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Introduction
There is no software without bugs! Almost every week there are articles about bugs and vulnera-
bilities found in the most popular programs and operating systems. There are those that “only”
cause inconvenience, but there have also been cases that involved very serious financial losses
(for example, the destruction of the Ariane 5 rocket1). And that is just the tip of the iceberg!

These cases all highlight how important thorough and reliable testing is, even though it is a
resource-intensive part of the development process (and the software life cycle). The sooner we
detect the bugs, the less effort we can repair them, thereby saving a lot of time and resources.

There are many approaches and methods for the early automatic, semi-automatic, or manual
detection of defects and for measuring the effectiveness of the testing, thus supporting thorough
and continuous inspection. My research also proceeded along these two main directions: I pre-
sented more algorithms based on (unit)test results and their (source code) coverage obtained by
automatic, dynamic execution, which helps to automatically determine the location of the bug
in the software, and we produced a benchmark containing JavaScript programs, which can be
used for example to measure the effectiveness of different fault localization algorithms. With the
help of these, we can get a reliable picture of the performance of the algorithms, and these can
be the starting point for further research, which can be used to further improve the performance
of fault localization methods.

I Fault Localization Algorithms
One of the most popular and most researched algorithm families are the so-called spectrum-based
fault localization algorithms (SBFL), whose essence is to assign a suspiciousness value to each
code element based on the code coverage and the test results. Based on these values, it sets up
a ranking list, which determines which code elements are potentially the most suspicious, that
is, which code elements may contain bugs based on the concept. The code element can be a
statement, branch, or method depending on the granularity, but most of the research seeks to
determine the faulty method, that is, it conducts method-level debugging (and I used method-
based resolution in my research).

The SBFL algorithms store the coverage data in a binary matrix (coverage matrix) and the
test results in a binary vector (result vector). If an element of the matrix is equal to 1, it means
that the given code element (in this case, the method) was called during the execution of the
given test, and if the given element of the result vector is 1, then the given test failed (if its value
is 0 then it is successful, i.e. it passed)
A four-number (spectrum) can be extracted from these two data structures:

• mef : set of failed tests covered by m method
• mep: set of passed tests covered by m method
• mnf : set of failed tests not covered by m method
• mnp: set of passed tests not covered by m method.

These are the basis of the SBFL formulae and on the basis of which the suspiciousness values
(and ranks) are calculated. These are effective methods in many cases, but they do not take into
account other relationships between the tests and the code element, which can be used to further
increase the efficiency of the fault localization method.

1https://homepages.inf.ed.ac.uk/perdita/Book/ariane5rep.html

1

https://homepages.inf.ed.ac.uk/perdita/Book/ariane5rep.html


One such possible “extra information” is the frequency of calls. This topic has already been
researched [7, 1], but they did not achieve the expected results, however, our approach changes
that.
The basic idea was to use the number of occurrences in the dynamic call stacks generated during
the execution of the test in the coverage matrix, that is, we store not only whether or not a
method was called during the execution (of the test), but also how many times (it was called).
Due to the fact that our matrix does not only store 0 and 1 values, we also had to redefine/adapt
the |mef |, |mep|, |mnf |, and |mnp|. In this new analogy, the |mef | value of the given method
will be the sum of the matrix elements for which the test result failed, and |mep| will be the
sum of the elements where the test was passed. The adaptation of |mnf | and |mnp| is somewhat
more complicated. In this case, we used the average coverage of the non-covered elements, i.e.
we calculated the average coverage of the methods, that are not covered by the test (separating
failing and non-failing tests) The new values thus obtained can be “substituted” into the SBFL
formulas.

We can see through the example (Table 1) how the spectrum values are calculated for binary
and frequency-based matrices. The cells marked in red determine the value of |mef |, those written
in green indicate |mep|, orange indicates |mnf | and blue indicates the |mnp| value. We can see
that in the case of the binary matrix, these values depend only on the vector belonging to the
given method (and the test results), whereas in the case of the frequency-based approach, the
“full matrix” affects the values of the four variables.

Table 1: Example of a binary (hit) and frequency (count) matrix and the program spectra

binary matrix frequency matrix
a b c d a b c d

test
results

t1 1 0 1 1 2 0 2 1 0
t2 0 1 1 1 0 3 1 2 0
t3 1 1 0 0 2 2 0 0 0
t4 1 0 1 0 2 0 2 0 1
t5 1 1 0 1 3 2 0 1 1
t6 0 1 1 0 0 1 2 0 1

spectra of
c method

ef ep nf np ef ep nf np
2 2 1 1 4 3 3 4

The SBFL formulas use this spectrum to determine the suspiciousness value of each method.
For example, this is the value for c for the Ochiai [4] algorithm: |mef |√

(|mef |+|mnf |)·(|mef |+|mep|)
→

2√
(2+1)·(2+2)

= 0.577, and 4√
(4+3)·(4+3)

= 0.571 , depending on which type of matrix we are talking
about.

We have the option to replace only certain components of the formula, that is, some ele-
ments of the spectrum are calculated based on the binary, and the other elements are calculated
based on the frequency matrix. Based on this, I distinguished four scenarios: (a) ∆U

ef num : I use
the frequency-based |mef | value only in the nominator instead of the binary-based |mef |, (b) ∆U

ef
for all |mef | values are “replaced” in the formula, (c) ∆U

e : I replace the |mef | and |mep| val-
ues and (d) ∆U

all : I use only the frequency-based spectra (where ∆ denotes an arbitrary SBFL
formula). I compared the above four approaches with the results of the “original” SBFL formulas.
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It is also possible to extract additional information from the structure of the matrix. I created
graph-based concepts that use the coverage graph formed from the coverage matrix (Figure 1),
where there is an edge between a test and a method if the method is covered by the test.

With the help of features extracted from this graph, two new algorithms (NFL and ENFL)
were created, which determine the suspiciousness values in 4 and 4+3 steps, respectively. The
following four steps are the basis of the NFL algorithm (Fig. 1):

• the determination of the weight of edges related to faulty tests (Fig. 1(a)): this is nothing
but the quotient of the number of methods and the number of methods covered by the
failed test. The larger this value is, the more “test-oriented” the given method is (since
only a small part of the methods is affected by the test)

• proportioning of edge weights (Fig. 1(b)): the (edge weight) values obtained in the first
step are divided by the number of tests covered by the given method, thereby expressing
that methods covered by fewer tests are more suspicious than those affected by more tests.

• aggregation (Fig. 1(c)): sums the weights on the edges and aggregates them into the
“method-nodes”

• final proportionality (Fig. 1(d)): the value obtained in the previous step is multiplied by
the quotient of the number of failed tests covered by the method and the number of edges
coming out of the failed tests, thereby rewarding if a method is “responsible” for the failure
for the majority of calls related to tests.

(a) 1. step (b) 2. step

(c) 3. step (d) 4. step

Figure 1: The steps of the NFL algorithm
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The NFL algorithm can be extended with three additional steps (Fig. 2), which try to deter-
mine the location of the bug as precisely as possible using the coverage of the failed-passed test
pairs.

• comparison of test pairs (Fig. 2(a)): all test pairs were created where one of the tests passed
and the other failed, then the quotient was calculated for each pair, which is obtained by
dividing the number of methods covered only by failed test (i.e. not covered by the passed
pair) by the number of methods covered by the failed test. These quotients are aggregated
for the methods that were only covered by the failed test (and not by the passed pair)

• averaging (Fig. 2(b)): the value obtained in the previous step is averaged, i.e. divided by
the number of failed tests covered by the method

• combining (Fig. 2(c)): the values given by NFL and calculated after the two steps above are
multiplied together, that is, the results obtained by examining the relationships between
test-method and between test-test are combined.

(a) 5. step (b) 6. step

(c) 7. step

Figure 2: The steps of the ENFL algorithm

One of the advantages of the NFL and ENFL methods is that they can be interpreted not
only on an unweighted graph but also on a weighted one, that is, we have the possibility to
combine graph-based and frequency-based methods, where the weight of the edges will be the
call frequency value.

In order to get the objective picture of the efficiency of algorithms, three things are necessary:
“reference algorithms” to which we compare the performance of new methods, a reliable data
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set (benchmark) on which to evaluate the performance, and evaluation metrics that quantify the
efficiency.

Due to reliable assessment, I selected eight SBFL formulae (Table 2), which are regularly used
as state-of-the-art in research on a similar topic.

Table 2: Details of the hit-based SBFL formulae used in the experiment

Barinel (B) [2]: |mef |
|mef |+ |mep|

DStar (D) [10]: |mef |2

|mep|+ |mnf |

GP13 (G) [12]: |mef | ·
(

1 + 1
2 · |mep|+ |mef |

)
Jaccard (J ) [4]: |mef |

|mef |+ |mnf |+ |mep|

Ochiai (O) [4] : |mef |√
(|mef |+ |mnf |) · (|mef |+ |mep|)

Russell-Rao (R) [3]: |mef |
|mef |+ |mnf |+ |mep|+ |mnp|

Sørensen-Dice (S) [8] : 2 · |mef |
2 · |mef |+ |mnf |+ |mep|

Tarantula (T ) [5] :
|mef |

|mef |+|mnf |
|mef |

|mef |+|mnf |
+ |mep|
|mep|+|mnp|

For analysis and evaluation, I selected Defects4J [6], a widely used collection of Java programs
and curated bugs in FL research. This benchmark contains seventeen open-source Java projects
with manually validated, non-trivial real bugs. The original dataset contains 835 bugs, however,
there were cases that I had to exclude from the study due to instrumentation errors or unreliable
test results. A total of 786 defects were included in the final dataset.

For the comparability of the suspiciousness values, I used the ranks, which indicate how many
positions the examined element is in the suspiciousness ranking list. The rank is defined as follows:

E(f) = |{i|si > sf}|+ |{i|si ≥ sf}|+ 1
2 (1)

where si and sf are the suspicion values for the not faulty (i) and faulty methods (f). If several
methods have the same value, the average of these ranks will be assigned to each such method.
Note that, if there are multiple bugs for a program version, I will use the highest rank of buggy
methods. In other words, the rank of the bug shows how many methods on average the developer
needs to examine to find the location of the bug.

The possible aspects of the comparison, on the basis of which I examined the results, is how
many cases resulted in a higher (better) or lower (worse) rank of the new algorithm than the
SBFL methods (Fig. 3), what the average ranks of the bugs were(Fig. 4) and how great the
difference between ranks was.

Several studies(e.g. [11]) showed that developers only examine the first 5 or 10 most suspicious
elements during bug fixing, the rest of the ranking elements are not relevant to them. Therefore,
I examined how many errors are among the 5 most suspicious elements for each algorithm (Top-5 )

We can see that in most cases, the new methods a give better rank than the “classic” SBFL
formulae, and it can be read that for all SBFL algorithms WENFL “won” it most of the time
(that is, in the row of Table 3, WENFL achieves the highest win-value).
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Table 3: Basic statistics of formulae. Losses are in favor of the hit-based formulae

NFL ENFL ∆U
ef num ∆U

ef ∆U
e ∆U

all WNFL WENFL
ve
sz
ít

ny
er

ve
sz
ít

ny
er

ve
sz
ít

ny
er

ve
sz
ít

ny
er

ve
sz
ít

ny
er

ve
sz
ít

ny
er

ve
sz
ít

ny
er

ve
sz
ít

ny
er

B 56 150 88 286 293 346 252 334 249 294 249 294 355 316 257 384
D 57 120 94 252 361 303 361 303 306 348 307 351 372 294 267 365
G 90 54 121 217 - - 428 270 435 275 435 275 358 309 262 372
J 49 131 82 266 295 346 269 342 265 299 262 301 363 306 262 375
O 45 111 82 243 366 303 273 339 260 296 271 292 370 299 266 365
R 90 662 91 663 184 541 182 539 119 631 160 599 116 641 64 693
S 49 131 82 266 300 344 269 342 265 299 262 301 363 306 262 375
T 56 149 88 285 - - 104 51 492 117 503 112 355 316 257 384

Table 4 shows the average of the ranks achieved on 786 bigs. We can see that the best result,
i.e. the highest average rank was achieved by the WENFL method (20.59), producing much
better results than the reference SBFL algorithms (33.98-135.96). Furthermore, for all formulas
except for Tarantula and GP13 , the frequency-based approach performed better (at least in one
concept) than the binary one, that is, it was (on average) more efficient at finding the location of
the bug by taking the call frequency into account. For example BU

ef num and BU
ef both performed

better (24.68 and 24.55) than the binary approach (36.01), but BU
e and BU

all were worse (38.63).

Table 4: Average ranks (E)

hit NFL ENFL ∆U
ef num ∆U

ef ∆U
e ∆U

all WNFL WENFL

B 36.01

36.42 34.05

24.68 24.55 38.63 38.63

47.19 20.59

D 33.99 35.60 35.60 29.08 29.13
G 43.30 - 66.73 67.19 67.19
J 36.06 24.63 24.40 38.64 38.34
O 33.98 36.05 24.30 36.44 36.99
R 135.96 70.80 70.60 35.12 54.95
S 36.06 24.89 24.40 38.64 38.34
T 36.01 - 36.87 85.35 74.56

Table 5 and Table 6 show the number of bugs with a rank less than or equal to 5 for each
algorithm (# column), what part of the total data set this is (% column), how many bugs there
were that, according to the reference SBFL algorithm, belong to the Top-5 category, but based on
the new algorithms, their ranked lower (Det. column), and the number of cases, where the rank
was reduced by the new method and thus got positioned in the Top-5 category (E.im. column).
In this case too, we see similar results as in the case of the average rank. It can also be established
that the number of bugs in the Top-5 category can be increased by using the frequency-based
spectrum. The WENFL method achieves better Top-5 values (389 – 49.5%) than methods using
the binary approach and it also produces high E.Im. values (97-282), that is, there were more
cases where the reference formulae gave a rank lower than 5, but the new algorithm reduced this
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to Top-5. It is also interesting that both NFL and ENFL achieve larger # values than any SBFL
formula, all with very low Det. values (that is, there are few cases where the bug is “removed”
from the Top-5 category as a result of the new algorithm) and in all cases (similar to WENFL)
it is included in the Top-5 more times than it is removed from it (i.e. Det− E.Im. < 0).

Table 5: Number of bugs in Top-5 category (using frequency-based approaches)

hit ∆U
ef num ∆U

ef ∆U
e ∆U

all

# % # % Det. E. Im. # % Det. E. Im. # % Det. E. Im. # % Det. E. Im.

B 357 (45.4%) 373 (47.5%) 78 94 376 (47.8%) 65 84 354 (45.0%) 45 42 354 (45.0%) 45 42
D 366 (46.6%) 327 (41.6%) 128 89 327 (41.6%) 128 89 391 (49.7%) 86 111 388 (49.4%) 88 110
G 361 (45.9%) - - - - 266 (33.8%) 172 77 269 (34.2%) 170 78 269 (34.2%) 170 78
J 358 (45.5%) 372 (47.3%) 81 95 380 (48.3%) 69 91 357 (45.4%) 47 46 356 (45.3%) 48 46
O 367 (46.7%) 323 (41.1%) 135 91 380 (48.3%) 74 87 363 (46.2%) 51 47 361 (45.9%) 54 48
R 111 (14.1%) 249 (31.7%) 12 150 248 (31.6%) 12 149 380 (48.3%) 6 275 356 (45.3%) 10 255
S 358 (45.5%) 366 (46.6%) 87 95 380 (48.3%) 69 91 357 (45.4%) 47 46 356 (45.3%) 48 46
T 357 (45.4%) - - - - 351 (44.7%) 12 6 258 (32.8%) 111 12 254 (32.3%) 117 14

Table 6: Number of bugs in Top-5 category (using graph-based approaches)

hit NFL ENFL WNFL WENFL

# % # % Det. E. Im. # % Det. E. Im. # % Det. E. Im. # % Det. E. Im.

B 357 (45.4%)

369 (46.9%)

14 26

368 (46.8%)

15 26

326 (41.5%)

127 96

389 (49.5%)

69 101
D 366 (46.6)% 12 15 13 15 133 93 74 97
G 361 (45.9)% 16 24 19 26 132 97 76 104
J 358 (45.5)% 10 21 11 21 128 96 70 101
O 367 (46.7)% 11 13 12 13 134 93 75 97
R 111 (14.1)% 2 260 2 259 6 221 4 282
S 358 (45.5)% 10 21 11 21 128 96 70 101
T 357 (45.4)% 14 26 15 26 127 96 69 101

Based on the above comparison, we can state that (i) the performance of SBFL algorithms
can be improved by using frequency information, (ii) the graph-based approach produces better
(or almost as good) results as the reference algorithms in many cases, and (iii) the weighted,
graph-based approach using call frequency finds the faulty methods more efficiently than the
other presented algorithms.

The contributions of the author to this thesis point
The author of the dissertation created the algorithm using a graph-based approach, which works
on “traditional” coverage matrices, and he performed the quantitative evaluation of the method.
He had a decisive role in the development of the approach based on call chains, its adaptation, and
the quantification of the results. Combining graph and chain-based methods is also the author’s
work, as is the comparison and evaluation of the results. In addition to these, he was actively
involved in processing the literature, planning the experiments and measurements, and writing
the publications.
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II BugsJS: a Benchmark of JavaScript Bugs
A high-quality bug data set is essential for the reliable evaluation of fault localization algorithms.
There are several benchmarks (for example Defects4J [6] – Java), but until now no such data set
was available for JavaScript programs. We wanted to fill this gap.

As a first step, we determined the criteria on the basis of which the programs are selected,
then we automatically collected the bugs in them, manually and automatically (dynamically)
validated them, and then loaded them into the established infrastructure.

During the selection of the projects, we took into account several relevant aspects. One of
these was to be available in the GitHub version control system, as well as a server-side Node.js
application. In order to identify and validate bugs, it was essential that the project uses GitHub’s
issue-tracker system and that it contains commits with the bug tag. In addition, it had to be
popular (Stargazers count ≥ 100), “mature” (number of commits > 200), and active (year of the
latest commit ≥ 2017) to be considered potential candidates can be included.

For each selected project, we first checked GitHub’s official API to see if it was a closed bug
with a specific bug tag or not. For each closed bug entry, we automatically searched for the
commit that fixed it and the one that was the commit before the fix. We ignored cases where
two or more changes fixed the bug. In this way, the status of both the project containing the bug
and the one no longer containing the bug were identified.

In the case of manual validation, we set five conditions and in the case of dynamic validation
four conditions against the error and commits. In the case of manual validation, the following
had to be met:

• isolation: the bug-fixing changes must fix only one (1) bug (i.e., must close exactly one (1)
issue)

• complexity: the bug-fixing changes should involve a limited number of files (≤ 3), lines of
code (≤ 50) and be understandable within a reasonable amount of time (max 5 minutes)

• dependency: if a fix involves introducing a new dependency (e.g., a library), there must
also exist production code changes and new test cases added in the same commit

• relevant changes: the bug-fixing changes must only involve changes in the production code
that aim at fixing the bug (whitespace and comments are allowed)

• refactoring: the bug-fixing changes must not involve the refactoring of the production code.

The four conditions necessary for dynamic validation were established as follows:

• test does not fail: let Vbug be the version of the source code that contains a bug b, and let
Vfix be the version in which b is fixed. The existing test cases in Vbug do not fail due to b,
however, at least one test of Vfix should fail when executed on Vbug

• correct dependencies: it could not happen that the tests could not be run due to missing
dependencies

• error does not exist in tests: no errors occurred while running the tests
• Mocha: the project uses the Mocha (test)framework

Overall, 795 commits were manually validated, of which 542 (68.18%) fulfilled the criteria.
Table 7 (Manual) illustrates the results of this step for each application and across all applications.
The most common reason for excluding a bug is that the fix was deemed too complex (136).
Other frequent scenarios include cases where a bug-fixing commit addressed more than one
bug (32), where the fix did not involve production code (29), or where it contained refactoring
operations(39). Also, we found four cases in which the patch did not involve the actual test’s
source code, but rather comments or configuration files.

9



After the dynamic analysis, 453 bug candidates were ultimately retained for inclusion in
BugsJS (84% of the 542 bug candidates from the previous step). Table 7 (Dynamic) reports the
results of the dynamic validation phase. In 22 cases, we were unable to run the tests because
dependencies were removed from the repositories. In 15 cases, the project at revision Vbug did not
use Mocha for testing b. In 12 cases, tests were failing during the execution, whereas in 40 cases
no tests failed when executed on Vbug. We excluded all such bug candidates from the benchmark.

Table 7: Manual and dynamic validation statistics per application for all considered commits

B
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ci
lb
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Sh
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ld
s

T
ot

al

Initial number of bugs 10 559 39 17 24 37 56 25 18 10 795

M
an

uá
li

s

8 Fixes multiple issues 0 18 1 0 1 5 2 5 0 0 32
8 Too complex 0 94 0 4 8 4 8 7 9 2 136
8 Only dependency 1 9 0 0 1 0 2 0 0 0 13
8 No production code 0 20 4 0 1 1 2 0 0 1 29
8 No tests changed 1 0 1 0 0 0 0 1 1 0 4
8 Refactoring 0 36 0 0 0 1 1 1 0 0 39

After manual validation 8 382 33 13 13 26 41 11 8 7 542

D
in

am
ik

us 8 Test does not fail at Vbug 1 11 6 4 1 2 8 3 1 3 40
8 Dependency missing 3 17 0 0 0 1 1 0 0 0 22
8 Error in tests 1 7 0 0 0 0 3 1 0 0 12
8 Not Mocha 0 14 0 0 0 1 0 0 0 0 15

4 Final Number of Bugs 3 333 27 9 12 22 29 7 7 4 453

We performed manual cleaning on the bug-fixing patches, to make sure they only include
changes related to bug fixes. In particular, we removed the irrelevant changes (i.e., source code
comments, when only comments changed, and comments unrelated to bug-fixing code changes,
as well as changes solely pertaining to whitespaces, tabs, or newlines). Furthermore, for easier
analysis, we separated the patches into two separate files, the first one including the modifications
to the tests, and the second one pertaining to the production code fixes.

We added the resulting changes to the BugsJS infrastructure and provided users with a
command-line interface that (currently) can receive four commands. The interface includes the
following commands: (i) info: prints out information about a given bug (ii) check out: checks out
the source code for a given bug (iii) test: runs all tests for a given bug and measures the test
coverage (iv) per-test: runs each test individually and measures the per-test coverage for a given
bug

We have assigned five states to each bug, depending on the changes (bug fixes) it contains:

• Bug-X: The parent commit of the revision in which the bug was fixed (i.e., the buggy
revision)

• Bug-X-original: A revision with the original bug-fixing changes (including the production
code and the newly added tests)

• Bug-X-test: A revision containing only the tests introduced in the bug-fixing commit, ap-
plied to the buggy revision
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• Bug-X-fix: A revision containing only the production code changes introduced to fix the
bug, applied to the buggy revision

• Bug-X-full: A revision containing both the cleaned fix and the newly added tests, applied
to the buggy revision.

Furthermore, BugsJS Dissection (Fig.3 and Fig. 4) was created based on Defects4J Dissec-
tion2, which contains basic information about each bug and is available via the following link:
https://bugsjs.github.io/dissection/.

Figure 3: BugsJS Dissectiont (overview page)

Not only the infrastructure was created, but the bugs in it were also categorized according to
their nature (taxonomy) and the bug-fix type. During a physical meeting, for each bug instance,
all taggers reviewed the bugs and identified candidate equivalence classes to which descriptive
labels were assigned. By following a bottom-up approach, we first clustered tags that correspond
to similar notions into categories. Then, we created parent categories, in which that categories
and their sub-categories follow a specialization relationship.

Furthermore, we have categorized the bug fixes according to the code change. For this, we
used the change patterns created by Pan et al. [9] and expanded it with 3 new categories.

After the grouping according to the two criteria was done and every bug received at least one
taxonomy label and the bug-fix type label, we examined the relationship between them. Based on
this, the stronger and looser relationships between the groups could be determined. For example:
the connection between the missing input validation and the if-related fix is strong, but it is weak
between the incomplete data processing and the sequence-related fix groups.

In addition, we demonstrated the usability of BugsJS through a possible area of use, fault
localization. We examined 7 projects that contained 336 bugs and evaluated them using three,
previously described algorithms (Tarantula, Ochiai, and DStar). The results confirmed what the
researchers experienced on the other benchmarks (Table 8): the methods performed similarly, in

2http://program-repair.org/defects4j-dissection/
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Figure 4: BugsJS Dissectiont (page for one bug)

6 cases out of 7 projects DStar performed best average ranks (with the exception of Hessian.js),
but overall the best result was achieved by Ochiai (column All).

Table 8: Average ranks

Project Bower Shields Hexo Hessian.js Express Pencilblue Eslint All
Tarantula 25.83 5.83 3.25 4.81 8.10 1.83 20.39 18.24

Ochiai 19.17 5.83 3.00 3.88 7.94 1.67 19.90 17.73
DStar 17.50 5.17 80.88 3.00 7.94 1.67 19.90 20.47

If we look at the distribution of the ranks, we reach a similar conclusion (Fig. 5): in 28-30% of
the cases, the rank value is 1 (that is, the most suspicious element is the faulty method), almost
two-thirds of the bugs get 3 or higher rank (61-63%) and only 9-11% of them for which the rank
is lower than 10.

Furthermore, we wondered whether there were bug-fix types that could be found more effi-
ciently by the algorithms mentioned above. Table 9 shows in what percentage of cases the faulty
method was the most suspicious (Top-1 ), how many times they resulted in 3 or better (Top-3 ),
5 or better (Top-5 ), 10 or better (Top-10 ) or worse than 10 (Other) rank.

It can be seen that in the case of if-related types (IF), the faulty methods are found more
efficiently than average, more often than average, the faulty method will be at the top of the
ranked list for method call-related fixes (MC), and in cases related to method declarations (MD),
the algorithms perform somewhat better. The opposite conclusion can be drawn for sequence-
relateds (SQ). These errors are more difficult to find by the methods and are given a lower rank.
Due to the low number of cases (column # in Table 9), it is difficult to draw reliable conclusions
about the other categories.

In summary, we presented BugsJS, a benchmark of 453 real, manually validated JS bugs
from 10 popular JavaScript programs. The quantitative and qualitative analyses, including a cat-
egorization of bugs in a dedicated taxonomy, show the diversity of the bugs included in BugsJS
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Figure 5: The distribution of ranks (R) for the algorithms.

Table 9: The distribution of ranks depending on the algorithms and the bug-fixing types

Top-1 (%) Top-3 (%) Top-5 (%) Top-10 (%) Other (%)
Type # T O D T O D T O D T O D T O D
IF 176 32.4 34.1 33.0 65.3 67.6 67.6 80.7 83.5 83.0 93.2 94.3 93.2 6.8 5.7 6.8
AS 102 28.4 30.1 29.1 56.9 61.2 60.2 71.6 73.8 71.8 85.3 89.3 86.4 14.7 10.7 13.6
CF 2 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
MD 24 29.2 29.2 29.2 70.8 75.0 79.2 79.2 83.3 83.3 87.5 91.7 91.7 12.5 8.3 8.3
MC 65 36.9 38.5 38.5 61.5 63.1 63.1 70.8 72.3 72.3 89.2 87.7 87.7 10.8 12.3 12.3
SQ 29 10.3 10.3 10.3 48.3 48.3 55.2 65.5 69.0 72.4 79.3 82.8 82.8 20.7 17.2 17.2
SW 5 20.0 20.0 20.0 60.0 60.0 60.0 60.0 80.0 80.0 80.0 80.0 80.0 20.0 20.0 20.0
LP 8 0.0 0.0 0.0 50.0 50.0 50.0 87.5 87.5 87.5 87.5 87.5 87.5 12.5 12.5 12.5
TY 1 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0

that can be used for conducting highly reproducible empirical studies in software analysis and
testing research related to, among others, regression testing, bug prediction, and fault localization
for JavaScript.

The contributions of the author to this thesis point
The author of the dissertation was actively involved in the investigation of existing bug data sets
and the design and implementation of the new benchmark and the new framework (including
the validation of bugs and the construction of the software architecture). Both the creation of
the taxonomy and the categorization of bugs (into the bug-fixing type groups) required the
consensus of several researchers, in which the author also took an active role. Furthermore, he
was the one who designed the experiment (and implemented the programs) through which it
was demonstrated how BugsJS can be used to evaluate and compare the effectiveness of fault
localization algorithms and he evaluated the results.
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Summary
In my thesis, I focused on a very important subtask of software development, software testing,
including a small segment of it, fault localization. Iin my dissertation I deal with one of the most
well-known and popular families of fault localization (FL) algorithms, which is based on the
source code coverage information, and in the second part, I present the benchmark we created,
with the help of which the efficiency of the algorithms can be objectively measured and thus
compared.

I present in detail the concept of coverage-based debugging procedures (so-called spectrum-
based fault localization (SBFL) algorithms), the best-known methods, and other relevant liter-
ature. After that, I present two approaches based on graph attributes/properties, which try to
determine the location of the bugs as precisely as possible. For this, it builds (from the SBFL
input data) a so-called coverage graph, from which it identifies the most suspicious elements by
extracting different neighborhood information.

Then the concept of UDCS (unique, deepest call stack) was introduced, which is illustrated
by a small example. It is described in detail how the method call frequency information that can
be extracted from the UDCS can be adapted in the previously described formulae used by SBFL
algorithms.

Finally, I showed how the two concepts described above (graph- and frequency-based) can be
combined, thereby making use of the potential opportunities of the two methods.

I performed the quantitative evaluation on the Defects4J (Java) benchmark, which showed
that (i) the two graph-based methods are in many cases more efficient than the examined SBFL
methods, (ii) methods using frequency information achieve significantly better results than meth-
ods based on binary coverage, and (iii) the best result was obtained by combining the two con-
cepts, the WENFL algorithm.

A high-quality bug data set is essential for the reliable evaluation of fault localization algo-
rithms. There are several benchmarks (for example, Defects4J – Java), but until now no such
data set was available for JavaScript programs. In the second half of the dissertation, I presented
how this new data set (BugsJS) was created, I describe in detail the steps involved in the se-
lection of the projects (10 projects), the detection, validation, and “cleaning” of the 453 bugs in
them, and their analysis according to different aspects.

In addition to these, we created the grouping of the bugs in the data set (which covers a
hierarchical categorization), and the groups in the taxonomy were presented in detail, using real
examples. Furthermore, we analyzed and categorized the bugs according to what (code)changes
occurred during the fix, and we examined the relationship between the taxonomy categories and
bug-fixing types. Finally, in a possible use case, we demonstrated how BugsJS can be used by
researchers through the examination of fault localization algorithms.

I hope that these results will contribute to the creation of more efficient fault localization
algorithms and that the evaluation of performances will be more reliable in the future.
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