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1. Bevezetés és célkitiizések

A foldfelszin egyediilalld erdforrds, amely azt a teret hatarolja, amiben a gazdasagi
tevékenységek és a kornyezeti folyamatok zajlanak, tovabba a kornyezeti eréforrdsok és a
gazdasagi javak fellelheték. A foldfelszin hasznalatanak modja hatarozza meg az élelem-,
anyag- ¢s energiaellatast. Azonban a Fold és eréforrasai végesek, igy egyre nehezebben
szolgaljak ki a novekvd emberi sziikségleteket (élelmiszer, viz, lakhely, szolgaltatasok). Emiatt
a foldfelszin hasznélata gyakran valtozik, amit a varosi teriiletek és az infrastruktara boviilése
jellemez, valamint a mezdgazdasagi teriiletek térhoditdsa a gyepek, szavannak és erdok
rovasara. Ezek a teriilethasznalati valtozasok a felszinboritasra is kihatnak, és annak mélyrehato
atalakuldsat, pl. a természeti erdforrdsok, a természetes Okoszisztémak kiterjedésének
csokkenését, a talajok funkcidinak romléasat, és a termékenység hanyatlasat. eredményezik
(UNSD, 2013).

A felszin két elsddleges aspektusa, a felszinboritas és a teriilethaszndlat kiilonallo, de
Osszefiiggd fogalom. Mindketté kulcsfontossagt informacidforras a foldrajzi, tarsadalmi, és
gazdasagi folyamatok megértésében. A felszinboritasi és teriilethasznalati térképek, a beldliik
levezetett térbeli informacidk és statisztikdk fontosak a természeti eréforrasokkal és a
kornyezettel (mezOgazdasag, agraripar, erddgazdalkodas, dsvanyok, viz, haladszat stb.), emberi
er6forrasokkal (pl. oktatas, egészségligyi szolgaltatisok és infrastruktira), természeti
katasztrofak ¢€s katonai konfliktusok megeldzésével és enyhitésével, a blinmegeldzéssel €s
biolizemanyag-gyartassal kapcsolatos szakpolitika kialakitdsahoz és tervezéséhez (UNSD,
2013).

A felszinboritasi ¢€s terlilethasznalati térképek ¢€s a beldliik levezetett informaciok
sz¢éleskorli felhasznalasa miatt fontos a tartalmilag pontos térképek gyors eloallitdsahoz
sziikséges modszertan fejlesztése. A tematikus térképkészités modszertani fejlesztése, mar a
légifelvételezés korai alkalmazasa Ota a tdvérzékelés tudoméanyanak elsddleges feladata. A Fold
miholdas megfigyelése, a szisztematikus visszatérésekkel és a nagy teriiletekre kiterjedd
lefedettséggel, megnyitotta az utat a mitholdképek automatikus €s szisztematikus elemzésének
lehetdsége eldtt, és ezaltal a kiilonbozd mitholdképekbdl automatikusan eldallithatd tematikus
térképek készitésére (Inglada, 2016). A miiholdas szenzorok folyamatos bdviilésének,
fejlodésének koszonhetéen, napjainkra az egyre jobb geometriai, spektralis és idébeli felbontasu
tavérzékelt adatok, valamint a széleskort, multi- és interdiszciplindris modszertan biztos alapot
szolgaltat a legkiilonbozObb térképezési feladatokhoz. A miiholdas tavérzékeléssel olyan
naprakész, nagy teriileteket lefedd, a terepi felvételezésnél joval olcsobban eldallithatod felvételek
allnak rendelkezésiinkre, amelyek kell¢ alapot biztosithatnak a foldrajzi vizsgalatokhoz, igy a

felszinboritas €s teriilethasznalat térképezéséhez is.
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A kozepes felbontasu tavérzékelt (pl. Landsat TM, ETM+, OLI, Sentinel MSI) adatok
alapjan térinformatikai médszerek felhasznalasaval készitett felszinboritéasi és tertilethasznalati
térképek még olyan régiokban is Uj eredményeket nydjthatnak, ahol a meglévd digitalis térképi
adatbazisok megujitasa és frissitése nem jelent problémat. Azonban a fejlodd régiokban a
tavérzeékelés altal szolgaltatott adatok és mddszerek nélkiil nem lehetséges a felszinboritas €s a
terlilethasznalat térképezése, ezaltal a tdrsadalmi és kornyezeti folyamatok és kolcsonhatasok
hatékony monitoringja és vizsgalata sem. Emellett a mitholdas tavérzékelés mar az 1970-es
évektdl biztosit megfeleld térbeli, spektralis és idobeli felbontast digitalis felvételeket, amelyek
igy hosszu iddskalan rendelkezésre allnak, és felhasznalhatok a naprakész informécidok
szolgaltatasa mellett, a folyamatok nyomon kovetésére, illetve a valtozdsok iddsoros
elemzésére is (Wulder et al., 2022).

A felszinboritas és a teriilethasznélat mitholdfelvételek alapjan torténd térképezése szamos
technikai, modszertani kihivast hordoz magaban, ezért az 0j algoritmusok és az 01j szenzorok
adta lehetdségekkel a képfeldolgozasi moddszerek is folyamatosan fejlédnek. Az utdbbi
évtizedben a képfeldolgozasi moddszerek boviilésével a térinformatikai szakemberek a
rendelkezésre allo téradatokbol tovabbi 0j térbeli informaciokat nyerhettek ki. Azonban a
felszinboritas tavérzékeléses térképezéséhez képest a teriilethasznalati térképek eldallitasdhoz
sziikséges modszertan kevésbé kutatott téma. Emiatt a kutatasom alapvetd célja a felszinboritds
és teriilethaszndlat nagy pontossdagu osztalyozdshoz sziikséges modszertan koncepciojanak
kialakitasa.

A kutatdsaim soran ezt a célkitlizést két kiilonboz6 irdnybol vizsgaltam meg. Egyrészt az
osztalyozashoz felhasznalhato, jelenleg legelterjedtebb képosztilyozo eljarasok kivalasztisa
és alkalmazasa iranyabol, masrészt az osztalyozashoz felhaszndalhato adatok kivalasztisa
szempontjabol. A 2010-es évek attorést hoztak a miiholdas tavérzékelésben felhasznalhato
adatforrasok terén, nagyrészt az Eurdpai Uriigynokség (European Space Agency — ESA) éltal
feliigyelt Sentinel programnak koszonhetden. A megnovekedett szamt kozepes térbeli
felbontast multispektralis optikai és mikrohullamu foldmegfigyelé mitholdakkal (Landsat-8,
Landsat-9, Sentinel-1A, Sentinel-1B, Sentinel-2A, Sentinel-2B) a felhasznalok szamara
rendkiviil sokféle, eltérd térbeli, spektralis, idébeli €s radiometrikus felbontassal rendelkezd
adat all rendelkezésre a Fold felszinér6l. Tovabba, az 0j elsddleges adatforrasokbdl tobb, 1j,
eddig nem hasznalt derivatumok keriiltek meghatarozasra. A rendelkezésre allo adatok és
derivatumaik szamdnak novekedésével az egyes térképkészitési feladatokhoz felhasznalt
optimalis adatok kivalasztasanak kérdése is egyre inkabb eldtérbe keriilt. Ennek egyik oka,
hogy az adatok egyiittes hasznalata komoly kapacitasbeli kihivasokat jelent, a masik komoly

ok, hogy az osztalyozasdhoz hasznalt gépi tanulast alkalmazé algoritmusok hatékonysaga nincs
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egyértelmiien kapcsolatban a felhasznalt adatok szamaval és felbontasaikkal (térbeli, spektralis,
radiometrikus, idébeli). Ezek az algoritmusok a felhasznalt adatok informécid6 mennyiségét
értekelik és azokat, amelyek markans informaciotobblettel nem rendelkeznek, hatrébb soroljak
a betanitasnal vagy akar el is hagyjak oket. Ezek alapjan az adatbazis épitése soran, a bemend
adatok halmazanak optimalis meghatarozasahoz kapcsolédoan az alabbi célokat jeldltem ki:

(1) A felszinboritasi osztalyok és a spektralis reflektancia kozott kdzvetlen kapcsolat all
fenn, amely geoinformatikai és tavérzékeléses modszerekkel jol mérhetd és az egyes
kategoridk jol elkiilonithetok. Azonban ez a kapcsolat a teriilethasznalat esetén,
annak Osszetettsége miatt mar nem olyan egyértelmii (Anderson et al., 1976). Ezért
dolgozatomban célul tiiztem ki, a spektrdlis reflektancia és a teriilethasznadlati
kategoridak kozotti kapcsolat statisztikai vizsgdlatdat. A kutatdsom sordn arra a
kérdésre kerestem a vilaszt, hogy a reflektancia értékek és a teriilethaszndlati
kategoridak kozott létezik-e olyan erds osszefiiggés, amely lehetévé teszi, hogy a
miitholdfelvételek alapjin ezeket az osztilyokat megfeleld pontossaggal
lehatdrolhassuk.

(2) A tavérzékelt adatok osztalyozasa soran legtobbszor hasznalt az elsddleges
adatforrast kiegészitd bemend adatok, a mitholdképek spektralis savjaibdl levezetett
indexek és adattranszformaciok (Ayala-lzurieta et al., 2017; Fragoso-Campon et al.,
2018). Ezen derivatumok mindegyikére igaz, hogy az elsddleges, tobbnyire a
spektralis savok felhasznalasaval, matematikai uton hozhatok létre. Ennek
koszonhetden a kiszamitasuk altaldban gyorsan kivitelezhetd, igy konnyen
alkalmazhatok az egyes elemzésekben. Ezért az osztdlyozasok soran legtobbszor
ezeket a metrikakat hasznaljak a spektralis savok kiegészitéséhez. Azonban ezen
derivatumok hatdsa az osztalyozésra nem teljesen egyértelmdi, tobb ellentmondasos
eredmény is sziiletett mar a témaban (Kobayashi et al., 2020; Li et al., 2011). Ezért
célul tiztem ki, hogy megvizsgaljam, hogy a spektrdlis indexek és az
adattranszformaciok felhaszndldsaval a teriilethaszndlat osztalyozas teljesitménye
(pontossagi értékek, futtatdsi idok) novelheti-e.

(3) A tavérzékelt adatok osztalyozasa soran, ritkabban hasznalt az elsédleges adatforrast
kiegészitd bemend adat, a mitholdképek képelemei kornyezetébdl kinyert
informacio6. Ilyen informacidk lehetnek a pixel kdrnyezetét jellemz0 textira adatok
vagy az adott teriileten talalhat6 tdjat leird metrikék, tdjmetriai mutatok (Mez0si és
Fejes, 2004). Ezek az eldallitasukbol eredden a spektralis értékekbdl nem vezethetok
le, ezért uj dimenzioval rendelkezd, tobblet informaciot tartalmaznak, ami alkalmas

lehet a kiilonb6z6 osztilyozasok, igy a felszinboritas és teriilethasznalat
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osztalyozasok pontossaganak novelésére. Ezen adatoknak a felszinboritassal valo
kapcsolataval és az osztalyozasban torténd felhasznalasaval mar tobb Kutatas
foglalkozott (Fichera et al., 2012; Li et al., 2011; Szilassi et al., 2017). Azonban a
sok osztalyt tartalmazo teriilethasznalat osztalyozasokban a tajmetriai és textira
paraméterck felhasznalasanak hatasa még nem teljesen ismert. Ezért célul tiiztem
ki, hogy megvizsgaljam, a képelem kornyezetébdl kinyerheto adatok alkalmasak-
e a teriilethaszndlat osztalyozds pontossagdanak novelésére.

(4) Az utdbbi évtizedben, a tavérzékelésben megjelend 1j, egyre jobb térbeli, spektralis
¢s iddbeli felbontassal rendelkezd adatforrdsok nem csak a kiilonb6zd adatfiizios
osztalyozasi eljarasok eldtt nyitottdk meg az utat, hanem a kedvezObb iddbeli
felbontasoknak koszonhetéen a multitemporalis vizsgéalatoknak is. Ennek
koszonhetden lehetdség nyilik nem csupdn a kisebb iddablakos iddsoros elemzések
elvégzésére, hanem folyamatos megfigyeldrendszerek kialakitisara is. Emellett, a
képosztalyozasba is fontos szerepet kapnak az éven beliili felvételek, amelyek az
idobeli kiilonbségekbdl szarmazd eltérés miatt jelentds tobbletinformacidval
rendelkeznek. Az informacidtobblet miatt a tobb iddpontban késziilt képek egyiittes
hasznalata a képosztalyozadsokban mar régota alkalmazott technika (Costachioiu és
Datcu, 2010; Fragoso-Campoén et al., 2018; Bui és Mucsi, 2021). Azonban a
nagyszamu osztalyt tartalmazo, teriilethasznélat osztdlyozasokban az optimalis
felvételek szama, és a koztiik 1év idétavolsag nagysdga még nem meghatarozott.
Ezért célul tiztem ki, egy kivdlasztott mithold, eltérdo idopontban késziilt
felvételeinek kiilonbozo kombindciokban torténd felhasznalasanak vizsgalatat, a
felvételek és koztiik lévo optimalis idoablak meghatarozasat.

(5) A kézelmultban a miiholdas tavérzékelésben tortént fejlesztéseknek koszonhetéen a
kiilonbozé tipustt adatok (optikai-, radarfelvételek, magassagi adatok) és
tulajdonsagaikbol (térbeli, spektralis, idébeli felbontas) olyan informacidhalmaz jon
l1étre, amellyel a képosztalyozasok nagy pontossaggal kivitelezhetok. Az ilyen
adatkombinaciot felhasznalod kutatdsok szama az 0ij adatforrdsok megjelenésével
jelentésen megnott (Balzter et al., 2015; Garg et al., 2021; Li et al., 2011; T. Zhou
et al., 2018). Azonban a sok kategoriat tartalmazé (pl. CORINE), teriilethasznalat
osztalyozasokban az idealis adatkombiniciok még nem egyértelmiien
meghatarozottak. Ezért célul tiiztem ki, hogy vizsgdljam a spektrdlis savok és a
fiiggetlen  elsddleges  adatforrasok  kettos  kombindciokban  torténd
felhasznalasanak hatdasat a felszinboritis és teriilethasznalat osztalyozds

pontossdgdra vonatkozoan.
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Az osztalyozo6 eljarasokkal kapcsolatban az alabbi kérdésekre kerestem a valaszt:

(6) A tavérzékeléses képelemzés az adatok mindségi javulasanak és a kiilonb6zo
informatikai modszerek fejlodésének koszonhetéen egy folyamatosan fejlédo
tudomanyag, amihez mar szamos alkalmazast fejlesztettek ki. A jol ismert
statisztikai megkozelitések mellett tobb modszer a gépi tanulés teriiletérdl szarmazo
technikakon alapul (Waske et al., 2009). Ennek két 6 oka koziil az egyik, hogy 2014
Ota tobb, nagyobb térbeli, spektralis és iddbeli felbontast foldmegfigyelési
platformot hoztak 1étre, amelyek kiilonb6z6é hullimhossz-tartomanyokon
mukodnek, a lathatotol a mikrohullamuig. Ezeknek a rendszereknek kdszonhetéen
a tavérzékelés minden eddiginél részletesebb informdacidkat szolgaltat a
foldfelszinrdl és annak kornyezeti allapotardl. Ezek osztalyozasa igen bonyolult és
Osszetett, amit a régebbi, jol ismert osztalyozok (pl: ISODATA, Maximum-
likelihood, k-legkozelebbi szomszéd) csak korlatozottan képesek megoldani
(Richards, 2005). Masrészt, az utobbi évtizedben a mesterséges intelligencia
tudomanyahoz tartozoé gépi tanulas (machine learning) és mély tanulas (deep
learning) osztalyozo6 eljarasok (tartovektor-gép — support vector machine, dontési fa
— decision tree, véletlen erd6 — random forest, gradiens-nével6 gépek — gradient-
boosting machines, mély neuralis halok — deep neural networks) és alkalmazasi
modszereik szama dinamikusan novekedett, ami napjainkban is folytatodik. A gépi
tanulasi algoritmusok egyik leggyakoribb alkalmazéasi mddja a tavérzékelésben az
irdnyitott osztdlyozas, amely talan a legszélesebb korben alkalmazott
képosztalyozasi modszer (Waske et al., 2009). Mindegyik gépi tanulasi
algoritmusnak megvannak a maga eldnyei ¢€s hatranyai, igy a kiilonb6zo
osztalyozasi szituaciokban kiilonb6z6 hatékonysaggal alkalmazhatok. Napjainkra, a
kiilonbozé adatforrasok szama miatt, a lehetséges osztalyozési szituaciok
(adatfuziok, derivatumok, tanitdéadatok, masodlagos adatok, jellemzd kinyerés stb.)
szdma szinte korlatlan, igy a legjobb algoritmus meghatarozésa csak adott korlatok
kozott lehetséges. Ennek figyelembevételével célul tiiztem ki, a szakirodalomban
jelenleg leggyakrabban hasznalt, tobbosztalyos gépi tanuldsos osztalyozo
algoritmusok és egy hagyomdnyos osztalyozo algoritmus osszevetését a
felszinboritas és teriilethaszndlat  térképezésében. Tovabbi célom volt
meghatdarozni koziiliik, azt az algoritmust, amivel a CORINE Land Cover
adatbazis 3. hierarchia szintii nomenklaturdjaval a legnagyobb pontossdgu

felszinboritasi/teriilethasznalati térképek készithetok el.
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(7) Napjainkra az egyes osztalyozasi algoritmusok alkalmazasaval el6allitott
felszinboritasi/teriilethasznalati térképek pontossaga mellett az algoritmusok
teljesitménye is egy kritikus szempont az eredmények értékelése soran. Az
algoritmusok teljesitménye t6bb tényez6bdl felépiild Osszetett mutatd, amely
magaba foglalja a kiilonb6z0 adathalmazokon (tanitd, teszt, validalo) szamitott
pontossagi értékeken tul a tanitasi hiba mértékét, a becslések megbizhatdsagat, a
modellépitési id6t €s az ezzel szorosan Osszefliggd paraméterbecslési idot, €s az
ismeretlen adatokon torténd becslési idot. Az algoritmusok teljesitményének
fontossaga megnovekedett az utdobbi években a rendelkezésre allo adatok szdmanak
novekedése, az osztalyozando teriilet nagysaga és a minél gyorsabb informaciok
biztositasanak kovetelménye miatt. Emiatt megndvekedtek a teljesitményelvarasok,
mind a sebesség (pl.: nagy adatkockak, operativ megfigyelé rendszerek és kozel
valos idejli alkalmazasok esetében), mind a pontossag és a megbizhatdsag terén is.
Az emlitett elvardsok néovekedése miatt a pontossdagok osszehasonlitasan tul, célul
tiiztem ki az egyes algoritmusok és az dltaluk generdlt modellek teljesitményének
vizsgdlatat, a modellek és az azok létrehozasadt leiro adatok és az eredményiil
kapott térképek elemzését.

(8) A tavérzékelt adatokra épiilé térképezési feladatoknal mar a kezdeti idék ota
felmertiild kovetelmény az adott modszer alkalmazhatdsaga nagyobb teriileten vagy
adathalmazon (Anderson et al., 1976). Azéta erre a kérdésre mar tobb valasz is
sziiletett kiilonb6zé modszerek formdjaban, amikkel szdmos regiondlis, nemzeti,
kontinentalis vagy akar globalis lefedettségli térképet allitottak el6. Az ilyen,
nagyobb teriileteket bemutatd térképek sziikségesek a kiilonbozd léptékii
folyamatok, mint példaul a klimavaltozdsok okainak ¢és kovetkezményeinek
megértéséhez, és az ezekhez tarsuld tudoményos tevékenységekhez. Az ilyen jellegli
kutatasok sokszor hasznalt adatali a felszinboritasi és teriilethasznalati térképek, igy
az ezek eloallitasat célzd6 modszereknél is felmeriild kérdés a modszer
kiterjesztésének, skalazhatdosdganak lehetésége és mértéke. A rendelkezésre allo
nagy mennyiségii, egyre jobb felbontési tulajdonsagokkal rendelkezd felvételezd
rendszereknek kdszonhetden, az adatstirliség novekedése feldolgozasi problémaként
jelenik meg. A kiterjeszthetdség és az adatsiiriiség novekedése dltal generdalt
kihivds miatt célom volt az algoritmusok skalazhatosdgdanak vizsgdlata, azaz a
bemend adatok szamanak és/vagy az osztdlyozni kivant teriilet nagysagdanak

novekedésével jaro pontossagvialtozds elemzése.
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2. Irodalmi attekintés
2.1. Felszinboritas és a teriilethasznidlat fogalma, jelentésége

A Fold szarazfoldi felszinének elemzése soran a felszinboritasrol és a terlilethasznalatrol
gyljtott informaciok meghataroz6 jelentdséglick lokalis, nemzeti és nemzetkdzi szinten
egyarant (Wulder et al., 2018). Ezt a két fogalmat sokszor hasznaljak szinonimaként, bar
jelentésiikben fontos eltérések vannak. Altalanos megfogalmazas szerint, a felszinboritas a Fold
felszinének biofizikai lefedettségére utal, ezéltal térbeli informaciét nyajt a foldfelszin, a
domborzat, a klima és a talaj kapcsolatarol (FAO, 1997). A felszinboritasi térkép osztalyain a
felszinen 1évo természetes vagy mesterséges objektumokat értjiik, mint példaul erdok, vizek,
mesterséges felszinek. A felszinboritasi kategoridk meghatarozésa elég egyértelmiinek tiinhet,
de (Comber et al., 2005) ramutattak arra, hogy a kategoriak definicidiban lehetnek kiilonbségek
a foldrajzi adottsagok kozotti eltérések miatt. Ilyen lehet pl. az erddk fogalmaban, egy eurdpai
lombhullato6 erdd és egy dél-amerikai 6serdd kozott.

A teriilethasznalat a felszinboritasnal 6sszetettebb fogalom, mivel a teriilethasznalat egy
adott teriilet tarsadalmi-gazdasagi hasznositasat mutatja meg (FAO, 1997). Az adott teriileten
¢l6 emberek tevékenységeinek hatdsira kialakuld egyedi teriileteket/objektumokat jelentik.
Ilyenek lehetnek egyes varosi dvezetek: ipari, kereskedelmi, logisztikai, rekredcios, lakod vagy
kiilonb6z6 mezdgazdasagi miivelésék: szantd, gylimdlcsos, sz016s, legeld vagy mas egyéb
tevékenység miatt kialakulo teriiletek: meddOhanyok, épitési teriiletek. A terililethasznalat
fogalmabol adodik, hogy minden tarsadalmi, gazdasagi, politikai komplexnél eltérd kategoriak,
¢és a megegyezO nevil kategoriak lehatarolasanal is kiilonbségek lehetnek (pl.: nyugat-europai
belvaros és indiai belvaros, észak-amerikai ipari teriilet és 4zsiai ipari teriilet stb.). A
tertilethasznalat, specifikus kategoridinak koszonheten, széleskorli betekintést nyl)t az emberi
tevékenység kornyeztet modositd tevékenységébe, tovabba a tarsadalom és kornyezete kozotti
kapcsolataba és kdlcsonhatésaiba.

Ezeknek a kolcsonhatdsoknak ¢€s az emberi tevékenységnek az eredménye a
teriilethasznalat valtozasa, amely a legtobb esetben magaval hozza a felszinboritas
megvaltozasat is (Turner et al., 1995). A felszinboritas ¢és a teriilethasznalat valtozasai
kiilonboz6 lokalis és globalis folyamatokra fejtik ki hatasukat, mint példaul a szén korforgasa,
a hidrologiai korforgas és a biodiverzitas csokkenése stb. (Foley et al., 2005). A felszinboritas
¢s a teriilethasznalat valtozasok folyamatos gyorsulasaval, amit féleg a varosok terjeszkedése,
a gazdasagi novekedés, és az implicit-explicit mdédon ndvekvd emberi sziikségletek okoznak, a
felszinboritas és teriilethasznalat térképezése €s a valtozasok nyomon kovetése kulcsfontossagu
eszk6zz¢ valt a kornyezetvédelmet és a fenntarthatd fejlodést célzo tervezési munkakban.

Emellett ezen adatbazisok tobb tudoményos kutatasban is alapinformacionak szdmitanak, mint
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példaul a mezOégazdasagban (Bezdan et al., 2019; Pérez-Hoyos et al., 2020), a hidrologiaban
(Liagat et al., 2021; Tobak et al., 2019), az 6koldgiaban (Csikds és Szilassi, 2021b) és a
valtozasvizsgalatokban (Szilassi, 2017). A széleskorii felhasznalasi lehetdségeik miatt a
megbizhatd, pontos felszinboritasi és teriilethasznalati térképek eldallitasa egy alapveto feladat
a tavérzékelésben (Townshend, 1992).

2.2. A tavérzékelés szerepe a felszinboritas és teriilethasznalat osztalyozasban

A felszinboritasi térképek készitése volt a mozgatorugdja a térbeli adatok gytlijtésével,
feldolgozasaval és értelmezésével foglalkozo foldrajzi informaciés rendszerek 1étrehozasanak
az 1960-as évek elején (Tomlinson, 1967), amib6l a 2000-es évek elejére a geoinformatika
tudomanya (GI Science) fejlodott ki. A tavérzékelési technologia fejlédése révén a
felszinboritasi ¢€s terlilethasznalati térképek eldallitasahoz sziikséges elsddleges térbeli adatok,
elsdsorban a Landsat program globalis lefedést biztositd, kozepes felbontasu mitholdfelvételei
az 1980-as évek kozepétdl rendelkezésre allnak (Townshend et al., 1991).

A felszint boritd anyagok altal visszavert energiat mérik a mitholdak szenzorjai, igy a
felszinboritasra jellemzo reflektancia értékek szamithatok. A teriilethaszndlat és a reflektancia
értekek kozotti kapcesolat azonban mar nem ennyire egyértelmii. Ennek oka a mar emlitett
definiciobol és a teriileti kiilonbségekbdl ered, ami miatt a teriilethasznalati kategoridk szdma
sokkal nagyobb, mint a felszinboritasi kategéridké. Az osztilyok magas szdma miatt a
kategoriak nevezéktani értelemben, tartalmilag hasonlok (igy szétvalaszthatosaguk alacsony),
ami tovabb neheziti az osztalyozast. Tovabba a teriilethasznélati kategoriak lehatarolasa sok
esetben nem egyértelml, tavérzékelési szempontbol egymaést nem kizard csoportok. Emiatt a
pixelek spektralis informacidi sok esetben nem nyujtanak elegendd alapot az osztalyozasok
nagy pontossagu elvégzéséhez (Bruzzone et al., 1997; Rodriguez-Galiano és Chica-Olmo,
2012; Wilkinson, 2005).

A pontossag javitdsa érdekében Uj adatokat kell bevonni az osztilyozasba, ami
csokkentheti az osztalyozas teljesitményét (elokészitési, futtatasi id6 novekedeése). Ezért annak
érdekében, hogy megtalaljuk a megfeleld egyensulyt az osztdlyozas pontossaga ¢&s
teljesitménye kozott, a megfelelé valtozok kivalasztasa kulcsfontossagu kérdés lett, igy a
kutatasok egyik f6 téméjava is valt. A tavérzékelésben az osztalyozas és az ahhoz felhasznalt
adatok és valtozok kivalasztasa alapvetden adatvezérelt: fligg a célteriiletre rendelkezésre allo
kiilonboz6 adatok tipusatol, az egyes tipusu adatokbol rendelkezésre allo felvételek szamatol,
¢s ezen adatok tulajdonsagaitdl (térbeli és spektralis felbontds). Ezek alapjan tudjuk
meghatdrozni az osztadlyozasba bevonhato lehetséges adat variacidkat, mint a kiilonb6zd
szenzorok felvételeit egyiittesen alkalmazva (Garg et al., 2021; T. Zhou et al., 2018), tobb,

kiilonb6z6 1dépontban, azonos szenzorral késziilt képeket kombinalva (Bui és Mucsi, 2021;
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Fragoso-Campon et al., 2018; Gudmann €s Mucsi, 2019), vagy az eredeti képbdl 1j jellemzoket
(indexek, texturdk, transzformaciok) kinyerve (Gudmann et al., 2019, 2020; Gudmann és
Mucsi, 2019; Pflugmacher et al., 2019; T. Zhou et al., 2018).

Napjainkra egyre tobb, ingyenesen elérhetd kozepes felbontasu tavérzékelt adatforras
all rendelkezéslinkre a felszinboritas/teriilethasznalat térképezéséhez, melyek tulajdonsagai
(térbeli, spektralis, idobeli felbontas, kdzel 50 évet lefedd archivum) egyre kedvezdbb alapot
biztositanak a nagypontossagu osztalyozasokhoz, valtozaselemzésekhez. Azonban az egyre
jobb tulajdonsagu szenzorok és a beldliik kinyert valtozokbol eldallitott adathalmazok
dimenzidja hatalmas kihivast jelent a feldolgozas szempontjabol. Ezen adathalmazok
felhaszndldsa a felszinboritas/teriilethasznalat osztdlyozasban a hagyomanyos, tobbnyire
linedris (pixel, szubpixel alapt) osztilyozd eljarasokkal nem hoznak kelléen pontos és
megbizhaté eredményeket. Erre a kihivasokkal teli feladat megoldésara hasznalhatok fel a gépi
tanulas (machine learning) osztalyoz6 algoritmusai. A kiilonb6z6 algoritmusokat, mint példaul
a dontési fakat (decision tree), véletlen erddket (random forest), tarto-vektor gépeket (support
vector machine), mesterséges neuralis halokat (artifical neural networks) vagy gradiens-nével6
gépeket (gradient boosting machines) tesztelhetjiik és

Osszehasonlithatjuk.

23.A gépi tanuldas és algoritmusai a

Mesterseges
intelligencia

képfeldolgozasban

A gépi tanulds a mesterséges intelligencia o )
Gépi tanulas

(artificial intelligence) tudomanyaganak része, aminek

olyan moddszerek eldallitasa a célja, amelyek az

Meély
tanulas

adatokbol tanulas altal ismétlddéen optimalizaljak sajat
teljesitményiiket (1. abra) (Waske et al., 2009). A
mesterséges intelligencia kutatdsa az 1950-es
1. abra Mesterséges intelligencia,
kezdoédott, azt a kérdést kutatva, hogy tud-e a gépi tanulés, és mély tanulas,
szamitogép gondolatot létrehozni? A kérdés (Chollet, 2017) alapjan.
megvalaszolasa érdekében, Alain Turing, a fogalmi vitdk helyett 1étrehozott egy késébb rola
elnevezett elméleti gyakorlatot (TURING, 1950), és innent6l szamithatjuk a mesterséges
intelligencia tudomanyat (Haugeland, 1989). Az altalanos megfogalmazasa szerint a
mesterséges intelligencia: erdfeszitések arra, hogy automatizaljuk azon intellektudlis

feladatokat, amiket alapvetéen emberek végeznek el (Chollet, 2017).
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A gépi tanulas az 1990-es években kezdett el fejlodni és gyorsan a legnépszeriibb része
lett a mesterséges intelligencia tudomanyanak (Chollet, 2017). A gépi tanulas ahelyett, hogy
szabalyok sorozatat alakitana ki, amelyek nagyban fiiggenek az adott minta adatsortol, egy

olyan modellt prébal felépiteni, ami képes felismerni az adathalmazban 1év6 mintazatokat. Ezek

a mintdk kisebb mértékben fiiggenek az

Szabélyok ———
pgg::}gj; ——> vilszok  adathalmaztol, és mas adatsoron is sikeresen
pac > lehet alkalmazni Oket. A gépi tanulas a
kovetkezo kérdésre keresi a valaszt: képes a
Vilaszok ] gép megtanulni 6nmagatol, hogyan kell egy
. Gépitanulis == smbilyok  goladatot megoldani? Azaz ahelyett, hogy

manudlisan hatdroznank meg szabalyokat, a
2. abra Hagyomanyos programozas ¢és a gépi gép képes-e az adatok alapjan sajat
tanulas paradigmaja (Chollet, 2017) alapjan. szablyokat létrehozni? A gépi tanulds
soran a felhasznaldo a bemend és a vart adatokat adja meg, amelyek alapjan az algoritmus
formuldkat alkot (2. abra). Emiatt a gépi-tanulasos rendszerek nem kiilsdleg vannak
programozva, hanem betanitva vannak.
A gépi tanuldsnak tobb kozds metszete (mddszerek, algoritmusok) van a statisztikaval
¢s az adatbanyaszattal, de mindegyik tudomany kiilonbdzik a masiktol, foleg céljaik miatt. A
statisztika egy rendszert probal megérteni az arr6l rendelkezésre allo adatok alapjan, mig az
adatbanyészat célja a meglévd, hatalmas mennyiségli (petabyte, exabyte ...) adatokbol minél
hatékonyabb modon informacidk kinyerése. Ezekkel ellentétben a gépi tanulds szabalyokat,

Osszefiiggéseket keres egy adott, kisebb nagysagu adathalmazban, a feladatok automatizalasa

céliabol (Karimi, 2014).

Elérheto-e

I —— oo ——————Nem
tanito/referencia adat?
Igen/nem
o ) Felig wranyitott Nem wanyitott
Iranyitott algoritmusok T N
N = osztalyozas algortmusok
Ismert a stiriségfiggvény formaja?
Igen Nem
A\ 4 Y Y Y
Parametrikus Nem-parametrikus Klaszterezés Kevert modellek
Y Y Y
- : - Lo - Diszkriminativ osztilyozé
Bayes-féle osztilyozdk: Siirtiség becslés: . -
P . . eszkozik:
Legnagyobb valosziniség K-legkozelebbi szomszéd R
N - . Neuralis halok
Maximum A-posterion Kermnel becsles e
. - . . . Daéntés: fak
Minimalis kockazat Hisztogram modszerek X R
= Tarté-vektor gépek

3. abra Algoritmusok besorolasa (Waske et al., 2009) alapjan.
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A tavérzékelésben a gépi tanulast tobbféle feladatra hasznalhatjuk, ugymint az
osztalyozds, a regresszio, a klaszterezés (csoportositas), a tulajdonsdg kinyerés, a
dimenziocsokkentés és a siirliség becslés (Waske et al., 2009). A bemend adatok alapjan
haromféle csoportba sorolhatjuk a gépi tanulas modszereit: irdnyitott algoritmusok (amelyeknél
egyes eseteket ismeriink, van eldzetes tuddsunk az adatrél, és azok fel vannak cimkézve),
iranyitatlan algoritmusok (nincs elézetes tudasunk) és félig automatikus algoritmusok (a
betanitds nem csak az ismert esetek alapjan torténik). A tavérzékelésben a gépi tanulasi
algoritmusokat legtobbszor iranyitott osztilyozashoz alkalmazzak (Waske et al., 2009). Az
iranyitott, gépi tanulast alkalmaz6 osztalyozé algoritmusok koziil féleg a nem-parametrikus
algoritmusokat szoktdk hasznalni a szakemberek, melyek megfeleléen alkalmazhatok a
kiegyensulyozatlan és nem normalis eloszlasu adathalmazokon is (3. abra). Ezen algoritmusok
koziil azokat mutatom be részletesen a kovetkezd fejezetekben, amelyeket a kutatdisomban
felhasznaltam, mint a tarto-vektor gép, a mesterséges neuralis halo, a dontési fa, a véletlen erdd
¢s a hisztogram-alapu gradiens-novel6 fa.

A tarto-vektor gép (Support Vector Machine — SVM) egy alapvetden binaris osztalyozo
eljaras, amely a Vepnik-Chervonenkis dimenzidelméleten és a minimalis strukturalis kockazati

kritériumon alapul (Cortes és Vapnik, 1995). A binaris

bz B; bz
AR

"
B, margdja ¢ N\

o tarto-vektor gép egy hipersikkal valasztja szét az
[0}

P o | adathalmazt, amelyet dontési hatdrnak is neveziink. Az

- . *r r r 7. r r
& @ eljaras alapprobléméja az, hogy a lehetséges végtelen
" B o
o WR szamu dontési hatar koziil olyat taldljon az adattérben,
(o}
|

amely a legnagyobb margoval rendelkezik (a hipersikhoz

B Bymami ba legkozelebbi pontok tavolsaga a lehetd legnagyobb legyen),
4. abra A tarto-vektor gép két |

lehetséges dontési hatara (Tan et PP
al., 2006) alapjan. osztalyozonak (maximal margin classifier) is (Boser et al.,

ezért nevezik gyakran maximalis margoju

1992). A moédszer egyedi jellege, hogy a dontési hatart a tanuld esetek egy részhalmazanak
segitségével reprezentalja, amelyeket tarto-vektoroknak (support vector) neveziink (4. abra)
(Tan et al., 2006). A nagy margéval rendelkezd dontési hataroknak altalaban jobb az
altalanositasi hibajuk, mint a kis margoval rendelkezéknek. Intuitivan, ha a margo6 kicsi, akkor
margodval rendelkezd dontési hatarokat 1étrehozd osztalyozok ezért hajlamosabbak a modell
tulillesztésre és korabban nem latott eseteken gyakran rosszul altalanositanak (Tan et al., 2006).

A tarté-vektor gép betanuldsi fazisdban, bindris osztdlyozasi probléma esetén egy
egyenes egyenletének w és b paramétereit keressiik (5. abra):

wsx+b=0
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Ezeket a paramétereket gy kell megvalasztanunk, hogy az alabbi két feltétel

teljestiljon:
wxx+b=>1hay=1
wxx+b<-1,hay=-1

Ezek a feltételek fogalmazzak meg, hogy az Osszes tanuldesetnek, amik a négyzet
osztalyba tartoznak (y=1), a hipersik felsé margojan (w * x + b = 1) vagy felette kell lenniiik.
Mig, a kor kategoridba tartozo Osszes tanuloesetnek (y=—1) a hipersik alsé margojan (w * x +
b = —1) vagy alatta kell lennie. Ezen feltételek mellett teljestilnie kell annak az elvnek is, hogy
a dontési hatdr margoja a lehetd legnagyobb legyen. Ezt tigy lehet elérni, hogy minimalizaljuk
az alabbi célfiiggvényt:

lIwll?

fw) =—=—
Ezt az elvet figyelembe véve egy lineéris
tarto-vektor gép tanulasi feladatat gy
Osszegezhetjiik:

lIwll?

w

ahol teljesil: y;(w xx; + b) 2 1,i = 1,2,....,N

Ez a konvex optimalizalasi probléma a

legegyszerlibben a Lagrange-szorzd6 modszerrel 5. abra A tarto-vektor gép dontési
oldhaté meg (Tan et al., 2006). Abban az esetben, hatdrainak és marig(')inak ;gyenletei (Tanet
al., 2006).

ha nem taldlunk megfeleld hipersikot az

adathalmaz felosztdsara (nem szeparalhaté eset), azaz nem megoldhatd az optimalizalo
probléma, bevezethetiink egy 1) paramétert. A nem megfeleld hipersik okozta hibak elkeriilése
érdekében az algoritmus felépitése soran paraméterként allithatjuk be az elfogadhato hibat (cost
— C). Ezzel a paraméterrel befolyasolhat6, hogy a dontési hatdron talra is eshet ellentétes

kategériagju pont, és  az milyen

tavolsdgra lehet a dontési hatartol

(minél nagyobb a tavolsdg, annal
0000 ) i

8§°°°°%g nagyobb a hiba) (Bodon és Buza,
[ )3 AA g0 I:: B

A - r r r 77

8 ‘Aa 3§ 2014). A tarto-vektor gépeknek két f6

Q0
000000000 , . , e . .
tipusa van, a linedris és a nem-linearis

. .., tarto-vekt épek. A linedris tarto-
6. abra Az adattér atvetitése magasabb dimenzidju artoTvekior gepe fearts farto
térbe (Bodon és Buza, 2014). vektor gépeknél a dontési hatar
mindig egy egyenes (két

dimenzional), sik (hdrom dimenzidnal), vagy egy hipersik (tobb mint 3 dimenzidnal). A nem-
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linearis tarto-vektor gépeknél az eredeti adattér linearisan nem szeparalhato, igy transzformalas
segitségével olyan adattér hozhatd létre, ahol az esetek mar elkiilonithetéek (6. abra). A
transzformécio utdn az adatérre egy olyan linearis hipersik illeszthetd, amely az eredeti
bemeneti térben nem linearis. A nem-linearis tart6-vektor gépek alkalmazasanak
megkonnyitése érdekében, a transzformalast beleépithetjiilk az eredeti pontokon értelmezett
tavolsag fliggvénybe (kernelbe) (Bodon és Buza, 2014). Ezt az eljarast kernel triikkknek is
hivjak, aminek kdszonhetden a szdmitasok az eredeti térben végezhetdk el, igy az algoritmus
szamitasi igénye sokkal kisebb lesz, mig a dimenzio-problémaval kapcsolatos kérdéseket
elkeriilhetjiik (Tan et al., 2006). A kernel trilkkhoz kothetéen, a nem-linearis tarto-vektor gépek
koltség paramétere mellett, masik alapvetd paraméter a magasabb dimenzidszamu térbe vetitést
helyettesit6 kernel (Bodon és Buza, 2014). A gyakorlati tapasztalatok alapjan, a nem-linearis
tarto-vektor gépekkel magasabb pontossag érhetd el, azonban nagy esetszamu adathalmazok (>
10 000) esetén az adattranszformdacidk miatt a teljesitménylik visszaesik, igy ezekben az
esetekben a linearis valtozat alkalmazasa ajanlott. A tarto-vektor gépek nagyon jol miikodnek
sokdimenzi6s adatokkal, elkeriilik a dimenzié problémat, ezért alkalmasak adatbanyaszati
célokra is (Tan et al., 2006). A tavérzékelésben a binaris osztalyozasi problémak szama csekély,
igy a tarto-vektor gépek felhasznaldsa nem az alapvetd binaris elvalasztassal torténik, hanem
tobbosztalyos megoldasokkal. Ezek koziil a leggyakrabban hasznalt megoldasok az egy az egy
ellen szabaly (one-against-one), amely minden egyes paronkénti osztaly-kombinaciot
kiillonvalaszt, és az egy az Osszes ellen szabaly (one-against-all), amely az egyes osztalyok
tobbiekhez képesti elkiilonitésén alapul. A tarto-vektor gépek sokdimenzids adatokon nyujtott
megfeleld teljesitménye miatt, foleg kis méretii hiperspektralis, multitemporalis felvételeken és
tobbforrast adathalmazokon alkalmazzak (Waske et al., 2009).

A mesterséges neuralis halok alapvetd dtlete ugyanazon a felvetésen alapul mint a tobbi,
biologiai rendszert utdnzd6 moddszernek: A biologiai rendszerek az évmilliok fejlédésének
koszonhetéen rendkiviil hatékonyan és kifinomultan miikddnek, igy megfigyelésiikkel és
mesterséges uton torténd létrehozasukkal hasonldan hatékony szisztémakat tudunk létrehozni
(Altrichter et al., 2006). Azonban a tobbi bioldgiai rendszerhez képest az emberi agy egy
folottébb Osszetett, nemlinearis és parhuzamosan miikodd informacié feldolgozd egység,
kiilonféle szamitasi kapacitdsokkal (mintdzat felismerés, érzékelés, érzékelt adatok
feldolgozasa, motorikus funkciok iranyitasa) (Haykin, 2009). Ennek a komplex rendszernek
vizsgélataibol indult ki a mesterséges neuralis halok 1étrehozasanak o6tlete az 1940-es években.

A els6 kutatasok az agyban 1évd idegrendszer felépitésének és szamitasi modelljének
meghatarozasara iranyultak (McCulloch és Pitts, 1943). Ezek alapjan hoztak létre egy olyan

szamitasi modellt, ami az emberi agyhoz hasonléan miikddik. A szamitasi modell az emberi
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agy idegsejtjeinek €s haldzatanak szerkezetét utanozza, ami neuronokbol, dentrinekbdl és
axonokbdl all. A mesterséges neuralis halok ezt a szerkezetet lemasolva, az emberi idegrendszer
kifolyolag nem értelmezni probalnak egy jelenséget (és torvényszertiségeket megallapitani),
hanem a bemend adatok alapjan matematikai uton probaljak azt ujra eldallitani, azaz fekete
dobozként miikddnek. Emiatt miikodésiikhoz csak adatokra van sziikségiik, tovabbi ismeret a
jelenségrol és annak felépitésérdl és mikodési mechanizmusar6l nem sziikséges (Altrichter et
al., 2006).

A legelsd, gyakorlatban hasznosithato neuralis hal6zatok a tobbrétegli perceptron halok
(multilayer perceptron network) voltak, amik az 1950-es évek végén jelentek meg és az 1960-
as évek végéig uraltdk a mesterséges neuralis halok tudomanyat. A tobbrétegli perceptron ¢€s
neuralis halok fejlddését azonban visszavetette, hogy ezek a héalozatok még csak linedrisan
szepardlhaté osztdlyozasi feladatokat tudtak megoldani, igy felhaszndlatosdguk erdsen
korlatozott volt (Altrichter et al., 2006). A kutatasoknak az 1980-as években két kiilonallo 6tlet
adott 10 lendiiletet. Az egyik John Hopfield munkdja volt, a statisztikus mechanika
felhasznalhatosdga a visszacsatolt (rekurrens) neurdlis halo terén. Ezaltal lehetdvé valt
kiilonb6z6 optimalizalasi feladatok megoldasa. A masik, a tobbrétegli perceptronok
betanitasanal hasznalhato hiba-visszaterjesztési algoritmus (backpropagation) kifejlesztése. Az
eldszor csak az 1980-as évek kozepén alkalmaztak és publikaltdk tudomanyos folyoiratban
(Hagan Demuth, Howard B., Beale, Mark H., 1996). A hiba-visszaterjesztési algoritmusnak
koszonhetden a tobbrétegli perceptron héldzatok képesek lettek nemlineéris problémak
megoldasara, ami megnyitotta az utat a széleskorii alkalmazasukra, amik 0j korszakot jelentett
a neuralis halozatok fejlesztésében. Ennek 10j lendiiletet adtak a 2010-es évek elején elindult
mélytanulasos (deep learning) neuralis halok, amik akar tobb tiz vagy akar szaz rejtett réteget
is felhasznalnak. Az ilyen halok felhasznalasaval mar az ember szintjéhez hasonldéan tudunk
képosztalyozast, beszédfelismerést, kéziras digitalizaciot elvégezni, tovabba szdmos mas
teriileten is jelentds eldrelépést értek el, mint a gépi forditds, a szOoveg-beszéd atalakitas, a

digitalis asszisztensek és az autonom vezetés (Chollet, 2017).
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7. abra Memoria nélkiili neuron (perceptron) felépitése, (Altrichter et al., 2006) és (Haykin,
2009) alapjan.

A mesterséges neuralis halok alapvetéen harom kulcsfontossagl tulajdonossaggal
rendelkeznek. (1) Altaldban nagyszamu, egyszerli, lokalis feldolgozast végzd szamitasi
eszk6zokbdl (neuronokbdl) allnak, amik nagymértékben 6ssze vannak kapcsolva. (2) Tanulési
algoritmussal rendelkeznek, ami meghatarozza az informaciéfeldolgozas modjat. (3) Képesek
a betanitott informaciot felhasznalni az ezt lehetové tévo elbhivasi algoritmussal. A neuronok
egy tobb-bemenetli és egy-kimenetii eszk6zok, amelyek a bemenetekbdl valamilyen fliggvény
alkalmazaséaval 0j értékeket hoznak létre. A neuronok koziil a legelterjedtebb valtozat, a
memoria nélkiili neuron (perceptron) (7. abra). Ennél a neuronnal az x; bemenetek wj stlyokkal
Osszegzddnek és a b (bias — torzitas) értékkel egyiitt adjak ki az 6sszegzett bementet, vagy mas
néven ingert (s). Igy keriilnek felhaszndlasra az aktivacios fiiggvényben (f), ami megadja a
kimenetet (y) (Altrichter et al., 2006). Ezek a neuronok 6nmagukban nem alkalmasak komplex
feladatok kiszamitasara, ezért sziikséges Oket (rejtett) rétegekbe 0sszerendezve, parhuzamosan
hasznalni (8. abra). A rétegekbe rendezett neuronok
ki neuralis halozatokat. A rejtett rétegek és a rétegekben 1évo
neuronok szdma hatarozza meg a halo tanulési kapacitésat.

A neurélis halok miikodésében két fazist tudunk jol
elkiiloniteni. Az els6 a tanulasi, amelynek soran a neuralis

halot alakitjuk ki a meglévé bemend és kimend adataink

(bemend €s kimenod) segitségével. A tanulési fazisban iterativ

modon a halozatba beépitjiik €s eltaroljuk az adatainkban 1évo  ®epere Reltet Kimend

réteg réteg réteg

ismert és rejtett informaciokat. Eredményiil egy betanitott
) . 8. abra Egyszeri, egyrétegli
halét kapunk, amivel képesek vagyunk Uj adatokat neuralis halo.
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feldolgozni. A masodik fazis az el6hivasi fazis, melynek soran uj, ismeretlen adatokat
dolgozunk fel a betanitott halonk segitségével, aminek a végén 1j eredményeket kapunk
(Altrichter et al., 2006).

Az egyszerli elemekbdl torténd felépiilése, az aktivacids fiiggvénynek és a hiba-
visszaterjesztésnek koszonhetd nem-linearitasa €s adaptivitasa nagyban hozzajarult, hogy a
mesterséges neurdlis halok a tdvérzékelésben is hamar elterjedjenek. Tobb kiilonb6z6 neurdlis
halot alkalmazé modszert fejlesztettek ki az évek soran, kiilonbozo feladatok megoldasara, mint
a minta felismerés, objektum azonositas, képosztalyozas (Chollet, 2017). A képosztalyozasban
féleg a tobbrétegli perceptron halot alkalmazzak hiba-visszaterjesztési algoritmussal, valamint
konvoltcioés neuralis halot (Convolutional Neural Network — CNN). A neuralis halo
felépitésének koszonhetéen minden adatforrashoz kiilonbozd sulyok alkalmazhatoak, ezért
hasznosak a tobb adatforrasbol épiilé alkalmazasokban pl. a multitemporalis (Zhu et al., 2021)
és kiilonb6z6 szenzorokat felhasznald osztalyozasok (lenco et al., 2019; Seydi et al., 2020).
Emellett a neuralis halok alkalmazasaval olyan osztalyozasi fogatékonyvekben is nagy
pontossagot lehet elérni, ahol eddig nem sikertilt elfogadhatd megoldast taldlni. Azonban az
eldényei ellenére a teljesitménye nagyban fiigg a megfeleld szdmu és mindségli tanitd adattol
(Waske et al., 2009). A nagyszami bemené adat mellett, a betanitasi fazis hardveres
eréforrasigénye is jelentds, ami a mélytanuldsos neurdlis halok megjelenésével még tovabb
ndtt. Azonban a betanitasi fazis utan a modell az 01j adatok becslésénél mar nagyon gyors. Ezért
a neuralis halok meghatarozasa (rejtett rétegek szama, neuronok szdma, aktivacios fliggvény,
optimalizaciés modszer, kiesési rata, tanuldsi

rata), a modellépitd paramétereinek

optimalizalasa, illetve a halok célorientdlt beallitisa mélyebb felhaszndloi ismereteket

igényelnek.
Gyokér Szabaly
Iy lgaz | Hamis 1
1.réteg Szabaly Szabaly
rlgaz—LHamiSj rlgaZ—LHamisw
2.réteg Szabaly 4 .csoport Szabaly 1.csoport
‘L—Igaz—I—Hamis—vL Igaz—‘—Hamisd
3.réteg 1.csoport 2.csoport Szabaly 4.csoport
Vlr—lgaz—I—Hamls—|Y
4.réteg 1.csoport 3.csoport

9. abra Egy dontési fa egyszeriisitett szerkezete.
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A dontési fa algoritmus alapétlete, hogy bonyolult 6sszefliggéseket egyszerti dontések
sorozatara vezeti vissza. Ezt az otletet algoritmusként mar 1977-ben megfogalmazta Swain és
Hauska (Swain és Hauska, 1977). A dontési fa egy hierarchikus osztalyozasi modszer, ami egy
fara hasonlit (gyokérbol, agakbol, csomopontokbol és levelekbdl all) (9. dbra). A modszer az
adatokat tigy osztalyozza, hogy azokat rekurzivan egyre kisebb és homogénebb részekre bontja
szét. A részekre bontas addig torténik, amig az dsszes pixel egy olyan csoportba nem kertil, ami
teljesen elkiiloniil a tobbi osztalytdl vagy az elére meghatarozott feltételek nem teljesiilnek
(Jiang et al., 2010). Egy ismeretlen minta osztilyozasakor a fa gyokerébdl kiindulva a
csomopontokban feltett kérdésekre adott valaszoknak megfelelden addig Iépked lefelé a faban,
amig egy levélbe nem ér. A dontési szabalyok sorozatanak eredményét a levél cimkéje
hatarozza meg (Bodon és Buza, 2014). Egyszeriiségének kdszonhetden a dontési fa a nyers adat
értelmezésének, megjelenitésének, és az adatban rejld mintdk és fontos informacidk
kinyerésének egyik leghatékonyabb mddja.

A dontési fa tartalmaz egy gyokér csticsot, megadott szdmu belsd cstcsot és leallitasi
csucsokat. A gyokeret és a belso csticsokat egységesen nem-leallitasi csucsoknak nevezziik. A
leallitasi csucsok maguk az osztalyozas végsd eredményeit mutatjdk. Az azonos szinten 1évo
csucsokat, amelyek ugyanakkora tavolsagra helyezkednek el a gyokértdl, egylittesen rétegnek
nevezziik (Swain és Hauska, 1977) (9. abra). A nem-leallitasi csucsokban egy-egy attributum
értékének vizsgalata torténik, a csucsok kozotti €lek e vizsgdlat eredményével (az adott
attribitum megfeleld értékével) vannak felcimkézve, mig a leéllitasi csticsok magét a dontést
(vagyis a megfeleld osztalyt reprezentald attriblitum értékét) tartalmazzak (Bényész, 2010). A
dontési fa modell tanitasi fazisa egy elvalasztési eljaras. Elso Iépésben a teljes tanitd adathalmaz
all rendelkezésilinkre, ez lesz a gyokér, az els csucs. Az adathalmaz szétvalasztasa soran egy
felhasznalo altal valasztott metrikdval (pl. Gini index, entrépia) megkeressik azt az
attriblitumot, amellyel legjobban szeparalhaté az adathalmaz. Ezutan a kivalasztott attribitum
minden lehetséges értékével eldgazast készitiink, és ezekkel osztjuk szét az adathalmazt.
Amelyik értékkel optimalis az elvalasztas, az keriil a végleges modell csomopontjaba/csucsaba.
Ez a szétvalasztasi folyamat addig ismétlddik, amig a modell el nem ér egy megallitasi
kritériumot vagy a végzddésben 1€v6 Osszes eset egy osztalyba nem tartozik (Bodon és Buza,
2014). Megallitasi kritériumok:

* Nincs tobb attributum, ami alapjan az elemeket tovabb tudjuk osztani. Ekkor a
csomoponthoz tartozo osztaly az lesz, amelyikhez a legtobb tanitopont tartozik.

* Az adott mélység elért egy elére meghatarozott korlatot. (modell nagysag)

* Nincs olyan vagas, ami javitani tudna az aktudlis osztalyozéson.

* A végzddés elérte a minimalis nagysagot. (minimalis végzddés nagysag)
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Altalaban a gyokérhez kozel az osztilyozashoz sziikséges legfontosabb valtozok
helyezkednek el, mivel segitségiikkel lehet a legjobban szepardlni az adathalmazt. A
kivalasztott fa struktira €s a bemeneti tulajdonsagok hatarozzak meg a modell teljesitményt és
a hatékonysagot (Swain és Hauska, 1977). A modell hatékonysagat javithatjuk metszéssel,
amely soran eltavolitjuk (6sszevonjuk magasabb szintre) az 6sszes olyan végzodést, amely nem
noveli az Osszpontossagot, ezaltal a dontési fa mérete csokkenthetd, futasi ideje, illetve a
tultanitds mértéke is csokken. Az optimdlis dontési fa a lehetd legkisebb méret mellett
(legkevesebb réteggel rendelkezik), a lehetd legnagyobb pontossaggal rendelkezik ¢és a tanito
¢s tesztadaton is kozel azonos teljesitményt nyujt.

A dontési fa elényos tulajdonsaga, hogy a gyokérbdl a ledllitasi csticsokba vezetd
szabalyok sorozatdt Osszeolvasva konnyen értelmezhetjiikk az eredményeket. Ennek
koszonhetden az osztalyozas eredményei mindenki szamdra érthetd modon reprezentalhatjuk.
Tovabbi eldnye, hogy egyszerli miikodésének kdszonhetéen robusztusan viselkedik nagy
adathalmazokon is, kiilonb6z6 adatelosztasi jellemzok mellett is. A tavérzékelt képi adatok
jellemzoéi és a forrdsadatok dimenzidi kiilonbozo statisztikai eloszlassal és skalakkal
rendelkezhetnek, amelyek osztdlyozadsandl a dontési fa jobb eredményeket ad, mint a
hagyomanyos parametrikus osztalyozok (Jiang et al., 2010). Azonban az 0j adatok és
modszerek mellett a dontési fa mar csak alaposztalyozoként jelenik meg az egylittes
osztalyozokban (ensemble learners). A tovabbi két eljaras is ezen az algoritmuson alapuld
egylittes osztalyozo.

A véletlen erdd egy egyiittes osztalyozasi modszer, amelyet kimondottan a dontési fa
osztalyozdkhoz terveztek és a 2010-es €vek elején nétt meg a népszerisége. A véletlen erdd
dontési fak olyan halmaza, amely a dontési fak altal leadott elérejelzéseket kombinalja, egy
tobbségi szavazasi séma segitségével (Tan et al., 2006) (10. abra). Az erd6 altalanositott hibaja
két paramétertdl fiigg. Az egyik, hogy az egyes 6nalld osztalyozok mennyire pontosak és a
kiilonbozd osztalyozok mennyire fliggetlenek egymadstol, azaz az erdében 1évd egyes fak

erejétdl és a koztiik 1évo korrelaciotol (Breiman, 2001).
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10. abra Véletlen erd6 osztalyozo algoritmus modellje.
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A modellépité eljaras soran az Aaltalanositott hiba csokkentése érdekében, a
véletlenszeriiség novelésével a fak kozotti korrelacid csokkenthetd. Ennek egyik modja a
’zsakolas’ (bagging) alkalmazasa, amely soran az eredeti tanulohalmazbdl véletlenszertien
valasztott mintakat visziink a modellépitd eljarasba (Breiman, 1996). A zsakolas ismétlédden
egyenletes eloszlas szerint ugy mintavételez, hogy az egyes mintahalmazok ugyanolyan
méretliek legyenek, de az egyes esetek tobbszor is szerepelhetnek az adathalmazokban, mig
masok nem keriilnek be a mintaadatok k6z¢ (Tan et al, 2011). A zsékolas hasznalata mellett
sz0l, hogy a véletlen attribtitum kivalasztassal egylitt hasznalva ndveli a pontossagot és lehetové
folyamatos becslését. Ezeket a becsléseket zsakon kiviili becsléssel (out of bag) lehet
kiszamitani, melynek lényege, hogy az egy zsdkolds altal kivalasztott részadathalmazon
betanitott modell pontossagat a tanité adathalmaz maradék esetein (amik nem keriiltek a
zsékba) futtatjuk le és vizsgaljuk meg annak pontossagat.

A modellépitd eljaras szadmara tobb paramétert kell megadni: (1) a ,,zsak” nagysagat (P),
azaz, hogy a teljes adathalmazhoz képest mekkora méreti adathalmazt valaszon ki
véletlenszerlien egy fa létrehozdsidhoz; (2) az erdd nagysagat (N), hogy mennyi fat hozzon létre
az algoritmus, illetve, (3) mennyi attribitumot (M) hasznaljon fel az eljaras az egyes fak
1étrehozasakor (Breiman, 2001). A modellépité eljards minden egyedi osztilyozo esetében
eldszor zsakolassal valaszt ki egy véletlenszerti adathalmazt az eredeti tanit6é adathalmazbol. A
véletlen tulajdonsag kivalasztassal eldallitja a betanitashoz sziikséges adathalmazt, amelyen
végrehajtja a modell metszés nélkiili betanitasat. A P nagysagu véletlenszerlien kivalasztott
adaton, M szamu attributum segitségével az N db 1étrehozott dontési fa mindegyike lead egy
szavazatot €s végeredménynek a leggyakoribbat dontést fogjuk kapni (Breiman, 2001). A
modell teljesitményének (modellépitési id6, becslési id6) novelése érdekében, az eredeti
koncepcidval szemben, korlatozhatjuk az egyes fak nagysagat kiilonb6zd paraméterek
segitségével: a fa maximalis mélységének, a nem leallitasi csucsban 1évd vagashoz sziikséges
minimalis esetek szamanak, a lehetséges leallitasi csucsok szamanak vagy a benniik 1évo
minimalis esetszdm meghatarozasaval. Ezen modellépitd paraméterek alkalmazasanal meg kell
talalni azokat az optimalis beallitasokat, amelyekkel a legkisebb pontossagvesztés mellett a
legnagyobb teljesitmény novekedést érhetjiik el.

A véletlen erd6 elénye a dontési fahoz képest, hogy robusztusabb az adathalmazban
1év6 zajra és a tultanitasra, képes kiegyensulyozatlan és hidnyos adathalmazokat is kezelni,
mikozben az osztalyozasi pontossaga nem romlik (Pal, 2005). Ezenkiviil a modellben 1évd
egyes fak a dontési szabalyt minden egyes csomopontban a bemeneti adatoknak csak egy

véletlenszerlien kivalasztott jellemzd részhalmaza alapjan hatarozzdk meg. A jellemzok
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szamanak csokkentésével minden egyes felosztasnal egyszeriisodik az egyes fak szamitasi
komplexitasa, amely a szdmitasi kapacitds szempontjabdl elonyds modszert eredményez. Ez
teszi lehetové a véletlen erd6 szamara, hogy nagy dimenziés adathalmazokat kezeljen (Waske
et al., 2009). Ezen tulajdonsagainak koszonhetéen a tavérzékelt adatok képosztalyozasaban
gyakori kiegyenstlyozatlan, zajos, nagy dimenzids adatokon is jo teljesitményt nyujt. Hatranya,
hogy a modell épitése tobb iddt vesz igénybe, €s nagyobb hardveres kovetelményeket tamaszt.
Valamint a modellbe mar nem latunk bele kozvetleniil, csak az Gsszesitett eldrejelzéseket
kapjuk meg eredményiil, azaz mar nem tekinthetd ,,White-boksz” modellnek.

A gradiens-novel6 gép egy olyan egylittes moddszer, amely kiilonb6z6 gyenge
alaptanulokat (dontési fakat és neuralis halokat) hasznal osztalyozasi vagy regresszios feladatok
megoldasahoz (Friedman, 2001). A gradiens-néveld gép a modellt elérefelé 1épcsdzetes mddon
épiti fel, ami lehetdvé teszi egy tetszdleges differencialhatd veszteségfiiggvény optimalizalasat
(Friedman, 2002). A gradiens-novel6 fa a gradiens-noveld gép egy fajtaja, ahol az alaptanulo
egy dontési fa, legtobb esetben egy regresszids fa, ezért is szoktak sokszor gradiens-noveld
regresszios fanak nevezni (Gradient Boosted Regression Tree) (Olex6, 2018). A gradiens
novelés soran, iterativ mddon olyan 1) modelleket tanitunk be, amelyek a korabbi modellek

gyenge pontjainak kezelésére specializalédnak (Chollet, 2017).

Kezdé .~ ¢ ¢
Tanulasi
konstans + 5t x
érték rata
negativ negativ | | negativ negativ
gradiens gradiens| |gradiens radiens

]

v v

' S S

negativ negativ | | negativ negativ
gradiens gradiens| |gradiens gradiens

Tanulasi
rata

Tanulasi
rata
negativ negativ | | negativ negativ
gradiens gradiens| |gradiens gradiens

11. abra A gradiens-novel6 gép felépitése, dontési fak alkalmazasaval, mint alap tanulok.

A modellépitési fazisban, az adathalmazunk célvaltozdjabol szamitott konstans értékhez
(pl. atlag, median) képest szamitott eltéréseket (negativ gradiens) hataroz meg esetenként,

valamilyen felhasznalé altal valasztott veszteségfiiggvény segitségével (11. abra). Ezen
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eltérések becslésére, a magyaraz6 valtozok felhasznalasaval épit fel egy dontési fat, amelynek
a mérete valamilyen mértékben korlatozott (dltaldban a maximalis mélysége). A célvaltozo
konstans értékével, a dontési fa szabalyai altal megadott esetek eltérési értékeivel és egy
konstans tanulasi értékkel (tanulasi rata) egyiitt keriilnek meghatarozasra a koztes becsiilt
értékek. A becsiilt értékekbdl szamitott eltérések felhasznalasaval épiil fel a kovetkezd dontési
fa és szamithatok ki az 0j becsiilt értékek a mar emlitett modon. A modellépitési fazis addig
tart, amig a felhasznal6 altal megadott iteraciok (dontési fak) szdmat el nem éri a modellépités
(Olexd, 2018). Az elobb bemutatott regresszids feladattol eltérden, az osztidlyozas soran a
modell az adathalmazunk célvaltoz6jabol nem Kkonstans értéket hataroz meg, hanem a
célvaltozo atlagos valoszinliségét. Az atlagos valdszinliséghez képest tudunk eltéréseket
meghatdrozni esetenként, valamilyen felhaszndlo altal valasztott veszteségfiiggvény
segitségével. A gradiens-noveld fa algoritmus a véletlen erd6h6z hasonléd tulajdonsagokkal
rendelkezik ugyanazon alaptanulonak kdészonhetden. Ilyen tulajdonsdg a jol skalazhatosag,
robusztussag az adathalmazban 1évé hianyokra és zajokra. Azonban a gradiens-nével6 fa, a
sztochasztikus gradiensnovelés moddszerének koszonhetéen a legtobb esetben felillmulja a
véletlen erd6 teljesitményét (pontossag, futasi id6). Ezt jol mutatja, hogy 2014-ig a kaggle
(https://www kaggle.com/) versenyeken dominans véletlen erdét a gradiens-noveld gépek,
illetve azok extrém gradiens-novel6 valtozataik (XGBoost) valtottak le (Chollet, 2017). A mély
tanulasos mesterséges neuralis halok mellett, jelenleg ez a leggyakrabban hasznalt modszer. Az
altalam alkalmazott hisztogram-alapu gradiens-novel6 fa, a gradiens-néveld fa olyan valtozata,
amely a bemend adatokat egész szam alaku részekre bontja, amiken az algoritmus egész értékii
adatstruktrakat (hisztogramokat) tud hasznalni. Ezzel a modszerrel az algoritmus
nagysagrendekkel gyorsabb, mint a sima gradiens-noveld fa, foleg a tizezer mintanal nagyobb

mintan alkalmazzuk.
2.4. Felszinboritas és teriilethasznalat osztalyozasi modszerek a tavérzékelésben, hazai

és nemzetkozi példakon keresztiil

A felszinboritds ¢€s terililethasznalat térképezés a mitholdas tavérzékelés alapvetd
feladata mar a tudomany kialakuldsa ota. A térképezési feladat automatizalasdhoz sziikséges
képosztalyozasi modszerek keresése és fejlesztése a feladattal egyidds. Egyik kulcsproblémajat
a felszinboritas ¢€s teriilethasznalat fogalmabol eredd regiondlis és értelmezésbeli eltérések
okozzak, ami miatt a térképezéshez hasznalt, egységes standardizalt osztalyozasi rendszer
kialakitasa komoly kihivast jelent. Az els fontosabb ilyen, az Anderson altal az Egyesiilt
Allamok Geologiai Szolgalata (United States Geological Survey — USGS) szamara létrehozott
4 hierarchikus szintbdl allé osztalyozasi rendszer (Anderson et al., 1976). Az egyes hierarchia

szinteken 1€évo osztalyokat, kiilonb6z6 felbontasu tavérzékelt adatok, és a beldliik levezethetd
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objektumok alapjan kiiloniti el. A hierarchiaban lefel¢ haladva az egyes szintek eldallitasahoz
100-20 méter, 20-5 méter, 5-1 méter €s 1 méter alatti térbeli felbontasu adatokat sziikségesek.
A nomenklatiraban az elsd szinten 1év6 9 osztaly felszinboritasi, mig a tobbi hierarchia szinten
1évok mar teriilethasznalati kategoriak. Ez adta az alapot az azdta megjelend szamos regionalis
¢és globalis osztalyozasi rendszernek.

A globalis osztalyozési rendszerek koziil az Egyesiilt Nemzetek Szervezetének
Elelmezésiigyi és MezOgazdasagi Szervezete (FAO) hozta létre az elsé 8 osztalyos, széleskort,
standardizalt a priori osztalyozasi rendszert, amely dontési szabalyok kombinacidjaval
hatarozza meg az egyes felszinboritasi osztalyokat. A rendszer kialakitasanak kdszonhetden,
méretaranytol fiiggetlen és a felhasznalok igényeihez alkalmazkodik (Gregorio és Jansen,
2000). Ez az osztalyozasi rendszer is hozzajarult a késébbi GLC2000-es (Global Land Cover
2000) adatbazis 1étrehozasahoz, amiben tobb mint 30 kutatd csoport egylittesen vett részt és
hozott 1étre egy globdlis lefedettségli felszinboritdsi térképet. Az adatbazis alapjat egy 14
hoénapos idészak (1999.11.01-2000.12.31) SPOT 4 miholdfelvételei szolgaltattak. Az
adatbazis létrehozasakor a kiillonb6zd csoportok eltérd osztalyozasi modszert alkalmaztak a
helyi feltételeknek megfeleléen (Bartholomé és Belward, 2005). Ehhez képest elérelépést
hozott a Friedl és munkatarsai altal kidolgozott osztalyozasi mddszer, amely a 2000 — 2001-es
években készitett MODIS miholdfelvételek képosztalyozasaval hozott 1étre globalis
felszinboritasi térképet (Friedl et al., 2002). Egy 18 osztalyt tartalmazé nomenklaturat
hasznaltak fel képosztilyozashoz, amely elvégzéséhez egyvaltozos dontési fa (C 4.5) és
mesterséges neuralis halo (ARTMAP) modszereket teszteltek. A rendszerben végiil a dontési
fa algoritmust implementaltdk, mivel a neuralis hal6 nehezen tudta kezelni a hianyz6 és zajos
adatokat (féleg a felh6zet miatt) (Friedl et al., 2002). Szintén dontési fa osztalyozo algoritmust
alkalmaztak kinai kutatok a GlobeLand30 adatbazis létrehozasakor (Chen et al., 2014). A
dontési fa osztalyozot egy hierarchikus osztalyozasi szisztémaban kombinaltdk egy objektum
alapu modszerrel, a 10 felszinboritasi kategoria lehatarolasahoz. Az adatbazis 1étrehozasakor
az egyes osztalyokat egymas utan nyerték ki a felvételekbdl és a mar kinyert kategoriakat
maszkoltdk a felvételekbdl. Az adatbazis alapjat a 2000 és 2010 kozott késziilt Landsat
mitholdfelvételek adtak és kiegészit6 adatként a Huan Jing-1 (HJ-1) felvételeit is felhasznaltak
(Chen et al., 2014).

Az elsO fontosabb regionalis adatbazisokat az 1990-es években allitottak eld. Az
Egyesiilt Allamok Geologiai Szolgalata altal 1étrehozott Nemzeti Felszinboritasi Adat 1992
(National Land Cover Data 92 — NLCD92) Landsat-5 miholdképek alapjan késziilt. A
projektben klaszterezd iranyitatlan osztalyozast alkalmaztak a miiholdfelvételeken, majd a

kialakitott pixelcsoportokat ortofotok segitségével azonositottdk be. Az osztalyozas
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eredményeképp létrehozott adatbazis 21 tematikus osztalyt tartalmaz és az USA 48 allamat fedi
le (Vogelmann et al., 2001). A kovetkezé6 NLCD adatbazis modszertanan modositottak és egy
elére meghatarozott 16 osztdlyos nomenklatira alapjan dontési fa osztalyoz6 segitségével
készitették el az adatbazisokat (Homer et al., 2007). Az eurdpai osztalyozasi rendszerek és
adatbazisok koziil a CORINE Land Cover, 3 szintli és 44 osztalyos osztalyozasi rendszerét
(Biittner et al., 2000) és a nemzeti és EU szinten is alkalmazhaté EAGLE (EIONET Action
Group on Land Monitoring) modellt (Arnold et al., 2013) kell megemliteni. Az EAGLE modell
a tajat olyan felszinboritds komponensek segitségével irja le, amelyek teljeskortiek és
kolcsondsen kizarjak egymast. Az Eurdopai Koérmyezetvédelmi Ugyndkség (EEA)
koordinacidjaval késziilt CORINE Land Cover (CLC) adatbazis kontinentalis szintl
felszinboritasi térkép, amely az Eurdpai Kozosség teriiletérdl szolgaltat informaciot 1990 ota.
Ezt az adatbazist a késdbbiekben részletesen bemutatom. A meglévé CLC adatbazisok
kiegészitése céljabol az EEA 6t nagyfelbontdsu (20 m térbeli felbontast) réteget (HRL)
készitett el Europa 39 orszagara. llyen rétegek az imperviousness (talajfedés mértéke), forest
(lombkorona fedettség és erd6 tipus), natural and semi-natural grasslands (fiives teriiletek),
wetlands (vizeny0s teriiletek), water bodies (allandé vizfeliiletek) stb.. A rétegek elkészitési
modja a réteg tipusatol fliggden valtozott (NDVI vizsgalat, szegmentacio, fél-automatikus
osztalyozas) (Langanke, 2016b, 2016c¢, 2016a, 2017).

A CLC adatbazis eldallitasara és az eredeti adatbazis el6allitdsabol szarmazo hatranyok
lekiizdésére mar tobb automatikus vagy fél-automatikus osztalyozasi modszert alakitottak ki.
Ezek a moédszerek a CLC nomenklatira egy részének vagy egészének felhasznalasaval lokalis
vagy kontinentalis 1€ptékii térképek eldallitasara iranyultak. Esch és tarsai fél-automatikus €s
objektum orientdlt osztalyozast felhasznalva hoztak létre térképeket, €s az osztalyozas
eredményeit vizualis interpretacioval segitették (Esch et al.,, 2004). A vizsgalatban
multispektralis mitholdképek (Landsat-7) és a képekbdl szegmentalas utjan eldallitott textira
rétegek szolgaltattak az osztalyozas alapjat. Ahol az osztalyozas nem volt elég pontos vagy a
pixelek osztalyozatlanok maradtak, az osztalyozas eredményeinek javitasa érdekében vizualis
interpretalast alkalmaztak. A kidolgozott modszer a nomenklatira elsd szintjén 90%-0s
pontossagot eredményezett, viszont a 2. és 3. szinten akadalyok adodtak a kategoriak
elkiilonitésében. Balzter és tarsai mar véletlen erdd algoritmust alkalmazva, a CLC
nomenklatira 2. €s 3. hierarchia szintjén 1évd osztalyok kombinalasaval hoztak 1étre térképet
(Balzter et al., 2015). Az osztalyozashoz Sentinel-1, SRTM adatokat és bel6liikk szamitott
derivatumokat hasznaltak fel. A mddositott nomenklatiraval és az 6sszes adat felhasznélasaval
(Sentinel adatok, SRTM digitalis magassagi modell, lejtdszog, kitettség) 68,4%-0S

Osszpontossagot értek el. Szintén véletlen erdd osztalyozé modszert hasznalt Malinowski és
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tarsai, kontinentalis 1éptékii, CLC nomenklatura alapu osztdlyozashoz, amely optikai Sentinel-
2-es felvételeken alapult (Malinowski et al., 2020). Az osztalyozas soran, a 2017-es évbdl
szarmaz6 multitemporalis adatok és a bel6liik kiszdmitott, dsszes 2 savos index kombinaciot
felhasznalva 13 osztalyt hataroltak le. Az eredmények alapjan 86,1%-o0s 6sszpontossagot értek
el kontinentalis szinten, azonban egyes osztalyok csupan 50% alatti pontossagi értéket értek el
(ideiglenes h6, mocsari ndvényzet és lapok).

Magyarorszag terililetére (Kosztra et al., 2016) készitett nagyfelbontasu (20 m) CLC
adatbazist hazai és eurdpai felszinboritas és teriilethasznalat adatok konverziojaval. A CLC
osztalyok létrehozasahoz az EAGLE matrixot hasznaltdk, aminek segitségével meghataroztak
a CLC kategoriakat leir6 felszinboritas, teriilethasznélat és egyéb informéciokat. Ezt kovetden
a hazai és europai felszinboritas és teriilethasznalat adatokbol lekérdezések segitségével hoztak
létre a nemzeti CLC osztalyait. A teljes pontossagra 3. szinten 75,4%-ot, 1. szinten 88,7%-ot
kaptak. Szintén Magyarorszag teriiletére hoztak 1étre a felszinboritast is leird 6koszisztéma
alaptérképet Tanacs ¢és tarsai (Tanacs et al.,, 2019). Az alaptérképet 2015/16/17-es
magyarorszagi és eurépai adatbazisok (MePAR, VINGIS, ESZIR-OEA sth.) egyiittes
felhasznalasaval 20m-es térbeli felbontassal készitették el. Az alaptérkép 3 szintes
nomenklatiraja a MAES-, az EUNIS- és a magyar ANER-rendszer kategoridira timaszkodva

lett kialakitva. A 1étrehozott térkép atlagos pontossaga az dsszevont kategoriak esetében 97,4%.

26



Gudmann Andrdas Viktor — Disszertdcio,
Szegedi Tudomanyegyetem, Foldtudomanyok Doktori Iskola

3. Felhasznalt adatok
3.1. Coordination of information on the environment (CORINE) Land Cover (CLC)
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a kérdéses teriiletek besorolasahoz. Az elkésziilt nemzeti felszinboritasi térképeket integraljak
az egységes eurdpai adatbazisba. A legkisebb térképezési egysége 25 hektar, vonalas részeknél
a minimalis sz¢lesség 100 méter. Az adatok felhasznalhatosaga és 6sszevethetdsége érdekében
a térképeket egy egységes haromszintes nomenklatira alapjan készitik el. A nomenklaturaja
elsé szinten 5, a masodik szinten 15, a harmadik szinten 44 darab osztalyt tartalmaz (Mari és
Mattanyi, 2002) (1. tdblazat). A CLC program keretében eddig 5 adatbazis késziilt el: 1990-es,
2000-es, 2006-0s, 2012-es ¢s 2018-as évekre. Az adatbazisok mindegyike ingyenesen elérhetd

a Copernicus Land Monitoring Service honlapjarol (https://land.copernicus.eu/pan-

european/corine-land-cover). A kutataisom soran az 0Osszes eddigi CLC adatbazist

felhasznaltam kiilonb6z6 modon (12. abra).
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1. tablazat A CLC nomenklaturaja.

1.1. Lakott teriiletek

1.1.1 Osszefiiggs telepiilésszerkezet

1.1.2 Nem 0sszefiiggd telepiilésszerkezet

1.2. Ipari, kereskedelmi teriiletek és
kozlekedési halozatok

1.2.1 Ipari vagy kereskedelmi teriiletek

1.2.2 Ut - és vasuthalozat és csatlakozo teriiletek

1. 1.2.3 Kiko6tk
Mesterséges 1.2.4 Repiildterek
felszinek o ) | 13.1 Nyersanyag kitermelés
rlnﬂnzzg;é‘k lerakohelyek és épitési |75 Lerakshelyck, meddohinyok
1.3.3 Epitési munkahelyek
1.4. Mesterséges, nem mez6gazdasagi | 1.4.1 Varosi zoldteriiletek
zoldteriiletek 1.4.2 Sport-, szabadidé- és tidiilSteriiletek
2.1.1 Nem 6ntdzott szantofoldek
2.1. Szantofoldek 2.1.2 Allandéan 6ntozott teriiletek
2.1.3 Rizsfoldek
2.2.1 Sz616k
) 2.2. Allandé novényi kultarak 2.2.2 Gyiimélcsdsok, bogyodsok
Mezbgazdas 2.2.3 Olajfa iiltetvények

agi teriiletek

2.3. Legelok

2.3.1 Rét, legeld

2.4. Vegyes mezbgazdasagi teriiletek

2.4.1 Egynyari kulturak allandé kultarakkal vegyesen

2.4.2 Komplex miivelési szerkezet

2.4.3 Elsodlegesen mezdgazdasagi teriiletek jelentOs
természetes novényzettel

2.4.4 Mez6gazdasagi-erdészeti teriiletek

3. Erdok és
természetkdz
eli teriiletek

3.1.1 Lomblevela erdok

3.1. Erddk 3.1.2 Tileveli erddk

3.1.3 Vegyes erdok

3.2.1 Természetes gyepek, természetkdzeli rétek
3.2. Cserjés és/vagy lagyszara | 3.2.2 Torpecserjés, cserjeés teriiletek, fenyérek
novényzet 3.2.3 Keménylevelii (szklerofil) novényzet

3.2.4 Atmeneti erd3s-cserjés teriiletek

3.3. Novényzet nélkiili, vagy kevés
novényzettel fedett nyilt teriiletek

3.3.1 Homokos tengerpartok, diinék, homok

3.3.2 Csupasz sziklak

3.3.3 Ritkas ndvényzet

3.3.4 Leégett teriiletek

3.3.5 Gleccserek, o6rok ho

4.1.1 Szérazfoldi mocsarak

4.1. Belsé (szarazfoldi) vizenyds
teriiletek 4.1.2 Tézeglapok
4. Vizeny0s —
teriiletek 4.2.1 Tengermelléki mocsarak
4.2. Tengermelléki vizeny0s teriiletek | 4.2.2 Soleparlok
4.2.3 Ar-apaly altal érintett teriiletek
) o 5.1.1 Folyévizek, vizi utak
5.1. Kontinentalis vizek - :
5.1.2 Allovizek
5. S
Vigfeliiletek 5.2.1 Tengerparti lagunak

5.2. Tengeri vizfeliiletek

5.2.2 Folyétorkolatok

5.2.3 Tenger és dcean
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Az adatbézis fontossagat és alkalmazhatosagat j6l mutatja a széleskorii felhasznalésa,
mint pl. a valtozas vizsgalatok (Cole et al., 2018; Feranec et al., 2010; Szilassi, 2017), *urban
sprawl’ (Kovacs et al., 2019; Steurer és Bayr, 2020), aszaly és belviz monitoring (Bezdan et
al., 2019; Tobak et al., 2019; van Leeuwen et al., 2017), tajokologiai kutatasok (Csikos és
Szilassi, 2021a; Mander et al., 2018). A felsorolt elényei mellett az adatbazisok tobb korlattal
is rendelkeznek. Az eldallitdis modszere miatt az adatbazis pontossidga nagyban fligg az
interpretald szakmai tudasatol, és igy erésen szubjektiv a végeredmény, illetve maga a folyamat
is 1doigényes (éves 1épték). A térképezési egység nagysaga miatt az adatbazis a kisléptékli
vizsgalatokban korlatozottan felhasznalhato, illetve felhasznalasdhoz eldzetes pontositas
sziikséges. Az eldallitdsi modszer és a térképezési egység nagyban befolyasolja az adatbazisok
tematikus pontossagat, ami >=85%. A nomenklatira nem csupan felszinboritasi kategoridkat
tartalmaz, hanem tobb teriilethasznalati kategoriat is, mint pl. a 1.2.1-es osztaly ,,Ipari vagy
kereskedelmi teriiletek”, 1.3.3-as osztaly ,,Epitési munkahelyek” vagy a 1.4.2-es osztaly ,,Sport-
, szabadido- és iidiilo teriiletek”. Ezenkiviil a nomenklatira, féleg a minimalis térképezési
egység miatt, tartalmaz tobb olyan osztalyt, amely mas kategoridk elegyébdl allnak, mint pl.
2.4.2-es osztaly ,,Komplex miivelési szerkezet”, 2.4.3-as osztaly, ,,Elsodlegesen mezégazdasagi
teriiletek, jelentos természetes formdciokkal” vagy a 3.1.3-as osztély, ,,Vegyes erdok”. Biittner
pontossagi vizsgalata a CLC2000-es adatbazison megmutatta, hogy az adott adatbazis 87,0% +
0,7%-o0s megbizhatdsaggal rendelkezik, igy nem sokkal tallépve a garantalt >85% tematikus
pontossagot. A pontossagi hibak meghatarozasakor arra jutott, hogy az osztalyozasi hibak 78%-
a 3. hierarchia szinten 1év6 kategoriak kozott jelentkeztek (Biittner et al., 2016). Ezenfeliil az
ezen a szinten 1évo kategoriak lehatarolasi nehézségeit az osztalyok kozotti Jeffries-Matusita
szeparabilitds értékek 1s jol mutatjadk. A Jeffries-Matusita (JM) tavolsadg maximalis
tavolsagértéke 1414, ekkor a tanulok teljes mértékben elkiilonitheték az adott savban, mig a
minimuma 0, ekkor nem kiilonithetdk el a tanulok (Dabboor et al., 2014). A JM tavolsagot
mindkét altalam hasznalt CLC adatbéazisra (CLC00, CLCI18) kiszdmitottam az adatbazisok
alapjat képezo Landsat-7-es, és Sentinel-2-es mitholdfelvételek felhasznalasaval. Az altalam
kiszamolt osztalyok kozotti minimalis szeparabilitas értékek megmutatjak, az adott sav/ok
felhasznalasaval legnehezebben elvalaszthato eseteket. Tovabba az atlagos szeparabilitas

értékek megmutatjak, hogy a legtobb esetben milyen nehéz az elkiilonithetdség.
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1400
1200
1000 |
800 F
600
400
200
0 J.I I.l !#sév Il I.l I. Il mE
Kék sav alapjan | Zold sav alapjan alapjin NIR alapjan SWIR alapjan TIRS alapjan SWIR 2 alapjan alapjan

M |. szint 165 187 155 171 140 148 171 856

W |l.szint 76 84 60 66 64 47 72 553

ll.szint 33 35 31 43 54 21 29 491

13. abra A mintateriiletekre kiszamolt minimalis JM tavolsag atlaga, nomenklatira szintenként, a
CLCO00-4s adatbazis és a Landsat-7 savjai alapjan.

A JM tavolsagok megmutatjak, hogy az egyes spektralis sdvok alapjan a minimalis
elvalaszthatosag igen alacsony, azaz egyes osztalyok nem valaszthatéak el egymastol (13.
abra). Az Osszes adat felhasznalasaval az osztdlyok minimalis elvalaszthatdsaga javul, azonban
igy sem ¢éri el a lehetséges maximum felét se. Az atlagos szeparabilitas értékek alapjan az
osztalyok gyengén valaszthatdoak el az egyes savok alapjan, azonban az Osszes sav
felhasznalasaval mar elfogadhatova valik a szeparabilitas érték (14. abra). A Sentinel-2-es
adatok felhasznalasa a CLC18-as adatbazis elvalaszthatosaganak vizsgalatakor javulast
mutatott. A minimalis és atlagos szeparabilitas érték a hat mintateriilet alapjan 595, és 1219,

ami kb. 100 és 200 pontos javulast jelent.

1400
1200
1000
800 |
600
400
200
0 Vords sav Minden sav
Kék sav alapjan | Zold sav alapjan alapjfn NIR alapjan SWIR alapjan | TIRS alapjan | SWIR 2 alapjan alapjin

® [szint 454 522 441 406 410 469 512 1137

m I szint 429 436 389 407 385 470 429 1109

I11.szint 438 445 428 442 434 489 444 1029

14. abra A mintateriiletekre kiszamolt atlagos JM tavolsag atlaga, nomenklatira szintenként, a
CLCO00-as adatbazis és a Landsat-7 savjai alapjan.
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3.2. Landsat felvételek

A kutatasomhoz kiilonb6z6, kozepes felbontasti multispektralis és mikrohullamu
mitholdkép forrasokat valasztottam ki. Ezek a mitholdképek alapjan tortént a CLC adatbazisok
létrehozasa is, igy megfelel6 alapot biztositottak a CLC nomenklatirat felhasznald
osztalyozasaim elvégzéséhez. A miuholdfelvételek két nagyobb programhoz tartoznak, az
amerikai Landsat és az europai Sentinel foldmegfigyelési programhoz.

A Landsat program 1970-ban indult az Egyesiilt Allamok Geologiai Szolgalatdnak és
az Amerikai Egyesiilt Allamok Nemzeti Repiilési és Urhajozasi Hivatalanak (National
Aeronautics and Space Administration — NASA) kozos vallalkozasaként (Emery és Camps,
2017). A program célja a Fold felszinének megfigyelése és a természeti er6forrasainak kutatasa,
feltérképezése. A program indulasa 6ta 9 mitholdat épitettek, amelyek koziil az elsét 1972-ben
allitottak palyara, a legutolsot, a Landsat-9-est, pedig 2021. szeptember 27-én (Masek et al.,
2020). gy ez a program szolgaltatja a vildg leghosszabb ideje folyamatosan gytijtott
tavérzékelési adatkollekciojat (U.S.Geological Survey, 2016). A Landsat programban 1év6
miholdak miszereinek tulajdonsagait ugy alakitottdk ki, hogy egymassal Osszevethetok
legyenek (kozel azonos spektralis tartomanyokat lefedd savok, hasonlé geometriai és
radiometrikus tulajdonsagok), ezaltal egy idoben folytonos adatbazist hozzanak 1étre (Wulder
et al.,, 2016). A miholdképek kozepes térbeli (30, 60, 80 méter) és spektralis (4-11 sav),
valamint 16 napos iddbeli felbontassal rendelkeznek (U.S. Geological Survey, 2012). Emellett
a miholdképek lefedik a Fold egész felszinét és szabadon elérhetdek minden felhaszndlo
részére (Wulder et al., 2019). A Landsat programot, tulajdonsagainak kdszonhetéen, széles
korben hasznaljak: mezégazdasagi alkalmazasokban (Das et al., 2021; Di et al., 2021), erdészeti
kutatasokban (Morin et al., 2021; Pelletier et al., 2021), vizgazdalkodasban (Baughman és
Conaway, 2021; van Leeuwen et al., 2017), f6ldhasznalat és teriilethasznalat térképezésben
(Bui és Mucsi, 2021; Liska et al., 2017) és varosi kornyezet megfigyelésében (Henits et al.,
2017; Kovécs et al., 2019).

A Landsat-7-es miihold a Landsat program hetedik miiholdja, amelyet 1999. aprilis 15-
én 16ttek ki a kaliforniai Vandenberg légibazisrol. A Landsat-7-es miihold a sikerteleniil
felbocsatott Landsat-6-os miihold tovabbfejlesztett szenzorjat kapta meg, az Enchanced
Thematic Mapper Plus-t (ETM+), amely az infravords és lathato fény tartomanyaban Gsszesen
8 savban rogzit adatokat (U.S. Geological Survey, 2019a). A Landast 8-as mtihold a Landsat
program nyolcadik mitholdja, melyet 2013. februdr 11-én inditottak el egy Atlas 5-0s rakétaval
a kaliforniai Vandenberg légibazisrol. A Landsat-8 mithold két savmenti pésztdzd (push-
broom) felvételez6 rendszerrel lett felszerelve: Operational Land Imager (OLI) és a Thermal

Infrared Sensor (TIRS). Az OLI szenzor a lathato €s infravords fény tartomanyaban 6sszesen 9
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savban rogzit adatokat, és a folytonossag fenntartasa érdekében, ezen savok tobbségének
spektralis kiosztasa majdnem teljesen megegyezik a Landsat-7-es mithold ETM+ szenzoranak
kiosztasaval. A TIRS szenzor 2 termalis savja a Landsat-7-es mithold termalis savjanak 2 kiilon
intervallumaban érzékelnek és gyiijtenek adatokat (U.S. Geological Survey, 2019b). A
spektralis savok térbeli felbontasa 30, a termalis savé/savoké 60 vagy 100 és a pankromatikusé
15 méter (2. tablazat). A felvételezések iddbeli felbontasa 16 nap. A miitholdak altal készitett
standard kép 185 km x180 km nagysagt teriiletet fed le, amelyet a Worldwide Reference
System-2-ben (WRS-2 referencia rendszer) kategorizalnak (233 palya, 248 sor) (Mucsi, 2004).
A Landsat-7-es miiholdfelvételek alapjan készitették el a CLCOO-es adatbazis. Az adatbazis
létrehozasdhoz felhasznalt, Magyarorszagra vonatkozo képek a 2000-es év harom egymadst
kovetd honapjabol (junius, julius és augusztus) szarmaznak. A mitholdfelvételeket a CORINE
adatbazis szdmara, az IMAGE 2000 projekt keretein beliil dolgoztdk fel. A feldolgozas
eredményeképp a felvételek geometrikus pontossdga a multispektralis sdvokban 25 méterre, a
pankromatikus savban 12,5 méterre javult (European Commision, 2005). A Landsat-8-as
miholdfelvételek a CLC18-as eldallitdsa soran kisebb hangsulyt kaptak. Az eléallitasi projekt
soran csupan a Sentinel-2-es adatok hianypotlojaként hasznaltak azokon a teriileteken, ahol
nem alltak rendelkezésre megfeleld mindségii Sentinel-2-es mitholdképek. A képek felbontasat
a felhasznalasuk el6tt nem javitottak (Buttner és Kosztra, 2017).
2. tablazat A Landsat-7 ETM+ és Landsat-8 OLI és TIRS szenzorok savkiosztasa €s

térbeli felbontasa.

Say Hullamhossz (um) Térbeli felbontas (m)
Landsat-7 Landsat-8 Landsat-7 Landsat-8

Ultrakék - 0,43-0,45 - 30

Kek 0,45-0,515 0,45-0,51 30 30

Zsld 0,525-0,605 0,53-0,59 30 30

Voros 0,63-0,69 0,64-0,67 30 30

Kozeli infravoros 0,75-0,9 0,85-0,88 30 30

Kozepes infravoros 1, 1,55-1,75 1,57-1,65 30 30

Kozepes infravoros 11, 2,09-2,35 2,11-2.29 30 30

Pankromatikus 0,52-0,9 0,50-0,68 15 15

Cirrus - 1,36-1,38 - 30

Termalis infravords I, 10,6-11,19 100

Termalis infravoros I, 104125 11,5-12,51 ®0 100

A Landsat felvételeket az Earth Resource Observation and Science (EROS) Center
Processing Architecture (ESPA) online feliiletérdl (https://espa.cr.usgs.gov/) toltottem le
2.szintll feldolgozottsaggal (a felvételek intenzitdsértékei felszini reflektancia és troposzféra

fels6 homérséklet értékek) (3. tablazat). A Landsat-7 adatok 7 savot (6 spektralis és 1 termalis),
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mig a Landsat-8 adatok 11 savot (9 spektralis és 2 termalis) tartalmaznak. A Landsat-8
felvételek cirrus és pankromatikus savjait nem hasznaltam fel, igy 6sszesen 9 spektralis savot
vontam be a vizsgalataimba. A L2A feldolgozottsagi szintli muholdfelvételek spektralis
savjainak felszini reflektancia értékekei és termalis savjainak troposzféra fels6 homérséklet
értékei -9999-t61 20000-ig terjedd intervallumban vehetnek fel értékeket (a negativ értékek a
hattér miatt lehetségesek) (U.S. Geological Survey, 2020). Az eléfeldolgozast QGIS 3.16 és
ERDAS Imagine 2020 szoftverkdrnyezetben végeztem el. A konnyebb kezelhetdség érdekében
az elofeldolgozas soran a kiilonallo fajlokban tarolt spektralis €s termalis savokat egy fajlba
egyesitettem. Az adatok valés tartomanyon kiviili (a 0 — 10 000-ig terjedd intervallumban nem
beleesd) értékeit korrigaltam egy altalam készitett ERDAS modellel (a minimum-maximum
értékekre valtoztattam a nem valds értékeket). A korrigalt adatokbol kotegelt mivelettel
kivagtam a hat mintateriiletet.

3. tablazat A kutatashoz felhasznalt Landsat miholdfelvételek.

Miihold Datum Paszta Sor Csempe altal lefedett mintateriiletek
2000.05.16 187 27
2000.08.20 187 27 Pesti hordalékkuap-siksag
2000.10.23 187 27
2000.04.21 188 27 Hevesi drtér
2000.05.07 188 27 Tétényi-fennsik
2000.06.08 188 27
Landsat-7 2000.07.10 188 27 Godolldi-dombsag
2000.08.11 188 27
2000.10.14 188 27
2000.04.28 189 27
2000.07.01 189 27 Fels6-Grseg
2000.08.18 189 27 Balatoni-riviéra
2000.10.21 189 27
2017.08.09 189 27 Fels6-6rség
2017.08.11 187 27 Hevesi artér
| andsat-8 Pesti hordalékktp-siksag
2017.08.18 188 27 Tétényi-fennsik
G06dolloi-dombsag
2017.08.25 189 28 Balatoni-riviéra
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3.3. Sentinel felvételek

A Sentinel program célja az eloregedett foldmegfigyeld mitholdak (mint példaul az ERS
program miholdjainak) lecserélése olyan kovetkezo generacios miiholdakra, amik megfelelnek
a modern kutatasok kihivasainak. A programot az ESA koordinalja €s hajtja végre, az ESA ¢és
az Eurodpai Bizottsag k6zos kezdeményezésének, a ,,Globalis Koérnyezetvédelmi és Biztonsagi
Megtigyelés” (GMES — Global Monitoring for Enviroment and Security) részeként. Ezt a
kezdeményezést 2011-ben Copernicus névre keresztelték at, mint az Eurdpai Unid és az
Eurdpai Uriigynokség kozos foldmegfigyelési programjat. A program a miiholdak generacio
valtasat ugy hajtja végre, hogy figyelembe veszi az adatok folytonossagat, és az 0j idék
kovetelményeit. Az egyes kiildetések mind mas és mas célt szolgalnak, melyek részei a
Copernicus programnak, ennek megfeleléen mindegyikhez mas tipusu méréberendezést
fejlesztenek ki. Jelenleg 6 kiildetés zajlik a program keretein beliil és tovabbi 6 van tervben
(Jutz és Milagro-Pérez, 2020).

A Sentinel-1 kiildetés célja a radar alapu foldmegfigyelés. A kiildetés részeként 2
mithold kering azonos palyan (jelenleg csak 1, a Sentinel-1B meghibasodasa miatt), 180°-0s
eltéréssel, 693 km-es magassagban 98,18°-0s inklinacidju kozel napszikron palyan. Az egyes
mitholdak visszatérési ideje (idébeli felbontasa) 12 nap, az azonos palydnak koszonhetden az
egylittes visszatérési idejliik 6 nap. Azonos képkészitd berendezéssel vannak ellatva, ami egy
C-savban (frekvencia: 5,405 GHz — hullamhossz: 5,5465763 cm) felvételezd szintetikus
apertura radar (SAR). A miszer képes dualis polarizacioval is mikodni (HH-HV, VV-VH)
(Jutz és Milagro-Pérez, 2018). Négyféle adatgyiijtési moddal rendelkezik: Stripmap (SM) —
Savtérképezé mod, Interferometric Wide Swath Mode (IW) — Szélessavu interferometrikus
mod, Extra Wide Swath Mode (EW) — Extra szélessava mod, Wave mode (WM) — Hullam
mod. Ezek koziil a szélessavu interferometrikus mod a f6 leképezési mod a szarazfoldek felett.
A felvételezési modtol fiiggden a felvételek térbeli felbontasa 5 és 40 méter kozott
valtakozhatnak. Az IW a TOPSAR (Terrain Observation with Progressive Scanning SAR)
technika segitségével 3 alsavban képezi le a felszint tigy, hogy valtoztatja az antenna nézési
szOgét. Ez a technika lehetdvé teszi a széles sdvon (250km) torténd felmérést, kozepes térbeli
felbontassal (5x20 méter). Az interferometriat biztositja a kielégitd nagysagu atfedés a Doppler-
spektrumban  (azimuth tartomdnyban) ¢és a hullimszam-spektrumban (magassagi
tartomanyban). A Sentinel-1 megfigyelései forgatokonyv® alapjan a szarazfoldek folott,
amelyek nem poléris vagy jeges elhelyezkedésiiek az IW mod dudlis VV-VH polarizacidval

felvételez. A Sentinel-1-es adatokat a CLC18-as adatbazis létrehozasahoz, az adatok

1 https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario megtekintve: 2022.04.22

15:13
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polarimetrikus leirdinak éves statisztikaibol szarmazd kiilonb6zé kompozitok formajaban
hasznaltak fel.

A Sentinel-2 kiildetés alapvetd célja a Fold felszinének folyamatos megfigyelése,
multispektralis optikai méréberendezéssel. A program alapjat a Sentinel-2 iker mitholdak adjak,
amelyek egy multispektralis felvételezé rendszerrel (Multi-Spectral Instrument — MSI:
Multispektralis Miiszer) szereltek fel. A program elsé miiholdjat (Sentinel-2A) 2015. junius 23-
an allitottak palyara, mig ikermiiholdjat (Sentinel-2B) 2017. marcius 7-én. A miiholdak
tervezett ¢lettartama 7,25 év. A két miihold azonos, napszinkron palyan kering, 786 km-es
magassagban, egymastol 180°-os eltéréssel. Az id6beli felbontasuk 10 nap, viszont az azonos
palyanak kdszonhetéen az egyiittes idobeli felbontasuk 5 napra csokkent ((SUHET) Sentinel
User Handbook and Exploration Tools, 2015).

A multispektralis felvételezd rendszer (MSI) gy lett kialakitva, hogy az eddigi
foldmegfigyelési programok (Landsat, SPOT) spektralis savjait is figyelembe vették, igy
biztositja a SENTINEL-2 kiildetés ezen programok folytonossagat. A miszer 13 spektralis
savja lefedi a Landsat-8 és a SPOT 6/7 mitholdak savjait (4. tablazat). A 8a sav célja a kozeli
infravords egy kisebb részének érzékelése, ezaltal a vizpara altal okozott atmoszférikus zaj
csokkentése. A kék hullamhossztartomanyban talalhato 1. savot a tobbi sav pontos aeroszol
korrekcioja érdekében keriilt a savok kozé a SWIR (10-es) sav, amely lehet6vé teszi a cirrus
felhok detektalasat (a korrekcid a lathato és kozeli infravords savokra alkalmazhato). A szenzor
radiometrikus felbontasa 12bit (4095 érték). A miiszer altal készitett egy felvétel 290x290km
nagysagu ((SUHET) Sentinel User Handbook and Exploration Tools, 2015). A Sentinel-2-es
adatokat a CLC18-as adatbazis létrehozasahoz, 2 hetes felhdmentes mozaikok formajaban
hasznaltak fel Magyarorszag teriiletére az alabbi iddpontokbol: 2016-szeptember, 2017-aprilis,
2017-julius, 2017-szeptember.
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4. tablazat A Sentinel-2A ¢és 2B mitholdak MSI szenzorjainak savkiosztasai és felbontasuk.

Sentinel 2A/B MultiSpectral Instrument (MSI)

Sav szama S2A Hulldmhossz (nm) S2B Hullamhossz (nm) Felbontas (m)
1 442,7-469,7 442 2-487,2 60
2 492,4-590,4 492,1-590,1 10
3 559,8-604,8 559,0-605,0 10
4 664,6-702,6 664,9-703,9 10
5 704,1-723,1 703,8-723-8 20
6 740,5-758,5 739,1-757,1 20
7 782,8-810,8 779,7-807,7 20
8 832,8-977,8 832,9-965,9 10
8a 864,7-897,7 864,0-896,0 20
9 945,1-971,1 943,2-970,2 60
10 1373,5-1448,5 1376,9-1452,9 60
11 1613,7-1756,7 1610,4-1751,4 20
12 2202,4-2444,4 2185,7-2423,7 20

A Sentinel-1 felvételeket az NASA, Alaska Satellite Factory (ASF) online feliiletér6l
(https://asf.alaska.edu/) toltottem le 1. szintli Ground Range Detected (GRD) termékként (5.
tablazat). Az adatok 2 savot (VV, VH polarizacio) tartalmaznak. Az el6feldolgozast Sentinel
Application Platform (SNAP) szoftverkornyezetben végeztem el. Az eléfeldolgozas soran az
altalanosan hasznalt Iépéseket végeztem el: palyafajl alkalmazas (apply orbit file), termalis zaj
eltavolitas (thermal noise removal), kalibralas, domborzat-korrekcid (range-Doppler terrain
correction) (Filipponi, 2019). Ezen Iépések utan a 2 polarizacid6 (VV-VH) értékeit dB-re
(sigma0 dB) alakitottam at. Az el6feldolgozott termékek 10 m felbontasuak lettek. Az adatokon
foltszlirést (speckle filtering) nem alkalmaztam az adatveszteség elkeriilése végett.

5. tablazat A kutatashoz felhasznalt Sentinel-1 mitholdfelvételek.

Id6pont Pélya Szelet sorszama Csempe altal lefedett mintateriiletek
2017.07.24 124 19 Fels6-Orség, Balatoni-riviéra
Pesti hordalékkup-siksag, Hevesi-artér, Tétényi-
2017.07.25 51 18 fennsik, G6do6ll6i-dombsag

A Sentinel-2 miitholdképeket a Copernicus Open Access Hub online feliiletérol
(https://scihub.copernicus.eu/dhus/#/home)  toltottem le L1C vagy L2A  szintd
feldolgozottsaggal (a felvételek intenzitasértékei toposzféra-alja (Bottom-Of-Athmosphere)
vagy teteje (Top-Of-Athmosphere) reflektancia értékek) (6. tablazat). A felvételek 11 savot
tartalmaznak, mivel a 10-es sav nem keriil be a letoltheté savok kozé ezen a feldolgozottsagi
szinten, és a térbeli felbontasuk 10, 20, és 60 méteres. A mitholdfelvételek spektralis savjainak

értékekei 0,0-t61 1,0-ig terjedd intervallumban vehetnek fel értékeket. Az elofeldolgozast QGIS
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3.16, az ERDAS Imagine 2020 ¢és a SNAP szoftverkdrnyezetben végeztem el. Azokat a
felvételeket melyek toposzéra alja reflektancia értékekkel rendelkeztek, atmoszférikusan
korrigaltam. Az eléfeldolgozas soran a kiilonallé fajlokban tarolt spektralis savok mindegyikét
10 méteres felbontasra ujramintavételeztem, majd a sdvokat egyesitettem egy fajlba. A korrigalt
adatokbol kotegelt miivelettel kivagtam a hat mintateriiletet.

6. tablazat A kutatashoz felhasznalt Sentinel-2 mitholdfelvételek.

Id6épont Palya Csempe azonositok Csempe altal lefedett mintateriiletek

2017.01.01 122 33TWN, 33TXN Fels6-0rség
Pesti hordalékkup-siksag, Hevesi artér, Tétényi-

2017.01.05 36 34TCT, 341DT fennsik, G6doll6i-dombsag
33TXM, 33TYN, Pesti hordalékkup-siksag, Balatoni-riviéra, Tétényi-
2017.03.29 7 34TCT fennsik, G6d6116i-dombsag
2017.04.25 36 34TDT Hevesi artér
2017.05.15 36 34TDT Hevesi artér
2017.06.24 36 34TCT Pesti hf)rdalekkup-mksag, Tétényi-fennsik, G6doll6i-
dombsag
33TWN, 33TXN, Pesti hordalékkap-siksag, Fels6-6rség, Tétényi-
2017.07.07 7 34TCT fennsik, G6doll6i-dombsag
2017.07.17 79 33TXM, 33TYN Balatoni-riviéra
2017.08.03 36 34TDT Hevesi artér
017.08.08 36 34TCT Pesti hf)rdalekkup-mksag, Tétényi-fennsik, G6doll6i-
dombsag
9017.10.02 36 34TCT, 34TDT Pesti hordalékktp-siksdg, Hevesi artér, Tétényi-

fennsik, G6do6l16i-dombsag

33TWN, 33TWM, o o C o,
2017.10.15 79 33TYN, 33TXN Fels6-0rség, Balatoni-riviéra

Pesti hordalékkup-siksag, Hevesi artér, Tétényi-

2017.12.01 36 34TCT, 34TDT fennsik, G6d6116i-dombsag

33TWN, 33TWM,
33TYN, 33TXN

3.4. Shuttle Radar Topograhy Mission (SRTM)

2017.12.19 79 Felso-0rség, Balatoni-riviéra

Az SRTM az amerikai Nemzeti Térinformatikai Hirszerz6 Ugyndkség (National
Geospatial — Intelligence Agency) és a NASA ko6z0s projektje, amelynek célja magassagi
adatok gylijtése a Fold minél nagyobb részérél egy Ursiklora telepitett radarberendezés
segitségével. A hosszas el6késziiletek utan a kiildetés 2000. februar 11-én kezdddott el és 2000.
februar 22-ig tartott. A 11 napos kiildetést (2000. februar 11.—februar 22.) az Endeavour tirsiklo
hajtotta végre, amelynek inklinacidja 57° volt, ezaltal a radar képes volt a Fold felszinének
¢északi szélesség 60° és a déli szélesség 56° kozotti felmérésére. Ezzel a bolygd szarazfoldi
teriileteinek 80 szazalékat lefedte (Farr et al., 2007). A mérés eredményeképpen 10 TB nyers
adat jott 1étre, amelynek feldolgozasa 2 évet vett igénybe (Farr és Kobrick, 2000). Ezutan az
adatokat tovabbitottdk az USGS-nak, amely tarolja és biztositja az ingyenes hozzaférést a sajat
EROS szerverén. A l1étrejott adatok 3 fokmasodperc felbontastiak (koriilbelil 90 m,
foktrapézonként 1201x1201 pixel) az egész felvételezett teriilletre vonatkozdan (az USA
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teriiletére 1 fokmasodperces adatok is elérhetéek) (Farr et al., 2007). Az alapfeliiletik WGS84
ellipszoid. Az SRTM adatok a felszin magassagat adjak meg, igy ezek az adatok alkalmasak a
szintkiilonbségekkel rendelkezd osztalyok kozotti szeparabilitds ndvelésére. Az SRTM
adatokat az EarthExplorer adatbazisabol toltottem le (https://earthexplorer.usgs.gov/). A
letoltott csempéket egyesitettem, majd a mintateriiletek korvonalaival, kivagatokat készitettem
beldliik.

3.5. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

Global Digital Elevation Model (GDEM)

Az ASTER szenzor a NASA ¢és a japan gazdasagi, kereskedelmi €s ipari minisztérium
(Ministry of Economy, Trade, and Industry — METI) k6z6s projektje. A berendezést a Lockheed
Martin altal készitett Terra mitholdon helyezték el, négy masik miiszerrel egyiitt. A mitholdat
1999. decemberében allitottak palyara. A miiszer hdrom alrendszerrel (szenzorral) rendelkezik:
(1) lathato fény és kozeli infravoros, (2) kdzepes infravoros, (3) termalis infravords (Yamaguchi
etal., 1998). Mindegyik alrendszer mas térbeli és spektralis felbontassal rendelkezik. A globalis
digitalis magassagi modellt (GDEM) a lathatd fény és infravords alrendszer altal készitett
sztered-képparokbol allitottak elé (Abrams et al., 2010). A GDEM a Fold északi 83° és déli 83°
kozotti teriileteket fedi le, ezaltal a szarazfoldek 99%-ro6l szolgaltat informaciot (Abrams et al.,
2020). Az adatbazis els6 verziojat 2009-ben adtak ki, amelyet mar 2 alkalommal frissitettek
(2011-ben ¢és 2019-ben). Az adatok a NASA Earthdata honlapjarél érhetéek el
(https://search.earthdata.nasa.gov/search/), 1 fokmésodperces (kb. 30 méteres) térbeli
felbontassal. A letoltott csempéket egyesitettem, majd a mintateriiletek korvonalaival,
kivagatokat készitettem beldliik.

4. Mintateriiletek

Az osztalyozasok megfeleld Gsszehasonlitasahoz kulcsfontossdgu 1épés a mintateriiletek
kivalasztasa. Ezt egyik, a disszertaciom témajahoz illeszkedd, azt elokészitd vizsgalataim soran
igazoltam, amelyben Csongrad megyét jeldltem ki a vizsgalatom mintateriiletének (Gudmann
et al., 2019). A vizsgalatban egy altalam kidolgozott, dontési fara épiildé modszertan
segitségével felszinboritasi/teriilethasznalati térképeket hoztam létre. Az eredményeim alapjan
megallapitottam, hogy a dontési fa algoritmus a mintateriileten dominans osztalyt (Nem-
ont6zott szant6foldek, a mintateriilet tobb mint 60%-at tette ki), magas pontossagi értékekkel
(>80%), mig a kis részaranyu osztalyokat jelentdsen kisebb pontossaggal (<60%) osztalyozta.
Emiatt az eltérés miatt az eredmények nem teljes mértékben adjak vissza az algoritmus

teljesitOképességét.
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15. abra A hat kivalasztott mintateriilet.

A disszertdciomban a mintateriileteket Magyarorszag kistdjai koziil valasztottam ki. A
teriiletek kijelolése soran tobb olyan szempontra is kiilon figyelmet forditottam, amelyek
alapvetéen befolyasoljadk az osztidlyozasi eredményeket és az osztalyozo algoritmusok
Osszevetését. Az egyik ilyen, hogy a teriiletek alapvetden eltérd felszinboritassal és
teriilethasznalattal rendelkezzenek, azaz az egyes mintateriileteken kiilonb6z6é osztalyok
forduljanak el és a legnagyobb részarannyal rendelkez6 kategoria is eltérd legyen. Ezaltal, a
felszinboritasi €s teriilethasznalati kategoridk kozotti osztalyozasi kiilonbségek megfigyelése is
lehetséges. Tovabba, egy adott mintateriileten beliil, egyik kategoria részaranya se legyen 50%-
nal nagyobb. Ennek koszonhetden kikiiszobolhetdk a magas teriileti aranyok miatti torzulasok
az osztalyozasi eredményekben. Az egyes kategoridk részaranyat a CORINE Land Cover
adatbazisok alapjan hatdroztam meg minden kist4jra vonatkozoéan. A meghatarozott értékek
alapjan készitettem el a levalogatast a kordbban emlitett tényezok figyelembevételével és az
eredményiil kapott teriiletek koziil valasztottam ki a hat kiilonb6z6 karakterisztikaju kistéjat.
Ezek a kovetkezok lettek: Pesti hordalékkup-siksag (kistaj azonositd: 1.1.12.), Hevesi-artér
(kistaj azonositd: 1.7.13.), Fels6-Orség (kistaj azonositd: 3.1.31.), Balatoni-riviéra (kistéj
azonosito: 4.1.15.), Tétényi-fennsik (kistdj azonositd: 5.3.32.) és G6dolldi-dombsag (kistdj
azonosito: 6.3.51.) (15. dbra). A mintateriiletek leirdsa ,,Magyarorszag kistajainak katasztere”

alapjan tortént (Becse et al., 2010).
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A Pesti hordalékkup-siksag Pest megyében és Budapest teriiletén helyezkedik el. A kistdj
97.5 és 251 m kozotti tengerszint folotti magassagban helyezkedik el, 892 km? teriileten. Kelet
felé 1épcsdzetesen, magasabb teraszok iranyaba emelkedik. A felszin dontd tobbsége kdzepes
magassagu, tagolt siksag. Mérsékelten meleg, szaraz éghajlata kistaj. A napsiitéses orak szama
1910-1940 ora évente (nyaron 770-780, télen 180 ora). Az évi kozéphomérséklet 10-10,2 °C,
¢s az évi csapadékosszeg 520-580 mm. A tdj jelentds részét telepiilések és mezdgazdasagi
teriiletek  foglaljak el. Teriiletének kisebb része toredékes allomanyt nyilt
homokpusztagyepekbdl, homoki sztyeprétekbdl, homoki tolgyesekbdl és nyaras-bordkasokbol
all, mellettiik jelentds az akac- és fenydiiltetvények aranya. A 22 6nall6 telepiilésen kiviil ide
tartozik a févaros pesti oldalanak dont6 része is, igy a kistaj teriiletének 35%-a lakott teriilet.
Az itt €16 tobb mint egy millié ember 97.5%-a varoslako és a terlilet népsiiriisége extrém magas.
A kistdjon 23 CLC kategoria talalhatdo meg, amelyek koziil 13 legalabb 1%-0s részarannyal bir.
A legnagyobb kiterjedéstiek a 2.1.1. - ,,Nem Ont6zott szantofoldek™, 1.1.2. — ,,Nem 0sszefliggd
telepiilésszerkezet” és a 3.1.1. — ,,Lombhullatd erd6k” (Al. tablazat).

A Hevesi-artér Heves és Jasz-Nagykun-Szolnok megyében helyezkedik el. Teriilete 388
km?. A kistaj legalacsonyabb pontja 85,4 méter és a legmagasabb 90,5 méter kozotti tengerszint
folotti magassagu. Az egyhangu kistdj felszini formait a Tisza alakitotta ki oldalaz6 er6zidval
és er6s feltolté tevékenységével. Mérsékelten meleg-szaraz éghajlath teriilet, kiillondsen a D-i
részei. Az atlagos napsiitéses orak szama egy évre 1920-1960 6ra kozott valtozik (nydron 760—
770, télen 175-180 ora). Az évi kdzéphdmérséklet 10,1-10,3 °C, mellette évi 510-540 mm az
atlagos csapadékosszeg. A kistdj a Tisza egykori arterét foglalja magéban, melynek artéri és
mentett oldali részének ndvényzete ma eltérd jellegeket mutat. A Tisza-td gazdag hinar-, 1api
¢s mocsari komplexekben és az erddket jobbara jellegtelen fiizligetek alkotjdk. Az arvizek és
az altaluk jelentett allando veszély miatt a kistdjon mindossze 4 telepiilés talalhatd és a
népességszama nagyon alacsony, és ezzel egyiitt a népsiirlisége is. A kistajon 15 CLC
kategoriak talalhato, melyek tobb mint fele legalabb 1%-os részarannyal bir (8 db). A dominans
osztaly, ami a teriilet kb. felét kiteszi, a 2.1.1. — ,,Nem 6nt6zott szantofoldek™. Emellett nagyobb
részaranyban van jelen az 5.1.2. — L Allovizek”, a 3.1.1. — ,Lombhullaté erdék” és a 4.1.1. —
»Szarazfoldi mocsarak™ (Al. tablazat).

A Fels6-Orség kistaj Vas megyében helyezkedik el, terillete 63 km? A kistdj az
Alpokalja kozepesen tagolt (4tlagos relativ relief 48 m/km?), teraszos, erdzios-derazios
dombsagi teriilete, amely a Ny-i orszdghatar, a Réba és a Pinka-volgy torkolati szakasza kozott
helyezkedik el. Atlagos tengerszint f5lotti magassaga 252 m. A mérsékelten hiivos-mérsékelten
nedves ¢€ghajlati Gvezetbe tartozik. Az atlagos napsiitéses 6rdk szdma évi 1820 ora korili

(nyaron 700-720, télen 180 ora). Az évi kozéphémérséklet 9,2-9,4 °C, mellette évi 750 mm az
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atlagos csapadékdsszeg. Alacsony dombvidéki jellege ellenére vegetacidja szamos hegyvidéki
vonassal bir: biikkdsok és gyertyanos-kocsanytalan tolgyesek uraljak a tajat. Tovabba a volgyek
aljan égerligetek ¢és keményféds ligeterdok talalhatok és magas a telepitett fenyves-
monokultarak aranya. A csekély méretii kistajon dsszesen 3 falu talalhato, emiatt a népstirtiség
¢és a lakossag nagyon alacsony a teriileten. A kis kiterjedési kistajon a CLC kategoridk szama
alacsony, csupan 9 fordul eld, melyek koziil csak egy részaranya nem éri el az 1%-ot. A
dominans kategoria, amely a teriilet kb. felét kiteszi, a 2.1.1. — ,,Nem 6nt6zott szantofoldek™.
Emellett nagyobb részaranyban van jelen az 5.1.2. — ,,Allovizek”, a 3.1.1. — ,,Lombhullatd
erdok” és a 4.1.1. —,,Szarazfoldi mocsarak™ (A1. tablazat).

A Balatoni-riviéra Veszprém megyében helyezkedik el, teriilete 159 km?. A kiilénb6z6
genetikaju €s magassagu, tobbnyire D-i kitettségli sikok, volgyek és volgykozi hatak mellett
szamos mikroforma fordul eld. Tengerszint feletti magassaga 110 és 180 m kozott valtozik.
Meérsékelten meleg-mérsékelten szaraz éghajlata kistdj. Az évi napsiitéses orak szdma kevéssel
meghaladja a 2000 6rat (nyaron 800-810, télen 190 6ra). Az évi kozéphdmérséklete 10,2-10,5
°C, mellette évi atlagos csapadékdsszeg 580—640 mm. A klimazonalisan tobbségében
erddssztyepp-Ovbe tartozo teriilet ma jellemzden fél-kulturtaj (szép példa erre Tihany). Feltiind
a déli, szubmediterran jellegli fajok magas aranya. Hagyomanyos gyiimolcskultarai: a sz6106, és
a délvidéki fajok (flige, levendula), a hegyoldalakon erdésodés figyelhetd meg. Nagyon stir(i
telepiiléshalozat jellemzi a kistajat, 100 km?-re tobb mint 10 telepiilés jut, ami viszonylag magas
népstiriséggel és kozepes mennyiségli lakossagszammal tarsul. A kistdjon megtalalhaté CLC
kategoridk szdma 17, amelyek tobbsége (13) nagyobb mint 1% részarannyal rendelkezik. A
dominans kategodria, mely a teriilet kb. felét kiteszi, a 2.1.1. — ,,Nem 0ntozott szantofoldek™.
Emellett nagyobb aranyban van jelen az 5.1.2. — ,, Allovizek”, a 3.1.1. — ,,Lombhullaté erdék”
ésa4.1.1. —,,Szarazfoldi mocsarak” (Al. tablazat).

A Tétényi-fennsik Pest megyében és Budapesten helyezkedik el, teriilete 108 km?.
Tagoltatlan fennsikok jellemzik, kopar, szaraz, egész évben vizhidnyos felszine terméketlen,
erd0gazdasagi hasznositasra is alkalmatlan. Mérsékelten meleg-szaraz €ghajlatt kistaj, az évi
napsiitéses orak szdma 1940 ora (nyaron 765, télen 175 ora). Az évi kozéphdmérséklet 10 °C,
mellette az évi atlagos csapadékosszeg 550-580 mm. Jelentés részben beépitett, illetve
felszantott kistaj, a természetes vegetacioval boritott teriilet nem éri el a 20%-ot, és aranya
jelenleg i1s csOkken. A tolgyesek és a szaraz gyepek kiterjedése jelentds. Igen technogén,
urbanizalt kistdj, teriiletének kb. a fele beépitett. A népsilirlisége tobbszordse az orszagos
atlagnak és a lakossagszadma is folyamatosan ndvekszik. A kistajon talalhato 16 CLC kategoria
tobbsége (13) 1%-ot meghaladd részardnnyal rendelkezik. A dominans kategoéria, aminek

teriilete folyamatosan novekszik, a 1.1.2. — ,Nem 0Osszefliggd telepiilésszerkezet”. Emellett
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nagyobb részaranyban van jelen a 3.1.1. — ,Lombhullaté erdék” és a 1.4.2. — , Sport-,
szabadido- és 1dilo teriiletek” és a 2.3.1. — ,Rét/legeld”. A teriileten jelentds varosiasodas
tortént, ezért a mesterséges felszinek (1.1.2., 1.2.1., 1.4.2.) részaranyanak novekedésével a
mezOgazdasagi teriiletek (2.1.1., 2.2.2., 2.3.1.) nagysaga is jelentosen lecsOkkent. (AL.
tablazat).

A Godollsi-dombsag Pest megyében talalhato, teriilete 510 km?. A kistaj 138 és 344 m
kozotti tengerszint f016tti magassadgon helyezkedik el, egy enyhén DK felé lejtd dombvidéken.
Mérsékelten hiivos-mérsékelten szaraz, illetve mérsékelten-szaraz éghajlatt, az évi napsiitéses
orak szama 1950 ora (nyaron 780790, télen 190 ora). Az évi kdzéphdmérséklet 9,5-10 °C,
mellette az évi atlagos csapadékosszeg 540—-580 mm. A dombsag platoin jellemzd a gyertyanos-
tolgyeshez hasonlo, de biikkos elemekben €s gyertyanban szegényebb mezei juharos tolgyes.
Kisebb kiterjedésii, de fontos tarsulds a 16sztolgyes. A kistdj teljes teriiletére jellemzdek a nyilt
és a zart homoki gyepek. A nagyteriiletli kistdj majdnem teljes egészében a budapesti
agglomeraciohoz tartozik, rajta 16 telepiiléssel. Az atlagos telepiiléssiiriiséghez nagy
népsuriiség tartozik. A kistajon talalhatdé 16 CLC kategodria tobbsége (13) 1% feletti
részarannyal rendelkezik. A dominédns kategdria, ami egyre nagyobb részaranyt, a 1.1.2. —
»INem 0Osszefliggd telepiilésszerkezet”. Emellett nagyobb részaranyban van jelen a 3.1.1. —
,Lombhullaté erdok”, a 1.4.2. — ,Sport-, szabadidé- ¢és idilo teriiletek” és a 2.3.1. —
»Reét/legeld”. A teriileten jelentds varosiasodas tortént, ami miatt a mesterséges felszinek
(1.1.2., 1.2.1., 1.4.2.) részaranyanak novekedésével a mezOgazdasagi teriiletek (2.1.1., 2.22.,

2.3.1.) nagysaga jelent6sen csokkent. (A1. tablazat).

42



Gudmann Andras Viktor — Disszertacio,
Szegedi Tudomanyegyetem, Foldtudomanyok Doktori Iskola

5. Modszerek és eredmények
5.1. Osztalyozasi modszertan koncepcidjanak kialakitasa

A kutatasom soran kétféle kornyezetben dolgoztam, egy szoftveres €s egy programozasi
kornyezetben. A modszerek kialakitdsanal f6 szempont volt, hogy mindenki szamara
hasznalhat6 legyen a modszertan, ezért a felhasznalt eszkozok mindegyike ingyenesen elérhetd
¢és/vagy nyilt forraskodu.

A kutatasom els6 szakaszaban a WEKA altalanos adatbanyaszati szoftvert (Eibe et al.,
2016) hasznaltam, amellyel egységesen elvégezhetd az adateldkészités, tisztitas és osztalyozas.
A szoftver kiilonb6z6 halado osztalyozasi, regresszids algoritmusokat is tartalmaz, illetve a
szoftverben tovabbi algoritmusokat is adaptdlhatunk kiegészité csomagok telepitésével. A
kutatisom masodik szakaszdban a korabban kivalasztott vagy nem rendelkezésre allo
algoritmusokat adaptaltam python programozasi kornyezetbe, amivel az 0sztalyozasi folyamat
nagy mértékben automatizilhatovd valt. Mivel mindkét modszer altaldnos osztalyozasi
felhasznalasra lett kifejlesztve, igy az altalam hasznalni kivant térinformatikai adatokat
altalanosan felhasznalhato formatumba kellett alakitani. Az atalakitas eldtti adatharmonizacios
¢és kivalasztasi lépéseket QGIS szoftverrel végeztem el. A WEKA szoftverben féleg az
vizsgalatara, mig a python kornyezetben a legljabb algoritmusok vizsgalatara
Osszpontositottam. Mindkét modszernél az algoritmusok teljesitményét a maximum likelihood
osztalyozas eredményeihez hasonlitottam, amit ArcMap szoftverben készitettem el.

A WEKA szoftver alkalmazasahoz sziikséges modszertannal, az adatok el6készitése
soran a mar elkészitett kivagatokat egy raszteres fajlba egyesitettem. Az egyesitett fajlokat tobb
Iépésben python scriptekkel transzformaltam gdal és numpy fiiggvénykonyvtar segitségével
(Contributors, n.d.; Harris et al., 2020). Els6 1épésben a raszteres adatallomanyombol ASCII
(.asc) formatumu nyers szovegfajl masolatot készitettem, amely tartalmazza a raszteres adat
pixeleinek x és y koordinatait. Ezen koordinatadk sziikségesek voltak az osztalyozott értékek
raszteres allomannya torténd visszaalakitdsa miatt. Masodik 1épésben, az ASCII fajl
koordinatainak és a raszteres adatallomany savonkénti értékeinek osszeflizésével hoztam 1étre
egy tagolt szovegfijlt (csv). A létrehozott fajl mar alkalmas volt a szoftverbe torténd
beolvasasra. A szoftver beolvasd funkcioja segitségével, kivalaszthatok az egyes valtozok
adattipusai és kijelolheté a nominalis (cimkéket tartalmazo) valtozd. A szoftverben ezutan
véletlenszertlisitettem az adatokat és létrehoztam a betanitdshoz sziikséges tanitd és teszt
halmazokat. Ezeket a halmazokat hasznaltam fel az osztalyozéashoz és a modell 1étrehozasahoz,

illetve a modell teljesitményének meghatarozasahoz. Az osztalyozassal meghatarozott
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kategoria értékeket, a koordinatakkal Osszeflizve tudtam ujra raszteres formatumu adatot
1étrehozni.

A python programkdrnyezetben torténd osztalyozashoz és az ahhoz sziikséges
modszertanhoz is az elsé lépésben a mar elkészitett kivagatokat egy raszteres fajlba
egyesitettem. A tanitdé €és validalé adatok létrehozasakor a QGIS véletlen pont generalas
funkciojat hasznaltam. A CLC adatsorok bizonytalansaganak csokkentése érdekében, azokon a
poligonokon beliil hoztam létre validald pontokat véletlenszertien, amelyek az elmult 30 évben
nem valtoztak (kivéve azon osztalyok esetén, amelyek ideiglenes kategoriak, pl. ,,Epitési
teriiletek”). A nem valtozo poligonok kivalasztasahoz az Gsszes CLC-adatbazist (CLC90,
CLC00, CLCO06, CLC12 ¢és CLC18) elmetszettem egymassal, és kivalasztottam az azonos
CLC-kéddal rendelkezd poligonokat. Ezzel a modszerrel a validaldo pontok megbizhatosaga
97% folé kerdl, igy megfelel alapot biztositanak az sszehasonlitasokhoz (Gudmann és Mucsi,
2022). A tanit6 pontokat a valtozé poligonokon beliil hoztam Iétre, véletlenszeriien elhelyezve.
A 1étrehozott tanito és validalé pontok attributum tablajaba beleirattam az x és y koordinataikat,
mez0 kalkulator segitségével. A pontokat ezutan a point sampling tool nevii modul segitségével
mentettem ki tagolt szovegfajlba. Hasonloan az el6z6 modszerhez, a fajlokat tobb 1épésben gdal
és numpy fiiggvénykonyvtar felhasznalasaval python scriptekkel alakitottam at. A raszteres
adatallomanyombdl ASCII formatumu nyers szovegfajl masolatot készitettem, majd az ASCII
fajl koordinatainak és a raszteres adatallomany sdvonkénti értékeinek 0sszeflizésével hoztam
1étre egy tagolt szovegfajlt (csv). Az osztalyozashoz elkészitett script az adatok automatikus
beolvasasat, tisztitasat és osztalyozasat végzi el. Az osztalyozas soran automatizalva torténik a
paraméterbecslés, a modellépités, a becslés €és az adatok visszaalakitasa raszteres formatumma.
Tovabba a python kornyezetben lehetéség van olyan mérészamok kiszamitasara, ami a WEKA
szoftverben nem lehetséges. A kutatdsomban ilyen volt a permutacids fontossag érték, ami
megmutatja egy adott valtozod fontossagat a valtozokészletben. A script a gépi tanuldsos
osztalyozasokhoz leggyakrabban hasznalt python konyvtarakat hasznalja, ezek a GDAL, a
NumPy, a Pandas, a Scikit-learn, és a Tensorflow (Abadi et al., 2015; Contributors, n.d.; Harris
et al., 2020; Pedregosa et al., 2011).

5.2.1. Algoritmusok kalibracidéja
Az algoritmusok kalibracidja soran, a modellépitési paraméterek hatasait vizsgaltam,
azzal a céllal, hogy olyan paraméterhalot tudjak meghatdrozni, amelyen beliil a legjobb
teljesitményt nytjté modellek épithetdk fel. Emellett, a kalibracié sordn meghataroztam azt a
tanitoteriilet nagysagot, a teljes adathalmazhoz viszonyitva, ami sziikséges az osztalyozas
megfeleld elvégzéséhez az egyes osztalyozok esetén. Ezaltal meghatarozhato, hogy az egyes

algoritmusok megfelelé mitkddéséhez mekkora mennyiségli referencia informacié sziikséges,
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igy kijel6lve, hogy azok milyen valds esetekben hasznosithatok. Az algoritmusok kalibracidja
soran a WEKA szoftvert hasznaltam fel a 2000-es évbol szarmazo adatokon. A Jeffries-
Matusita szeparabilitas értékekbdl kidertilt, hogy az egyes spektralis savok biztosan nem
elegenddek, hogy az egyes kategoriakat megfeleléen elvalaszthassuk egymastol (13. és 14.
abra). Ezért, a kalibracid sordn a Landsat-7-es mitholdképek 0sszes savjat felhasznaltam, mint
magyarazo valtozok, igy 0sszesen 7 magyarazd valtozd volt a tanitdbadathalmazon beliil. A
paraméterhalé meghatarozasahoz a tanité és teszt adathalmaz aranya 33-66% volt, az adott
mintateriilet teljes adathalmazan beliil. A paraméter halok vizsgalatanal a dontési fa, a véletlen
erd6, a tarto-vektor gép és a mesterséges neuralis halo paramétereit elemeztem. A hald
meghatarozasanal, minden mintateriilet esetén a tanitd és teszt adathalmazon mért kappa
statisztikat és Osszpontossagot, tovabba a kettd kozotti, ugynevezett tanitasi hibat, és a
modellépitési id6t vizsgaltam.

A dontési fa algoritmusnal, a WEKA-ba adaptalt J48-as dontési fat hasznaltam. A J48-
as dontési fa az Interactive Dichotomize 3 (ID3)-as csaladba tartoz6 C4.5-0s tipusu algoritmus
kiterjesztése ¢és a szeparabilitds meghatdrozdsdhoz az entropia értékét alkalmazza. Az
algoritmus a fa létrehozésakor az entropiacsokkentés elvét alkalmazza, a nyereségarany mutato
(gain-ratio) alkalmazasaval. Ennek koszonhetéen a lehetd legkisebb modell jon 1étre a
modellépités soran (Bhargava et al., 2013). A modellépités soran utometszést (post pruning) is
alkalmaztam, hogy tovabb csokkentsem a modell nagysagat. A modellalkotd eljarashoz két
paramétert kell megadni, a minimalis objektum nagysdgot (M): ennél az értéknél kisebb
elemszamu végz6dést nem alakithat ki az algoritmus, illetve a konfidencia faktort (C): ami az
utometszésnél, mint hatarérték jelenik meg (a megadott konfidencia értéknél kisebb végzddések
lesznek ,lemetszve”). A paraméterek tesztelése a paraméter értékek valtoztatdsaval tortént
(£10%). Az eredmények alapjan az objektumnagysag alapvetéen befolyasolja a betanitas és a
tesztelés pontossagat. Minél kisebb az objektumnagysag annal nagyobb a betanitas pontossaga,
¢és kisebb a tesztelés pontossaga, azaz tultanitas 1€p fol (16. abra). Ebbdl kovetkeztethetiink,
hogy a nagyobb minimalis objektum nagysaggal, altalanosabb szabalyrendszert hoz létre az
algoritmus. Az eredmények alapjan a legkisebb tanitasi hiba a 16 és 512 kozotti minimalis
objektum nagysaggal érhet6 el. Ez a tanit6 adathalmaz nagysagahoz képest 0,0006% ¢és 1,5%
kozotti tartomanyt jelent. A masik paraméter, a konfidencia faktor valtoztatasa kis hatassal van
a modell pontossagara (1% alatti pontossag kiilonbség), azonban a modell méretét is
befolyasolja. Ezzel a modell becslési ideje nagy mértékben csokkent és igy javult a modell
teljesitménye. Az eredmények alapjan a konfidencia faktor 0,15 és 0,05 kozott eredményez

teljesitmény javulast.
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16. abra A 1.1.12-es mintateriileten mért sszpontossagok a minimalis
objektumnagysag fiiggvényében.

A véletlen erdd algoritmusndl, a WEKA-ba adaptalt J48-as dontési fan alapulo
algoritmust hasznaltam. Ennél az algoritmusnal a dontési fat nem korlatozzuk (nincs megadva
minimalis objektumnagysag és gallyazast sem alkalmazunk). A modellben 1év6 dontési fakat
gallyazés nélkiil hasznaljuk fel, igy bar az egyes modellek tultanitottak lehetnek, a modellben
1év0 torzitas kisebb lesz. A paraméterhalé meghatarozasanal a modellépit6 attributumok szama
(F - Features), a létrehozott fak szama (I - Iterations), a zsak nagysag (S - Size) paraméterek
valtoztatasa tortént, probalgatas Utjan (£10%). Az eredmények alapjan a zsdk nagysaganak
csokkentésével a tanitasi hiba csokkenthetd (60%-rol 30%-ra, atlagosan 7,389%), mig a teszt
adaton mért pontossag novelhetd (atlagosan 6,572%). Az iteraciok szamanak novelésével (100-
r6l 300-ra) a tanitasi hiba atlagosan 6,952%-ot cs6kkent, azonban a teszt adaton mért pontossag
nem javult ugyanilyen mértékben, csupan 0,341%-ot atlagosan. A valtozok szamanak novelése
kis mértékben volt hatassal a tanitasi hibara és a pontossagra (<0,5%). Azonban 50%-f61¢é
torténd novelésével az Gsszes valtozOhoz képest mar rontja a modell teljesitményét. Az
eredmények alapjan, az idealis paraméter kombinaciokat csak egyiittesen lehet alkalmazni,
mivel a 3 paraméter egymast is befolyasolja, illetve fontos a bemend attributumok ,,mindsége”
(adattartalma). Az vizsgalatok alapjan meghataroztam, hogy a legjobb modellekhez a bemend
attriblitumok értéke az 6sszes attributumhoz képest 25-45%-0s. Tovabba, a zsak nagysaga 30%,

mig az iteraciok szama 100 és 300 db k6zott mozoghat.
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A tarto-vektor gép esetén nem a WEKA-ban adaptalt nem-linearis algoritmust, hanem
a kiilon konyvtarként telepitett LIBLINEAR linearis SVM-t hasznaltam (Fan et al., 2008).
Ennek oka, hogy a nem-linearis SVM-ek csak kis tanitdo adathalmazon (<10 000 esetszam)
alkalmazhatok megfelel6 teljesitménnyel, azonban a tavérzékelt adatok, és az ezekbdl generalt
tanitd adathalmazok ennél joval nagyobbak. Az ilyen nagy adathalmazokon, megfeleld
teljesitménnyel csak az SVM-k koziil csak a linearis valtozatok alkalmazhatok, viszont csak
kisebb pontossagi értékek érhetéek el velilk, mint a nem-linearis valtozataikkal. A linearis
SVM-nél a két vizsgalandd paraméter a koltség (C - cost) és az elterelé stly (B — bias) volt,
valamint a modellépitésnél mindig alkalmaztam normalizalast a tanito adatokon, ellenkezd
esetben értékelhetetlen modelleket kaptam (50% alatti 6sszpontossag). Az eredmények alapjan
a modell teljesitményére a koltség paraméter volt a legnagyobb hatassal, ami viszonylag magas
érték mellett eredményezte a legjobb modelleket. A suly értéke kis varidcids lehetdséget
nyujtott, a 4 vagy annal nagyobb értékek mar nagy mértékben rontottak a pontossagot (teszt
adaton csak 60,49% Osszpontossag). A legjobb Gsszpontossaggal és legkisebb tanitasi hibaval
rendelkez6 modelleket 40 és 80 kozotti koltség érték és 1 vagy 2 sullyal értem el.

A neuralis halok koziil a WEKA-ba a tobbrétegli perceptron van adaptalva, amely
alkalmazza a hiba-visszaterjesztést. A tobbrétegli perceptron az egyik leggyakrabban
alkalmazott neuralis halo. Az algoritmus modellépité paraméterei a tanulasi rata (learning rate
- L), momentum (M), a rejtett rétegek szama (H) és a tanitasi id6 (T). A WEKA-ban integralt
modellnél, tobb mas paraméter mellett, nem szabalyozhatjuk a neuronok szamat, a neuronok
aktivacios fliggvényét és az optimalizacids stratégiat sem. A tanitd adathalmazon normalizalést
alkalmaztam a modellépités eldtt. A paraméterek tesztelése soran a paraméterek egyforman
fontosnak bizonyultak a modell végleges teljesitménye szempontjabdl. A legjobb modelleket 2
és 6 kozotti rejtett réteg szdmmal, 0,05 és 0,25 kozotti tanulasi rataval, 0,1 és 0,2 kozott
momentummal és 7 és 12 perc kozotti tanitasi idével allitottam eld.

Az egyes algoritmusok paraméter halojanak meghatarozasa mellett, vizsgaltam, hogy
mekkora tanitdadathalmazon érik el a megfeleld teljesitményt. Az adathalmaz nagysagat a
teljes osztalyozni kivant halmazhoz képest relativan hatdroztam meg. A vizsgalatot minden
algoritmus esetén a két legnagyobb teriiletli kistdjon (1.1.1.2., 6.3.5.1.) végeztem el. Az
algoritmusokat a paraméterhdlé meghatarozasanal a legjobb pontossagot nyujtd paraméter
beallitasokkal épitettem fel. Az eredmények alapjan a dontési fa és a véletlen erd6 pontossaga
hasonloan véltozott, mig a tarto-vektor gép és tobbrétegli perceptron pontossaga egyedi modon

volt  valtozékony a  tanitd6 adat nagysaganak  fiiggvényében (17.  abra).
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17. abra Az egyes modellek 0sszpontossag valtozasa a tanitd adathalmaz nagysagéanak
fliggvényében.

A dontési fa és a véletlen erdd pontossaga a tanité adat novelésével fokozatosan javult. A
véletlen erdével mar a teljes adathalmaz nagysagahoz viszonyitott 33%-os tanitéadat
nagysagndl elfogadhatd mindségli modellt lehet alkotni. A tarto-vektor gép és tobbrétegii
perceptron pontossaga 10% alatti tanitdo adat esetén valtozékony volt, azonban 10% folott
egyértelmil pontossag javulast eredményezett a tanitd adat nagysaganak novelése. Mindegyik
algoritmus esetén megallapithatd, hogy a 33%-o0s tanitd adat méret alatt a pontossag javulas
mértéke nd, 33% folott a javulds mérteke csokken. Emiatt, a tovabbi elemzésekben a tanitd
adathalmaz nagysagat 33% vagy attol kis mértékben eltérdé (+5%) nagysagban rogzitettem a
teljes adathalmazhoz képest.
5.1.2. Algoritmusok adaptalasa python programozasi kornyezetbe

Az algoritmusok kalibracidja sordn tobb problémaval szembesiiltem. Egyik ilyen
probléma volt a WEKA szoftverben torténd paraméterbecslés, ami a szoftverben csak
manualisan volt kivitelezhetd és emiatt nagy iddraforditassal jart. Tovabbi nehézséget okozott,
hogy az algoritmusok meghatarozott paramétereit tudtam csak modositani, igy nem tudtam
teljes mértékben szabalyozni az algoritmusok modellépitd eljarasat és igy a végleges modell
pontossagat sem. Ezeknek a problémaknak a feloldasara hoztam létre egy python szkriptet, tobb
figgvénykonyvtar (GDAL, NumPy, Pandas, Scikit-learn, Tensorflow) felhaszndldsaval (18.
abra).
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18. abra Az osztalyozashoz elkészitett python script felépitése.

A script a tanit6 és validalo adatokat tartalmaz6 tagolt szovegfijl beolvasasaval és az
osztalyoz6 algoritmus kivélasztasdval kezdddik. A beolvasott adatokbol a hibds esetek
(végtelen értékiiek) értékeit nullara valtoztatom. Tovabba a lebegdspontos értékeket
felszorzassal egész szdmokké alakitottam. Ennek kdszonheten az 0sszes valtozo értéke egy
dimenzidba keriilt, igy az értekek abszolut kiilonbségét felhasznalo algoritmusok nagyobb
pontossagot érhetnek el. Ezenkiviil az egész szamos alak memoria felhasznalds szempontjabol
is kedvez6bb. Ha az algoritmus szamara sziikséges volt a magyarazo valtozokon normalizalast,
akkor a cél valtozon atkodolast végeztem el. Az adatok el6készitése utan a tanitdo adathalmazt
felosztottam 2 részre, az egyik halmazzal a paraméterprobat végeztem el, mig a masik halmazon
tortént a betanitas, igy a kapott pontossagi értékek a kiilonb6z6 adatokon mérve jobban mutatjak
a modell pontossagat. A paraméterproba soran véletlenszerlisitett paraméterkeresési modszert
alkalmaztam, amely ugyan nem teszteli le az 0sszes lehetséges paraméter kombinaciot, de kis
idoraforditassal a optimalis paramétereket adja meg. A paraméterbecslés ezenkiviil j6l mutatja,
melyik algoritmus mennyire robosztus, illetve felhasznalobarat. A véletlen erdonél a kiilonb6z6
paraméterkombinacidkkal tanitott modellek koziil a teszt adaton mért legalacsonyabb és
legmagasabb pontossagok kozott atlagosan csupan 2,1% kiilonbség volt, addig a gradiens-
noveld fanal mar 6,01%, mig a neuralis halonal 27,75%. Ezek alapjan a véletlen erdd

algoritmust legkdnnyebb parametrizalni, mig a neuralis halot a legnehezebb.
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A kapott paraméterek felhasznalasaval késziilt el a végleges modell, amely
alkalmazasaval tortént a validalas és a becslés. A script egy osztalyozott térképet és egy riport
fajlt készit el a legfontosabb teljesitményt leirdé adatokkal. A leird adatok kozott tobb
Osszpontossagi érték is szerepel a lehetd legrészletesebb és megbizhatobb eredmények elérése
miatt.

5.2. Az osztalyozashoz felhasznilhaté, bemend adatok vizsgalata

Az osztalyozéasok soran egyre nagyobb hangsulyt kap a megfeleld bemend valtozok
kivalasztasa és/vagy létrehozasa. Az egyre novekvd adathalmazok, amelyek kovetkeztében
minden valtozonak (dimenzidénak) sokkal nagyobb hatdsa van az osztalyozd modell
teljesitményére. Ezért a valtozok kivalasztdsandl mar nem csak a valtozé informdacidtartalmat
és ezzel egylitt a pontossagra kifejtett hatasat kell vizsgalnunk, hanem hatasat a modell
teljesitményére a pontossaggal Osszefiiggésben. Vagyis az adott valtozo informaciotartalma
elég nagy-e ahhoz képest, hogy mennyivel ndveli a modell futési idejét.

A teriilethasznalat osztalyozasban is kulcsfontossagi a megfelel6 valtozok kivalasztasa,
mivel a tavérzékelt adatok osztalyozasi folyamata alapvetden adatorientalt, igy a kezdeti
kutatési koncepcionkat sokszor a rendelkezésre allo adatok alapjan kell kialakitanunk, vagy a
meglévot modositanunk. A legtobb esetben az osztalyozashoz egy iddpontbol all rendelkezésre
szamunkra felvétel az adott teriiletrdl a térképezés elvégzéséhez. Azonban egy adott felvétel
sokszor nem hordoz akkora informacidmennyiséget, ami a teriilethasznalati kategoriak
elkiilonitéséhez sziikséges, fOleg, ha az alkalmazott nomenklatira nagyszamu kategoriat
tartalmaz. Ilyen esetben sziikségiink lehet olyan adatokra, amelyek az eredeti felvételbdl
levezetve tobbletinformaciot hordoznak és ezaltal novelik a térképezésiink pontossagat. A
masik lehetdség, hogy tobbféle adatforrasbol szarmazo felvételekkel biztositjuk a megfeleld
informaciomennyiséget az osztalyozashoz. Ilyen adatfuzids eljarasndl azonban nagy hangsulyt
kell fektetniink az adatok harmonizacidjara. Ha tobb idépontbol all rendelkezésiinkre felvétel
az adott teriiletrdl, akkor az informacidtobblet a felvételek kozotti idOkiilonbségbdl adodik,
amennyiben a felszint boritd anyag reflektancia tulajdonsaga valtozik ezen id6 alatt. Ebben az
esetben arra kell figyelmet forditanunk, hogy mekkora id6kiilonbség sziikséges a felvételek
kozott ahhoz, hogy a kiilonbozo felvételek mar eltéré informaciot hordozzanak. A
disszertaciomban ezeket a lehetéségeket vizsgalom meg a gépi tanulasos osztalyozo eljarasok
alkalmazasaval.

Az eredmények kiértékelésnél négy tobbosztalyos osztilyozasi feladatoknal hasznalt
mutatoszamot szamitottam ki és hasonlitottam 0Ossze: az Osszpontossagot, a felhasznaloi
pontossagot, a készitdi pontossagot és az F-szamot (7. tablazat) (Congalton és Green, 2008).

Az Osszpontossadg a legalapvetébb mutatészam, amely megmutatja, hogy térképilink hany
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szazalékat osztalyoztuk megfelelden. Az osztalyozas soran az elvart 6sszpontossag legalabb
80%. A felhaszndloi és készitéi pontossdgi adatok osztalyszintli betekintést nyljtanak az
eredményeinkbe. A felhasznaloi pontossag azt mutatja meg, hogy adott osztalyba besorolt
pixelek koziil mennyi a jol osztalyozott pixel. Azaz, hogy az osztdlyozé modell adott
kategoriara adott becslései mennyire megbizhatdak. A készitdi pontossag pedig azt mutatja
meg, hogy az adott kategoria az eredmény térképen milyen gyakran adja vissza a referencia
térképet, vagyis az eredmény térkép milyen valoszinliséggel adja vissza az adott kategoriat a
terepen (milyen jol tiikkr6zi a valosagot). Az F-szamot (vagy Fl-szamot), alapvetéen binaris
osztalyozasi eredmények kiértékeléséhez alakitottak ki, azonban tobbosztalyos esetekben is
hasznalhatd. A mutatét a felhaszndloi és a készitdi pontossdg harmonikus atlagaként
szamolhatjuk ki, amely igy egy kompozit szamként tudja az adott osztdly pontossagat
jellemezni. Az eredmények bemutatasanal a bemutatott mérészamokat vetettem Ossze,
amelyeket a validalo pontok alapjan szamitottam ki.

7. tablazat A bemend adatok kiértékeléséhez hasznalt statisztikai mutatdszamok
(Congalton és Green, 2008) alapjan.

Mérészam Kiszamitasi mod
Osszpontossag A térképen jol osztalyozott pixelek 6sszege
(Overall accuracy) A térkép pixeleinek 6sszege
Felhasznal6i pontossag A térképen y kategoriaba jol osztalyozott pixelek 6sszege
(User’s accuracy) Atérképeny kategoriaba osztalyozott pixelek 0sszege
Készitdi pontossag A térképen y kategoridba jol osztalyozott pixelek d6sszege
(Producer’s accuracy) Areferencia térkép y kategoriaba tartozo pixeleinek 6sszege

2 * a térképeny kategériaba jol osztalyozott pixelek 6sszege
F-szam 2 * a térképen y kategériaba jol osztalyozott pixelek 6sszege +
(F-score) a térképen y kategdriaba osztalyozott pixelek 6sszege +
areferencia térkép y kategoridba tartozé pixeleinek 6sszege

5.2.1. Spektralis informaciok és derivatumaik hatékonysagianak vizsgalata az
osztalyozas szempontjabol

A felszinboritdas osztalyozasanal a leggyakrabban felhasznalt adatforrasok a

multispektralis miiholdfelvételek. Azonban a teriilethaszndlati kategoridk szdma, atmeneti

jellege és nem diszkrét meghatarozasa miatt a felvételek spektralis értékei Gnmagukban nem

minden esetben elegendék az osztalyozas megfelelé pontossaggal vald elvégzéséhez. Ezért

sziikségiink lehet kiilonb6z6 kiegészité adatokra, amiket az eredeti adatokbol szarmaztathatunk.

Ilyenek lehetnek a spektralis indexek vagy a transzformaciok. A felvételek spektralis savjainak

o1



Gudmann Andrdas Viktor — Disszertdcio,
Szegedi Tudomanyegyetem, Foldtudomanyok Doktori Iskola

vizsgalatan tal, a multispektralis mitholdképekbdl kiilonbozd tipusti szarmaztatott adatokat
szamitottam ki. Célul tliztem ki, hogy megvizsgaljam, ezen adatok felhasznalasaval hogyan
valtozik az osztalyozasok pontossaga és a modellek teljesitménye. Az egyes adatok hatasanak
vizsgalatahoz a CLC adatbazisokhoz hasznalt miiholdképek alapjan végzett osztalyozas
pontossagat vettem alapul. Ezekkel az értékekkel vetettem Ossze az egyes derivatumok és a
mitholdképek kombinacidi alapjan létrehozott modellek teljesitményét.
5.2.1.1. Spektralis savok hatékonysaganak vizsgalata

A miholdfelvételek spektralis savjai kiilonféle informaciokat tartalmaznak egy adott
terlileten fekvo objektumokrol. A terililethasznalati kategoéridk kozvetleniil nem érzékelhetd
tulajdonsagaik miatt, a spektralis savok onmagukban gyakran nem elegenddk az Osszes
terlilethaszndlat jellegli kategoridk kozvetlen osztalyozasara. Ez a jelenség jol kimutathato az
egyes osztalyok szeparabilitas értékei alapjan, amely megmutatja, hogy mennyire kiilonithetéek
el az egyes kategoriak a spektralis térben. Az altalam, a CLCOO adatbazis ¢s az ehhez felhasznalt
Landsat-7 (L7) felvételek (A4. tablazat) felhasznalasaval a mintateriiletekre kiszamitott
Jeffries-Matusita tavolsagokon (13. abra) jol latszik, hogy az egyes savok alapjan a kategoriak
minimalis tavolsag értéke (azaz a legkevésbé elkiilonithetd osztaly értéke) a 0-hoz kozelit (0 =
nem szeparalhato eset). Még az Gsszes sav egyiittese hasznalata esetén is a minimalis tavolsag
érték a lehetséges maximum (1414) felét se éri el (14. abra). A CLC18-as adatbazis alapjan a
Sentinel-2 felvételek 1-1 sav reflektancia értekeib6l szamolt osztalyok szerinti JM tavolsagok
minimumai is nagyobbak, mint a L7 felvételekbdl az 6sszes sav alkalmazasaval kapott JM
tavolsag érték (19. abra).
o W Minimalis | sévalapjin Atlag | sivalapjén @ Minden sév alapjin
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19. abra A Pesti hordalékktp-siksagra kiszamolt JM tavolsagok, osztalyonként, a CLC18-4s
adatbazis és a Sentinel-2 savjai alapjan.
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Valamint az atlagos elvalaszthatosag értékei is magasabbak, de ezek az értékek a legtobb
esetben igy sem érik el a maximalis érték felét. Azonban a minden sav alapjan szamitott
szeparabilitas értékek, amelyek majdnem minden osztaly esetén 1000 f616tti értékek, mar igen
magas elkiilonithetdségre utalnak. A szeparabilitds értékek alapjan levont kovetkeztetést
altamasztjak a pontossagi értékek, amiket a L7-es spektralis savok felhasznalasaval készitett
modellek adtak (20. abra). Ezek alapjan a 6 mintateriilet koziil 5 esetében egyik osztalyozo
algoritmus se tudott elégségesnek mondhato eredményt adni (60% alatti pontossag) a spektralis
savok alapjan. Csupan 1 mintateriiletnél volt kiilonbség, azonban ott mindegyik osztalyozo

kozepes pontossagot ért el (70-80% kozott).

100%
B Dintési fa m Véletlen erdd ® Tarto-vektor gép & Tobbrétegii perceptron
920%
80% 78.09%

70%

60%

48.45% 48.75%

50% 9%

40%

Pontosség a teszt adathalmazon

30%

20%

10% r

0%

112 1713 331 Kisgjkodja 4145 5332 6351

20. abra A kiilonb6z6 algoritmusok altal az egyes mintateriiletek teszt adathalmazan mért
pontossagi értékek a Landsat 7-es spektralis savok alapjan.

Az eredmények konfuzios matrixai alapjan vizsgalni tudjuk az osztalyszint{ hibakat is.
A legjobban urbanizalt 1112-es (Pesti hordalékkup-siksag) mintateriileten a konfiziés matrixok
alapjan a teriileten 1év6 24 kategoriabol 18-at egyik modell sem jelzett. A tobbi 6 kozott pedig
nagyfoku atosztdlyozas tapasztalhatd, féleg a 2.1.1.-es ,,Nem oJntozott szantofoldek”
kategorianal, amely a 2.3.1.-es ,,Rét, legelo”, a 2.4.2-es ,,Komplex miivelési szerkezet” és a
3.2.4-es ,, Atmeneti erdds-cserjés teriiletek” kategoriakkal keveredett. Az 1713-as (Hevesi-artér)
mintateriileten a 15 CLC szerint 1étez6 kategoriabdl csak 5 osztaly jelent meg a modellfuttatas
utdan az eredménytérképen. Az 5 osztalyozott kategoria azonban csak kis mértékben
osztalyozodott at egymas kozott. Az erdds 3131-es (Fels6-Orség) mintateriileten a 9
kategoriabol 4 nem jelent meg a becsiilt térképen. Az atosztalyozasok a 3. hierarchia szinten

beliil jelentkeztek, ahol a 3.1.1-es ,,Lomblevelii erddék”, a 3.1.2-es ,,Tiilevelii erdék”, a 3.1.3-as
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»Vegyes erdok” és a 3.2.4-es Atmeneti erdos-cserjés teriiletek” keveredtek kiilonbozd
mértékben. A 4145-6s (Balatoni-riviéra) mintateriileten a lehetséges 14 lehetséges osztalybol 9
megtalalhato a becsiilt térképeken. Ebbol a 9 osztalybdl 2 kategoria helyesen osztalyozodott: a
2.2.1,,8z0l6k” és a 3.1.1 ,,Lomblevelii erdok™, a tobbi kategoria kdzepes mértékben.
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21. abra A kiilonb6z6 modellekkel készitett osztalyozasok atlagos F-szdma
kategoriankként Landsat-7-es savok alapjan.

A legtobb atosztalyozas az 1.1.2-es ,,Nem Osszefiiggo telepiilésszerkezet” és a 1.4.1-€s
Varosi zoldteriiletek” kozott volt. Az 5332-es (Tétényi-fennsik) kistajon csupan 5 kategoria
nem jelent meg az eredmény térképen a lehetséges 15-bol. A legjobban lehatarolt az 1.1.2-es

és a 3.1.1-es kategoriak voltak, mig a legrosszabbul a 3.2.1-es ,,Természetes gyepek,
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természetkozeli rétek”, és az 1.3.3-as ,,Epitési munkahelyek”. A legnagyobb atosztalyozas a mar
emlitett 1.1.2-es és az 1.3.3-as kategoriak, illetve az 1.1.2-es és az 1.4.2-es kategoridk kozott
volt. Az utolso, fovaroshoz kozel 1évd, 6351-es (G6dolldi-dombsag) mintateriileten a lehetséges
18 osztalybol csupan 3 kategoria keriilt lehatarolasra: 1.1.2, 2.1.1, 3.1.1. Az nem osztalyozott
kategoriak pixelei féleg a 2.1.1-es és a 3.1.1-es kategoriakban lettek besorolva, azonban ez a 3
osztaly egymassal csak kismértékben keveredett. Az eredmények alapjan megallapithatd, hogy
a legtobb mintateriileten sok kategéria nem keriilt osztalyozasra a L7-es spektralis savok
alapjan, de a konfuzids matrixok alapjan, az atosztalyozasok nagy része féosztalyon beliil
tortént. Ezek alapjan arra a kovetkeztetésre jutottam, hogy a spektralis savok az alapvetd
felszinboritasi kategoria (L. hierarchia szint) elkiilonitésére még alkalmasak, azonban az inkabb
teriilethasznalati kategoriak kozott (I1-I11. hierarchia szint) mar nem alkalmasak az
elhatarolashoz.

A mintateriileteken mért F-szamok atlaga alapjan a legtobb kategoria értéke az
alkalmazott modellek esetében kdzel azonos (21. abra). A Landsat-7-es spektralis savjai alapjan
legjobban elhatirolhatd kategoriak az 1.1.1-es ,,Osszefiiggd telepiilésszerkezet”, az 1.2.1-€s
Hlpari vagy kereskedelmi teriiletek” és az 1.2.4-es ,,Repiildterek”. Azonban a harom osztaly
koziil az 1.1.1-es és az 1.2.4-es is csak egy mintateriileten fordul el (Pesti hordalékktp-siksag).
A mindegyik mintateriileten jelen 1év6 7 osztalybol a legjobban osztalyozott kategoria a 2.3.1-
es ,Reét, legelo”, mig a masodik az 1.1.2-es ,,Nem Osszefiiggo telepiilésszerkezet”. A
legnehezebben elkiilonithetd kategoriak kozé sorolhato az 1.3.1-es ,,Varosi zoldteriiletek”, az
1.3.2-es ,,Lerakohelyek, meddohanyok”, a 3.2.1-es ,,Természetes gyepek, természetkozeli rétek”
¢és a 4.1.1-es ,,Szarazfoldi mocsarak™ osztalyok. A hat mintateriileten el6forduld kategoridk
koziil a legrosszabb F-szammal a 2.4.3-as ,,Elsddlegesen mezégazdasagi teriiletek jelentos
természetes novényzettel” kategéria rendelkezik.

A 2018-as adatok esetén a Landsat-8 (L8) és a Sentinel-2-es felvételek spektralis értékei
alapjan készitett osztalyozasokndl tobb szempontot is vizsgalhattam. A spektralis savok
felszinboritast és teriilethasznalatot jellemz6 képessége mellett elemeztem a térbeli felbontasbol
¢s a felvételezd rendszerek savkiosztasabol eredd hatasokat is, az osztalyozasok pontossagara
nézve. Az eredmények azt mutattak, hogy az L8-as és az S2-es adatok alapjan mindharom
felhasznalt algoritmus és mindegyik mintateriilet esetén az elégségesnek mondhatd 60% feletti
Osszpontossagot kaptam. Az L8 spektralis értékei alapjan az osztalyozasok validacids halmazon
mért atlagos pontossaga a véletlen erdd esetében 69,06%, a gradiens-noveld fa esetében 69,38%
és a tobbrétegli perceptron esetében 67,9% volt. Az S2-es értékekkel torténd osztalyozas

esetében 70% folotti atlagos pontossag értékek adodtak a validaciés halmazokon mérve:
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75,09%—75,71%-70,67%. Osszeségében az S2-es adatok alapjan magasabb sszpontossagokat
érhetiink el, azonban ezek az értékek is csak kdzepesnek mondhatoak (<80%).
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22. abra Az S2 ¢és az L8 spektralis sadvjainak permutacios fontossagi értékei.

A véletlen erd6 osztalyozasokbol szarmazd permutacios fontossagi értékek (22. abra)
azt mutattak, hogy az L8-as értékek koziil az algoritmus szdmara a legfontosabbak a kdzepes
infravoros 1., a zold és a voros savok voltak. Az S2-es spektralis savok koziil a legfontosabbak
az ultrakék és a kozepes infravords 1. és I1. voltak. Az L8-as hullamhossz tartomanyai kozott
nem szerepld 5-10-ig terjedd S2 savok koziil a 10-es sav magas fontossagi értékkel rendelkezik
(0,23), mig a tobbi kozepes vagy gyenge értékkel (0,06-0,12). Az L8 TIRS savjaira, amik
nincsenek az S2 savok kozott, kozepes fontossagi értékek jellemzok (0,13-0,15). A fontossagi
értékek és az S2 adatok alapjan készitett osztalyozasok kis mértékben a spektralis savok kozotti
kiilonbségek, nagyobb mértékben a jobb térbeli felbontas miatt eredményeznek magasabb
pontossagi értékeket. Mivel igy kisebb a keveredés egy adott pixelen beliil, ezért tobb tiszta
pixel keriil az osztilyozasba. Azonban a valtozok fontossagi értékei alapjan az alapvetden
nagyobb teriiletet jellemzd valtozok (eredeti térbeli felbontasuk nagyobb, az atmintavételezés
miatt tobb pixelt csoportositanak) lettek a legfontosabbak, ami utal a térbeliség szerepére is.

A kiilénboz6 adatokon (L8, S2) betanitott modellek atlagos F-szama is az el6z6 allitast
tdmasztja ald (23. dbra). A mintateriileteken 1év6 25 CLC kategériabdl 20-nal javulast okozott
az S2-es adatok felhasznalasa az L8-as adatok helyett. Az F-szam valtozas -22,35% és +35,53%
kozotti intervallumban mozgott, atlagosan +8,12%. A harom legnagyobb javulast az F-szamban
a 3.1.3-as ,,Vegyes erdok” (+35,53%), a 1.4.1-es ,,Varosi zoldteriiletek” (+27,66%) és a 2.4.3-

as ,,Elsédlegesen mezdgazdasagi teriiletek jelentds természetes novényzettel” (+27,61%)
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kategoriaknal figyelheté meg. Ugyanakkor a harom legnagyobb visszaesés az F-szamban a
1.3.1-es ,,Nyersanyag kitermelés” (-22,35%), az 1.2.4-es ,,Repiildterek” (-16,89%) és a 2.2.1-es
2010k (-12,81%) osztalyoknal tortént.
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23. abra A kiilonb6z6é muiholdképeken betanitott modellekkel készitett osztalyozasok
atlagos F-szama kategoriankként.

Az eredmény térképeken is jol lathatdo a két kép felbontdsabodl eredd osztalyszintii

pontossagnovekedés (24. abra). A nagyobb térbeli felbontasnak koszonhetéen a tisztabb
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spektralis értékekbol
homogénebb foltok alakulnak
ki, illetve az alapveten
heterogén, Varosi
kornyezetben is
egyértelmiibben lehatarolhato
pixelcsoportok jelennek meg
(pl.:  ipari létesitmények,
csarnokok teteje). Azonban
meg kell jegyezni, hogy a
varosi teriileteken 1€v0 elszort
pixelek, illetve kisebb
homogén pixelcsoportok a
CLC minimalis térképezési
nagysaga miatt nem minden
esetben eredményeznek
pontossagndvekedést a
statisztikaban.

A Landsat-7
miiholdképek spektralis
savjai alapjan Dbetanitott
modellek atlagosan 45,91%-
os (min. 39,97%, max.
78,91%) Osszpontossagi
értekkel rendelkeztek, igy
kijelentheté, hogy ezen
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OSZta yozaSt az ¢ Vart - Ut - és vasathalozat és csatlakoz6 teriiletek Lomblovelh erdfic

Virosi zoldteriiletek

[
B Tilevelii erdok
]

Vegyes erdok

pontossaggal nem lehet

Sport-, szabadido- és tidiiloteriiletek
— — Természetes gyepek, természetkozeli rétek
Nem 6ntozétt szantofoldek Byepess

elvégezni. A Landsat-8 és a .
Szolok

Atmeneti erdds-cserjés teriiletek

Szarazfoldi mocsarak

Sentinel-2 adatok alapjan B, Ovemiloatadh bogyedk Allovisek
24. abra Landsat-8 spektralis savok (A), Sentinel-2 spektralis

savok (B) felhasznalasaval betanitott HGBC modellek
eredménytérképei, illetve a valos helyzet (C).
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létrehozott modellek 68,78%-0s (min. 67,90%, max. 69,38%) és 73,67%-0s (min. 70,22%,
max. 75,71%) atlagos oOsszpontossaggal rendelkeztek, igy ezen informaciok alapjan
kozepes eredménnyel lehet teriilethasznalati osztalyozast elvégezni. Ezen eredményeim
alapjan megallapithaté, hogy a spektralis sivok 6nmagukban nem hordoznak elegendé
informaciot a felszinboritasi/teriilethasznalati kategériak megfelelé lehatarolasahoz.
Tovabba a nagyobb térbeli felbontasu Sentinel-2-es miiholdfelvételek hasznalataval az
osztalyozasok pontossagat novelni tudtam (+4,89%-kal). (1. cél)
5.1.1.2. Spektralis indexek, mint kiegészité adatok vizsgalata

Az osztalyozésokban leggyakrabban hasznalt kiegészit6 bemend adatok, a
mitholdképekbdl szamitott kiilonbozo spektralis indexek (Costachioiu és Datcu, 2010; Thakkar
et al., 2014). Ezen indexek hatasa az osztalyozas pontossagara nem teljesen egyértelmii. A
kutatasomban kiilonb6z6 vegetacios, égési és nedvességi indexeket (NDVI, SAVI, MSAVI,
EVI, NBR, NBR2, NDMI) szamitottam ki a CLCO00-4s alapjat ad6 L7-es miiholdfelvételek
alapjan (A2. tablazat, A3. tablazat). Ezen mutatoszamok mindegyike tobb sav felhasznalasaval
hoz létre 0j értékeket, ezért az 0j értékek segitik a felhasznalot a felvételek interpretaldsaban,
masrészt mint adattomorito eljaras is funkcionalnak. Az indexek koziil nem mindegyik hordoz
informéciot a felszinboritasrol vagy a teriilethasznalatrol (égési, nedvességi indexek). Ezek
azért kertiltek a kutatisomba, hogy megvizsgaljam a vegetacios indexek hatasa az osztalyozasra
egyedi jelenség (pl. informacidtobblet miatt) vagy minden indexre érvényes.
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25. abra Kiilonbo6zo spektralis indexek hatasa az osztalyozasok 0sszpontossagara.
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Az egyes indexeket a
spektralis  savokkal  egylitt
felhasznalva készitettem
osztalyozasokat. Az indexek
kiilonb6z6 kombinacidit nem
vizsgalatam, mivel az indexek
0nalld hatésat akartam elsének
megvizsgalni. A
mintateriileteken mért indexek
eredményeit az egyes
algoritmusok szintjén
atlagoltam, illetve a modellek
atlagait is atlagoltam, hogy
atfogod képet kapjak az indexek
hatdsarol. Az eredmények
alapjan (25. abra) a
hagyomanyos vegetacios
indexek, mint az NDVI, SAVI,
MSAVI, EVI az osztilyozas
Osszpontossagat nem, vagy
csak kis mértékben ndvelik
(<2%). Tovabba
megallapithat6, hogy a dontési
fa ¢és az azokbol felépiild
véletlen erdd osztalyozonal
egyik index sem okozott
pontossag novekedeést.
Azonban a tobbrétegli
perceptronnal a 7 indexbdl 4 is
tudott javulast okozni (MSAVI,
NBR, NDVI, SAVI). Ezt a
képet arnyalja, hogy a 4
indexbdl a masodik
legnagyobb  pontossagbéli

javulast nem egy vegetacios
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Atmeneti erdés-cserjés tertiletek
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Folyowizek, vizi utak

Allovizek
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26. abra MLP ¢és kiilonboz6 spektralis indexek felhaszndlasaval

készitett térképek:

A — Az eredeti CLCOO térkép,

B — A spektralis savok alapjan késziilt térkép,

C — A spektralis savok és az EVI index alapjan késziilt térkép,

D — A spektralis savok és az MSAVI index alapjan késziilt térkép,
E — A spektralis savok és az NBR index alapjan késziilt térkép,

F — A spektralis savok és az NBR2 index alapjan késziilt térkép,
G — A spektralis savok és az NDMI index alapjan késziilt térkép,
H — A spektralis savok és az NDVI index alapjan késziilt térkép
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index, hanem a NIR és SWIR savokbol szamithaté normalizalt égési index (Normalized Burn
Ratio - NBR) eredményezte. A tarto-vektor gép esetében a 7-bdl 1 index okozott javulast a
pontossagban, mig a tobbi valamilyen mértékben rontotta az eredményeket. Az atlagos
pontossag valtozasok mértékét figyelembe véve 3 index egyértelmiien rontja (EVI, NBR2,
NDMI), 3 index nem egyértelmiien rontja (MSAVI, NBR, SAVI), mig egy index minimalis
szinten javitja a pontossagot (NDVI). Az egyes indexek felhasznalasaval késziilt
eredménytérképeken is a pontossagi adatokbol kiolvashaté eredmények lathatdak (26. abra). A
térképek nagyban hasonlitanak egymashoz, az eredeti CLC adatbazishoz képeset
ugyanazokban a részletekben eltérnek, mint a spektralis savok alapjan késziilt térkép. Azonban
az adott térkép eldallitdsdhoz hasznalt indextdl fiiggben az eltérés mértéke valtozd. A CLC
adatbazisban nem jelzett 2 db folt mindegyik térképen jelen van, viszont az indextdl fiiggden
az alakja, kiterjedése és besorolasa eltérd. A legnagyobb eltérés az EVI-t és MSAVI-t hasznald
térképeknél lathato, mig a tobbi térképen csak kisebb, pixel szintiiek az eltérések a spektralis
savok alapjan késziilt térképhez képest.

Az L7-es miitholdképekbdl kiszamitott indexek eredményei alapjan, a kovetkezod
1épésként olyan indexek felhasznalasat tliztem ki célul az osztalyozasban, amik kiszamitasahoz
mar nem elegenddek a miholdfelvétel savjai. Ezzel azt vizsgaltam, hogy az 1j informaciok
onmagukban, legyenek azok barmilyen tipusuak, képesek-e javitani az egyes modellek
pontossagat. A Sentinel-2-es adatok alapjan altalam kiszamitott ilyen indexek a fraction of
Absorbed Photosynthetically Active Radiation (faPAR) index és a Fraction of Vegetation
Cover (FVC) (A4. tablazat). A TAPAR index az egyik legelterjedtebb és leghatékonyabb
mitholdképbdl szamitott index (Weiss és Baret, 2011), amelynek a kiszamitasahoz sziikséges
ismerniink a fotoszintetikusan aktiv sugarzasi értékeket (Photosynthetically Active Radiation —
PAR, az elektromagneses spektrum 400 és 700 nm kozotti tartomanya), tovabba a sugarzashoz
kothetd egyéb adatokat (Nap helyzete, azimuth szog, 1égkori viszonyok). A fAPAR értékét az
alabbi képlettel kaphatjuk meg (Weiss és Baret, 2011):

fAPART(0s,s)=(1-f)*fAPARBgs(os,ps)+T*TAPARws

ahol esa napsugarak beesési szoge a nadirhoz képest,

@s az azimuth szog,

fAPARBgs a TAPAR sotét égbolton (black-sky),

fAPARws a fAPAR fehér égbolton (white-sky),

f pedig a szorodas direkt frakcioja.
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A gyakorlatban tobb modszer all rendelkezésre a fAPAR index kiszamitashoz. A SNAP
szoftver algoritmusa a S2 mihold felvételezési adatainak ¢és spektralis savjainak
felhasznalasaval egy adott sugarzasi-transzfer modell és egy neuralis hald felhasznalasaval
szamitja ki a fAPAR értékeket

(Weiss et al., 2020). Ugyanezzel a 8. tablazat A FaPAR ¢és FVC indexek

felhasznalasaval elkészitett eredmények atlagainak
modszerrel  szamithatd6 ki a

mutatdszamai.
levélfeliilet indexbdl (LAI) és mas ) X
' Sentinel-2 Sentinel-2 | Sentinel-2
lombkoronaszerkezeti valtozokbol a entinel-2 \ | raPAR | + FVC
novényboritottsag ardanya (FVC), | Osszpontossdg | 73,67% 73,66% 73,48%
amely a fAPAR-ral ellentétben nem F-szam
) o _ 111 39,45% 58,99% 54,36%
fligg olyan valtoz6tdl, mint a 112 71,59% 71,18% 71,04%
megvilagitds geometridja. Emiatt 121 52,70% 52,92% 53,71%
. o . 122 39,95% 40,53% 39,85%
nagyon jol hasznosithato a klasszikus 124 52,16% 61,00% 64,69%
vegetacios indexek helyettesitésére a 131 10,39% 24.,23% 27,75%
z0ld novényzet megfigyelése soran 132 39,59% 53,77% 58,46%
. 133 15,49% 32,99% 15,25%
(Weiss et al., 2020). 141 43,98% | 46,00% | 47,65%
Az eredmények alapjan a 142 45,97% | 46,90% | 46,76%
0 0 0
FaPAR és az FVC index, mint az S2 211 82,24% 81,53% 80,75%
213 70,73% 73,09% 72,25%
savok klegészit6 adatok nem okoztak 221 33.17% 55 31% 55.79%
szignifikans Osszpontossagbeli 222 42.71% 48,29% 46,57%
g
kiilonbséget (8. tablazat). Azonban 231 55,65% 55,87% 56,78%
Foszimok vizsedlata azt mutatt 242 33,31% 32,80% 31,85%
az F-szamok vizsgélata azt mutatta, 243 48 14% 47.19% 47 30%
hogy javitani tudtdk az kategériak 311 71,19% 71,98% 74.66%
tobbségének lehatarolasat. A 25 312 63,60% 65,34% | 64,07%
kategoriabol 19-nél a FaPAR és 16 313 42,70% | 1511% | 16,40%
) o 321 18,09% 32,30% 17,21%
esetében az FVC felhasznalasaval 324 49.89% 49.90% 49.41%
novekedett az F-szam. Mindkét index 411 61,96% 63,51% 64,74%
esetében a legnagyobb novekedés az 511 82,53% 83,17% 84,59%
512 84,30% 81,59% 85,98%

2.2.1-es ,,Sz6lok” (FaPAR: +22,15%,
FVC: +22,62%), mig a legnagyobb romlas a 3.1.3-as ,,Vegyes erdok” kategoérianal tortént
(FaPAR: -27,59%, FVC: -26,31%). Az F-szamok alapjan kijelenthetd, hogy az indexek
hasznalataval a kis részaranyu kategoriak lehatarolasat tudjuk javitani, par nagy részaranyu (pl.
2.1.1. ,Nem 0ntozott szant6foldek™) rovasara. Ennek a kettds hatasnak koszOnhetoen az

0sszpontossagban nem tapasztalhaté 1ényegi valtozast, de osztaly szinten igen.
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Az eredményeim alapjan a hagyomanyos spektralis indexek (NDVI, SAVI,
MSAVI, EVI, NBR, NBR2, NDMI) és spektralis savokon felépitett modellek
osszpontossagaiknak atlagai alapjan csak az NDVI novelte az osztalyozasok pontossagat
(+0,06%). A tobbi index rontotta az osztalyozasok pontossagat -0,14% és -2,54%
kozotti mértékben. Ezek alapjan megallapitottam, hogy a kivalasztott indexek nem
hordoznak olyan tobblet informaciot a spektralis savokhoz képest, ami jelentos
meértékben javitana a gépi tanulasos osztalyozo modellek pontossagat a felszinboritas és
teriilethasznalat térképezésben. Az osszetett vegetacios indexek (FaPAR, FVC) atlagosan
-0,01%-Kkal és -0,19%0-kal valtoztattak az Gsszpontossiagot, azonban kategéria szinten
tudtak javitani a modellek pontossagat, a 25 kategoriabdl 16-19 osztaly F-szam értékét

novelték. (2. cél)

5.1.1.3. Adattranszformaciok, mint kiegészité adatok vizsgalata

A spektralis savokbdl matematikai Uton és mas a kép készitéséhez kapcsolodd
informaciok segitségével eldallithatd indexek mellett, az adattranszformaciok szerepét is
vizsgaltam. Két transzformdaciot valasztottam ki a vizsgalatomhoz: a fékomponens analizist €és
a Tasseled Cap transzformaciot. A fékomponens analizis (Principal Component Analysis —
PCA) az egyik legrégebben alkalmazott dimenzidocsokkentd, adattomorité eljaras. Lényege,
hogy csokkentsiik a nagyszdmu Osszefiiggd valtozot tartalmazo adattomb dimenzidjat ugy,
hogy kozben megdrizziik az adathalmaz informaciotartalmat. A dimenzidcsokkentést tigy éri
el, hogy transzformalja az adattombot egy 0 valtozo készletre, amiben a valtozok nem
korrealnak, fiiggetlenek egymastdl és az elsé néhany valtozé megdrzi az eredeti valtozokban
1év6 informaciotartalom nagy részét (Jolliffe, 1986). A fékomponens analizis els6 két-harom
sdvja tartalmazza az eredeti savok informacidtartalmanak majdnem teljes részét (~90%). A
PCA segitségével konnyen megtalalhatok az adatokat legjobban jellemz6 mintazatok és
informaciocsokkentés nélkiil képes tomoriteni az adathalmazt. Tovabba az adatokban 1évo zajt
is képes jelentdsen csokkenteni (Tan et al., 2006). A PCA egy altalanosan hasznalt eljaras, mig
a Tasseled Cap transzformacio6 a direkt multispektralis miiholdfelvételekhez fejlesztették. ,,A
Tasseled Cap-transzformacié (Kauth és Thomas, 1976) matematikailag a spektralis téren
torténd elforgatasként €s eltolasként értelmezhetd. Segitségével a miiholdfelvételek ugy
alakithatok at, hogy a dimenziészam csokkenése mellett a felszintérképezés szempontjabol
lényeges részletek emelkednek ki.” (Mucsi, 2004). A transzformaci6 eredményeképp a
1étrejovo spektralis térben a talaj pixelei egy egyenest, ellipszist vagy ellipszoidot formalnak,
ez a talajvonal. A vegetacid képpontjai pedig a talajvonalra merdlegesen helyezkednek el, és
minél fejlettebb a névényzet, annal messzebb talalhatok a talajvonal tengelyétdl (Mucsi, 2004).

A talajvonalrol induld novények palyai a fenologiai fazisban egy bojtos sapkahoz hasonlitanak
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a voros és a NIR savok altal kifeszitett spektralis sikon, ezért az adattranszformacio6 a Tasseled
Cap nevet kapta. A modszer létrehozasa soran harom adatstruktarat hataroztak meg: a
fényességet (Brightness), amely a talajfelszinek és a magas albedoju felszinek reflektancia
tulajdonsagaival all kapcsolatban. A z6ld index (Greenness) ndvényzettel kapcsolatos
informaciokat nyujt és a vegetacid eléforduldsat jelzi. A nedvesség (Wetness) vizet €s talajt,
valamint a vegetacié nedvességét jelzi. A vizsgalataimban az Osszes mintateriiletre nézve, a
kiegészité adatként az L7-bok kiszdmitott PCA els6 harom savjat és a Tasseled Cap

transzformacio 6 savjat hasznaltam fel az L7 spektralis savokkal kombinalva (A4. tablazat).

Spektralis savok + Spektralis savok +
Tasseled Cap PCA
6% r
4.79%
4% r
2% |
2 0.93% 111%
I 0.38% 0.52%
3 0w — — |
-1 0.21% .
£ 0.57% .0.70%
£ 20 L -1.45%
49 L
6% F
-6.48%
8o L

® Dontési fa Véletlen erdé Tarto-vektor gép Tébbrétegii perceptron  ® Atlag
27. abra Tasseled Cap és PCA savok hatasa az osztalyozas 0sszpontossagara.

Az eredmények alapjan nehéz egyértelmi, 4altalanos megallapitasokat tenni a
transzformaciokrol (27. abra). A Tasseled Cap a négy osztalyozo algoritmus koziil haromnal
nem okozott jelentds pontossagbéli valtozast, csupan a tartd-vektor gépnél tortént jelentdsebb,
negativ iranyu valtozas (>6%). A PCA-nak nagyobb hatasa volt a modellek pontossagara, mint
a Tasseled Cap transzformacionak. Ennél a valtozonal is a tarto-vektor gép esetében valtozott
a legnagyobb mértékben a pontossag, azonban itt pozitiv iranyba (>4%). A tarto-vektor gépen
kiviil a tobbrétegli perceptronnal is pontossagnovekedést okozott a PCA értékek bevonasa az
osztalyozasba. Ugyanakkor a dontési fa és a véletlen erdd esetén egyik transzformacio sem
okozott jelentds pontossagbeli valtozast. Az elkésziilt térképek vizudlis kiértékelése azt mutatta,
hogy a Tasseled Cap és a PCA értékek kozotti pontossagbeli kiilonbség az SVM osztalyozonal
nem lathato (28. abra).
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CLCO Varosi zoldteriiletek Elsédlegesen mezégazdasagi teriiletek
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Ut - és vastithalozat o . . L y -

és csatlakozd teriiletek Gylimdlcsdsok, bogyosok Atmeneti erdds-cserjés teriiletek

Repiiloterek Rét, legeld Széarazfoldi mocsarak
B Nyersanyag kitermelés Komplex miivelési szerkezet Allavizek

P Epitési munkahelyek

28. abra SVM osztalyozo és kiillonbozo transzformaciok felhasznalasaval késziilt térképek:
A — Eredeti CLC térkép,

B — Spektralis savok felhasznalasaval késziilt térkép,

C — Spektrélis savok és Tasseled Cap transzformacié felhasznalasaval késziilt térkép,

D — Spektralis savok és PCA savok felhasznalasaval késziilt térkép.
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Mindkét adat kiilon-kiilon tortén6 bevonasaval az eredménytérképen 1év6 osztalyok
szama lecsokkent és egy homogénebb, de pontatlanabb térkép jott 1étre. A térképeken a 3
legnagyobb részaranyt osztaly jelent csak meg: az 1.1.2-es ,Nem Jsszefiiggo
telepiilésszerkezet”, a 2.1.1-es ,,Nem ontozott szantofoldek” és a 3.1.1-es ,,Lomblevelii erdok”.
A transzformaciok hatasa mellett az is jol lathato az osztalyozott képeken, ahogy az L8 és S2
Osszevetésnél is kiemeltem, a részletesebb pixel szintli osztalyozas a 25 ha minimalis térképi
egységgel dolgoz6 CLC adatbazissal Osszevetve pontossagcsokkenést eredményez. A
telepiiléseken 1évo szerkezet utcdk, terek és parkok vagy a repiiltér kifutopalydja mind

megjelennek a pixel szintii osztalyozasban, azonban ez hibaként jelenik meg a statisztikaban.
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i &
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29. abra SVM modell altal a teszt adaton becsiilt értékek konfuzids matrixa a 6351-es
kistajon (G6doll6i-dombsag).

Az SVM esetén a legnagyobb javulds a Godolldi-dombsagon volt tapasztalhato. A
mintateriiletre elkészitett konfiziés matrix vizsgalatdbol kideriil, hogy a spektralis savok
alapjan késziilt modell a lehetséges 18-bol, 13-at nem osztalyozott jol, mig a spektralis és PCA

értékeken alapuld modell csak 11-et (29. abra). A PCA adatok bevonasa javulast eredményezett
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a 1.1.2-es ,,Nem oOsszefiiggo telepiilésszerkezet”, a 3.1.2-es ,,Ttilevelii erdok” és az 5.1.2-es
wFolyovizek, vizi utak” kategoriainak lehatarolasaban.

Az eredmények alapjan a kiprobalt két adattranszformacios eljaras a Tasseled Cap ¢és
PCA nem okoztak egyértelmii javulast az osztalyozo modellek pontossagaban. A Tasseled Cap
értékek egyik algoritmus esetén sem hoztak jelent6s pontossagnovekedést, mig a PCA értékek
az algoritmusok felénél okoztak javulast, amelyek koziil a tarto-vektor gép esetén volt jelentds
a javulas. Az eredmények alapjan arra a kovetkeztetésre jutottam, hogy a Tasseled Cap
transzformacio atlagosan -1,45%-0s, mig a PCA transzformacio6 +1,11%0-os valtozast okoz
az osszpontossagban. Azonban az algoritmusok tobbségénél (3-bol, 4-nél) a valtozas 1%-
nal kisebb volt, igy ezen adatokat csak egyedi esetekben érdemes kiegészité adatként
alkalmazni. (2. cél)

5.2.2. A képelem kornyezetébél kinyerhet6 adatok vizsgalata

Mivel a spektralis indexek ¢és a kiilonb6z6 transzformaciok sem hordoztak magukban
olyat plusz informaciot, ami egyértelmiien javitotta volna a kiilonb6z6 osztalyozo algoritmusok
pontossagat, igy olyan mérészamokat kezdtem vizsgalni, amik nem a pixel sajat értékén
alapulnak. Ilyenek a pixelek térbeli kornyezetét valamilyen modon leird adatok, mint példaul a
kiilonb6z6 kernel modszerek vagy a foltokon/szegmenseken alapuld tajmetriai indexek. Ezek
az indexek az emberi logikat kovetve olyan informaciokat szolgaltathatnak, amik a pixelek
szomszédsagi viszonyabol adoddan dontd jelentdségliek lehetnek egyes esetekben. A
lombhullaté erdd és a varosi zoldteriiletek kategoriak mind jelentds aranyt lombhullato fat
tartalmaznak folt szinten, viszont a varosi zoldteriiletek koriil mesterséges felszinek pixelei
talalhatdak valamilyen tavolsagon beliil. Ugyanilyen logikat kovetve nehezen elkiilonithetd egy
sportpalya, amely a ,,Sport-, szabadidd- és lidiil6teriiletek” kategoriaba tartozik a ,,Rét, legeld”
kategoriatol. Egy repiiltér kifutopalyaja sem kiilonbozik az ,,Ut - és vasuthalozat és csatlakozé
teriiletek™ kategoriatdl csak az kifutopalyat korbevevd komplexum hatdrozza meg a repiildtér
jellegét. Ezek alapjan a kutatasomban arra kerestem a valaszt, hogy ezek a pixel kdrnyezetét
valamilyen modon szamszeriisité metrikak képesek-e a gépi tanulason alapuld osztalyozo

algoritmusok pontossagat novelni.

5.2.2.1 Tajmetriai indexek, mint kiegészité adatok vizsgalata
A kutatasom els6 része a tajmetriai mérészamok vizsgalatara iranyul, aminek
eredményét kiilonallé cikkben is publikaltam (Gudmann et al., 2020). A vizsgalatomhoz a mar
emlitett mintatateriiletek tajszerkezeti heterogenitdsa miatt a GoOdolldi-dombsag és
homogenitasa miatt pedig a Marosszog kistajakat valasztottam ki. A G6doll6i-dombsagon a
CLC18-as adatbazis alapjan 3 nagyobb osztaly (1.1.2 ,,Nem éIsszefiiggo telepiilésszerkezet”,

2.1.1 ,,Nem ontozott szantofoldek™, 3.1.1 ,,Lomblevelii erdok’) teszi ki a teriilet nagy részét,
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amelyek jelentdsen széttagoljak a kistdjat. Ennek koszonhetden a teriileten 349 poligon
talalhato, amelyek atlagos mérete 142 hektar. A Marosszogon egy dominds osztaly (2.1.1 ,,Nem
ontozott szantofoldek™) teszi ki a teriilet nagy részét (74,55%), amely igy egy homogén
tajszerkezetet alkot. Ez abbol is lathato, hogy a teriileten 1évd 166 poligon atlagos mérete 352
hektar. Az osztadlyozashoz Landsat-8-as és Sentinel-2-es muiholdfelvételeket valasztottam ki a
2018-as év 3-3 iddpontjabol és a CLCI18-as adatbazist hasznéltam fel referenciaként. A
tajmetriai  mérészamok  kiszamitasdhoz szegmensekre volt sziikkségem, igy a
mitholdfelvételekb6l készitett kompozit képekbdl éldetektalas segitségével szegmenseket
allitottam eld. A szegmentalas soran tobb kiilonboz6 minimalis nagysaggal (1-5-10-25 hektar)
is készitettem szegmentalt képeket, hogy megvizsgaljam, melyik szegmens méret az optimalis
az osztalyozds szempontjabol. Ezen szegmentalt képek alapjan szamitottam ki 4, a
tajokologidban gyakran hasznalt indexet, mint az Atlagos Folt Méret (Mean Patch Size — MPS),
Elhossz (Total Edge — TE), Atlagos Alak Index (Mean Shape Index — MSI), Fraktaldimenzi6
(Mean Fractal Dimension). Ezek a metrikdk egy teljes tajat képesek leirni, a t4j jellemzdinek
tulajdonsagaival és elrendezésével, a taj fragmentaltsagaval és a foltok alakjaval. Sajatos
tulajdonsagaik miatt a metrikdkat széles korben hasznéljak indikatorként olyan teriileteken,
mint a bioldgiai sokféleség, a vizmindség, a foldtakard valtozasa, a t4jokologia és a
varostervezés (Csikos és Szilassi, 2020; Kumar et al., 2018; Szabo et al., 2012). Az altalam
kivalasztott metrikak a tajszerkezet folytonossagat, a foltok alakjanak Gsszetettségét és a foltok
kiilsé peremének szabalytalansagait reprezentaljak. A multitemporalis mitholdképek séavjait és
a kiszadmitott tdjmetriai indexeket egyiittesen hasznaltam fel az osztalyozas soran. Az
osztalyozashoz python programkoérnyezetben implementalt véletlen erdé osztalyozot
alkalmaztam. A modell tanitasdhoz véletlenszerlien kivalasztott pontokat generaltam,
osztalyonként 4000 db-ot, mig a tobbi adatot a teszteléshez hasznaltam fel.

Az eredmények alapjan a t4jmetriai mérészdmok képesek az osztalyozas pontossagat
novelni mind a heterogén mind, a homogén té4jszerkezeti mintateriilet esetében. A
heterogénebb szerkezettel rendelkez6 GOdolléi-dombsagon az osztalyok eloszlasa
egyenletesebb, igy a taj szerkezete és a kategoriak eloszlasa miatt kisebb dsszpontossagi értéket
eredményezett a spektralis sdvokon alapul6 osztalyozas (66,81%). Mivel a spektralis sdvokon
alapul6 osztalyozas viszonylag alacsony pontossagot eredményezett, a tajmetriai mérészamok
itt magasabb pontossagnovekedést okoztak. Alkalmazasuk esetén a szamitasuk alapjaul
szolgald szegmensek méretétdl fliggben 4,61-5,85% kozotti  pontossagnovekedést
eredményeztek (9. tabldzat). Tovabbad ezen a mintateriileten a mérdszdmok egylittes
alkalmazasa 2,82 ¢s 6,82% kozotti javulast okozott. A legjobb 0sszpontossagi eredményt az

Osszes adat (spektralis savok, szegmensek és tajmetriai indexek) egyiittes alkalmazasa hozta

68



Gudmann Andras Viktor — Disszertacio,
Szegedi Tudomanyegyetem, Foldtudomanyok Doktori Iskola

(+9,33% a spektralis savon alapuld eredményhez képest, 73,62%). A szegmensek minimalis
méretének vizsgalata alapjan ezen a mintateriileten a legjobb pontossagi értéket a 25 hektaros
minimalis nagysagu szegmens réteggel érhetd el.

9. tablazat Osszpontossag novekedés a kiilonbozd adatkombinaciokkal és minimalis
szegmens nagysagokkal (Gudmann et al., 2020).

Marosszog Godolléi-dombsag
Adat/Minimalis szegmens
1ha 5ha 10 ha 25 ha 1ha 5 ha 10 ha 25 ha

méret
Spektralis savok 87,02% | 87,02% | 87,02% | 87,02% | 66,81% | 66,81% | 66,81% | 66,81%
Spektralis savok és

+1,48% | +1,53% | +3,14% | +1,15% | +4,10% | +4,21% | +3,98% | +4,11%
szegmensek
Spektralis savok és

) +0,59% | +1,51% | +2,65% | +2,38% | +2,82% | +3,55% | +4,96% | +6,82%

tajmetriai indexek
Spektralis savok és

+3,28% | +2,01% | +1,89% | +1,92% | +4,65% | +4,87% | +5,16% | +5,82%
szegmensek és MSI
Spektralis savok és

+3,35% | +2,00% | +3,70% | +1,71% | +4,97% | +5,06% | +5,10% | +5,65%
szegmensek és MPS
Spektralis savok és

+3,39% | +1,91% | +3,80% | +1,88% | +4,87% | +510% | +512% | +5,65%
szegmensek és TE
Spektralis savok és

+1,64% | +1,87% | +1,94% | +1,84% | +4,61% | +511% | +5,04% | +5,85%
szegmensek és MFRACT
Osszes adat (spektralis
savok, szegmensek és +1,82% | +2,73% | +4,37% | +2,96% | +6,28% | +6,76% | +7,88% | +9,33%
tajmetriai indexek)

A homogénebb szerkezetli Marosszog esetében az osztalyozas a spektralis savok alapjan

magas pontossagi értéket eredményezett (87,02%). Ez a pontossagi eredmény csak részben
kovetkezik a teriilet szerkezetébdl, nagyrészt a teriilethaszndlati kategoridk kis szama és a
dominans osztdly teriileten beliili nagy ardnydnak koszonhetd. Ezen a mintateriileten a
magasabb Osszpontossaghoz képest kisebb mértékii javulast eredményezett a tajmetriai
mérdszamok alkalmazasa. A tdymetriai mérészamok 1,64 €s 3,8% kozotti pontossag novekedést
okoztak a minimalis szegmens mérettdl fliggden. Az egyiittes felhasznalasuk esetében a javulas
ennél kisebb mértékii, 0,58% ¢és 2,38% kozotti volt. A legmagasabb 6sszpontossagi eredményt
itt is az 0sszes adat (spektralis savok, szegmensek és tajmetriai indexek) egylittes alkalmazéasa
hozta (4,37%-0s novekedést, 89.65%-0s Osszpontossagot). A szegmensek minimalis
méretétnek vizsgalata alapjan ezen a mintateriileten a legjobb pontossagi érték a 10 hektaros

minimalis nagysagu foltmérettel érhetd el.
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Az eredményeim alapjan jelentés pontossagbeli javulas érheté el, ha az
osztalyozast a pixel kornyezetét tajmetriai méroszamokkal leiré adatokkal bovitjilk
(min.: 0,52%, max.: 6,82%). Ezért a kutataisomban tovabbi, a pixel kdrnyezetét leir6

adatokat vontam be és ezek hatasat vizsgaltam az osztalyozas pontossagara. (3. cél)

5.2.2.2. Textara adatokbdl szarmazo informaciok, mint kiegészitd adatok vizsgalata

A masik, altalam vizsgalt, a pixelek kornyezetét leird adat a textra volt. A texturara
(szerkezetre) vonatkozoé adatok ugyanugy segithetnek az egyes osztalyok pontosabb
lehatarolasaban, mint a tdjmetriai mérészamok. A textira a pixel szomszédsaganak olyan
tulajdonsaga, ami kis teriiletekre vonatkozo térbeli eltérésekre utal, és igy képes ndovelni a
felszinboritas és teriilethasznalat osztdlyozas pontossagat. A texturainformacid kinyerésére
gyakran hasznalt modszer Haralick altal kifejlesztett sziirke-szintli egyiittallasi matrix (gray-
level co-occurrence matrix — GLCM) segitségével végzett statisztikai szamitasok és
adattranszformacio (Haralick et al., 1973). A moédszer tobb pixel egyesitését hasznalja fel
ahhoz, hogy informaciot nyujtson a pixelek kozotti, valamint barmelyik pixel és a kép kozotti
térbeli kapcsolatrdl. Az Irons és Petersen altal bemutatottak szerint az adatok atlaga, variancidja
(variance), ferdesége (skewness) és cstcsossaga (kurtosis) szamithato ki ezzel a modszerrel
(Irons és Petersen, 1981). Egyszeriségikk ¢és hatékonysdguk miatt szdmos korabbi
tanulmanyban hasznaltak mar a GLCM-et és derivatumait (Feng et al., 2015; Lei et al., 2020;
Mishra et al., 2019; Paneque-Galvez et al., 2013; H. Zhou et al., 2021). A szamitasahoz két
paraméter megfeleld kivalasztasa sziikséges: a szamitasi egyenlet és a szamitasi ablak.

A textlra kiszamitasahoz tobbféle egyenlet alkalmazhat6, mint példaul a variancia, a
ferdeség, a csticsossag vagy az atlagos euklideszi tavolsag (Mean Eucledian Distance) (Irons
és Petersen, 1981). Anys és He (Anys és He, 1995) szerint, akik az els6, masod- és harmadrendii
texturametrikak szisztematikus Osszehasonlitasat végezték el, sorrendben a variancia, a
cstcsossag és az entropia a leghasznosabb texturametrikak. Ok az elsd rendii metrikakat
ajanlottak azok alacsony szamitdsi koltsége miatt, bar a vizsgalatuk szerint a legmagasabb
pontossdgot a harmadrendi metrikék biztositjak. Arra a kovetkeztetésre jutottak, hogy egynél
tobb elsérendii metrika egyiittes hasznalata nem javitja a foldhasznalati osztalyozas pontossagat
az egyediili hasznalathoz képest.

A kivalasztott egyenlet Kiszamitasahoz meg kell hatarozni az ablakban (kernelben) 1év6
pixelek szamat, ami paratlan szamparok szorzataval irhato le, példaul 3x3 vagy 5x5 és a kép
megfigyelésére haszndlhatd. A kernel mérete hatdrozza meg a képbdl kinyerhetd informaciod
mennyiségét is (Marceau et al., 1990). Ha az ablakméret tul kicsi, akkor a mitholdképekbdl
kinyert térbeli informdci6 nem elegendd a kiilonboz6 foldhasznalati osztalyok

megkiilonboztetéséhez. Ha til nagy, az informécio durva lesz, és a foldhasznalati osztalyok
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atfedhetik egymast, ami térbeli hibakat okozhat és hamis informaciot szolgaltathat (Anys et al.,
1994). A gyakorlati tapasztalatok azt mutatjak, hogy a textirametrika kombinalt hasznalata
kiilonb6z6 kernelméretekkel noveli a pontossagot.

A textura adatok felhasznalasanal figyelembe kell venniink a képiink térbeli felbontasat

¢és azt a tényt is, hogy a mozgd ablak sok esetben csak nagy méret mellett okoz megfeleld
Tobbrétegli perceptron Tarto-vektor gép u Véletlen erdd m Déntési fa

Spektralis savok + Mean Eucleadian Distance (6sszes)
Spektralis savok + Mean Eucleadian Distance 17x17
Spektralis sivok + Mean Eucleadian Distance 11x11

Spektralis savok + Mean Eucleadian Distance 5x5

Spektralis savok + Mean Eucleadian Distance 3x3

Spektralis sivok + Kurtosis (9sszes) —

Spektralis savok + Kurtosis 17x17

Spekitralis savok + Kurtosis 11x11 —

Spektralis savok + Kurtosis 5x5

(gt

Spektralis sdvok + Kurtosis 3x3

Spektralis savok + Skewness (Osszes)

Spektrélis savok + Skewness 17x17

Spektralis savok + Skewness 11x11

Spektralis savok + Skewness 5x5

Spektralis savok + Skewness 3x3

Spektralis sivok + Variancia (Osszes)

Spektralis savok + Variancia 17x17

Spektralis savok + Variancia 11x11

Spektralis savok + Variancia 5x5

Spektralis savok + Variancia 3x3

-20% -15% -10% -5% 0% 5% 10% 15% 20%

30. 4bra A kiilonbozé textira szamitési modszerekkel és ablak méretekkel késziilt modellek
atlagos pontosag kiilonbsége a spektralis savokon tanitott modellekhez képest.

javulast (pl. 61x61). A vizsgalatom els6 1épéseként a Landsat-7-es felvételeken teszteltem le 4
kiilonboz6 textira szamitasi modszert (Variancia, Ferdeség, Cstcsossag, Atlagos Euklideszi
tavolsag), 4 kiillonboz6 ablakmérettel (3x3, 5x5, 11x11, 17x17) (A3. tablazat, A4. tablazat).
Az eredmények alapjan a legtobb metrika kernel mérettdl fliggetleniil javitja a
kiilonb6zé modellek pontossagat (30. abra). Az algoritmusokndl egyiittesen a legnagyobb
javulast a két legegyszeriibben kiszamithaté metrika: a variancia és az atlagos euklideszi

tavolsag eredményezte. Azonban ezeknél az ablakok mérete jelentés hatast gyakorolt a
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pontossag novekedésére. A legnagyobb javulast a 17x17-es kernel okozta mindkét metrika
esetében (atlagosan +10,83% a variancia és +8,38% az atlagos euklideszi tavolsag esetén),
illetve a kiilonb6oz6 ablakmérettel kiszamitott metrikak egyiittes alkalmazasa (variancia
+11,11%, atlagos euklideszi tdvolsag +8,37%). Arra a megallapitisra jutottam, minél
bonyolultabb a metrika kiszamitasahoz sziikséges egyenlet, annal kisebb javulast okozott a
pontossagban. A legbonyolultabb metrika, a csticsossag, tobb esetben rontotta is a pontossagot.

10. tablazat A textara adatok felhasznaldsaval késziilt eredmények atlagos F-szam valtozasa
a spektralis savok felhasznalasaval késziilt eredményekhez képest.

Spektralis Spektralis
Spektralis | Spektralis s;ivok + s;évok +
CLC kategbria \ Felhaszndlt adatok \jj;lizlric?a \jj;;(;lr:chra Eﬁlzllziig:sszi Eﬁlill?ggsszi
(6sszes) 17x17 Tavolsag Tavolsag
(6sszes) 17x17
1.1.1 Osszefuggé telepiilésszerkezet -6,63% +5,74% +3,63% +3,42%
1.1.2 Nem 0sszefiiggo telepiilésszerkezet +20,93% +16,30% +17,57% +14,70%
1.2.1 Ipari vagy kereskedelmi teriiletek +13,42% -11,26% -2,68% -6,27%
1.2.2 Ut - és vasuthalézat és csatlakozé teriiletek +0,88% +15,56% +33,26% +33,16%
1.2.4 Repiil6terek +17,46% +14,58% +10,34% +10,15%
1.3.1 Nyersanyag kitermelés +0,00% +0,00% +0,00% +0,00%
1.3.2 Lerakéhelyek. meddéhanyok +0,00% +0,00% +0,00% +0,00%
1.3.3 Epitési munkahelyek -14,68% -4,87% +7,22% +2,93%
1.4.1 Varosi zoldteriiletek +34,89% +28,30% +14,35% +7,35%
1.4.2 Sport-. szabadid6- és tdiil6teriiletek -10,31% +4,49% -9,67% -10,43%
2.1.1 Nem 6nt6zott szantofoldek +34,37% +29,70% +24,32% +24,14%
2.2.1 Sz616k +23,47% +21,21% +25,10% +21,70%
2.2.2 Gylimdlesosok. bogyosok +7,03% -1,15% +8,91% +6,28%
2.3.1 Rét. legeld +25,87% +7,39% +19,02% +16,75%
2.4.2 Komplex miivelési szerkezet +15,85% +9,11% +9,93% +8,15%
243 Elsédlegesen’ mezc’iga%d%ségi teriiletek jelentds +19,88% +16,22% +14,99% +11,26%
természetes novényzettel
3.1.1 Lomblevelii erd6k +17,63% +8,03% +12,91% +11,06%
3.1.2 Tileveli erdok +3,09% -1,13% +5,30% +4,60%
3.1.3 Vegyes erd6k +16,30% -5,92% +7,86% +2,03%
3.2.1 Természetes gyepek. természetkozeli rétek +25,22% +17,56% +17,25% +14,18%
3.2.4 Atmeneti erdds-cserjés teriiletek +16,48% +8,88% +4,97% +2,60%
4.1.1 Szarazfoldi mocsarak +20,47% +9,32% +17,12% +17,10%
5.1.1 Folyévizek. vizi utak -10,69% -16,34% -12,22% -12,81%
5.1.2 Allovizek +14,32% +5,83% -0,90% +2,30%

A legmagasabb 0Osszpontossaggal rendelkezé eredmények atlagos F-szam valtozas
vizsgalataval osztalyszinten is jol lathato a textira adatok pontossagjavito hatasa (10. tablazat).
A 24 kategoriabol 13-nal mindegyik textura adat és tovabbi 5-nél a textura adatok tobbsége
(négybdl harom esetben) novelte az F-szam értékét. A variancia adatok mindegyikének

felhasznalasakor, az F-szam valtozas -14,68% ¢s 34,89% kozotti tartomanyban mozgott, és a
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25 kategoriabol 18 esetében novekedés volt a pontossagban (atlagosan +18,2%-0s javulas). A
variancia adatok 17-es kernel mérettel elkészitett valtozatainak felhasznalasakor az F-szam
kiilonbség hasonld tartomanyban mozgott (-16,34% ¢és 29,7% kozott). A 25 kategoriabol 16
esetén Volt novekedés (ezen osztalyoknal atlagosan +13,63%-0s volt a javulas). Az atlagos
euklideszi tavolsag adatok mindegyikének felhasznalasakor is hasonldan széles tartomanyban
mozogtak az F-szam valtozas értékei: -12,22% és 33,26% kozott, ahol a 25 kategoriabol 18
esetén volt novekedés a pontossagban (atlagosan +14,1%-0s volt a javulas). Ezekhez az
eredményekhez képest, csupan az atlagos euklideszi tavolsag 17-es kernel mérettel elkészitett
valtozatainak felhasznalasakor valtozott egy kicsivel tagabb értéktartomany mellett (-12,81%
¢és +33,16%), a 25 kategoriabdl 19 esetén volt novekedés a pontossagban (atlagosan +11,25%-
os volt a javulas).

Az eredmények alapjan a variancia textira adatok felhasznaldsaval értem el a
legnagyobb atlagos pontossag javulast mind Gsszpontossag, mind osztaly szinten. Emiatt a
tovabbiakban ennek a metrikanak a felhasznélasaval folytattam a vizsgalataimat.

A késobbi elemzésekben a 2018-as adatokon az S2 adatokbdl variancia textura adatot
vizsgaltam kiilonb6z6, az eddigiektdl részben eltérd kernel mérettel (11x11, 17x17, 23x23)
kiszdmitva (A4. tablazat). Az eredmények alapjan minden algoritmus és tanuld teriilet esetén,
a 2000-es adatoknal tapasztaltakhoz hasonldan jelentds pontossag novekedést értem el a textara
adatok bevonasaval (11. tablazat). A kernel méret novelésével egyiitt a pontossag javulésa is
novekszik, igy a legjelentésebb Osszpontossag javulast a legnagyobb 23x23-as kernellel
kiszdmitott variancia értékek adtadk (+10,49%). Azonban a variancia értékek egylittes

alkalmazasa még ennél is magasabb 0sszpontossag javulast eredményezett (+11,94%).

73



Gudmann Andras Viktor — Disszertdcio,

Szegedi Tudomanyegyetem, Foldtudomanyok Doktori Iskola

11. tablazat A variancia texttra adatok felhasznaldsaval késziilt eredmények atlagos
Osszpontossag és F-szam valtozasa a Sentinel-2-es spektralis savok felhasznaldsaval késziilt
eredményekhez képest.

Sentinel-2 Sentinel-2 + Sentinel-2 + Sentinel-2 + Sentinel-2 +
variancia 11x11 | variancia 17x17 | variancia 23x23 | variancia 6sszes
Osszpontossag 73,67% +3,39% +8,04% +10,49% +11,94%
F-szam
1.1.1 Osszefiiggd
12 39,45% +15,67% +34,09% +43,42% +40,36%
telepiilésszerkezet
1.1.2 Nem Gsszefligg$ 71,59% +6,20% +11,52% +13,86% +15,89%
telepiilésszerkezet
1.2.1 Ipari vagy kereskedelmi | 5, 700, +10,37% +20,77% +26,26% +29,11%
teriiletek
1.2.2 Ut - & vasiithalozat & 39,95% +14,26% +25,04% +30,08% +34,40%
csatlakozo teriiletek
1.2.4 Repiil6terek 52,16% +22,46% +30,19% +33,53% +35,88%
1.3.1 Nyersanyag kitermelés 10,39% +25,37% +39,78% +41,09% +42,93%
1.3.2 Lerakdhelyek. meddéhanyok | 39,59% +14,06% +29,37% +35,94% +38,78%
1.3.3 Epite’si munkahelyek 15,49% +34,32% +43,86% +47,30% +51,63%
1.4.1 Varosi zoldteriiletek 43,98% +9,15% +24,06% +29,06% +33,81%
1.4.2 Sport-. szabadids- és 45,97% +11,70% +22,37% +26,67% +29,86%
uduloteriletek
2.1.1 Nem 0ntozott szantdéfoldek 82,24% +1,86% +5,87% +7,46% +8,94%
2.1.3 Rizsfoldek 70,73% +10,74% +14,76% +17,85% +17,84%
2.2.1 Sz616k 33,17% +22,36% +33,11% +36,17% +39,12%
2.2.2 Gylimdlesosok. bogyosok 42,71% +16,46% +27,47% +31,37% +35,24%
2.3.1 Rét. legeld 55,65% +5,24% +13,21% +17,72% +19,38%
2.4.2 Komplex miivelési szerkezet | 33,31% +8,39% +18,04% +23,23% +26,50%
2.4.3 Elsodlegesen mezdgazdasagi
teriiletek jelentOs természetes 48,14% +8,38% +17,75% +23,87% +27,20%
novényzettel
3.1.1 Lomblevelli erdék 71,19% +3,41% +6,20% +10,71% +10,53%
3.1.2 Tiilevelii erdk 63,60% +4,54% +12,93% +15,49% +19,69%
3.1.3 Vegyes erdok 42,70% +8,23% +18,01% +20,82% +23,48%
3.2.1 Természetes gyepek. 18,09% +20,55% +47,69% +51,76% +54,47%
természetkozeli rétek
3.2.4 Atmeneti erdds-cserjés | g gqg +6,82% +14,16% +18,56% +21,05%
teriiletek
4.1.1 Szarazfoldi mocsarak 61,96% +4,83% +13,53% +17,83% +18,68%
5.1.1 Folydvizek. vizi utak 82,53% +1,16% +4,88% +8,46% +7,80%
5.1.2 Allovizek 84,30% +2,97% +8,41% +9,39% +9,23%
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A valtozok
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31. abra A Sentinel-2-es savok és 23x23-as kernellel elkészitett onalloé futtatdsa soran
variancia rétegek atlagos permutacios fontossag értékei. .
megfigyelt

legfontosabb savok, mint az ultrakék, a kozepes infravoros 1. és 2., valamint a vizpara itt is
magas értékeket vettek fel (0,7-0,81 kozott). A legfontosabb savok kozott is megtalalhatok a
variancia rétegek (kozepes infravords 1. és 2.), de tobb savnal is eléfordul, hogy spektralis
szinten kis mértékben voltak fontosak, variancia savként viszont magas érteket vettek fel (kék,

voros, kozeli infravoros).
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32. abra A kiilonbozo kernel méretekkel készitett variancia rétegek egyiittes
felhasznalasaval betanitott mesterséges neuralis halé modell eredménytérképe a Tétényi-
fennsik mintateruletre, 2018-as évre vonatkozoan.

A felhasznalt variancia adatok mindegyike az 6sszes osztaly esetén ndvelte az F-szamot,

rom

azonban a javulas mértéke osztalyonként eltéré volt. A kizarolag az S2 spektralis reflektancia

adatain alapuld osztalyozas soran kapott legalacsonyabb F-szammal rendelkez6 kategoriaknal

figyelhetd meg (1.3.1-es ,,Nyersanyag kitermelés”, 1.3.3-mas ,.Epitési munkahelyek”, 3.2.1-es

»Természetes gyepek, természetkozeli rétek”). Azonban még az alapvetben jol lehatarolhato,
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80% folotti F-szammal rendelkezd kategoridknal is hatdrozott ndvekedés volt tapasztalhato. A
variancia textura adatok egyiittes felhasznalasaval, a 25 osztalybol 16-nal 20%-nal tobbel
novekedett az F-szam és a 25-b6l csupan egy osztalynak volt 70% alatti F-szam értéke: a 1.3.1-
es ,,Nyersanyag kitermelés” kategdridnak. A variancia adatok egylittes hasznalataval készitett
térképet vizsgalva jol lathato, hogy a térképen nagy, egybefiiggd, az eredeti CLC réteghez
nagyban hasonlito foltok jottek 1étre a csak az S2-es adatokbol levezett térképhez képest (32.
abra). Emellett az elszort kis pixelcsoportok szama is jelentdsen kisebb, mint a csupan S2-es
adatokbol osztalyozott térképen. Azonban a vonalas objektumok (utak, vasut) a textara adatok
felhasznalasaval készilt térképen sokkal kevésbé vehetdk ki, mint az S2-es eredménytérképen.
Ezek alapjan arra a megallapitasra jutottam, hogy a variancia textura adat kernel
mérettol fiiggetleniil hasznos informacioforras az egy idopontot hasznalé osztalyozasnal,
de nagyobb és Kkiilonbozé kernel méretek egyiittes alkalmazasa nyujtja a legnagyobb
pontossagbeli javulast az eredményekben.

Mivel a tajmetriai mérészamok és a textura adatok felhasznaldsa is egyértelmiien
javitotta az osztalyozasok pontossagat, ezért érdemesnek talaltam, hogy ezeket az adatokat nagy
terlileten torténd osztalyozasra is felhasznaljam. Ennek a vizsgilatnak az eredményeit
publikaltam ,,Pixel and object-based land cover mapping and change detection from 1986 to
2020 for Hungary using histogram-based gradient boosting classification tree classifier” cimen
a Geographica Pannonica foly6iratban (Gudmann és Mucsi, 2022). A vizsgélat soran egész
Magyarorszag teriiletére készitettem el felszinboritasi/teriilethasznalati térképeket a CLC
nomenklatiura alapjan, Landsat miiholdfelvételek alapjan, 4 idépontra vonatkozoan (1986,
2003, 2015, 2020). Az eclkészilt térképek alapjan megvizsgaltam az idOpontok kozti
valtozasokat, hogy beazonositsam a fo valtozasi dinamikdkat Magyarorszag teriiletén. A
vizsgalat eredményei alapjan a spektralis savok, tajmetriai metrikak és textura adatok
felhasznalasaval megfelelé pontossaggal voltam képes teriilethasznalati térképeket
eléallitani (85,99%0-87,33%) orszagos szinten. Az egyes osztalyok felhasznaldi pontossaga,
ami az osztalyok megbizhatosagat mutatja, minden idépontban a lehetséges 27-b6l 15 osztaly
esetében 90% folotti volt. Az elkészilt valtozasvizsgalat segitségével kimutattam a
Magyarorszdgon dominans valtozasi folyamatokat, mint a varosiasodast és az erddsitést.
Emellett a pixelszintli eredményeknek koszonhetden részletesebb képet kaphatunk a lokalis
valtozasokral is.

A térbeli adatok felhasznalasaval késziillt modellek eredményei alapjan, a
variancia, a ferdeség, a kurtozis, az atlagos euklideszi tavolsag adatok a Landsat-7-es
felvételekbol Kkiilonb6zoé kernel mérettel kiszamitva, atlagosan 7,83%, 6,32%, 3,52% és

6,42%-0s pontossagnivekedést okoztak. Tovabba a Sentinel-2-es felvételekbdl kiilonboz6
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kernel mérettel kiszamitott variancia adatok atlagosan 3,39% és 11,95% kozotti
novekedést okoztak az osztilyozasok osszpontossagaban. Igy megallapithaté, hogy a
textura adatok megfelelonek bizonyultak az osztalyozasok pontossaganak ndvelése
szempontjabol. Ezen adatok nemcsak Kistaj szinten, hanem orszagos szinten is

alkalmazhaték a megfelel6é pontossag elérésében. (3. cél)

5.2.3. Temporalis adatok osztalyozasra gyakorolt hatasanak vizsgalata

A hosszutava valtozasvizsgalatok készitésekor a korabbi idépontokbol altalaban kevés

adat és adatforrasérhetd el, ezért sokszor egy évbol csak egy felvétel (és az abbdl szarmaztathatd

adat) all rendelkezésiinkre. Azonban napjainkra tobb egymastol fliggetlen adatforras is 1étezik,

amelyek 6nmagukban is nagyon fontos informacioforrasok, koszonhet6en térbeli, spektralis és

id6beli felbontasuknak. 1d6beli felbontasuk nagysagrendekkel jobb, mint az ¢l6z6 generacios

megoldasoknak, igy az iddjarasi korilmények ellenére egy adott teriiletrdl sokkal tobb

elemzésre alkalmas felvételt biztositanak. Emiatt az egy idopontban késziilt felvételek és a

beloliik szarmaztatott adatokon kivil megvizsgaltam a multitemporalis adatok
felhasznalhatosagat is.
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33. abra Mezdgazdasagi CLC kategoridk éven beliili median értékei Sentinel-2 8a-as
sav értékei alapjan.
Ezek tobb szempontbol is hasznos informaciokat hordoznak: egyrészt a felszinboritast
és teriilethasznalatot alkotd elemek éven beliili valtozasabol eredd spektralis kiilonbségeket (pl.
a vegetacid éven beliili fenologiai fazisaibol eredd eltérések, mezdgazdasagi tevékenységbdl

eredd valtozasok, mint a vetés, a szantds vagy az aratds); masrészt, a spektralis savok
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intenzitasanak éven beliili valtozékonysagabol ered6 kiilonbségeket (33.abra). Ezek az
informaciok az eddigi kutatasok szerint is hasznosnak bizonyultak a kiilonb6z6 osztalyozasi
feladatokban (Griffiths et al., 2013; Henits et al., 2016; Pflugmacher et al., 2019; Phan et al.,
2020).

A jelenlegi kutatdsomban arra kerestem a valaszt, hogy ezen adatok az osztaly szintii
pontossagi értékeket (készitdi és felhaszndldi pontossag) milyen mértékben képesek
modositani. Tovabba megvizsgaltam, hogy hany darab kiillonb6z6 idépontban késziilt kép,

milyen idokozzel érheti el a legnagyobb teljesitménybeli novekedést az egyes modelleknél.
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34. abra A mintateriileteken mért dsszpontossag atlaganak valtozasa a felhasznalt felvételek
szamanak fliggvényében az eggyel kevesebb kép alapjan késziilt modell pontossdgahoz képest.

A kutatasomban a multitemporalis adatok vizsgalatat a 2000-es adatokon kezdtem el. A
kezdé idépont a CLC adatbazisok alapjat nyujtdo augusztusi L7-es felvételek voltak (A4.
tablazat). Ezeket bovitettem egyre tobb 0j képpel, amelyek mas-mas idépontban késziiltek. Az
Uj idépontok bevonasanal az éven beliili tdvolabbiaktol haladtam az egyre kozelebbi idépontok
felé, mivel a kezd6é idéponthoz kozel a felvételek spektralis értékekei kozott nagymértéki a
korrelacio, ezért ezek kisebb informacidomennyiséget hordoznak. Ebbdl adodik, hogy az
osztalyozasra gyakorolt potencialis hatdsuk is alacsonyabb. A tavolabbi id6épontban késziilt
felvételeket a kezdd id6ponthoz képest mindkét irdnyba bdvitettem, igy az augusztusi kezdd
datumot elsOnek egy tavaszi legtavolabbi idépontban, majd egy 6szi legtavolabbi idépontban
késziilt felvétellel bovitettem. A tavaszi kezdd datumtol az dszi datumig haladva minden képet

egymas utan hozzdadtam az osztalyozéashoz.
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35. abra A mintateriileteken mért Gsszpontossagok atlagdnak véltozasa a felhasznalt
felvételek szamanak fiiggvényében az egy kép alapjan késziilt modell pontossagahoz képest.

Az eredmények alapjan a 4-bdl 3 osztalyozoé algoritmus (dontési fa, véletlen erdd,

tobbrétegli  perceptron) ugyanugy reagalt a multitempordlis adatokbol szérmazo
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tobbletinformacidra, mig a tartd-vektor gép ettdl kicsit eltérden (34. abra, 35. abra). A két szE&lso
idépont bevondsa minden algoritmus esetén novelte a pontossagot 1,53 és 4,66% kozotti
értekekkel. A legnagyobb javulast a véletlen erdd algoritmusnal okozta, ahol egy tovéabbi
felvétel felhasznalasa 3,14%-0s javuléast, mig a harmadik felvétel tovabbi 1,52%-o0s javulast
eredményezett (35. abra). A pontossag novekedése az 6todik hozzaadott felvételig tartott,
azonban Ujabb idépontok bevondsa mar egyre kisebb mértékii javulast okozott. Tovabbi képek
felhasznalasa mar csak kis mértékben gyakorol hatast a pontossagra, mivel az osztalyozasba
bevont képek kozti korrelaciéo miatt az informacié kinyerése bonyolultabb, ugyanis ugyanazt
az informacidémennyiséget nagyobb dimenzidju adathalmazbol kell kivonni.

12. tablazat A 2000-es évre vonatkozdan, tobb idépontban késziilt Landsat-7-€s
felvételek kombinécidival betanitott modellek eredményeinek atlagos F-szamai.

CLC | 1nyari | 1 nyari, | 1 nyari, 1 nyari, 1 nyari, 2 nyari, 3 nyari, 3 nyari,
kéd felvétel | 1tavaszi | 1tavaszi, | 2tavaszi, | 3tavaszi, | 3tavaszi, | 3tavaszi, | 3tavaszi,
felvétel 1 6szi 1 6szi 1 6szi 1 6szi 1 6szi 2 Oszi
111 72,99% | 75,54% 77,57% 77,76% 78,83% 78,53% 78,12% 80,20%
112 13,90% | 15,51% 16,80% 17,89% 17,55% 18,21% 16,93% 16,93%
121 6,24% | 4,60% 5,87% 6,14% 6,21% 7,60% 7,29% 7,29%
122 8,92% | 8,69% 12,75% 16,27% 11,48% 11,86% 12,20% 12,20%
124 63,87% | 72,67% 73,72% 72,53% 75,17% 73,80% 72,81% 72,81%
131 22,45% | 39,73% | 39,56% 49,47% 49,57% 48,73% 45,97% 45,97%
132 6,51% | 13,19% 15,72% 18,09% 21,21% 26,39% 20,35% 20,35%
133 20,30% | 22,44% 23,70% 24,60% 24,69% 25,03% 25,47% 25,47%
141 6,74% | 9,19% 9,16% 12,32% 9,62% 12,00% 10,11% 10,11%
142 13,10% | 15,52% 15,48% 19,04% 18,88% 18,96% 18,66% 18,66%
211 8,73% | 12,31% 13,31% 13,98% 14,05% 13,71% 14,54% 14,54%
221 6,43% | 8,59% 14,09% 14,87% 18,32% 16,00% 15,15% 15,15%
222 14,49% | 13,05% 14,08% 14,53% 14,98% 15,42% 15,32% 15,32%
231 5,30% | 4,03% 5,43% 5,57% 6,88% 7,57% 6,15% 6,15%
242 3,14% | 4,97% 5,20% 4,84% 7,07% 5,80% 6,18% 6,18%
243 3,34% | 4,73% 5,07% 5,21% 5,57% 5,71% 5,73% 5,73%
311 5,93% | 6,19% 9,29% 10,38% 10,79% 11,20% 9,25% 9,25%
312 4,20% | 5,90% 6,89% 7,16% 7,93% 7,75% 10,59% 10,59%
313 7,78% | 11,29% 12,39% 14,56% 14,91% 16,03% 12,74% 12,74%
321 3,79% | 5,23% 6,01% 5,75% 6,78% 7,53% 7,41% 7,41%
324 1,01% | 1,78% 2,37% 4,77% 2,77% 4,87% 4,71% 4,71%
411 4,62% | 8,23% 8,40% 8,49% 9,58% 9,77% 10,28% 10,28%
512 3,95% | 5,40% 3,07% 5,55% 5,56% 7,90% 8,13% 8,13%

Ugyanezt az eredményt kaptam, amikor az osztalyonkénti atlagos F-szam értékeket
vizsgaltam meg (12. tablazat). Az F-szamok a két sz¢ls6 idépont (1 tavaszi, 1 6szi) bevonasara

a legtobb kategorianal (a 25-b6l 21-nal) jelentds pontossagnovekedést eredményeztek
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(atlagosan 1,92%-kal). A legjelentdsebb javulast az 1.3.1-es ,,Nyersanyag kitermelés”
kategorianal tapasztaltam. A tovabbi tavaszi idépontok bevonasa az osztalyozasba ugyan
kisebb mértékben, mint a sz¢lsé idépontok esetében, de tovabb noveli a kategdridk F-szam
értékeit (atlagosan 0,92%-kal). Ugyanakkor a tovabbi nyari idépontok mar a legtobb esetben
csokkenést okoznak (25-bél 16 esetben) és csak kevés alkalommal javulast. Emiatt a
visszaesések miatt az altagos F-szam valtozas elhanyagolhato lett (-0,09%). Tovabbi egy 6szi
idépont felhasznalasa csak az 1.1.1-es ,,Osszefiiggd telepiilésszerkezet” -nél okozott véltozast,
ahol +2,07% -kal nétt az F-szam. Ezek alapjan kijelenthetd, hogy az éven beliil legtavolabb
1évo két datumok bevonasa hozza a legnagyobb pontossagbeli ndvekedést az osztalyozasban,
mig a tovabbi datumok sokkal kisebb javulast eredményeznek. Osztalyszinten is az éven beliil
legtavolabb 1évé datumok okozzak a legnagyobb javuldst, mig a tavaszi idépontok kisebb
javulast még nyujtanak. Viszont a nyari és az 6szi idopontok mar nem okoznak jelentds
valtozést a pontossagban.

A 2018-as adatokon az eddigi eredményeket figyelembe véve az S2-es adatok mellett
kétféle adathalmaz hatasat vizsgaltam meg (A4. tablazat, 38. abra). Az egyik esetben egy-egy
tavaszi, nyari és 6szi felvételt hasznaltam fel, mig a masikban egy tagabb iddintervallumban a
meglévé 3 idéponthoz még harom felvételt adtam hozza, igy nagyjabol 2-3 havonta lett egy
felvétel az évbol (Jan.—Marc.—Jun.—Aug.—Okt.—Dec.). Az eredmények alapjan a 2 plusz
idépont bevonasa atlagosan +14,82%-0s Osszpontossagbeli novekedést okozott az egy
idépontos eredményekhez képest, mig az 6 idOpontos futtatds atlagosan +18,84%-ot. A
legnagyobb pontossdgndvekedés a mesterséges neuralis modellnél volt kimutathato, ahol a 3
1d6pont alapjan +15,81%, mig az 6 id6pont alapjan +22,25% volt a novekedés. Azonban az
osztalyszintii eredmények ennél Gsszetettebb képet mutatnak (36. abra), mivel a 3 idépontos
eredmények esetén az Gsszes osztaly F-szam jelentésen javult, jelentds, atlagosan +30,89%-kal.
A legnagyobb novekedés a 3.2.1-es ,,Természetes gyepek, természetkozeli rétek” (+61,74%) és
a 1.3.3-as ,Epitési munkahelyek” (+54,66%) kategoriaknal tortént. A 6 idépont adatainak
felhasznalasaval kapott eredményeknél az osztalyok mindegyikénél egy kivételével javulés
tortént. Azonban ezek koziil csak 7 kategorianal kaptam nagyobb F-szam értéket (foleg a
mesterséges felszinek fGosztalyba tartozoknal), mint a 3 idépontos futtatasnal (azaz, ahol
tovabbi javulds tortént) (36. abra). A tobbi 17 osztalyndl nem tortént tovabbi
pontossagndvekedés, sot, valamilyen mértékben csokkent az adott osztalyok F-szam értéke.
Ezek alapjan a tovabbi 3 idépont felhasznalasakor figyelembe kell venni, hogy a jelentds
Osszpontossag novekedés ellenére csak bizonyos, mesterséges felszinek féosztilyba tartozo
kategoriak pontossaga novekedett érdemben, a tobbi osztaly pontossaga valamilyen szinten
csokkent a 3 id6pontos futtatashoz képest.
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36. abra A 2018-as, multitemporalis adatok bevonasaval késziilt modellek altal kapott

eredmények atlagos F-szam értékei.
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Permutacios fontossag

37. abra A hat, kiilonb6z6 idépontban készitett mitholdkép felhasznalasaval
készitett véletlen erdd modell 4tlagos permutacids fontossag értékei.

A permutacids fontossag értékek alapjan a legfontosabb sdvok ugyanazok, mint az egy
idopont felhasznalasanal: Ultrakék, Vizpara, Kozepes infravoros 1. és 2. (37. abra). A
kiilonboz6 idépontok koziil is ezek a savok keriiltek a legfontosabb valtozok kozé. A
legfontosabb 5 valtozo6 kdzott 2-2 januari és oktober valtozo van, mig a tobbi egy méjus-jiniusi
idépont. Kiemelendd, hogy a kezdd iddpontnak valasztott augusztusi kép egyetlen egy
valtozoja sem szerepel a legfontosabb 10 valtoz6 kozott és a legfontosabb 20 kozott is csak 2
ilyen valtozo van. A permutacios fontossag értékek magnitudoja alapjan az is lathato, hogy az

egy i1d6ponthoz képest, a valtozok egy mértékkel kisebb értékeket vesznek fel. Ebbdl arra
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kovetkezhetlink, hogy a valtozok megnovekedett szdma miatt, az egyes idOpontok, és a
hozzajuk tartoz6 valtozok alapvetden kisebb szerepet jatszanak a modellépités soran, mint az

egy idopontos futtatas soran.

CLC kategoridk | Gylimblcssok, bogydsok i E
. Nem 6sszefiiggd telepiilésszerkezet

Rét/legel6 §

. Ipari vagy kereskedelmi teriiletek Komplex miivelési szerkezet

B Ut - és vasithélozat és csatlakozo teriiletek Elsédlegesen mez6gazdaségi teriiletek
jelentds természetes novényzettel

Lomblevelli erd6k

" Vegyes erddk
Atmeneti erd6s-cserjés teriiletek

RepiilGterek
Varosi zoldteriiletek
Sport-, szabadidé- és tdulGteriletek

Nem 6ntoz6tt szantofoldek =
|| Szarazfoldi mocsarak

38. abra Véletlen erdd osztalyozdval készitett terlilethasznalati térképek a Liszt
Ferenc Nemzetkozi Repiilotér kornyékérdl:
A — 1 idépont alapjan,
B — 3 id6pont alapjan,
C — 6 id6pont alapjan.
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A Landsat-7-es temporalis adatok felhasznalasaval készitett eredmények alapjan
ezen informaciok -5,46% és +7,14% kozotti pontossagvaltozast okoztak (atlagosan
+0,99%). A Sentinel-2-es temporalis adatok felhasznalasaval betanitott modellek 12,92%
és 22,25% kozotti pontossagnovekedést mutattak. Ezen eredmények alapjan a temporalis
adatok felhasznalasaval jelentds javulast lehet elérni az osztalyozas pontossagaban.
Eredményeim alapjan az idopontok idéablakdnak kivalasztiasanal, a 2018-as évre a
legjobb eredményt 3 honapos idéablakok esetén 6 miiholdkép alapjan kaptam (minden

osztalyozo algoritmus 90% feletti atlagos pontossagi értéket adott vissza). (4. cél)

5.2.4. A multispektralis miiholdfelvételektdl fiiggetlen adatok hatasanak vizsgalata
az osztalyozasra

Az optikai szenzorok adatai mellett felhasznalhatunk olyan adatokat is, amelyek mas
modon irjak le az adott biofizikai vagy tarsadalmi-gazdasagi jelenségeket. llyenek lehetnek a
mikrohulldmu radar adatok, amelyek az objektumok megadott hullamhosszokon mért spektralis
intenzitasértékei helyett egy impulzus visszavert energiamennyiségét és annak tulajdonsagait
mérik. Ezen adatok alapjan lehet kovetkeztetni egy adott objektum magassagara, érdességére,
Osszetételére vagy alakjara. Tovabbi fliggetlen adat lehet, amit mar sok kutatasban
felhasznaltak, mint kiegészité adat, a kiilonb6z6 domborzat vagy feliilet modellekbdl
szarmaztatott magassagi adatok (Balzter et al., 2015; Phan et al., 2020). Ezek az adatok bévebb
informaciot adnak az adott teriilet domborzati viszonyair6l, azonban figyelembe kell venniink,
hogy nagy mértékii geokorrelacioval rendelkeznek, tehat a felhasznalasukkal készitett modellek
nem teljesen generalizalt szabalyokat alkotnak, hanem megjelennek benniink az adott teriilet
sajatossagai. A vizsgalatomban kétféle magassagi adatot hasznaltam fel mint kiegészit6 adat,
az SRTM-et, az L7-es spektralis savokkal egyiitt a 2000-es évre vonatkozoan, illetve az
ASTER-GDEM-bél kinyerhetd magassagi adatokat az S2-es spektralis savokkal a 2018-as
évre. Tovabba Sentinel-1 (S1) radar adatok VV és VH savijait is vizsgaltam egy idépontbol
(2017.07.24-25.) az S2-es adatok kiegészitéseként a 2018-as évre.

A 2000-es adatok eredményei alapjan az STRM adatok felhaszndlasa a spektralis adatok
mellett a mintateriiletek tobbségénél minden osztalyozo esetén ndveli a pontossagot. A
legnagyobb mértékli atlagos javulast a tobbrétegii perceptron osztalyozonal okozta: +3,57%-
kal, mig a legkisebb javulas a dontési fa esetén volt mérhetd +0,49%-kal. A véletlen erdd és a
tarto-vektor gép esetében a pontossag novekedése 3,11% és 2,23% volt. A lehetséges 25
kategoriabol a véletlen erdd osztalyozo esetén 19-nél tortént javulas az F-szam értékében, mig
a tobbrétegli perceptron esetében 13, a dontési fanal 10, a tarto-vektor gépnél 6 kategorianal

(13. tablazat).
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13. tablazat A spektralis sdvok ¢s az SRTM adatok felhasznalasaval késziilt modellek
eredményeinek atlagolt F-szam értékei kategoriankként.

CLC Spektralis | Spektralis savok + | Spektralis savok | Spektralis savok + Spektrsalg_s”s\zvok -

osztAlvok savok SRTM + SRTM SRTM Tobbrétesi

Y (atlag) Déntési fa Véletlen erdd Tarto-vektor gép ODICeEt

perceptron
111 62,19% 3,5% 6,4% 4,0% -3,9%
112 30,50% 0,2% 1,2% -1,0% 0,4%
121 53,54% 0,8% 5,0% -0,6% 5,2%
122 19,20% -7,5% 3,6% -1,5% 2,1%
124 34,92% -0,3% 2,3% 2,3% -1,0%
131 0,00% 0,0% 0,0% 0,0% 0,0%
132 0,00% 0,0% 0,0% 0,0% 0,0%
133 37,90% -1,3% 2,2% -2,4% 0,9%
141 5,07% 1,5% 2,6% -2,2% 0,2%
142 32,27% -0,5% 1,4% -4,3% 1,0%
211 11,69% -0,7% 1,3% -7,8% 2,0%
221 3,67% 2,6% 2,6% -3,7% -1,0%
222 32,46% 0,6% 1,9% -1,3% 1,0%
231 33,88% 1,4% 2,8% -1,1% 2,5%
242 16,28% -1,1% 0,9% -1,1% 0,2%
243 4,34% 0,9% 1,0% -2,3% 0,9%
311 7,36% -1,3% 0,6% 0,7% -0,2%
312 20,89% 1,6% 1,5% -3,9% 0,5%
313 15,98% -0,7% -0,2% 0,6% -0,3%
321 0,00% 0,0% 0,0% 0,0% 0,0%
324 10,50% -1,7% 0,3% 1,4% 0,6%
411 0,00% 0,0% 0,0% 0,0% 0,0%
511 17,00% -0,8% 1,1% -0,5% -0,5%
512 6,21% 3,0% 0,8% 1,5% -0,8%

A legnagyobb javulasokat az 1.1.1-es ,,Osszefiiggd telepiilésszerkezet” és az 1.2.1-es
HIpari vagy kereskedelmi teriiletek” kategoéridk eredményezték, ahol a mesterséges
létesitmények magassaga teszi lehetévé a pontosabb lehatarolast. A legnagyobb F-szam
csokkenést a 2.1.1-es ,,Nem ontozott szantofoldek™ és a 1.2.2-es LUt - és vasiithdalozat és
csatlakozo teriiletek” nyujtottak. Azonban meg kell jegyezni, hogy sem a legnagyobb
novekedést, sem a legnagyobb csokkenést mutatd osztalyoknal nem egyértelmiieck az
eredmények, mivel az algoritmusok felénél eltérd, kisebb foku kiilonbségek voltak
tapasztalhatok.
Az ASTER-GDEM adatok bevonasa esetén hasonld eredményeket kaptam, mint az SRTM
adatok felhasznalasanal (14. tablazat). Az Osszpontossag az S2-es spektralis adatokon torténd
azonban osztalyszinten

osztalyozashoz képest elhanyagolhato mértékben valtozott,

szignifikdns javulast eredményezett a magassagi adat felhaszndldsa. Az el6zetes

varakozasoknak megfeleléen nagymértékii F-szam novekedés tapasztalhatd az olyan
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osztalyoknal, amik rendelkeznek
magassagi tényezdvel (a
felilletmodellekben az osztaly
objektumainak magassaga hozzaadodik a
felszin magassagahoz, elkiilonithetok a
szomszédos alacsonyabb felszin-
boritasoktol).  Ilyen  osztalyok  a
mesterséges felszinek legtobb kategoriaja
(1-es fbosztaly), a ,.sz6l0k” (2.2.1) és
~ZViimélesos, bogyosok™ (2.2.2, illetve az
erdok (3.1.1, 3.1.2) ¢és a 3.2.1-es
»lermészetes gyepek, természetkozeli
rétek” (az utobbi kategdriandl a
magassagi tényezd az elhelyezkedésbol
adodik, mivel féleg magasabb térszineken
fordulnak  ¢el6).  Ezzel  szemben
jelentésebb F-szdm csokkenést csupan
par esetben tapasztalhatunk: 2.1.3
»Rizsfoldek”, 243 »Elsodlegesen
mezogazdasagi teriiletek  jelentds
természetes novényzettel” és a 3.1.3-as
»Vegyes erdok” kategoridknal. Ennek
koszonhetden az F-szdm valtozas atlagos
értéke +7,29%.

A Sentinel-1-es adatok bevonasa az
osztalyozasba nem hozott egyértelmii
Osszpontossag javulast (14. tabléazat).
Azonban az ASTER-GDEM-hez
hasonldan, osztalyszinten mar lathatd
kiilonbségeket eredményezett. Az
ASTER-GDEM-nél a mar emlitett

14. tablazat Az ASTER-GDEM és a Sentinel-1
adatok felhasznalasaval késziilt eredmények atlagos
Osszpontossag és F-szam valtozésa a Sentinel-2-es

spektralis savok felhasznalasaval késziilt
eredményekhez képest.
Sentinel.2 Sentinel-2 + Sentinel-2 +
ASTER-GDEM Sentinel-1
Osszpont
) 73,67% +0,07% -0,26%
0ssag
F-szam
111 39,45% +17,55% +22,58%
112 71,59% -0,03% -0,57%
121 52,70% +3,75% +0,16%
122 39,95% +3,46% +2,28%
124 52,16% +18,83% +16,81%
131 10,39% +44,81% +18,77%
132 39,59% +22,10% +12,01%
133 15,49% +21,75% +19,62%
141 43,98% -2,83% +0,18%
142 45,97% +3,42% -0,15%
211 82,24% -2,95% -2,20%
213 70,73% -9,23% -0,46%
221 33,17% +24,61% +18,41%
222 42,71% +6,85% +0,95%
231 55,65% +0,46% -1,25%
242 33,31% -0,15% -1,44%
243 48,14% -8,74% -2,59%
311 71,19% +0,72% +2,59%
312 63,60% +3,86% +0,90%
313 42,70% -5,64% +0,43%
321 18,09% +36,37% -18,09%
324 49,89% -2,85% -1,07%
411 61,96% +3,79% -2,42%
511 82,53% -0,41% -2,43%
512 84,30% +2,77% +0,77%

mesterséges felszinek, sz6lok, gylimolcsosok, bogydsok és erdd kategoriaknal kimutatott F-

szam érték novekedés jelentkezik, azonban kisebb magnitidoval. Emellett tobb osztalyt is

érintett az F-szam értékek csokkenése ezért az atlagos F-szam novekedés mértéke elmarad az

ASTER-GDEM-nél tapasztaltaktol, csak 3,35%.
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permutacios fontossagi értékei eltérd eredményt mutatnak, mint az Osszpontossag ¢és
osztalyonkénti F-szam értékek. Az ASTER magassagi adat, mint valtozo volt a legkevésbé
fontos valtozo a modellépités soran, addig az S1 két valtozoja kdzepes fontossagi értékkel
rendelkeztek. Az S1-es adatok esetében ugyanakkor meg kell jegyezni, hogy az el6feldolgozas
soran tobbféle zajsziirési eljarast is lehet alkalmazni, amelyekkel eltérd eredményt kaphatunk.
Ezeket a modszereket ebben a kutatasban nem vizsgaltam.

A Kkiilonbo6zo fiiggetlen adatok (magassagi, radar) felhasznalasa az osztalyozasban
eltéré eredményeket nyujtott. Mig az SRTM bevonasa a Landsat-7-es adatokkal egyiitt
osszpontossag novekedést okozott, atlagosan 2,35%0-0t, azonban osztalyszinten csak
kisebb kiilonbségeket eredményezett. Az ASTER-GDEM és a Sentinel-1-es adatok az S2
adatokkal kombinalva nem okoztak jelentésebb osszpontossagbeli valtozast, atlagosan
+0,07%0-0t és -0,26%-0t. Azonban osztalyszinten a pontossag novekedett, foleg a jelentés
magassagi tulajdonsaggal rendelkez6 kategoriak esetében. (5. cél)

5.3. Gépi tanulason alapulo algoritmusok osszehasonlitasa a

felszinboritas/teriilethasznalat osztalyozasban

A gépi tanuldsban kompromisszumot kell kotni akdzott, hogy az algoritmus mennyire
jol illeszkedjen az adatokhoz, illetve, hogy az algoritmus mennyire lehet bonyolult. Napjainkra
a felhasznaloknak sokféle algoritmus sokféle verzidja all rendelkezésére a feladataik
elvégzéshez. Ezeket az osztalyozési algoritmusokat a multban mar tobbszor 6sszehasonlitottik,
azonban a legjobb pontossdggal rendelkezdalgoritmus kivalasztasa egyértelmilen nem
lehetséges (Du et al., 2020; Jozdani et al., 2019; Leeuwen van et al., 2020; Shao és Lunetta,
2012), mivel a kiilonb6z6 osztalyozasok eltéré nyers adatokat és eléfeldolgozasi modszereket
hasznalnak. fgy a betanitdskor hasznalt adatokban 1év6 osztilyok szama és eloszlasa
(kiegyensulyozott/kiegyensulyozatlan), a hianyzo vagy hibas értékek, valamint a betanitasi
adatok mérete (mintanagysag ¢és valtozok) meghatarozzak azt az algoritmust, amely a
legnagyobb pontossaggal rendelkezik egy adott adatkészleten. Kutatdsom soran tobb
kiilonb6z6 osztalyozo algoritmust teszteltem, mint példaul a dontési fat, a tarto-vektor gépet, a
véletlen erd6t, a tobbrétegii perceptront, a teljesen kapcsolt mély neuralis halot vagy a gradiens-
noveld fat. Osszehasonlitisuknal az ugyanazon az adathalmazon tanitott és kiértékelt
eredményeket hasznaltam fel. A kiértékelésnél az 6sszpontossag, a modell épitési 1dd, a tanitod
adat nagysaga, az F-szdm, a felhasznaloi és készitdi pontossag és az atlagos valoszinliségi
mutatokat vizsgaltam. Az Osszehasonlitds alapjat a spektralis savokon kapott eredmények
adjak, de ezen kiviil azokat az adatkombinacidkat is megvizsgaltam, amelyekkel a spektralis

savoknal jobb eredményeket kaptam.
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Az elsé osztalyozasi moddszerben, ahol WEKA szoftverkdrnyezetben meglévo
algoritmusokat tudtam felhasznélni, az alabbi négy, mar viszonylag széles korben ismert
algoritmust vetettem 6ssze: dontési fa, véletlen erdd, tartdo-vektor gép, tobbrétegli perceptron.
Ezek a kivalasztott, egyszerlibb algoritmusok kdzepes vagy jo eredményeket értek el kiilonb6zo
osztalyozasi forgatokonyvekben. Az Gsszpontossag tekintetében a legmagasabb értékeket a
véletlen erdd osztalyozdval kaptam, amely az L7-es spektralis savok alapjan a mintateriileteken
atlagosan 67,96%-o0s eredményt adott (legalacsonyabb 62,84% — Tétényi-fennsik, legmagasabb
81,87% — Hevesi-artér). A masodik, harmadik, negyedik helyen sorrendben a tobbrétegii
perceptron, a dontési fa, a tartdo-vektor gép algoritmusok allnak, kozel azonos értékekkel. A
tobbrétegli perceptron a spektralis savok alapjan atlagosan 50,3%-o0s eredményt adott
(legalacsonyabb 37,42% — Pesti hordalékkup-siksag, legmagasabb 69,98% — Hevesi-artér). A
dontési fa altagosan 49,8%-0s Osszpontossagot ért el Uigy, hogy a legalacsonyabb eredményt
(39,95%) a Tétényi-fennsik, mig a legmagasabbat (69,97%) a Hevesi-artér mintateriileten
nyujtotta. A legalacsonyabb 6sszpontossagot a tartd-vektor gép adta, amely atlagosan 47,7%-
ot ért el. A legalacsonyabb értékét, 37,38%-ot a Tétényi-fennsik, mig a legmagasabb értékét
69,97%-0t a Hevesi-artér mintaterilleten adta. Az L7-es spektralis savokhoz tovabbi
informaciok hozzaadasakor, ezek az osztalyozok a legmagasabb Osszpontossag értékeiket a
variancia textira adatok bevonasaval érték el (osztalyozonkként a tobbi adatkombinacidhoz
képest). A legmagasabb Osszpontossagot, 81,88%-ot szintén a véltelen erdd érte az Osszes
variancia sav felhasznalasaval (minimum 78,75% - Pesti hordalékkup-siksag, maximum
89,14% — Hevesi-artér). Hasonloan az Gsszes variancia sav bevonasaval érte el a legmagasabb
Osszpontossagot a tarto-vektor gép: atlagosan 57,49%-kal (minimum 51,91% — Tétényi-
fennsik, maximum 71,07% - Hevesi-artér). A dontési fa esetén a variancia adatok 11x11-es
kernel mérettel készitett értékeivel értem el a legmagasabb dsszpontossagot: 67,02% (minimum
51,26% — Pesti hordalékkup-siksag, maximum 81,8% — Hevesi-artér). A tobbrétegii perceptron
a variancia adatok 17x17-es kernel mérettel nyujtotta a legmagasabb 6sszpontossagot: 67,02%
(minimum 36,2% — Pesti hordalékkap-siksag, maximum 73,94% — Hevesi-artér). Az
algoritmusok eredményeinek Osszpontossdga és a tanitd adathalmaz nagysaga kozott nincs
egyértelmii kapcsolat. Tobb esetben a legkisebb 0sszpontossagot a legnagyobb mintateriileten
(Pesti hordalékkup-siksag) kaptam, illetve itt minden osztalyozonal atlag alatti sszpontossagot
mértem. Azonban az is kimutathatd, hogy a masodik leggyakrabban alacsony 6sszpontossagi
értékeket nyujtoé mintateriilet (Tétényi-fennsik) inkabb a kisebb teriiletiick k6zé tartozik, mint a
nagyobbak ko6zé (15. abra). A két kistdj osztalyszintii eloszlasa nagyban hasonlit, ugyanis
mindkét esetben magas a mesterséges felszinek és a mezdgazdasagi teriiletek aranya (Al.

tablazat). Tovabba a Hevesi-artér, amely esetében a legtobbszor kaptam a legmagasabb

90



Gudmann Andras Viktor — Disszertacio,
Szegedi Tudomanyegyetem, Foldtudomanyok Doktori Iskola

Osszpontossagot, a harmadik legnagyobb teriiletti mintateriilet, a kategoriak szerinti eloszlasa
pedig viszonylag homogén, 1 dominans kategoriaval (2.1.1. ,Nem-ontozott szarazfoldek™).
Ezek alapjan az algoritmusok teljesitményét a mintateriilet nagysaga csak kisebb mértékben
befolyasolja, viszont a teriileten 1év6 osztalyok eloszlasa sokkal meghatarozobb.

A spektralis savok alapjan a véletlen erdd osztalyozo adta a legmagasabb atlagos F-
szam értékeket (23. abra) a legtobb kategoria esetében (24-bél 16 esetben). A tovabbi 8
osztalynal 3 esetben a tarto-vektor gép, mig 1 esetben a tobbrétegii perceptron adta legmagasabb
F-szamot (4 esetben mindegyik osztalyozonal az F-szam 0 volt). Azonban az F-szam alapjan
egyik kategoria sem éri el a 70-es értéket, igy az osztalyszintli eredmények alacsonynak vagy
kozepesnek mondhatok. Ezért az osztalyok részletesebb vizsgalatat (készitoéi, felhasznaloi
pontossag, atlagos valdszinliség) nem végeztem el. Az algoritmusok modellépitési idejét
tekintve a leggyorsabb a dontési fa modell volt, amely a teljes adathalmaz 33%-an tanitva 35,58
masodperc futott le. Mig a masodik leggyorsabb a véletlen erdé modell 53,43 masodperccel, a
harmadik, tobbrétegli perceptron 235,28 masodperccel és a leglassabb a tarto-vektor gép
1293,14 (21,55 perc) masodperccel teljesitett. Az eredmények alapjan a véletlen erdd
osztalyoz6 algoritmus hozta a legjobb pontossidgi eredményeket, amik kozepes és jonak
mondhaté tartomanyban mozogtak, mig a modellezési ideje gyors volt. A masik harom
algoritmus egymashoz viszonyitva hasonld pontossagi eredményeket adott, viszont ezek az
adott feladatot rossz vagy alig kdzepes hatékonysaggal oldottak meg. Ezek alapjan dontottem
ugy, hogy a masodik osztalyozasi modszernél a véletlen erdd algoritmust is implementalom.

A masodik osztalyozasi modszerben, a python programozasi kornyezetben harom,
napjainkban igen gyakran hasznalt algoritmust implementaltam: a mar emlitett véletlen erdot,
a mély tanulasos mesterséges neuralis halot és a gradiens-noveld fat. A pontossagi értékek
elemzéséhez a maximum likelihood, hagyomanyos osztalyozot is alkalmaztam, aminek az
eredményeit alapértékként hasznaltam. A python programozasi kdrnyezetnek koszénhetéen az
algoritmusok modellépitd paramétereit automatikusan, véletlen keresési eljarassal
optimalizaltam. Ezzel a moddszerrel az S2 spektralis savokon felépitett modellek
Osszpontossagait megvizsgalva megallapithatd, hogy a maximum likelihood nem volt képes
megfelelden megoldani az osztalyozdsi problémat, mivel Osszpontossaga minden

mintateriileten 60% alatt maradt (minimum 32,91%, maximum 56,71%) (39. abra).
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39. abra Kiilonboz6 osztalyozo algoritmusok teljesitménye a Sentinel-2-es spektralis
savok alapjan, kiilonb6z6 mintateriileteken mérve.

A tobbi osztalyozd algoritmus viszonylag hasonld pontossagi eredményeket adott a
kiilonb6z6 mintateriileteken. Mindhdrom osztalyozo a legnagyobb teriiletli Pesti hordalékkup-
siksdgon érte el a legalacsonyabb Gsszpontossagot. Ezen a mintateriileten az algoritmusok
kozott csupan 2,66%-os kiilonbség volt mérhetd. A legmagasabb pontossagot a gradiens-noveld
fa érte 65,25%-kal mig a legalacsonyabbat a mesterséges neuralis hald 62,59%-kal, és a véletlen
erdd 64,2%-ot nyujtott. Az elsd osztalyozasi eredményekhez hasonloan itt is a Hevesi-artér
mintateriileten adtak a legmagasabb pontossagi értékeket az algoritmusok, ugyanis mindhdrom

osztalyozo Gsszpontossaga 80% felett volt. A legmagasabb értéket itt is a gradiens-noveld fa
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érte el 86,67%-kal, mig a véletlen erd6 nem sokkal alacsonyabb 86,2%-ot. A legalacsonyabb
pontossagot (84,07%) itt is a mesterséges neuralis halo adta. A tobbi mintateriileten 70% ¢és
80% kozotti osszpontossagbeli eredményeket adtak az algoritmusok. A hat mintateriiletbol
Osszesen Ot esetben a gradiens-novel6 fa bizonyult a legpontosabb modellnek, mig egy esetében
a véletlen erd6. A tobbi adatkombinaciot megvizsgalva a legmagasabb pontossagi értékeket a
monotemporalis adatok esetén a variancia sivok mindegyikének felhasznalasaval, illetve a
multitemporalis felvételek egyiittes alkalmazasanal kaptam. A legmagasabb Osszpontossagot
(94,5%) a véletlen erdd esetében a 3 idépontban késziilt Sentinel-2-es felvételek felhasznalasa
nyujtotta a Hevesi-artéren. Ugyanezen a mintateriileten, a 6 id6pontban késziilt Sentinel-2-es
felvételek alapjan a legmagasabb Osszpontossagot (96,71%) a mesterséges neuralis halonal
kaptam, ami egyben a legmagasabb érték is az dsszes eredmény koziil. A gradiens-noveld fa is
ugyanezen a mintateriileten érte a legmagasabb pontossagot (96,29%), az Osszes variancia sav
felhasznalasadval. Az adatkombinacionként vizsgalt atlagos Osszpontossagok esetén is a
spektralis savoknal bemutatott eredményekhez hasonlot kaptam (15. tablazat). Minden esetben
a gradiens-noveld fa rendelkezett a legmagasabb atlagos dsszpontossaggal, mig a véletlen erd6
¢s a mesterséges neuralis halo kozel azonos eredményeket adtak. Valamint a maximum
likelihood osztalyozo semmilyen adatkombinacioval sem volt képes megfelelden elvégezni az
osztalyozasi feladatot.

15. tablazat Kiilonb6zd osztalyozo algoritmusok atlagos 6sszpontossaga a kiilonb6z6
adatkombinéciok alapjan.

ML RF GBM ANN
Landsat-8 41,78% 69,06% 69,38% 67,90%
Sentinel-2 42,22% 75,09% 75,71% 70,22%
Sentinel-2 + textara 11x11 var 31,59% 76,81% 78,55% 75,83%
Sentinel-2 + textra 17x17 var 35,60% 80,43% 85,54% 79,18%
Sentinel-2 + text(ira 23x23 var 36,93% 82,61% 87,68% 82,19%
Sentinel-2 + 3sszes textira var 2,33% 83,09% 89,66% 84,11%
Sentinel-2 + FaPAR 41,32% 72,72% 76,91% 71,36%
Sentinel-2 + FVC 41,93% 72,13% 76,82% 71,49%
Sentinel-2 + ASTER-GDEM 45,74% 75,38% 78,96% 66,88%
Sentinel-2 + Sentinel-1 45,35% 73,36% 78,23% 68,65%
Sentinel-2 + 2 idépont 50,31% 88,02% 91,43% 86,02%
Sentinel-2 + 5 idépont 20,06% 91,74% 93,34% 92,46%
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Az osztalyszinti eredmények kiértékeléséhez, a Sentinel-2-es adatokon ¢és a
legmagasabb atlagos 0sszpontossaggal bird adatkombinacion kapott eredményeket vizsgaltam
meg (S2 + 5 idépont) (16. tablazat). Az S2-es savok alapjan a legtobb kategoriara kdzepes
atlagos F-szam értékeket kaptam, mindharom algoritmus esetén.

16. tablazat Atlagos F-szam értékek kategoriankként a Sentinel-2-es spektrélis savok

alapjan, az egyes osztalyozo algoritmusok alapjan.

CLC kéd Sentinel-2 Sentinel-2 + 5 idépont
RF HGBC ANN RF HGBC ANN
111 51,51% | 66,84% 0,00% 94,99% | 97,15% | 76,34%
112 73,92% | 74,53% | 66,32% 93,42% | 94,43% | 92,49%
121 54,01% | 58,89% | 4521% 76,77% | 88,08% | 77,83%
122 46,46% | 49,71% | 23,66% 84,13% | 88,91% | 77,44%
124 54,40% | 60,85% | 41,24% 95,65% | 99,11% | 94,52%
131 10,06% 10,94% 10,18% 73,17% | 86,38% | 74,07%
132 50,42% | 55,53% 12,82% 86,69% | 95,16% | 86,92%
133 0,00% 46,48% 0,00% 83,73% 48,05% | 89,69%
141 52,81% | 60,17% 18,96% 84,61% | 93,65% | 83,05%
142 47,38% | 52,83% | 37,68% 85,99% | 92,67% | 87,04%
211 83,47% | 83,77% | 79,49% 96,15% 96,30% | 96,53%
213 70,15% | 75,31% | 66,74% 88,50% 94,55% | 94,66%
221 59,05% | 40,45% 0,00% 96,10% | 48,97% 95,51%
222 4437% | 54,93% | 28,84% 87,47% | 92,37% | 90,93%
231 63,65% | 51,37% 51,94% 85,74% 87,71% | 88,86%
242 43221% | 32,15% 2457% | 81,13% | 59,72% 80,16%
243 52,40% | 54,06% | 37,96% 81,08% | 88,39% | 82,82%
311 64,42% 77,76% 71,41% 73,49% 91,36% 92,24%
312 67,33% | 71,55% | 51,93% 91,41% | 9542% | 88,15%
313 55,14% | 40,91% 32,05% 86,46% | 92,75% | 85,96%
321 0,00% 54,27% 0,00% 89,31% | 62,04% 88,83%
324 53,63% | 52,94% 43,11% 76,51% 79,39% | 80,91%
411 64,68% | 66,04% | 55,15% 88,06% | 91,57% | 87,44%
511 85,29% | 86,28% | 76,02% | 92,31% | 88,09% 90,73%
512 85,74% | 86,76% | 80,41% 94,70% | 96,05% | 93,76%
ATLAG | 53,34% 58,61% 38,23% 86,70% 85,93% | 87,07%

Ezért az F-szamok atlagai is alacsonyak vagy kozepesek voltak: a mesterséges neuralis
halonal 38,23%, a véletlen erdonél 53,34% ¢és a gradiens-noveld tanal 58,61%. A 25 osztalybodl
20 esetében a gradiens-ndveld fa adta a legmagasabb atlagos F-szam értéket, de ebbdl az esetek
felénél kevesebb mint 5%-kal volt magasabb, mint a masodik legmagasabb érték, tehat ezen

osztalyok konnyebben is lehatarolhatok voltak. A tobbi 5 osztalynal a véletlen erdd tigy adta a
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legmagasabb atlagos F-szam értéket, hogy csak egy esetben volt kisebb a kiilonbség 5%-nal a
masodik legmagasabb értékhez képest. A legmagasabb F-szam értékeket a nagy részarannyal
bird, vagy konnyen lehatarolhatd kategoridk produkaltak, mint a 1.1.2-es ,,Nem osszefiiggo
telepiilésszerkezet”, a 2.1.1-es ,,Nem ontozott szantofoldek”, a 3.1.1-es ,,Lomblevelii erdok”, az
5.1.1-es ,,Folyovizek, vizi utak” és az 5.1.2-es L Allovizek”. Azonban a legjobb eredményeket
ado6 adatkombinacio esetén ez az allitds mar nem igaz. Bar az emlitett osztalyok F-szam értékei
itt is magasak, tobb osztaly is legalabb ilyen értékkel rendelkezik. Ilyenek voltak az 1.2.4-es
»Repiiloterek”, az 1.3.2-es ,,Lerakohelyek, meddohanyok” és a 3.1.2-es ,Tilevelii erdok”
kategoriak. A magas F-szam értékeknek koszonhetden az atlagos pontossagok is jelentdsen
megnodvekedtek és az eddig legalacsonyabb atlagértékkel bird mesterséges neuralis halo érte el
a legmagasabb pontossagot (87,07%). Ugyanakkor az eddig legjobban teljesité gradiens-noveld
fa érte el a legalacsonyabb értéket 85,93%-ot, mig a véletlen erdd 86,7%-ot. Az atlagos F-szam
értékek ellenére a 25 kategoriabol tovabbra is a gradiens-noveld fa érte el a legtobb esetben (15)
a legmagasabb értéket. A tovabbi 10 kategdriabol 6-nal a mesterséges neuralis halo, mig 4

esetben a véletlen erd6 adta a legjobb eredményt.
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40. abra A Sentinel-2-es spektralis adatokon betanitott egyes modellek altal adott
atlagos valoszintiségi értékek kategoriankkeént.
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Az F-szamtol részben eltéré eredményeket lathatunk az egyes modellek altal
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mellett soroltak be a pixeleket (mekkora a valdszinlisége a modell szerint, hogy az adott pixel
a becsiilt osztalyba tartozik). Ezek alapjan tovabbi kovetkeztetéseket vontam le arr6l, hogy
milyen pontosan tudott az adott algoritmus egy kategodriat lehatarolni. Mig az F-szamhoz
hasonloan a legmagasabb atlagos valosziniiségi értékkel a gradiens-ndveld fa rendelkezik
(64,84%), addig az eddigiektdl eltéréen a mesterséges neuralis halé adja a masodik
legmagasabb (58,66%) ¢és a véletlen erdd a legalacsonyabb 4tlagos valoszinliségi értéket
(49,57%). Jol lathato, hogy a legtobb osztalyndl a gradiens-ndveld fa nyujtja a legnagyobb
valoszintiségl becsléseket (25-bdl 21 esetben). A tobbi 4 esetben a mesterséges neuralis halo
adja a magasabb atlagos valdszinliségli becsléseket. Viszont a véletlen erdé ezen a mutatd
alapjan rosszul teljesit, ugyanis a legtobb kategoria esetén ez az osztalyozo6 adja a legkisebb
valdsziniiségii becsléseket. Az F-szamtol eltérden, ennél a mutatonal a tertileti részarany kisebb
hangsulyt kap, mig a valtozok altal adott térben torténd szeparabilitas és az algoritmus
hatékonységa nagyobbat. Ezt j6l mutatja, hogy az olyan alapvetden felszinboritasi osztalyok,
mint az 5.1.1-es ,,Folyovizek, vizi utak” és az 5.1.2-es LAllvizek” a gradiens-noveld fa és a
mesterséges neuralis halo esetében is 85% feletti atlagos valosziniiséggel lehatarolhatok. A mar
emlitett nagy teriileti részarannyal rendelkezd osztalyok kozepes (60 és 80% kozotti) atlagos
valoszintiséggel rendelkeznek. Eredményeim alapjan a gradiens-névelé faval értem el a
legjobb osztalyozasi eredményt az 5 idopontban készitett adatok felhasznalasaval,
atlagosan 93,34%-0s dsszpontossagot. Emellett a véletlen erdé és a mesterséges neuralis
halé is ugyanezen adatok felhasznaliasaval eredményezték a legmagasabb atlagos
pontossagot, 91,74% és 92,46%. (6. cél)

Az algoritmusok teljesitményének értékeléséhez a mar emlitett pontossagi értékek
mellett megvizsgaltam az algoritmusok modellezési folyamatat (modellépitd €s architektiralis
paraméterek, paraméterek stlya, modellezési idok). A paraméterbecslés eredményeként a
véletlen erdd osztalyozonal tobbféle optimalis paraméterkombinaciot is kaptam. Azonban az
eredmények alapjan arra a kovetkeztetésre jutottam, hogy a paraméterek hatisa alacsony, a
legjobb és a legrosszabb paraméterkombinaciok pontossaga kozott is csupan 1-5%-os eltérés
volt tapasztalhatd (tanitd adattdl és mintateriilettdl fliggéen). A gradiens-noveld fa esetén a
modellépit6é paraméterek hatasa egy nagysagrenddel nagyobb volt, a legjobb és a legrosszabb
paraméterek kozott 4-20% kozotti eltérések is lehettek, adathalmaztol és mintateriilettdl
fliggden. A véletlen erd6tdl eltérden a gradiens-ndveld fa paramétereinél kisebb fluktuacio volt

az idealis paraméterek kozott, a leggyakoribb kombinacional a tanitasi rata 0,01, az iteraciok
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maximalis szama 3000, a maximalis mélység 8 volt. A mesterséges neuralis halonal volt a
legnagyobb a hatdsa a paramétereknek, mivel itt nemcsak modellépitd, hanem architekturalis
paramétereket is optimalizalni kell. Emiatt a legjobb és legrosszabb paraméterek kozott 20—
40% kozotti eltérés is tapasztalhato volt (tanitd adattdol és mintateriilettél fiiggden). A
paraméterek szdmossaganak ellenére, meglepd modon az algoritmusnal is viszonylag alacsony
fluktuacié mutatkozott az idedlis paraméterkombinaciok kozott, igy meghatarozhattam a
leggyakrabban alkalmazott paramétereket. A rétegek szama 5, a neuronok szdma 512, az
aktivacios fliggvény ReLU, a tanulasi rata 0,00001, az epochok szama 500, a batch méret 64
lett. A spektralis savok felhasznalasaval a kiilonboz6 mintateriileteken mért modellépitési idok
alapjan a leggyorsabbnak a gradiens-novel6 fa algoritmus bizonyult, atlagosan 6381 masodperc
alatt éptlt fel (minimum 3657 masodperc, maximum 15923 masodperc, ~4,426ra), mig a
masodiknak a véletlen erd6 atlagosan valamivel tobb mint kétszeres idovel: 14581 masodperc
~4,05 6ra (minimum 745 masodperc, maximum 40306 masodperc ~11,19 6ra). A leglassabban
a mesterséges neuralis halé modell épiilt fel, atlagosan 79578 masodperc ~22,1 6ra (min.: 4171
méasodperc, max.: 123978 masodperc ~34,43 6ra). A modellépitési idot és a paraméterek hatasat
figyelembe véve, a mesterséges neurdlis halot a legnehezebb, mig a gradiens-noveld fat
kozepesen nehéz és a véletlen erddt a legkonnyebb optimalizalni. Az eredményeim alapjan
kozepes sulyu modellépito paraméterekkel, a legrovidebb modellépitési (atlagosan 6381
masodperc) és paraméterbecslési idével és legmagasabb atlagos pontossaggal rendelkezo,

igy egyben legjobb teljesitményii algoritmus a gradiens-novelé fa. (7. cél)
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41. abra Az osztalyozok atlagos pontossagi értékeik mintateriiletenként.
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A harom osztalyozo algoritmus skaldzhatosdganak vizsgéalatdhoz az egyes
munkateriileteken mért, 2018-as adatok alapjan késztett modellek atlagos pontossagi értékeit
vizsgaltam meg (41. abra). Az eredmények hasonlok a 2000-es adatok alapjan levont
kovetkeztetésekhez. A legkisebb atlagos pontossagi értékeket mindharom algoritmus esetén a
legnagyobb teriiletli Pesti hordalékkip-siksagon mértem (véletlen erdé 73,82%, gradiens-
noveld fa 76,50%, mesterséges neuralis halé 68,99%). A legmagasabb atlagos pontossagot
mindharom algoritmus esetén a harmadik legnagyobb teriiletti Hevesi-artéren kaptam (véletlen
erd6 89,23%, gradiens-néveld fa 90,27%, mesterséges neuralis halo 88,90%). A tobbi négy
mintateriileten kozel azonos pontossagi értékeket kaptam. Ezen eredményeim alapjan az
algoritmusok Gsszpontossaga ¢és a tanitd adathalmaz nagysaga kozott nincs egyértelmi
kapcsolat. Az algoritmusok magas pontossagi értékeket adtak a masodik és harmadik
legmagasabb teriileti  Godolléi-dombsag ¢és Hevesi-artér kistajon. A kis teriiletdi
mintateriileteken mértem az alacsonyabb pontossdgokat, féleg a mesterséges neuralis halo
esetén. A 2000-es és 2018-as adatok felhasznalasaval késztett modellek mintateriileteken
mért pontossagai alapjan az algoritmusok mindegyike jol skalazhaté6 nagyobb
teriiletekre, de a kisebb mintateriileteken alacsony pontossagot kaptam. (8. cél)

Az eredmények alapjan a harom vizsgalt algoritmus mindegyike képes megoldani az
adott osztalyozasi feladatot, szemben a hagyoményos osztalyozasi eljarassal. Megallapitottam,
hogy a véletlen erdd igen felhasznalobarat, mivel egy gyorsan felépiild modell és kdnnyen
optimalizalhatok a modellépité paraméterei. Ez az osztalyozd a spektralis savok alapjan
kozepes hatékonysaggal képes az adott osztalyozasi feladatot megoldani gy, hogy a modell
altal adott becslések a legalacsonyabb atlagos valoszinliséggel rendelkeznek. Tovabba
bemutattam, hogy a kiilonboz6 adatkombinaciok felhasznalasaval jelentdsen ndvelhetd a
pontossaga is, de kisebb mértékben, mint a masik két algoritmusnal. A gradiens-noveld fa
modellépitési ideje kétszerese a véletlen erdonek, de a paramétereinek optimalizalasa ugyantgy
egyszeriinek tekinthetd. Az algoritmus a spektralis savok alapjan kdzepes hatékonysaggal képes
az osztalyozasi feladatot megoldani és a modell altal adott becslések is atlagos valoszinliséggel
rendelkeznek. Azonban a kiilonb6z6 adatkombinaciokkal jelentésen novelheté a pontossaga.
Tovabba az is kiemelendd, hogy a hdrom vizsgalt osztalyozo koziil ez az eljards adja a
legmagasabb atlagos 0sszpontossagi értékeket. Emellett osztaly szinten is ez az algoritmus adja
a legmagasabb F-szam értékeket a kiilonboz6 adathalmazokon. A mesterséges neuralis hald
szignifikdnsan hosszabb i1d6 alatt felépiilé modell, ezért az optimalizalasi folyamata is sokkal
tovabb tart. Ugyanakkor az architekturalis és modellépité paraméterek szamossaga miatt ennél
az algoritmusnal a legfontosabb a paraméterek optimalizalasa. A spektralis savok alapjan ez
adta a legalacsonyabb atlagos 6sszpontossagot, de a modell altal adott becslések valoszinliségei
nem maradtak el jelentdsen ettdl. Tovabbi adatok bevonasa a legjelentésebb pontossag
novekedést okozta, ami mind dsszpontossagban mind osztalyszinten megmutatkozott.

Ezen eredmények alapjan a CLC nomenklatira szerint torténo
felszinboritasi/teriilethasznalati térkép eloallitasara, az altalam vizsgalt modszerek koziil
a legalkalmasabb algoritmus a gradiens-névelé fa.
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6. Osszefoglalas és értékelés

A tavérzékelés egyik alapveto és legrégebbi feladata a felszinboritas €s teriilethasznalat
térképezése, mivel a Fold ezen két aspektusa kulcsfontossagl informacioforras a foldrajzi,
tarsadalmi, és gazdasagi folyamatok megértésében. Az egyre nagyobb emberi sziikségletek
miatt a felszinboritast és teriilethasznalatot befolyasolo tényezok valtozasa felgyorsult, ezaltal
felgyorsitva azok valtozasat is. Ezért a megbizhatd, naprakész térképek és azokbdl kinyerhetd
statisztikdk eldallitasa és megléte kulcsfontossagu a szakpolitika kialakitdsa és tervezése
szempontjabol. A Fold ezen aspektusainak térképezése definicidoikbol eredéen szamos
technikai és modszertani kihivast hordoz magaban. Azonban a miiholdas tavérzékelt adatok
felbontassal rendelkezd adat érhetd el a szakérték szamara. Emellett az utobbi évtizedben a
mesterséges intelligencia tudomanyahoz tartozo gépi tanulas (machine learning) és mély
tanulas (deep learning) osztalyoz6 modszerek fejlodésével minden eddiginél szélesebb
eszkoztar all rendelkezésre a feladat megoldésara.

Dolgozatomban a CORINE Land Cover nomenklatiraja alapjan allitottam el6
felszinboritasi/teriilethasznalati térképeket kiillonboz6 adatok és osztdlyozd algoritmusok
alapjan a 2000-es és 2018-as évre vonatkozdan. A kutatdasom soran a kiilonb6z6 régebbi és
ujabb miiholdfelvételek (Landsat-7, Landsat-8, Sentinel-1, Sentinel-2), és a beldliik levezethetd
metrikak, illetve tovabbi fiiggetlen forrasok (SRTM, ASTER-GDEM) altal nyujtott adatok
alapjan vizsgaltam meg, hogyan érhetjiik el a legmagasabb pontossagot bizonyos koriilmények
(kiilonbozd osztalyozo algoritmusok, mintateriiletek, adatkombinaciok) kozott.

A kutatdsom sordn sikerrel alakitottam ki egy olyan osztalyozasi modszertant, ami
véletlenszerlien kivalasztott, viszonylag kis mennyiségii tanito adat alapjan képes megfeleléen
elvégezni az osztalyozasi feladatot. Az osztalyozasok elvégzéséhez szoftveres (WEKA) és
programozasi (python) kornyezetben is sikerrel alakitottam ki el6- és utddolgozasi workflow-t,
amivel a térinformatikai adatokat nyers adattd, majd az osztalyozasok végén Ttjra
térinformatikai adatta tudtam alakitani. A WEKA szoftveres kdrnyezetben sikerrel tudtam négy
osztalyoz6 algoritmust felhasznalni az osztalyozasok elvégzésére: a dontési fat, a véletlen erddt,
a tarto-vektor gépet és a tobbrétegli perceptront. Mivel a legujabb algoritmusok koziil a
szoftverben t6bb nem allt rendelkezésre, igy ezeket python programozasi kérnyezetbe kellett
implementalnom. Az osztalyozas elvégzéséhez sikerrel implementaltam harom osztalyozé
algoritmust (véletlen erdd, gradiens-noveld fa, mesterséges neuralis halo) python programozasi
kornyezetbe, aminek koszonhetéen az osztalyozas folyamatat iS automatizalhattam
(adattisztitas, tanito-teszt adat generalds, paraméterbecslés, modellezés, becslés, eredmények
atalakitasa), illetve kiszamithattam kiilonb6z6é egyéb mutatoszamokat, mint a permutacios

fontossag értéket, vagy a pixelek legmagasabb valoszinliség értékét.
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(1) A moédszertan kidolgozasa utan a nyari idépontban késziilt felvételek spektralis
savjainak kapcsolatat vizsgaltam a CLC nomenklatura 3. hierarchia szintjén 1évo kategoriakkal,
az egyes osztalyok szeparabilitas értéke, illetve az osztalyozasok eredménye alapjan. A Jeffries-
Matusita szeparabilitas értékekbdl azt allapitottam meg a Landsat-7-es mitholdkép spektralis
savjai altal (amelyek 30 vagy 60 méteres térbeli felbontassal rendelkeznek) a CLC kategoriak
elvalaszthatosdga igen alacsony, és még a spektralis savok egyiittes alkalmazasa mellett se
valnak az egyes kategéridk jol elhatarolhatova. Ezt tamasztottdk ald az osztalyozasok
eredményei is, amelyeknél a 6 mintateriilet koziil csak 5 esetében adtak az osztalyozo
algoritmusok 60% alatti dsszpontossagot és 1 esetben 70% fol6tti eredményt. Ezzel szemben a
Sentinel-2-es felvételek spektralis savjai alapjan (amelyek 10, 20 vagy 60 méteres térbeli
felbontassal rendelkeznek) az egyes kategdriak jol elvalaszthatok egymastdl. Azonban az
osztalyozasi eredmények ezt csak részben igazoltak, mivel az egyes osztilyozo algoritmusok
csak kozepes pontossagot (atlagosan 73,82%-0s Osszpontossagot) voltak képesek elérni ezekkel
a savokkal. A temporalis adatok osztalyozasban felhasznalt eredményeinek vizsgalatabol
azonban kideriilt, hogy tobb idOpontban késziilt multispektralis felvételek alapjan az
osztalyozasok kivalo 6sszpontossaggal végezhetok el. Ezek alapjan a spektralis savok képesek
megfelelden jellemezni az adott felszinboritasi/teriilethasznalati kategoridkat. Ezért
kijelenthetd, hogy a spektralis savok és a CLC 3. hierarchia szintjén 1év0, foleg teriilethasznalati
kategoriak kozott kimutathato kapcsolat van, de az osztalyozasok nagypontossagu elvégéséhez
tobb idépontban késziilt kép informacioi sziikségesek.

(2) Mivel a spektralis savok onmagukban nem elegendéek az osztalyozasi feladat
megoldasahoz, ezért kiilonbozd derivatumokat hasznaltam, mint tovabbi bemend adat az
osztalyozasok pontossaganak noveléséhez. Ilyen derivatumok voltak a spektralis indexek, mint
az NDVI, SAVI, MSAVI, EVI, NDMI, FaPAR, FVC. Az osztilyozés eredményei alapjan a
hagyomanyos spektralis indexek (az NDVI, SAVI, MSAVI, EVI, NDMI), amelyek csak a
spektralis sdvok kombinécidibol szamithatdak ki, nem novelik az osztdlyozasok pontossagat.
Azonban a nem hagyomanyos derivatumok (FaPAR, FVC), amelyek komplex szamitasok és
tovabbi adatok ismeretében szamithatok ki (példaul sugérzasi transzfer modell altal), osztaly
szinten képesek egyes kategoridk pontossagat novelni. A spektralis indexek mellett a spektralis
savokbol kiszamithatd adattranszformaciokat is teszteltem kiegészit6 adatként. A kutatasomban
a Tasseled Cap és PCA adattranszformaciokat hasznaltam fel. A hagyomanyos spektralis
indexekhez hasonldan, ezek se javitottdk az osztalyozasok pontossagat altalanossagban,
azonban az SVM osztalyozonal a PCA savok képesek voltak pontossagndvekedést okozni

(+4,78%).
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(3) A spektralis savokbol levezethet6 ijabb adatok mellett, megvizsgaltam az egyes
pixelek kornyezetébdl kinyerhetd informaciok hatdsat is az egyes osztalyozo algoritmusoknal.
Ilyen informaciok voltak a tajmetriai indexek, mint az atlagos folt méret, élhossz, atlagos alak
index, fraktaldimenzid vagy a kernel szamitasokbdl kinyerhet6 variancia, a ferdeség, a kurtdzis
vagy az atlagos euklideszi tavolsag. Az eredményeimmel bizonyitottam, hogy mind a tdjmetriai
indexek, mind a textura adatok fontos informdacioforrasok, amelyek képesek altalanosan
novelni az osztalyozasok pontossagat osztalyszinten és Osszességében is. Tovabba ezeknek a
kombinacioi tovabbi pontossagnovekedést okoznak az osztalyozasokban. Emellett ezek
Iényegesen eltéré méretii terlileteken egyarant megfeleld pontossaggal alkalmazhatok.

(4) Az egyre jobb idébeli felbontasnak koszonhetden egyre tobb lehetéségiink adodik
temporalis adatokat (egy miithold mas idépontban késziilt képeit) bevonni az osztalyozasba. A
kutatasomban a 2000-es évre Landsat-7-es és a 2018-as évre vonatkozoan Sentinel-2-es
felvételek tobb iddpontban késziilt képeibdl kialakitott adatkombinacidkat vizsgaltam meg. Az
eredményeimmel igazoltam, hogy a temporalis adatok jelentésen képesek ndvelni minden
osztaly pontossagat és az dsszpontossagot is. A legjobb eredmény elérése érdekében az egyes
felvételek kozotti iddablakot lehetdség szerint tdgan kell tartani, hogy az egyes idépontok
kozotti korrelacid minél kisebb legyen, és ezzel az informaciotartalmuk minél nagyobb. Ezek
alapjan a 2018-as évre a legjobb eredményt 3 honapos idéablakok esetén 6 mitholdkép alapjan
kaptam, minden osztalyozé algoritmus 90% feletti atlagos pontossagi értéket adott vissza.

(5) Az egy idopontbdl szarmazd multispektralis mitholdképeinket bizonyos esetekben
nem sziikséges kiilonbozd derivatumokkal vagy temporalis adatokkal kiegésziteniink, ha van
olyan elsédleges adatforrasunk, ami képes elegendé plusz informaciot szolgaltatni az
osztalyozas megfelelé elvégzéséhez. Kutatisomban az SRTM, ASTER-GDEM magassagi
adatokat és a Sentinel-1 radar adatokat sikeresen kombinaltam a multispektralis savokkal és a
hatasukat mutattam be az osztalyozas eredményeire. Az SRTM magassagi adatok a Landsat-7-
es adatokkal kombinalva kis mértékben noveltek az egyes osztalyozasok eredményét (atlagosan
2,35%-kal), mig az ASTER-GDEM adatok a Sentinel-2-es adatokkal kombinalva féleg
osztalyszinten okoztak kisebb mértékii javulast. A Sentinel-1 és Sentinel-2-es képek
kombinélasa nem okozott altalanos javulést az osztalyozasban, de osztaly szinten tobb esetben
pontossagnovekedést eredményezett. Osztalyszintli javuldst mindhdrom adatkombinacio
esetében a magassagi tulajdonsaggal rendelkezd kategoridk (mesterséges felszinek, erdok,
gylimolesosok, bogyosok) esetében mutattam Ki.

(6-8) A bemend adatok vizsgalatan tul, kutatdisomban kiilon dsszevetettem a legtijabb
osztalyozasi algoritmusokat, teljesitménylik alapjdn. Az Osszevetés soran az egyes

algoritmusok alkalmazhatdsagat, pontossagat €s skalazhatosagat értékeltem a felszinboritas és
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teriilethasznalat térképezésben. A harom alkalmazott algoritmus (véletlen erdd, gradiens-
noveld fa, mesterséges neuralis hald) kozil a legkonnyebben alkalmazhato eljaras a véletlen
erd0, amely a harom eljaras koziil a leggyorsabban felépiild modell. Az alacsony szamu
modellépité paraméterei csak kis hatdssal vannak a modell Osszpontossagara, igy Kkis
felhasznaloi tudas mellett is jO eredményt képes adni. Ez a modell a kis és nagy
mintateriileteken is hasonl6 id6 alatt épiil fel, jol skalazhaté kiilonboz6 nagysagu adathalmazok
kozott, mikdzben pontossagdbol nem veszit. Azonban az atlagos pontossidga a tobbi
osztalyozoéhoz képest kozepes csak kozepesnek mondhatd, a kiilonb6z6 adathalmazokon
69,06% ¢és 91,74% kozott mozgott. A gradiens-ndveld fa (hisztogram alapt gradiens-ndveld
dontési fa) a véletlen erdohdz hasonléan konnyen alkalmazhato eljaréds, kevés modellépitd
paraméterrel rendelkezik, bar ezen paraméterek hatdsa jelentOsebb, mint a véletlen erdonél.
Modellépitési ideje kb. a duplédja a véletlen erddjének, de igy is igen rovidnek tekinthetd. A
modell a hisztogram alapnak kdszonhetden jol skdldzhatd, kis és nagy teriileten is megfeleld
eredményt képes adni. Bar az egy idopontban késziilt felvétel alapjan a véletlen erdohoz kozeli
pontossaggot adott, a kiilonb6z6 adatkombinacidk jelentdsen novelték pontossagat, igy ez az
algoritmus adta a legmagasabb atlagos pontossagi értékeket (69,38% ¢és 93,34% kozott). A
mesterséges neurdlis halo a legnehezebben alkalmazhaté algoritmus a hérom vizsgalt
osztalyoz6 koziil, mivel nemcsak modellépitd paramétereit, hanem architekturalis paramétereit
is optimalizalni kell. Ezen paraméterek optimalizalasa igen bonyolult feladat, mivel egyrészt
1ddigényes egy-egy modell felépitése, masrészt az egyes paramétereknek igen nagy hatasa van
a modell teljesitményére. A modell nehezen skéaldzhatd, modellépitési ideje exponencidlisan nd
a mintateriilet (és igy a tanito adat) nagysagaval. Pontossagi értékeit tekintve az algoritmus a
legalacsonyabb pontossagi értékeket adat tobb adatkombinaciot tekintve, de a legjobban reagélt
a tovabbi adatok bevonasara, mint a textira és a temporalis adatok alkalmazasara. Az atlagos
Osszpontossagi értékei 66,88% ¢és 92,46% kozott mozogtak. Azonban a kutatasomban
Osszeségeében az osztalyozo algoritmus érte el a legmagasabb pontossagi értéket a harom
osztalyozo koziil (Hevesi artér, Sentinel-2 6 iddpontban késziilt felvétele alapjan: 96,71%). A
kutatdsom alapjan a véletlen erdd és a gradiens-noveld fa alkalmasak 4&ltaldnos célu
felhasznaldsra, akar monitoring rendszerekben is, mivel konnyen alkalmazhatéak kiilonb6z6
nagysagli €s mindségli adathalmazokon, illetve révid id6 alatt képesek az osztalyozast
megfeleld pontossaggal elvégezni. A mesterséges neuralis halo specidlis osztalyozasi feladatok
elvégzésénél alkalmazhatd, mivel igen nagy pontossagi eredményeket tud adni, azonban
teljesitménye erdsen fiigg a felhasznald tudasatél és az adathalmaz tulajdonsagaitol.

Eredményeim alapjan a gradiens-novel6 fa algoritmus bizonyult a legalkalmasabbnak a CLC

102



Gudmann Andras Viktor — Disszertacio,
Szegedi Tudomanyegyetem, Foldtudomanyok Doktori Iskola

3. hierarchia szintjén 1év0 felszinboritasi/teriilethasznalati kategoridk osztalyozasara, kozepes
felbontasu tavérzékelt adatok alapjan.

Osszeségében megallapithatd, hogy a CLC 3. hierarchia szintjén 1évé fdleg
teriilethasznalati kategoriak nagypontossagu lehatarolasa a temporalis adatok felhasznalasaval
adja a legpontosabb eredményt. Azonban ezen felvételek hianyaban a kozepes felbontasu
tavérékelt adatbol kinyert térbeli adatok a spektralis sadvokkal kombinélva is megfeleld alapot
biztositanak a leglijabb osztalyozasi algoritmusok szamara. Ezen osztalyozasok nagy
pontossagu elvégzéséhez mindegyik algoritmus alkalmas volt, de a hisztogram alapu gradiens-

noveld dontési fa bizonyult a legpontosabbnak.
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9. Summary

One of the fundamental and oldest tasks of remote sensing is the mapping of land use
and land cover (LULC), as these two aspects of land are key sources of information for
understanding geographical, social, and economic processes. The production and availability
of reliable, up to date LULC maps and the statistics that can be derived from them play a vital
role to the creation of environmental policies for sustainable development and planning.
However, the mapping of these aspects of the earth, by definition, presents a number of
technical and methodological challenges.

In my Ph.D. thesis, | have produced land cover/land use maps based on CORINE Land
Cover nomenclature using different input data and classifier algorithms for the years 2000 and
2018. 1 used various older and newer satellite imagery, data derived from them, as well as other
independent sources to investigate how to achieve the highest accuracy under certain conditions
(different classification algorithms, study areas, data combinations).

In my research, | have successfully developed a classification methodology that can
perform the classification task correctly on a randomly selected, relatively small set of training
data. To perform the classifications in both software (WEKA) and programming (python)
environments, | successfully developed a pre- and post-processing workflow to transform the
spatial data into raw and then back into spatial data at the end of the classifications. In the
WEKA software environment, | was able to successfully use four classification algorithms to
perform the classifications: decision tree, random forest, support—-vector machine, multilayer
perceptron. Furthermore, | successfully implemented to python programming environment
three advanced classification algorithms: random forest (RF), histogram-based gradient
boosting classification tree (HBGBCT), artificial neural network (ANN). With these two
methodologies, | performed the classifications on the different datasets.

(1) 1 examined the relationship of the spectral bands of the summer-time Landsat-7 (L7),
and Sentinel-2 (S2) satellite images with the categories at 3" level of the CLC nomenclature.
Based on the Jeffries-Matusita (JM) separability values of the L7 satellite image spectral bands
the separability values of the CLC categories were very low, but the S2 images showed a good
separability value between the different categories. The L7 JM values were confirmed by the
results of the classifications, which based on the spectral bands of satellite images and level-3
CLC categories. The results show that the algorithms, based on L7 spectral bands gave below
60% overall accuracy (OVRA) on 5 of the 6 study areas and only on 1 case above 70%. The
classifications based on S2 bands achieve moderate accuracy (mean OVRA 73,82%), despite

the JM values. Therefore, it can be stated that there is a detectable relationship between spectral
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bands and categories at the 3rd level of the CLC hierarchy, but information from single date is
not enough to perform the classifications with high accuracy.

(2 Since spectral bands alone were not sufficient to solve the classification task, I
tried to improve the classification accuracy with different derivatives as additional input data.
Such derivatives were spectral indices, such as NDVI, SAVI, MSAVI, EVI, NDMI, FaPAR,
FVC and transformations, like Tasseled Cap and PCA. The classification results, based on L7
and traditional spectral indices (NDVI, SAVI, MSAVI, EVI, NDMI), show that only NDVI can
improve the accuracy of the classification with 0,06%. The other indices decreased the accuracy
with by between -0,15% and -2,54%. However, non-traditional classifiers (FaPAR, FVC) with
S2 spectral bands increased the accuracy of some categories at class level. Similar to traditional
spectral indices, transformations didn’t improve the OVRA of the classifications, but for the
SVM classifier, PCA bands were able to cause significant increase in accuracy (+4,78%
OVRA).

3) I also examined the effect of the information extracted from the environment of
each pixel. Such information were the landscape metrics such as mean patch size (MPS), total
edge (TE), mean shape index (MSI), and fractal dimension (MFRACT) or the variance,
skewness, kurtosis and average Euclidean distance that can be extracted from kernel
calculations. The results suggest that both the landscape metrics and the texture data are
important sources of information that can generally improve the accuracy of classifications
(landscape metrics between 0,52%-6,82%, texture information between 3,39%-11,95%).
Furthermore, combinations of these data, cause further increases in accuracy of classifications
and these can be applied appropriately to small and large areas.

(4)  Thanks to the increasing temporal resolution of the satellite images, there are
more and more opportunities to include temporal data in the classification. | examined data
combinations formed with images from Landsat-7 for the year 2000 and Sentinel-2 for the year
2018, taken at multiple date. The results show that temporal data can significantly increase the
accuracy of all classes and the OVRA (L7: -5,46%—7,14%, S2: 12,92%-22,25%). Based on the
best results, the time window between each image should be kept as wide as possible to
minimize the correlation between images and thus maximize the amount of information they
contain. For the year 2018, the best results were obtained with a 3-month time window: based
on 6 satellite images, all classification algorithms returned OVRA above 90%. The examination
of the results from the temporal data used in the classification shows the spectral bands can
adequately characterise the given land cover/land use categories.

(5) Beside the spectral band’s derivates and the temporal data I tested different
primary data sources like SRTM, ASTER-GDEM elevation and Sentinel-1 radar data. The
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SRTM combined with Landsat-7 data caused a small increase in the results of each
classification (+2,35% on average), while the ASTER-GDEM data combined with Sentinel-2
data caused a smaller improvement, mainly at the class level (+0,06% OVRA). The
combination of Sentinel-1 and Sentinel-2 data did not cause an overall improvement in the
classification but did cause an improvement at class level. Class-level improvements were
observed for all three data combinations for the categories with elevation attributes (artificial
surfaces, forests, orchards, berries).

(6-8) In addition to examining the input data, | compared the advanced classification
algorithms based on their performance. In this comparison, | observed the applicability,
accuracy, and scalability of each algorithm. Among the three algorithms (RF, HBGBCT, ANN),
the RF is the easiest to apply and the fastest model to build among the three algorithms. In
addition, it builds models with small time difference on small and large sample sizes, can be
scaled well between data sets of different sizes, while not losing accuracy. However, its average
accuracy compared to the other classifiers is only moderate, ranging from 69,06% to 91,74%
on different data sets. The HBGBCT is similar algorithm to the RF, with few model-building
parameters, although the effect of these parameters is more significant than in the RF. Model
building times were low and the model scales well and can give good results over small and
large areas. The accuracies of this algorithm based on single date spectral values were like the
RF. However, the different data combinations increased its accuracy significantly, thus it had
the highest average accuracy values: between 69,38% and 93,34%. The ANN is the most
difficult algorithm to apply, as we need to optimize its model building and architectural
parameters, which have a very large impact on the performance of the model. The model is
difficult to scale because the model building time increases exponentially with the size of the
training data. The algorithm was most responsive on the inclusion of certain data, such as
texture and temporal data, but with other data combination it gave the lowest accuracies. The
average accuracy values ranged from 66,88% to 92,46%. Based on these results, the HBGBCT
algorithm proved to be the most suitable for classifying land cover/land use categories at the
3rd level of the CLC hierarchy, based on medium resolution remotely sensed data.

Overall, it can be concluded that the use of temporal data provides the most ideal result
for the high-precision delineation of categories at the 3" level of CLC hierarchy. However, in
its absence, spatial data extracted from medium resolution remote sensing data, combined with
spectral data, can provide a suitable basis for the latest classification algorithms to perform
classifications with high accuracy. From the mentioned latest algorithm were suitable for this

task, but the most suitable was the histogram-based gradient boosting decision tree.
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Al. tablazat A mintateriileteken a CLC osztalyok aranyai.
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A2. tablazat A Landsat-7-es felvételekbol kiszamitott spektralis indexek képletei.
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ahol a SWIRI. a pixel értéke a
révidhullamu infravoros

tartomanyban,

NBR2 =
(Normalized Burn (SWIRI.+SWIRII.) és a SWIRIL. a pixel értéke a
Ratio 2 - NBR2) rovidhullamu infravoros
tartomanyban
Normalizalt
Differencialt ahol a NIR a pixel értéke a kdzeli
Nedvesség Index infravords tartomanyban,
Normalized npmy = LR — SWIRT.) és a SWIRL a pixel érték
ormalize = .
( (NIR + SWIRT.) ésa a pixel értéke a
Difference rovidhullamu infravords
Moisture Index - tartomanyban
NDMI)
A3. tablazat A textara szamitasokhoz hasznalt képletek.
ahol x; ; a pixel értéke, M
S (xlij — M)? v
- __ 1 az ablak atlaga,
Variancia n—-1 s
M = T xij és n az ablakban [évo
T . .
pixelek szama
ahol x; ; a pixel értéke, M
|2 (xij _ M)3| az ablak atlaga,
Ferdeség - 3 V a variancia,
- 2
(n—1)V) és n az ablakban 1évd
pixelek szama
ahol x; ; a pixel értéke, M
. az ablak atlaga,
Cslicsossag M V a variancia,
(n-1DE)?
és n az ablakban [évd
pixelek szama
ahol x;;; az i,j pixel A
savjanak értéke,
Atlagos euklideszi % X¢ a kernel kézépponti

tavolsag

> [Z/l(xcil - xij/l)z]

n—1

pixel A savjanak értéke,

és n az ablakban 1év6

pixelek szama
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Ad4. tablazat Felhasznalt adatok és bel6liik kiszamitott derivatumok, vastagon szedve

azon idépontok, amik a CLC adatbéazisok alapjaul szolgaltak.

Miihold Datum Kiszamitott derivatumok Csempe altal lefedett mintateriiletek
2000.05.16
NDVI, SAVI, MSAVI, EVI, NBR,
NBR2, NDMI, PCA, Tasseled Cap,
Variancia (3x3, 5x5, 11x11,
17%17), Ferdeség (3%3, 5x5,
2000.08.20 11x11, 17%17), Csticsossag (33,
5x5, 11x11, 17x17), Atlagos
Euklidészi Tavolsag (3x3, 5x5, . o
1111, 17x17) Pesti hordale}(lful?-s1ksag
Hevesi arter
2000.10.23 Tétényi-fennsik
2000.04.21 Go6dolldi-dombsag
2000.05.07
2000.06.08
Landsat-7 2000.07.10
2000.08.11
2000.10.14
2000.04.28
2000.07.01
NDVI, SAVI, MSAVI, EVI, NBR,
NBR2, NDMI, PCA, Tasseled Cap,
Variancia (3x3, 5x5, 11x11, Fels6-0rség
17x17), Ferdeség (3%3, 55, Balatoni-riviéra
2000.08.18 11x11, 17%x17), Csucsossag (3%3,
5%5, 11x11, 17x17), Atlagos
Euklidészi Tavolsag (3x3, 5x5,
11x11, 17%17)
2000.10.21
2017.08.09 Fels6-0rség
2017.08.11 Hevesi artér
Landsat-8 Pesti hordalékkup-siksag, Tétényi-
p-siksag, 1etenyt
2017.08.18 fennsik, Godolloi-dombsag
2017.08.25 Balatoni-riviéra
2017.07.24 Fels6-Orség, Balatoni-riviéra
Sentinel-1 Pesti hordalékkup-siksag, Hevesi-
2017.07.25 artér, Tétényi-fennsik, Godoll6i-
dombsag
2017.01.01 Fels6-Orség
Pesti hordalékkup-siksag, Hevesi
2017.01.05 artér, Tétényi-fennsik, G6doll6i-
) dombsag
Sentinel-2
Pesti hordalékkup-siksag, Balatoni-
2017.03.29 riviéra, Tétényi-fennsik, G6doll6i-
dombsag
2017.04.25 Hevesi artér
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2017.05.15 Hevesi artér
Pesti hordalékkup-siksag, Tétényi-
2017.06.24 fennsik, Godol1éi-dombség
FaPAR, FVC, Variancia (11x11, | [ cstihordalékkip-siksig, Fels6-
2017.07.07 Orség, Tétényi-fennsik, Godollbi-
17x17, 23%23) .
dombsag
FaPAR, FVC, Variancia (11x11, S
2017.07.17 17x17, 23%23) Balatoni-riviéra
FaPAR, FVC, Variancia (11x11, C s
2017.08.03 17x17, 23%23) Hevesi-artér
2017.08.08 FaPAR, FVC, Variancia (11x11, | Pesti hordalékkup-siksag, Tétényi-
o 17x17, 23%23) fennsik, G6doll6i-dombsag
Pesti hordalékkup-siksag, Hevesi
2017.10.02 artér, Tétényi-fennsik, Godoll6i-
dombsag
2017.10.15 Fels6-0rség, Balatoni-riviéra
Pesti hordalékkup-siksag, Hevesi
2017.12.01 artér, Tétényi-fennsik, Godoll6i-
dombsag
2017.12.19 Fels6-0rség, Balatoni-riviéra
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