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Chapter 1

Introduction

1.1 Agent-Based Modeling (ABM)

Mathematical models describing natural phenomena can be encoded into com-
puter programs, and then the behaviour of the system can be simulated. Beyond
representing equations defined in the mathematical models, computer simulations
can offer higher flexibility and finer resolution than we can analyse by equation based
models. In this work, we strive for taking advantages of both methods: combining
differential equations with computational simulations, we have access to the insights
gained from mathematical analysis, and also to the rich dynamical behaviours we
can observe by performing a large amount of computations.

A simulation utilizing agent-based modeling (ABM) involves capturing the prop-
erties and behaviors of abstract entities known as agents. Each agent in an ABM
possesses characteristics and behaviors, and can act autonomously based on the
environment and other agents in the model. This is similar to the concept of classes in
many Object-Oriented languages. The interactions among agents in many ABMs lead
to emergent behaviors that can only be described at the system level. An example
can be found in the flocking of birds in which the birds exhibit properties similar to
those of self-governing organisms. As emergent behavior is difficult to study directly,
in contrast to the individual behavior of a single agent, ABMs are well suited to
analyzing these types of complex systems. In this method, the fundamental idea is
the definition of a discrete heterogeneous state space in which the elements or agents
have collective interactions with each other and change their states accordingly [1].
This thesis utilizes ABM to investigate two biological phenomena. A model is devel-
oped to simulate the emergence of resistant cancer cells as a result of chemotherapy.
We also study viral dynamics in a population of cells, characterizing influenza and
SARS-CoV-2 infections, and evaluating the antiviral Paxlovid.

11



12 Introduction

1.1.1 Cancer model

Chemotherapy is a method of cancer treatment that uses anti-cancer drugs as a
cure or to prolong the patient’s life while reducing their symptoms [2, 3]. As a result
of selective pressure, tumor cells evolve in a way similar to Darwin’s theory of natural
selection, resulting in the appearance of the most suitable clones [4, 5, 6, 7]. As a
consequence of chemotherapy, the tumor population develops resistant descendants.
Lamarckian induction [8] is another way of developing resistant cells, which involves
changing the gene expression of a subpopulation of sensitive cells in order to acquire
resistance. Recently, a third way in which resistance can be manifested has been
revealed. It is known that resistance strongly depends on intercellular communication
and on the tumor microenvironment [9, 10]. Using an ordinary differential equation,
we developed a mathematical model to describe how tumor cells evolve into those
that are susceptible to chemotherapy or those that are resistant to chemotherapy.
The three mechanisms of emergence of chemotherapy resistance as a result of the
therapeutic drug were considered in the model. This ODE model does not provide
information regarding the spatial structure of a tumor due to the use of ordinary
differential equations. Therefore, we have created a spatial version of this ODE model
based on an agent-based model in order to assess the model’s capability to describe
tumor growth.

1.1.2 Viral dynamics

Various mathematical models have proved to be useful in the analysis of viral
infections. These mathematical models are particularly useful in light of the current
and virtually unprecedented pandemic, as they provide insights based on mathe-
matic analysis and computer simulations. This means that they are able to obtain
results at an ideally low cost even in complex situations where real-life and real-time
experiments can either be extremely risky or simply impossible. The spatial-temporal
nature of biological phenomena is ubiquitous, and we cannot afford to ignore such a
critical aspect of our models. One obvious example is virus diffusion, which enables
virus particles to physically reach susceptible cells. Our study emphasizes the impor-
tance of monitoring virus distribution in both space and time - we demonstrate that
simpler models that ignore spatial phenomena lose their predictive precision due to
the absence of spatial diffusion.



Chapter 2

Hybrid PDE-ABM system

2.1 Introduction

Agent-based modeling is another (and in fact quite different) approach to de-
scribe complex space-time dynamics in viral spread. The cornerstone idea of this
method is to define a discrete heterogeneous state space where the so-called agents
or elements have collective interactions with each other and they change their states
correspondingly [1]. The ABM concept has several important applications within the
field of virus dynamics, in [32] the authors apply an agent-based model to simulate
influenza interactions at the host level.

An agent-based model is a great tool to include randomness and natural vari-
ability into the system, while PDEs are faster to evaluate numerically: by forming
bridges between these two modeling strategies we arrive to a hybrid system, the
so-called hybrid PDE-ABM model. This section introduces this hybrid system and
compares it with other methods. In addition, we introduce the platform we use to
implement our approach.

2.2 Comparison of the hybrid model with ODE, PDE,
and Agent-based models

An equation-based model can be thought of as a continuum model that is based
on a system of ordinary differential equations (ODEs) or partial differential equations
(PDEs). A PDE captures both the temporal variation and spatial-related evolution
of a system state variable, whereas an ODE captures only the temporal variation of
said variable. The viral load titers produced by non-spatial models are generally
higher than those produced by spatial models, and the peaks of infection occur
significantly earlier [12, 13]. When the number of infected cells is large, homogenous
recruitment of immune cells is comparable to the ODE model, but not when the

13
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number of infected cells is small at the beginning of the infection [13]. Due to these
differences, important parameters, such as viral infectivity [14], and basic repro-
ductive ratio [14], can be estimated incorrectly. To determine the effectiveness of a
therapeutic intervention, the basic reproductive ratio is required [14]. There has been
a growing interest in models that incorporate spatial dispersion of infection within
an individual host in recent years. Based on these models, it is assumed that only the
free virus disperses into the environment, whereas the host cells do not (for exam-
ple, [14, 15], and the references therein are cited). The spatial dispersion of viruses
can be explained by such hybrid differential equation systems (that is, systems of
two ordinary differential equations (ODEs) for the cells, and one parabolic partial
differential equation (PDE) for the virus). As a class of modeling tools, ABMs are par-
ticularly suited to modeling heterogeneous populations and capturing the behavior
of systems with intrinsic discrete properties, such as systems of cells [16]. Moreover,
ABMs are effectively embedded in a system biology approach: the behavior of the
system emerges from simulations of 1) the dynamics of individual agents (for exam-
ple, cells), 2) the interactions between agents, and 3) the effects of the environment.
ABMs, as compared to continuum models, offer a more natural description of cellu-
lar systems as they describe the processes that govern the activities of agents (e.g.,
mitosis, apoptosis [17]). Using this bottom-up approach, it is not necessary to have
an in-depth knowledge of the entire system since its behavior will emerge naturally
from the basic rules imposed on it. Compared to equation-based models, ABMs can
incorporate stochasticity more easily, given that equation-based models are generally
deterministic. Therefore, multiple runs of the same ABM produce heterogeneous
results, which are consistent with actual observations of the phenomena, thereby
bringing ABMs closer to reality. Finally, ABMs have the potential to capture spatially-
related aspects more effectively, such as tissue heterogeneity, tissue composition and
tissue morphology, allowing for the integration of phenomena occurring on different
scales within multiscale frameworks [18]. A number of modeling strategies have
been introduced above that can be used to simulate phenomena at various levels of
resolution to reach a high level of accuracy. Due to the fact that biological processes
involve a wide range of spatio-temporal scales, it is necessary to integrate these tools
into the multiscale models of biological systems. Agents are capable of receiving
inputs from the environment, influencing their decision-making, and also being able
to alter the environment around them. Discrete and continuous models have many
distinct characteristics, but hybrid models combine aspects of both types. There are
hybrid ABMs that incorporate continuum models to describe various parts of the
overall system, including the environment and a part of the agent’s decision-making
process, as well as the behavior of the agents [19, 22, 23, 24]. A hybrid ABM can also
be classified as multi-scale if a section of the model, such as the continuum model,
leads to behaviors that occur at a different spatiotemporal scale than the ABM itself.
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To reconcile the exchange of information between these hybrid multi-scale ABMs,
the continuum models are solved using conventional numerical methods on a faster
time scale than the ABMs; synchronization between the scales is required so that
the ABMs are able to resolve the information exchange [25]. It is true that there are
many platforms that are supported for developing ABMs (e.g., NetLogo, Repast,
Swarm, SPARK, CHASTE, MASON, and FLAME [19, 20, 21, 25, 26, 27, 28] , but we
have found that the hybrid automata library (HAL) [29] platform (written using an
object-oriented programming language, Java) provides the flexibility necessary for
linking and solving hybrid multi-scale ABMs.

2.3 HAL’s platform

Each of HAL’s components can function independently in order to maintain its
fundamental decentralized nature. Spatial queries can be used to combine any num-
ber of components into a single model (see Figure 2.3.1 which is adapted from [29]).

Figure 2.3.1: A fundamental aspect of HAL’s decentralized nature is the ability of its
components to function independently. It is possible for the on-lattice agent to overlap with
several other grids and PDEs (adapted from [29]).

There are three ways in which stability can be achieved in a design:
First. Establishing safe interaction functions and preventing direct contact with in-
ternal components. Modelers, for example, are not permitted to alter the position
properties of agents directly. Rather, they must call the provided movement functions
which update the grid position of the agents as well for future spatial queries.
Second. Incorporating checks for invalid inputs into functions. As soon as one of
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these problematic inputs is encountered, the program halts and displays an error
message, such as inputting a diffusion rate constant that is unstable or moving two
unstackable agents to the same location.
The third point. A series of small test programs are used to test HAL’s algorithms. As
a result of these tests, confidence in the algorithm implementation can be maintained.
Three main areas are verified by unit tests: the accuracy of PDE algorithms, ABM
aggregate behavior, and mathematical utilities. In addition, the PDEGrid functions
were verified for convergence in time and space, as well as diffusion models using
PopulationGrids [29].



Chapter 3

Cancer model

3.1 Introduction

Chemotherapy is a method for cancer treatment using anticancer drugs given as a
curative agent or with the aim to prolong the patient’s life and reduce the symptoms
[2, 3]. During chemotherapy, a single drug or a combination of drugs is usually
given at intervals in pulsed doses or cycles. Cytotoxic agents damage tumour cells,
which may then lead to cell death, while application of cytostatic drugs suppress
tumour growth without direct cytotoxic effect. Chemotherapy resistance – a major
difficulty in cancer treatment – means that a tumour previously responsive to the
therapy, begins to grow as cancer cells evolve the ability to prevent the development
of an effective concentration of the active agent within them. Several ways can
lead to resistance of tumour cells to chemotherapy. It has been shown that tumours
evolve in a similar way as Darwinian evolution acts, i.e. tumour cells are affected
by selective pressure which results in the emergence of the fittest clones [4, 5, 6, 7].
In case of chemotherapy, drugs operate as selective pressure agents. Under their
effect, resistant descendant cells arise in the tumour cell population. Another way
of development of resistant cells is Lamarckian induction [8], which means that a
subpopulation of sensitive cells acquires resistance via changes in gene expression.
A third way of appearance of resistance has recently been revealed. It is known
that resistance strongly depends on intercellular communication and on tumour
microenvironment. Information transfer among tumour and healthy cells affects both
local and nonlocal interactions. The latter include long-range cell signalling, delivery
of soluble factors and exchange of extracellular vesicles and they are responsible for
the active modulation of tumour microenvironment. Microvesicles are extracellular
particles released from the cell membrane transporting efflux membrane transporters,
genetic information and transcription factors needed for their production in recipient
cells. The important role played by microvesicles in the intercellular communication
among cancer cells has been revealed by some recent studies [9, 10, 11, 30, 31, 33].

17
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The way how microvesicles emitted by more aggressive donor cells are capable
to transport cellular components to less aggressive acceptor cells resembles the
transmission of infectious diseases.

In [34], the authors provided experimental evidence from in vitro assays to show
that an important exogenous source of resistance is the action of chemotherapeutic
agents. This action not only affects the signalling pathways but also the interac-
tions among cells. The authors established a mathematical kinetic transport model
consisting of a system of hyperbolic partial differential equations to describe the
dynamics displayed by a system of non-small cell lung carcinoma cells exhibiting a
complex interplay between Darwinian selection, Lamarckian induction and the non-
local transfer of extracellular microvesicles. Here we consider a non-spatial version
of that system, that allows us to perform a comprehensive mathematical analysis of
its dynamics. Following establishing an ODE model to describe tumour growth and
microvesicle transfer between cells, our next goal is to demonstrate that the ODE
model is a reasonable approximation of the spatial phenomena (without, however,
providing information regarding the spatial structure of the tumour). Thus, we use
an agent-based model (ABM) to investigate a spatial extension of our ODE model.

3.2 ODE model

To formulate our model, let us denote by S(t) the number of sensitive cells at
time t and let R(t) stand for the number of resistant cells. We denote by c(t) the
drug concentration in the patient’s organism at time t. Let β denote the rate of
microvesicle-mediated transfer from sensitive to resistant cells and θ is the cytotoxic
action induced cell mortality of sensitive cells due to drugs. The notations ρ0 and
ρr stand for reproduction rates of sensitive and resistant cells, respectively, here
we assume ρ0 > ρr. Parameters µ0 and µr denote death rates of sensitive and
resistant cells, respectively, due to apoptosis. For the tumour growth, we assume a
logistic form with carrying capacity K. The letter p stands for the rate of phenotype
conversion due to Lamarckian induction. The notations α and ε stand for drug uptake
rate of sensitive and resistant cells, respectively, while λ0 denotes drug removal rate.
The function I(t) describes time-dependent drug dosage. With these notations, our
model takes the form

S′(t) = − β(c(t))S(t)R(t)− θ(c(t))S(t) + ρ0S(t)(K − S(t)− R(t))− µ0S(t)− p(c(t))S(t),

R′(t) = β(c(t))S(t)R(t) + ρrR(t)(K − S(t)− R(t))− µrR(t) + p(c(t))S(t),

c′(t) = − (λ0 + αS(t) + εR(t))c(t) + I(t)
(3.2.1)

In the next section we make the simplifying assumption that the drug concentra-
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tion c(t) is constant, and investigate the case of changing drug concentration later.
This assumption transforms (3.2.1) into the system

S′(t) = −βS(t)R(t)− θS(t) + ρ0S(t)(K − S(t)− R(t))− µ0S(t)− pS(t),

R′(t) = βS(t)R(t) + ρrR(t)(K − S(t)− R(t))− µrR(t) + pS(t).
(3.2.2)

In Section 2, we will give a complete characterization of the global dynamics of
system (3.2.2) depending on the parameters.

3.3 Description of the global dynamics

Let us define the following threshold parameters:

F1 = Kρ0 − p − θ − µ0,

F2 = Kρr − µr,

F3 = µr(β + ρ0)− (p + θ + µ0 + Kβ)ρr.

(3.3.1)

Proposition 3.3.1. The sensitive cells die out whenever F1 < 0.

Proof. We estimate S′(t) as

S′(t) ≤ S(t)(Kρ0 − p − θ − µ0 − p) = F1S(t),

hence, if F1 < 0, then S(t) → 0 as t → ∞.

Remark. It follows from Proposition 3.3.1 that no coexistence equilibrium can exist
whenever F1 < 0.

Proposition 3.3.2.

1. F1 > 0 and F2 < 0 imply F3 > 0.

2. F1 < 0 and F2 > 0 imply F3 < 0.

3. D < 0 implies F1 < 0

Proof. i) Suppose F1 > 0 and F2 < 0 hold but F3 < 0. Then we have Kρ0 >

p + θ + µ0 and Kρr < µr, hence, if F3 < 0 holds, then µr(β + ρ0) < (p + θ + µ0)ρr <

Kρ0ρr < ρ0µr, which is a contradiction.
ii) This statement can be shown in an analogous way.
iii) In order to have D < 0, the value −4βp(β + ρ0 − ρr)F1 has to be positive,

which can only happen is F1 < 0.
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The following simple statement concerning the existence of a coexistence equilib-
rium will be useful during the complete description of the global dynamics of system
(3.2.2).

Proposition 3.3.3. If F1 > 0 and F3 < 0 then there is no coexistence equilibrium.

Proof. If D < 0 then there is no coexistence equilibrium. Let us suppose that D > 0.
From Vieta’s formulas, we obtain that if F1 > 0 and F3 < 0 then the equation
aR2 + bR + c = 0 has exactly one positive solution as a > 0 and c/a < 0. Similarly,
the equation ãS2 + b̃S + c̃ = 0 also has exactly one positive solution as ã > 0 and
c̃/ã < 0. However, we now that for any coexistence equilibrium, the equality
ρ0S∗ + R∗(β + ρ0) = F1 holds, hence, if R1, R2 and S1, S2 are the solutions of the
two quadratic equations, then, in order to fulfil the previous equality, the S and R
solutions corresponding to each other must have opposite signs.

By linearizing (3.2.2) around the equilibria E0 and ER, respectively, and calculating
the eigenvalues of the Jacobians of the linearized systems, we obtain the following
results on the local stability properties of these two equilibria.

Proposition 3.3.4.

1. E0 is locally asymptotically stable if and only if F1 < 0 and F2 < 0.

2. ER exists if and only if F2 > 0 and it is locally asymptotically stable if and only if
F2 > 0 and F3 < 0.

Theorem 3.3.5. The global dynamics of equation (3.2.2) is completely determined by the
threshold parameters F1,F2,F3 as follows.

1. If F1 < 0 and F2 < 0 then the only equilibrium E0 is globally asymptotically stable.

2. If F2 > 0 and F3 < 0 then E0 is unstable. The boundary equilibrium ER is globally
asymptotically stable. There is no coexistence equilibrium in this case.

3. If F1 > 0, F2 < 0 and F3 > 0 then E0 is unstable. The coexistence equilibrium is
globally asymptotically stable on (R+

0 )
2 \ XS. There is no boundary equilibrium and

E0 is globally asymptotically stable on XS.

4. If F1 > 0, F2 > 0 and F3 > 0, then E0 and ER are unstable and the coexistence equi-
librium EC is globally asymptotically stable on (R+

0 )
2 \ XS. The boundary equilibrium

ER is globally asymptotically stable on XS.

The results of Theorem 3.3.5 are summarized in Table 3.3.1 where all possible
combinations of the signs of the threshold parameters are listed along with the
description of the existence and stability of the three possible equilibria. We note
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Table 3.3.1: Stability of equilibria depending on the threshold parameters.

F1 F2 F3 E0 ER EC

− − ± GAS × ×
± + − unstable GAS ×
+ − + unstable × GAS
+ + + unstable unstable GAS

that the remaining two combinations of signs cannot be realized: the combinations
F1 > 0,F2 < 0,F3 < 0 and F1 < 0,F2 > 0,F3 > 0 are excluded by Proposition
3.3.2. The regions defined by the signs of the three threshold parameters F1,F2,F3

visualized in Figure 3.3.1. The ‘+’ and ‘−’ characters in the regions denote the signs
of the parameters F1,F2,F3. The figure was prepared with β = 0.0957, ρ0 = 0.1,
K = 0.538, µ0 = 0.01, µr = 0.0262 and p = 0.01, while the parameters θ and ρr

are varied between 0 and 0.1. Using Theorem 3.3.5, one can identify which of the
equilibria is globally asymptotically stable on the given region. That is, E0 is globally
asymptotically stable in the lower and middle regions on the right, ER is globally
asymptotically stable in the upper right and upper left regions, while EC is globally
asymptotically stable in the middle and lower regions on the left.

3.4 Stochastic individual-based spatial model

In the previous section, we established an ODE model to describe tumour growth
and the transfer of microvesicles between cells which are spatial problems. Our
next aim is to show that the ODE model provides a good overall approximation
of the spatial phenomena (of course, without giving information about the spatial
structure of the tumour). Hence, in this section, we use agent-based modeling (ABM)
to investigate a spatial version of equation (3.2.2). We will compare this spatial
model with the ODE model to assess how much information that model can provide
in comparison with the spatial model. In order to simulate this ABM regarding
to equation (3.2.2), we begin by defining the assumptions of the model and then
describe the important technical aspects of the model in the implementation part.
The following assumptions are considered for the ABM model.

1. There are two possible states for agents: we have sensitive or resistant cells.

2. If there is an empty space in the 8 cells Moore neighbourhood (Figure 3.4.1 (a))
of each cell, both sensitive and resistant cells divide with a probability of birth,
Pb, which is equal to PS or PR, depending on the type of the given cell.



22 Cancer model

+++

++-
-+-

---

--++-+

0.00 0.02 0.04 0.06 0.08 0.10

0.00

0.02

0.04

0.06

0.08

0.10

θ

ρr

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.05 0.10 0.15 0.20

0.00

0.05

0.10

0.15

0.20

Figure 3.3.1: Regions corresponding to the different combinations of the signs of the three
threshold parameters F1,F2,F3.

3. Sensitive cells die due to apoptosis with rate µS, and due to drug effect with
rate θABM. Resistant cells die due to apoptosis with rate µR. Let Pd denote the
probability of death. Hence, in sensitive cells Pd = µS + θABM and in resistant
cells Pd = µR.

4. Phenotype conversion from sensitive to resistant cells can happen due to Lamar-
ckian induction, the rate of which we denote by PABM. Another way of phe-
notype conversion is due to the transfer of microvesicles between cells. This
phenomenon is described by two parameters, namely the distance from resis-
tant cells (if there exists resistant cell(s) in the von Neumann neighbourhood of
each sensitive cell) and the rate of phenotype conversion due to microvesicles
is denoted by βABM in this model.

3.4.1 Computational implementation

In this subsection, we describe the important aspects of the ABM implementation.
Numerical simulation of the ABM is implemented by using an open-source Java



3.5 Comparison of ABM and ODE model 23

a) b)

Figure 3.4.1: a) Moore neighbourhood with radius = 1 b) von Neumann neighbourhood
with radius = 1.

library, Hybrid Automata Library (HAL) [29]. To execute the ABM model, we follow
the scheme summarized in Figure 3.4.2 as a flow diagram of our spatial model. In this
model, in order to consider the division and death probability, we compare them with
a random number, r1, which is generated for each cell in population at each time-step.
If r1 < Pd, the cell will die, but if Pd < r1 < Pd + Pb, the Moore neighbourhood of
the cell will be checked and if there is an empty space in the neighbourhood, the
cell will create its daughter. Moreover, to take into consideration the phenotype
conversion (sensitive → resistant) due to microvesicles, we check a von Neumann
neighbourhood of each sensitive cell to see the spatial effect of microvesicles. The
radius of this neighbourhood can be adjusted. If there exist resistant cells in the
neighbourhood, for each of them, a random number, r2, will be generated, and then
we investigate r2 < βABM to check if due to at least one of the resistant cells in the
neighbourhood, the conversion happens. Furthermore, there is another possibility
for phenotype conversion (sensitive → resistant), due to Lamarckian induction in
which case in each time loop sensitive cells convert to resistant ones with rate PABM.
To take into account this conversion, we generate a random number, r3, for each
sensitive cell and if r3 < PABM this sensitive cell becomes a resistant.

3.5 Comparison of ABM and ODE model

3.5.1 Spatial model simulation

To simulate the ABM model, we start with a circle tumour (a von Neumann
neighbourhood of the first tumour cell in the center of the domain) with a radius
of 20 cells containing 1257 cells placed in the central domain such that 1% of them
are resistant; these cells are randomly distributed among the remaining, sensitive
cells. Furthermore, the domain consists of 200 × 200 square cells, so the total number
of tumour cells cannot exceed 40000. The ABM model parameters are summarized
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Figure 3.4.2: ABM model flow diagram for equation (3.2.2)

in Table 3.5.1. Figure 3.5.1 (a) shows the simulation of the ABM model considering
the values in Table 3.5.1. In this figure, blue and green cells indicate sensitive and
resistant cells, respectively. We can observe the coexistence of resistant and sensitive
cells in Figure 3.5.1 (a). The number of both types of cells w.r.t. time in the same
scenario is shown in Figure 3.5.2 (a). In order to study the sensitive cell mortality
due to the drug, we increase θ from 0.03 to 0.12 while other parameters are fixed
according to Table 3.5.1. This change leads to extinction which is demonstrated in
Figure 3.5.1 (b), while the number of cells over time is plotted in Figure 3.5.2 (b).
Finally, in Figure 3.5.1 (c) we depict the simulation of the ABM model with PR
increased from 0.01 to 0.1 while other parameters are fixed in Table 3.5.1. In this case,
we can observe from Figure 3.5.1 (c) and Figure 3.5.2 (c) that after a while, resistant
cells occupy the domain. Hence, we can observe three types of tumour destinies in
the ABM model, all of which correspond to one of the scenarios described by the
different regions shown in Figure 3.3.1.
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Table 3.5.1: Baseline parameters in the ABM model simulation.

Symbol Parameter Value
PABM Lamarckian induction 0.01
βABM Rate of microvesicle-mediated transfer from sensitive to resistant cells 0.1
θABM Cell mortality of sensitive cells due to the drug 0.03

PR Probability of birth in resistant cells 0.01
PS Probability of birth in sensitive cells 0.2
µR Probability of death in resistant cells 0.03
µS Probability of death in sensitive cells 0.01
R0 Initial value of resistant cells 12
S0 Initial value of sensitive cells 1245

3.5.2 Comparison between ODE and stochastic agent-based model

We established the ABM model according to the corresponding ODE model (3.2.2).
To compare the simulation results obtained from the agent based model and those
from the ODE model (3.2.2), in Figure 3.5.5, we present solutions of (3.2.2) for various
parameter sets. We note that although the same parameter values are used as for the
agent based model, due to the differences in the role of the corresponding parameters
of the two models, it is not possible to give a direct comparison of the results.
However, the simulations can be applied to see that indeed, the outcomes of the
simulations of the two models yield similar results. One can see that for both models,
basically three different outcomes are possible: complete extinction of the tumour,
a tumour with only resistant cells and a tumour with both sensitive and resistant
cells. One can also observe that similar changes in the parameter values will yield
equivalent changes in the outcomes of both models as shown by the examples
presented in this section.

In spite of the equivalent qualitative results obtained from the two models, con-
cerning the total amount of both types of cells, certainly there are quantitative dif-
ferences between the two models. One of the most important of these is that in the
ABM as a spatial model, we can adjust the radius of microvesicle transfer between
cells, which is impossible to adjust directly in the ODE model as a non-spatial model.
However, in part, it is present in the coefficient β in the ODE model as well. The
main difference between the results yielded by the two models is that although we
consider the effect of space in cancer cells in the ODE model, assuming parameters
like β for microvesicles and K for carrying capacity, we cannot see the pattern of cell
distribution in the space as we observe in the ABM model. This information about
the cell pattern distribution enables us to know the growth process of the tumour,
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a)

b)

c)

Figure 3.5.1: ABM model simulation according to the different parameters leads to different
scenarios in cells’ pattern. Blue cells denote sensitive and green ones denote resistant cells.
For all three simulations, all of the parameters in the ABM model are fixed as shown in
Table 3.5.1. The only difference is in b) θ = 0.12, c) PR = 0.1.

but the final outcome of tumour evolution is equivalent in both models. For instance,
Figure 3.5.3 demonstrates the difference in cells pattern due to the differences in
Lamarckian induction, PABM, and microvesicles effect, β. We assume all the ABM
model parameters as given in Table 3.5.1, and we fix PS = 0.4 for this simulation.
The difference in parameters between these two simulations are in PABM and β that
we assume PABM = 0.08 and β = 0.0008 in Figure 3.5.3(b) which is hundred times
more in PABM and this amount less in β than our assumption for these parameters
(PABM = 0.0008 and β = 0.08) in Figure 3.5.3(a). As seen, the cell growth procedure
in these two simulations is different in the sense that the resistant cells are more
randomly distributed in Figure 3.5.3(b) than in Figure 3.5.3(a). In contrast, in both
simulations, the tumour evolves into a state of coexistence of resistant and sensitive
cells with more resistant cells at the end, which is a quite similar destiny. Therefore,
the ABM model provides more knowledge about the transient of cells development
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a) b)

c)

Figure 3.5.2: The number of all tumour cells, sensitive and resistant cells in ABM model
under three different parameters’ values demonstrated in Figure 3.5.1. a) is the simulation
with parameters’ values in Table 3.5.1, b) is the same simulation like a considering higher
value for rate of cell mortality of sensitive cells due to the drug, θ = 0.12, c) is also the same
simulation like a with higher value for probability of birth in resistant cells, PR = 0.1.

in cancer than the ODE model while it needs more computational load.

3.6 Discussion

We established a mathematical model describing the evolution of tumour cells
sensitive or resistant to chemotherapy. In the model, we considered three ways of
emergence of chemotherapy resistance as a result of the therapeutic drug: Darwinian
selection, Lamarckian induction and, based on recent discoveries, the emergence of
resistance via the transfer of microvesicles from resistant to sensitive cells, which
happens in a similar way as the spread of an infectious agent.
Our simple ODE model (3.2.2) certainly has its limitations. As we use ordinary differ-
ential equations, our model cannot provide information about the spatial structure of
a tumour.To assess the capabilities of our model in describing tumour growth, we
have also established a spatial version of the model in the form of an agent based
model. Comparing the two models, we can deduce that the ODE model performs
well in reproducing the possible outcomes of the tumour growth: as for total mass
of the two cell types, there is no further scenario provided by the ABM than the
ones experienced with the ODE model. Of course, this model will only give us
information about the tumour mass and not about the spatial distribution of the
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a)

b)

Figure 3.5.3: Two different scenarios of cell growth considering the effect of microvesicles
and Lamarckian induction. Parameters in the ABM model are as shown in Table 3.5.1 and
PS = 0.4. The difference between the two simulations is in a) β = 0.08 and p = 0.0008 and
in b) β = 0.0008 and p = 0.08.

a) b)

Figure 3.5.4: The number of tumour cells including sensitive and resistant cells in ABM
model under two different parameters’ values demonstrated in Figure 3.5.3. a)PS = 0.4,
β = 0.08 and p = 0.0008, b)PS = 0.4, β = 0.0008 and p = 0.08.

two types of the tumour cells or the direction of spatial growth of the tumour. Also,
the simulations suggest that the ODE model and the agent based model react in a
similar way to parameter changes. Furthermore, the ODE model cannot describe the
transfer of microvesicles as a spatial phenomenon in a way the ABM is capable to
do so, although by modifying the parameter β in the ODE, in some extent we also
consider the effect of distance between cells on the transfer of microvesicles.
In its present form, the effect of microvesicles and Lamarckian induction is described
in a simple way in our model, especially in the simplified form (3.2.2). To consider
these phenomena in a more realistic way can be subject of future research.
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Figure 3.5.5: The number of sensitive and resistant cells in solutions of model (3.2.2) with
three different parameter sets. Figure a) shows solutions with parameter values in Table 3.5.1,
in Figure b) a higher value is applied for the rate of cell mortality of sensitive cells due to the
drug, θ = 0.17, while in Figure c) we apply a higher value for the birth rate of resistant cells,
ρr = 0.1. Blue curves denote sensitive, orange curves denote resistant cells.
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Chapter 4

Viral dynamics for SARS-COV-2 and
influenza

4.1 Introduction

Mathematical models have been powerful tools in tackling the challenges posed
by the appearance of the COVID-19 disease caused by the novel SARS-CoV-2 coron-
avirus. In the ongoing and virtually unprecedented pandemic these mathematical
models are invaluable as they are able to provide insights or predictions based on
mathematical analysis and computer simulations. This means that their results are
obtained at an ideally low cost even in complex situations where real-life and real-
time experiments to obtain these same results would be either extremely risky or
simply not possible. There is a large variety of both large,- and small-scale math-
ematical models related to COVID-19, the present article is dedicated to cellular
level investigations – we examine virus dynamical phenomena such as in-host viral
transmission between individual cells. Specifically, we use a hybrid mathematical
approach for our study, focusing on SARS-CoV-2 and influenza infections.

Throughout the investigation of the above mentioned hybrid model we need a
simple and already comprehensively understood model we can use as a reference
system – for this purpose we will consider a specific version of an ODE prototype
model, the May-Nowak system (for an extensive overview see [41]; while for a
concrete application we refer to [42]). This classical model is given by

Ht = −βHV, t > 0,
It = βHV − δI, t > 0,
Vt = pI − cV, t > 0,

where the H = H(t), I = I(t) and V = V(t) functions respectively correspond to
the number of healthy cells, infected cells and virus particles, and they depend on
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time only. This model plays a crucial part in our article in several ways: a) in the
development process of the more sophisticated hybrid model we use the ODE model
to compare and match the respective solutions, b) we exploit the fact that there is
more information available on the exact parameters of this classical model and use
their converted version in the hybrid system, and finally, c) we can demonstrate
both the advantages and challenges offered by the relatively new hybrid system in
comparison to a well-known model.

The above ODE model is widely used to describe in-host viral dynamics. While
this method proves to be extremely useful, the quality of information it can provide
is naturally limited since it uses time as its single independent variable, and cannot
capture spatial effects. Spatiotemporal phenomena are ubiquitous in biological
applications, and often we simply cannot afford to leave out such an important
factor from our models: the most obvious example for this is virus diffusion itself,
which makes it possible for viruses to physically reach susceptible cells. One of the
most powerful tools that does capture these crucial spatial mechanisms is the rich
analytical theory of partial differential equations – PDE models are often used to
investigate complex systems in viral infection dynamics, see [43] just to mention one
SARS-CoV-2-related example.

Agent-based modeling is another (and in fact quite different) approach to de-
scribe complex space-time dynamics in viral spread. The cornerstone idea of this
method is to define a discrete heterogeneous state space where the so-called agents
or elements have collective interactions with each other and they change their states
correspondingly [1]. The ABM concept has several important applications within the
field of virus dynamics, in [32] the authors apply an agent-based model to simulate
influenza interactions at the host level.

As seen above, different frameworks – including agent-based models and PDE
systems – have been applied to construct viral dynamics models. An agent-based
model is a great tool to include randomness and natural variability into the system,
while PDEs are faster to evaluate numerically: by forming bridges between these two
modeling strategies we arrive to a hybrid system, the so-called hybrid PDE-ABM
model, which unites the different advantages of these methods (see [44]). For the
purpose of investigating the in-host viral spread of SARS-CoV-2 and influenza, our
hybrid model is chosen and tailored by carefully considering certain dimension-
related aspects of the problem: virus particles are several magnitude smaller than
epithelial cells ([45], [46], [47]), and as a consequence, it is natural to capture virus
concentration by a continuous function, while cells are modeled in a straightforward
way as discrete entities in space. In other words, we obtain our hybrid model by
merging a) a PDE representing virus concentration, and b) an agent-based model
describing host cells and their three possible states (healthy, infected, and dead).
We complete the hybrid PDE-ABM model by formulating a meaningful connection
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between the separate parts, i.e. by giving definition to all the considerable interactions
and feedback processes that take place between the model’s discrete and continuous
parts, such as for example cells responding to their environment’s virus concentration
level. We highlight that our implementation of the proposed hybrid system is based
on a free and open source software package, HAL (Hybrid Automata Library) [29].

The novelty of this chapter consists both in its approach and results. While PDE-
ABM hybrid models have existed before HAL [29], the latter is primarily focused to
serve cancer-related research – we have adapted, configured, and applied this tool to
allow investigations in a completely different field of application: host-level virus
infections. Our methodology and results demonstrate that both our model and its
implementation technique provide a suitable framework to investigate problems
in virology and immunology. We emphasise the importance of monitoring virus
propagation in both space and time – we show that simpler models that disregard
spatial phenomena correspondingly lose predictive precision due to ignoring spatial
diffusion. The numerical simulations we perform using the hybrid system as a foun-
dation give spatially explicit information regarding cellular-level virus spread for
SARS-CoV-2 in a high-resolution state space, which is one of the main achievements
of our article. The successful, computer-simulated replication of real in vitro experi-
ments regarding SARS-CoV-2 propagation is also new to our knowledge. Finally, we
highlight that our results allow us to gain insight into why the respective outcomes
of influenza and SARS-CoV-2 infections are different.

4.2 Mathematical framework

The purpose of this section is to give a detailed description of the two main
systems we use to model virus spread. We begin by defining the hybrid PDE–
ABM model and introducing its variables, then we briefly outline a classical ODE
model – the latter can be viewed as a simpler mean-field model that approximates
the more complex hybrid framework by averaging over spatial variables. Once
all the fundamental features of both systems are defined, we continue this section
by expressing the connection between the corresponding model parameters, and
conclude with the numerical implementation of the hybrid system.

4.2.1 The hybrid PDE–ABM model

As described in the Introduction, the main hybrid system is constructed via
forming bridges between two important and rather different modeling techniques:
we merge a discrete agent based model and a continuous PDE, and we create a
meaningful connection between them by carefully designing their interactions with
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each other. We highlight the fact the model we obtain this way is defined in both
space and time.

We begin by setting the notation for the domain we construct our model upon: let
Ω be the mathematical representation of the part of lung tissue, or in the case of an in
vitro experiment, the relevant area of the investigation we are considering. Now we
are ready to introduce the discrete part of our hybrid system.

One of the most important modeling decisions in the first part of the model
construction is approaching epithelial cells as discrete agents. In more detail, we
define a two dimensional ABM state space by introducing a lattice of k1 × k2 agents
representing epithelial cells: naturally, k1, k2 ∈ N, and cells are identified via the
(i, j) indices (corresponding to the respective agent’s place in the grid), where (i, j) ∈
J = {(i, j)|1 ≤ i ≤ k1, 1 ≤ j ≤ k2}. By introducing the Ωi,j notation for the open set
occupied by the (i, j)-th cell, we obtain that Ω̄ =

⋃
(i,j)∈J

Ω̄i,j.

Regarding the states of the ABM space’s agents, each agent can have three possible
states in our approach. This is formally grasped by following state function, which
represents the concept that a cell is either healthy, infected, or dead:

si,j(t) =


H, if the (i, j)-th cell is healthy at time t

I, if the (i, j)-th cell is infected at time t

D, if the (i, j)-th cell is dead at time t.

In terms of state dynamics, we use the following assumptions:

• for simplicity, we do not account for cell division or cell birth taking place
during the time frame of the infection;

• the only reason for cell death is viral infection itself, i.e. death related to any
other natural cause is ignored;

• all healthy cells are susceptible target cells;

• once a cell gets infected, it is not possible for it to become healthy again;

• the healthy → infected state change: a healthy cell may become infected once
the virus has reached the given cell; moreover, infection is randomized and it
occurs with a probability of PI , where we highlight that PI increases linearly
with the virus concentration in the given cell (for more details see Section 4.2.3
on PI’s relationship to other parameters and Section 4.2.4 on implementation);

• the infected → dead state change: an infected cell dies with a probability of PD,
but similarly to infection, death too is approached from a stochastic viewpoint.
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The stochastic element in the above state changes is of key importance. The
inclusion of natural randomness makes the complex PDE-ABM hybrid model not
only more realistic than the relatively simple ODE model, but also compared to a
pure PDE system.

We note that apart from following the state changes of all cells on an individual
level, we also introduce three additional system variables as functions taking discrete
(in fact, natural) values: H(t), I(t) and D(t) respectively denote the total number of
healthy, infected, and dead cells in the two-dimensional ABM state space.

Now we are ready to consider the second part of our hybrid model. Let us begin
by observing that the size of an epithelial cell is relatively significant ([46], [47]) and
hence indeed it was a natural idea above to define cells as separate entities and
follow their states on an individual level (instead of exclusively considering the total
number of healthy, infected and dead cells as continuous functions for example). One
of the cornerstone observations in the second part of the model is that viruses, on
the other hand, are several magnitude smaller compared to epithelial cells [45] – we
incorporate this simple but crucial biological fact into our system by modeling virus
concentration as a continuous function. Hence, in the second part of the model we
approach virus concentration Vh = Vh(t, x, y) as a variable that is continuous in both
space and time, and as such, we capture it by means of a partial differential equation:

∂Vh(t, x, y)
∂t

= DV∆Vh − µV · Vh(t, x, y) + ∑
(i,j)∈J

gi,j(t, x, y), t > 0, (x, y) ∈ Ω,

(4.2.1)
where DV denotes the virus diffusion coefficient, µV is a constant ratio representing
virus removal, while gi,j stands for the viral source term (the latter is assumed to
be continuous) for the (i, j)-th cell. The above equation essentially grasps the basic
concept that viruses spread across the domain primarily via diffusion (convective
flows are ignored in this model), the immune system removes viruses in a constant
ratio, while new virus particles are generated by infected cells in a process described
by the gi,j functions:

gi,j(t, x, y) =


0, if si,j(t) = H and (x, y) ∈ Ωi,j

fi,j(t, x, y), if si,j(t) = I and (x, y) ∈ Ωi,j

0, if si,j(t) = D and (x, y) ∈ Ωi,j

0 if (x, y) /∈ Ωi,j

(4.2.2)

We point out that in the above formula we do not specify any particular exact
fi,j(t, x, y) form for the viral source term gi,j(t, x, y) for the case when si,j(t) = I and
(x, y) ∈ Ωi,j (i.e. when the (i, j)-th cell is infected). As noted in [48], very little is
known about the shape, duration and magnitude of viral burst, and hence, we allow



36 Viral dynamics for SARS-COV-2 and influenza

any reasonable and smooth fi,j(t, x, y) function here that meets the following two
criteria. Firstly, any concrete choice for gi,j needs to represent the general fact the
(i, j)-th epithelial cell starts secreting virions at some point after it becomes infected.
Thus, naturally, gi,j takes positive values at least in some subset of Ωi,j at some point
after the event of infection (but of course, as formulated above, outside of this given
cell gi,j is zero). Secondly, the gi,j function needs to be defined in a way so that the
well-posedness of system (4.2.1) is guaranteed: specifically, any concrete definition of
the viral source term has to be Hölder continuous with Hölder exponent α ∈ (0, 1), i.e.
we assume gi,j(t, x, y) ∈ C

α
2 ,α((0, ∞)× Ω̄) for any t > 0,(x, y) ∈ Ω̄ and any (i, j) ∈ J .

The latter ensures the global existence of system (4.2.1)’s solution (see Appendix B).
As an example, we can consider a definition where we use the mollified version of a
constant rate release within the (i, j)-th cell. As for the details and changes related to
the construction of gi,j in the implementation process, see Section 4.2.4.

The PDE-ABM hybrid model cannot be complete without explicitly taking into
account the meaningful interactions that each part-system has on the other, hence
we briefly highlight these connections again. The continuous viral part affects the
agent-based subsystem through the healthy → infected state change described in the
ABM section above. On the other hand, the discrete ABM part makes a difference
within the continuous viral equation thanks to the gi,j source functions (representing
the fact that once a cell gets infected, at some point it starts spreading the virus).

4.2.1.1 The well-posedness and ultimate boundedness of the PDE model

In this subsection, we shall establish the global existence and ultimate bounded-
ness of the virus concentration function described by equation (4.2.1). We make the
following suitable assumption:

(H1) : gi,j(t, x, y) ∈ C
α
2 ,α([0, ∞)× Ω̄) ∩ L∞((0, ∞)× Ω)

is nonnegative for each (i, j) ∈ J and α ∈ (0, 1).

Theorem A.1 (Well-posedness and ultimate boundedness) Let Ω ⊂ R2 be a bounded
domain with smooth boundary. Suppose that the parameters DV , µV are positive.
Then for a non-negative initial value function Vh

0 (x, y) ∈ C0(Ω̄) system (4.2.1) has a
unique non-negative global solution Vh(t, x, y) defined on [0, ∞)× Ω̄. Moreover, the
solution Vh(t, x, y) is ultimately bounded and satisfies lim sup

t→∞
max

Ω
Vh(t, x, y) ≤ B

µV
,

where B is defined in (4.2.3).

Proof. We use the lower-upper solution method for our proof. According to (H1), we
define ∥∥∥ ∑

(i,j)∈J
gi,j(t, x, y)

∥∥∥
L∞((0,∞)×Ω)

:= B. (4.2.3)
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Let V(t, x, y) =
(

sup
Ω̄

Vh
0 (x, y)− B

µV

)
e−µV t + B

µV
:= V⋆(t) and V(t, x, y) = 0. Since

∂V(t, x, y)
∂t

− DV∆V(t, x, y) + µVV(t, x, y)− ∑
(i,j)∈J

gi,j(t, x, y)

≥ dV⋆(t)
dt

+ µVV⋆(t)− B = 0

(4.2.4)

and

∂V(t, x, y)
∂t

− DV∆V(t, x, y) + µVV(t, x, y)− ∑
(i,j)∈J

gi,j(t, x, y)

= − ∑
(i,j)∈J

gi,j(t, x, y) ≤ 0.
(4.2.5)

Clearly the boundary condition satisfies ∂V
∂ν = 0 ≥ 0 = ∂V

∂ν and the initial condition
satisfies V(0, x, y) = sup

Ω̄
Vh

0 (x, y) ≥ 0 = V(0, x, y). Thus (V(t, x, y), V(t, x, y)) is a

pair of coupled upper solution and lower solution of system (4.2.1). From (H1), we
get that the function f (t, x, y, Vh) = −µVVh + ∑

(i,j)∈J
gi,j(t, x, y) is Hölder continuous

with exponent α with respect to t and x, y on Q̄T × [m, M], and fVh(t, x, y, Vh) =

−µV ∈ C(Q̄T × [m, M]), where QT = (0, T] × Ω, m = min
Q̄T

V(t, x, y) and M =

max
Q̄T

V(t, x, y). In view of [56, Theorem 2.4.6], system (4.2.1) has a unique solution

defined on (0, T]× Ω satisfying

0 ≤ Vh(t, x, y) ≤ V⋆(t). (4.2.6)

By the arbitrariness of T, the solution of system (4.2.1) exists globally in time. Clearly,
from the definition of V⋆(t), we know that V⋆(t) ≤ max{ B

µV
, supΩ̄ Vh

0 (x, y)}. Then

it follows from (4.2.6) that lim sup
t→∞

max
Ω

Vh(t, x, y) ≤ B
µV

, which ends the proof of the

theorem.

In fact, since ∑
(i,j)∈J

gi,j(t, x, y) ∈ C
α
2 ,α([0, ∞) × Ω̄), it follows from the regular-

ity theory of parabolic equation that system (4.2.1) has a unique classical solution
Vh(t, x, y) ∈ C1+ α

2 ,2+α([0, ∞)× Ω̄). Here the lower-upper solution method is mainly
employed to estimate the upper bound of virus particles in the whole spatial domain
Ω as time evolves.
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4.2.2 The ODE model

In this subsection we consider a simpler viral dynamics system which will serve
as a reference model for the hybrid framework in our epidemiological investigations.
We consider the following – only time-dependent – ODE system:



dH(t)
dt = −βH(t)V(t), t > 0,

dI(t)
dt = βH(t)V(t)− δI(t), t > 0,

dV(t)
dt = pI(t)− cV(t), t > 0,

dD(t)
dt = δI(t), t > 0,

H(0) = H0 ≥ 0, I(0) = I0 ≥ 0, V(0) = V0 ≥ 0, D(0) = D0 ≥ 0,

(4.2.7)

where the H(t), I(t), V(t), D(t) functions represent the number of healthy cells, the
number of productively infected cells, the number of viruses released by infected
cells and the dead cells at time t, respectively; β denotes the healthy cells’ infection
rate, δ stands for the death rate of infected cells, p is the virus production rate, and c
is the virus removal rate. We emphasise the fact that unlike the hybrid PDE-ABM
model, the above ODE system is not defined in space.

Technically, the V(t) function can be defined to represent either the number of
viruses or the virus concentration itself depending on the specific application we are
considering. In Section 4.3’s simulation results V(t) stands for concentration.

Simply because of the physical meaning behind these functions, the respective
initial values are naturally set in the region Γ = {(u1, u2, u3, u4) ∈ R4 : u1, u2, u3, u4 ≥
0}. For the well-posedness and boundedness of model (4.2.7) see Appendix C.

The basic reproduction number of system (4.2.7) is given by

R0 =
pβH0

cδ
, (4.2.8)

for the derivation of this number and how it governs the threshold dynamics of the
system, see Appendix D.

4.2.2.1 The well-posedness and boundedness of the ODE model

Theorem A.2 Let’s suppose (H0, I0, V0, D0) ∈ Γ for our initial data. Then sys-
tem (4.2.7) has a unique solution (H, I, V, D) ∈ Γ, i.e. Γ is positively invariant.
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Furthermore, the solution of system (4.2.7) satisfies

0 ≤ H(t) ≤ H0, 0 ≤ lim sup
t→∞

V(t) ≤ p(N − V0)

c
,

0 ≤ lim sup
t→∞

I(t) ≤ (N − V0)min{1,
pβH0

cδ
}, 0 ≤ D(t) ≤ N − V0.

(4.2.9)

where N = H0 + I0 + V0 + D0.

Proof. Existence and Uniqueness. By the continuity of right side of Eq. (4.2.7),
system (4.2.7) has at least one solution in [0, b) with 0 < b ≤ ∞. Since the term on the
right-hand side of system (4.2.7) satisfies the local Lipschitz property with respect
to H, I, V, D in Γ, the uniqueness of solutions follows from the standard theory of
ordinary differential equations.
Positive Invariance and Boundedness. For H ≥ 0, I ≥ 0, V ≥ 0, D ≥ 0, since

Ḣ(t)
∣∣

H=0 = 0 ≥ 0, İ(t)
∣∣

I=0 = βHV ≥ 0,

V̇(t)
∣∣
V=0 = pI ≥ 0, Ḋ(t)

∣∣
D=0 = δI ≥ 0,

(4.2.10)

it follows from [55, Theorem 5.2.1] that the solution (H(t), I(t), V(t), D(t)) of sys-
tem (4.2.7) is nonnegative for all t ≥ 0 whenever H0 ≥ 0, I0 ≥ 0, V0 ≥ 0, D0 ≥ 0.
Therefore Γ is positively invariant with respect to system (4.2.7).

Since Ḣ(t) = −βH(t)V(t) ≤ 0, we get 0 ≤ H(t) ≤ H0. Also from system (4.2.7),
we obtain

d(H(t) + I(t) + D(t))
dt

= 0 ⇒ H(t) + I(t) + D(t) = N − V0. (4.2.11)

As H(t) ≥ 0, D(t) ≥ 0, we get I(t) ≤ N − V0. From the third equation of sys-
tem (4.2.7), we have

dV(t)
dt

≤ p(N − V0)− cV,

which implies that

lim sup
t→∞

V(t) ≤ p(N − V0)

c
. (4.2.12)

From (4.2.12), we know that for any ε > 0 there exists T(ε) > 0, s.t. when t ≥ T(ε),
V(t) ≤ p(N−V0)

c + ε. Thus

dI(t)
dt

≤ βH0(
p(N − V0)

c
+ ε)− δI.



40 Viral dynamics for SARS-COV-2 and influenza

By the comparison principle of ordinary differential equations, we get

lim sup
t→∞

I(t) ≤ pβH0(N − V0)

cδ
. (4.2.13)

Since I(t) ≤ N − V0, we get lim sup
t→∞

I(t) ≤ (N − V0)min{1, pβH0
cδ }. This completes

the proof.

4.2.2.2 The threshold dynamics of the ODE model

The basic reproduction number R0 can be deduced by simple reasoning: a single
infected cell produces virus with rate p during its expected lifetime 1/δ, summing
up to p/δ viruses. Virus particles generate infected cells (in a healthy cell population)
with rate βH0, in an expected time period 1/c. Overall we find the number of new
infected cells originated from the initial cell as given in (4.2.8). For a more formal
derivation, one can also use the next generation approach [58].

Theorem A.3 If R0 > 1, then the disease-free equilibrium of the form e∗ =

(H0, 0, 0, Ds) is unstable, where H0 > 0, Ds being an arbitrary nonnegative constant.
This means an infection can be established. Furthermore, system (4.2.7) cannot
undergo a Hopf bifurcation around e∗.

Proof. The Jacobian matrix J∗ around the disease-free equilibrium e∗ is given by

J∗ =


0 0 −βH0 0
0 −δ βH0 0
0 p −c 0
0 δ 0 0

 . (4.2.14)

Thus the characteristic equation can be calculated as

λ2[λ2 + (c + δ)λ + cδ − pβH0] = 0, (4.2.15)

which has eigenvalues λ1,2 = 0, λ3,4 =
−(c+δ)±

√
(c+δ)2−4(cδ−pβH0)

2 . Clearly, if R0 >

1 then λ3 > 0 and λ4 < 0, i.e. the characteristic Eq. (4.2.15) has a positive real
eigenvalue, which indicates that e∗ is unstable. In addition, it is easy to see that there
are no pairs of purely imaginary roots in characteristic Eq.(4.2.15) for any variational
parameter, which implies that a Hopf bifurcation cannot occur. This completes the
proof of the theorem.
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4.2.3 The connection between the two main models and their pa-
rameters

In this subsection we examine the relationship between the two main models’
respective parameters. Expressing these connections is not always a trivial task as
the hybrid PDE-ABM framework exists in space, while the ODE model’s functions
are defined as variables only in time. In order to match the two different systems’
corresponding parameters, we need to fix some basic features of the spatial domain:
first of all, let A denote the complete area of the state space; moreover, for simplicity
let us assume that each cell has the area of a unit space – for the latter we introduce
the notation σ2. Finally, let τ denote the unit step in time.

1. Parameters related to cell death: We emphasise that the two main models use
different approaches to quantify the chance of an infected cell’s death – on
the one hand, the (4.2.7) ODE model works with a δ death rate; on the other
hand, the hybrid system uses a PD probability. We can easily obtain a conversion
between probability and rate by following the exact meaning behind these
parameters. When infected cells die with a death rate δ, their natural decay can
be described by the function e−δt; hence, the probability of an infected cell’s
death between any two arbitrary time points t1 and t2 is given by

e−δt1 − e−δt2

e−δt1
= 1 − e−δ(t2−t1).

Specifically, for a time interval of length τ the above formula means that an
infected cell dies within that given time frame with a probability of 1 − e−δτ.

Applying the Taylor expansion of the exponential function and combining it
with the fact that τ is small, we arrive to the 1 − e−δτ ≈ δτ approximation, i.e.
we the connection between δ and PD is given by

PD ≈ δ · τ. (4.2.16)

2. Parameters related to new infections: In this part we establish a connection
between the ODE model’s infection rate β and the hybrid system’s probability of
infection PI . Similarly to the previous point, we need to quantify a relationship
between parameters of different dimensions – one being a rate, the other a
probability – but this time the solution is a bit more complex due to the role
of spatial factors. We first focus on the hybrid model’s PI parameter solely
within the context of the PDE-ABM system. We define the probability of a cell’s
infection in a way that this probability is directly proportional to the local virus
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concentration Vh(Ωi,j) in the (i, j)-th cell (n.b. the number of viruses per unit
space) and to the τ time unit, i.e. we have

PI(Vh(Ωi,j), τ) = ι · Vh(Ωi,j) · τ, (4.2.17)

where ι is some appropriately set constant value. Our next step is to express
the relationship between β and PI for a specifically chosen, simplified scenario –
we temporarily assume a homogeneous virus distribution over the domain Ω.
Now, the key to expressing PI in terms of β consists in carefully counting the
newly infected cells over one iteration in both the ODE and the hybrid systems.
Assuming H healthy cells and a V total number of viruses at a given time, the
corresponding number in the ODE model is naturally β · V · H · τ. When we
switch to the context of the spatial hybrid model, we need to keep in mind
that the virus particles are now spread throughout the entire domain Ω, and as
a consequence, a single cell is exposed only to the locally, physically present
virus particles, whose number is v̄ = V/A. This means that the expected value
of the total number of newly infected cells in the hybrid system is H · PI(v̄, τ).
Setting the respective values in the two main models equal leads us to

PI(v̄, τ) = β · A · v̄ · τ. (4.2.18)

The final step is to combine (4.2.17) and (4.2.18) – by substituting Vh(Ωi,j) = v̄
in the former we immediately obtain ι = β · A. The connection between β and
PI is thus captured by

PI(Vh(Ωi,j), τ) = β · A · Vh(Ωi,j) · τ. (4.2.19)

We highlight that the hybrid model’s PI parameter takes the above form ex-
clusively when the PDE-ABM model’s parameters are configured with a very
specific goal in mind: to match the ODE system. Otherwise, when the hybrid
software is used completely as a standalone, ι is simply a parameter in the
hybrid model.

3. Parameters related to virus production: The (4.2.7) ODE model’s parameter p
corresponds to virus production rate per unit time. Respectively, in our spatial
hybrid model’s virus dynamical equation (4.2.1) the parameter gi,j represents
the virus production rate per unit time per unit space2 – in particular, gi,j = fi,j
within infected cells (see 4.2.2), hence, clearly, fi,j matches p.

4. Parameters related to virus removal: Analogously, the respective pair of the
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hybrid model’s mV parameter is the ODE system’s c virus removal constant.

5. Parameters related to virus diffusion: We highlight that the hybrid model’s
diffusive constant DV does not have a corresponding parameter in the ODE
system, as the latter model is defined only in time and diffusivity is strictly
related to spacial dimensions.

We summarize the respective parameters’ relationship to each other in Table 4.2.1.

Table 4.2.1: Description of the hybrid PDE-ABM model’s parameters and their relationship
to the ODE system. Naturally, the notations [healthy cell], [infected cell] and [dead cell]
represent a healthy cell, an infected cell and a dead cell – as a unit – respectively. Analogously,
[virion]/σ2 stands for the concentration unit.

Symbol Parameter Unit Value corresponding
to the ODE model

PI Probability of infection β · A · Vh(Ωi,j) · τ

for the (i, j)-th cell
PD Probability of death of δ · τ

an infected cell
fi,j Virus production rate [virion]

σ2·τ p
of an infected cell

DV Virus diffusion σ2τ−1

µV Virus removal rate τ−1 c

H0 The initial number of
[healthy
cell]

H0

healthy cells

I0 The initial number of
[infected
cell]

I0

infected cells
Vh

0 (x, y) The initial value of [virion]/σ2 V0

virus concentration
D0 The initial number of [dead cell] D0

dead cells

τ: time unit
σ: space unit
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4.2.4 Implementation

This section describes important technical details related to the hybrid PDE-ABM
framework’s implementation. Our numerical computations are based on a free and
open source java software package, HAL (Hybrid Automata Library) [29]; our source
code is publicly accessible in the Github repository [49].

We note that most of our work concerning implementation is centred around
customizing the generic HAL package to our concrete virological application, e.g.
managing and tracking healthy, infected and dead cells, or putting certain probablistic
state change approaches into practice. The deeper, application-independent segments
of the HAL library on the other hand do not require any further consideration
or optimization from our side, we rely on these core parts without effectuating
any modifications. Just to mention one example, the numerical stability for the
finite difference diffusion fields is an essential, integral part of HAL itself, and
our implementation respects and preserves the original code on these levels – as a
consequence, we use the implicit method that the underlying HAL library uses for
dealing with the diffusion term.

We simulate the PDE-ABM model’s behaviour in an Ω ⊂ R2 two-dimensional
bounded domain, hence the ∆Vh Laplacian takes the form of Vh

xx + Vh
yy, where

(x, y) ∈ Ω. The resolution of the state space is chosen to be 200 × 200, which means
we work with a total number of 40, 000 cells (this choice is mainly due to the hybrid
model’s computational demands – we found that concerning the number of cells
40, 000 is a reasonable value for exploring virus dynamics on an ordinary computer).

Concerning the spatial boundary, we apply Neumann boundary conditions on
the edges of the hybrid state space. This approach is favourable for our investigations
by guaranteeing zero flux across the boundary. The ”closed world” we get as a result
is beneficial since it allows us to realistically observe the damage caused by a certain
amount of infected cells without external disturbance. Wall-like edges of laboratory
assays also naturally correspond to no-flux Neumann boundary conditions, and thus
we expect this setting to match the outcome of in vitro experiments.

As for the initial conditions in our simulations, we consider the case where we
have zero virus concentration in the beginning, but we do have a small number
of infected cells in the domain to start with – the virus will spread from these
infected cells and as a result, more and more originally healthy cells become infected.
This first generation of infected cells is chosen and distributed randomly. Each cell
independently has a 0.0005 probability to be in infected state at the beginning of the
simulation, otherwise it is in healthy state (with probability 0.9995). The number of
initially infected cells is denoted by χ. Figure 4.2.1 illustrates the initial state of our
hybrid PDE-ABM model.

After giving a clear definition of the initial and boundary conditions in our imple-
mentation, we highlight another interesting technical detail: the internal realization
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Figure 4.2.1: An ABM state space where most cells are healthy, while a small number of
randomly infected cells start spreading the virus in the domain.

of the virus production functions. At the abstract definition of the hybrid PDE-
ABM model we assumed that the virus source term in (4.2.1) was continuous. This
was important for certain theoretical reasons (see Appendix B), but as we move
on to implementation-related decisions and solutions, we make a simplifying step
regarding this source function. We take a discretized approach, namely, through-
out the simulations, a given cell’s gi,j virus production function (and in particular,
fi,j) is quantified assuming that infected cells have a constant virus production rate;
formally, gi,j(t, x, y) = a non-zero constant when si,j(t) = I and (x, y) ∈ Ωi,j. We
highlight that what really happens at the implementation process is that in each time
loop and for each cell (thus, for all (i, j) ∈ J ) we solve equation (4.2.20) to obtain the
virus concentration in a given cell:

∂Vh(t, x, y)
∂t

= DV∆Vh − µV ·Vh(t, x, y) + gi,j(t, x, y), t > 0, (x, y) ∈ Ωi,j. (4.2.20)

We also emphasise that in order to make the model as realistic as possible, we take
some probabilistic considerations into account, and as a result we use a stochastic
approach in the implementation of both cell infection and cell death.

• Stochastic implementation of a healthy cell’s infection: In the PI = β · A · Vh(Ωi,j)·τ
expression (obtained in (4.2.19)) we assume that the infection rate β and the
A area of the domain are constant, but Vh(Ωi,j) is changing in both space and
time – once the virus concentration is recalculated for a given cell, we then
compare the correspondingly updated PI value with an rI

i,j random number,
which is generated newly for each cell. In case the cell’s PI value is greater than
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Figure 4.2.2: The program flow diagram of the PDE-ABM model’s numerical simulation
based on HAL [29].

rI
i,j, the cell in question gets infected.

• Stochastic implementation of an infected cell’s death: Similarly, a random rD
i,j number

is generated for each infected cell at each time-step, and the given cell’s death is
determined by comparing this random number with PD: naturally, the infected
cell dies if PD is greater than rD

i,j.

All of the random numbers noted above are real numbers from standard uniform
distribution on the interval (0,1) and they are obtained by means of Java’s random
number generator.

Figure 4.2.2 shows the flow diagram of the program we implemented to simulate
the virus spread and observe the spatial distributions of infected cells.
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Figure 4.3.1: A sample solution of model (4.2.7) considering the parameters given in (4.3.1)
with H0 = 40000 − I0, I0 = 20, V0 = 0 and D0 = 0 as initial values. Left Number of cells
over time. Right Virus concentration over time.

4.3 Results

We present and explain our most significant computational results in this section.
In particular, we illustrate the advantages of the spatiotemporal hybrid system over
the classical ODE model, we show an example where we successfully recreate the
actual results of an in vitro experiment assessing SARS-CoV-2 propagation, moreover,
by means of the PDE–ABM system we explore and compare the spatial patterns of
influenza and COVID–19.

4.3.1 Comparing the hybrid PDE–ABM model and the ODE model
through their solutions

This section is principally dedicated to illustrating the impact of the PDE–ABM
model’s built-in extra information regarding spatial factors such as diffusion. In the
following steps we compare the numerical solutions of the (only time-dependent)
ODE model and the hybrid spatiotemporal PDE–ABM system. We emphasise the
fact that in this subsection we consider a generic scenario that does not necessarily
correspond to influenza or SARS–CoV–2 specifically. Our main goal here is to
outline a comparison itself between the two main models making sure that their
parameters represent the same virus infection in identical circumstances – with the
very important exception of virus diffusion, which incorporates spatial effects.

As for the ODE model’s simulation, we consider the following parameter values:

β = 10−6, δ = 8 × 10−3, p = 4 × 10−2, c = 2 × 10−2. (4.3.1)

Figure 4.3.1 depicts the solution of the ODE model (4.2.7) using the parameter
values defined in (4.3.1) and the initial conditions H0 = 40000 − I0, I0 = 20, V0 = 0
and D0 = 0.
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A B

C D

Figure 4.3.2: Sample hybrid PDE-ABM results considering (4.3.2) and DV1DV1DV1 = 0.2 at t = 0,
240, 480, and 720 (A - D). Infected, healthy, and dead cells (denoted by red, green, and black
squares, respectively) are shown on the left and virus spread is depicted on the right in all four
subfigures (A - D). The colour bar is understood in virions per unit space (see Table 4.2.1).

Once the ODE parameters are set, most of the corresponding hybrid parameter
values are automatically defined through the connections described in Table 4.2.1.
We obtain

PI = 0.04 × Vh(Ωi,j), PD = 8 × 10−3, fi,j = 4 × 10−2, µV = 2 × 10−2. (4.3.2)

Naturally – due to the fact that the ODE model is defined only in time – the hybrid
system’s diffusion coefficient is an exceptional parameter missing from the list above.
To demonstrate the notable difference made by virus diffusion in the hybrid model’s
numerical solutions (and to compare the latter with the ODE model’s solution), we
simulate our spatial model with two different diffusion coefficients:

DV1 = 0.2, DV2 = 20 · DV1 = 4. (4.3.3)

Figure 4.3.2 and Figure 4.3.3 illustrate the different cell and virus dynamics
emerging from scenarios that are identical apart from their diffusion coefficients.
Both graphs demonstrate cell states on the left and virus spread on the right, captured
in four different time points. Infected cells (denoted by red squares) are apparently
distributed randomly at the initial state, and virus spread in the domain is clearly
originating from infected cells. Comparing these two images we can observe the
following significant differences. Firstly, as one would naturally expect, a higher
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A B

C D

Figure 4.3.3: Sample hybrid PDE-ABM results considering (4.3.2) and DV2DV2DV2 = 4 at t = 0,
240, 480, and 720 (A - D). Infected, healthy, and dead cells (denoted by red, green, and black
squares, respectively) are shown on the left and virus spread is depicted on the right in all four
subfigures (A - D). The colour bar is understood in virions per unit space (see Table 4.2.1).

diffusion coefficient results in a much more homogeneous infection spread in space.
In more detail, Figure 4.3.2 captures a typical low-diffusion scenario where infected
cells are found mainly in separate, island-resembling sets, while Figure 4.3.3 shows a
fundamentally different phenomenon: the layout of infected cells in the latter image
is apparently much more even. An analogous difference is visible on the level of
spatial virus distribution as well. On the one hand, Figure 4.3.2 presents distinctive,
sharp borders and well-defined lines that characterize low-diffusion virus dynamics,
on the other hand, Figure 4.3.3 shows – roughly speaking – foggy, blurred shades
corresponding to the increased diffusion value. Our second observation is related
to the total number of surviving cells by the end of the simulation: this value is
clearly higher for the output obtained with a smaller diffusion coefficient, i.e. in
Figure 4.3.2. In other words, according to our simulations, a higher diffusion value
results in a higher number of cells that get damaged by infection (i.e. cells that are
either currently infected or are already dead).

Figures 4.3.4 and 4.3.5 examine the identical scenarios with a different approach:
they describe the corresponding virus dynamics in terms of aggregated cell numbers
and virus concentration. These figures contain information in a condensed format
– their clarity allows us to detect further dynamical differences caused by different
diffusion values. Firstly, we can observe that the magnitude of the virus concentration
peak is almost two-folds bigger for a higher diffusion value (Figure 4.3.5) than in
the corresponding lower diffusion case (Figure 4.3.4). The peak itself is reached at
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Figure 4.3.4: A sample solution of the hybrid PDE-ABM model considering parameters
specified in (4.3.2) and DV1DV1DV1 = 0.2. Left Number of cells over time. Right Virus concentration
over time.

Figure 4.3.5: A sample solution of the hybrid PDE-ABM model considering parameters
specified in (4.3.2) and DV2DV2DV2 = 4. Left Number of cells over time. Right Virus concentration
over time.

around 400τ for DV2 = 4, while for DV1 = 0.2 the analogous event takes place only
after 600τ, i.e. in the latter case the peak is reached approximately one and a half
times slower. The sharpness of these peaks is clearly another significant difference
too – a lower diffusion value seems to lead to a flatter virus concentration curve. We
highlight that analogous features are visually obvious for the number of infected
cells too. Finally, we observe that the faster fall in the number of healthy cells and
the quicker increase in the number of dead cells in Figure 4.3.5 suggest that in this
particular setting a higher diffusion coefficient leads to a worse scenario overall,
according to our results.

Finally, in Figure 4.3.6 we compare the solution of the ODE system with the
respective numerical solutions calculated for our spatial hybrid model considering
the previously described two different virus diffusion values. Figure 4.3.6 illustrates
a special relationship between the solutions of the two main systems: increasing
the spatial model’s diffusion coefficient apparently impacts the hybrid system’s
solution in a way that it, roughly speaking, gets closer to the ODE model’s numerical
solution – this corresponds to the fact that the ODE system represents a scenario
where all particles can interact with any other particle, i.e. in some sense the diffusion
coefficient is infinite. In other words, the lower the actual virus diffusion value is, the
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A B

C D

Figure 4.3.6: Comparison between the ODE model and the hybrid PDE-ABM system with
two different diffusion values (as given in (4.3.3)). It is clearly seen that the outputs are very
similar for a high diffusion coefficient, as opposed to the case of low diffusion coefficient. A
Virus concentration over time. B Number of healthy cells over time. C Number of infected
cells over time. D Number of dead cells over time.

more important it is to consider a more complex spatiotemporal system to model the
respective virus spread.

4.3.2 Applications

In one way or another, all applications of the proposed PDE–ABM hybrid model
naturally focus on exploiting or predicting spatial information regarding virus spread.
The first application is to perform a simulation to obtain as much information as
possible on the spatial dynamics of a COVID–19 infection and we compare our
computer-generated predictions with actual results of in vitro experiments. We also
investigate some important differences between influenza and COVID–19 – these are
identified more easily thanks to the additional spatial information that is integrated
into the hybrid model.

4.3.2.1 Predicting the spatiotemporal spread of SARS–CoV–2 in human airway
epithelial cells

Perhaps one of the most straightforward applications is the prediction of spatial
virus propagation itself. In this first scenario we simulate the spatial spread of a
SARS-CoV-2 infection over the course of seven days and we compare our results with
real-life observations obtained by scientific experiments. Specifically, we consider
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Figure(4B) in [59], where the authors examine the spread of fluorescent SARS-CoV-
2 in human airway epithelial cells at the indicated days with or without peptide
treatment – naturally, when we compare our results, we focus on the graphs listed
in the line that corresponds to our scenario (i.e. investigating uninhibited virus
propagation excluding any treatment).

Examining Figure 4.3.7 (the first one is part of Figure(4B) in [59]), we observe
that the key events and features of virus spread match in a reassuring way: the first
significant and bigger sign of infection appears at day 4, a clearly visible peak is
reached at day 6, while a slight decrease in the infection’s severity starts to show
between day 6 and day 7. At the same time we highlight that there is a natural limit to
how accurately our simulations can recreate the specific events depicted in [59]: firstly,
to our best knowledge, the exact values of virus death rate, infection rate and diffusion
are not specified in [59]. Secondly, the authors have not disclosed the number of
cells they worked with – this means that the resolution of the corresponding ABM
fields are different (theirs being unknown). The latter is particularly important as it
is most likely one of the reasons why the computer-simulated results are less ”sharp”
compared to the experimental scenario’s images: roughly speaking, the generated
results resemble ink spreading in water to some extent, while the in vitro results have
an apparent grain-like structure. This matter can possibly be the subject of future
investigation.

Experimental in vitro results of [59] assessing viral spread.

Figure 4.3.7: The simulated spatiotemporal dynamics of SARS–CoV–2 virus spread in
human airway epithelial cells – the results were obtained by our source code implementing the
hybrid PDE–ABM model. This sequence of pictures from our model output shows a striking
resemblance to Figure(4B) in [59] (seen below), where the latter depicts real experimental
results assessing viral propagation. Note the colour choice we apply in this figure: in order to
match our simulation’s colours to the experimental results in [59], in this particular image
the colour green represents virus particles and not healthy cells.
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4.3.2.2 Investigating and comparing the main properties of influenza and COVID-
19

While Section 4.3.1 focused on comparing the ODE model’s and the hybrid
system’s respective solutions in a generic scenario, the present – and in some sense,
main – section’s goal is to explore these solutions for two specific viruses, namely,
influenza and SARS-CoV-2.

In order to investigate the propagation of an influenza or COVID-19 infection,
we need to set up both of our models with parameters that represent the features
of the previously mentioned viruses as accurately as possible. This is a nontrivial
task not only because SARS-CoV-2 is relatively new for scientists, but also because
several other small, technical, but important issues arise when we want to compare
two different kinds of solutions. One particularly intriguing example is the accurate
setting of the DV diffusion coefficient – the 0.65µm2/s ≈ 0.2σ2/min value we use in
the remaining part of this article is chosen from a reasonable range. We elaborate the
limitations, practical considerations and further details concerning the parametriza-
tion process in Appendix A. Here we just refer to the tables containing the final
values – the ODE model’s parameter setting is summed up in Table 4.3.1, while the
parameter values we use during the simulations for the hybrid PDE-ABM model are
given in Table 4.3.2.
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Now we are ready to compare the two different models’ predictive performances.
Firstly, we consider the case of influenza. Figure 4.3.8 shows the respective numerical
solutions obtained by the ODE model and the hybrid system – we note that the
solution given by the ODE model is similar to the one described in [52]. We also refer
back to an observation we made in Section 4.3.1 regarding the diffusion coefficients:
the lower this diffusion value is, the further the hybrid and ODE models’ respective
solutions are from each other. Finally, we highlight another important aspect in
connection with Figure 4.3.8. The authors of [42] and [50] suggest that in the upper
respiratory tract about 30%-50% of the epithelial cells are destroyed at the peak of
infection. This corresponds to our simulated results in a reassuring way.

A B

C D

Figure 4.3.8: Comparison of the ODE model (solid lines) and the hybrid PDE-ABM model
(dashed lines) for influenza using the parameters in Tables 4.3.1 and 4.3.2, applying DV =
0.2σ2/min in the hybrid model. All figures depict a change taking place over the course of
seven days; specifically, A Viral load (copies/ml), B Number of healthy cells, C Number of
infected cells, D Number of dead cells.

The second subject of our comparative investigations is COVID-19. Similarly to
the concept of the previous image, Figure 4.3.9 demonstrates the simulated results
given by the ODE model and the PDE-ABM hybrid system, but in this case the com-
putations were executed with the parameters representing COVID-19. We observe
that the ODE model and the hybrid system generate solutions that are somewhat
closer to each other than their respective solutions computed for influenza.

From this point in this section we examine influenza and SARS-CoV-2 propagation
exclusively by means of the hybrid PDE-ABM system.
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A B

C D

Figure 4.3.9: Comparison of the ODE model (solid lines) and the hybrid PDE-ABM model
(dashed lines) for SARS–CoV–2 using the parameters in Tables 4.3.1 and 4.3.2, applying
DV = 0.2σ2/min in the hybrid model. All figures depict a change taking place over the
course of seven days; specifically, A Viral load (copies/ml), B Number of healthy cells, C
Number of infected cells, D Number of dead cells.

In order to compare the dynamical features of SARS-CoV-2 and influenza, we
firstly simulate the viral load and the number of infected cells for both of these
two viruses, the numerical solutions are presented in Figure 4.3.10 (the respective
functions for the two different viruses are shown together). First of all, we highlight
that while the solutions depicted in this image are only time-dependent functions,
the advantage of the hybrid PDE-ABM model is present even behind this particular
result – the fact that these numerical solutions were calculated by means of the
spatiotemporal hybrid model ensures that their respective values take important
physical aspects such as diffusion into account. In particular, we refer to [60] for
connecting some of our results to real data and describing the course of influenza
infection: this work reports that virus shedding increases sharply between 0.5 and 1
day after challenge and peaks at day 2, while the average duration of viral shedding
is 4.8 days. Our computer simulated results shown in Figure 4.3.10 for influenza
clearly match with the experimental data of [60].

Some of the results in Figure 4.3.10 might seem surprising at first sight. The
image on the left demonstrates that in terms of viral load the peak occurs sooner for
influenza, and the value itself taken at this peak is much higher too for influenza
compared to COVID-19. On the other hand, if we consider the number of infected
cells, the image on the right represents temporal behaviours – and in particular peak
values – that in some sense seem like the opposite of the previous observations made
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Figure 4.3.10: The difference between influenza and SARS–CoV–2 infections. The viral
load (Left) and the number of infected cells (Right) simulated for influenza (dashed line) and
COVID-19 (solid line) using the hybrid PDE-ABM model with DV = 0.2σ2/min.

for virus concentration. In more detail, the peak of the number of infected cells is
much higher for COVID-19 than the respective value for influenza; however, in terms
of time to peak, influenza remains to be the ”faster” virus out of the two by reaching
its maximum in less than two days.

The intriguing features pointed out above will be addressed in more detail after
the following discussion of spatial patterns.

Figures 4.3.11 and 4.3.12 demonstrate the distributional patterns of influenza and
SARS-CoV-2 propagation. Comparing Figure 4.3.11 with Figure 4.3.12 it is apparent
that while both COVID-19 and influenza propagation tend to show spatial patterns
that, roughly speaking, resemble flocks or well-outlined explosions, the the sharpness
itself of this phenomenon is slightly weaker in the case of COVID-19. In particular,
we refer to Figure 4.3.11 / (B) vs. Figure 4.3.12 / (C): if these images are approached
as terrain levels, then the land described by influenza generally seems to have
larger gradients in terms of topographic contour lines. We note that this becomes
even more apparent for higher diffusion values, where we see rather homogeneous,
blurry spatial patterns for SARS-CoV-2, while influenza infection preserves sharper
frontlines. We provide supplementary images dedicated to exploring the model’s
sensitivity to different diffusion parameters in our public github repository [49],
where we also share further visual data to grasp the infection dynamics.

We finish this section with emphasising the significance of the hybrid PDE-ABM
model by revisiting the results presented in connection to Figure 4.3.10 and observing
them in a new light – in particular, we explore how the detailed spatiotemporal
layout given in Figures 4.3.11 and 4.3.12 contribute to a better understanding of the
original functions of (and questions behind) Figure 4.3.10.

As we have seen at the discussion of Figure 4.3.10, the number of infected cells
have a significantly smaller peak value for influenza compared to COVID-19. The
new information regarding spatial patterns in Figures 4.3.11 and 4.3.12 gives insight
into what really happens in the background. The fact that the ratio of red and black
agents can be so high for SARS-CoV-2, while it always remains relatively low for
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A B

C D

Figure 4.3.11: Simulated spatiotemporal numerical solutions captured A 16 hours, B 24
hours, C 48 hours, and D 64 hours after influenza infection. The computations were performed
by means of the hybrid PDE-ABM model using DV = 0.2σ2/min. Infected, healthy, and
dead cells (denoted by red, green, and black squares, respectively) are shown on the left,
while virus spread is depicted on the right in all four subfigures (A - D). The colour bar is
understood in virus copies per ml per cell (see Table 4.3.2).

A B

C D

Figure 4.3.12: Simulated spatiotemporal numerical solutions captured A 32 hours, B 40
hours, C 56 hours, and D 88 hours after SARS-CoV-2 infection. The computations were
performed by means of the hybrid PDE-ABM model using DV = 0.2σ2/min. Infected,
healthy, and dead cells (denoted by red, green, and black squares, respectively) are shown on
the left, while virus spread is depicted on the right in all four subfigures (A - D). The colour
bar is understood in virus copies per ml per cell (see Table 4.3.2).
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influenza suggests that influenza-infected cells do not live nearly as long as cells that
got infected by SARS-CoV-2 (in fact this is supported by the PD values of Table 4.3.2).

Carefully comparing Figures 4.3.11 and 4.3.12 can also help us identify a reason
why the (quick) viral load peak is higher for influenza in Figure 4.3.10 when its
cell-analogue is clearly higher for COVID-19. We begin by exploring what happens
on the level of virus concentration when we have (approximately) the same amount
of infected cells. In particular, Figure 4.3.11 /(B) and Figure 4.3.12 / (B) are both
scenarios where we seem to have approximately the same amount of infected cells,
and at the same time the difference between the corresponding virus concentration
images is strikingly apparent. This suggests that the key feature behind the originally
mentioned phenomenon might be a difference between the strength of the respec-
tive viral source functions – this is in fact verified by the fi,j values of Table 4.3.2.
Hence, these observations are significant not just in themselves, but also examples of
biological insights provided by the hybrid PDE-ABM model.

4.4 Discussion and concluding remarks

we have applied two different models for investigating the dynamical aspects of
virus spread. The first model we considered was a hybrid PDE-ABM system, which
is essentially a result of merging a discrete state space representing epithelial cells
with a continuous reaction-diffusion equation grasping virus concentration. At the
same time, we have used the so-called May-Nowak system – a well-known version
of the classical ODE model – as a reference system. As for theoretical completeness,
we provide a rigorous analysis of both models in the Appendix, including a well-
posedness result related to the hybrid model and the study of the ODE model’s
temporal dynamics.

The hybrid model’s computational implementation and the careful exploration
of its results is in some sense the heart of our work – we highlight that our program
code is based on a free and open source Java library, HAL (Hybrid Automata Library)
[29], commonly used for oncology modeling.

Compared to the ODE system, both the decisive advantages and the main diffi-
culties of the hybrid model are naturally related to the PDE-ABM system’s added
(and quite high-level) complexity: the inclusion of spatial effects. On the one hand,
the limiting factors of this model include an increased computational demand and
the fact that it is virtually impossible to consider a really large number of cells on an
ordinary computer (we worked with a slice of tissue consisting of 4 · 104 cells). On
the other hand however, this hybrid model provides us with the invaluable spatial
distribution of infection spread: by running simulations for influenza and SARS-CoV-
2 propagation, the results of our spatiotemporal PDE-ABM system suggested that
influenza seems to generate sharper frontlines in virus concentration than COVID-19
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does; moreover, especially for higher diffusion values, COVID-19 visibly spreads in
a more homogeneous manner compared to influenza. This simply would not have
been possible using the ODE model as the latter is defined only in time. The ODE
system represents a scenario where all cells can interact with all virus particles, or
in other words, it implicitly assumes an infinite diffusion coefficient in some sense.
Real-life viruses however clearly have a finite diffusion rate. This also means that
if the specific virus in question has a relatively low diffusion rate, then the ODE
model’s predictions regarding infection dynamics will be less accurate: the lower the
diffusion coefficient, the more important it is to apply the more complex and more
suitable spatial hybrid model. This phenomenon can be observed in Figure 4.3.6: a
small diffusion value results in great differences between the respective solutions
of the PDE-ABM system and the (4.2.7) ODE model, while the solutions are indeed
close to each other for a larger diffusion value.

In terms of verifying the accuracy and correctness of our proposed model, we
highlight the results of Section (4.3.2.1) – we have relatively successfully recreated the
real results of a scientific in vitro experiment: our computer-simulated results matched
the actual events and features of infection spread on a satisfactory level. Regarding
correctness, we refer to Figure 4.3.8 as well: about 30 to 50% of the epithelial cells are
destroyed in the upper respiratory system at the peak of infection, which corresponds
to the observations of [42] and [50].

As for possible further improvements and applications of our hybrid spatial
model, we mention two main points. Firstly; fine-tuning features such as immune
response processes, time delay between infection and virus production, and the
phenomenon of cell regeneration are ignored in our current study. These can be the
subject of possible future work, although we note that the present model itself can
also be considered to be highly realistic in specific cases where some of the above
mentioned elements are naturally negligible (e.g. at the short early phase of an
infection the immune system has typically not responded yet, while the time frame is
too short for cell regeneration to be relevant). Secondly, we plan to apply the hybrid
system for parameter fitting analogously as [42] used the ODE model for a similar
task for the case of influenza A. In more detail, the authors of [42] calculated a best fit
of the ODE model using experimental data on viral load – they extracted viral kinetic
parameters such as infection rate, virus production rate, viral clearance rate, and the
half-life of free infectious viruses. We simulated the corresponding scenario with
both systems and – as expected, considering the relatively low diffusion value set
for influenza – there was an apparent difference between the respective numerical
solutions of the ODE model and the hybrid system. According to our results, [42]
somewhat underestimates the R0 value: as Figure 4.3.8 shows, in order to obtain
a solution with the PDE-ABM model that corresponds to the ODE solution (and
hence, to the real curve), it seems that the R0 value of the hybrid model needs to be
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higher than the value estimated by [42] to fit the experimental data. This is another
example of how the assumption of homogeneous virus spread can be misleading –
the kinetic values obtained by [42] could be adjusted towards their real biological
value by means of the hybrid PDE-ABM model. Thus, parameter estimation and
fitting the stochastic hybrid model to various virological data is something we also
consider as valuable future work.

The complex hybrid approach allows our model to capture fundamental physical
processes such as diffusion. We have seen that this is paramount in analysing
spatiotemporal virus spread, but we emphasise that virus diffusion itself is not the
only example for this feature’s significance. Future works using this framework
may consider immune response or antiviral drugs. For the latter, drug diffusion is
essential, since spatial heterogeneity naturally arises as the drug enters the tissue
through the capillary network. Hence, the diffusive property has a key role in the
analysis of antiviral drug effectiveness, which can be precisely evaluated only in
spatiotemporal context, and our proposed model can be of great use for assessing
potential COVID-19 treatment strategies.

Our final synopsis is that the hybrid PDE-ABM model is better suited for thorough
and detailed virus spread assessment than the classical ODE system. Following virus
propagation on an individual cellular level and taking important spatial effects into
account results in a more accurate and complete picture regarding the infection’s
outcome. Even though the additional integrated details clearly come at a price in
terms of computational demand, this pays off very well in the form of information
on spatial virus distribution and more accurate predictions.



Chapter 5

Stochastic variability

5.1 Introduction

This chapter is a supplementary study to [61] (chapter 4). In the latter chapter we
applied a hybrid mathematical approach to investigate within-host virus dynamical
phenomena on a cellular level. Conceptually, the fundamental idea behind hybrid
PDE-ABM system was to form bridges between two modeling strategies, hence
uniting the respective advantages of discrete and continuous techniques. The hybrid
model is constructed by merging i) a PDE describing virus concentration and ii) an
agent-based model representing target cells and their three possible states (healthy,
infected, and dead). Finally, the system becomes complete thanks to the inclusion of
meaningful interactions and feedback processes between these separate parts. This
framework has two fundamentally important advantages. On the one hand, it yields
spatially explicit information on virus propagation patterns, and on the other hand,
its stochastic approach to state changes supports realistic simulation outputs. In
more detail, the latter means that both the infection process (i.e. the H → I state
change) and cell death itself (i.e. the I → D state change) are internally designed as
non-deterministic processes: their implementation reflects the natural randomness of
these events. In chapter 4 we predominantly showed this variability element from a
single perspective: it was an indispensable feature needed to achieve realistic results.
This chapter focuses on these stochastic elements from a new viewpoint.

As simulated infection outcomes may vary based on pure chance, it is essential
to quantitatively estimate and outline some of the main uncertainties regarding the
results. Our goal here is to assess the stochastic variability in the system: applying the
theory of branching processes we rigorously tackle issues such as the probability of
spontaneous virus extinction and we also perform some base-level statistical analysis.
We emphasise that our investigation regarding stochastic variability is performed
exclusively for SARS–CoV–2 infections.

We highlight that our implementation of the hybrid system is based on a free and
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open source tool, HAL (Hybrid Automata Library) [29]: both in the present work and
in [61] we have adapted, configured, and applied this software package to support
repeated simulations for cell-level virus infections – our program code is publicly
available on github [49].

5.2 Methods

5.2.1 Discrete-time branching processes

Branching processes [62] have been applied to neutron chain reactions, cancer
growth, the survival of mutant genes and population growth, and naturally, one of its
main concerns is population extinction. The hybrid PDE-ABM system and the theory
of branching processes are two entirely different mathematical frameworks – both
are capable of capturing virus propagation in a cell culture, each with its own set of
strengths. Since the probability of ultimate, spontaneous extinction (n.b. extinction
of the infection) is one of the central questions of the present article, here we turn to
the powerful toolbox of branching processes.

Let Xn denote the total size of the population – in our case, the number of infected
cells – at the n-th generation for n ∈ N0. The state space of the process {Xn}∞

n=0 is N0.
The process {Xn}∞

n=0 is called a Galton-Watson branching process if the following
three conditions hold.

1. Each individual in generation n has Yn offsprings in the next generation, where
Yn is a random variable that takes values in N0. The offspring distribution of
Yn is {pk}∞

k=0, i.e. we have

P(Yn = k) = pk, k = 0, 1, 2, . . . .

2. The number of offsprings an individual has is independent from all other
individuals of the population.

3. All generations share the same offspring distribution, i.e. Yn = Y.

We recall that the probability of ultimate population extinction is given by the so-
lution of a fixed-point problem. Specifically, assuming that the probability generating
function GX of the branching process {Xn}∞

n=0 satisfies certain nice properties (for
more details see [62]); moreover, X0 = N, and E(Y) > 1; then there exists a unique q,
0 < q < 1, such that GX(q) = q, and

lim
n→∞

P(Xn = 0) = qN. (5.2.1)
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5.2.2 Implementation and parametrization

Our implementation of the hybrid PDE-ABM system is described in detail in
chapter 4, is publicly available in [49], and remains identical in this part of the
investigation. The default parameters are also the same as given in (4.3.2) in chapter 4.

5.3 Results

All sections of this chapter aim to give a tangible answer to a single, rather generic
question:

How much variability is there in the hybrid PDE-ABM system? (5.3.1)

In the following we elaborate two specific, concrete approaches.

5.3.1 Probability of spontaneous extinction

Roughly speaking, this section translates the previously stated main question
(5.3.1) as ”Is spontaneous virus extinction possible or likely?”, answers the latter with
theoretical rigorousness, and it does so by approaching the number of infected cells
as an {Xn}∞

n=0 branching process.
To motivate this section we begin with an experimental observation. We increase

the baseline SARS–CoV–2 virus removal parameter to favor a potential extinction
event and observe where individual infection dynamics arrive over time. Figure
5.3.1 shows the number of infected cells in two different simulations using the exact
same parameter values and initial conditions. Clearly, the stochastic approach of
the hybrid PDE-ABM framework does allow fundamentally different outcomes by
happenstance.

We will apply (5.2.1) to precisely calculate the probability of extinction. As a first
step, we focus on one single infected cell and determine the offspring distribution.

5.3.1.1 Single-cell scale: data fitting and parameter estimation

We focus on the generation change from X0 to X1 where the number of originally
infected cells X0 is set to 1. The number of direct successors – i.e. generated new
infections or offsprings – of the originally considered one single cell is captured by
the random variable Y. In order to apply (5.2.1) we need to estimate the {P(Y = k) =
pk}∞

k=0 probabilities, as these constitute the offspring distribution of the branching
process and they determine the probability generating function GX.

In order to estimate the offspring distribution and its parameters, a small modifi-
cation is applied in our program code for the scope of the present subsection: newly
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Figure 5.3.1: The number of infected cells in two different simulations using the exact
same parameter values. The stochastic nature of the hybrid PDE-ABM system clearly allows
non-deterministic variability in the results. The figures were obtained by using the parameters
given in (4.3.2), but a viral removal rate of 9 · 10−2/min was applied in both simulations
(n.b. almost 50 times higher than the baseline µV parameter of SARS–CoV–2). The initial
values were I0 = 2, H0 = 40000 − I0, V0 = 0 and D0 = 0.

infected cells are set not to produce any virus, hence every new infection in the
branching process is surely the direct successor of the one infected cell we had in the
beginning.

SARS–CoV–2 parameters The results of this paragraph are calculated for the
parameter values of SARS–CoV–2 defined in Table 4.3.2 in chapter 4.

We estimate the {P(Y = k) = pk}∞
k=0 probabilities by generating a frequency

histogram. Specifically, we run our simulation 2000 times with identical parameters
and explore where the infection process arrives over time (i.e. in each scenario we
examine how many direct successors are generated by the original infected cell).
Note that even though we allow these simulations to run for a long time, within the
context of the branching process they still represent only one generation step. The
results are shown in Figure 5.3.2.

Based on the results of 2000 simulations, one infected cell is responsible for
maximum 78 and the minimum zero new infections.

As our next step we calculate the normalized counts: Figure 5.3.3 demonstrates
the observed relative frequencies and the respective cumulative values in blue.

These data-based results show an apparent visual similarity to the corresponding
features of a negative binomial distribution (shown in red in the same figure). The
precise values of the p, r parameters in the NB(p, r) distribution can be obtained by
a standard distribution-fitting procedure to sample data. As a result of using the
curve fitting toolbox in MATLAB, we obtain r = 1.0351 and p = 0.0781.

Hence, for the case of SARS–CoV–2 parameter values we have
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Figure 5.3.2: Frequency histogram for the offspring distribution based on 2000 simulations.
All simulations begin from a single infected cell and were executed with identical SARS–
CoV–2 parameters given in Table 4.3.2 in chapter 4.

Y ∼ NB(1.0351, 0.0781). (5.3.2)

Fivefold virus removal rate The techniques and the results of this paragraph are
analogous to the previous one, the only difference is the application of a five-folds
higher virus removal rate. Both data and the fitted distribution are presented in
Figure 5.3.4.

Again, we use curve fitting toolbox in MATLAB to estimate the parameters – we
get r = 1.0361 and p = 0.3032; i.e. the best fit is given by

Y ∼ NB(1.0361, 0.3032). (5.3.3)

5.3.1.2 Large-scale results: the fixed-point method

Previously we have successfully estimated the offspring distribution and the
probability generating function of the branching process, now we are ready to calcu-
late the probability of extinction. Analogously to the preceding subsection, we will
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Figure 5.3.3: The data-based relative frequencies and the respective cumulative values (in
blue) vs. the corresponding features of the negative binomial distribution NB(p, r) with
r = 1.0351 and p = 0.0781 (shown in red). All data were calculated using SARS–CoV–2
parameters as given in Table 4.3.2.

consider two different virus removal rates – one being that of SARS–CoV–2, the other
five times higher.

SARS–CoV–2 parameters Both of the methods we present here are based on (5.2.1).
Specifically, for N = 1 the probability of extinction is the fixed point of the probability
generating function GX.

• In this case we consider Y ∼ NB(r, p), in other words this scenario works with
the theoretical version of the negative binomial distribution. As r = 1.0351 and
p = 0.0781, we have m = E(Y) = r(1 − p)/p > 1, and hence the fixed point
method can be applied. Using the given parameter values in the

GX(x) = (
p

1 − (1 − p)x
)r (5.3.4)

probability generating function we can easily solve the

GX(q) = q (5.3.5)

fixed-point problem to find q = 0.0771.

• In this second case we use the estimated version of GX which is based on the
experimentally observed frequencies and the respective pk values (Figure 5.3.2).
As Figure 5.3.5/A) illustrates, the fixed point is calculated by means of MATLAB
using an iteration method. In this approach we obtain 0.07845 as the probability
of ultimate extinction.
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Figure 5.3.4: The data-based relative frequencies and the respective cumulative values (in
blue) vs. the corresponding features of the negative binomial distribution NB(p, r) with
r = 1.0361 and p = 0.3032 (shown in red). All data were calculated using a five-folds higher
virus removal rate compared to the original SARS–CoV–2 parameters given in Table 4.3.2,
other parameter values remained unchanged.

Hence, assuming SARS–CoV–2 parameters as defined in Table 4.3.2 in chapter 4,
there is an approximately 7% chance that an infection originating from a single cell
goes spontaneously extinct.

Note that this corresponds to our previous results detailed in chapter 4. In the
latter we typically considered I0 = N = 20 infected cells at the beginning and we
found that virus spread essentially always thrives in this particular setting. In this
case the theoretical chance of the infection spontaneously vanishing is qN : using our
newly obtained results this value is basically negligible, which is consistent with our
previous observations.

Fivefold virus removal rate The parameters of the previous section can be ma-
nipulated to facilitate spontaneous virus extinction. Naturally, an increased virus
clearance rate induces a higher probability of spontaneous virus extinction: as Figure
5.3.5/B) shows, a quintupled virus removal rate in the SARS–CoV–2 parameters
leads to an extinction probability as high as 0.4136. The techniques used in this
section are identical to those detailed before and hence we omit the details.

5.3.2 Variability, confidence bands

This part of the article aims to answer the central question (5.3.1) by briefly
assessing some of the most fundamental statistical features related to the virus
dynamical process. Here we work solely with SARS–CoV–2 virus parameters and
similarly to what we assumed in chapter 4. In order to illustrate the stochastic
variability of our model, we execute our hybrid simulation 2000 times with an
identical setting. A 95% confidence interval is given visually both for the number of
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Figure 5.3.5: Finding the probability of extinction using the fixed-point method for an
experimentally estimated version of the GX probability generating function. The probability
of extinction appears as the intersection of the function GX with the line y = x. A) All data
were obtained using SARS–CoV–2 parameters. B) Data were obtained using a quintupled
the virus removal rate compared to SARS–CoV–2 parameters (other parameter values remain
unchanged).

healthy and infected cells in Figure 5.3.6, the solid lines naturally correspond to the
mean values.

Figure 5.3.6: Fundamental statistical features representing stochastic variability for our
hybrid PDE-ABM model. Results were obtained by repeatedly running the hybrid simulation
2000 times, always assuming a default SARS–CoV–2 parametrization and I0 = 20. The
result shows in a tangible way that while peak sizes vary due to pure chance, the elimination
of the cell culture as an outcome is virtually inevitable.

The results shown in Figure 5.3.6 correspond to the observations made for our
original model. The theoretical probability of spontaneous virus extinction is very
small for I0 = 20, and as expected, host cells are completely wiped out in all simula-
tions – on the way to that final outcome small perturbations are however definitely
present due to the stochastic nature of the model.
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5.4 Discussion

The complex hybrid PDE-ABM approach we considered in chapter 4 allowed us
to capture and predict the spatio-temporal viral dynamics in a cell population. Our
hybrid model presented two fundamental advantages: firstly, it yielded vital infor-
mation on the spatial patterns of virus spread, and secondly, its stochastic approach
to state changes allowed more realistic simulation outputs. As simulated infection
outputs varied based on pure chance, the quantitative assessment of stochastic un-
certainty was a crucial remaining task. The present follow-up chapter serves this
exact purpose as a supplementary study to chapter 4: our work successfully tackled
non-deterministic variability in a tangible way by elaborating two specific, concrete
approaches.

Applying the powerful theory of branching processes we rigorously verified an
experimental observation suggested by our previous simulations: once established,
infections almost never disappear spontaneously. Specifically, we calculated the
probability of spontaneous virus extinction and for a single cell obtained an O(0.01)
value, corresponding to our expectations. We highlight that we successfully esti-
mated the offspring distribution of the branching process describing virus spread:
based purely on the original model assumptions and our computer-generated data,
we concluded that the number of new infections generated by a single infected cell
is best described by a negative binomial distribution – we found a virtually perfect
correspondence between the estimated and the observed curves. Our research con-
cerning spontaneous ultimate extinction was conducted for SARS–CoV–2 infections,
investigating two different virus removal rates. Increased virus clearance can be
viewed as a positive immune response or an effect of treatment, this feature remains
to be further investigated as future work.

We completed our study by performing some base-level statistical analysis: we
explored fundamental features such as mean and we have calculated a 95% con-
fidence interval for both the number of infected cells and healthy cells. The latter
results visually confirmed a reasonable level of variability within our framework:
on the one hand, non-deterministic uncertainty allows small and natural changes
from outcome to outcome, on the other hand, successful large-scale predictions and
analysis remain possible as the vast majority of infection curves remains close to their
estimated mean.
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Chapter 6

Paxlovid

6.1 Introduction

This chapter concentrates on the mathematical evaluation, assessment, and
computation-based simulation of a promising antiviral drug, Paxlovid [63], which
is essentially nirmatrelvir co-packaged with ritonavir. Nirmatrelvir is a protease
inhibitor that is active against Mpro: inhibition of the SARS–CoV–2 main protease
renders it incapable of processing polyprotein precursors, preventing virus produc-
tion. Ritonavir is given as a pharmacokinetic enhancer: it slows down nirmatrelvir’s
metabolism allowing a twice daily administration regimen. Paxlovid (also known
as PF-07321332) is orally bioavailable and it has excellent in vivo safety profiles
[64, 65, 66].

Modeling has enhanced our understanding of the dynamics of viral spread,
and it played an instrumental role in developing successful therapies for chronic
viral infections such as HIV and HCV [67]. Mathematical models have proved to
be indispensable tools in overcoming the challenges posed by the SARS–CoV–2
pandemic, too. In terms of investigating cellular–level antiviral dynamics, one of the
most modern, state-of-the-art approaches consists in considering each component’s
physical dimension and capturing them within the framework of a spatial multiscale
model accordingly. These systems incorporate size in a particular manner: rather than
operating with a simple numerical value, what change in these models – depending
on the size of a given biological entity – are the mathematical tools themselves that
are applied to grasp these variables on different scales.

Considering our proposed model in chapter 4, we define a hybrid mathematical
model by merging i) a partial differential equation representing local virus concen-
tration, ii) an agent-based model describing target cells in the lung and their three
possible states (uninfected, infected, and dead), and iii) a partial differential equation
representing nirmatrelvir concentration. Naturally, the respective parts are closely
and meaningfully intertwined: each considerable interaction and feedback process
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connecting these separate biological participants is given formal definition and ap-
pears in the implementation. A detailed motivation, definition and construction of
this model type and its various advantages are discussed in chapter 4 – here we limit
ourselves to highlighting the role of including crucial spatial mechanisms: unlike
other classical models such as the ODE (ordinary differential equations) approach,
the present system is defined in both space and time, and consequently is able to
capture highly significant – and in nature inherently spatial – physical phenomena
such as virus diffusion.

Our goal here is to provide an assessment of Paxlovid based on mathematical
simulations. We explore questions such as what happens if nirmatrelvir is taken
without ritonavir, or how do expectations for treatment outcome change if tablets
are taken with some delay. We emphasise that performing the analogous in vivo
experiments on an actual person or animal would be either simply impossible or
unethical, at the same time the corresponding in silico experiment can be conducted
in just a few minutes at an ideally low cost.

6.2 Mathematical framework

6.2.1 The hybrid PDE-ABM model

the main multiscale framework is defined via forming meaningful bridges be-
tween two important and fundamentally different modeling techniques: continuous
partial differential equations and discrete agent based models.

In the following, let Ω denote the area we are considering. For an in vivo ex-
periment this would mean a small part of the lung tissue, while in the case of an
in vitro experiment it would be the area of a single well in a laboratory plate. Sec-
tion 6.2.1.2 introduces the discrete part of our hybrid model accounting for epithelial
cells, whereas Sections 6.2.1.2 and 6.2.1.3 discuss the continuous component modeling
the virus (V) and drug (N) concentration. The cornerstone observation motivating
this separation is that viruses and drug molecules are several magnitudes smaller
than epithelial cells [45]. Then, we present the parametrization of the model in
Section 6.2.2. Finally, Section 6.2.3 contains details of the implementation.

6.2.1.1 Epithelial cells

One of the most important modeling decisions in chapter 4 was defining epithelial
cells as discrete agents in an agent-based model (ABM). The diameter of epithelial
cells is relatively significant [46, 47] and consequently, in terms of mathematical
conceptualization it is natural to approach cells as separate entities and follow their
respective states on an individual level.
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The discrete state space of target cells is defined precisely as in chapter 4. For
completeness, we recall some of the fundamental technical details; namely, we
construct a two dimensional ABM state space by introducing a lattice of k1 × k2

agents representing epithelial cells (k1, k2 ∈ N). Cells are identified by means of
the corresponding agent’s place in the grid, or formally, by the (i, j) indices, where
(i, j) ∈ J = {(i, j)|1 ≤ i ≤ k1, 1 ≤ j ≤ k2}. Finally, by setting the Ωi,j notation for the
open set occupied by the (i, j)-th cell, we have Ω̄ =

⋃
(i,j)∈J

Ω̄i,j.

Regarding cell states in the context of the ABM space, the main concept is rather
straightforward: each agent has three potential states. The latter is formally captured
by the state function si,j(t) representing that in this modeling framework an epithelial
lung cell is considered to be either uninfected, infected, or dead:

si,j(t) =


T, if the (i, j)-th cell is alive and uninfected at time t

I, if the (i, j)-th cell is infected at time t

D, if the (i, j)-th cell is dead at time t.

We note that the uninfected, susceptible, and target (cell) expressions are used
interchangeably in the context of viral dynamics: they all refer to living cells that are
susceptible to SARS–CoV–2 infection but are (for the time being) free from it.

Concerning state dynamics, the transition rules are set to mimic the biological
phenomenon in question, the complete list is as follows:

• all living uninfected cells are susceptible target cells to virus infection;

• since the time frame of infection is relatively short, cell birth and cell division
are ignored;

• infection is not reversible: an infected cell can not become a healthily function-
ing uninfected cell again;

• viral infection itself is the only reason for cell death, i.e. death related to any
other natural cause is not accounted for (considering the 17-month half-life of
lung epithelial cells [68], natural apoptosis may be ignored over the course of a
5-day Paxlovid treatment);

• the uninfected → infected state change: a target cell may become infected de-
pending on the local virus concentration at the given cell. Infection itself is
randomized and it occurs with a probability of PI (for more details see chap-
ter 4);

• the infected → dead state change: Analogously to infection, death is governed
by a stochastic model with probability PD.
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6.2.1.2 Virus concentration

As discussed, virus concentration V(t, x, y) is described as a variable that is
continuously changing in both space and time, and as such, it is formally described
by means of a partial differential equation (PDE):


∂V(t,x,y)

∂t = DV∆V − µVV + (1 − ηN(N)) · ∑
(i,j)∈J

gi,j(t, x, y), t > 0, (x, y) ∈ Ω,

∂V(t,x,y)
∂ν = 0, t > 0, (x, y) ∈ ∂Ω,

(6.2.1)
where DV stands for the virus diffusion coefficient, µV represents the viral clearance
rate, N is the local concentration of nirmatrelvir (i.e. the active antiviral component
of Paxlovid), ηN is the efficacy function of nirmatrelvir, while gi,j denotes the viral
source term for the (i, j)-th infected cell.

Equation (6.2.1) accounts for the following modeling assumptions.

i) Virus particles spread across the domain primarily via diffusion.

ii) A non-specific, non-adaptive, simplified immune system is assumed which
clears virions with a constant rate.

iii) A local nirmatrelvir concentration of N(t, x, y) reduces virus production from
infected cells by a ratio of ηN(N(t, x, y)), for more details see Section 6.2.1.3.

iv) Infected cells generate new virus particles in a process that is formally described
by the gi,j source functions:

gi,j(t, x, y) =


0, if si,j(t) = T and (x, y) ∈ Ωi,j,

fi,j(t, x, y), if si,j(t) = I and (x, y) ∈ Ωi,j,

0, if si,j(t) = D and (x, y) ∈ Ωi,j,

0 if (x, y) /∈ Ωi,j.

(6.2.2)

In general, any reasonable fi,j(t, x, y) function may be allowed in the above
formula (for more details see chapter 4 and [48]). We adopted the standard
simplification commonly used in the field of viral dynamics: analogously to
[69] and [70] a constant virus budding rate is assumed. In particular, we used
the estimate fi,j = 3.72 · 10−3 copies / (ml · minute · cell) , see [71].
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6.2.1.3 Drug concentration

Paxlovid (also known as PF-07321332) is an an orally administered SARS–CoV–2
main protease inhibitor [64, 65, 66]. It is essentially a combination of two different
drugs: nirmatrelvir – capable of effectively blocking virus production in infected
cells – acts as its main antiviral component, while ritonavir serves to slow down
the metabolism of nirmatrelvir to maintain significantly higher concentrations of
the participant responsible for Mpro-inhibition. We emphasise that nirmatrelvir and
ritonavir are not only separate entities as acting components: the corresponding
drugs themselves are packaged in individual, separate tablets – this means that the
theoretical possibility to take, for example, nirmatrelvir only (without the beneficial
effect of ritonavir) is readily available. The remaining part of the section is dedicated
to formulate the above statements in the context of the mathematical framework.

Nirmatrelvir concentration is modeled as a continuous variable and is denoted
by N(t, x, y). We highlight that – both for simplicity and because of the apparent lack
of clinical data – we do not explicitly introduce the analogous R(t, x, y) function for
ritonavir concentration. Instead, we focus only on two specific scenarios: ritonavir is
either taken as instructed (i.e. 100 mg of ritonavir every 12 hours), or not taken at all.
Formally, we introduce the boolean r to mathematically grasp the above concept:

r =

{
true, if ritonavir is taken following official regimen,

false, if ritonavir is not administered at all.

Hence, this boolean is responsible for controlling N through the metabolism-related
descriptors.

Two further anatomical details need to be taken into account before we can
formulate the governing equations for drug concentration.

First, capillary density is very high in the lung. For example, in the case of rats,
there are about 11 epithelial cells per a single alveolus [72]. Considering that there are
approximately 40 capillary loops per alveolus [73], this gives circa 4 capillary loops
per epithelial cell. Consequently, because of the abundant presence of neighbouring
capillaries for a single cell, it is natural to assume a completely homogeneous drug
distribution in the alveolar epithelium. Therefore, we work with N(t) instead of
N(t, x, y), and the equation describing nirmatrelvir concentration becomes an ODE
instead of a PDE.

Second, in order to reproduce the characteristic local concentration curves ob-
served in clinical data (we refer to Figure 2A in [74]), we apply a standard pharma-
cokinetic (PK) dual compartment approach – akin to that utilized in [75] – assessing
antiviral therapy targeting SARS–CoV–2. The latter model consists of a central com-
partment (e.g. stomach) responsible for first-level drug metabolism and a peripheral
one (for the purpose of this manuscript the lung) containing the target site of nir-
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matrelvir. Technically, we introduce an additional c(t) function representing drug
concentration at the central compartment – this is the the amount of nirmatrelvir
that is already present in the patient’s system, but is not yet locally available at the
level of the lung’s epithelial cells. In the context of the two-compartment model, N(t)
corresponds to the peripheral compartment’s nirmatrelvir concentration. Similarly
to the case of N(t), an ODE is used to describe c(t).

The complete system for nirmatrelvir concentration is then formally described by
the following set of equations:

dc(t)
dt = −µc(r)c(t) + S(t, r),

dN(t)
dt = −µN(r)N(t) + µc(r)c(t),

(6.2.3)

where S represents the nirmatrelvir source function in the body, corresponding to a
twice-daily administration regimen (the time unit being τ = 1 minute):

S(t, r) =

{
K(r), if mod(t, 12 · 60) = 0

0, otherwise.

The choice of K(r) is discussed in the following section.
We note that the above set of equations holds primarily for in vivo scenarios. In

case of in vitro experiments one might, for example, consider a simpler, constant
presence of nirmatrelvir.

6.2.2 Parametrization

The configuration of the stochastic ABM state space and the PDE layer describing
SARS–CoV–2 infection had been given in chapter 4. Here we set the parameter values
that are related to the (new) calibrated layer representing Paxlovid-based antiviral
therapy.

• Drug removal rates: µc(r), µN(r). As we do not have direct information on the
µc, µN coefficients, we deduce them indirectly by using frequently measured
nirmatrelvir blood concentration values communicated in [74]. Of course, this
argument raises the question whether it is reasonable to use blood concentration
values to estimate local drug concentrations in the lung – the validity of this
approach is reassured by the results of [76]. The µc(r) and µN(r) coefficients
were set using Mathematica. We note that in the process we also benefited from a
priori information on ritonavir from [74] and [77]: we used that in non-ritonavir-
boosted cases the active component is apparently metabolised 3–4 times faster.
The Mathematica notebook is available in our public Github repository [78].
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• Efficacy: ηN. In our model ηN is defined by means of a Hill function – the
parameters of the latter are set precisely to obtain an efficacy of 50% when the
drug concentration takes the value of EC50 for nirmatrelvir w.r.t. SARS–CoV–2
(the latter parameter is approximately 62 nM according to [65]). Formally, ηN is
defined as

ηN(N(t)) =
1

1 + EC50
N(t)

. (6.2.4)

For simplicity, we use the notation N(t) for drug concentration whether it is
understood in nanomolars or in nanogramms per millilitre. Our implementa-
tion internally takes care of conversions when necessary due to data arriving
from different sources.

The most important parameter values are summarized in Table 6.2.1.

Table 6.2.1: Parameter configuration is primarily based upon best fit to actual data commu-
nicated in [74]. Previously existing parameters are defined in chapter 4.

Symbol Parameter Unit Ritonavir–
boosted

Value

µc(r) drug removal
rate

τ−1 false 0.015

in the stomach true 0.005

µN(r) drug removal
rate

τ−1 false 0.013

in the lung true 0.004

K(r) drug source ng/ml/τ false 1800
in the stomach true 6800

τ: time unit

6.2.3 Implementation

The present work is a direct continuation of chapter 4 and hence its technical
foundations and principles remain unchanged. For the sake of compactness we avoid
repetitive details – here we limit ourselves to summarizing the extended structure
of our updated software with the help of the flowchart in Figure 6.2.1. The chart is
divided into two main columns. On the left we have the program flow itself from
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start to finish, while the three additional boxes on the right contain further details on
the respective functions. After setup and initialization, the execution is controlled
by a time loop: nirmatrelvir concentration, virus concentration, and cell states are
updated for each time step (in our case τ = 1 minute).

1. Nirmatrelvir concentration is calculated first (highlighted with a green frame):
the most fundamental details of the process are given on the right-hand side,
highlighted with an identical colour. There is a clear distinction between in vitro
and in vivo cases: while the first scenario is implemented assuming a constant
drug concentration, the latter utilizes a two-compartment PK system.

2. Updating virus concentration values entails recalculating the current values
considering both natural decay and inflow from infected cells taking virus
diffusion into account.

3. After the new drug and virus concentration values have been obtained at
each cell, we are ready to update the cell states, i.e. consider potential cell
infection and cell death – the former is highlighted in purple, the latter in gray.
The schematic details are shown on the right with corresponding colours; we
emphasise that the respective stochastic cores of these processes are very similar
to each other. In both cases the algorithm calculates the probability of either
infection or death.

Our numerical simulations are based on a free and open source java software
package, HAL (Hybrid Automata Library) [29]; our source code is publicly accessible
in the Github repository [78].

6.3 Results

6.3.1 Replication of in vitro pharmacometrics of Paxlovid

The initial step in identifying and testing clinically promising antiviral drugs
consists in performing a great number of in vitro experiments evaluating their overall
effects. We begin with this straightforward approach, too. In this first scenario
we simulate a series of experiments corresponding to in vitro cases with different
nirmatrelvir concentrations – all these configurations are otherwise identical in every
other aspect. We simulate the course of SARS–CoV–2 infection over the course of four
days and we compare our computer-generated predictions with real-life observations
obtained by scientific experiments assessing nirmatrelvir. Specifically, we consider
Figure 3D in [64] – here the authors evaluate PF-07321332 inhibition for (among other
viruses) SARS–CoV–2 in viral-induced CPE assays, and their results are given for a
series of different drug concentration values.
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Figure 6.2.1: The program flow diagram of the PDE-ABM model’s implementation based on
HAL [29].
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Figure 6.3.1: A simulated series of in vitro experiments with increasing initial nirmatrelvir
concentrations. Concentration levels are assumed to be constant throughout the entire course
of each experiment. Every simulation follows the emerging infection dynamics for 4 days.
SARS–CoV–2 infection and nirmatrelvir treatment are initialized simultaneously. Our
computer-generated predictions correspond reassuringly to real-life scientific measurements
assessing infection inhibition of PF-07321332, see Figure 3D in [64].

Figure 6.3.1 demonstrates a notable resemblance to Figure 3D in [64]. Key features
of inhibition efficacy match in a reassuring way: the characteristic shape itself of
the calculated curve looks identical to its clinical counterpart, and the numbers
connected to the main concentration window (approximately between 10 nM and
300 nM) corresponding to tangible increase are essentially the same, too.

While there is a clear match between clinical data and our calculated results,
we highlight that there is a natural limit to accuracy due to simple lack of data.
Both simulated and real-life outcomes naturally depend on key features such as
the number of days the experiment went on for or the complete resolution of the
state space (i.e. the total number of cells). While the supplementary material of [64]
suggests that the authors mostly considered time intervals corresponding to 3–5 days,
several parameter values are either unknown by nature or have not been disclosed.

6.3.2 Exploring in vivo pharmacometrics of Paxlovid

In this section we present and explain our most significant computational results
representing simplified in vivo cases. We explore a series of scenarios with various
configurations, one basic feature remains unchanged however in all of them: we
assume that the most fundamental instructions given in Paxlovid’s documentation
[65] are followed at least for its nirmatrelvir component. Technically this means that
once patients start taking Paxlovid, they steadily take at least nirmatrelvir for 5 days
straight, 1 dose every 12 hours. Since Paxlovid is essentially nirmatrelvir co-packaged
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with ritonavir, technically it is possible that a patient – either consciously because of
an existing drug allergy or simply because of forgetfulness – takes only nirmatrelvir,
without the added benefits of ritonavir. This degree of freedom is allowed and
investigated throughout the simulations. Some other combinations and scenarios
were excluded due to lack of data, again others were omitted simply because of the
limited scope of the article.

It is important to note that the inherent, rather sharp distinction between the
in vitro and in vivo clinical categories becomes notably smoother in the simulated
context of our mathematical model. Figuratively speaking, we perform in vivo
experiments ”as if they were” in vitro in the sense that we have full control over (and
full information on) which specific biological or anatomical processes are included
and which ones are left out. Our framework is called hybrid because of the different
mathematical theories it unites, but it proves to be hybrid in this point of view as
well.

6.3.2.1 In silico testing of immediate Paxlovid-based intervention

We begin by simulating three basic scenarios and observing the respective out-
comes. Figure 6.3.2 shows the course of SARS–CoV–2 infection assuming no antiviral
intervention, Figure 6.3.3 follows a case where the patient takes nirmatrelvir only
(i.e. the main acting component of Paxlovid, without the benefits of ritonavir), while
Figure 6.3.4 represents the scenario where Paxlovid is taken exactly according to
official instructions.

For the latter two cases we plot total virus concentration and nirmatrelvir concen-
trations both at the first level of metabolism in the body and locally at the epithelial
lung cells, the results are shown in Figure 6.3.5.
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Figure 6.3.2: Simulated spatiotemporal solutions captured (a) 24 hours, (b) 48 hours, (c) 72
hours, and (d) 96 hours after SARS–CoV–2 infection. No antiviral intervention took place
in this case. The cellular state spaces are depicted on the left in all four subfigures; uninfected,
infected and dead cells are denoted by green, purple, and black squares, respectively. Virus
concentration values are shown on the right. The colour bar is understood in virions per unit
space.
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(a)nirmatrelvir only (b)Paxlovid

Figure 6.3.5: Integrated virus concentration and nirmatrelvir concentration levels for two
different scenarios representing nirmatrelvir-based intervention. Subfigure (a) shows the
simulated outcome of applying nirmatrelvir without ritonavir, while subfigure (b) depicts the
results of rigorous treatment with Paxlovid (ritonavir-boosted nirmatrelvir). SARS–CoV–2
virus concentrations are coloured in red (shown dashed), nirmatrelvir concentration levels –
N(t) and c(t) – are depicted in sea green and light purple, respectively.

In Figure 6.3.5, both the integrated virus and drug concentration values are note-
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Figure 6.3.3: Simulated spatiotemporal solutions captured (a) 24 hours, (b) 48 hours, (c)
72 hours, and (d) 96 hours after SARS–CoV–2 infection and simultaneous treatment with
nirmatrelvir. In this case nirmatrelvir was given without ritonavir, intervention took
place with no delay. The cellular state spaces are depicted on the left in all four subfigures;
uninfected, infected and dead cells are denoted by green, purple, and black squares, respectively.
Virus concentration values are shown on the right according to the scale in Figure 6.3.2.

worthy. Firstly, we highlight that nirmatrelvir concentration levels clearly correspond
to Figure 2A in [74] – this means that our simulations (both in the ritonavir-boosted
and in the nirmatrelvir-only case) are running with highly realistic nirmatrelvir con-
centration levels. Secondly, our computational results correspond to straightforward,
basic expectations suggested by the packaging of Paxlovid. In more detail; on the
one hand nirmatrelvir in itself seems to be insufficient to control the infection (which
explains why Paxlovid does not simply consist of nirmatrelvir tablets), and on the
other hand, ritonavir-boosted nirmatrelvir is apparently capable to stop infection
entirely (which is in accordance with the simple fact that Paxlovid is an authorized
drug of great promise).

6.3.2.2 Evaluating the effects of treatment delay

The previous section’s premise was similar to a classical in vitro configuration –
in this original default case, infection and treatment began simultaneously. In order
to make our model more realistic, here we introduce and explore a new degree of
freedom: treatment delay.

We begin by exploring how simulated predictions seen in Figures 6.3.3, 6.3.4, and
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Figure 6.3.4: Simulated spatiotemporal solutions captured (a) 24 hours, (b) 48 hours, (c)
72 hours, and (d) 96 hours after SARS–CoV–2 infection and simultaneous treatment with
Paxlovid. In this case ritonavir-boosted nirmatrelvir was given,i.e. official instructions
regarding Paxlovid were followed. Intervention took place with no delay. The cellular state
spaces are depicted on the left in all four subfigures; uninfected, infected and dead cells are
denoted by green, purple, and black squares, respectively. Virus concentration values are
shown on the right according to the scale in Figure 6.3.2.

6.3.5 would change if Paxlovid tablets were given with a delay.

In particular, Figure 6.3.6 and Figure 6.3.7 illustrate virus dynamical processes that
are otherwise identical to the scenarios of Figure 6.3.3 and Figure 6.3.4, respectively,
except for a 36-hour delay in initiating nirmatrelvir-based treatment (this also means
that we follow these cases for an overall longer time period). The ritonavir-boosted
scenario is particularly interesting. Though the first 36 hours see uninhibited virus
spread, Figure 6.3.7 confirms that Paxlovid can control infection relatively well even
in this particular, less favorable scenario: after the first 2 days there are almost no
new cell infections at all, the only detectable change between the last four subfigures
is infected cells gradually turning dead.

Similarly to Figure 6.3.5, Figure 6.3.8 shows integrated virus concentration and
nirmatrelvir concentration levels, but, naturally, considering a 36-hour delay before
Paxlovid is given.
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Figure 6.3.6: Simulated spatiotemporal solutions captured (a) 24 hours, (b) 48 hours, (c) 72
hours, (d) 96, (e) 120, and (f) 144 hours after SARS–CoV–2 infection and delayed treatment
with nirmatrelvir. In this case nirmatrelvir was given without ritonavir, intervention
took place after a 36-hour delay. The cellular state spaces are depicted on the left in all four
subfigures; uninfected, infected and dead cells are denoted by green, purple, and black squares,
respectively. Virus concentration values are shown on the right according to the scale in
Figure 6.3.2.
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Figure 6.3.7: Simulated spatiotemporal solutions captured (a) 24 hours, (b) 48 hours, (c)
72 hours, (d) 96, (e) 120, and (f) 144 hours after SARS–CoV–2 infection and delayed
treatment with Paxlovid. In this case ritonavir-boosted nirmatrelvir was given, i.e.
official instructions regarding Paxlovid were followed. Intervention took place after a 36-hour
delay. The cellular state spaces are depicted on the left in all four subfigures; uninfected,
infected and dead cells are denoted by green, purple, and black squares, respectively. Virus
concentration values are shown on the right according to the scale in Figure 6.3.2.
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Figure 6.3.8: Integrated virus concentration and nirmatrelvir concentration levels for two
different scenarios representing nirmatrelvir-based intervention. In both cases tablets are
given after a 36-hour delay w.r.t infection initialization. Subfigure (a) shows the simulated
outcome of applying nirmatrelvir without ritonavir, while subfigure (b) depicts the results
of rigorous treatment with Paxlovid (ritonavir-boosted nirmatrelvir). SARS–CoV–2 virus
concentrations are coloured in red (shown dashed), nirmatrelvir concentration levels – N(t)
and c(t) – are depicted in sea green and light purple, respectively.

Now we are ready to move on to this section’s main purpose, namely, inves-
tigating outcomes and eventual averted tissue damage rates for a series of delay
values with respect to the default (i.e. no delay) case. Note that with no particular
immune response, total tissue damage (i.e. the ratio of cells that are either infected or
already dead) after 5 days reaches 100 percent – this means that the ratio of eventually
remaining susceptible target cells after Paxlovid treatment corresponds precisely to
the damage that is averted because of Paxlovid.

Figure 6.3.9 illustrates the damaging effect of treatment delay from two different
viewpoints.

The first one, Figure(6.3.9a) considers averted damage for a series of scenarios
where each scenario assumes a 12–hour additional delay compared to the previous
one. We highlight the sharp fall in effectiveness after a delay of 1.5 days: lack of
timely Paxlovid-based antiviral intervention proves to be the most costly at this exact
time window. For clarity we note that the expression surviving cells refers to the
fraction of initially susceptible cells that has not become infected by the end of the
observation period.

The main idea of the second approach (Figure(6.3.9b)) is to redefine the quantity
on the horizontal axis: here, instead of linearly increasing delay times, the x axis
follows initial damage rates (i.e. the level of damage that has been done until the
moment treatment with Paxlovid is started). In other words, the latter approach
depicts the relation between initial damage and averted damage.

Due to the lack of precise clinical data – and consequently, the relative uncertainty
– regarding the exact diffusion coefficient value of SARS–CoV–2 we explore the
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Figure 6.3.9: The damaging effect of treatment delay in two different approaches. Both
subfigures illustrate the ratio of remaining uninfected target cells – the substantial difference
between the two plots is the quantity measured on the horizontal axes. Subfigure (a) follows
time, directly, on its x axes, while graph (b) depicts results w.r.t. initial damage rates.
Results were calculated with the same fixed diffusion coefficient as used in chapter 4, namely,
DV = 0.2σ2/min.

respective sensitivity of the results shown in Figure(6.3.9b). Specifically, Figure 6.3.10
illustrates the corresponding results in a heatmap for different diffusion values.
Compared to the default scenario assuming DV = 0.2, the outcomes do not change
substantially for even significantly higher DV values; however, there is a clear pattern
suggesting that infection outcomes are expected to be more favorable if the diffusion
coefficient is several magnitudes lower.

Finally, we visualize the potency of Paxlovid in Figure 6.4.1: in this graph, we prin-
cipally approach damage rates as areas. While this image is similar to Figure 6.3.9b
in that the horizontal axis corresponds to initial damage, Figure 6.4.1 is ultimately
structured differently. It distinguishes three types of damages and represents them
as two-dimensional volumes—namely, we consider initial damage, damage after
treatment initialization, and averted damage.

Naturally, the area between the x = y line—depicted in (dotted) red—and the
horizontal axis corresponds to the level of tissue damage suffered until the moment
of Paxlovid-based intervention, i.e., initial damage.

As our next step, we visualize the unavoidable damage that occurs after inter-
vention begins: the (dotted) curve depicted with blue shows the further damage
that takes place even after the patient starts taking Paxlovid. Evidently, the area
between the red line and the blue curve is the visual representation of damage after
treatment initialization. This rate of damage is especially high when soaring virus
concentration values are combined with a significant fraction of susceptible target
cells at the initialization time of Paxlovid treatment. The latter is explained simply
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by nirmatrelvir’s mechanism of action: nirmatrelvir does effectively block virus
production in infected cells, but it can not prevent target cells from getting infected,
which is also apparent in the figure itself.

The third category, averted damage emerges in Figure 6.4.1 as the area between
the blue curve and the horizontal line framing the graph from above (the latter
naturally corresponds to the scenario where no medical intervention happens and
full-scale damage takes place after 5 days). This shaded, light green area is the visual
equivalent of the damage that is averted as a result of Paxlovid treatment, or in other
words, the epithelial lung cells that are saved by this new Mpro inhibitor. Similarly to
numerous other antiviral drugs (targeting a large variety of viruses), the principle of
’the sooner the better’ proves to hold in this case, too: if intervention happens right at
the beginning, almost the entire cell population can be saved by Paxlovid in case of a
SARS-CoV-2 infection.
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Figure 6.3.10: Interplay between the virus diffusion coefficient (horizontal axis) and tissue
damage at the initialization of Paxlovid treatment (vertical axis). The column corresponding to
the particular (default) virus diffusion value of DV = 0.2σ2/min (the one used in chapter 4)
is highlighted with purple.
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6.4 Discussion

Even with worldwide vaccination programmes, SARS–CoV–2 and its newly
emerging variants represent an unprecedented global challenge. Consequently,
new alternative treatment options are still very much needed. This paper yields a
mathematical, computation-based evaluation of one of the most promising SARS–
CoV–2 inhibitors to date, Paxlovid. We implemented and carefully calibrated a
multiscale mathematical framework to serve as a small in silico laboratory where
the basic features of Paxlovid can be replicated, explained, and further investigated.
Our calculations correspond to clinical expectations remarkably well: we successully
replicated the outcome of a real-life in vitro experiment in the simulated context
of our model, moreover, both the sufficiency and the necessity of Paxlovid’s two
main components were verified by our computations for a simplified in vivo case.
To further improve Paxlovid’s assessment, we generated a heatmap investigating the
results’ sensitivity to the inherently vaguely specified virus diffusion coefficient.

The proposed hybrid model has its limitations. In its present form, the system
operates on a simplistic two-dimensional grid, ignoring the complex 3D geometry of
the lungs, which may introduce bias or delays in the predictions. The implementation
of a biologically more realistic three-dimensional structure falls beyond the scope
of this study and is subject of future research. The increase of dimension (and of
lattice size) inevitably affects the computational load and, hence, requires additional,
technical optimization of the code in order to achieve the desired performance.
Similarly, the current assumption of a constant virus clearance rate is ignoring the
intricacies of the immune system that is a major limitation when considering in vivo
scenarios. While in real life there is a significant virus release at burst, our model is
averaging out the virus source over a time interval, hence we work with constant
virus production rates, similarly to [69] and [70]. Consequently, this limitation
is responsible for a slight overestimation regarding advancement of virus release.
We note that in the context of our model it is straightforward to implement more
sophisticated approaches as well (which would not be the case for example in an
ODE-based system), and we also highlight that our source code includes a built-in
option allowing to consider latency periods. However, that would require sufficiently
detailed biological data for parametrization. Finally, we mention that our basic
modeling approach to natural cellular life cycles, though being a simplification, is
not expected to imply significant deviation from reality in the context of a 5-day
long Paxlovid treatment: natural cell death is responsible only for circa 1% of cell
population loss during this time frame according to the 17-month half-life of epithelial
lung cells [68].
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Figure 6.4.1: The visualization of averted damage as a result of Paxlovid treatment. The quan-
tity on the horizontal axis (and the x = y line itself) represents the level of cell culture damage
suffered until Paxlovid treatment begins, while data points depicted in blue show the un-
avoidable further damage that occurs after therapy commences. The shaded areas are a precise
visual representation of initial damage (red), unavoidable post-intervention damage (blue),
and averted damage (green). Evidently, the light green area represents those healthily func-
tioning epithelial lung cells that were ultimately saved by Paxlovid.

Despite the mathematical model’s necessary simplifications and the short scope
of this case study we were able to visualize and verify the importance of early
interventions, moreover, we highlight that such hybrid models and computational
frameworks hold a great deal of promise with applications such as supporting
clinical trials by means of in silico experiments. Computation-based evaluation and
simulation of therapies not only can enhance optimization of treatments, but a further
development of this technology could also serve to reduce the need for animal testing
in the future.
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Summary

This PhD thesis presents models that contribute to the current state-of-the-art
model for viral dynamics and cancer. The models are implemented in the HAL
system. The application and adaptation of HAL system to viral dynamics is being
conducted for the first time in the course of this PhD program.

The dissertation consists of three new models in Chapters 3, 4, and 6 that they
use to address current and very significant questions.

Cancer model.

Development of resistance to chemotherapy in cancer patients strongly effects the
outcome of the treatment. Due to chemotherapeutic agents, resistance can emerge by
Darwinian evolution. Besides this, acquired drug resistance may arise via changes
in gene expression. A recent discovery in cancer research uncovered a third possi-
bility, indicating that this phenotype conversion can occur through the transfer of
microvesicles from resistant to sensitive cells, a mechanism resembling the spread
of an infectious agent. We present a model in chapter 3 describing the evolution of
sensitive and resistant tumour cells considering Darwinian selection, Lamarckian
induction and microvesicle transfer.

We also establish an agent based model as a spatial version of the ODE model
and compare the outputs of the two models. We find that although the ODE model
does not provide spatial information about the structure of the tumour, it is capable
to determine the outcome in terms of tumour size and distribution of cell types.

The results of our models demonstrate the recent observation that some cancer
cells can be transferred by microvesicles. It would be natural to observe how mi-
crovesicles affect treatment along with other factors contributing to the spread of
cancer cells.

95
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Viral dynamics for SARS-COV-2 and influenza.

We propose a hybrid partial differential equation – agent-based (PDE–ABM)
model in chapter 4 to describe the spatio-temporal viral dynamics in a cell population.
The virus concentration is considered as a continuous variable and virus movement
is modelled by diffusion, while changes in the states of cells (i.e. healthy, infected,
dead) are represented by a stochastic agent-based model. The two subsystems are
intertwined: the probability of an agent getting infected in the ABM depends on
the local viral concentration, and the source term of viral production in the PDE is
determined by the cells that are infected.

We develop a computational tool that allows us to study the hybrid system and
the generated spatial patterns in detail. We systematically compare the outputs with
a classical ODE system of viral dynamics, and find that the ODE model is a good
approximation only if the diffusion coefficient is large.

We demonstrate that the model is able to predict SARS–CoV–2 infection dynamics,
and replicate the output of in vitro experiments. Applying the model to influenza as
well, we can gain insight into why the outcomes of these two infections are different.

In chapter 5 we rigorously verify an experimental observation suggested by our
previous simulations: once established, infections almost never disappear sponta-
neously. Using the powerful toolbox of branching processes we theoretically calculate
the probability of extinction for a single cell and obtain an O(0.01) value correspond-
ing to our expectations.

We also explore fundamental statistical features such as mean and a 95% confi-
dence interval for the number of infected cells. The latter results visually confirm a
satisfactory level of variability within the system: on the one hand it supports small
and natural changes from outcome to outcome, on the other hand it clearly allows
successful large-scale prediction and analysis as most infection curves remain close
to the average.
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Paxlovid.

Paxlovid is a promising, orally bioavailable novel drug for SARS-CoV-2 with
excellent safety profiles. Our main goal in chapter 6 is to explore the pharmacometric
features of this new antiviral. To provide a detailed assessment of Paxlovid, we
propose a hybrid multiscale mathematical approach. We demonstrate that the results
of the present in silico evaluation match the clinical expectations remarkably well:
on the one hand, our computations successfully replicate the outcome of an actual in
vitro experiment; on the other hand, we verify both the sufficiency and the necessity
of Paxlovid’s two main components (nirmatrelvir and ritonavir) for a simplified in
vivo case. Moreover, in the simulated context of our computational framework, we
visualize the importance of early interventions and identify the time window where
a unit-length delay causes the highest level of tissue damage. Finally, the results’
sensitivity to the diffusion coefficient of the virus is explored in detail.
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[61] Marzban S, Han R, Juhász N, Röst G. A hybrid PDE–ABM model for viral
dynamics with application to SARS–CoV–2 and influenza. Royal Society Open
Science. 2021. https://doi.org/10.1098/rsos.210787

[62] Allen LJ. An introduction to stochastic processes with applications to biology.
CRC press; 2010 Dec 2.

[63] Pfizer. PAXLOVID™ (nirmatrelvir tablers; ritonavir tablets). Pfizer Medical
Information 2022.

[64] Owen, D.R.; Allerton, C.M.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.;
Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; Dantonio, A.; et al. An
oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19.
Science 2021 Dec 24;374(6575):1586–93. [CrossRef] [PubMed]

[65] FDA. Fact Sheet For Healthcare Providers: Emergency Use Authoriziation for
Paxlovid™. United States Food and Drug Administration 2022. Available online:
https://www.fda.gov/media/155050/download (accessed on 21 April 2022).

https://doi.org/10.1126/science.abl4784
https://pubmed.ncbi.nlm.nih.gov/34726479
https://www.fda.gov/media/155050/download


Bibliography 107

[66] EMA. Annex I – Conditions of Use, Conditions for Distribution and Patients
Targeted and Conditions for Safety Monitoring Addressed to Member States –
for Unauthorised Product – Paxlovid (PF-07321332 150 mg and ritonavir 100 mg)
– Available for Use. European Medicines Agency 2022. (accessed on 21 April 2022).

[67] Perelson, A.S.; Ke, R. Mechanistic modeling of SARS–CoV–2 and other infectious
diseases and the effects of therapeutics. Clin Pharmacol Ther 2021 Apr;109(4):829-
40. [CrossRef] [PubMed]

[68] Rawlins, E.L.; Hogan, B.L.M. Ciliated epithelial cell lifespan in the mouse trachea
and lung. Am J Physiol Lung Cell Mol Physiol 2008 Jul;295(1):L231–4. [CrossRef]
[PubMed]

[69] Lord, J.S.; Bonsall, M.B. The evolutionary dynamics of viruses: virion release
strategies, time delays and fitness minima. Virus Evol 2021 Apr 27;7(1):veab039.
[CrossRef] [PubMed]

[70] Perelson, A.S. Modelling viral and immune system dynamics. Nat Rev Immunol
2002 Jan;2(1):28–36. [CrossRef] [PubMed]

[71] Hernandez-Vargas, E.A.; Velasco-Hernandez, J.X. In-host mathematical mod-
elling of COVID-19 in humans. Annu Rev Control 2020 Jan 1;50:448–456. [CrossRef]
[PubMed]

[72] Laurent, G.J.; Shapiro, S.D. (eds). Encyclopedia of respiratory medicine, Vol. 3., 1st
ed.; Academic Press: Cambridge, Massachusetts, USA, 2006. [CrossRef]
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