESA koordinálja és hajtja végre, az ESA és 

az Európai Bizottság közös kezdeményezésének, a „Globális Környezetvédelmi és Biztonsági 

Megfigyelés” (GMES – Global Monitoring for Enviroment and Security) részeként. Ezt a 

kezdeményezést 2011-ben Copernicus névre keresztelték át, mint az Európai Unió és az 

Európai Űrügynökség közös földmegfigyelési programját. A program a műholdak generáció 

váltását úgy hajtja végre, hogy figyelembe veszi az adatok folytonosságát, és az új idők 

követelményeit. Az egyes küldetések mind más és más célt szolgálnak, melyek részei a 

Copernicus programnak, ennek megfelelően mindegyikhez más típusú mérőberendezést 

fejlesztenek ki. Jelenleg 6 küldetés zajlik a program keretein belül és további 6 van tervben 

(Jutz és Milagro-Pérez, 2020).  

A Sentinel-1 küldetés célja a radar alapú földmegfigyelés. A küldetés részeként 2 

műhold kering azonos pályán (jelenleg csak 1, a Sentinel-1B meghibásodása miatt), 180°-os 

eltéréssel, 693 km-es magasságban 98,18°-os inklinációjú közel napszikron pályán. Az egyes 

műholdak visszatérési ideje (időbeli felbontása) 12 nap, az azonos pályának köszönhetően az 

együttes visszatérési idejük 6 nap. Azonos képkészítő berendezéssel vannak ellátva, ami egy 

C-sávban (frekvencia: 5,405 GHz – hullámhossz: 5,5465763 cm) felvételező szintetikus 

apertúra radar (SAR). A műszer képes duális polarizációval is működni (HH-HV, VV-VH) 

(Jutz és Milagro-Pérez, 2018). Négyféle adatgyűjtési móddal rendelkezik: Stripmap (SM) – 

Sávtérképező mód, Interferometric Wide Swath Mode (IW) – Szélessávú interferometrikus 

mód, Extra Wide Swath Mode (EW) – Extra szélessávú mód, Wave mode (WM) – Hullám 

mód. Ezek közül a szélessávú interferometrikus mód a fő leképezési mód a szárazföldek felett. 

A felvételezési módtól függően a felvételek térbeli felbontása 5 és 40 méter között 

váltakozhatnak. Az IW a TOPSAR (Terrain Observation with Progressive Scanning SAR) 

technika segítségével 3 alsávban képezi le a felszínt úgy, hogy változtatja az antenna nézési 

szögét. Ez a technika lehetővé teszi a széles sávon (250km) történő felmérést, közepes térbeli 

felbontással (5x20 méter). Az interferometriát biztosítja a kielégítő nagyságú átfedés a Doppler-

spektrumban (azimuth tartományban) és a hullámszám-spektrumban (magassági 

tartományban). A Sentinel-1 megfigyelései forgatókönyv1 alapján a szárazföldek fölött, 

amelyek nem poláris vagy jeges elhelyezkedésűek az IW mód duális VV-VH polarizációval 

felvételez. A Sentinel-1-es adatokat a CLC18-as adatbázis létrehozásához, az adatok 

 

1 https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario megtekintve: 2022.04.22 

15:13 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
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polarimetrikus leíróinak éves statisztikáiból származó különböző kompozitok formájában 

használták fel.  

A Sentinel-2 küldetés alapvető célja a Föld felszínének folyamatos megfigyelése, 

multispektrális optikai mérőberendezéssel. A program alapját a Sentinel-2 iker műholdak adják, 

amelyek egy multispektrális felvételező rendszerrel (Multi-Spectral Instrument – MSI: 

Multispektrális Műszer) szereltek fel. A program első műholdját (Sentinel-2A) 2015. június 23-

án állították pályára, míg ikerműholdját (Sentinel-2B) 2017. március 7-én. A műholdak 

tervezett élettartama 7,25 év. A két műhold azonos, napszinkron pályán kering, 786 km-es 

magasságban, egymástól 180°-os eltéréssel. Az időbeli felbontásuk 10 nap, viszont az azonos 

pályának köszönhetően az együttes időbeli felbontásuk 5 napra csökkent ((SUHET) Sentinel 

User Handbook and Exploration Tools, 2015). 

 A multispektrális felvételező rendszer (MSI) úgy lett kialakítva, hogy az eddigi 

földmegfigyelési programok (Landsat, SPOT) spektrális sávjait is figyelembe vették, így 

biztosítja a SENTINEL-2 küldetés ezen programok folytonosságát. A műszer 13 spektrális 

sávja lefedi a Landsat-8 és a SPOT 6/7 műholdak sávjait (4. táblázat). A 8a sáv célja a közeli 

infravörös egy kisebb részének érzékelése, ezáltal a vízpára által okozott atmoszférikus zaj 

csökkentése. A kék hullámhossztartományban található 1. sávot a többi sáv pontos aeroszol 

korrekciójánál használják fel (ezt már korábbi küldetések során is használták).  A cirrus felhők 

korrekciója érdekében került a sávok közé a SWIR (10-es) sáv, amely lehetővé teszi a cirrus 

felhők detektálását (a korrekció a látható és közeli infravörös sávokra alkalmazható). A szenzor 

radiometrikus felbontása 12bit (4095 érték). A műszer által készített egy felvétel 290x290km 

nagyságú ((SUHET) Sentinel User Handbook and Exploration Tools, 2015). A Sentinel-2-es 

adatokat a CLC18-as adatbázis létrehozásához, 2 hetes felhőmentes mozaikok formájában 

használták fel Magyarország területére az alábbi időpontokból: 2016-szeptember, 2017-április, 

2017-július, 2017-szeptember.  

 

 

 

 

 

 

 

 

 

 



Gudmann András Viktor – Disszertáció, 

Szegedi Tudományegyetem, Földtudományok Doktori Iskola 

36 

 

 

Sentinel 2A/B MultiSpectral Instrument (MSI) 

Sáv száma S2A Hullámhossz (nm) S2B Hullámhossz (nm) Felbontás (m) 

1 442,7-469,7 442,2-487,2 60 

2 492,4-590,4 492,1-590,1 10 

3 559,8-604,8 559,0-605,0 10 

4 664,6-702,6 664,9-703,9 10 

5 704,1-723,1 703,8-723-8 20 

6 740,5-758,5 739,1-757,1 20 

7 782,8-810,8 779,7-807,7 20 

8 832,8-977,8 832,9-965,9 10 

8a 864,7-897,7 864,0-896,0 20 

9 945,1-971,1 943,2-970,2 60 

10 1373,5-1448,5 1376,9-1452,9 60 

11 1613,7-1756,7 1610,4-1751,4 20 

12 2202,4-2444,4 2185,7-2423,7 20 

A Sentinel-1 felvételeket az NASA, Alaska Satellite Factory (ASF) online felületéről 

(https://asf.alaska.edu/) töltöttem le 1. szintű Ground Range Detected (GRD) termékként (5. 

táblázat). Az adatok 2 sávot (VV, VH polarizáció) tartalmaznak. Az előfeldolgozást Sentinel 

Application Platform (SNAP) szoftverkörnyezetben végeztem el. Az előfeldolgozás során az 

általánosan használt lépéseket végeztem el: pályafájl alkalmazás (apply orbit file), termális zaj 

eltávolítás (thermal noise removal), kalibrálás, domborzat-korrekció (range-Doppler terrain 

correction) (Filipponi, 2019). Ezen lépések után a 2 polarizáció (VV-VH) értékeit dB-re 

(sigma0 dB) alakítottam át. Az előfeldolgozott termékek 10 m felbontásúak lettek. Az adatokon 

foltszűrést (speckle filtering) nem alkalmaztam az adatveszteség elkerülése végett. 

5. táblázat A kutatáshoz felhasznált Sentinel-1 műholdfelvételek.  

Időpont Pálya Szelet sorszáma Csempe által lefedett mintaterületek 

2017.07.24 124 19 Felső-Őrség, Balatoni-riviéra 

2017.07.25 51 18 

Pesti hordalékkúp-síkság, Hevesi-ártér, Tétényi-

fennsík, Gödöllői-dombság 

A Sentinel-2 műholdképeket a Copernicus Open Access Hub online felületéről 

(https://scihub.copernicus.eu/dhus/#/home) töltöttem le L1C vagy L2A szintű 

feldolgozottsággal (a felvételek intenzitásértékei toposzféra-alja (Bottom-Of-Athmosphere) 

vagy teteje (Top-Of-Athmosphere) reflektancia értékek) (6. táblázat). A felvételek 11 sávot 

tartalmaznak, mivel a 10-es sáv nem kerül be a letölthető sávok közé ezen a feldolgozottsági 

szinten, és a térbeli felbontásuk 10, 20, és 60 méteres. A műholdfelvételek spektrális sávjainak 

értékekei 0,0-tól 1,0-ig terjedő intervallumban vehetnek fel értékeket. Az előfeldolgozást QGIS 

4. táblázat A Sentinel-2A és 2B műholdak MSI szenzorjainak sávkiosztásai és felbontásuk. 
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3.16, az ERDAS Imagine 2020 és a SNAP szoftverkörnyezetben végeztem el. Azokat a 

felvételeket melyek toposzéra alja reflektancia értékekkel rendelkeztek, atmoszférikusan 

korrigáltam. Az előfeldolgozás során a különálló fájlokban tárolt spektrális sávok mindegyikét 

10 méteres felbontásra újramintavételeztem, majd a sávokat egyesítettem egy fájlba. A korrigált 

adatokból kötegelt művelettel kivágtam a hat mintaterületet. 

6. táblázat A kutatáshoz felhasznált Sentinel-2 műholdfelvételek. 

Időpont Pálya Csempe azonosítók Csempe által lefedett mintaterületek 

2017.01.01 122 33TWN, 33TXN Felső-őrség 

2017.01.05 36 34TCT, 34TDT 
Pesti hordalékkúp-síkság, Hevesi ártér, Tétényi-

fennsík, Gödöllői-dombság 

2017.03.29 79 
33TXM, 33TYN, 

34TCT 

Pesti hordalékkúp-síkság, Balatoni-riviéra, Tétényi-

fennsík, Gödöllői-dombság 

2017.04.25 36 34TDT Hevesi ártér 

2017.05.15 36 34TDT Hevesi ártér 

2017.06.24 36 34TCT 
Pesti hordalékkúp-síkság, Tétényi-fennsík, Gödöllői-

dombság 

2017.07.07 79 
33TWN, 33TXN, 

34TCT 

Pesti hordalékkúp-síkság, Felső-őrség, Tétényi-

fennsík, Gödöllői-dombság 

2017.07.17 79 33TXM, 33TYN Balatoni-riviéra 

2017.08.03 36 34TDT Hevesi ártér  

2017.08.08 36 34TCT 
Pesti hordalékkúp-síkság, Tétényi-fennsík, Gödöllői-

dombság 

2017.10.02 36 34TCT, 34TDT 
Pesti hordalékkúp-síkság, Hevesi ártér, Tétényi-

fennsík, Gödöllői-dombság 

2017.10.15 79 
33TWN, 33TWM, 

33TYN, 33TXN 
Felső-őrség, Balatoni-riviéra 

2017.12.01 36 34TCT, 34TDT 
Pesti hordalékkúp-síkság, Hevesi ártér, Tétényi-

fennsík, Gödöllői-dombság 

2017.12.19 79 
33TWN, 33TWM, 

33TYN, 33TXN 
Felső-őrség, Balatoni-riviéra 

3.4. Shuttle Radar Topograhy Mission (SRTM) 

Az SRTM az amerikai Nemzeti Térinformatikai Hírszerző Ügynökség (National 

Geospatial – Intelligence Agency) és a NASA közös projektje, amelynek célja magassági 

adatok gyűjtése a Föld minél nagyobb részéről egy űrsiklóra telepített radarberendezés 

segítségével. A hosszas előkészületek után a küldetés 2000. február 11-én kezdődött el és 2000. 

február 22-ig tartott. A 11 napos küldetést (2000. február 11.–február 22.) az Endeavour űrsikló 

hajtotta végre, amelynek inklinációja 57° volt, ezáltal a radar képes volt a Föld felszínének 

északi szélesség 60° és a déli szélesség 56° közötti felmérésére. Ezzel a bolygó szárazföldi 

területeinek 80 százalékát lefedte (Farr et al., 2007). A mérés eredményeképpen 10 TB nyers 

adat jött létre, amelynek feldolgozása 2 évet vett igénybe (Farr és Kobrick, 2000). Ezután az 

adatokat továbbították az USGS-nak, amely tárolja és biztosítja az ingyenes hozzáférést a saját 

EROS szerverén. A létrejött adatok 3 fokmásodperc felbontásúak (körülbelül 90 m, 

foktrapézonként 1201×1201 pixel) az egész felvételezett területre vonatkozóan (az USA 
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területére 1 fokmásodperces adatok is elérhetőek) (Farr et al., 2007). Az alapfelületük WGS84 

ellipszoid. Az SRTM adatok a felszín magasságát adják meg, így ezek az adatok alkalmasak a 

szintkülönbségekkel rendelkező osztályok közötti szeparabilitás növelésére. Az SRTM 

adatokat az EarthExplorer adatbázisából töltöttem le (https://earthexplorer.usgs.gov/). A 

letöltött csempéket egyesítettem, majd a mintaterületek körvonalaival, kivágatokat készítettem 

belőlük.  

3.5. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

Global Digital Elevation Model (GDEM) 

Az ASTER szenzor a NASA és a japán gazdasági, kereskedelmi és ipari minisztérium 

(Ministry of Economy, Trade, and Industry – METI) közös projektje. A berendezést a Lockheed 

Martin által készített Terra műholdon helyezték el, négy másik műszerrel együtt. A műholdat 

1999. decemberében állították pályára. A műszer három alrendszerrel (szenzorral) rendelkezik: 

(1) látható fény és közeli infravörös, (2) közepes infravörös, (3) termális infravörös (Yamaguchi 

et al., 1998). Mindegyik alrendszer más térbeli és spektrális felbontással rendelkezik. A globális 

digitális magassági modellt (GDEM) a látható fény és infravörös alrendszer által készített 

sztereó-képpárokból állítottak elő (Abrams et al., 2010). A GDEM a Föld északi 83° és déli 83° 

közötti területeket fedi le, ezáltal a szárazföldek 99%-ról szolgáltat információt (Abrams et al., 

2020). Az adatbázis első verzióját 2009-ben adták ki, amelyet már 2 alkalommal frissítettek 

(2011-ben és 2019-ben). Az adatok a NASA Earthdata honlapjáról érhetőek el 

(https://search.earthdata.nasa.gov/search/), 1 fokmásodperces (kb. 30 méteres) térbeli 

felbontással. A letöltött csempéket egyesítettem, majd a mintaterületek körvonalaival, 

kivágatokat készítettem belőlük. 

4. Mintaterületek 

Az osztályozások megfelelő összehasonlításához kulcsfontosságú lépés a mintaterületek 

kiválasztása. Ezt egyik, a disszertációm témájához illeszkedő, azt előkészítő vizsgálataim során 

igazoltam, amelyben Csongrád megyét jelöltem ki a vizsgálatom mintaterületének (Gudmann 

et al., 2019). A vizsgálatban egy általam kidolgozott, döntési fára épülő módszertan 

segítségével felszínborítási/területhasználati térképeket hoztam létre. Az eredményeim alapján 

megállapítottam, hogy a döntési fa algoritmus a mintaterületen domináns osztályt (Nem-

öntözött szántóföldek, a mintaterület több mint 60%-át tette ki), magas pontossági értékekkel 

(>80%), míg a kis részarányú osztályokat jelentősen kisebb pontossággal (<60%) osztályozta. 

Emiatt az eltérés miatt az eredmények nem teljes mértékben adják vissza az algoritmus 

teljesítőképességét.  
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A disszertációmban a mintaterületeket Magyarország kistájai közül választottam ki. A 

területek kijelölése során több olyan szempontra is külön figyelmet fordítottam, amelyek 

alapvetően befolyásolják az osztályozási eredményeket és az osztályozó algoritmusok 

összevetését. Az egyik ilyen, hogy a területek alapvetően eltérő felszínborítással és 

területhasználattal rendelkezzenek, azaz az egyes mintaterületeken különböző osztályok 

forduljanak elő és a legnagyobb részaránnyal rendelkező kategória is eltérő legyen. Ezáltal, a 

felszínborítási és területhasználati kategóriák közötti osztályozási különbségek megfigyelése is 

lehetséges. Továbbá, egy adott mintaterületen belül, egyik kategória részaránya se legyen 50%-

nál nagyobb. Ennek köszönhetően kiküszöbölhetők a magas területi arányok miatti torzulások 

az osztályozási eredményekben. Az egyes kategóriák részarányát a CORINE Land Cover 

adatbázisok alapján határoztam meg minden kistájra vonatkozóan. A meghatározott értékek 

alapján készítettem el a leválogatást a korábban említett tényezők figyelembevételével és az 

eredményül kapott területek közül választottam ki a hat különböző karakterisztikájú kistájat. 

Ezek a következők lettek: Pesti hordalékkúp-síkság (kistáj azonosító: 1.1.12.), Hevesi-ártér 

(kistáj azonosító: 1.7.13.), Felső-Őrség (kistáj azonosító: 3.1.31.), Balatoni-riviéra (kistáj 

azonosító: 4.1.15.), Tétényi-fennsík (kistáj azonosító: 5.3.32.) és Gödöllői-dombság (kistáj 

azonosító: 6.3.51.) (15. ábra). A mintaterületek leírása „Magyarország kistájainak katasztere” 

alapján történt (Becse et al., 2010).  

15. ábra A hat kiválasztott mintaterület. 
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A Pesti hordalékkúp-síkság Pest megyében és Budapest területén helyezkedik el. A kistáj 

97.5 és 251 m közötti tengerszint fölötti magasságban helyezkedik el, 892 km2 területen. Kelet 

felé lépcsőzetesen, magasabb teraszok irányába emelkedik. A felszín döntő többsége közepes 

magasságú, tagolt síkság. Mérsékelten meleg, száraz éghajlatú kistáj. A napsütéses órák száma 

1910–1940 óra évente (nyáron 770–780, télen 180 óra). Az évi középhőmérséklet 10–10,2 °C, 

és az évi csapadékösszeg 520–580 mm. A táj jelentős részét települések és mezőgazdasági 

területek foglalják el. Területének kisebb része töredékes állományú nyílt 

homokpusztagyepekből, homoki sztyeprétekből, homoki tölgyesekből és nyáras-borókásokból 

áll, mellettük jelentős az akác- és fenyőültetvények aránya. A 22 önálló településen kívül ide 

tartozik a főváros pesti oldalának döntő része is, így a kistáj területének 35%-a lakott terület. 

Az itt élő több mint egy millió ember 97.5%-a városlakó és a terület népsűrűsége extrém magas. 

A kistájon 23 CLC kategória található meg, amelyek közül 13 legalább 1%-os részaránnyal bír. 

A legnagyobb kiterjedésűek a 2.1.1. - „Nem öntözött szántóföldek”, 1.1.2. – „Nem összefüggő 

településszerkezet” és a 3.1.1. – „Lombhullató erdők” (A1. táblázat). 

A Hevesi-ártér Heves és Jász-Nagykun-Szolnok megyében helyezkedik el. Területe 388 

km2. A kistáj legalacsonyabb pontja 85,4 méter és a legmagasabb 90,5 méter közötti tengerszint 

fölötti magasságú. Az egyhangú kistáj felszíni formáit a Tisza alakította ki oldalazó erózióval 

és erős feltöltő tevékenységével. Mérsékelten meleg-száraz éghajlatú terület, különösen a D-i 

részei. Az átlagos napsütéses órák száma egy évre 1920-1960 óra között változik (nyáron 760–

770, télen 175–180 óra). Az évi középhőmérséklet 10,1–10,3 °C, mellette évi 510–540 mm az 

átlagos csapadékösszeg. A kistáj a Tisza egykori árterét foglalja magában, melynek ártéri és 

mentett oldali részének növényzete ma eltérő jellegeket mutat. A Tisza-tó gazdag hínár-, lápi 

és mocsári komplexekben és az erdőket jobbára jellegtelen fűzligetek alkotják. Az árvizek és 

az általuk jelentett állandó veszély miatt a kistájon mindössze 4 település található és a 

népességszáma nagyon alacsony, és ezzel együtt a népsűrűsége is. A kistájon 15 CLC 

kategóriák található, melyek több mint fele legalább 1%-os részaránnyal bír (8 db). A domináns 

osztály, ami a terület kb. felét kiteszi, a 2.1.1. – „Nem öntözött szántóföldek”. Emellett nagyobb 

részarányban van jelen az 5.1.2. – „Állóvizek”, a 3.1.1. – „Lombhullató erdők” és a 4.1.1. – 

„Szárazföldi mocsarak” (A1. táblázat). 

A Felső-Őrség kistáj Vas megyében helyezkedik el, területe 63 km2. A kistáj az 

Alpokalja közepesen tagolt (átlagos relatív relief 48 m/km2), teraszos, eróziós-deráziós 

dombsági területe, amely a Ny-i országhatár, a Rába és a Pinka-völgy torkolati szakasza között 

helyezkedik el. Átlagos tengerszint fölötti magassága 252 m. A mérsékelten hűvös-mérsékelten 

nedves éghajlati övezetbe tartozik. Az átlagos napsütéses órák száma évi 1820 óra körüli 

(nyáron 700–720, télen 180 óra). Az évi középhőmérséklet 9,2–9,4 °C, mellette évi 750 mm az 
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átlagos csapadékösszeg. Alacsony dombvidéki jellege ellenére vegetációja számos hegyvidéki 

vonással bír: bükkösök és gyertyános-kocsánytalan tölgyesek uralják a tájat. Továbbá a völgyek 

alján égerligetek és keményfás ligeterdők találhatók és magas a telepített fenyves-

monokultúrák aránya. A csekély méretű kistájon összesen 3 falu található, emiatt a népsűrűség 

és a lakosság nagyon alacsony a területen. A kis kiterjedésű kistájon a CLC kategóriák száma 

alacsony, csupán 9 fordul elő, melyek közül csak egy részaránya nem éri el az 1%-ot. A 

domináns kategória, amely a terület kb. felét kiteszi, a 2.1.1. – „Nem öntözött szántóföldek”. 

Emellett nagyobb részarányban van jelen az 5.1.2. – „Állóvizek”, a 3.1.1. – „Lombhullató 

erdők” és a 4.1.1. – „Szárazföldi mocsarak” (A1. táblázat). 

A Balatoni-riviéra Veszprém megyében helyezkedik el, területe 159 km2. A különböző 

genetikájú és magasságú, többnyire D-i kitettségű síkok, völgyek és völgyközi hátak mellett 

számos mikroforma fordul elő. Tengerszint feletti magassága 110 és 180 m között változik. 

Mérsékelten meleg-mérsékelten száraz éghajlatú kistáj. Az évi napsütéses órák száma kevéssel 

meghaladja a 2000 órát (nyáron 800–810, télen 190 óra). Az évi középhőmérséklete 10,2–10,5 

°C, mellette évi átlagos csapadékösszeg 580–640 mm. A klímazonálisan többségében 

erdőssztyepp-övbe tartozó terület ma jellemzően fél-kultúrtáj (szép példa erre Tihany). Feltűnő 

a déli, szubmediterrán jellegű fajok magas aránya. Hagyományos gyümölcskultúrái: a szőlő, és 

a délvidéki fajok (füge, levendula), a hegyoldalakon erdősödés figyelhető meg. Nagyon sűrű 

településhálózat jellemzi a kistájat, 100 km2-re több mint 10 település jut, ami viszonylag magas 

népsűrűséggel és közepes mennyiségű lakosságszámmal társul. A kistájon megtalálható CLC 

kategóriák száma 17, amelyek többsége (13) nagyobb mint 1% részaránnyal rendelkezik. A 

domináns kategória, mely a terület kb. felét kiteszi, a 2.1.1. – „Nem öntözött szántóföldek”. 

Emellett nagyobb arányban van jelen az 5.1.2. – „Állóvizek”, a 3.1.1. – „Lombhullató erdők” 

és a 4.1.1. – „Szárazföldi mocsarak” (A1. táblázat). 

A Tétényi-fennsík Pest megyében és Budapesten helyezkedik el, területe 108 km2. 

Tagoltatlan fennsíkok jellemzik, kopár, száraz, egész évben vízhiányos felszíne terméketlen, 

erdőgazdasági hasznosításra is alkalmatlan. Mérsékelten meleg-száraz éghajlatú kistáj, az évi 

napsütéses órák száma 1940 óra (nyáron 765, télen 175 óra). Az évi középhőmérséklet 10 °C, 

mellette az évi átlagos csapadékösszeg 550–580 mm. Jelentős részben beépített, illetve 

felszántott kistáj, a természetes vegetációval borított terület nem éri el a 20%-ot, és aránya 

jelenleg is csökken. A tölgyesek és a száraz gyepek kiterjedése jelentős. Igen technogén, 

urbanizált kistáj, területének kb. a fele beépített. A népsűrűsége többszöröse az országos 

átlagnak és a lakosságszáma is folyamatosan növekszik. A kistájon található 16 CLC kategória 

többsége (13) 1%-ot meghaladó részaránnyal rendelkezik. A domináns kategória, aminek 

területe folyamatosan növekszik, a 1.1.2. – „Nem összefüggő településszerkezet”. Emellett 
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nagyobb részarányban van jelen a 3.1.1. – „Lombhullató erdők” és a 1.4.2. – „Sport-, 

szabadidő- és üdülő területek” és a 2.3.1. – „Rét/legelő”. A területen jelentős városiasodás 

történt, ezért a mesterséges felszínek (1.1.2., 1.2.1., 1.4.2.) részarányának növekedésével a 

mezőgazdasági területek (2.1.1., 2.2.2., 2.3.1.) nagysága is jelentősen lecsökkent. (A1. 

táblázat). 

A Gödöllői-dombság Pest megyében található, területe 510 km2. A kistáj 138 és 344 m 

közötti tengerszint fölötti magasságon helyezkedik el, egy enyhén DK felé lejtő dombvidéken. 

Mérsékelten hűvös-mérsékelten száraz, illetve mérsékelten-száraz éghajlatú, az évi napsütéses 

órák száma 1950 óra (nyáron 780–790, télen 190 óra). Az évi középhőmérséklet 9,5–10 °C, 

mellette az évi átlagos csapadékösszeg 540–580 mm. A dombság platóin jellemző a gyertyános-

tölgyeshez hasonló, de bükkös elemekben és gyertyánban szegényebb mezei juharos tölgyes. 

Kisebb kiterjedésű, de fontos társulás a lösztölgyes. A kistáj teljes területére jellemzőek a nyílt 

és a zárt homoki gyepek. A nagyterületű kistáj majdnem teljes egészében a budapesti 

agglomerációhoz tartozik, rajta 16 településsel. Az átlagos településsűrűséghez nagy 

népsűrűség tartozik. A kistájon található 16 CLC kategória többsége (13) 1% feletti 

részaránnyal rendelkezik. A domináns kategória, ami egyre nagyobb részarányú, a 1.1.2. – 

„Nem összefüggő településszerkezet”. Emellett nagyobb részarányban van jelen a 3.1.1. – 

„Lombhullató erdők”, a 1.4.2. – „Sport-, szabadidő- és üdülő területek” és a 2.3.1. – 

„Rét/legelő”. A területen jelentős városiasodás történt, ami miatt a mesterséges felszínek 

(1.1.2., 1.2.1., 1.4.2.) részarányának növekedésével a mezőgazdasági területek (2.1.1., 2.22., 

2.3.1.) nagysága jelentősen csökkent. (A1. táblázat).
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5. Módszerek és eredmények 

5.1. Osztályozási módszertan koncepciójának kialakítása 

A kutatásom során kétféle környezetben dolgoztam, egy szoftveres és egy programozási 

környezetben. A módszerek kialakításánál fő szempont volt, hogy mindenki számára 

használható legyen a módszertan, ezért a felhasznált eszközök mindegyike ingyenesen elérhető 

és/vagy nyílt forráskódú. 

A kutatásom első szakaszában a WEKA általános adatbányászati szoftvert (Eibe et al., 

2016) használtam, amellyel egységesen elvégezhető az adatelőkészítés, tisztítás és osztályozás. 

A szoftver különböző haladó osztályozási, regressziós algoritmusokat is tartalmaz, illetve a 

szoftverben további algoritmusokat is adaptálhatunk kiegészítő csomagok telepítésével. A 

kutatásom második szakaszában a korábban kiválasztott vagy nem rendelkezésre álló 

algoritmusokat adaptáltam python programozási környezetbe, amivel az osztályozási folyamat 

nagy mértékben automatizálhatóvá vált. Mivel mindkét módszer általános osztályozási 

felhasználásra lett kifejlesztve, így az általam használni kívánt térinformatikai adatokat 

általánosan felhasználható formátumba kellett alakítani. Az átalakítás előtti adatharmonizációs 

és kiválasztási lépéseket QGIS szoftverrel végeztem el. A WEKA szoftverben főleg az 

algoritmusok kalibrációjára és a régebbi, hagyományos gépi tanulásos osztályozó eljárások 

vizsgálatára, míg a python környezetben a legújabb algoritmusok vizsgálatára 

összpontosítottam. Mindkét módszernél az algoritmusok teljesítményét a maximum likelihood 

osztályozás eredményeihez hasonlítottam, amit ArcMap szoftverben készítettem el. 

  A WEKA szoftver alkalmazásához szükséges módszertannál, az adatok előkészítése 

során a már elkészített kivágatokat egy raszteres fájlba egyesítettem. Az egyesített fájlokat több 

lépésben python scriptekkel transzformáltam gdal és numpy függvénykönyvtár segítségével 

(Contributors, n.d.; Harris et al., 2020). Első lépésben a raszteres adatállományomból ASCII 

(.asc) formátumú nyers szövegfájl másolatot készítettem, amely tartalmazza a raszteres adat 

pixeleinek x és y koordinátáit. Ezen koordináták szükségesek voltak az osztályozott értékek 

raszteres állománnyá történő visszaalakítása miatt. Második lépésben, az ASCII fájl 

koordinátáinak és a raszteres adatállomány sávonkénti értékeinek összefűzésével hoztam létre 

egy tagolt szövegfájlt (csv). A létrehozott fájl már alkalmas volt a szoftverbe történő 

beolvasásra. A szoftver beolvasó funkciója segítségével, kiválaszthatók az egyes változók 

adattípusai és kijelölhető a nominális (címkéket tartalmazó) változó. A szoftverben ezután 

véletlenszerűsítettem az adatokat és létrehoztam a betanításhoz szükséges tanító és teszt 

halmazokat. Ezeket a halmazokat használtam fel az osztályozáshoz és a modell létrehozásához, 

illetve a modell teljesítményének meghatározásához. Az osztályozással meghatározott 
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kategória értékeket, a koordinátákkal összefűzve tudtam újra raszteres formátumú adatot 

létrehozni. 

A python programkörnyezetben történő osztályozáshoz és az ahhoz szükséges 

módszertanhoz is az első lépésben a már elkészített kivágatokat egy raszteres fájlba 

egyesítettem. A tanító és validáló adatok létrehozásakor a QGIS véletlen pont generálás 

funkcióját használtam. A CLC adatsorok bizonytalanságának csökkentése érdekében, azokon a 

poligonokon belül hoztam létre validáló pontokat véletlenszerűen, amelyek az elmúlt 30 évben 

nem változtak (kivéve azon osztályok esetén, amelyek ideiglenes kategóriák, pl. „Építési 

területek”). A nem változó poligonok kiválasztásához az összes CLC-adatbázist (CLC90, 

CLC00, CLC06, CLC12 és CLC18) elmetszettem egymással, és kiválasztottam az azonos 

CLC-kóddal rendelkező poligonokat. Ezzel a módszerrel a validáló pontok megbízhatósága 

97% fölé kerül, így megfelelő alapot biztosítanak az összehasonlításokhoz (Gudmann és Mucsi, 

2022).  A tanító pontokat a változó poligonokon belül hoztam létre, véletlenszerűen elhelyezve. 

A létrehozott tanító és validáló pontok attribútum táblájába beleírattam az x és y koordinátáikat, 

mező kalkulátor segítségével. A pontokat ezután a point sampling tool nevű modul segítségével 

mentettem ki tagolt szövegfájlba. Hasonlóan az előző módszerhez, a fájlokat több lépésben gdal 

és numpy függvénykönyvtár felhasználásával python scriptekkel alakítottam át. A raszteres 

adatállományomból ASCII formátumú nyers szövegfájl másolatot készítettem, majd az ASCII 

fájl koordinátáinak és a raszteres adatállomány sávonkénti értékeinek összefűzésével hoztam 

létre egy tagolt szövegfájlt (csv). Az osztályozáshoz elkészített script az adatok automatikus 

beolvasását, tisztítását és osztályozását végzi el. Az osztályozás során automatizálva történik a 

paraméterbecslés, a modellépítés, a becslés és az adatok visszaalakítása raszteres formátummá. 

Továbbá a python környezetben lehetőség van olyan mérőszámok kiszámítására, ami a WEKA 

szoftverben nem lehetséges. A kutatásomban ilyen volt a permutációs fontosság érték, ami 

megmutatja egy adott változó fontosságát a változókészletben. A script a gépi tanulásos 

osztályozásokhoz leggyakrabban használt python könyvtárakat használja, ezek a GDAL, a 

NumPy, a Pandas, a Scikit-learn, és a Tensorflow (Abadi et al., 2015; Contributors, n.d.; Harris 

et al., 2020; Pedregosa et al., 2011). 

5.2.1. Algoritmusok kalibrációja 

Az algoritmusok kalibrációja során, a modellépítési paraméterek hatásait vizsgáltam, 

azzal a céllal, hogy olyan paraméterhálót tudjak meghatározni, amelyen belül a legjobb 

teljesítményt nyújtó modellek építhetők fel. Emellett, a kalibráció során meghatároztam azt a 

tanítóterület nagyságot, a teljes adathalmazhoz viszonyítva, ami szükséges az osztályozás 

megfelelő elvégzéséhez az egyes osztályozók esetén. Ezáltal meghatározható, hogy az egyes 

algoritmusok megfelelő működéséhez mekkora mennyiségű referencia információ szükséges, 
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így kijelölve, hogy azok milyen valós esetekben hasznosíthatók. Az algoritmusok kalibrációja 

során a WEKA szoftvert használtam fel a 2000-es évből származó adatokon. A Jeffries-

Matusita szeparabilitás értékekből kiderült, hogy az egyes spektrális sávok biztosan nem 

elegendőek, hogy az egyes kategóriákat megfelelően elválaszthassuk egymástól (13. és 14. 

ábra). Ezért, a kalibráció során a Landsat-7-es műholdképek összes sávját felhasználtam, mint 

magyarázó változók, így összesen 7 magyarázó változó volt a tanítóadathalmazon belül. A 

paraméterháló meghatározásához a tanító és teszt adathalmaz aránya 33-66% volt, az adott 

mintaterület teljes adathalmazán belül. A paraméter hálók vizsgálatánál a döntési fa, a véletlen 

erdő, a tartó-vektor gép és a mesterséges neurális háló paramétereit elemeztem. A háló 

meghatározásánál, minden mintaterület esetén a tanító és teszt adathalmazon mért kappa 

statisztikát és összpontosságot, továbbá a kettő közötti, úgynevezett tanítási hibát, és a 

modellépítési időt vizsgáltam.  

A döntési fa algoritmusnál, a WEKA-ba adaptált J48-as döntési fát használtam. A J48-

as döntési fa az Interactive Dichotomize 3 (ID3)-as családba tartozó C4.5-ös típusú algoritmus 

kiterjesztése és a szeparabilitás meghatározásához az entrópia értékét alkalmazza. Az 

algoritmus a fa létrehozásakor az entrópiacsökkentés elvét alkalmazza, a nyereségarány mutató 

(gain-ratio) alkalmazásával. Ennek köszönhetően a lehető legkisebb modell jön létre a 

modellépítés során (Bhargava et al., 2013). A modellépítés során utómetszést (post pruning) is 

alkalmaztam, hogy tovább csökkentsem a modell nagyságát. A modellalkotó eljáráshoz két 

paramétert kell megadni, a minimális objektum nagyságot (M): ennél az értéknél kisebb 

elemszámú végződést nem alakíthat ki az algoritmus, illetve a konfidencia faktort (C): ami az 

utómetszésnél, mint határérték jelenik meg (a megadott konfidencia értéknél kisebb végződések 

lesznek „lemetszve”). A paraméterek tesztelése a paraméter értékek változtatásával történt 

(±10%). Az eredmények alapján az objektumnagyság alapvetően befolyásolja a betanítás és a 

tesztelés pontosságát. Minél kisebb az objektumnagyság annál nagyobb a betanítás pontossága, 

és kisebb a tesztelés pontossága, azaz túltanítás lép föl (16. ábra). Ebből következtethetünk, 

hogy a nagyobb minimális objektum nagysággal, általánosabb szabályrendszert hoz létre az 

algoritmus. Az eredmények alapján a legkisebb tanítási hiba a 16 és 512 közötti minimális 

objektum nagysággal érhető el. Ez a tanító adathalmaz nagyságához képest 0,0006% és 1,5% 

közötti tartományt jelent. A másik paraméter, a konfidencia faktor változtatása kis hatással van 

a modell pontosságára (1% alatti pontosság különbség), azonban a modell méretét is 

befolyásolja. Ezzel a modell becslési ideje nagy mértékben csökkent és így javult a modell 

teljesítménye. Az eredmények alapján a konfidencia faktor 0,15 és 0,05 között eredményez 

teljesítmény javulást.  
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A véletlen erdő algoritmusnál, a WEKA-ba adaptált J48-as döntési fán alapuló 

algoritmust használtam. Ennél az algoritmusnál a döntési fát nem korlátozzuk (nincs megadva 

minimális objektumnagyság és gallyazást sem alkalmazunk). A modellben lévő döntési fákat 

gallyazás nélkül használjuk fel, így bár az egyes modellek túltanítottak lehetnek, a modellben 

lévő torzítás kisebb lesz. A paraméterháló meghatározásánál a modellépítő attribútumok száma 

(F - Features), a létrehozott fák száma (I - Iterations), a zsák nagyság (S - Size) paraméterek 

változtatása történt, próbálgatás útján (±10%). Az eredmények alapján a zsák nagyságának 

csökkentésével a tanítási hiba csökkenthető (60%-ról 30%-ra, átlagosan 7,389%), míg a teszt 

adaton mért pontosság növelhető (átlagosan 6,572%). Az iterációk számának növelésével (100-

ról 300-ra) a tanítási hiba átlagosan 6,952%-ot csökkent, azonban a teszt adaton mért pontosság 

nem javult ugyanilyen mértékben, csupán 0,341%-ot átlagosan. A változók számának növelése 

kis mértékben volt hatással a tanítási hibára és a pontosságra (<0,5%). Azonban 50%-fölé 

történő növelésével az összes változóhoz képest már rontja a modell teljesítményét. Az 

eredmények alapján, az ideális paraméter kombinációkat csak együttesen lehet alkalmazni, 

mivel a 3 paraméter egymást is befolyásolja, illetve fontos a bemenő attribútumok „minősége” 

(adattartalma). Az vizsgálatok alapján meghatároztam, hogy a legjobb modellekhez a bemenő 

attribútumok értéke az összes attribútumhoz képest 25-45%-os. Továbbá, a zsák nagysága 30%, 

míg az iterációk száma 100 és 300 db között mozoghat. 

16. ábra A 1.1.12-es mintaterületen mért összpontosságok a minimális 

objektumnagyság függvényében. 
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A tartó-vektor gép esetén nem a WEKA-ban adaptált nem-lineáris algoritmust, hanem 

a külön könyvtárként telepített LIBLINEAR lineáris SVM-t használtam (Fan et al., 2008). 

Ennek oka, hogy a nem-lineáris SVM-ek csak kis tanító adathalmazon (<10 000 esetszám) 

alkalmazhatók megfelelő teljesítménnyel, azonban a távérzékelt adatok, és az ezekből generált 

tanító adathalmazok ennél jóval nagyobbak. Az ilyen nagy adathalmazokon, megfelelő 

teljesítménnyel csak az SVM-k közül csak a lineáris változatok alkalmazhatók, viszont csak 

kisebb pontossági értékek érhetőek el velük, mint a nem-lineáris változataikkal. A lineáris 

SVM-nél a két vizsgálandó paraméter a költség (C - cost) és az elterelő súly (B – bias) volt, 

valamint a modellépítésnél mindig alkalmaztam normalizálást a tanító adatokon, ellenkező 

esetben értékelhetetlen modelleket kaptam (50% alatti összpontosság). Az eredmények alapján 

a modell teljesítményére a költség paraméter volt a legnagyobb hatással, ami viszonylag magas 

érték mellett eredményezte a legjobb modelleket. A súly értéke kis variációs lehetőséget 

nyújtott, a 4 vagy annál nagyobb értékek már nagy mértékben rontották a pontosságot (teszt 

adaton csak 60,49% összpontosság). A legjobb összpontossággal és legkisebb tanítási hibával 

rendelkező modelleket 40 és 80 közötti költség érték és 1 vagy 2 súllyal értem el. 

A neurális hálók közül a WEKA-ba a többrétegű perceptron van adaptálva, amely 

alkalmazza a hiba-visszaterjesztést. A többrétegű perceptron az egyik leggyakrabban 

alkalmazott neurális háló. Az algoritmus modellépítő paraméterei a tanulási ráta (learning rate 

- L), momentum (M), a rejtett rétegek száma (H) és a tanítási idő (T). A WEKA-ban integrált 

modellnél, több más paraméter mellett, nem szabályozhatjuk a neuronok számát, a neuronok 

aktivációs függvényét és az optimalizációs stratégiát sem. A tanító adathalmazon normalizálást 

alkalmaztam a modellépítés előtt. A paraméterek tesztelése során a paraméterek egyformán 

fontosnak bizonyultak a modell végleges teljesítménye szempontjából. A legjobb modelleket 2 

és 6 közötti rejtett réteg számmal, 0,05 és 0,25 közötti tanulási rátával, 0,1 és 0,2 között 

momentummal és 7 és 12 perc közötti tanítási idővel állítottam elő.  

Az egyes algoritmusok paraméter hálójának meghatározása mellett, vizsgáltam, hogy 

mekkora tanítóadathalmazon érik el a megfelelő teljesítményt. Az adathalmaz nagyságát a 

teljes osztályozni kívánt halmazhoz képest relatívan határoztam meg. A vizsgálatot minden 

algoritmus esetén a két legnagyobb területű kistájon (1.1.1.2., 6.3.5.1.) végeztem el. Az 

algoritmusokat a paraméterháló meghatározásánál a legjobb pontosságot nyújtó paraméter 

beállításokkal építettem fel. Az eredmények alapján a döntési fa és a véletlen erdő pontossága 

hasonlóan változott, míg a tartó-vektor gép és többrétegű perceptron pontossága egyedi módon 

volt változékony a tanító adat nagyságának függvényében (17. ábra). 
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A döntési fa és a véletlen erdő pontossága a tanító adat növelésével fokozatosan javult. A 

véletlen erdővel már a teljes adathalmaz nagyságához viszonyított 33%-os tanítóadat 

nagyságnál elfogadható minőségű modellt lehet alkotni. A tartó-vektor gép és többrétegű 

perceptron pontossága 10% alatti tanító adat esetén változékony volt, azonban 10% fölött 

egyértelmű pontosság javulást eredményezett a tanító adat nagyságának növelése. Mindegyik 

algoritmus esetén megállapítható, hogy a 33%-os tanító adat méret alatt a pontosság javulás 

mértéke nő, 33% fölött a javulás mértéke csökken. Emiatt, a további elemzésekben a tanító 

adathalmaz nagyságát 33% vagy attól kis mértékben eltérő (±5%) nagyságban rögzítettem a 

teljes adathalmazhoz képest.   

5.1.2. Algoritmusok adaptálása python programozási környezetbe 

Az algoritmusok kalibrációja során több problémával szembesültem. Egyik ilyen 

probléma volt a WEKA szoftverben történő paraméterbecslés, ami a szoftverben csak 

manuálisan volt kivitelezhető és emiatt nagy időráfordítással járt. További nehézséget okozott, 

hogy az algoritmusok meghatározott paramétereit tudtam csak módosítani, így nem tudtam 

teljes mértékben szabályozni az algoritmusok modellépítő eljárását és így a végleges modell 

pontosságát sem. Ezeknek a problémáknak a feloldására hoztam létre egy python szkriptet, több 

függvénykönyvtár (GDAL, NumPy, Pandas, Scikit-learn, Tensorflow) felhasználásával (18. 

ábra). 

17. ábra Az egyes modellek összpontosság változása a tanító adathalmaz nagyságának 

függvényében.  
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A script a tanító és validáló adatokat tartalmazó tagolt szövegfájl beolvasásával és az 

osztályozó algoritmus kiválasztásával kezdődik. A beolvasott adatokból a hibás esetek 

(végtelen értékűek) értékeit nullára változtatom. Továbbá a lebegőspontos értékeket 

felszorzással egész számokká alakítottam. Ennek köszönhetően az összes változó értéke egy 

dimenzióba került, így az értékek abszolút különbségét felhasználó algoritmusok nagyobb 

pontosságot érhetnek el. Ezenkívül az egész számos alak memória felhasználás szempontjából 

is kedvezőbb. Ha az algoritmus számára szükséges volt a magyarázó változókon normalizálást, 

akkor a cél változón átkódolást végeztem el. Az adatok előkészítése után a tanító adathalmazt 

felosztottam 2 részre, az egyik halmazzal a paraméterpróbát végeztem el, míg a másik halmazon 

történt a betanítás, így a kapott pontossági értékek a különböző adatokon mérve jobban mutatják 

a modell pontosságát. A paraméterpróba során véletlenszerűsített paraméterkeresési módszert 

alkalmaztam, amely ugyan nem teszteli le az összes lehetséges paraméter kombinációt, de kis 

időráfordítással a optimális paramétereket adja meg. A paraméterbecslés ezenkívül jól mutatja, 

melyik algoritmus mennyire robosztus, illetve felhasználóbarát. A véletlen erdőnél a különböző 

paraméterkombinációkkal tanított modellek közül a teszt adaton mért legalacsonyabb és 

legmagasabb pontosságok között átlagosan csupán 2,1% különbség volt, addig a gradiens-

növelő fánál már 6,01%, míg a neurális hálónál 27,75%. Ezek alapján a véletlen erdő 

algoritmust legkönnyebb parametrizálni, míg a neurális hálót a legnehezebb. 

18. ábra Az osztályozáshoz elkészített python script felépítése. 
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 A kapott paraméterek felhasználásával készült el a végleges modell, amely 

alkalmazásával történt a validálás és a becslés. A script egy osztályozott térképet és egy riport 

fájlt készít el a legfontosabb teljesítményt leíró adatokkal. A leíró adatok között több 

összpontossági érték is szerepel a lehető legrészletesebb és megbízhatóbb eredmények elérése 

miatt.  

5.2. Az osztályozáshoz felhasználható, bemenő adatok vizsgálata 

Az osztályozások során egyre nagyobb hangsúlyt kap a megfelelő bemenő változók 

kiválasztása és/vagy létrehozása. Az egyre növekvő adathalmazok, amelyek következtében 

minden változónak (dimenziónak) sokkal nagyobb hatása van az osztályozó modell 

teljesítményére. Ezért a változók kiválasztásánál már nem csak a változó információtartalmát 

és ezzel együtt a pontosságra kifejtett hatását kell vizsgálnunk, hanem hatását a modell 

teljesítményére a pontossággal összefüggésben. Vagyis az adott változó információtartalma 

elég nagy-e ahhoz képest, hogy mennyivel növeli a modell futási idejét.   

A területhasználat osztályozásban is kulcsfontosságú a megfelelő változók kiválasztása, 

mivel a távérzékelt adatok osztályozási folyamata alapvetően adatorientált, így a kezdeti 

kutatási koncepciónkat sokszor a rendelkezésre álló adatok alapján kell kialakítanunk, vagy a 

meglévőt módosítanunk. A legtöbb esetben az osztályozáshoz egy időpontból áll rendelkezésre 

számunkra felvétel az adott területről a térképezés elvégzéséhez. Azonban egy adott felvétel 

sokszor nem hordoz akkora információmennyiséget, ami a területhasználati kategóriák 

elkülönítéséhez szükséges, főleg, ha az alkalmazott nomenklatúra nagyszámú kategóriát 

tartalmaz. Ilyen esetben szükségünk lehet olyan adatokra, amelyek az eredeti felvételből 

levezetve többletinformációt hordoznak és ezáltal növelik a térképezésünk pontosságát. A 

másik lehetőség, hogy többféle adatforrásból származó felvételekkel biztosítjuk a megfelelő 

információmennyiséget az osztályozáshoz. Ilyen adatfúziós eljárásnál azonban nagy hangsúlyt 

kell fektetnünk az adatok harmonizációjára. Ha több időpontból áll rendelkezésünkre felvétel 

az adott területről, akkor az információtöbblet a felvételek közötti időkülönbségből adódik, 

amennyiben a felszínt borító anyag reflektancia tulajdonsága változik ezen idő alatt. Ebben az 

esetben arra kell figyelmet fordítanunk, hogy mekkora időkülönbség szükséges a felvételek 

között ahhoz, hogy a különböző felvételek már eltérő információt hordozzanak. A 

disszertációmban ezeket a lehetőségeket vizsgálom meg a gépi tanulásos osztályozó eljárások 

alkalmazásával. 

Az eredmények kiértékelésnél négy többosztályos osztályozási feladatoknál használt 

mutatószámot számítottam ki és hasonlítottam össze: az összpontosságot, a felhasználói 

pontosságot, a készítői pontosságot és az F-számot (7. táblázat) (Congalton és Green, 2008). 

Az összpontosság a legalapvetőbb mutatószám, amely megmutatja, hogy térképünk hány 
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százalékát osztályoztuk megfelelően. Az osztályozás során az elvárt összpontosság legalább 

80%. A felhasználói és készítői pontossági adatok osztályszintű betekintést nyújtanak az 

eredményeinkbe. A felhasználói pontosság azt mutatja meg, hogy adott osztályba besorolt 

pixelek közül mennyi a jól osztályozott pixel. Azaz, hogy az osztályozó modell adott 

kategóriára adott becslései mennyire megbízhatóak. A készítői pontosság pedig azt mutatja 

meg, hogy az adott kategória az eredmény térképen milyen gyakran adja vissza a referencia 

térképet, vagyis az eredmény térkép milyen valószínűséggel adja vissza az adott kategóriát a 

terepen (milyen jól tükrözi a valóságot). Az F-számot (vagy F1-számot), alapvetően bináris 

osztályozási eredmények kiértékeléséhez alakították ki, azonban többosztályos esetekben is 

használható. A mutatót a felhasználói és a készítői pontosság harmonikus átlagaként 

számolhatjuk ki, amely így egy kompozit számként tudja az adott osztály pontosságát 

jellemezni. Az eredmények bemutatásánál a bemutatott mérőszámokat vetettem össze, 

amelyeket a validáló pontok alapján számítottam ki. 

7. táblázat A bemenő adatok kiértékeléséhez használt statisztikai mutatószámok 

(Congalton és Green, 2008) alapján. 

Mérőszám Kiszámítási mód 

Összpontosság 

(Overall accuracy) 

𝐴 𝑡é𝑟𝑘é𝑝𝑒𝑛 𝑗ó𝑙 𝑜𝑠𝑧𝑡á𝑙𝑦𝑜𝑧𝑜𝑡𝑡 𝑝𝑖𝑥𝑒𝑙𝑒𝑘 ö𝑠𝑠𝑧𝑒𝑔𝑒

𝐴 𝑡é𝑟𝑘é𝑝 𝑝𝑖𝑥𝑒𝑙𝑒𝑖𝑛𝑒𝑘 ö𝑠𝑠𝑧𝑒𝑔𝑒
 

Felhasználói pontosság 

(User’s accuracy) 

𝐴 𝑡é𝑟𝑘é𝑝𝑒𝑛 𝑦 𝑘𝑎𝑡𝑒𝑔ó𝑟𝑖á𝑏𝑎 𝑗ó𝑙 𝑜𝑠𝑧𝑡á𝑙𝑦𝑜𝑧𝑜𝑡𝑡 𝑝𝑖𝑥𝑒𝑙𝑒𝑘 ö𝑠𝑠𝑧𝑒𝑔𝑒

𝐴 𝑡é𝑟𝑘é𝑝𝑒𝑛 𝑦 𝑘𝑎𝑡𝑒𝑔ó𝑟𝑖á𝑏𝑎 𝑜𝑠𝑧𝑡á𝑙𝑦𝑜𝑧𝑜𝑡𝑡 𝑝𝑖𝑥𝑒𝑙𝑒𝑘 ö𝑠𝑠𝑧𝑒𝑔𝑒
 

Készítői pontosság 

(Producer’s accuracy) 

𝐴 𝑡é𝑟𝑘é𝑝𝑒𝑛 𝑦 𝑘𝑎𝑡𝑒𝑔ó𝑟𝑖á𝑏𝑎 𝑗ó𝑙 𝑜𝑠𝑧𝑡á𝑙𝑦𝑜𝑧𝑜𝑡𝑡 𝑝𝑖𝑥𝑒𝑙𝑒𝑘 ö𝑠𝑠𝑧𝑒𝑔𝑒

𝐴 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎 𝑡é𝑟𝑘é𝑝 𝑦 𝑘𝑎𝑡𝑒𝑔ó𝑟𝑖á𝑏𝑎 𝑡𝑎𝑟𝑡𝑜𝑧ó 𝑝𝑖𝑥𝑒𝑙𝑒𝑖𝑛𝑒𝑘 ö𝑠𝑠𝑧𝑒𝑔𝑒
 

F-szám 

(F-score) 

2 ∗ 𝑎 𝑡é𝑟𝑘é𝑝𝑒𝑛 𝑦 𝑘𝑎𝑡𝑒𝑔ó𝑟𝑖á𝑏𝑎 𝑗ó𝑙 𝑜𝑠𝑧𝑡á𝑙𝑦𝑜𝑧𝑜𝑡𝑡 𝑝𝑖𝑥𝑒𝑙𝑒𝑘 ö𝑠𝑠𝑧𝑒𝑔𝑒

2 ∗ 𝑎 𝑡é𝑟𝑘é𝑝𝑒𝑛 𝑦 𝑘𝑎𝑡𝑒𝑔ó𝑟𝑖á𝑏𝑎 𝑗ó𝑙 𝑜𝑠𝑧𝑡á𝑙𝑦𝑜𝑧𝑜𝑡𝑡 𝑝𝑖𝑥𝑒𝑙𝑒𝑘 ö𝑠𝑠𝑧𝑒𝑔𝑒 +
𝑎 𝑡é𝑟𝑘é𝑝𝑒𝑛 𝑦 𝑘𝑎𝑡𝑒𝑔ó𝑟𝑖á𝑏𝑎 𝑜𝑠𝑧𝑡á𝑙𝑦𝑜𝑧𝑜𝑡𝑡 𝑝𝑖𝑥𝑒𝑙𝑒𝑘 ö𝑠𝑠𝑧𝑒𝑔𝑒 + 

𝑎 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎 𝑡é𝑟𝑘é𝑝 𝑦 𝑘𝑎𝑡𝑒𝑔ó𝑟𝑖á𝑏𝑎 𝑡𝑎𝑟𝑡𝑜𝑧ó 𝑝𝑖𝑥𝑒𝑙𝑒𝑖𝑛𝑒𝑘 ö𝑠𝑠𝑧𝑒𝑔𝑒

 

5.2.1. Spektrális információk és derivátumaik hatékonyságának vizsgálata az 

osztályozás szempontjából 

A felszínborítás osztályozásánál a leggyakrabban felhasznált adatforrások a 

multispektrális műholdfelvételek. Azonban a területhasználati kategóriák száma, átmeneti 

jellege és nem diszkrét meghatározása miatt a felvételek spektrális értékei önmagukban nem 

minden esetben elegendők az osztályozás megfelelő pontossággal való elvégzéséhez. Ezért 

szükségünk lehet különböző kiegészítő adatokra, amiket az eredeti adatokból származtathatunk. 

Ilyenek lehetnek a spektrális indexek vagy a transzformációk. A felvételek spektrális sávjainak 
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vizsgálatán túl, a multispektrális műholdképekből különböző típusú származtatott adatokat 

számítottam ki. Célul tűztem ki, hogy megvizsgáljam, ezen adatok felhasználásával hogyan 

változik az osztályozások pontossága és a modellek teljesítménye. Az egyes adatok hatásának 

vizsgálatához a CLC adatbázisokhoz használt műholdképek alapján végzett osztályozás 

pontosságát vettem alapul. Ezekkel az értékekkel vetettem össze az egyes derivátumok és a 

műholdképek kombinációi alapján létrehozott modellek teljesítményét. 

5.2.1.1. Spektrális sávok hatékonyságának vizsgálata  

A műholdfelvételek spektrális sávjai különféle információkat tartalmaznak egy adott 

területen fekvő objektumokról. A területhasználati kategóriák közvetlenül nem érzékelhető 

tulajdonságaik miatt, a spektrális sávok önmagukban gyakran nem elegendők az összes 

területhasználat jellegű kategóriák közvetlen osztályozására. Ez a jelenség jól kimutatható az 

egyes osztályok szeparabilitás értékei alapján, amely megmutatja, hogy mennyire különíthetőek 

el az egyes kategóriák a spektrális térben. Az általam, a CLC00 adatbázis és az ehhez felhasznált 

Landsat-7 (L7) felvételek (A4. táblázat) felhasználásával a mintaterületekre kiszámított 

Jeffries-Matusita távolságokon (13. ábra) jól látszik, hogy az egyes sávok alapján a kategóriák 

minimális távolság értéke (azaz a legkevésbé elkülöníthető osztály értéke) a 0-hoz közelít (0 = 

nem szeparálható eset). Még az összes sáv együttese használata esetén is a minimális távolság 

érték a lehetséges maximum (1414) felét se éri el (14. ábra). A CLC18-as adatbázis alapján a 

Sentinel-2 felvételek 1-1 sáv reflektancia értekeiből számolt osztályok szerinti JM távolságok 

minimumai is nagyobbak, mint a L7 felvételekből az összes sáv alkalmazásával kapott JM 

távolság érték (19. ábra).  

19. ábra A Pesti hordalékkúp-síkságra kiszámolt JM távolságok, osztályonként, a CLC18-ás 

adatbázis és a Sentinel-2 sávjai alapján.  
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Valamint az átlagos elválaszthatóság értékei is magasabbak, de ezek az értékek a legtöbb 

esetben így sem érik el a maximális érték felét. Azonban a minden sáv alapján számított 

szeparabilitás értékek, amelyek majdnem minden osztály esetén 1000 fölötti értékek, már igen 

magas elkülöníthetőségre utalnak. A szeparabilitás értékek alapján levont következtetést 

altámasztják a pontossági értékek, amiket a L7-es spektrális sávok felhasználásával készített 

modellek adtak (20. ábra). Ezek alapján a 6 mintaterület közül 5 esetében egyik osztályozó 

algoritmus se tudott elégségesnek mondható eredményt adni (60% alatti pontosság) a spektrális 

sávok alapján. Csupán 1 mintaterületnél volt különbség, azonban ott mindegyik osztályozó 

közepes pontosságot ért el (70–80% között). 

 

Az eredmények konfúziós mátrixai alapján vizsgálni tudjuk az osztályszintű hibákat is. 

A legjobban urbanizált 1112-es (Pesti hordalékkúp-síkság) mintaterületen a konfúziós mátrixok 

alapján a területen lévő 24 kategóriából 18-at egyik modell sem jelzett. A többi 6 között pedig 

nagyfokú átosztályozás tapasztalható, főleg a 2.1.1.-es „Nem öntözött szántóföldek” 

kategóriánál, amely a 2.3.1.-es „Rét, legelő”, a 2.4.2-es „Komplex művelési szerkezet” és a 

3.2.4-es „Átmeneti erdős-cserjés területek” kategóriákkal keveredett. Az 1713-as (Hevesi-ártér) 

mintaterületen a 15 CLC szerint létező kategóriából csak 5 osztály jelent meg a modellfuttatás 

után az eredménytérképen. Az 5 osztályozott kategória azonban csak kis mértékben 

osztályozódott át egymás között. Az erdős 3131-es (Felső-Őrség) mintaterületen a 9 

kategóriából 4 nem jelent meg a becsült térképen. Az átosztályozások a 3. hierarchia szinten 

belül jelentkeztek, ahol a 3.1.1-es „Lomblevelű erdők”, a 3.1.2-es „Tűlevelű erdők”, a 3.1.3-as 

20. ábra A különböző algoritmusok által az egyes mintaterületek teszt adathalmazán mért 

pontossági értékek a Landsat 7-es spektrális sávok alapján. 
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„Vegyes erdők” és a 3.2.4-es „Átmeneti erdős-cserjés területek” keveredtek különböző 

mértékben. A 4145-ös (Balatoni-riviéra) mintaterületen a lehetséges 14 lehetséges osztályból 9 

megtalálható a becsült térképeken. Ebből a 9 osztályból 2 kategória helyesen osztályozódott: a 

2.2.1 „Szőlők” és a 3.1.1 „Lomblevelű erdők”, a többi kategória közepes mértékben.  

 

A legtöbb átosztályozás az 1.1.2-es „Nem összefüggő településszerkezet” és a 1.4.1-es 

„Városi zöldterületek” között volt. Az 5332-es (Tétényi-fennsík) kistájon csupán 5 kategória 

nem jelent meg az eredmény térképen a lehetséges 15-ből. A legjobban lehatárolt az 1.1.2-es 

és a 3.1.1-es kategóriák voltak, míg a legrosszabbul a 3.2.1-es „Természetes gyepek, 

21. ábra A különböző modellekkel készített osztályozások átlagos F-száma 

kategóriánkként Landsat-7-es sávok alapján. 
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természetközeli rétek”, és az 1.3.3-as „Építési munkahelyek”. A legnagyobb átosztályozás a már 

említett 1.1.2-es és az 1.3.3-as kategóriák, illetve az 1.1.2-es és az 1.4.2-es kategóriák között 

volt. Az utolsó, fővároshoz közel lévő, 6351-es (Gödöllői-dombság) mintaterületen a lehetséges 

18 osztályból csupán 3 kategória került lehatárolásra: 1.1.2, 2.1.1, 3.1.1. Az nem osztályozott 

kategóriák pixelei főleg a 2.1.1-es és a 3.1.1-es kategóriákban lettek besorolva, azonban ez a 3 

osztály egymással csak kismértékben keveredett. Az eredmények alapján megállapítható, hogy 

a legtöbb mintaterületen sok kategória nem került osztályozásra a L7-es spektrális sávok 

alapján, de a konfúziós mátrixok alapján, az átosztályozások nagy része főosztályon belül 

történt. Ezek alapján arra a következtetésre jutottam, hogy a spektrális sávok az alapvető 

felszínborítási kategória (I. hierarchia szint) elkülönítésére még alkalmasak, azonban az inkább 

területhasználati kategóriák között (II–III. hierarchia szint) már nem alkalmasak az 

elhatároláshoz.  

A mintaterületeken mért F-számok átlaga alapján a legtöbb kategória értéke az 

alkalmazott modellek esetében közel azonos (21. ábra). A Landsat-7-es spektrális sávjai alapján 

legjobban elhatárolható kategóriák az 1.1.1-es „Összefüggő településszerkezet”, az 1.2.1-es 

„Ipari vagy kereskedelmi területek” és az 1.2.4-es „Repülőterek”. Azonban a három osztály 

közül az 1.1.1-es és az 1.2.4-es is csak egy mintaterületen fordul elő (Pesti hordalékkúp-síkság). 

A mindegyik mintaterületen jelen lévő 7 osztályból a legjobban osztályozott kategória a 2.3.1-

es „Rét, legelő”, míg a második az 1.1.2-es „Nem összefüggő településszerkezet”. A 

legnehezebben elkülöníthető kategóriák közé sorolható az 1.3.1-es „Városi zöldterületek”, az 

1.3.2-es „Lerakóhelyek, meddőhányók”, a 3.2.1-es „Természetes gyepek, természetközeli rétek” 

és a 4.1.1-es „Szárazföldi mocsarak” osztályok. A hat mintaterületen előforduló kategóriák 

közül a legrosszabb F-számmal a 2.4.3-as „Elsődlegesen mezőgazdasági területek jelentős 

természetes növényzettel” kategória rendelkezik.  

A 2018-as adatok esetén a Landsat-8 (L8) és a Sentinel-2-es felvételek spektrális értékei 

alapján készített osztályozásoknál több szempontot is vizsgálhattam. A spektrális sávok 

felszínborítást és területhasználatot jellemző képessége mellett elemeztem a térbeli felbontásból 

és a felvételező rendszerek sávkiosztásából eredő hatásokat is, az osztályozások pontosságára 

nézve. Az eredmények azt mutatták, hogy az L8-as és az S2-es adatok alapján mindhárom 

felhasznált algoritmus és mindegyik mintaterület esetén az elégségesnek mondható 60% feletti 

összpontosságot kaptam. Az L8 spektrális értékei alapján az osztályozások validációs halmazon 

mért átlagos pontossága a véletlen erdő esetében 69,06%, a gradiens-növelő fa esetében 69,38% 

és a többrétegű perceptron esetében 67,9% volt. Az S2-es értékekkel történő osztályozás 

esetében 70% fölötti átlagos pontosság értékek adódtak a validációs halmazokon mérve: 
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75,09%–75,71%–70,67%. Összeségében az S2-es adatok alapján magasabb összpontosságokat 

érhetünk el, azonban ezek az értékek is csak közepesnek mondhatóak (<80%).  

 

 

A véletlen erdő osztályozásokból származó permutációs fontossági értékek (22. ábra) 

azt mutatták, hogy az L8-as értékek közül az algoritmus számára a legfontosabbak a közepes 

infravörös I., a zöld és a vörös sávok voltak. Az S2-es spektrális sávok közül a legfontosabbak 

az ultrakék és a közepes infravörös I. és II. voltak. Az L8-as hullámhossz tartományai között 

nem szereplő 5–10-ig terjedő S2 sávok közül a 10-es sáv magas fontossági értékkel rendelkezik 

(0,23), míg a többi közepes vagy gyenge értékkel (0,06–0,12). Az L8 TIRS sávjaira, amik 

nincsenek az S2 sávok között, közepes fontossági értékek jellemzők (0,13–0,15). A fontossági 

értékek és az S2 adatok alapján készített osztályozások kis mértékben a spektrális sávok közötti 

különbségek, nagyobb mértékben a jobb térbeli felbontás miatt eredményeznek magasabb 

pontossági értékeket. Mivel így kisebb a keveredés egy adott pixelen belül, ezért több tiszta 

pixel kerül az osztályozásba. Azonban a változók fontossági értékei alapján az alapvetően 

nagyobb területet jellemző változók (eredeti térbeli felbontásuk nagyobb, az átmintavételezés 

miatt több pixelt csoportosítanak) lettek a legfontosabbak, ami utal a térbeliség szerepére is.  

A különböző adatokon (L8, S2) betanított modellek átlagos F-száma is az előző állítást 

támasztja alá (23. ábra). A mintaterületeken lévő 25 CLC kategóriából 20-nál javulást okozott 

az S2-es adatok felhasználása az L8-as adatok helyett. Az F-szám változás -22,35% és +35,53% 

közötti intervallumban mozgott, átlagosan +8,12%. A három legnagyobb javulást az F-számban 

a 3.1.3-as „Vegyes erdők” (+35,53%), a 1.4.1-es „Városi zöldterületek” (+27,66%) és a 2.4.3-

as „Elsődlegesen mezőgazdasági területek jelentős természetes növényzettel” (+27,61%) 

22. ábra Az S2 és az L8 spektrális sávjainak permutációs fontossági értékei. 
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kategóriáknál figyelhető meg. Ugyanakkor a három legnagyobb visszaesés az F-számban a 

1.3.1-es „Nyersanyag kitermelés” (-22,35%), az 1.2.4-es „Repülőterek” (-16,89%) és a 2.2.1-es 

„Szőlők” (-12,81%) osztályoknál történt.  

 

Az eredmény térképeken is jól látható a két kép felbontásából eredő osztályszintű 

pontosságnövekedés (24. ábra). A nagyobb térbeli felbontásnak köszönhetően a tisztább 

23. ábra A különböző műholdképeken betanított modellekkel készített osztályozások 

átlagos F-száma kategóriánkként. 
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spektrális értékekből 

homogénebb foltok alakulnak 

ki, illetve az alapvetően 

heterogén, városi 

környezetben is 

egyértelműbben lehatárolható 

pixelcsoportok jelennek meg 

(pl.: ipari létesítmények, 

csarnokok teteje). Azonban 

meg kell jegyezni, hogy a 

városi területeken lévő elszórt 

pixelek, illetve kisebb 

homogén pixelcsoportok a 

CLC minimális térképezési 

nagysága miatt nem minden 

esetben eredményeznek 

pontosságnövekedést a 

statisztikában.  

A Landsat-7 

műholdképek spektrális 

sávjai alapján betanított 

modellek átlagosan 45,91%-

os (min. 39,97%, max. 

78,91%) összpontossági 

értekkel rendelkeztek, így 

kijelenthető, hogy ezen 

információk alapján a 

területhasználati 

osztályozást az elvárt 

pontossággal nem lehet 

elvégezni. A Landsat-8 és a 

Sentinel-2 adatok alapján 

24. ábra Landsat-8 spektrális sávok (A), Sentinel-2 spektrális 

sávok (B) felhasználásával betanított HGBC modellek 

eredménytérképei, illetve a valós helyzet (C). 
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létrehozott modellek 68,78%-os (min. 67,90%, max. 69,38%) és 73,67%-os (min. 70,22%, 

max. 75,71%) átlagos összpontossággal rendelkeztek, így ezen információk alapján 

közepes eredménnyel lehet területhasználati osztályozást elvégezni. Ezen eredményeim 

alapján megállapítható, hogy a spektrális sávok önmagukban nem hordoznak elegendő 

információt a felszínborítási/területhasználati kategóriák megfelelő lehatárolásához. 

Továbbá a nagyobb térbeli felbontású Sentinel-2-es műholdfelvételek használatával az 

osztályozások pontosságát növelni tudtam (+4,89%-kal). (1. cél)       

5.1.1.2. Spektrális indexek, mint kiegészítő adatok vizsgálata 

 Az osztályozásokban leggyakrabban használt kiegészítő bemenő adatok, a 

műholdképekből számított különböző spektrális indexek (Costăchioiu és Datcu, 2010; Thakkar 

et al., 2014). Ezen indexek hatása az osztályozás pontosságára nem teljesen egyértelmű. A 

kutatásomban különböző vegetációs, égési és nedvességi indexeket (NDVI, SAVI, MSAVI, 

EVI, NBR, NBR2, NDMI) számítottam ki a CLC00-ás alapját adó L7-es műholdfelvételek 

alapján (A2. táblázat, A3. táblázat). Ezen mutatószámok mindegyike több sáv felhasználásával 

hoz létre új értékeket, ezért az új értékek segítik a felhasználót a felvételek interpretálásában, 

másrészt mint adattömörítő eljárás is funkcionálnak. Az indexek közül nem mindegyik hordoz 

információt a felszínborításról vagy a területhasználatról (égési, nedvességi indexek). Ezek 

azért kerültek a kutatásomba, hogy megvizsgáljam a vegetációs indexek hatása az osztályozásra 

egyedi jelenség (pl. információtöbblet miatt) vagy minden indexre érvényes. 

 

25. ábra Különböző spektrális indexek hatása az osztályozások összpontosságára. 
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Az egyes indexeket a 

spektrális sávokkal együtt 

felhasználva készítettem 

osztályozásokat. Az indexek 

különböző kombinációit nem 

vizsgálatam, mivel az indexek 

önálló hatását akartam elsőnek 

megvizsgálni. A 

mintaterületeken mért indexek 

eredményeit az egyes 

algoritmusok szintjén 

átlagoltam, illetve a modellek 

átlagait is átlagoltam, hogy 

átfogó képet kapjak az indexek 

hatásáról. Az eredmények 

alapján (25. ábra) a 

hagyományos vegetációs 

indexek, mint az NDVI, SAVI, 

MSAVI, EVI az osztályozás 

összpontosságát nem, vagy 

csak kis mértékben növelik 

(<2%). Továbbá 

megállapítható, hogy a döntési 

fa és az azokból felépülő 

véletlen erdő osztályozónál 

egyik index sem okozott 

pontosság növekedést. 

Azonban a többrétegű 

perceptronnál a 7 indexből 4 is 

tudott javulást okozni (MSAVI, 

NBR, NDVI, SAVI). Ezt a 

képet árnyalja, hogy a 4 

indexből a második 

legnagyobb pontosságbéli 

javulást nem egy vegetációs 

26. ábra MLP és különböző spektrális indexek felhasználásával 

készített térképek:  
A – Az eredeti CLC00 térkép,  

B – A spektrális sávok alapján készült térkép, 

C – A spektrális sávok és az EVI index alapján készült térkép, 

D – A spektrális sávok és az MSAVI index alapján készült térkép,  

E – A spektrális sávok és az NBR index alapján készült térkép, 

F – A spektrális sávok és az NBR2 index alapján készült térkép,  

G – A spektrális sávok és az NDMI index alapján készült térkép,  

H – A spektrális sávok és az NDVI index alapján készült térkép 



Gudmann András Viktor – Disszertáció, 

Szegedi Tudományegyetem, Földtudományok Doktori Iskola 

61 

 

index, hanem a NIR és SWIR sávokból számítható normalizált égési index (Normalized Burn 

Ratio - NBR) eredményezte. A tartó-vektor gép esetében a 7-ből 1 index okozott javulást a 

pontosságban, míg a többi valamilyen mértékben rontotta az eredményeket. Az átlagos 

pontosság változások mértékét figyelembe véve 3 index egyértelműen rontja (EVI, NBR2, 

NDMI), 3 index nem egyértelműen rontja (MSAVI, NBR, SAVI), míg egy index minimális 

szinten javítja a pontosságot (NDVI). Az egyes indexek felhasználásával készült 

eredménytérképeken is a pontossági adatokból kiolvasható eredmények láthatóak (26. ábra). A 

térképek nagyban hasonlítanak egymáshoz, az eredeti CLC adatbázishoz képeset 

ugyanazokban a részletekben eltérnek, mint a spektrális sávok alapján készült térkép. Azonban 

az adott térkép előállításához használt indextől függően az eltérés mértéke változó. A CLC 

adatbázisban nem jelzett 2 db folt mindegyik térképen jelen van, viszont az indextől függően 

az alakja, kiterjedése és besorolása eltérő. A legnagyobb eltérés az EVI-t és MSAVI-t használó 

térképeknél látható, míg a többi térképen csak kisebb, pixel szintűek az eltérések a spektrális 

sávok alapján készült térképhez képest.  

Az L7-es műholdképekből kiszámított indexek eredményei alapján, a következő 

lépésként olyan indexek felhasználását tűztem ki célul az osztályozásban, amik kiszámításához 

már nem elegendőek a műholdfelvétel sávjai. Ezzel azt vizsgáltam, hogy az új információk 

önmagukban, legyenek azok bármilyen típusúak, képesek-e javítani az egyes modellek 

pontosságát. A Sentinel-2-es adatok alapján általam kiszámított ilyen indexek a fraction of 

Absorbed Photosynthetically Active Radiation (faPAR) index és a Fraction of Vegetation 

Cover (FVC) (A4. táblázat). A fAPAR index az egyik legelterjedtebb és leghatékonyabb 

műholdképből számított index (Weiss és Baret, 2011), amelynek a kiszámításához szükséges 

ismernünk a fotoszintetikusan aktív sugárzási értékeket (Photosynthetically Active Radiation – 

PAR, az elektromágneses spektrum 400 és 700 nm közötti tartománya), továbbá a sugárzáshoz 

köthető egyéb adatokat (Nap helyzete, azimuth szög, légköri viszonyok). A fAPAR értékét az 

alábbi képlettel kaphatjuk meg (Weiss és Baret, 2011): 

fAPART(ɵS,ȹS)=(1-f)*fAPARBS(ɵS,ȹS)+f*fAPARWS 

ahol ɵS a napsugarak beesési szöge a nadírhoz képest, 

ȹS az azimuth szög, 

fAPARBS a fAPAR sötét égbolton (black-sky), 

fAPARWS a fAPAR fehér égbolton (white-sky), 

f pedig a szóródás direkt frakciója. 
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 A gyakorlatban több módszer áll rendelkezésre a fAPAR index kiszámításhoz. A SNAP 

szoftver algoritmusa a S2 műhold felvételezési adatainak és spektrális sávjainak 

felhasználásával egy adott sugárzási-transzfer modell és egy neurális háló felhasználásával 

számítja ki a fAPAR értékeket 

(Weiss et al., 2020). Ugyanezzel a 

módszerrel számítható ki a 

levélfelület indexből (LAI) és más 

lombkoronaszerkezeti változókból a 

növényborítottság aránya (FVC), 

amely a fAPAR-ral ellentétben nem 

függ olyan változótól, mint a 

megvilágítás geometriája. Emiatt 

nagyon jól hasznosítható a klasszikus 

vegetációs indexek helyettesítésére a 

zöld növényzet megfigyelése során 

(Weiss et al., 2020).  

 Az eredmények alapján a 

FaPAR és az FVC index, mint az S2 

sávok kiegészítő adatok nem okoztak 

szignifikáns összpontosságbeli 

különbséget (8. táblázat). Azonban 

az F-számok vizsgálata azt mutatta, 

hogy javítani tudták az kategóriák 

többségének lehatárolását. A 25 

kategóriából 19-nél a FaPAR és 16 

esetében az FVC felhasználásával 

növekedett az F-szám. Mindkét index 

esetében a legnagyobb növekedés az 

2.2.1-es „Szőlők” (FaPAR: +22,15%, 

FVC: +22,62%), míg a legnagyobb romlás a 3.1.3-as „Vegyes erdők” kategóriánál történt 

(FaPAR: -27,59%, FVC: -26,31%). Az F-számok alapján kijelenthető, hogy az indexek 

használatával a kis részarányú kategóriák lehatárolását tudjuk javítani, pár nagy részarányú (pl. 

2.1.1. „Nem öntözött szántóföldek”) rovására. Ennek a kettős hatásnak köszönhetően az 

összpontosságban nem tapasztalható lényegi változást, de osztály szinten igen. 

 
Sentinel-2 

Sentinel-2 

+ FaPAR 

Sentinel-2 

+ FVC 

Összpontosság 73,67% 73,66% 73,48% 

F-szám 

111 39,45% 58,99% 54,36% 

112 71,59% 71,18% 71,04% 

121 52,70% 52,92% 53,71% 

122 39,95% 40,53% 39,85% 

124 52,16% 61,00% 64,69% 

131 10,39% 24,23% 27,75% 

132 39,59% 53,77% 58,46% 

133 15,49% 32,99% 15,25% 

141 43,98% 46,00% 47,65% 

142 45,97% 46,90% 46,76% 

211 82,24% 81,53% 80,75% 

213 70,73% 73,09% 72,25% 

221 33,17% 55,31% 55,79% 

222 42,71% 48,29% 46,57% 

231 55,65% 55,87% 56,78% 

242 33,31% 32,80% 31,85% 

243 48,14% 47,19% 47,30% 

311 71,19% 71,98% 74,66% 

312 63,60% 65,34% 64,07% 

313 42,70% 15,11% 16,40% 

321 18,09% 32,30% 17,21% 

324 49,89% 49,90% 49,41% 

411 61,96% 63,51% 64,74% 

511 82,53% 83,17% 84,59% 

512 84,30% 81,59% 85,98% 

8. táblázat A FaPAR és FVC indexek 

felhasználásával elkészített eredmények átlagainak 

mutatószámai. 
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Az eredményeim alapján a hagyományos spektrális indexek (NDVI, SAVI, 

MSAVI, EVI, NBR, NBR2, NDMI) és spektrális sávokon felépített modellek 

összpontosságaiknak átlagai alapján csak az NDVI növelte az osztályozások pontosságát 

(+0,06%). A többi index rontotta az osztályozások pontosságát -0,14% és          -2,54% 

közötti mértékben. Ezek alapján megállapítottam, hogy a kiválasztott indexek nem 

hordoznak olyan többlet információt a spektrális sávokhoz képest, ami jelentős 

mértékben javítaná a gépi tanulásos osztályozó modellek pontosságát a felszínborítás és 

területhasználat térképezésben. Az összetett vegetációs indexek (FaPAR, FVC) átlagosan 

-0,01%-kal és -0,19%-kal változtatták az összpontosságot, azonban kategória szinten 

tudták javítani a modellek pontosságát, a 25 kategóriából 16-19 osztály F-szám értékét 

növelték. (2. cél) 

5.1.1.3. Adattranszformációk, mint kiegészítő adatok vizsgálata 

A spektrális sávokból matematikai úton és más a kép készítéséhez kapcsolódó 

információk segítségével előállítható indexek mellett, az adattranszformációk szerepét is 

vizsgáltam. Két transzformációt választottam ki a vizsgálatomhoz: a főkomponens analízist és 

a Tasseled Cap transzformációt. A főkomponens analízis (Principal Component Analysis – 

PCA) az egyik legrégebben alkalmazott dimenziócsökkentő, adattömörítő eljárás. Lényege, 

hogy csökkentsük a nagyszámú összefüggő változót tartalmazó adattömb dimenzióját úgy, 

hogy közben megőrizzük az adathalmaz információtartalmát. A dimenziócsökkentést úgy éri 

el, hogy transzformálja az adattömböt egy új változó készletre, amiben a változók nem 

korreálnak, függetlenek egymástól és az első néhány változó megőrzi az eredeti változókban 

lévő információtartalom nagy részét (Jolliffe, 1986). A főkomponens analízis első két-három 

sávja tartalmazza az eredeti sávok információtartalmának majdnem teljes részét (~90%). A 

PCA segítségével könnyen megtalálhatók az adatokat legjobban jellemző mintázatok és 

információcsökkentés nélkül képes tömöríteni az adathalmazt. Továbbá az adatokban lévő zajt 

is képes jelentősen csökkenteni (Tan et al., 2006). A PCA egy általánosan használt eljárás, míg 

a Tasseled Cap transzformáció a direkt multispektrális műholdfelvételekhez fejlesztették. „A 

Tasseled Cap-transzformáció (Kauth és Thomas, 1976) matematikailag a spektrális téren 

történő elforgatásként és eltolásként értelmezhető. Segítségével a műholdfelvételek úgy 

alakíthatók át, hogy a dimenziószám csökkenése mellett a felszíntérképezés szempontjából 

lényeges részletek emelkednek ki.” (Mucsi, 2004). A transzformáció eredményeképp a 

létrejövő spektrális térben a talaj pixelei egy egyenest, ellipszist vagy ellipszoidot formálnak, 

ez a talajvonal. A vegetáció képpontjai pedig a talajvonalra merőlegesen helyezkednek el, és 

minél fejlettebb a növényzet, annál messzebb találhatók a talajvonal tengelyétől (Mucsi, 2004). 

A talajvonalról induló növények pályái a fenológiai fázisban egy bojtos sapkához hasonlítanak 
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a vörös és a NIR sávok által kifeszített spektrális síkon, ezért az adattranszformáció a Tasseled 

Cap nevet kapta. A módszer létrehozása során három adatstruktúrát határoztak meg: a 

fényességet (Brightness), amely a talajfelszínek és a magas albedójú felszínek reflektancia 

tulajdonságaival áll kapcsolatban. A zöld index (Greenness) növényzettel kapcsolatos 

információkat nyújt és a vegetáció előfordulását jelzi. A nedvesség (Wetness) vizet és talajt, 

valamint a vegetáció nedvességét jelzi. A vizsgálataimban az összes mintaterületre nézve, a 

kiegészítő adatként az L7-bők kiszámított PCA első három sávját és a Tasseled Cap 

transzformáció 6 sávját használtam fel az L7 spektrális sávokkal kombinálva (A4. táblázat).  

 

Az eredmények alapján nehéz egyértelmű, általános megállapításokat tenni a 

transzformációkról (27. ábra). A Tasseled Cap a négy osztályozó algoritmus közül háromnál 

nem okozott jelentős pontosságbéli változást, csupán a tartó-vektor gépnél történt jelentősebb, 

negatív irányú változás (>6%). A PCA-nak nagyobb hatása volt a modellek pontosságára, mint 

a Tasseled Cap transzformációnak. Ennél a változónál is a tartó-vektor gép esetében változott 

a legnagyobb mértékben a pontosság, azonban itt pozitív irányba (>4%). A tartó-vektor gépen 

kívül a többrétegű perceptronnál is pontosságnövekedést okozott a PCA értékek bevonása az 

osztályozásba. Ugyanakkor a döntési fa és a véletlen erdő esetén egyik transzformáció sem 

okozott jelentős pontosságbeli változást. Az elkészült térképek vizuális kiértékelése azt mutatta, 

hogy a Tasseled Cap és a PCA értékek közötti pontosságbeli különbség az SVM osztályozónál 

nem látható (28. ábra). 

27. ábra Tasseled Cap és PCA sávok hatása az osztályozás összpontosságára. 
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28. ábra SVM osztályozó és különböző transzformációk felhasználásával készült térképek:  

A – Eredeti CLC térkép, 

B – Spektrális sávok felhasználásával készült térkép, 

C – Spektrális sávok és Tasseled Cap transzformáció felhasználásával készült térkép, 

D – Spektrális sávok és PCA sávok felhasználásával készült térkép. 
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  Mindkét adat külön-külön történő bevonásával az eredménytérképen lévő osztályok 

száma lecsökkent és egy homogénebb, de pontatlanabb térkép jött létre. A térképeken a 3 

legnagyobb részarányú osztály jelent csak meg: az 1.1.2-es „Nem összefüggő 

településszerkezet”, a 2.1.1-es „Nem öntözött szántóföldek” és a 3.1.1-es „Lomblevelű erdők”. 

A transzformációk hatása mellett az is jól látható az osztályozott képeken, ahogy az L8 és S2 

összevetésnél is kiemeltem, a részletesebb pixel szintű osztályozás a 25 ha minimális térképi 

egységgel dolgozó CLC adatbázissal összevetve pontosságcsökkenést eredményez. A 

településeken lévő szerkezet utcák, terek és parkok vagy a repülőtér kifutópályája mind 

megjelennek a pixel szintű osztályozásban, azonban ez hibaként jelenik meg a statisztikában. 

 

Az SVM esetén a legnagyobb javulás a Gödöllői-dombságon volt tapasztalható. A 

mintaterületre elkészített konfúziós mátrix vizsgálatából kiderül, hogy a spektrális sávok 

alapján készült modell a lehetséges 18-ból, 13-at nem osztályozott jól, míg a spektrális és PCA 

értékeken alapuló modell csak 11-et (29. ábra). A PCA adatok bevonása javulást eredményezett 

29. ábra SVM modell által a teszt adaton becsült értékek konfúziós mátrixa a 6351-es 

kistájon (Gödöllői-dombság). 
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a 1.1.2-es „Nem összefüggő településszerkezet”, a 3.1.2-es „Tűlevelű erdők” és az 5.1.2-es 

„Folyóvizek, vízi utak” kategóriáinak lehatárolásában. 

Az eredmények alapján a kipróbált két adattranszformációs eljárás a Tasseled Cap és 

PCA nem okoztak egyértelmű javulást az osztályozó modellek pontosságában. A Tasseled Cap 

értékek egyik algoritmus esetén sem hoztak jelentős pontosságnövekedést, míg a PCA értékek 

az algoritmusok felénél okoztak javulást, amelyek közül a tartó-vektor gép esetén volt jelentős 

a javulás. Az eredmények alapján arra a következtetésre jutottam, hogy a Tasseled Cap 

transzformáció átlagosan -1,45%-os, míg a PCA transzformáció +1,11%-os változást okoz 

az összpontosságban. Azonban az algoritmusok többségénél (3-ból, 4-nél) a változás 1%-

nál kisebb volt, így ezen adatokat csak egyedi esetekben érdemes kiegészítő adatként 

alkalmazni. (2. cél) 

5.2.2. A képelem környezetéből kinyerhető adatok vizsgálata 

Mivel a spektrális indexek és a különböző transzformációk sem hordoztak magukban 

olyat plusz információt, ami egyértelműen javította volna a különböző osztályozó algoritmusok 

pontosságát, így olyan mérőszámokat kezdtem vizsgálni, amik nem a pixel saját értékén 

alapulnak. Ilyenek a pixelek térbeli környezetét valamilyen módon leíró adatok, mint például a 

különböző kernel módszerek vagy a foltokon/szegmenseken alapuló tájmetriai indexek. Ezek 

az indexek az emberi logikát követve olyan információkat szolgáltathatnak, amik a pixelek 

szomszédsági viszonyából adódóan döntő jelentőségűek lehetnek egyes esetekben. A 

lombhullató erdő és a városi zöldterületek kategóriák mind jelentős arányú lombhullató fát 

tartalmaznak folt szinten, viszont a városi zöldterületek körül mesterséges felszínek pixelei 

találhatóak valamilyen távolságon belül. Ugyanilyen logikát követve nehezen elkülöníthető egy 

sportpálya, amely a „Sport-, szabadidő- és üdülőterületek” kategóriába tartozik a „Rét, legelő” 

kategóriától. Egy repülőtér kifutópályája sem különbözik az „Út - és vasúthálózat és csatlakozó 

területek” kategóriától csak az kifutópályát körbevevő komplexum határozza meg a repülőtér 

jellegét. Ezek alapján a kutatásomban arra kerestem a választ, hogy ezek a pixel környezetét 

valamilyen módon számszerűsítő metrikák képesek-e a gépi tanuláson alapuló osztályozó 

algoritmusok pontosságát növelni. 

5.2.2.1 Tájmetriai indexek, mint kiegészítő adatok vizsgálata 

A kutatásom első része a tájmetriai mérőszámok vizsgálatára irányul, aminek 

eredményét különálló cikkben is publikáltam (Gudmann et al., 2020). A vizsgálatomhoz a már 

említett mintataterületek tájszerkezeti heterogenitása miatt a Gödöllői-dombság és 

homogenitása miatt pedig a Marosszög kistájakat választottam ki. A Gödöllői-dombságon a 

CLC18-as adatbázis alapján 3 nagyobb osztály (1.1.2 „Nem összefüggő településszerkezet”, 

2.1.1 „Nem öntözött szántóföldek”, 3.1.1 „Lomblevelű erdők”) teszi ki a terület nagy részét, 
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amelyek jelentősen széttagolják a kistájat. Ennek köszönhetően a területen 349 poligon 

található, amelyek átlagos mérete 142 hektár. A Marosszögön egy dominás osztály (2.1.1 „Nem 

öntözött szántóföldek”) teszi ki a terület nagy részét (74,55%), amely így egy homogén 

tájszerkezetet alkot. Ez abból is látható, hogy a területen lévő 166 poligon átlagos mérete 352 

hektár. Az osztályozáshoz Landsat-8-as és Sentinel-2-es műholdfelvételeket választottam ki a 

2018-as év 3–3 időpontjából és a CLC18-as adatbázist használtam fel referenciaként. A 

tájmetriai mérőszámok kiszámításához szegmensekre volt szükségem, így a 

műholdfelvételekből készített kompozit képekből éldetektálás segítségével szegmenseket 

állítottam elő. A szegmentálás során több különböző minimális nagysággal (1–5–10–25 hektár) 

is készítettem szegmentált képeket, hogy megvizsgáljam, melyik szegmens méret az optimális 

az osztályozás szempontjából. Ezen szegmentált képek alapján számítottam ki 4, a 

tájökológiában gyakran használt indexet, mint az Átlagos Folt Méret (Mean Patch Size – MPS), 

Élhossz (Total Edge – TE), Átlagos Alak Index (Mean Shape Index – MSI), Fraktáldimenzió 

(Mean Fractal Dimension). Ezek a metrikák egy teljes tájat képesek leírni, a táj jellemzőinek 

tulajdonságaival és elrendezésével, a táj fragmentáltságával és a foltok alakjával. Sajátos 

tulajdonságaik miatt a metrikákat széles körben használják indikátorként olyan területeken, 

mint a biológiai sokféleség, a vízminőség, a földtakaró változása, a tájökológia és a 

várostervezés (Csikós és Szilassi, 2020; Kumar et al., 2018; Szabo et al., 2012). Az általam 

kiválasztott metrikák a tájszerkezet folytonosságát, a foltok alakjának összetettségét és a foltok 

külső peremének szabálytalanságait reprezentálják. A multitemporális műholdképek sávjait és 

a kiszámított tájmetriai indexeket együttesen használtam fel az osztályozás során. Az 

osztályozáshoz python programkörnyezetben implementált véletlen erdő osztályozót 

alkalmaztam. A modell tanításához véletlenszerűen kiválasztott pontokat generáltam, 

osztályonként 4000 db-ot, míg a többi adatot a teszteléshez használtam fel.  

Az eredmények alapján a tájmetriai mérőszámok képesek az osztályozás pontosságát 

növelni mind a heterogén mind, a homogén tájszerkezetű mintaterület esetében. A 

heterogénebb szerkezettel rendelkező Gödöllői-dombságon az osztályok eloszlása 

egyenletesebb, így a táj szerkezete és a kategóriák eloszlása miatt kisebb összpontossági értéket 

eredményezett a spektrális sávokon alapuló osztályozás (66,81%). Mivel a spektrális sávokon 

alapuló osztályozás viszonylag alacsony pontosságot eredményezett, a tájmetriai mérőszámok 

itt magasabb pontosságnövekedést okoztak. Alkalmazásuk esetén a számításuk alapjául 

szolgáló szegmensek méretétől függően 4,61–5,85% közötti pontosságnövekedést 

eredményeztek (9. táblázat). Továbbá ezen a mintaterületen a mérőszámok együttes 

alkalmazása 2,82 és 6,82% közötti javulást okozott. A legjobb összpontossági eredményt az 

összes adat (spektrális sávok, szegmensek és tájmetriai indexek) együttes alkalmazása hozta 
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(+9,33% a spektrális sávon alapuló eredményhez képest, 73,62%). A szegmensek minimális 

méretének vizsgálata alapján ezen a mintaterületen a legjobb pontossági értéket a 25 hektáros 

minimális nagyságú szegmens réteggel érhető el.  

 Marosszög Gödöllői-dombság 

Adat/Minimális szegmens 

méret 
1 ha 5 ha 10 ha 25 ha 1 ha 5 ha 10 ha 25 ha 

Spektrális sávok 87,02% 87,02% 87,02% 87,02% 66,81% 66,81% 66,81% 66,81% 

Spektrális sávok és 

szegmensek 
+1,48% +1,53% +3,14% +1,15% +4,10% +4,21% +3,98% +4,11% 

Spektrális sávok és 

tájmetriai indexek 
+0,59% +1,51% +2,65% +2,38% +2,82% +3,55% +4,96% +6,82% 

Spektrális sávok és 

szegmensek és MSI 
+3,28% +2,01% +1,89% +1,92% +4,65% +4,87% +5,16% +5,82% 

Spektrális sávok és 

szegmensek és MPS 
+3,35% +2,00% +3,70% +1,71% +4,97% +5,06% +5,10% +5,65% 

Spektrális sávok és 

szegmensek és TE 
+3,39% +1,91% +3,80% +1,88% +4,87% +5,10% +5,12% +5,65% 

Spektrális sávok és 

szegmensek és MFRACT 
+1,64% +1,87% +1,94% +1,84% +4,61% +5,11% +5,04% +5,85% 

Összes adat (spektrális 

sávok, szegmensek és 

tájmetriai indexek) 

+1,82% +2,73% +4,37% +2,96% +6,28% +6,76% +7,88% +9,33% 

A homogénebb szerkezetű Marosszög esetében az osztályozás a spektrális sávok alapján 

magas pontossági értéket eredményezett (87,02%). Ez a pontossági eredmény csak részben 

következik a terület szerkezetéből, nagyrészt a területhasználati kategóriák kis száma és a 

domináns osztály területen belüli nagy arányának köszönhető. Ezen a mintaterületen a 

magasabb összpontossághoz képest kisebb mértékű javulást eredményezett a tájmetriai 

mérőszámok alkalmazása. A tájmetriai mérőszámok 1,64 és 3,8% közötti pontosság növekedést 

okoztak a minimális szegmens mérettől függően. Az együttes felhasználásuk esetében a javulás 

ennél kisebb mértékű, 0,58% és 2,38% közötti volt. A legmagasabb összpontossági eredményt 

itt is az összes adat (spektrális sávok, szegmensek és tájmetriai indexek) együttes alkalmazása 

hozta (4,37%-os növekedést, 89.65%-os összpontosságot). A szegmensek minimális 

méretétnek vizsgálata alapján ezen a mintaterületen a legjobb pontossági érték a 10 hektáros 

minimális nagyságú foltmérettel érhető el. 

9. táblázat Összpontosság növekedés a különböző adatkombinációkkal és minimális 

szegmens nagyságokkal (Gudmann et al., 2020). 
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Az eredményeim alapján jelentős pontosságbeli javulás érhető el, ha az 

osztályozást a pixel környezetét tájmetriai mérőszámokkal leíró adatokkal bővítjük 

(min.: 0,52%, max.: 6,82%). Ezért a kutatásomban további, a pixel környezetét leíró 

adatokat vontam be és ezek hatását vizsgáltam az osztályozás pontosságára. (3. cél) 

5.2.2.2. Textúra adatokból származó információk, mint kiegészítő adatok vizsgálata  

A másik, általam vizsgált, a pixelek környezetét leíró adat a textúra volt. A textúrára 

(szerkezetre) vonatkozó adatok ugyanúgy segíthetnek az egyes osztályok pontosabb 

lehatárolásában, mint a tájmetriai mérőszámok. A textúra a pixel szomszédságának olyan 

tulajdonsága, ami kis területekre vonatkozó térbeli eltérésekre utal, és így képes növelni a 

felszínborítás és területhasználat osztályozás pontosságát. A textúrainformáció kinyerésére 

gyakran használt módszer Haralick által kifejlesztett szürke-szintű együttállási mátrix (gray-

level co-occurrence matrix – GLCM) segítségével végzett statisztikai számítások és 

adattranszformáció (Haralick et al., 1973). A módszer több pixel egyesítését használja fel 

ahhoz, hogy információt nyújtson a pixelek közötti, valamint bármelyik pixel és a kép közötti 

térbeli kapcsolatról. Az Irons és Petersen által bemutatottak szerint az adatok átlaga, varianciája 

(variance), ferdesége (skewness) és csúcsossága (kurtosis) számítható ki ezzel a módszerrel 

(Irons és Petersen, 1981). Egyszerűségük és hatékonyságuk miatt számos korábbi 

tanulmányban használták már a GLCM-et és derivátumait (Feng et al., 2015; Lei et al., 2020; 

Mishra et al., 2019; Paneque-Gálvez et al., 2013; H. Zhou et al., 2021). A számításához két 

paraméter megfelelő kiválasztása szükséges: a számítási egyenlet és a számítási ablak.  

A textúra kiszámításához többféle egyenlet alkalmazható, mint például a variancia, a 

ferdeség, a csúcsosság vagy az átlagos euklideszi távolság (Mean Eucledian Distance) (Irons 

és Petersen, 1981). Anys és He (Anys és He, 1995) szerint, akik az első, másod- és harmadrendű 

textúrametrikák szisztematikus összehasonlítását végezték el, sorrendben a variancia, a 

csúcsosság és az entrópia a leghasznosabb textúrametrikák. Ők az első rendű metrikákat 

ajánlották azok alacsony számítási költsége miatt, bár a vizsgálatuk szerint a legmagasabb 

pontosságot a harmadrendű metrikák biztosítják. Arra a következtetésre jutottak, hogy egynél 

több elsőrendű metrika együttes használata nem javítja a földhasználati osztályozás pontosságát 

az egyedüli használathoz képest.  

A kiválasztott egyenlet kiszámításához meg kell határozni az ablakban (kernelben) lévő 

pixelek számát, ami páratlan számpárok szorzatával írható le, például 3×3 vagy 5×5 és a kép 

megfigyelésére használható. A kernel mérete határozza meg a képből kinyerhető információ 

mennyiségét is (Marceau et al., 1990). Ha az ablakméret túl kicsi, akkor a műholdképekből 

kinyert térbeli információ nem elegendő a különböző földhasználati osztályok 

megkülönböztetéséhez. Ha túl nagy, az információ durva lesz, és a földhasználati osztályok 
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átfedhetik egymást, ami térbeli hibákat okozhat és hamis információt szolgáltathat (Anys et al., 

1994). A gyakorlati tapasztalatok azt mutatják, hogy a textúrametrika kombinált használata 

különböző kernelméretekkel növeli a pontosságot. 

 A textúra adatok felhasználásánál figyelembe kell vennünk a képünk térbeli felbontását 

és azt a tényt is, hogy a mozgó ablak sok esetben csak nagy méret mellett okoz megfelelő 

javulást (pl. 61×61). A vizsgálatom első lépéseként a Landsat-7-es felvételeken teszteltem le 4 

különböző textúra számítási módszert (Variancia, Ferdeség, Csúcsosság, Átlagos Euklideszi 

távolság), 4 különböző ablakmérettel (3×3, 5×5, 11×11, 17×17) (A3. táblázat, A4. táblázat). 

Az eredmények alapján a legtöbb metrika kernel mérettől függetlenül javítja a 

különböző modellek pontosságát (30. ábra). Az algoritmusoknál együttesen a legnagyobb 

javulást a két legegyszerűbben kiszámítható metrika: a variancia és az átlagos euklideszi 

távolság eredményezte. Azonban ezeknél az ablakok mérete jelentős hatást gyakorolt a 

30. ábra A különböző textúra számítási módszerekkel és ablak méretekkel készült modellek 

átlagos pontoság különbsége a spektrális sávokon tanított modellekhez képest. 
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pontosság növekedésére. A legnagyobb javulást a 17×17-es kernel okozta mindkét metrika 

esetében (átlagosan +10,83% a variancia és +8,38% az átlagos euklideszi távolság esetén), 

illetve a különböző ablakmérettel kiszámított metrikák együttes alkalmazása (variancia 

+11,11%, átlagos euklideszi távolság +8,37%). Arra a megállapításra jutottam, minél 

bonyolultabb a metrika kiszámításához szükséges egyenlet, annál kisebb javulást okozott a 

pontosságban. A legbonyolultabb metrika, a csúcsosság, több esetben rontotta is a pontosságot. 

10. táblázat A textúra adatok felhasználásával készült eredmények átlagos F-szám változása 

a spektrális sávok felhasználásával készült eredményekhez képest. 

CLC kategória \ Felhasznált adatok 

Spektrális 

sávok + 

Variancia 

(összes) 

Spektrális 

sávok + 

Variancia 

17x17 

Spektrális 

sávok + 

Átlagos 

Euklideszi 

Távolság 

(összes) 

Spektrális 

sávok + 

Átlagos 

Euklideszi 

Távolság 

17x17 

1.1.1 Összefüggő településszerkezet -6,63% +5,74% +3,63% +3,42% 

1.1.2 Nem összefüggő településszerkezet +20,93% +16,30% +17,57% +14,70% 

1.2.1 Ipari vagy kereskedelmi területek +13,42% -11,26% -2,68% -6,27% 

1.2.2 Út - és vasúthálózat és csatlakozó területek +0,88% +15,56% +33,26% +33,16% 

1.2.4 Repülőterek +17,46% +14,58% +10,34% +10,15% 

1.3.1 Nyersanyag kitermelés +0,00% +0,00% +0,00% +0,00% 

1.3.2 Lerakóhelyek. meddőhányók +0,00% +0,00% +0,00% +0,00% 

1.3.3 Építési munkahelyek -14,68% -4,87% +7,22% +2,93% 

1.4.1 Városi zöldterületek +34,89% +28,30% +14,35% +7,35% 

1.4.2 Sport-. szabadidő- és üdülőterületek -10,31% +4,49% -9,67% -10,43% 

2.1.1 Nem öntözött szántóföldek +34,37% +29,70% +24,32% +24,14% 

2.2.1 Szőlők +23,47% +21,21% +25,10% +21,70% 

2.2.2 Gyümölcsösok. bogyósok +7,03% -1,15% +8,91% +6,28% 

2.3.1 Rét. legelő +25,87% +7,39% +19,02% +16,75% 

2.4.2 Komplex művelési szerkezet +15,85% +9,11% +9,93% +8,15% 

2.4.3 Elsődlegesen mezőgazdasági területek jelentős 

természetes növényzettel 
+19,88% +16,22% +14,99% +11,26% 

3.1.1 Lomblevelű erdők +17,63% +8,03% +12,91% +11,06% 

3.1.2 Tűlevelű erdők +3,09% -1,13% +5,30% +4,60% 

3.1.3 Vegyes erdők +16,30% -5,92% +7,86% +2,03% 

3.2.1 Természetes gyepek. természetközeli rétek +25,22% +17,56% +17,25% +14,18% 

3.2.4 Átmeneti erdős-cserjés területek +16,48% +8,88% +4,97% +2,60% 

4.1.1 Szárazföldi mocsarak +20,47% +9,32% +17,12% +17,10% 

5.1.1 Folyóvizek. vízi utak -10,69% -16,34% -12,22% -12,81% 

5.1.2 Állóvizek +14,32% +5,83% -0,90% +2,30% 

A legmagasabb összpontossággal rendelkező eredmények átlagos F-szám változás 

vizsgálatával osztályszinten is jól látható a textúra adatok pontosságjavító hatása (10. táblázat). 

A 24 kategóriából 13-nál mindegyik textúra adat és további 5-nél a textúra adatok többsége 

(négyből három esetben) növelte az F-szám értékét. A variancia adatok mindegyikének 

felhasználásakor, az F-szám változás -14,68% és 34,89% közötti tartományban mozgott, és a 
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25 kategóriából 18 esetében növekedés volt a pontosságban (átlagosan +18,2%-os javulás). A 

variancia adatok 17-es kernel mérettel elkészített változatainak felhasználásakor az F-szám 

különbség hasonló tartományban mozgott (-16,34% és 29,7% között). A 25 kategóriából 16 

esetén volt növekedés (ezen osztályoknál átlagosan +13,63%-os volt a javulás). Az átlagos 

euklideszi távolság adatok mindegyikének felhasználásakor is hasonlóan széles tartományban 

mozogtak az F-szám változás értékei: -12,22% és 33,26% között, ahol a 25 kategóriából 18 

esetén volt növekedés a pontosságban (átlagosan +14,1%-os volt a javulás). Ezekhez az 

eredményekhez képest, csupán az átlagos euklideszi távolság 17-es kernel mérettel elkészített 

változatainak felhasználásakor változott egy kicsivel tágabb értéktartomány mellett (-12,81% 

és +33,16%), a 25 kategóriából 19 esetén volt növekedés a pontosságban (átlagosan +11,25%-

os volt a javulás).  

Az eredmények alapján a variancia textúra adatok felhasználásával értem el a 

legnagyobb átlagos pontosság javulást mind összpontosság, mind osztály szinten. Emiatt a 

továbbiakban ennek a metrikának a felhasználásával folytattam a vizsgálataimat. 

A későbbi elemzésekben a 2018-as adatokon az S2 adatokból variancia textúra adatot 

vizsgáltam különböző, az eddigiektől részben eltérő kernel mérettel (11×11, 17×17, 23×23) 

kiszámítva (A4. táblázat). Az eredmények alapján minden algoritmus és tanuló terület esetén, 

a 2000-es adatoknál tapasztaltakhoz hasonlóan jelentős pontosság növekedést értem el a textúra 

adatok bevonásával (11. táblázat). A kernel méret növelésével együtt a pontosság javulása is 

növekszik, így a legjelentősebb összpontosság javulást a legnagyobb 23×23-as kernellel 

kiszámított variancia értékek adták (+10,49%). Azonban a variancia értékek együttes 

alkalmazása még ennél is magasabb összpontosság javulást eredményezett (+11,94%).  
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11. táblázat A variancia textúra adatok felhasználásával készült eredmények átlagos 

összpontosság és F-szám változása a Sentinel-2-es spektrális sávok felhasználásával készült 

eredményekhez képest. 

  Sentinel-2 
Sentinel-2 + 

variancia 11x11 

Sentinel-2 + 

variancia 17x17 

Sentinel-2 + 

variancia 23x23  

Sentinel-2 + 

variancia összes 

Összpontosság 73,67% +3,39% +8,04% +10,49% +11,94% 

F-szám 

1.1.1 Összefüggő 

településszerkezet 
39,45% +15,67% +34,09% +43,42% +40,36% 

1.1.2 Nem összefüggő 

településszerkezet 
71,59% +6,20% +11,52% +13,86% +15,89% 

1.2.1 Ipari vagy kereskedelmi 

területek 
52,70% +10,37% +20,77% +26,26% +29,11% 

1.2.2 Út - és vasúthálózat és 

csatlakozó területek 
39,95% +14,26% +25,04% +30,08% +34,40% 

1.2.4 Repülőterek 52,16% +22,46% +30,19% +33,53% +35,88% 

1.3.1 Nyersanyag kitermelés 10,39% +25,37% +39,78% +41,09% +42,93% 

1.3.2 Lerakóhelyek. meddőhányók 39,59% +14,06% +29,37% +35,94% +38,78% 

1.3.3 Építési munkahelyek 15,49% +34,32% +43,86% +47,30% +51,63% 

1.4.1 Városi zöldterületek 43,98% +9,15% +24,06% +29,06% +33,81% 

1.4.2 Sport-. szabadidő- és 

üdülőterületek 
45,97% +11,70% +22,37% +26,67% +29,86% 

2.1.1 Nem öntözött szántóföldek 82,24% +1,86% +5,87% +7,46% +8,94% 

2.1.3 Rizsföldek 70,73% +10,74% +14,76% +17,85% +17,84% 

2.2.1 Szőlők 33,17% +22,36% +33,11% +36,17% +39,12% 

2.2.2 Gyümölcsösok. bogyósok 42,71% +16,46% +27,47% +31,37% +35,24% 

2.3.1 Rét. legelő 55,65% +5,24% +13,21% +17,72% +19,38% 

2.4.2 Komplex művelési szerkezet 33,31% +8,39% +18,04% +23,23% +26,50% 

2.4.3 Elsődlegesen mezőgazdasági 

területek jelentős természetes 

növényzettel 

48,14% +8,38% +17,75% +23,87% +27,20% 

3.1.1 Lomblevelű erdők 71,19% +3,41% +6,20% +10,71% +10,53% 

3.1.2 Tűlevelű erdők 63,60% +4,54% +12,93% +15,49% +19,69% 

3.1.3 Vegyes erdők 42,70% +8,23% +18,01% +20,82% +23,48% 

3.2.1 Természetes gyepek. 

természetközeli rétek 
18,09% +20,55% +47,69% +51,76% +54,47% 

3.2.4 Átmeneti erdős-cserjés 

területek 
49,89% +6,82% +14,16% +18,56% +21,05% 

4.1.1 Szárazföldi mocsarak 61,96% +4,83% +13,53% +17,83% +18,68% 

5.1.1 Folyóvizek. vízi utak 82,53% +1,16% +4,88% +8,46% +7,80% 

5.1.2 Állóvizek 84,30% +2,97% +8,41% +9,39% +9,23% 



Gudmann András Viktor – Disszertáció, 

Szegedi Tudományegyetem, Földtudományok Doktori Iskola 

75 

 

A változók 

permutációs értékeinek 

vizsgálatánál jól 

látható, hogy milyen 

fontos szerepet töltenek 

be a modellépítés során 

(31. ábra). A variancia 

rétegek többsége 

közepes vagy magas 

fontossági értékkel 

rendelkezik. Bár az 5 

legfontosabb réteg 

között csak 1 variancia 

szerepel, azonban a 10 

legfontosabb között 

már 6. Ezzel szemben 

az 5 legkevésbé fontos 

réteg között nincs egy 

variancia sáv sem és a 

10 legkevésbé fontos 

között is csak 2 

szerepel. A S2-es sávok 

önálló futtatása során 

megfigyelt 

legfontosabb sávok, mint az ultrakék, a közepes infravörös 1. és 2., valamint a vízpára itt is 

magas értékeket vettek fel (0,7–0,81 között). A legfontosabb sávok között is megtalálhatók a 

variancia rétegek (közepes infravörös 1. és 2.), de több sávnál is előfordul, hogy spektrális 

szinten kis mértékben voltak fontosak, variancia sávként viszont magas érteket vettek fel (kék, 

vörös, közeli infravörös).  

31. ábra A Sentinel-2-es sávok és 23×23-as kernellel elkészített 

variancia rétegek átlagos permutációs fontosság értékei. 
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A felhasznált variancia adatok mindegyike az összes osztály esetén növelte az F-számot, 

azonban a javulás mértéke osztályonként eltérő volt. A kizárólag az S2 spektrális reflektancia 

adatain alapuló osztályozás során kapott legalacsonyabb F-számmal rendelkező kategóriáknál 

figyelhető meg (1.3.1-es „Nyersanyag kitermelés”, 1.3.3-mas „Építési munkahelyek”, 3.2.1-es 

„Természetes gyepek, természetközeli rétek”). Azonban még az alapvetően jól lehatárolható, 

32. ábra A különböző kernel méretekkel készített variancia rétegek együttes 

felhasználásával betanított mesterséges neurális háló modell eredménytérképe a Tétényi-

fennsík mintaterületre, 2018-as évre vonatkozóan. 
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80% fölötti F-számmal rendelkező kategóriáknál is határozott növekedés volt tapasztalható. A 

variancia textúra adatok együttes felhasználásával, a 25 osztályból 16-nál 20%-nál többel 

növekedett az F-szám és a 25-ből csupán egy osztálynak volt 70% alatti F-szám értéke: a 1.3.1-

es „Nyersanyag kitermelés” kategóriának. A variancia adatok együttes használatával készített 

térképet vizsgálva jól látható, hogy a térképen nagy, egybefüggő, az eredeti CLC réteghez 

nagyban hasonlító foltok jöttek létre a csak az S2-es adatokból levezett térképhez képest (32. 

ábra). Emellett az elszórt kis pixelcsoportok száma is jelentősen kisebb, mint a csupán S2-es 

adatokból osztályozott térképen. Azonban a vonalas objektumok (utak, vasút) a textúra adatok 

felhasználásával készült térképen sokkal kevésbé vehetők ki, mint az S2-es eredménytérképen. 

Ezek alapján arra a megállapításra jutottam, hogy a variancia textúra adat kernel 

mérettől függetlenül hasznos információforrás az egy időpontot használó osztályozásnál, 

de nagyobb és különböző kernel méretek együttes alkalmazása nyújtja a legnagyobb 

pontosságbeli javulást az eredményekben.     

Mivel a tájmetriai mérőszámok és a textúra adatok felhasználása is egyértelműen 

javította az osztályozások pontosságát, ezért érdemesnek találtam, hogy ezeket az adatokat nagy 

területen történő osztályozásra is felhasználjam. Ennek a vizsgálatnak az eredményeit 

publikáltam „Pixel and object-based land cover mapping and change detection from 1986 to 

2020 for Hungary using histogram-based gradient boosting classification tree classifier” címen 

a Geographica Pannonica folyóiratban (Gudmann és Mucsi, 2022). A vizsgálat során egész 

Magyarország területére készítettem el felszínborítási/területhasználati térképeket a CLC 

nomenklatúra alapján, Landsat műholdfelvételek alapján, 4 időpontra vonatkozóan (1986, 

2003, 2015, 2020). Az elkészült térképek alapján megvizsgáltam az időpontok közti 

változásokat, hogy beazonosítsam a fő változási dinamikákat Magyarország területén. A 

vizsgálat eredményei alapján a spektrális sávok, tájmetriai metrikák és textúra adatok 

felhasználásával megfelelő pontossággal voltam képes területhasználati térképeket 

előállítani (85,99%–87,33%) országos szinten. Az egyes osztályok felhasználói pontossága, 

ami az osztályok megbízhatóságát mutatja, minden időpontban a lehetséges 27-ből 15 osztály 

esetében 90% fölötti volt. Az elkészült változásvizsgálat segítségével kimutattam a 

Magyarországon domináns változási folyamatokat, mint a városiasodást és az erdősítést. 

Emellett a pixelszintű eredményeknek köszönhetően részletesebb képet kaphatunk a lokális 

változásokról is. 

A térbeli adatok felhasználásával készült modellek eredményei alapján, a 

variancia, a ferdeség, a kurtózis, az átlagos euklideszi távolság adatok a Landsat-7-es 

felvételekből különböző kernel mérettel kiszámítva, átlagosan 7,83%, 6,32%, 3,52% és 

6,42%-os pontosságnövekedést okoztak. Továbbá a Sentinel-2-es felvételekből különböző 
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kernel mérettel kiszámított variancia adatok átlagosan 3,39% és 11,95% közötti 

növekedést okoztak az osztályozások összpontosságában. Így megállapítható, hogy a 

textúra adatok megfelelőnek bizonyultak az osztályozások pontosságának növelése 

szempontjából. Ezen adatok nemcsak kistáj szinten, hanem országos szinten is 

alkalmazhatók a megfelelő pontosság elérésében. (3. cél)        

5.2.3. Temporális adatok osztályozásra gyakorolt hatásának vizsgálata 

A hosszútávú változásvizsgálatok készítésekor a korábbi időpontokból általában kevés 

adat és adatforrásérhető el, ezért sokszor egy évből csak egy felvétel (és az abból származtatható 

adat) áll rendelkezésünkre. Azonban napjainkra több egymástól független adatforrás is létezik, 

amelyek önmagukban is nagyon fontos információforrások, köszönhetően térbeli, spektrális és 

időbeli felbontásuknak. Időbeli felbontásuk nagyságrendekkel jobb, mint az előző generációs 

megoldásoknak, így az időjárási körülmények ellenére egy adott területről sokkal több 

elemzésre alkalmas felvételt biztosítanak. Emiatt az egy időpontban készült felvételek és a 

belőlük származtatott adatokon kívül megvizsgáltam a multitemporális adatok 

felhasználhatóságát is.  

 

Ezek több szempontból is hasznos információkat hordoznak: egyrészt a felszínborítást 

és területhasználatot alkotó elemek éven belüli változásából eredő spektrális különbségeket (pl. 

a vegetáció éven belüli fenológiai fázisaiból eredő eltérések, mezőgazdasági tevékenységből 

eredő változások, mint a vetés, a szántás vagy az aratás); másrészt, a spektrális sávok 

33. ábra Mezőgazdasági CLC kategóriák éven belüli medián értékei Sentinel-2 8a-as 

sáv értékei alapján. 
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intenzitásának éven belüli változékonyságából eredő különbségeket (33.ábra). Ezek az 

információk az eddigi kutatások szerint is hasznosnak bizonyultak a különböző osztályozási 

feladatokban (Griffiths et al., 2013; Henits et al., 2016; Pflugmacher et al., 2019; Phan et al., 

2020). 

A jelenlegi kutatásomban arra kerestem a választ, hogy ezen adatok az osztály szintű 

pontossági értékeket (készítői és felhasználói pontosság) milyen mértékben képesek 

módosítani. Továbbá megvizsgáltam, hogy hány darab különböző időpontban készült kép, 

milyen időközzel érheti el a legnagyobb teljesítménybeli növekedést az egyes modelleknél.  

 

A kutatásomban a multitemporális adatok vizsgálatát a 2000-es adatokon kezdtem el. A 

kezdő időpont a CLC adatbázisok alapját nyújtó augusztusi L7-es felvételek voltak (A4. 

táblázat). Ezeket bővítettem egyre több új képpel, amelyek más-más időpontban készültek. Az 

új időpontok bevonásánál az éven belüli távolabbiaktól haladtam az egyre közelebbi időpontok 

felé, mivel a kezdő időponthoz közel a felvételek spektrális értékekei között nagymértékű a 

korreláció, ezért ezek kisebb információmennyiséget hordoznak. Ebből adódik, hogy az 

osztályozásra gyakorolt potenciális hatásuk is alacsonyabb. A távolabbi időpontban készült 

felvételeket a kezdő időponthoz képest mindkét irányba bővítettem, így az augusztusi kezdő 

dátumot elsőnek egy tavaszi legtávolabbi időpontban, majd egy őszi legtávolabbi időpontban 

készült felvétellel bővítettem. A tavaszi kezdő dátumtól az őszi dátumig haladva minden képet 

egymás után hozzáadtam az osztályozáshoz.  

34. ábra A mintaterületeken mért összpontosság átlagának változása a felhasznált felvételek 

számának függvényében az eggyel kevesebb kép alapján készült modell pontosságához képest. 
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Az eredmények alapján a 4-ből 3 osztályozó algoritmus (döntési fa, véletlen erdő, 

többrétegű perceptron) ugyanúgy reagált a multitemporális adatokból származó 

35. ábra A mintaterületeken mért összpontosságok átlagának változása a felhasznált 

felvételek számának függvényében az egy kép alapján készült modell pontosságához képest. 
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többletinformációra, míg a tartó-vektor gép ettől kicsit eltérően (34. ábra, 35. ábra). A két szélső 

időpont bevonása minden algoritmus esetén növelte a pontosságot 1,53 és 4,66% közötti 

értékekkel. A legnagyobb javulást a véletlen erdő algoritmusnál okozta, ahol egy további 

felvétel felhasználása 3,14%-os javulást, míg a harmadik felvétel további 1,52%-os javulást 

eredményezett (35. ábra). A pontosság növekedése az ötödik hozzáadott felvételig tartott, 

azonban újabb időpontok bevonása már egyre kisebb mértékű javulást okozott. További képek 

felhasználása már csak kis mértékben gyakorol hatást a pontosságra, mivel az osztályozásba 

bevont képek közti korreláció miatt az információ kinyerése bonyolultabb, ugyanis ugyanazt 

az információmennyiséget nagyobb dimenziójú adathalmazból kell kivonni.   

12. táblázat A 2000-es évre vonatkozóan, több időpontban készült Landsat-7-es 

felvételek kombinációival betanított modellek eredményeinek átlagos F-számai. 

Ugyanezt az eredményt kaptam, amikor az osztályonkénti átlagos F-szám értékeket 

vizsgáltam meg (12. táblázat). Az F-számok a két szélső időpont (1 tavaszi, 1 őszi) bevonására 

a legtöbb kategóriánál (a 25-ből 21-nál) jelentős pontosságnövekedést eredményeztek 

CLC 

kód 

1 nyári 

felvétel 

1 nyári, 

1 tavaszi 

felvétel 

1 nyári,  

1 tavaszi, 

1 őszi 

felvétel 

1 nyári,  

2 tavaszi, 

1 őszi 

felvétel 

1 nyári,  

3 tavaszi, 

1 őszi 

felvétel 

2 nyári,  

3 tavaszi,  

1 őszi  

felvétel 

3 nyári,  

3 tavaszi, 

1 őszi 

felvétel 

3 nyári,  

3 tavaszi,  

2 őszi 

felvétel 111 72,99% 75,54% 77,57% 77,76% 78,83% 78,53% 78,12% 80,20% 

112 13,90% 15,51% 16,80% 17,89% 17,55% 18,21% 16,93% 16,93% 

121 6,24% 4,60% 5,87% 6,14% 6,21% 7,60% 7,29% 7,29% 

122 8,92% 8,69% 12,75% 16,27% 11,48% 11,86% 12,20% 12,20% 

124 63,87% 72,67% 73,72% 72,53% 75,17% 73,80% 72,81% 72,81% 

131 22,45% 39,73% 39,56% 49,47% 49,57% 48,73% 45,97% 45,97% 

132 6,51% 13,19% 15,72% 18,09% 21,21% 26,39% 20,35% 20,35% 

133 20,30% 22,44% 23,70% 24,60% 24,69% 25,03% 25,47% 25,47% 

141 6,74% 9,19% 9,16% 12,32% 9,62% 12,00% 10,11% 10,11% 

142 13,10% 15,52% 15,48% 19,04% 18,88% 18,96% 18,66% 18,66% 

211 8,73% 12,31% 13,31% 13,98% 14,05% 13,71% 14,54% 14,54% 

221 6,43% 8,59% 14,09% 14,87% 18,32% 16,00% 15,15% 15,15% 

222 14,49% 13,05% 14,08% 14,53% 14,98% 15,42% 15,32% 15,32% 

231 5,30% 4,03% 5,43% 5,57% 6,88% 7,57% 6,15% 6,15% 

242 3,14% 4,97% 5,20% 4,84% 7,07% 5,80% 6,18% 6,18% 

243 3,34% 4,73% 5,07% 5,21% 5,57% 5,71% 5,73% 5,73% 

311 5,93% 6,19% 9,29% 10,38% 10,79% 11,20% 9,25% 9,25% 

312 4,20% 5,90% 6,89% 7,16% 7,93% 7,75% 10,59% 10,59% 

313 7,78% 11,29% 12,39% 14,56% 14,91% 16,03% 12,74% 12,74% 

321 3,79% 5,23% 6,01% 5,75% 6,78% 7,53% 7,41% 7,41% 

324 1,01% 1,78% 2,37% 4,77% 2,77% 4,87% 4,71% 4,71% 

411 4,62% 8,23% 8,40% 8,49% 9,58% 9,77% 10,28% 10,28% 

512 3,95% 5,40% 3,07% 5,55% 5,56% 7,90% 8,13% 8,13% 
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(átlagosan 1,92%-kal). A legjelentősebb javulást az 1.3.1-es „Nyersanyag kitermelés” 

kategóriánál tapasztaltam. A további tavaszi időpontok bevonása az osztályozásba ugyan 

kisebb mértékben, mint a szélső időpontok esetében, de tovább növeli a kategóriák F-szám 

értékeit (átlagosan 0,92%-kal). Ugyanakkor a további nyári időpontok már a legtöbb esetben 

csökkenést okoznak (25-ből 16 esetben) és csak kevés alkalommal javulást. Emiatt a 

visszaesések miatt az áltagos F-szám változás elhanyagolható lett (-0,09%). További egy őszi 

időpont felhasználása csak az 1.1.1-es „Összefüggő településszerkezet” -nél okozott változást, 

ahol +2,07% -kal nőtt az F-szám. Ezek alapján kijelenthető, hogy az éven belül legtávolabb 

lévő két dátumok bevonása hozza a legnagyobb pontosságbeli növekedést az osztályozásban, 

míg a további dátumok sokkal kisebb javulást eredményeznek. Osztályszinten is az éven belül 

legtávolabb lévő dátumok okozzák a legnagyobb javulást, míg a tavaszi időpontok kisebb 

javulást még nyújtanak. Viszont a nyári és az őszi időpontok már nem okoznak jelentős 

változást a pontosságban. 

 A 2018-as adatokon az eddigi eredményeket figyelembe véve az S2-es adatok mellett 

kétféle adathalmaz hatását vizsgáltam meg (A4. táblázat, 38. ábra). Az egyik esetben egy-egy 

tavaszi, nyári és őszi felvételt használtam fel, míg a másikban egy tágabb időintervallumban a 

meglévő 3 időponthoz még három felvételt adtam hozzá, így nagyjából 2-3 havonta lett egy 

felvétel az évből (Jan.–Márc.–-Jún.–Aug.–Okt.–Dec.). Az eredmények alapján a 2 plusz 

időpont bevonása átlagosan +14,82%-os összpontosságbeli növekedést okozott az egy 

időpontos eredményekhez képest, míg az 6 időpontos futtatás átlagosan +18,84%-ot. A 

legnagyobb pontosságnövekedés a mesterséges neurális modellnél volt kimutatható, ahol a 3 

időpont alapján +15,81%, míg az 6 időpont alapján +22,25% volt a növekedés. Azonban az 

osztályszintű eredmények ennél összetettebb képet mutatnak (36. ábra), mivel a 3 időpontos 

eredmények esetén az összes osztály F-szám jelentősen javult, jelentős, átlagosan +30,89%-kal. 

A legnagyobb növekedés a 3.2.1-es „Természetes gyepek, természetközeli rétek” (+61,74%) és 

a 1.3.3-as „Építési munkahelyek” (+54,66%) kategóriáknál történt. A 6 időpont adatainak 

felhasználásával kapott eredményeknél az osztályok mindegyikénél egy kivételével javulás 

történt. Azonban ezek közül csak 7 kategóriánál kaptam nagyobb F-szám értéket (főleg a 

mesterséges felszínek főosztályba tartozóknál), mint a 3 időpontos futtatásnál (azaz, ahol 

további javulás történt) (36. ábra). A többi 17 osztálynál nem történt további 

pontosságnövekedés, sőt, valamilyen mértékben csökkent az adott osztályok F-szám értéke. 

Ezek alapján a további 3 időpont felhasználásakor figyelembe kell venni, hogy a jelentős 

összpontosság növekedés ellenére csak bizonyos, mesterséges felszínek főosztályba tartozó 

kategóriák pontossága növekedett érdemben, a többi osztály pontossága valamilyen szinten 

csökkent a 3 időpontos futtatáshoz képest.  
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36. ábra A 2018-as, multitemporális adatok bevonásával készült modellek által kapott 

eredmények átlagos F-szám értékei. 
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A permutációs fontosság értékek alapján a legfontosabb sávok ugyanazok, mint az egy 

időpont felhasználásánál: Ultrakék, Vízpára, Közepes infravörös 1. és 2. (37. ábra). A 

különböző időpontok közül is ezek a sávok kerültek a legfontosabb változók közé. A 

legfontosabb 5 változó között 2-2 januári és október változó van, míg a többi egy május-júniusi 

időpont. Kiemelendő, hogy a kezdő időpontnak választott augusztusi kép egyetlen egy 

változója sem szerepel a legfontosabb 10 változó között és a legfontosabb 20 között is csak 2 

ilyen változó van. A permutációs fontosság értékek magnitúdója alapján az is látható, hogy az 

egy időponthoz képest, a változók egy mértékkel kisebb értékeket vesznek fel. Ebből arra 

37. ábra A hat, különböző időpontban készített műholdkép felhasználásával 

készített véletlen erdő modell átlagos permutációs fontosság értékei. 
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következhetünk, hogy a változók megnövekedett száma miatt, az egyes időpontok, és a 

hozzájuk tartozó változók alapvetően kisebb szerepet játszanak a modellépítés során, mint az 

egy időpontos futtatás során. 

38. ábra Véletlen erdő osztályozóval készített területhasználati térképek a Liszt 

Ferenc Nemzetközi Repülőtér környékéről: 

A – 1 időpont alapján, 

B – 3 időpont alapján, 

C – 6 időpont alapján. 
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A Landsat-7-es temporális adatok felhasználásával készített eredmények alapján 

ezen információk -5,46% és +7,14% közötti pontosságváltozást okoztak (átlagosan 

+0,99%). A Sentinel-2-es temporális adatok felhasználásával betanított modellek 12,92% 

és 22,25% közötti pontosságnövekedést mutattak. Ezen eredmények alapján a temporális 

adatok felhasználásával jelentős javulást lehet elérni az osztályozás pontosságában. 

Eredményeim alapján az időpontok időablakának kiválasztásánál, a 2018-as évre a 

legjobb eredményt 3 hónapos időablakok esetén 6 műholdkép alapján kaptam (minden 

osztályozó algoritmus 90% feletti átlagos pontossági értéket adott vissza). (4. cél) 

5.2.4. A multispektrális műholdfelvételektől független adatok hatásának vizsgálata 

az osztályozásra 

Az optikai szenzorok adatai mellett felhasználhatunk olyan adatokat is, amelyek más 

módon írják le az adott biofizikai vagy társadalmi-gazdasági jelenségeket. Ilyenek lehetnek a 

mikrohullámú radar adatok, amelyek az objektumok megadott hullámhosszokon mért spektrális 

intenzitásértékei helyett egy impulzus visszavert energiamennyiségét és annak tulajdonságait 

mérik. Ezen adatok alapján lehet következtetni egy adott objektum magasságára, érdességére, 

összetételére vagy alakjára. További független adat lehet, amit már sok kutatásban 

felhasználtak, mint kiegészítő adat, a különböző domborzat vagy felület modellekből 

származtatott magassági adatok (Balzter et al., 2015; Phan et al., 2020). Ezek az adatok bővebb 

információt adnak az adott terület domborzati viszonyairól, azonban figyelembe kell vennünk, 

hogy nagy mértékű geokorrelációval rendelkeznek, tehát a felhasználásukkal készített modellek 

nem teljesen generalizált szabályokat alkotnak, hanem megjelennek bennünk az adott terület 

sajátosságai. A vizsgálatomban kétféle magassági adatot használtam fel mint kiegészítő adat, 

az SRTM-et, az L7-es spektrális sávokkal együtt a 2000-es évre vonatkozóan, illetve az 

ASTER-GDEM-ből kinyerhető magassági adatokat az S2-es spektrális sávokkal a 2018-as 

évre. Továbbá Sentinel-1 (S1) radar adatok VV és VH sávjait is vizsgáltam egy időpontból 

(2017.07.24–25.) az S2-es adatok kiegészítéseként a 2018-as évre. 

A 2000-es adatok eredményei alapján az STRM adatok felhasználása a spektrális adatok 

mellett a mintaterületek többségénél minden osztályozó esetén növeli a pontosságot. A 

legnagyobb mértékű átlagos javulást a többrétegű perceptron osztályozónál okozta: +3,57%-

kal, míg a legkisebb javulás a döntési fa esetén volt mérhető +0,49%-kal. A véletlen erdő és a 

tartó-vektor gép esetében a pontosság növekedése 3,11% és 2,23% volt. A lehetséges 25 

kategóriából a véletlen erdő osztályozó esetén 19-nél történt javulás az F-szám értékében, míg 

a többrétegű perceptron esetében 13, a döntési fánál 10, a tartó-vektor gépnél 6 kategóriánál 

(13. táblázat).  
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13. táblázat A spektrális sávok és az SRTM adatok felhasználásával készült modellek 

eredményeinek átlagolt F-szám értékei kategóriánkként. 

CLC 

osztályok 

Spektrális 

sávok 

(átlag) 

Spektrális sávok + 

SRTM  

Döntési fa 

Spektrális sávok 

+ SRTM  

Véletlen erdő 

Spektrális sávok + 

SRTM  

Tartó-vektor gép 

Spektrális sávok + 

SRTM  

Többrétegű 

perceptron 

111 62,19% 3,5% 6,4% 4,0% -3,9% 

112 30,50% 0,2% 1,2% -1,0% 0,4% 

121 53,54% 0,8% 5,0% -0,6% 5,2% 

122 19,20% -7,5% 3,6% -1,5% 2,1% 

124 34,92% -0,3% 2,3% 2,3% -1,0% 

131 0,00% 0,0% 0,0% 0,0% 0,0% 

132 0,00% 0,0% 0,0% 0,0% 0,0% 

133 37,90% -1,3% 2,2% -2,4% 0,9% 

141 5,07% 1,5% 2,6% -2,2% 0,2% 

142 32,27% -0,5% 1,4% -4,3% 1,0% 

211 11,69% -0,7% 1,3% -7,8% 2,0% 

221 3,67% 2,6% 2,6% -3,7% -1,0% 

222 32,46% 0,6% 1,9% -1,3% 1,0% 

231 33,88% 1,4% 2,8% -1,1% 2,5% 

242 16,28% -1,1% 0,9% -1,1% 0,2% 

243 4,34% 0,9% 1,0% -2,3% 0,9% 

311 7,36% -1,3% 0,6% 0,7% -0,2% 

312 20,89% 1,6% 1,5% -3,9% 0,5% 

313 15,98% -0,7% -0,2% 0,6% -0,3% 

321 0,00% 0,0% 0,0% 0,0% 0,0% 

324 10,50% -1,7% 0,3% 1,4% 0,6% 

411 0,00% 0,0% 0,0% 0,0% 0,0% 

511 17,00% -0,8% 1,1% -0,5% -0,5% 

512 6,21% 3,0% 0,8% 1,5% -0,8% 

A legnagyobb javulásokat az 1.1.1-es „Összefüggő településszerkezet” és az 1.2.1-es 

„Ipari vagy kereskedelmi területek” kategóriák eredményezték, ahol a mesterséges 

létesítmények magassága teszi lehetővé a pontosabb lehatárolást. A legnagyobb F-szám 

csökkenést a 2.1.1-es „Nem öntözött szántóföldek” és a 1.2.2-es „Út - és vasúthálózat és 

csatlakozó területek” nyújtották. Azonban meg kell jegyezni, hogy sem a legnagyobb 

növekedést, sem a legnagyobb csökkenést mutató osztályoknál nem egyértelműek az 

eredmények, mivel az algoritmusok felénél eltérő, kisebb fokú különbségek voltak 

tapasztalhatók.  

Az ASTER-GDEM adatok bevonása esetén hasonló eredményeket kaptam, mint az SRTM 

adatok felhasználásánál (14. táblázat). Az összpontosság az S2-es spektrális adatokon történő 

osztályozáshoz képest elhanyagolható mértékben változott, azonban osztályszinten 

szignifikáns javulást eredményezett a magassági adat felhasználása. Az előzetes 

várakozásoknak megfelelően nagymértékű F-szám növekedés tapasztalható az olyan  
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osztályoknál, amik rendelkeznek 

magassági tényezővel (a 

felületmodellekben az osztály 

objektumainak magassága hozzáadódik a 

felszín magasságához, elkülöníthetők a 

szomszédos alacsonyabb felszín-

borításoktól). Ilyen osztályok a 

mesterséges felszínek legtöbb kategóriája 

(1-es főosztály), a „szőlők” (2.2.1) és 

„gyümölcsös, bogyósok” (2.2.2, illetve az 

erdők (3.1.1, 3.1.2) és a 3.2.1-es 

„Természetes gyepek, természetközeli 

rétek” (az utóbbi kategóriánál a 

magassági tényező az elhelyezkedésből 

adódik, mivel főleg magasabb térszíneken 

fordulnak elő). Ezzel szemben 

jelentősebb F-szám csökkenést csupán 

pár esetben tapasztalhatunk: 2.1.3 

„Rizsföldek”, 2.4.3 „Elsődlegesen 

mezőgazdasági területek jelentős 

természetes növényzettel” és a 3.1.3-as 

„Vegyes erdők” kategóriáknál. Ennek 

köszönhetően az F-szám változás átlagos 

értéke +7,29%. 

A Sentinel-1-es adatok bevonása az 

osztályozásba nem hozott egyértelmű 

összpontosság javulást (14. táblázat). 

Azonban az ASTER-GDEM-hez 

hasonlóan, osztályszinten már látható 

különbségeket eredményezett. Az 

ASTER-GDEM-nél a már említett 

mesterséges felszínek, szőlők, gyümölcsösök, bogyósok és erdő kategóriáknál kimutatott F-

szám érték növekedés jelentkezik, azonban kisebb magnitúdóval. Emellett több osztályt is 

érintett az F-szám értékek csökkenése ezért az átlagos F-szám növekedés mértéke elmarad az 

ASTER-GDEM-nél tapasztaltaktól, csak 3,35%.  Az ASTER-GDEM és az S1-es adatok 

 Sentinel-2 
Sentinel-2 + 

ASTER-GDEM 

Sentinel-2 + 

Sentinel-1 

Összpont

osság 
73,67% +0,07% -0,26% 

F-szám 

111 39,45% +17,55% +22,58% 

112 71,59% -0,03% -0,57% 

121 52,70% +3,75% +0,16% 

122 39,95% +3,46% +2,28% 

124 52,16% +18,83% +16,81% 

131 10,39% +44,81% +18,77% 

132 39,59% +22,10% +12,01% 

133 15,49% +21,75% +19,62% 

141 43,98% -2,83% +0,18% 

142 45,97% +3,42% -0,15% 

211 82,24% -2,95% -2,20% 

213 70,73% -9,23% -0,46% 

221 33,17% +24,61% +18,41% 

222 42,71% +6,85% +0,95% 

231 55,65% +0,46% -1,25% 

242 33,31% -0,15% -1,44% 

243 48,14% -8,74% -2,59% 

311 71,19% +0,72% +2,59% 

312 63,60% +3,86% +0,90% 

313 42,70% -5,64% +0,43% 

321 18,09% +36,37% -18,09% 

324 49,89% -2,85% -1,07% 

411 61,96% +3,79% -2,42% 

511 82,53% -0,41% -2,43% 

512 84,30% +2,77% +0,77% 

14. táblázat Az ASTER-GDEM és a Sentinel-1 

adatok felhasználásával készült eredmények átlagos 

összpontosság és F-szám változása a Sentinel-2-es 

spektrális sávok felhasználásával készült 

eredményekhez képest. 

 

3

9. ábra 
Sentinel-2 

Sentinel-2 + 

ASTER-GDEM 

Sentinel-2 + 

Sentinel-1 

Összpont

osság 
73,67% +0,07% -0,26% 

F-szám 

111 39,45% +17,55% +22,58% 

112 71,59% -0,03% -0,57% 

121 52,70% +3,75% +0,16% 

122 39,95% +3,46% +2,28% 

124 52,16% +18,83% +16,81% 

131 10,39% +44,81% +18,77% 

132 39,59% +22,10% +12,01% 

133 15,49% +21,75% +19,62% 

141 43,98% -2,83% +0,18% 

142 45,97% +3,42% -0,15% 

211 82,24% -2,95% -2,20% 

213 70,73% -9,23% -0,46% 

221 33,17% +24,61% +18,41% 

222 42,71% +6,85% +0,95% 

231 55,65% +0,46% -1,25% 

242 33,31% -0,15% -1,44% 

243 48,14% -8,74% -2,59% 

311 71,19% +0,72% +2,59% 

312 63,60% +3,86% +0,90% 

313 42,70% -5,64% +0,43% 

321 18,09% +36,37% -18,09% 

324 49,89% -2,85% -1,07% 

411 61,96% +3,79% -2,42% 

511 82,53% -0,41% -2,43% 

512 84,30% +2,77% +0,77% 

 14. táblázat Az ASTER-GDEM és a Sentinel-1 

adatok felhasználásával készült eredmények átlagos 

összpontosság és F-szám változása a Sentinel-2-es 

spektrális sávok felhasználásával készült 

eredményekhez képest. 
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permutációs fontossági értékei eltérő eredményt mutatnak, mint az összpontosság és 

osztályonkénti F-szám értékek. Az ASTER magassági adat, mint változó volt a legkevésbé 

fontos változó a modellépítés során, addig az S1 két változója közepes fontossági értékkel 

rendelkeztek. Az S1-es adatok esetében ugyanakkor meg kell jegyezni, hogy az előfeldolgozás 

során többféle zajszűrési eljárást is lehet alkalmazni, amelyekkel eltérő eredményt kaphatunk. 

Ezeket a módszereket ebben a kutatásban nem vizsgáltam. 

A különböző független adatok (magassági, radar) felhasználása az osztályozásban 

eltérő eredményeket nyújtott. Míg az SRTM bevonása a Landsat-7-es adatokkal együtt 

összpontosság növekedést okozott, átlagosan 2,35%-ot, azonban osztályszinten csak 

kisebb különbségeket eredményezett. Az ASTER-GDEM és a Sentinel-1-es adatok az S2 

adatokkal kombinálva nem okoztak jelentősebb összpontosságbeli változást, átlagosan 

+0,07%-ot és -0,26%-ot. Azonban osztályszinten a pontosság növekedett, főleg a jelentős 

magassági tulajdonsággal rendelkező kategóriák esetében. (5. cél) 

5.3. Gépi tanuláson alapuló algoritmusok összehasonlítása a 

felszínborítás/területhasználat osztályozásban 

A gépi tanulásban kompromisszumot kell kötni aközött, hogy az algoritmus mennyire 

jól illeszkedjen az adatokhoz, illetve, hogy az algoritmus mennyire lehet bonyolult. Napjainkra 

a felhasználóknak sokféle algoritmus sokféle verziója áll rendelkezésére a feladataik 

elvégzéshez. Ezeket az osztályozási algoritmusokat a múltban már többször összehasonlították, 

azonban a legjobb pontossággal rendelkezőalgoritmus kiválasztása egyértelműen nem 

lehetséges (Du et al., 2020; Jozdani et al., 2019; Leeuwen van et al., 2020; Shao és Lunetta, 

2012), mivel a különböző osztályozások eltérő nyers adatokat és előfeldolgozási módszereket 

használnak. Így a betanításkor használt adatokban lévő osztályok száma és eloszlása 

(kiegyensúlyozott/kiegyensúlyozatlan), a hiányzó vagy hibás értékek, valamint a betanítási 

adatok mérete (mintanagyság és változók) meghatározzák azt az algoritmust, amely a 

legnagyobb pontossággal rendelkezik egy adott adatkészleten. Kutatásom során több 

különböző osztályozó algoritmust teszteltem, mint például a döntési fát, a tartó-vektor gépet, a 

véletlen erdőt, a többrétegű perceptront, a teljesen kapcsolt mély neurális hálót vagy a gradiens-

növelő fát. Összehasonlításuknál az ugyanazon az adathalmazon tanított és kiértékelt 

eredményeket használtam fel. A kiértékelésnél az összpontosság, a modell építési idő, a tanító 

adat nagysága, az F-szám, a felhasználói és készítői pontosság és az átlagos valószínűségi 

mutatókat vizsgáltam. Az összehasonlítás alapját a spektrális sávokon kapott eredmények 

adják, de ezen kívül azokat az adatkombinációkat is megvizsgáltam, amelyekkel a spektrális 

sávoknál jobb eredményeket kaptam. 
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Az első osztályozási módszerben, ahol WEKA szoftverkörnyezetben meglévő 

algoritmusokat tudtam felhasználni, az alábbi négy, már viszonylag széles körben ismert 

algoritmust vetettem össze: döntési fa, véletlen erdő, tartó-vektor gép, többrétegű perceptron. 

Ezek a kiválasztott, egyszerűbb algoritmusok közepes vagy jó eredményeket értek el különböző 

osztályozási forgatókönyvekben. Az összpontosság tekintetében a legmagasabb értékeket a 

véletlen erdő osztályozóval kaptam, amely az L7-es spektrális sávok alapján a mintaterületeken 

átlagosan 67,96%-os eredményt adott (legalacsonyabb 62,84% – Tétényi-fennsík, legmagasabb 

81,87% – Hevesi-ártér). A második, harmadik, negyedik helyen sorrendben a többrétegű 

perceptron, a döntési fa, a tartó-vektor gép algoritmusok állnak, közel azonos értékekkel. A 

többrétegű perceptron a spektrális sávok alapján átlagosan 50,3%-os eredményt adott 

(legalacsonyabb 37,42% – Pesti hordalékkúp-síkság, legmagasabb 69,98% – Hevesi-ártér). A 

döntési fa áltagosan 49,8%-os összpontosságot ért el úgy, hogy a legalacsonyabb eredményt 

(39,95%) a Tétényi-fennsík, míg a legmagasabbat (69,97%) a Hevesi-ártér mintaterületen 

nyújtotta. A legalacsonyabb összpontosságot a tartó-vektor gép adta, amely átlagosan 47,7%-

ot ért el. A legalacsonyabb értékét, 37,38%-ot a Tétényi-fennsík, míg a legmagasabb értékét 

69,97%-ot a Hevesi-ártér mintaterületen adta. Az L7-es spektrális sávokhoz további 

információk hozzáadásakor, ezek az osztályozók a legmagasabb összpontosság értékeiket a 

variancia textúra adatok bevonásával érték el (osztályozónkként a többi adatkombinációhoz 

képest). A legmagasabb összpontosságot, 81,88%-ot szintén a véltelen erdő érte az összes 

variancia sáv felhasználásával (minimum 78,75% - Pesti hordalékkúp-síkság, maximum 

89,14% – Hevesi-ártér). Hasonlóan az összes variancia sáv bevonásával érte el a legmagasabb 

összpontosságot a tartó-vektor gép: átlagosan 57,49%-kal (minimum 51,91% – Tétényi-

fennsík, maximum 71,07% - Hevesi-ártér). A döntési fa esetén a variancia adatok 11×11-es 

kernel mérettel készített értékeivel értem el a legmagasabb összpontosságot: 67,02% (minimum 

51,26% – Pesti hordalékkúp-síkság, maximum 81,8% – Hevesi-ártér). A többrétegű perceptron 

a variancia adatok 17×17-es kernel mérettel nyújtotta a legmagasabb összpontosságot: 67,02% 

(minimum 36,2% – Pesti hordalékkúp-síkság, maximum 73,94% – Hevesi-ártér). Az 

algoritmusok eredményeinek összpontossága és a tanító adathalmaz nagysága között nincs 

egyértelmű kapcsolat. Több esetben a legkisebb összpontosságot a legnagyobb mintaterületen 

(Pesti hordalékkúp-síkság) kaptam, illetve itt minden osztályozónál átlag alatti összpontosságot 

mértem. Azonban az is kimutatható, hogy a második leggyakrabban alacsony összpontossági 

értékeket nyújtó mintaterület (Tétényi-fennsík) inkább a kisebb területűek közé tartozik, mint a 

nagyobbak közé (15. ábra). A két kistáj osztályszintű eloszlása nagyban hasonlít, ugyanis 

mindkét esetben magas a mesterséges felszínek és a mezőgazdasági területek aránya (A1. 

táblázat). Továbbá a Hevesi-ártér, amely esetében a legtöbbször kaptam a legmagasabb 
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összpontosságot, a harmadik legnagyobb területű mintaterület, a kategóriák szerinti eloszlása 

pedig viszonylag homogén, 1 domináns kategóriával (2.1.1. „Nem-öntözött szárazföldek”). 

Ezek alapján az algoritmusok teljesítményét a mintaterület nagysága csak kisebb mértékben 

befolyásolja, viszont a területen lévő osztályok eloszlása sokkal meghatározóbb.  

A spektrális sávok alapján a véletlen erdő osztályozó adta a legmagasabb átlagos F-

szám értékeket (23. ábra) a legtöbb kategória esetében (24-ből 16 esetben). A további 8 

osztálynál 3 esetben a tartó-vektor gép, míg 1 esetben a többrétegű perceptron adta legmagasabb 

F-számot (4 esetben mindegyik osztályozónál az F-szám 0 volt). Azonban az F-szám alapján 

egyik kategória sem éri el a 70-es értéket, így az osztályszintű eredmények alacsonynak vagy 

közepesnek mondhatók. Ezért az osztályok részletesebb vizsgálatát (készítői, felhasználói 

pontosság, átlagos valószínűség) nem végeztem el. Az algoritmusok modellépítési idejét 

tekintve a leggyorsabb a döntési fa modell volt, amely a teljes adathalmaz 33%-án tanítva 35,58 

másodperc futott le. Míg a második leggyorsabb a véletlen erdő modell 53,43 másodperccel, a 

harmadik, többrétegű perceptron 235,28 másodperccel és a leglassabb a tartó-vektor gép 

1293,14 (21,55 perc) másodperccel teljesített. Az eredmények alapján a véletlen erdő 

osztályozó algoritmus hozta a legjobb pontossági eredményeket, amik közepes és jónak 

mondható tartományban mozogtak, míg a modellezési ideje gyors volt. A másik három 

algoritmus egymáshoz viszonyítva hasonló pontossági eredményeket adott, viszont ezek az 

adott feladatot rossz vagy alig közepes hatékonysággal oldották meg. Ezek alapján döntöttem 

úgy, hogy a második osztályozási módszernél a véletlen erdő algoritmust is implementálom. 

A második osztályozási módszerben, a python programozási környezetben három, 

napjainkban igen gyakran használt algoritmust implementáltam: a már említett véletlen erdőt, 

a mély tanulásos mesterséges neurális hálót és a gradiens-növelő fát. A pontossági értékek 

elemzéséhez a maximum likelihood, hagyományos osztályozót is alkalmaztam, aminek az 

eredményeit alapértékként használtam. A python programozási környezetnek köszönhetően az 

algoritmusok modellépítő paramétereit automatikusan, véletlen keresési eljárással 

optimalizáltam. Ezzel a módszerrel az S2 spektrális sávokon felépített modellek 

összpontosságait megvizsgálva megállapítható, hogy a maximum likelihood nem volt képes 

megfelelően megoldani az osztályozási problémát, mivel összpontossága minden 

mintaterületen 60% alatt maradt (minimum 32,91%, maximum 56,71%) (39. ábra).  
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A többi osztályozó algoritmus viszonylag hasonló pontossági eredményeket adott a 

különböző mintaterületeken. Mindhárom osztályozó a legnagyobb területű Pesti hordalékkúp-

síkságon érte el a legalacsonyabb összpontosságot. Ezen a mintaterületen az algoritmusok 

között csupán 2,66%-os különbség volt mérhető. A legmagasabb pontosságot a gradiens-növelő 

fa érte 65,25%-kal míg a legalacsonyabbat a mesterséges neurális háló 62,59%-kal, és a véletlen 

erdő 64,2%-ot nyújtott. Az első osztályozási eredményekhez hasonlóan itt is a Hevesi-ártér 

mintaterületen adták a legmagasabb pontossági értékeket az algoritmusok, ugyanis mindhárom 

osztályozó összpontossága 80% felett volt. A legmagasabb értéket itt is a gradiens-növelő fa 

39. ábra Különböző osztályozó algoritmusok teljesítménye a Sentinel-2-es spektrális 

sávok alapján, különböző mintaterületeken mérve.  
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érte el 86,67%-kal, míg a véletlen erdő nem sokkal alacsonyabb 86,2%-ot. A legalacsonyabb 

pontosságot (84,07%) itt is a mesterséges neurális háló adta. A többi mintaterületen 70% és 

80% közötti összpontosságbeli eredményeket adtak az algoritmusok. A hat mintaterületből 

összesen öt esetben a gradiens-növelő fa bizonyult a legpontosabb modellnek, míg egy esetében 

a véletlen erdő. A többi adatkombinációt megvizsgálva a legmagasabb pontossági értékeket a 

monotemporális adatok esetén a variancia sávok mindegyikének felhasználásával, illetve a 

multitemporális felvételek együttes alkalmazásánál kaptam. A legmagasabb összpontosságot 

(94,5%) a véletlen erdő esetében a 3 időpontban készült Sentinel-2-es felvételek felhasználása 

nyújtotta a Hevesi-ártéren. Ugyanezen a mintaterületen, a 6 időpontban készült Sentinel-2-es 

felvételek alapján a legmagasabb összpontosságot (96,71%) a mesterséges neurális hálónál 

kaptam, ami egyben a legmagasabb érték is az összes eredmény közül. A gradiens-növelő fa is 

ugyanezen a mintaterületen érte a legmagasabb pontosságot (96,29%), az összes variancia sáv 

felhasználásával. Az adatkombinációnként vizsgált átlagos összpontosságok esetén is a 

spektrális sávoknál bemutatott eredményekhez hasonlót kaptam (15. táblázat). Minden esetben 

a gradiens-növelő fa rendelkezett a legmagasabb átlagos összpontossággal, míg a véletlen erdő 

és a mesterséges neurális háló közel azonos eredményeket adtak. Valamint a maximum 

likelihood osztályozó semmilyen adatkombinációval sem volt képes megfelelően elvégezni az 

osztályozási feladatot. 

15. táblázat Különböző osztályozó algoritmusok átlagos összpontossága a különböző 

adatkombinációk alapján.     

  ML RF GBM ANN 

Landsat-8 41,78% 69,06% 69,38% 67,90% 

Sentinel-2 42,22% 75,09% 75,71% 70,22% 

Sentinel-2 + textúra 11x11 var 31,59% 76,81% 78,55% 75,83% 

Sentinel-2 + textúra 17x17 var 35,60% 80,43% 85,54% 79,18% 

Sentinel-2 + textúra 23x23 var 36,93% 82,61% 87,68% 82,19% 

Sentinel-2 + összes textúra var 2,33% 83,09% 89,66% 84,11% 

Sentinel-2 + FaPAR 41,32% 72,72% 76,91% 71,36% 

Sentinel-2 + FVC 41,93% 72,13% 76,82% 71,49% 

Sentinel-2 + ASTER-GDEM  45,74% 75,38% 78,96% 66,88% 

Sentinel-2 + Sentinel-1 45,35% 73,36% 78,23% 68,65% 

Sentinel-2 + 2 időpont 50,31% 88,02% 91,43% 86,02% 

Sentinel-2 + 5 időpont 20,06% 91,74% 93,34% 92,46% 
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Az osztályszintű eredmények kiértékeléséhez, a Sentinel-2-es adatokon és a 

legmagasabb átlagos összpontossággal bíró adatkombináción kapott eredményeket vizsgáltam 

meg (S2 + 5 időpont) (16. táblázat).  Az S2-es sávok alapján a legtöbb kategóriára közepes 

átlagos F-szám értékeket kaptam, mindhárom algoritmus esetén.  

16. táblázat Átlagos F-szám értékek kategóriánkként a Sentinel-2-es spektrális sávok 

alapján, az egyes osztályozó algoritmusok alapján. 

 

Ezért az F-számok átlagai is alacsonyak vagy közepesek voltak: a mesterséges neurális 

hálónál 38,23%, a véletlen erdőnél 53,34% és a gradiens-növelő fánál 58,61%. A 25 osztályból 

20 esetében a gradiens-növelő fa adta a legmagasabb átlagos F-szám értéket, de ebből az esetek 

felénél kevesebb mint 5%-kal volt magasabb, mint a második legmagasabb érték, tehát ezen 

osztályok könnyebben is lehatárolhatók voltak. A többi 5 osztálynál a véletlen erdő úgy adta a 

CLC kód 
Sentinel-2 Sentinel-2 + 5 időpont 

RF HGBC ANN RF HGBC ANN 

111 51,51% 66,84% 0,00% 94,99% 97,15% 76,34% 

112 73,92% 74,53% 66,32% 93,42% 94,43% 92,49% 

121 54,01% 58,89% 45,21% 76,77% 88,08% 77,83% 

122 46,46% 49,71% 23,66% 84,13% 88,91% 77,44% 

124 54,40% 60,85% 41,24% 95,65% 99,11% 94,52% 

131 10,06% 10,94% 10,18% 73,17% 86,38% 74,07% 

132 50,42% 55,53% 12,82% 86,69% 95,16% 86,92% 

133 0,00% 46,48% 0,00% 83,73% 48,05% 89,69% 

141 52,81% 60,17% 18,96% 84,61% 93,65% 83,05% 

142 47,38% 52,83% 37,68% 85,99% 92,67% 87,04% 

211 83,47% 83,77% 79,49% 96,15% 96,30% 96,53% 

213 70,15% 75,31% 66,74% 88,50% 94,55% 94,66% 

221 59,05% 40,45% 0,00% 96,10% 48,97% 95,51% 

222 44,37% 54,93% 28,84% 87,47% 92,37% 90,93% 

231 63,65% 51,37% 51,94% 85,74% 87,71% 88,86% 

242 43,21% 32,15% 24,57% 81,13% 59,72% 80,16% 

243 52,40% 54,06% 37,96% 81,08% 88,39% 82,82% 

311 64,42% 77,76% 71,41% 73,49% 91,36% 92,24% 

312 67,33% 71,55% 51,93% 91,41% 95,42% 88,15% 

313 55,14% 40,91% 32,05% 86,46% 92,75% 85,96% 

321 0,00% 54,27% 0,00% 89,31% 62,04% 88,83% 

324 53,63% 52,94% 43,11% 76,51% 79,39% 80,91% 

411 64,68% 66,04% 55,15% 88,06% 91,57% 87,44% 

511 85,29% 86,28% 76,02% 92,31% 88,09% 90,73% 

512 85,74% 86,76% 80,41% 94,70% 96,05% 93,76% 

ÁTLAG 53,34% 58,61% 38,23% 86,70% 85,93% 87,07% 
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legmagasabb átlagos F-szám értéket, hogy csak egy esetben volt kisebb a különbség 5%-nál a 

második legmagasabb értékhez képest. A legmagasabb F-szám értékeket a nagy részaránnyal 

bíró, vagy könnyen lehatárolható kategóriák produkálták, mint a 1.1.2-es „Nem összefüggő 

településszerkezet”, a 2.1.1-es „Nem öntözött szántóföldek”, a 3.1.1-es „Lomblevelű erdők”, az 

5.1.1-es „Folyóvizek, vízi utak” és az 5.1.2-es „Állóvizek”. Azonban a legjobb eredményeket 

adó adatkombináció esetén ez az állítás már nem igaz. Bár az említett osztályok F-szám értékei 

itt is magasak, több osztály is legalább ilyen értékkel rendelkezik. Ilyenek voltak az 1.2.4-es 

„Repülőterek”, az 1.3.2-es „Lerakóhelyek, meddőhányók” és a 3.1.2-es „Tűlevelű erdők” 

kategóriák. A magas F-szám értékeknek köszönhetően az átlagos pontosságok is jelentősen 

megnövekedtek és az eddig legalacsonyabb átlagértékkel bíró mesterséges neurális háló érte el 

a legmagasabb pontosságot (87,07%). Ugyanakkor az eddig legjobban teljesítő gradiens-növelő 

fa érte el a legalacsonyabb értéket 85,93%-ot, míg a véletlen erdő 86,7%-ot. Az átlagos F-szám 

értékek ellenére a 25 kategóriából továbbra is a gradiens-növelő fa érte el a legtöbb esetben (15) 

a legmagasabb értéket. A további 10 kategóriából 6-nál a mesterséges neurális háló, míg 4 

esetben a véletlen erdő adta a legjobb eredményt.  

 

40. ábra A Sentinel-2-es spektrális adatokon betanított egyes modellek által adott 

átlagos valószínűségi értékek kategóriánkként. 

 

40. ábra A Sentinel-2-es spektrális adatokon betanított egyes modellek által adott 

átlagos valószínűségi értékek kategóriánkként 
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Az F-számtól részben eltérő eredményeket láthatunk az egyes modellek által 

osztályonként adott átlagos valószínűségi értékek alapján (40. ábra). Ezek az értékek azt 

mutatják meg, hogy az egyes modellek adott osztályba milyen átlagos valószínűségi érték 

mellett sorolták be a pixeleket (mekkora a valószínűsége a modell szerint, hogy az adott pixel 

a becsült osztályba tartozik). Ezek alapján további következtetéseket vontam le arról, hogy 

milyen pontosan tudott az adott algoritmus egy kategóriát lehatárolni. Míg az F-számhoz 

hasonlóan a legmagasabb átlagos valószínűségi értékkel a gradiens-növelő fa rendelkezik 

(64,84%), addig az eddigiektől eltérően a mesterséges neurális háló adja a második 

legmagasabb (58,66%) és a véletlen erdő a legalacsonyabb átlagos valószínűségi értéket 

(49,57%). Jól látható, hogy a legtöbb osztálynál a gradiens-növelő fa nyújtja a legnagyobb 

valószínűségű becsléseket (25-ből 21 esetben). A többi 4 esetben a mesterséges neurális háló 

adja a magasabb átlagos valószínűségű becsléseket. Viszont a véletlen erdő ezen a mutató 

alapján rosszul teljesít, ugyanis a legtöbb kategória esetén ez az osztályozó adja a legkisebb 

valószínűségű becsléseket. Az F-számtól eltérően, ennél a mutatónál a területi részarány kisebb 

hangsúlyt kap, míg a változók által adott térben történő szeparabilitás és az algoritmus 

hatékonysága nagyobbat. Ezt jól mutatja, hogy az olyan alapvetően felszínborítási osztályok, 

mint az 5.1.1-es „Folyóvizek, vízi utak” és az 5.1.2-es „Állóvizek” a gradiens-növelő fa és a 

mesterséges neurális háló esetében is 85% feletti átlagos valószínűséggel lehatárolhatók. A már 

említett nagy területi részaránnyal rendelkező osztályok közepes (60 és 80% közötti) átlagos 

valószínűséggel rendelkeznek. Eredményeim alapján a gradiens-növelő fával értem el a 

legjobb osztályozási eredményt az 5 időpontban készített adatok felhasználásával, 

átlagosan 93,34%-os összpontosságot. Emellett a véletlen erdő és a mesterséges neurális 

háló is ugyanezen adatok felhasználásával eredményezték a legmagasabb átlagos 

pontosságot, 91,74% és 92,46%. (6. cél) 

 Az algoritmusok teljesítményének értékeléséhez a már említett pontossági értékek 

mellett megvizsgáltam az algoritmusok modellezési folyamatát (modellépítő és architektúrális 

paraméterek, paraméterek súlya, modellezési idők). A paraméterbecslés eredményeként a 

véletlen erdő osztályozónál többféle optimális paraméterkombinációt is kaptam. Azonban az 

eredmények alapján arra a következtetésre jutottam, hogy a paraméterek hatása alacsony, a 

legjobb és a legrosszabb paraméterkombinációk pontossága között is csupán 1–5%-os eltérés 

volt tapasztalható (tanító adattól és mintaterülettől függően). A gradiens-növelő fa esetén a 

modellépítő paraméterek hatása egy nagyságrenddel nagyobb volt, a legjobb és a legrosszabb 

paraméterek között 4–20% közötti eltérések is lehettek, adathalmaztól és mintaterülettől 

függően. A véletlen erdőtől eltérően a gradiens-növelő fa paramétereinél kisebb fluktuáció volt 

az ideális paraméterek között, a leggyakoribb kombinációnál a tanítási ráta 0,01, az iterációk 



Gudmann András Viktor – Disszertáció, 

Szegedi Tudományegyetem, Földtudományok Doktori Iskola 

97 

 

maximális száma 3000, a maximális mélység 8 volt. A mesterséges neurális hálónál volt a 

legnagyobb a hatása a paramétereknek, mivel itt nemcsak modellépítő, hanem architektúrális 

paramétereket is optimalizálni kell. Emiatt a legjobb és legrosszabb paraméterek között 20–

40% közötti eltérés is tapasztalható volt (tanító adattól és mintaterülettől függően). A 

paraméterek számosságának ellenére, meglepő módon az algoritmusnál is viszonylag alacsony 

fluktuáció mutatkozott az ideális paraméterkombinációk között, így meghatározhattam a 

leggyakrabban alkalmazott paramétereket. A rétegek száma 5, a neuronok száma 512, az 

aktivációs függvény ReLU, a tanulási ráta 0,00001, az epochok száma 500, a batch méret 64 

lett. A spektrális sávok felhasználásával a különböző mintaterületeken mért modellépítési idők 

alapján a leggyorsabbnak a gradiens-növelő fa algoritmus bizonyult, átlagosan 6381 másodperc 

alatt épült fel (minimum 3657 másodperc, maximum 15923 másodperc, ~4,42óra), míg a 

másodiknak a véletlen erdő átlagosan valamivel több mint kétszeres idővel: 14581 másodperc 

~4,05 óra (minimum 745 másodperc, maximum 40306 másodperc ~11,19 óra). A leglassabban 

a mesterséges neurális háló modell épült fel, átlagosan 79578 másodperc ~22,1 óra (min.: 4171 

másodperc, max.: 123978 másodperc ~34,43 óra). A modellépítési időt és a paraméterek hatását 

figyelembe véve, a mesterséges neurális hálót a legnehezebb, míg a gradiens-növelő fát 

közepesen nehéz és a véletlen erdőt a legkönnyebb optimalizálni. Az eredményeim alapján 

közepes súlyú modellépítő paraméterekkel, a legrövidebb modellépítési (átlagosan 6381 

másodperc) és paraméterbecslési idővel és legmagasabb átlagos pontossággal rendelkező, 

így egyben legjobb teljesítményű algoritmus a gradiens-növelő fa. (7. cél) 

 

41. ábra Az osztályozók átlagos pontossági értékeik mintaterületenként. 
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A három osztályozó algoritmus skálázhatóságának vizsgálatához az egyes 

munkaterületeken mért, 2018-as adatok alapján késztett modellek átlagos pontossági értékeit 

vizsgáltam meg (41. ábra). Az eredmények hasonlók a 2000-es adatok alapján levont 

következtetésekhez. A legkisebb átlagos pontossági értékeket mindhárom algoritmus esetén a 

legnagyobb területű Pesti hordalékkúp-síkságon mértem (véletlen erdő 73,82%, gradiens-

növelő fa 76,50%, mesterséges neurális háló 68,99%). A legmagasabb átlagos pontosságot 

mindhárom algoritmus esetén a harmadik legnagyobb területű Hevesi-ártéren kaptam (véletlen 

erdő 89,23%, gradiens-növelő fa 90,27%, mesterséges neurális háló 88,90%). A többi négy 

mintaterületen közel azonos pontossági értékeket kaptam. Ezen eredményeim alapján az 

algoritmusok összpontossága és a tanító adathalmaz nagysága között nincs egyértelmű 

kapcsolat. Az algoritmusok magas pontossági értékeket adtak a második és harmadik 

legmagasabb területű Gödöllői-dombság és Hevesi-ártér kistájon. A kis területű 

mintaterületeken mértem az alacsonyabb pontosságokat, főleg a mesterséges neurális háló 

esetén. A 2000-es és 2018-as adatok felhasználásával késztett modellek mintaterületeken 

mért pontosságai alapján az algoritmusok mindegyike jól skálázható nagyobb 

területekre, de a kisebb mintaterületeken alacsony pontosságot kaptam. (8. cél) 

Az eredmények alapján a három vizsgált algoritmus mindegyike képes megoldani az 

adott osztályozási feladatot, szemben a hagyományos osztályozási eljárással. Megállapítottam, 

hogy a véletlen erdő igen felhasználóbarát, mivel egy gyorsan felépülő modell és könnyen 

optimalizálhatók a modellépítő paraméterei. Ez az osztályozó a spektrális sávok alapján 

közepes hatékonysággal képes az adott osztályozási feladatot megoldani úgy, hogy a modell 

által adott becslések a legalacsonyabb átlagos valószínűséggel rendelkeznek. Továbbá 

bemutattam, hogy a különböző adatkombinációk felhasználásával jelentősen növelhető a 

pontossága is, de kisebb mértékben, mint a másik két algoritmusnál. A gradiens-növelő fa 

modellépítési ideje kétszerese a véletlen erdőnek, de a paramétereinek optimalizálása ugyanúgy 

egyszerűnek tekinthető. Az algoritmus a spektrális sávok alapján közepes hatékonysággal képes 

az osztályozási feladatot megoldani és a modell által adott becslések is átlagos valószínűséggel 

rendelkeznek. Azonban a különböző adatkombinációkkal jelentősen növelhető a pontossága. 

Továbbá az is kiemelendő, hogy a három vizsgált osztályozó közül ez az eljárás adja a 

legmagasabb átlagos összpontossági értékeket. Emellett osztály szinten is ez az algoritmus adja 

a legmagasabb F-szám értékeket a különböző adathalmazokon. A mesterséges neurális háló 

szignifikánsan hosszabb idő alatt felépülő modell, ezért az optimalizálási folyamata is sokkal 

tovább tart. Ugyanakkor az architektúrális és modellépítő paraméterek számossága miatt ennél 

az algoritmusnál a legfontosabb a paraméterek optimalizálása. A spektrális sávok alapján ez 

adta a legalacsonyabb átlagos összpontosságot, de a modell által adott becslések valószínűségei 

nem maradtak el jelentősen ettől. További adatok bevonása a legjelentősebb pontosság 

növekedést okozta, ami mind összpontosságban mind osztályszinten megmutatkozott.  

Ezen eredmények alapján a CLC nomenklatúra szerint történő 

felszínborítási/területhasználati térkép előállítására, az általam vizsgált módszerek közül 

a legalkalmasabb algoritmus a gradiens-növelő fa. 
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6.  Összefoglalás és értékelés 

A távérzékelés egyik alapvető és legrégebbi feladata a felszínborítás és területhasználat 

térképezése, mivel a Föld ezen két aspektusa kulcsfontosságú információforrás a földrajzi, 

társadalmi, és gazdasági folyamatok megértésében. Az egyre nagyobb emberi szükségletek 

miatt a felszínborítást és területhasználatot befolyásoló tényezők változása felgyorsult, ezáltal 

felgyorsítva azok változását is. Ezért a megbízható, naprakész térképek és azokból kinyerhető 

statisztikák előállítása és megléte kulcsfontosságú a szakpolitika kialakítása és tervezése 

szempontjából. A Föld ezen aspektusainak térképezése definícióikból eredően számos 

technikai és módszertani kihívást hordoz magában. Azonban a műholdas távérzékelt adatok 

legújabb generációjának köszönhetően nagy mennyiségű, egyre jobb térbeli, spektrális, időbeli 

felbontással rendelkező adat érhető el a szakértők számára. Emellett az utóbbi évtizedben a 

mesterséges intelligencia tudományához tartozó gépi tanulás (machine learning) és mély 

tanulás (deep learning) osztályozó módszerek fejlődésével minden eddiginél szélesebb 

eszköztár áll rendelkezésre a feladat megoldására. 

 Dolgozatomban a CORINE Land Cover nomenklatúrája alapján állítottam elő 

felszínborítási/területhasználati térképeket különböző adatok és osztályozó algoritmusok 

alapján a 2000-es és 2018-as évre vonatkozóan. A kutatásom során a különböző régebbi és 

újabb műholdfelvételek (Landsat-7, Landsat-8, Sentinel-1, Sentinel-2), és a belőlük levezethető 

metrikák, illetve további független források (SRTM, ASTER-GDEM) által nyújtott adatok 

alapján vizsgáltam meg, hogyan érhetjük el a legmagasabb pontosságot bizonyos körülmények 

(különböző osztályozó algoritmusok, mintaterületek, adatkombinációk) között.  

A kutatásom során sikerrel alakítottam ki egy olyan osztályozási módszertant, ami 

véletlenszerűen kiválasztott, viszonylag kis mennyiségű tanító adat alapján képes megfelelően 

elvégezni az osztályozási feladatot. Az osztályozások elvégzéséhez szoftveres (WEKA) és 

programozási (python) környezetben is sikerrel alakítottam ki elő- és utódolgozási workflow-t, 

amivel a térinformatikai adatokat nyers adattá, majd az osztályozások végén újra 

térinformatikai adattá tudtam alakítani. A WEKA szoftveres környezetben sikerrel tudtam négy 

osztályozó algoritmust felhasználni az osztályozások elvégzésére: a döntési fát, a véletlen erdőt, 

a tartó-vektor gépet és a többrétegű perceptront. Mivel a legújabb algoritmusok közül a 

szoftverben több nem állt rendelkezésre, így ezeket python programozási környezetbe kellett 

implementálnom. Az osztályozás elvégzéséhez sikerrel implementáltam három osztályozó 

algoritmust (véletlen erdő, gradiens-növelő fa, mesterséges neurális háló) python programozási 

környezetbe, aminek köszönhetően az osztályozás folyamatát is automatizálhattam 

(adattisztítás, tanító-teszt adat generálás, paraméterbecslés, modellezés, becslés, eredmények 

átalakítása), illetve kiszámíthattam különböző egyéb mutatószámokat, mint a permutációs 

fontosság értéket, vagy a pixelek legmagasabb valószínűség értékét.  
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(1) A módszertan kidolgozása után a nyári időpontban készült felvételek spektrális 

sávjainak kapcsolatát vizsgáltam a CLC nomenklatúra 3. hierarchia szintjén lévő kategóriákkal, 

az egyes osztályok szeparabilitás értéke, illetve az osztályozások eredménye alapján. A Jeffries-

Matusita szeparabilitás értékekből azt állapítottam meg a Landsat-7-es műholdkép spektrális 

sávjai által (amelyek 30 vagy 60 méteres térbeli felbontással rendelkeznek) a CLC kategóriák 

elválaszthatósága igen alacsony, és még a spektrális sávok együttes alkalmazása mellett se 

válnak az egyes kategóriák jól elhatárolhatóvá. Ezt támasztották alá az osztályozások 

eredményei is, amelyeknél a 6 mintaterület közül csak 5 esetében adtak az osztályozó 

algoritmusok 60% alatti összpontosságot és 1 esetben 70% fölötti eredményt. Ezzel szemben a 

Sentinel-2-es felvételek spektrális sávjai alapján (amelyek 10, 20 vagy 60 méteres térbeli 

felbontással rendelkeznek) az egyes kategóriák jól elválaszthatók egymástól. Azonban az 

osztályozási eredmények ezt csak részben igazolták, mivel az egyes osztályozó algoritmusok 

csak közepes pontosságot (átlagosan 73,82%-os összpontosságot) voltak képesek elérni ezekkel 

a sávokkal. A temporális adatok osztályozásban felhasznált eredményeinek vizsgálatából 

azonban kiderült, hogy több időpontban készült multispektrális felvételek alapján az 

osztályozások kiváló összpontossággal végezhetők el. Ezek alapján a spektrális sávok képesek 

megfelelően jellemezni az adott felszínborítási/területhasználati kategóriákat. Ezért 

kijelenthető, hogy a spektrális sávok és a CLC 3. hierarchia szintjén lévő, főleg területhasználati 

kategóriák között kimutatható kapcsolat van, de az osztályozások nagypontosságú elvégéséhez 

több időpontban készült kép információi szükségesek. 

 (2) Mivel a spektrális sávok önmagukban nem elegendőek az osztályozási feladat 

megoldásához, ezért különböző derivátumokat használtam, mint további bemenő adat az 

osztályozások pontosságának növeléséhez. Ilyen derivátumok voltak a spektrális indexek, mint 

az NDVI, SAVI, MSAVI, EVI, NDMI, FaPAR, FVC. Az osztályozás eredményei alapján a 

hagyományos spektrális indexek (az NDVI, SAVI, MSAVI, EVI, NDMI), amelyek csak a 

spektrális sávok kombinációiból számíthatóak ki, nem növelik az osztályozások pontosságát. 

Azonban a nem hagyományos derivátumok (FaPAR, FVC), amelyek komplex számítások és 

további adatok ismeretében számíthatók ki (például sugárzási transzfer modell által), osztály 

szinten képesek egyes kategóriák pontosságát növelni. A spektrális indexek mellett a spektrális 

sávokból kiszámítható adattranszformációkat is teszteltem kiegészítő adatként. A kutatásomban 

a Tasseled Cap és PCA adattranszformációkat használtam fel. A hagyományos spektrális 

indexekhez hasonlóan, ezek se javították az osztályozások pontosságát általánosságban, 

azonban az SVM osztályozónál a PCA sávok képesek voltak pontosságnövekedést okozni 

(+4,78%).  
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(3) A spektrális sávokból levezethető újabb adatok mellett, megvizsgáltam az egyes 

pixelek környezetéből kinyerhető információk hatását is az egyes osztályozó algoritmusoknál. 

Ilyen információk voltak a tájmetriai indexek, mint az átlagos folt méret, élhossz, átlagos alak 

index, fraktáldimenzió vagy a kernel számításokból kinyerhető variancia, a ferdeség, a kurtózis 

vagy az átlagos euklideszi távolság. Az eredményeimmel bizonyítottam, hogy mind a tájmetriai 

indexek, mind a textúra adatok fontos információforrások, amelyek képesek általánosan 

növelni az osztályozások pontosságát osztályszinten és összességében is. Továbbá ezeknek a 

kombinációi további pontosságnövekedést okoznak az osztályozásokban. Emellett ezek 

lényegesen eltérő méretű területeken egyaránt megfelelő pontossággal alkalmazhatók.  

(4) Az egyre jobb időbeli felbontásnak köszönhetően egyre több lehetőségünk adódik 

temporális adatokat (egy műhold más időpontban készült képeit) bevonni az osztályozásba. A 

kutatásomban a 2000-es évre Landsat-7-es és a 2018-as évre vonatkozóan Sentinel-2-es 

felvételek több időpontban készült képeiből kialakított adatkombinációkat vizsgáltam meg. Az 

eredményeimmel igazoltam, hogy a temporális adatok jelentősen képesek növelni minden 

osztály pontosságát és az összpontosságot is. A legjobb eredmény elérése érdekében az egyes 

felvételek közötti időablakot lehetőség szerint tágan kell tartani, hogy az egyes időpontok 

közötti korreláció minél kisebb legyen, és ezzel az információtartalmuk minél nagyobb. Ezek 

alapján a 2018-as évre a legjobb eredményt 3 hónapos időablakok esetén 6 műholdkép alapján 

kaptam, minden osztályozó algoritmus 90% feletti átlagos pontossági értéket adott vissza.  

(5) Az egy időpontból származó multispektrális műholdképeinket bizonyos esetekben 

nem szükséges különböző derivátumokkal vagy temporális adatokkal kiegészítenünk, ha van 

olyan elsődleges adatforrásunk, ami képes elegendő plusz információt szolgáltatni az 

osztályozás megfelelő elvégzéséhez. Kutatásomban az SRTM, ASTER-GDEM magassági 

adatokat és a Sentinel-1 radar adatokat sikeresen kombináltam a multispektrális sávokkal és a 

hatásukat mutattam be az osztályozás eredményeire. Az SRTM magassági adatok a Landsat-7-

es adatokkal kombinálva kis mértékben növelték az egyes osztályozások eredményét (átlagosan 

2,35%-kal), míg az ASTER-GDEM adatok a Sentinel-2-es adatokkal kombinálva főleg 

osztályszinten okoztak kisebb mértékű javulást. A Sentinel-1 és Sentinel-2-es képek 

kombinálása nem okozott általános javulást az osztályozásban, de osztály szinten több esetben 

pontosságnövekedést eredményezett. Osztályszintű javulást mindhárom adatkombináció 

esetében a magassági tulajdonsággal rendelkező kategóriák (mesterséges felszínek, erdők, 

gyümölcsösök, bogyósok) esetében mutattam ki. 

(6-8) A bemenő adatok vizsgálatán túl, kutatásomban külön összevetettem a legújabb 

osztályozási algoritmusokat, teljesítményük alapján. Az összevetés során az egyes 

algoritmusok alkalmazhatóságát, pontosságát és skálázhatóságát értékeltem a felszínborítás és 
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területhasználat térképezésben. A három alkalmazott algoritmus (véletlen erdő, gradiens-

növelő fa, mesterséges neurális háló) közül a legkönnyebben alkalmazható eljárás a véletlen 

erdő, amely a három eljárás közül a leggyorsabban felépülő modell. Az alacsony számú 

modellépítő paraméterei csak kis hatással vannak a modell összpontosságára, így kis 

felhasználói tudás mellett is jó eredményt képes adni. Ez a modell a kis és nagy 

mintaterületeken is hasonló idő alatt épül fel, jól skálázható különböző nagyságú adathalmazok 

között, miközben pontosságából nem veszít. Azonban az átlagos pontossága a többi 

osztályozóhoz képest közepes csak közepesnek mondható, a különböző adathalmazokon 

69,06% és 91,74% között mozgott. A gradiens-növelő fa (hisztogram alapú gradiens-növelő 

döntési fa) a véletlen erdőhöz hasonlóan könnyen alkalmazható eljárás, kevés modellépítő 

paraméterrel rendelkezik, bár ezen paraméterek hatása jelentősebb, mint a véletlen erdőnél. 

Modellépítési ideje kb. a duplája a véletlen erdőjének, de így is igen rövidnek tekinthető. A 

modell a hisztogram alapnak köszönhetően jól skálázható, kis és nagy területen is megfelelő 

eredményt képes adni. Bár az egy időpontban készült felvétel alapján a véletlen erdőhöz közeli 

pontossággot adott, a különböző adatkombinációk jelentősen növelték pontosságát, így ez az 

algoritmus adta a legmagasabb átlagos pontossági értékeket (69,38% és 93,34% között). A 

mesterséges neurális háló a legnehezebben alkalmazható algoritmus a három vizsgált 

osztályozó közül, mivel nemcsak modellépítő paramétereit, hanem architektúrális paramétereit 

is optimalizálni kell. Ezen paraméterek optimalizálása igen bonyolult feladat, mivel egyrészt 

időigényes egy-egy modell felépítése, másrészt az egyes paramétereknek igen nagy hatása van 

a modell teljesítményére. A modell nehezen skálázható, modellépítési ideje exponenciálisan nő 

a mintaterület (és így a tanító adat) nagyságával. Pontossági értékeit tekintve az algoritmus a 

legalacsonyabb pontossági értékeket adat több adatkombinációt tekintve, de a legjobban reagált 

a további adatok bevonására, mint a textúra és a temporális adatok alkalmazására. Az átlagos 

összpontossági értékei 66,88% és 92,46% között mozogtak. Azonban a kutatásomban 

összeségében az osztályozó algoritmus érte el a legmagasabb pontossági értéket a három 

osztályozó közül (Hevesi ártér, Sentinel-2 6 időpontban készült felvétele alapján: 96,71%). A 

kutatásom alapján a véletlen erdő és a gradiens-növelő fa alkalmasak általános célú 

felhasználásra, akár monitoring rendszerekben is, mivel könnyen alkalmazhatóak különböző 

nagyságú és minőségű adathalmazokon, illetve rövid idő alatt képesek az osztályozást 

megfelelő pontossággal elvégezni. A mesterséges neurális háló speciális osztályozási feladatok 

elvégzésénél alkalmazható, mivel igen nagy pontosságú eredményeket tud adni, azonban 

teljesítménye erősen függ a felhasználó tudásától és az adathalmaz tulajdonságaitól. 

Eredményeim alapján a gradiens-növelő fa algoritmus bizonyult a legalkalmasabbnak a CLC 
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3. hierarchia szintjén lévő felszínborítási/területhasználati kategóriák osztályozására, közepes 

felbontású távérzékelt adatok alapján.   

Összeségében megállapítható, hogy a CLC 3. hierarchia szintjén lévő főleg 

területhasználati kategóriák nagypontosságú lehatárolása a temporális adatok felhasználásával 

adja a legpontosabb eredményt. Azonban ezen felvételek hiányában a közepes felbontású 

távérékelt adatból kinyert térbeli adatok a spektrális sávokkal kombinálva is megfelelő alapot 

biztosítanak a legújabb osztályozási algoritmusok számára. Ezen osztályozások nagy 

pontosságú elvégzéséhez mindegyik algoritmus alkalmas volt, de a hisztogram alapú gradiens-

növelő döntési fa bizonyult a legpontosabbnak. 
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9. Summary 

One of the fundamental and oldest tasks of remote sensing is the mapping of land use 

and land cover (LULC), as these two aspects of land are key sources of information for 

understanding geographical, social, and economic processes. The production and availability 

of reliable, up to date LULC maps and the statistics that can be derived from them play a vital 

role to the creation of environmental policies for sustainable development and planning. 

However, the mapping of these aspects of the earth, by definition, presents a number of 

technical and methodological challenges. 

In my Ph.D. thesis, I have produced land cover/land use maps based on CORINE Land 

Cover nomenclature using different input data and classifier algorithms for the years 2000 and 

2018. I used various older and newer satellite imagery, data derived from them, as well as other 

independent sources to investigate how to achieve the highest accuracy under certain conditions 

(different classification algorithms, study areas, data combinations).  

In my research, I have successfully developed a classification methodology that can 

perform the classification task correctly on a randomly selected, relatively small set of training 

data. To perform the classifications in both software (WEKA) and programming (python) 

environments, I successfully developed a pre- and post-processing workflow to transform the 

spatial data into raw and then back into spatial data at the end of the classifications. In the 

WEKA software environment, I was able to successfully use four classification algorithms to 

perform the classifications: decision tree, random forest, support–vector machine, multilayer 

perceptron. Furthermore, I successfully implemented to python programming environment 

three advanced classification algorithms: random forest (RF), histogram-based gradient 

boosting classification tree (HBGBCT), artificial neural network (ANN). With these two 

methodologies, I performed the classifications on the different datasets. 

(1) I examined the relationship of the spectral bands of the summer-time Landsat-7 (L7), 

and Sentinel-2 (S2) satellite images with the categories at 3rd level of the CLC nomenclature. 

Based on the Jeffries-Matusita (JM) separability values of the L7 satellite image spectral bands 

the separability values of the CLC categories were very low, but the S2 images showed a good 

separability value between the different categories. The L7 JM values were confirmed by the 

results of the classifications, which based on the spectral bands of satellite images and level-3 

CLC categories. The results show that the algorithms, based on L7 spectral bands gave below 

60% overall accuracy (OVRA) on 5 of the 6 study areas and only on 1 case above 70%. The 

classifications based on S2 bands achieve moderate accuracy (mean OVRA 73,82%), despite 

the JM values. Therefore, it can be stated that there is a detectable relationship between spectral 
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bands and categories at the 3rd level of the CLC hierarchy, but information from single date is 

not enough to perform the classifications with high accuracy. 

(2) Since spectral bands alone were not sufficient to solve the classification task, I 

tried to improve the classification accuracy with different derivatives as additional input data. 

Such derivatives were spectral indices, such as NDVI, SAVI, MSAVI, EVI, NDMI, FaPAR, 

FVC and transformations, like Tasseled Cap and PCA. The classification results, based on L7 

and traditional spectral indices (NDVI, SAVI, MSAVI, EVI, NDMI), show that only NDVI can 

improve the accuracy of the classification with 0,06%. The other indices decreased the accuracy 

with by between -0,15% and -2,54%. However, non-traditional classifiers (FaPAR, FVC) with 

S2 spectral bands increased the accuracy of some categories at class level. Similar to traditional 

spectral indices, transformations didn’t improve the OVRA of the classifications, but for the 

SVM classifier, PCA bands were able to cause significant increase in accuracy (+4,78% 

OVRA). 

(3) I also examined the effect of the information extracted from the environment of 

each pixel. Such information were the landscape metrics such as mean patch size (MPS), total 

edge (TE), mean shape index (MSI), and fractal dimension (MFRACT) or the variance, 

skewness, kurtosis and average Euclidean distance that can be extracted from kernel 

calculations. The results suggest that both the landscape metrics and the texture data are 

important sources of information that can generally improve the accuracy of classifications 

(landscape metrics between 0,52%–6,82%, texture information between 3,39%–11,95%). 

Furthermore, combinations of these data, cause further increases in accuracy of classifications 

and these can be applied appropriately to small and large areas. 

(4) Thanks to the increasing temporal resolution of the satellite images, there are 

more and more opportunities to include temporal data in the classification. I examined data 

combinations formed with images from Landsat-7 for the year 2000 and Sentinel-2 for the year 

2018, taken at multiple date. The results show that temporal data can significantly increase the 

accuracy of all classes and the OVRA (L7: -5,46%–7,14%, S2: 12,92%–22,25%). Based on the 

best results, the time window between each image should be kept as wide as possible to 

minimize the correlation between images and thus maximize the amount of information they 

contain. For the year 2018, the best results were obtained with a 3-month time window: based 

on 6 satellite images, all classification algorithms returned OVRA above 90%. The examination 

of the results from the temporal data used in the classification shows the spectral bands can 

adequately characterise the given land cover/land use categories. 

(5) Beside the spectral band’s derivates and the temporal data I tested different 

primary data sources like SRTM, ASTER-GDEM elevation and Sentinel-1 radar data. The 
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SRTM combined with Landsat-7 data caused a small increase in the results of each 

classification (+2,35% on average), while the ASTER-GDEM data combined with Sentinel-2 

data caused a smaller improvement, mainly at the class level (+0,06% OVRA). The 

combination of Sentinel-1 and Sentinel-2 data did not cause an overall improvement in the 

classification but did cause an improvement at class level. Class-level improvements were 

observed for all three data combinations for the categories with elevation attributes (artificial 

surfaces, forests, orchards, berries). 

(6-8)  In addition to examining the input data, I compared the advanced classification 

algorithms based on their performance. In this comparison, I observed the applicability, 

accuracy, and scalability of each algorithm. Among the three algorithms (RF, HBGBCT, ANN), 

the RF is the easiest to apply and the fastest model to build among the three algorithms. In 

addition, it builds models with small time difference on small and large sample sizes, can be 

scaled well between data sets of different sizes, while not losing accuracy. However, its average 

accuracy compared to the other classifiers is only moderate, ranging from 69,06% to 91,74% 

on different data sets. The HBGBCT is similar algorithm to the RF, with few model-building 

parameters, although the effect of these parameters is more significant than in the RF. Model 

building times were low and the model scales well and can give good results over small and 

large areas. The accuracies of this algorithm based on single date spectral values were like the 

RF. However, the different data combinations increased its accuracy significantly, thus it had 

the highest average accuracy values: between 69,38% and 93,34%. The ANN is the most 

difficult algorithm to apply, as we need to optimize its model building and architectural 

parameters, which have a very large impact on the performance of the model. The model is 

difficult to scale because the model building time increases exponentially with the size of the 

training data. The algorithm was most responsive on the inclusion of certain data, such as 

texture and temporal data, but with other data combination it gave the lowest accuracies. The 

average accuracy values ranged from 66,88% to 92,46%. Based on these results, the HBGBCT 

algorithm proved to be the most suitable for classifying land cover/land use categories at the 

3rd level of the CLC hierarchy, based on medium resolution remotely sensed data. 

Overall, it can be concluded that the use of temporal data provides the most ideal result 

for the high-precision delineation of categories at the 3rd level of CLC hierarchy. However, in 

its absence, spatial data extracted from medium resolution remote sensing data, combined with 

spectral data, can provide a suitable basis for the latest classification algorithms to perform 

classifications with high accuracy.  From the mentioned latest algorithm were suitable for this 

task, but the most suitable was the histogram-based gradient boosting decision tree. 
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10. Mellékletek 

A1. táblázat A mintaterületeken a CLC osztályok arányai. 
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31,6

0% 

29,6

4% 

312 
1,60

% 
1,26% 

0,00

% 

0,00

% 

26,7

2% 

23,7

4% 

1,25

% 

0,87

% 

0,81

% 

0,62

% 

2,67

% 

2,30

% 

313 
2,54

% 
2,09% 

0,00

% 

0,00

% 

30,5

7% 

35,6

3% 

1,92

% 

2,11

% 

0,00

% 

0,05

% 

2,92

% 

2,78

% 

321 
0,00

% 
0,00% 

5,84

% 

6,18

% 

0,00

% 

0,00

% 

0,69

% 

0,40

% 

2,79

% 

2,31

% 

0,61

% 

0,45

% 

324 
3,76

% 
6,39% 

2,31

% 

2,55

% 

5,34

% 

5,01

% 

4,38

% 

6,17

% 

1,92

% 

4,64

% 

2,77

% 

6,77

% 

411 
0,45

% 
0,36% 

6,45

% 

7,01

% 

0,00

% 

0,00

% 

6,28

% 

6,27

% 

0,00

% 

0,00

% 

0,21

% 

0,21

% 

511 
0,02

% 
0,02% 

2,30

% 

2,35

% 

0,00

% 

0,00

% 

0,00

% 

0,00

% 

0,00

% 

0,00

% 

0,00

% 

0,00

% 

512 
0,12

% 
0,17% 

15,0

1% 

15,1

1% 

0,00

% 

0,00

% 

1,24

% 

1,24

% 

0,43

% 

0,36

% 

0,32

% 

0,32

% 

 



Gudmann András Viktor – Disszertáció, 

Szegedi Tudományegyetem, Földtudományok Doktori Iskola 

121 

 

A2. táblázat A Landsat-7-es felvételekből kiszámított spektrális indexek képletei. 

Index  Egyenlet Megjegyzés 

Normalizált 

Differenciált 

Vegetációs Index 

(Normalized 

Difference 

Vegetation Index - 

NDVI) 

𝑁𝐷𝑉𝐼 =  
𝐼𝑅 − 𝑅

𝐼𝑅 + 𝑅
 

ahol IR a pixel értéke a közeli 

infravörös tartományban, 

és R a pixel értéke a vörös 

tartományban 

 

Talajhoz Igazított 

Vegetációs Index 

(Soil-Adjusted 

Vegetation Index - 

SAVI) 

𝑆𝐴𝑉𝐼 = (1 + 𝐿)
𝑁 − 𝑅

𝑁 + 𝑅 + 𝐿
 

ahol N a pixel értéke a közeli 

infravörös tartományban, 

az R a pixel értéke a vörös 

tartományban, 

és L pedig a talaj-kiegyenlítő faktor 

Módosított 

Talajhoz Igazított 

Vegetációs Index 

(Modified Soil-

Adjusted 

Vegetation Index - 

MSAVI) 

𝑆𝐴𝑉𝐼 = (1 + 𝐿)
𝑁 − 𝑅

𝑁 + 𝑅 + 𝐿
 

ahol N a pixel értéke a közeli 

infravörös tartományban, 

az R a pixel értéke a vörös 

tartományban, 

és L pedig a talaj-kiegyenlítő faktor 

 

𝐿 = 1 −
2 ∗ 𝑠 ∗ (𝑁𝐼𝑅 − 𝑅) ∗ (𝑁𝐼𝑅 − 𝑠 ∗ 𝑅)

(𝑁𝐼𝑅 + 𝑅)
  

ahol NIR a pixel értéke a közeli 

infravörös tartományban, 

a R a pixel értéke a vörös 

tartományban, 

és s az első talaj paraméter (a vörös 

és közeli-infravörös spektrális térben) 

 

Továbbfejlesztett 

Vegetációs Index 

(Enhanced 

Vegetation Index – 

EVI) 

𝐸𝑉𝐼 = 𝐺
ƿ𝑁𝐼𝑅 − ƿ𝑅

ƿ𝑁𝐼𝑅 + 𝐶1∗ ∗ ƿ𝑅 − 𝐶2 ∗ ƿ𝐵 + 𝐿
 

ahol G a növekedési faktor, 

a ƿ a pixel felszíni reflektancia 

értéke, 

a NIR a pixel értéke a közeli 

infravörös tartományban, 

a R a pixel értéke a vörös 

tartományban, 

a B a pixel értéke a kék 

tartományban, 

C1 és C2 az aeroszol ellenállás 

koefficiensek, 

és L a lombkorona hátterét 

kiegyenlítő állandó 

Normalizált Égési 

Arány (Normalized 

Burn Ratio - NBR) 

𝑁𝐵𝑅 =
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅𝐼𝐼. )

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅𝐼𝐼. )
 

ahol a NIR a pixel értéke a közeli 

infravörös tartományban, 

és a SWIRII. a pixel értéke a 
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rövidhullámú infravörös 

tartományban 

Normalizált Égési 

Arány 2 

(Normalized Burn 

Ratio 2 – NBR2) 

𝑁𝐵𝑅2 =
(𝑆𝑊𝐼𝑅𝐼. −𝑆𝑊𝐼𝑅𝐼𝐼. )

(𝑆𝑊𝐼𝑅𝐼. +𝑆𝑊𝐼𝑅𝐼𝐼. )
 

ahol a SWIRI. a pixel értéke a 

rövidhullámú infravörös 

tartományban,  

és a SWIRII. a pixel értéke a 

rövidhullámú infravörös 

tartományban 

Normalizált 

Differenciált 

Nedvesség Index 

(Normalized 

Difference 

Moisture Index - 

NDMI) 

𝑁𝐷𝑀𝐼 =
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅𝐼. )

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅𝐼. )
 

ahol a NIR a pixel értéke a közeli 

infravörös tartományban, 

és a SWIRI. a pixel értéke a 

rövidhullámú infravörös 

tartományban 

 

A3. táblázat A textúra számításokhoz használt képletek. 

Variancia 

∑(𝑥|𝑖, 𝑗 − 𝑀)2

𝑛 − 1
 

M = 
∑ 𝑥𝑖𝑗

𝑛
 

ahol 𝑥𝑖,𝑗 a pixel értéke, M 

az ablak átlaga, 

és n az ablakban lévő 

pixelek száma 

Ferdeség 

|∑(𝑥𝑖𝑗 − 𝑀)3|

(𝑛 − 1)(𝑉)
3
2

 

ahol 𝑥𝑖,𝑗 a pixel értéke, M 

az ablak átlaga, 

V a variancia, 

és n az ablakban lévő 

pixelek száma 

Csúcsosság 
∑(𝑥𝑖𝑗 − 𝑀)

4

(𝑛 − 1)(𝑉)2
 

ahol 𝑥𝑖,𝑗 a pixel értéke, M 

az ablak átlaga, 

V a variancia, 

és n az ablakban lévő 

pixelek száma 

Átlagos euklideszi 

távolság 

∑ [∑ (𝑥𝑐𝜆 − 𝑥𝑖𝑗𝜆)𝜆
2

]

1
2

𝑛 − 1
 

ahol 𝑥𝑖𝑗𝜆 az i,j pixel λ 

sávjának értéke, 

𝑥𝑐𝜆 a kernel középponti 

pixel λ sávjának értéke, 

és n az ablakban lévő 

pixelek száma 
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A4. táblázat Felhasznált adatok és belőlük kiszámított derivátumok, vastagon szedve 

azon időpontok, amik a CLC adatbázisok alapjául szolgáltak. 

Műhold Dátum Kiszámított derivátumok Csempe által lefedett mintaterületek 

Landsat-7 

2000.05.16  

Pesti hordalékkúp-síkság 

Hevesi ártér 

Tétényi-fennsík 

Gödöllői-dombság 

2000.08.20 

NDVI, SAVI, MSAVI, EVI, NBR, 

NBR2, NDMI, PCA, Tasseled Cap, 

Variancia (3×3, 5×5, 11×11, 

17×17), Ferdeség (3×3, 5×5, 

11×11, 17×17), Csúcsosság (3×3, 

5×5, 11×11, 17×17), Átlagos 

Euklidészi Távolság (3×3, 5×5, 

11×11, 17×17) 

2000.10.23  

2000.04.21  

2000.05.07  

2000.06.08  

2000.07.10  

2000.08.11  

2000.10.14  

2000.04.28  

Felső-őrség 

Balatoni-riviéra 

2000.07.01  

2000.08.18 

NDVI, SAVI, MSAVI, EVI, NBR, 

NBR2, NDMI, PCA, Tasseled Cap, 

Variancia (3×3, 5×5, 11×11, 

17×17), Ferdeség (3×3, 5×5, 

11×11, 17×17), Csúcsosság (3×3, 

5×5, 11×11, 17×17), Átlagos 

Euklidészi Távolság (3×3, 5×5, 

11×11, 17×17) 

2000.10.21  

Landsat-8 

2017.08.09  Felső-őrség 

2017.08.11  Hevesi ártér 

2017.08.18  
Pesti hordalékkúp-síkság, Tétényi-

fennsík, Gödöllői-dombság 

2017.08.25  Balatoni-riviéra 

Sentinel-1 

2017.07.24  Felső-Őrség, Balatoni-riviéra 

2017.07.25  

Pesti hordalékkúp-síkság, Hevesi-

ártér, Tétényi-fennsík, Gödöllői-

dombság 

Sentinel-2 

2017.01.01   Felső-őrség 

2017.01.05  

Pesti hordalékkúp-síkság, Hevesi 

ártér, Tétényi-fennsík, Gödöllői-

dombság 

2017.03.29  

Pesti hordalékkúp-síkság, Balatoni-

riviéra, Tétényi-fennsík, Gödöllői-

dombság 

2017.04.25  Hevesi ártér 
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2017.05.15  Hevesi ártér 

2017.06.24  
Pesti hordalékkúp-síkság, Tétényi-

fennsík, Gödöllői-dombság 

2017.07.07 
FaPAR, FVC, Variancia (11×11, 

17×17, 23×23) 

Pesti hordalékkúp-síkság, Felső-

őrség, Tétényi-fennsík, Gödöllői-

dombság 

2017.07.17 
FaPAR, FVC, Variancia (11×11, 

17×17, 23×23) 
Balatoni-riviéra 

2017.08.03 
FaPAR, FVC, Variancia (11×11, 

17×17, 23×23) 
Hevesi-ártér 

2017.08.08 
FaPAR, FVC, Variancia (11×11, 

17×17, 23×23) 

Pesti hordalékkúp-síkság, Tétényi-

fennsík, Gödöllői-dombság 

2017.10.02  

Pesti hordalékkúp-síkság, Hevesi 

ártér, Tétényi-fennsík, Gödöllői-

dombság 

2017.10.15  
Felső-őrség, Balatoni-riviéra 

 

2017.12.01  

Pesti hordalékkúp-síkság, Hevesi 

ártér, Tétényi-fennsík, Gödöllői-

dombság 

2017.12.19  Felső-őrség, Balatoni-riviéra 

 


