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Gergely Röst, associate professor, Ph.D.

Doctoral School of Mathematics

and Computer Science

University of Szeged, Bolyai Institute

Szeged

2022



Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Gergely Röst for the
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I am also thankful to Attila Dénes, whom we have been working for four years with.
He motivated me greatly and taught me a lot about dynamical systems and mathematical
modelling.

I am also grateful for the support of the Doctoral School in Mathematics and Computer
Science, to the Bolyai Institute as a whole and to my colleagues in the National Laboratory
of Health Security.

I would like to thank my parents and my brother for their continued support that started
from my childhood and has been continuing until this moment.

Last but not least, I am very thankful to my extended family and my friends.
My special thanks go to all my current and former teammates at Újszegedi Torna Club
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2 CONTENTS



1

Introduction

The aim of the thesis is to develop and analyse dynamical models for the transmission
dynamics and propagation of infectious diseases. Our approach can be used to the practical
problems of epidemiology, with serious implications to public health policy, prevention,
control and mitigation strategies in public health emergencies such as the ongoing pandemic.

Mathematical epidemiology is a rapidly developing area of mathematical applications in
life sciences. Infectious disease modelling complements traditional epidemiological tools and
contributes to the synergistic approach to complex public health problems. Mathematical
methods are extremely important also to devise adaptive strategies for various epidemiological
situations.

Diseases have always been an important part of the life of societies. Since the beginning
of written history there have been records of epidemics causing significant burden on human
populations, often recurring years or decades later. For example, the Black Death spread
from Asia throughout Europe in waves beginning in 1346, and is estimated to have caused
the death of more than 30% of the population of Europe between 1346 and 1350. The
disease returned regularly in several parts of Europe for centuries, most famously as the
Great Plague of London in 1665-1666. After the first World War, the Spanish flu estimated
to cause 25 - 50 million deaths worldwide, followed by other severe influenza pandemics in the
50’s and 60’s. There are still annual influenza epidemics that cause up to 650,000 fatalities
worldwide, according to WHO. Recently, we are struggling with the COVID-19 pandemic,
with 6,400,000 reported deaths until September 2022, while the true number of deaths may
reach 20 millions.

There are also potentially fatal diseases that have become endemic in some populations.
Every year, millions of people die of avoidable diseases such as measles, respiratory infections,
diarrhea, and other, always-present diseases. Diseases such as malaria, typhus, cholera are
endemic in many parts of the world. The impact of high disease mortality and morbidity
in these countries are significant. The World Health Organization has estimated that in
2020 there were 1,500,000 deaths due to tuberculosis, 650,000 fatalities due to HIV/AIDS,
and 627,000 due to malaria. In 1980 there were 2,600,000 deaths due to measles, but the
widespread vaccination campaigns resulted in a 73% drop in fatalities between 2000 and
2018 worldwide.

The objective of medical screening and testing is to identify the disease in its still curable
phase. This may have been an old challenge in medicine and for a successful testing at least
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4 1. INTRODUCTION

four conditions need to be met: the availability of simple, validated and acceptable forms
of tests, the discovery of effective treatments, the establishment of a screening protocol,
and the wide access to health care. There are many successes from the history of medical
screening: testing for syphilis in the United States army (one of the first applications of
group testing), screening for cervical cancer using the Pap test, and screening for breast
cancer by mammography. The evaluation of the impact of screening on human health slowly
progressed, from obvious changes in the vital statistics to less obvious such as the decline
in mortality of cancer of the uterus, to finally more subtle changes, such as the impact of
mammography screening on breast cancer mortality.

Screening in non-infectious diseases such as cancer has the main goal of early identification
of cases that drastically increases the chance of successful treatment for that individual.
The main advantage of testing in combating infectious diseases beyond treating the tested
individual is that it enables to recognize asymptomatic infected, who may have a very
important role in disease transmission dynamics, thus potentially by breaking chains of
infection the testing benefits indirectly all other member of the population. Hence, strategic
testing can be used as a mitigation tool of the epidemic on the population level. Testing
helps to estimate the proportion of asymptomatic carriers and their role in disease spread.
It also helps to find clusters of cases and to have a more precise estimate on transmission
rates and death rates. With the application of these results, testing provides a guide to make
decisions on social distancing policy and other measures including the allocation of medical
resources.

In Chapter 2, we present an overview for one of the simplest SIS epidemiological model,
then we discuss some of the most important and feasible extensions and generalizations.
Then, we introduce a basic mass-testing and isolation intervention and we point out that
this simple alteration induces a completely different and richer dynamics.

In Chapters 3 and 4, we investigate the mathematical analysis of multistage SIS models.
We calculate the basic reproduction number R0, and discuss the existence of the endemic
equilibrium. Our main result is that the stability of the endemic equilibrium depends strongly
on the number of stages: the endemic equilibrium is always stable when n ≤ 3, while for
any n > 3 it can be either stable or unstable, depending on the particular choice of the
parameters. We generalize previous stability results for SIRS models as well and point out
a mistake in the literature for multistage SEIRS models.

In Chapter 5, we consider an extended SEIR-type model for the transmission dynamics
of COVID-19. We incorporate symptom-based testing of patients and isolation upon positive
result i.e. removal from the chain of transmission. The clinical symptoms that trigger the
testing of individuals is referred to as indicator symptoms. The force of testing is defined as
the per capita rate at which infected individuals are tested. It is described by a nonlinear
function of the state of the epidemic and of all individuals displaying the indicator symptom
at a given time, with or without COVID-19 infection, hence, it is considerably different from
previous approaches. Our goal is to understand the impact, and especially the limitations
of this testing strategy, hence we model neither contact-tracing of patients with positive
tests nor the testing of a fraction of non-symptomatic contacts, both of which are common
and efficient improvements and result in removal of additional patients from the chain of
transmission.

In Chapter 6, we develop a compartmental model to study the applicability of group
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testing and compare different pooling strategies: regular and Dorfman pooling. The model
includes isolated compartments as well, from where individuals rejoin the active population
after some time delay. We develop a method to optimize Dorfman pooling depending on
disease prevalence and establish an adaptive strategy to select variable pool sizes during the
course of the epidemic. It is shown that optimizing the pool size can avert a significant
number of infections. The adaptive strategy is much more efficient, and may prevent an
epidemic outbreak even in situations when a fixed pool size strategy can not.
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SIS epidemic models

2.1 Simple dynamics

Compartmental models of infectious diseases are based on a partition of the population
according to their disease status [20]. Some diseases, for example, those from some of the
upper respiratory and sexually transmitted diseases, do not confer any long-lasting immunity.
Upon recovery from infection, individuals can therefore be assumed to be susceptible again.
This simple approach results in the SIS model, which considers the proportion of the
population that are susceptible to (S), or infected with (I) the particular disease. The
simplest SIS model is

S ′(t) = −βS(t)I(t) + γI(t), (2.1)

I ′(t) = βS(t)I(t)− γI(t), (2.2)

where β is the transmission rate and γ is the recovery rate.
Note that if the total population is normalized to unity, with denoting S(t) = S, I(t) = I

it holds that:
S ′(t) + I ′(t) = 0, and S(t) + I(t) = 1.

Therefore,

I ′ = β (1− I) I − γI = βI

(
1− γ

β
− I

)
. (2.3)

Thus, the dynamics of the infected population is equivalent to the dynamics of the logistic
equation, so that for all I(0) ≥ 0 it holds that

if
β

γ
< 1, then lim

t→∞
I(t) = 0;

if
β

γ
≥ 1, then lim

t→∞
I(t) = 1− γ

β
.

The expression
β

γ
shows the expected number of new infections directly generated by one

infectious person in a completely susceptible population. This is called the basic reproduction

7



8 2. SIS EPIDEMIC MODELS

number, denoted R0. It is possible to determine the analytical solution to this model.
Rewriting the right-hand side of (2.3) as

I ′ + (γ − β)I = −βI2

and assuming I ̸≡ 0, I(0) = I0, substituting

u =
1

I
,

u′ = − 1

I2
· I ′

transforms (2.3) to the first order linear equation

−u′ + (γ − β)u = −β, (2.4)

u(0) =
1

I0
.

If R0 =
β

γ
= 1, then we have the solution as

I(t) =
1

βt+ 1
I0

.

Otherwise, solving (2.4) and substituting back yields

I(t) =

β−γ
β

1 +
(

β−γ
β

· 1
I0

)
e(γ−β)t

.

As mentioned, the system is assumed to be closed, so the susceptible population is then
S(t) = 1− I(t).

2.2 Extensions of the SIS model

A major simplification in the SIS model is the exponential distribution of the infectious
period, emerging from the assumption that individuals recover with a constant rate. This
assumption means that the chance of an individual progressing during any given time period
does not depend on the elapsed time since the individual became infected. While such a
simplification highly facilitates mathematical analysis, it is not realistic in most situations.
Hence, we aim include a more faithful representation of the time distributions of infectious
periods in the models.

A reasonable extension to make the simple SIS model more realistic is to divide the
infectious period into stages I1, I2, . . . , In, following the progression of the disease within the
host, given that the infectiousness of an individual may change during the course of infection.
Epidemic processes of this kind have focused on establishing systems of equations describing
the number of individuals at each stage of the epidemic, and the rates of progression from
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compartments Ik to Ik+1. Epidemic models with stage structure (see for example [23, 26, 27,
29]) and more general SIS models ([21, 28]) have been widely analyzed in the literature.

In the multi-stage framework, it is assumed that the disease progression is characterised
by a number of distinct stages, with the duration of each stage being exponentially distributed.
Due to the fact that the sum of independent exponentially distributed random variables
follows a hypo-exponential distribution, one can replace an exponential distribution with
the mean infectious period γ−1 by a hypo-exponential distribution that has the same mean
infectious period. The so-called linear chain trick then consists in replacing a single infectious
stage with n exponentially distributed sub-stages as substage Ii having its own mean period
γ−1
i . These multiple stages of infection can be used to represent periods of increased or

decreased risk of transmitting the disease.
Let’s denote the probability of an infected individual whose ”infection age” is a by F(a).

This means, that someone is still infected at time t, if he or she got infected at t − a. It is
straightforward that F is non-increasing with

F : [0,∞] → [0, 1] ,

F(0) = 1 and lim
t→∞

F(t) = 0.

We can extend the previous cases with the help of a probability density function. Let’s
denote the density of a cohort whose infection age is v at time moment t by g(t, v). Then

g(t, v) = β (1− I(t− v)) I(t− v)F(v).

Integration yields

I(t) = β

∫ ∞

0

(1− I(t− v)) I(t− v)F(v)dv. (2.5)

Hethcote and van den Driessche made the conjecture that the endemic equilibrium, whenever
it exists, is globally asymptomatically stable, regardless of the particular form of F . Röst
and Nakata proved in [32] that this conjecture holds, if the support of F is compact.
This approach, though considers constant β infectivity, regardless the infection age. Our
assumption was that varying (2.5) to

I(t) =

∫ ∞

0

β(v)I(t− v) (1− I(t− v))F(v)dv (2.6)

can cause richer, oscillatory dynamics. In Chapters 3 and 4, we prove this for a discretized
version of (2.6) with multiple stages. Moreover, extending (2.1) with introducing a simple
testing and isolating method can change its dynamics.

2.3 Oscillations in an SIS system with testing and delay

We consider the following simple delay differential equation model, derived from the basic
SIS-setup:

S ′(t) = −β · S(t) · I(t) + γ · I(t) + σ · I(t− τ)

I ′(t) = β · S(t) · I(t)− γ · I(t)− σ · I(t) (2.7)

Q′(t) = σ · I(t)− σ · I(t− τ).
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Parameter β stands for the infection rate and γ for the recovery rate. We introduce a testing
rate σ for the intervention of testing infected individuals, τ stands for the isolation period.
Individuals, who give a positive test spend the isolation time in the quarantine compartment
Q. We scaled the population size to N = S(t) + I(t) + Q(t) = 1. It’s easy to calculate the
reproduction number as

R0 =
β

γ + σ
.

Integrating the equation of Q yields

Q(t) = σ

∫ t

t−τ

I(s)ds. (2.8)

Using (2.8) and the scaling of the population size, we can reduce (2.7) to the scalar equation

I ′(t) = β · I(t)
(
1− I(t)− σ

∫ t

t−τ

I(s)ds

)
− (γ + σ) I(t). (2.9)

We can re-scale the delay with temporalily introducing t̃ = t
τ
and x(t̃) = I(t). Then,

dx
dt̃

= x′( t
τ
) = τ · I ′(t) and I(t− τ) = I(τ · t̃− τ) = I

(
τ ·
(
t̃− 1

))
= x

(
t̃− 1

)
. Re-scaling the

time delay τ also yields ∫ t

t−τ

I(s)ds = τ

∫ t̃

t̃−1

x(s̃)ds̃.

Therefore, with interchanging t̃ ∼ t, we get

x′(t) = τx(t)

(
β − βx(t)− τβσ

∫ t

t−1

x(s)ds− (σ + γ)

)
. (2.10)

To find the equilibria x∞, we solve the corresponding steady state equation

0 = τx∞

(
β − βx∞ − τβσ

∫ t

t−1

x∞ds− (σ + γ)

)
.

Obviously, either x∞,DFE = 0 (called disease free equilibrium, DFE) , or

0 = β − βx∞ − τβσ

∫ t

t−1

x∞ds− (σ + γ) .

Thus,

0 = β − βx∞ − τβσx∞ − (σ + γ) ,

and

x∞,EE =
β − (σ + γ)

β (τ · σ + 1)
. (2.11)
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It is straightforward that x∞,EE (called endemic equilibrium, EE) exists if and only if R0 > 1.
To investigate the local stability of the disease-free equilibrium we have to linearize (2.10)

around 0, to obtain the linear part as

x′(t) = τx(t) (β − (γ + σ)) .

Thus, the characteristic equation is given by

λ = τ (β − (γ + σ)) .

Clearly, with τ being positive, the DFE is unstable if and only if the endemic equilibrium
exists.

To address the stability of x∞,EE, we consider the variational equation around the steady
state,

x′(t) = τ (x(t) + x∞,EE) ·
(
β − β · (x(t) + x∞,EE)− βστ

∫ t

t−1

(x(s) + x∞,EE) ds− (γ + σ)

)
.

The linear part is

x′(t) =x(t) ·
(
βτ − 2βτ · x∞,EE − βστ 2 · x∞,EE − τ (γ + σ)

)
+
(
βτ · x∞,EE − βτ · x2

∞,EE − βστ 2 · x2
∞,EE − τ (γ + σ) · x∞,EE

)
− βστ 2 · x∞,EE ·

∫ t

t−1

x(s)ds.

Applying the exponential ansatz x(t) = eλt (for λ ̸= 0) gives

λeλt = eλt ·
(
βτ − 2βτ · x∞,EE − βστ 2 · x∞,EE − τ (γ + σ)

)
+
(
βτ · x∞,EE − βτ · x2

∞,EE − βστ 2 · x2
∞,EE − τ (γ + σ) · x∞,EE

)
− βστ 2 · x∞,EE ·

∫ t

t−1

eλsds

= −A · eλt − C · 1
λ
·
(
eλt − eλt · e−λ

)
,

considering that applying (2.11) yields(
βτ · x∞,EE − βτ · x2

∞,EE − βστ 2 · x2
∞,EE − τ (γ + σ) · x∞,EE

)
= 0.

From (2.11) we obtain

A = βτx∞,EE

C = στ · A.

Rearranging and introducing k := στ yields

λ2 + A · λ− e−λkA+ kA = 0. (2.12)

We prove that (2.12) can have pure imaginary roots λ = iω with ω > 0, for suitable A and
k. Substituting z = iω into (2.12) yields

(iω)2 + A · iω − e−iωkA+ kA = 0.

The real and imaginary parts of this equation are
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(i) sinω · kA+ ωA = 0,

(ii) −ω2 + kA− cosω · kA = 0.

After some rearranging to A and k and considering that k, ω > 0, thus sinω < 0 we get

k = − ω

sinω
, (2.13)

A =
ω · sinω
cosω − 1

. (2.14)

We note that sinω < 0 means that (2n− 1) π ≤ ω ≤ 2nπ, n = 1, 2, . . . . With elementary
calculus we can see that k = A = ω = 3π

2
serves as a solution.

We also have to check the transversality condition Re

(
∂λ

∂k

)
̸= 0. In order to obtain

this, we differentiate the implicit function

F (λ(k), k) := λ2 + A · λ− e−λ · kA+ kA = 0

to get

∂λ

∂k
=

e−λA− A

2λ+ A+ Ake−λ
.

Substituting λ = iω, it is enough to show that

(cosω · A− A) (A+ Ak cosω) ̸= A sinω (2ω − Ak sinω) .

Simplifying and expanding yield

A (cosω − 1) (1 + k cosω) ̸= 2ω sinω − Ak sin2 ω.

Applying (2.14) gives

A (cosω − 1) k cosω ̸= ω sinω − Ak sin2 ω,

which is equivalent to

Ak − Ak cosω ̸= ω sinω,

and applying (2.14) again will show that we have to prove that

k ̸= −1,

which obviously holds.
This confirms the possibility of a Hopf-bifurcation, and an unstable parameter setup.

Indeed, if we set

β =
24

14
, τ = 14, γ =

1

14
, σ =

5

14
(2.15)
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the characteristic polynomial will be

λ2 + 3 · λ+ 15− 15e−λ

and it will have characteristic roots

λ ≈ 0.0476737± 4.40805i.

As a conclusion, we can say that in terms of model dynamics, the simple SIS model is
equivalent to the well-known logistic equation, but even a basic extension, such as introducing
testing and quarantine of fixed duration can generate much richer dynamics. In the next
two chapters, we work with the multistage and discretized version of (2.5).

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(S(t), I(t)) x∞,EE

Figure 2.1: SI phase plot of solution paths of (2.7) approaching the periodic solution with
parameter configuration (2.15).
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Figure 2.2: Snapshots of an oscillatory solution of system (2.7) with parameter configuration
(2.15), with t ∈ [0, 300] (in the left) and t ∈ [4700, 5000] (in the right).
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Figure 2.3: Imaginary root curves of (2.12).
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Stability and instability in multistage
SIS models

3.1 Introduction

In this chapter, we consider multistage compartment models of infectious diseases, where
infected individuals are passing through infectious stages I1, I2, . . . In and then return to
the susceptible compartment. First we calculate the basic reproduction number R0, and
prove that the disease dies out for R0 ≤ 1, while a unique endemic equilibrium exists for
R0 > 1. Our main result is that the stability of the endemic equilibrium depends on the
number of stages: the endemic equilibrium is always stable when n ≤ 3, while for any n > 3
it can be either stable or unstable, depending on the particular choice of the parameters.
We generalize previous stability results for SIRS models as well and point out a mistake in
the literature for multistage SEIRS models. Our results have important implications on the
discretization of infectious periods with varying infectivity.

3.2 Model construction

In this Section, we investigate the stage progression SIS model

S ′(t) = b(N(t)) + pnIn(t)−
n∑

k=1

βkIk(t)S(t)− µS(t),

I ′1(t) =
n∑

k=1

βkIk(t)S(t)− p1I1(t)− µI1(t),

I ′2(t) = p1I1(t)− p2I2(t)− µI2(t), (3.1)

...

I ′n(t) = pn−1In−1(t)− pnIn(t)− µIn(t),

which describes the spread of a non-fatal infectious disease in a population with recruitment
rate b(N) and natural death rate µ. For simplicity, we will assume b(N) = µN , hence the

15
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S

µS

I1

µI1

I2

µI2

. . . In−1

µIn−1

In

µIn

b(N)

( n∑
k=1

βkIk

)
S

p1I1 p2I2 pn−2In−2 pn−1In−1

pnIn

Figure 3.1: The transfer diagram of model (3.1).

total population N(t) = S(t) +
∑n

j=1 Ij(t) will remain constant. Here, S = S(t) represents
the susceptible compartment, I1 = I1(t), I2 = I2(t), . . . , In = In(t) represent the infected
compartments corresponding to stages 1, 2, . . . , n. We denote by βi (i = 1, 2, . . . , n) the
disease transmission rates in compartment Ii, and by pi (i = 1, 2, . . . , n) the progression
rates from disease stage i to i+1, i.e. from compartment Ii to Ii+1. We schematically depict
the transfer diagram in Figure 3.1.

We normalize the constant population to unity (N = 1), hence the variables S, I1, . . . , In
represent the proportion of susceptible and infected individuals in the population, therefore
we can write

S = 1−
n∑

k=1

Ik. (3.2)

Using (3.2) and decoupling the S equation, we obtain the n-dimensional system

I ′1 =
n∑

k=1

βkIk

(
1−

n∑
k=1

Ik

)
− p1I1 − µI1,

I ′2 = p1I1 − p2I2 − µI2,

... (3.3)

I ′n = pn−1In−1 − pnIn − µIn.

In the sequel, we analyse system (3.3) in details.

3.2.1 The basic reproduction number and the endemic equilibrium

First we calculate the basic reproduction number R0 for system (3.3). This is an important
threshold parameter connected to the stability of the disease free equilibrium (DFE) and the
existence of the endemic equilibrium (EE) for a large class of epidemic models, see [20] or
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[22]. Here we use the next generation matrix method for calculating the basic reproduction
number, following the notion of [33, 35]. We write the system (3.3) in the form of

I ′ = F(I )− V(I ),

where I = (I1, I2, . . . In)
T and

F = (F1,F2, . . .Fn)

represents the new infections, while

V = (V1,V2, . . .Vn)

contains the transitions between infected compartments. We linearize (3.3) at the DFE
(0, 0, . . . , 0) to obtain the equation

I ′ = AI ,

where A is the Jacobian matrix. Next, we take the decomposition A = F − V , where

F =
[
∂Fi

∂Ij
(DFE)

]
, V =

[
∂Vi

∂Ij
(DFE)

]
.

The obtained linearized system is

I ′1 =
n∑

k=1

βkIk − p1I1 − µI1,

I ′2 = p1I1 − p2I2 − µI2,

...

I ′n = pn−1In−1 − pnIn − µIn,

with

F =


β1 β2 . . . βn

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

, V =


p1 + µ 0 . . . 0 0
−p1 p2 + µ . . . 0 0

0 −p2
. . .

...
...

...
...

. . . pn−1 + µ 0
0 0 . . . −pn−1 pn + µ

 .

The basic reproduction number R0 is the spectral radius ρ(FV −1) of the next generation
matrix FV −1. It’s easy to see that V −1 is a lower-triangular matrix, and all the elements
of FV −1 are zero, except in its first row. Therefore its spectral radius is the only nonzero
eigenvalue, that is

R0 =
n∑

k=1

βk

pk + µ

(
k−1∏
j=1

pj
pj + µ

)
. (3.4)

Note that this expression for R0 matches the biological interpretation: taking a single
infected individual, if we multiply the infection rate in stage k, the average time spent
in stage k and the probability that the individual survives up to stage k, and sum up for all
stages, we obtain (3.4).
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Theorem 3.2.1. For system (3.3), a unique endemic equilibrium (I∗1 , I
∗
2 , . . . I

∗
n) (with I∗k > 0

for all 1 ≤ k ≤ n) exists if and only if R0 > 1. It is given by

I∗k =
pk+1 + µ

pk
. . .

pn + µ

pn−1

·
1− 1

R0

Q
,where Q = 1 +

pn + µ

pn−1

+ · · ·+
n−1∏
i=1

pi+1 + µ

pi
. (3.5)

Proof. Setting the time derivatives zero in (3.3) yields

0 =
n∑

k=1

βkI
∗
k

(
1−

n∑
k=1

I∗k

)
− p1I

∗
1 − µI∗1 ,

I∗k =
pk+1 + µ

pk
· I∗k+1, k = 1, . . . , n− 1.

By iteration we find

I∗k =
pk+1 + µ

pk
. . .

pn + µ

pn−1

I∗n. (3.6)

If I∗n = 0, then every I∗k = 0, k = 1, 2, . . . , n. Now we assume that I∗n is positive. Now we
can see that

Q =
I∗n
I∗n

+
I∗n−1

I∗n
+ · · ·+ I∗1

I∗n
=

∑n
k=1 I

∗
k

I∗n
. (3.7)

We claim that
n∑

k=1

βkI
∗
k = (p1 + µ)

n−1∏
j=1

pj+1 + µ

pj
· I∗n · R0. (3.8)

First we substitute (3.4) in R0, and then the coefficient of βk in the right hand side is

(p1 + µ)
n−1∏
j=1

pj+1 + µ

pj
· I∗n ·

1

pk + µ

k−1∏
l=1

pl
pl + µ

.

By (3.6), we find that it is indeed I∗k and thus equation (3.8) holds. Substituting (3.8)
into (3.6) and using (3.7), we find

(p1 + µ)
n−1∏
k=1

pk+1 + µ

pk
I∗n · (1− I∗nQ) · R0 = (p1 + µ)I∗1 .

From (3.6) with k = 1 and dividing by I∗n we obtain

(p1 + µ)(p2 + µ) . . . (pn + µ)

p1p2 . . . pn−1

(1− I∗nQ) · R0 =
(p1 + µ)(p2 + µ) . . . (pn + µ)

p1p2 . . . pn−1

.

Therefore,
(1− I∗nQ) · R0 = 1,

that is,

I∗n =
1− 1

R0

Q
,

and substituting this into (3.6), the proof is completed.
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3.2.2 Threshold dynamics: disease extinction and persistence

We introduce the notation D = {I ∈ Rn
+|
∑n

j=1 Ij ≤ 1} for the feasible phase space of model
(3.3).

Theorem 3.2.2. If R0 ≤ 1 then the disease free equilibrium is globally asymptotically stable
in the domain D, that is, the disease will be eradicated. If R0 > 1 then the disease persists
uniformly in the population.

Proof. We prove this result by following the methods of Theorem 2.1 and Theorem 2.2 from
[33]. First we show that for system (3.3), the inequality

(F − V )I ≥ F(I )− V(I )

holds for any I ∈ D. Note that V I = V(I ). It’s easy to see that in the first component of
F , the elements are multiplied by 1−

∑n
k=1 Ik, which is obviously less or equal than 1 in D.

The first row of the matrix F does not contain this factor, so the linearized form (F − V )I
is greater or equal than F(I )−V(I ) for any I ∈ D, with equality holding only at the DFE.

Let ωT be the left eigenvector of the nonnegative matrix V −1F corresponding to the
eigenvalue R0 = ρ(V −1F ) = ρ(FV −1). The matrix V −1 is lower-trinagular and its nonzero
elements are positive. The elements in the first row of F are all positive, and applying
the rule of matrix multiplication, all elements of V −1F will be positive, and therefore, its
adjacency matrix is strongly connected. Since FV −1 is irreducible and nonnegative, ω > 0.

Consider U := ωTV −1I . Differentiation along solutions gives

dU

dt
= ωTV −1(F(I )− V(I )) ≤ ωTV −1(F − V )I = ωTV −1F · I − ωT · I = (R0 − 1)ωT · I .

For R0 < 1, U is a Lyapunov function and the global asymptotic stability of the DFE
in D follows. For R0 = 1, the same conclusion follows from LaSalle’s invariance principle,

noticing that in this case
dU

dt
= 0 implies F(I ) − V(I ) = 0, which holds if and only if I is

an equilibrium. For R0 = 1, this can only be the DFE (0, 0, . . . , 0).
Now assume R0 > 1. For any ϵ > 0, in the ϵ-neighborhood of the DFE we have F(I )−

V(I ) ≥ (F (1 − ϵ) − V )I . Let ϵ > 0 be so small that R0(1 − ϵ) > 1 holds. Then, in this
neighborhood,

dU

dt
= ωTV −1(F(I )− V(I )) ≥ ωTV −1(F (1− ϵ)− V )I = (R0(1− ϵ)− 1)ωT · I ≥ 0.

We conclude that positive solutions can not converge to the DFE, and using standard
arguments, the persistence result follows, thus there is an η > 0 such that for all positive
solutions lim inft→∞ ||I (t)|| > η.

3.3 Stability and instability

3.3.1 The endemic equilibrium is always stable for n = 1, 2, 3

The stability results are based on the Routh-Hurwitz-theorem, which we state below.
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Theorem A. For a given polynomial P (λ) = λn + a1λ
n−1 + ... + an−1λ + an we define the

Hurwitz-matrices

H1 =
(
a1
)
, H2 =

(
a1 1
a3 a2

)
, H3 =

a1 1 0
a3 a2 a1
a5 a4 a3

 , . . . ,

and

Hn =


a1 1 0 0 . . . 0
a3 a2 a1 1 . . . 0
a5 a4 a3 a2 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . an

 ,

where aj = 0 if j > n. All of the roots of P (λ) are negative or have negative real part if and
only if the determinants of all Hurwitz-matrices are positive:

det (Hj) > 0 for all j = 1, 2, . . . , n.

Theorem 3.3.1. IfR0 > 1 and n = 1, 2, 3, then the endemic equilibrium is locally asymptotically
stable.

Proof. To apply the Routh-Hurwitz-theorem, we determine the Jacobian matrix and the
characteristic polynomial χ(λ) of our system.

(a) n = 1: In this case our system is

I ′1 = β1I1 (1− I1)− p1I1 − µI1 = I1(β1 − p1 − µ− β1I1). (3.9)

Since R0 > 1 means β1 − p1 − µ > 0, the stability of the positive equilibrium of this
logistic equation is obvious.

(b) n = 2: In this case our system is

I ′1 = (β1I1 + β2I2) (1− I1 − I2)− p1I1 − µI1,

I ′2 = p1I1 − p2I2 − µI2,
(3.10)

and the basic reproduction number is

R0 =
β1

p1 + µ
+

β2p1
(p1 + µ)(p2 + µ)

=
β1(p2 + µ) + β2p1
(p1 + µ)(p2 + µ)

. (3.11)

The Jacobian of the system at the EE is the 2× 2 matrix β1

R0

− f − p1 − µ
β2

R0

− f

p1 −p2 − µ

 ,
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where

f =
2∑

k=1

βkI
∗
k . (3.12)

The characteristic polynomial is

χ(λ) =λ2 + λ ·
(
2µ+ p1 + p2 + f − β1

R0

)
+
(
fµ+ fp1 + fp2 + µp1 + µp2 + p1p2 + µ2 − µ

β1

R0

− p1
β2

R0

− p2
β1

R0

)
.

It’s enough to prove that det(H1) = a1 and det(H2) = a1a2 are positive, which is
equivalent to

(i) a1 > 0,

(ii) a2 > 0.

(i) We show that

f + 2µ+ p1 + p2 >
β1

R0

.

Indeed, using (3.4) for n = 2, this is equivalent to

f + (p2 + µ) + (p1 + µ) >
β1(p1 + µ)(p2 + µ)

β1(p2 + µ) + β2p1
.

If we multiply by the denominator of the right-hand side, we can clearly see that
the left hand side is greater.

(ii) We have to prove that

fµ+ fp1 + fp2 + µp1 + µp2 + p1p2 + µ2 − µ
β1

R0

− p1
β2

R0

− p2
β1

R0

> 0,

that is,

fµ+ fp1 + fp2 + (p1 + µ)(p2 + µ) > µ
β1

R0

+ p1
β2

R0

+ p2
β1

R0

. (3.13)

Because of (3.11), it is true that

(p1 + µ)(p2 + µ) = (p2 + µ)
β1

R0

+ p1
β2

R0

.

If we subtract this from (3.13), we have fµ + fp1 + fp2 > 0, and we conclude
a2 > 0.
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(c) n = 3: In this case our system is

I ′1 =
3∑

k=1

βkIk

(
1−

n∑
k=1

Ik

)
− p1I1 − µI1,

I ′2 = p1I1 − p2I2 − µI2,

I ′3 = p2I2 − p3I3 − µI3.

(3.14)

The basic reproduction number is

R0 =
β1

p1 + µ
+

β2p1
(p1 + µ)(p2 + µ)

+
β3p1p2

(p1 + µ)(p2 + µ)(p3 + µ)
. (3.15)

We can easily deduce the Jacobian matrix
β1

R0

− f − p1 − µ
β2

R0

− f
β3

R0

− f

p1 −p2 − µ 0
0 p2 −p3 − µ

 ,

where

f =
3∑

k=1

βkI
∗
k , (3.16)

and

χ(λ) =− λ3 − λ2
(
f + p1 + p2 + p3 + 3µ− β1

R0

)
− λ
(
fp1 + fp2 + fp3 + p1p2 + p1p3 + p2p3 + 2p1µ+ 2p2µ+ 2p3µ+ 2fµ

+ 3µ2 − p1
β2

R0

− p2
β1

R0

− p3
β1

R0

− 2µ
β1

R0

)
−
(
fp1p2 + fp1p3 + fp2p3 + p1p2p3 + p1p2µ+ p1p3µ+ p2p3µ

+ fp1µ+ fp2µ+ fp3µ+ fµ2 + p1µ
2 + p2µ

2 + p3µ
2 + µ3

− p1p2
β3

R0

− p1p3
β2

R0

− p2p3
β1

R0

− p1
β2

R0

µ− p2
β1

R0

µ− p3
β1

R0

µ− β1

R0

µ2
)
.

We apply the Routh-Hurwitz criterion to -χ(λ), which has the same roots as χ(λ). It’s
enough to prove that

det(H1) = a1, det(H2) = a1a2 − a3 and det(H3) = a3 · (a1a2 − a3)

are positive, which is equivalent to

(i) a1 > 0,
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(ii) a3 > 0, and

(iii) a2 · a1 > a3.

(i) We show that

f + 3µ+ p1 + p2 + p3 >
β1

R0

. (3.17)

Consider an equivalent form of (3.15):

(p1 + µ)(p2 + µ)(p3 + µ) = (p2 + µ)(p3 + µ)
β1

R0

+ p1(p3 + µ)
β2

R0

+ p1p2
β3

R0

.

(3.18)

Multiplying (3.17) with R0 and using (3.18), we obtain

β3p1p2 + β2p1(p3 + µ) + β1(p2 + µ)(p3 + µ)

(p1 + µ)(p2 + µ)(p3 + µ)
(f + 3µ+ p1 + p2 + p3) > β1. (3.19)

Multiplying both sides with (p1+µ)(p2+µ)(p3+µ), it is easy to see that the left
hand side is greater.

(ii) From (3.18):

a3 = fµ2 + fµp1 + fp1p2 + fp1p3 + fµp2 + fp2p3 + fµp3,

which is obviously positive.

(iii) It’s enough to prove that the expression(
− β1

R0

+ f + 3µ+ p1 + p2 + p3

)(
− 2

β1

R0

µ+ 2fµ+ fp1 + fp2 + fp3

+ 3µ2 − β2

R0

p1 + 2µp1 + p1p2 + p1p3 −
β1

R0

p2 + 2µp2 + p2p3 −
β1

R0

p3 + 2µp3

)
−
(
fµ2 + fµp1 + fp1p2 + fp1p3 + fµp2 + fp2p3 + fµp3

)
is positive (we used (3.18) for a3). This is equivalent to the inequality(

− β1

R0

+ f + 3µ+ p1 + p2 + p3

)(
− 2

β1

R0

µ+ 2fµ+ fp1 + fp2 + fp3 + 3µ2

− β2

R0

p1 + 2µp1 + p1p2 + p1p3 −
β1

R0

p2 + 2µp2 + p2p3 −
β1

R0

p3 + 2µp3

)
> fµ2 + fµp1 + fp1p2 + fp1p3 + fµp2 + fp2p3 + fµp3.

Because of (3.18), obviously

(p1 + µ)(p2 + µ)(p3 + µ) > (p2 + µ)(p3 + µ)
β1

R0

+ p1(p3 + µ)
β2

R0

,

and the even weaker inequality

(p1 + µ)(p2 + µ)(p3 + µ) > (p2 + µ)(p3 + µ)
β1

R0
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holds. Dividing these by (p3 + µ) and (p2 + µ), respectively, we find

(p1 + µ)(p2 + µ) >
β1

R0

(p2 + µ) +
β2

R0

p1, (3.20)

and

(p1 + µ)(p3 + µ) >
β1

R0

(p3 + µ). (3.21)

Considering (3.20) and (3.21), we can write(
f + p1 + p2 + p3 + 3µ− β1

R0

)(
2fµ+ fp1 + fp2 + fp3 + 3µ2 + 2µp1 + p1p2

+ p1p3 + 2µp2 + p2p3 + 2µp3 −
(
β1

R0

(p2 + µ) +
β2

R0

p1 +
β1

R0

(p3 + µ)

))
>
(
f + p1 + p2 + p3 + 3µ− β1

R0

)(
2fµ+ fp1 + fp2 + fp3 + 3µ2 + 2µp1 + p1p2

+ p1p3 + 2µp2 + p2p3 + 2µp3

)
−
(
p1p2 + p1µ+ p2µ+ µ2 + p1p3 + µp3 + µp1 + µ2

)
=
(
f+ p1 + p2 +p3 +3µ− β1

R0

)(
fp1 + fp2 + fp3 + p2p3 + 2fµ+ p2µ+ p3µ+ µ2

)
.

We will prove that(
f + p1 + p2 + p3 + 3µ− β1

R0

)(
fp1 + fp2 + fp3 + p2p3 + 2fµ+ p2µ+ p3µ+ µ2

)
> fµ2 + fµp1 + fp1p2 + fp1p3 + fµp2 + fp2p3 + fµp3.

This is true if and only if(
f + p1 + p2 + p3 + 3µ

)(
fp1 + fp2 + fp3 + p2p3 + 2fµ+ p2µ+ p3µ+ µ2

)
> fµ2 + fµp1 + fp1p2 + fp1p3 + fµp2 + fp2p3 + fµp3

+
β1

R0

(
fp1 + fp2 + fp3 + p2p3 + 2fµ+ p2µ+ p3µ

)
.

From p1 + µ >
β1

R0

which is an immediate implication of (3.15), it remained to

prove that(
f + p1 + p2 + p3 + 3µ

)(
fp1 + fp2 + fp3 + p2p3 + 2fµ+ p2µ+ p3µ+ µ2

)
> fµ2 + fµp1 + fp1p2 + fp1p3 + fµp2 + fp2p3 + fµp3

+ (p1 + µ)
(
fp1 + fp2 + fp3 + p2p3 + 2fµ+ p2µ+ p3µ+ µ2

)
.

Expanding both sides, one can easily see that the left-hand side is greater indeed.
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3.3.2 Dynamics in higher dimensions: the endemic equilibrium
can be either stable or unstable for any n ≥ 4

Stable case

We prove first that the endemic equilibrium can be stable in (3.3) for any n ≥ 4, with suitable
parameters βi, pi and µ. Let us set in (3.3) β := β1 = β2 = · · · = βn, and p := p1 = . . . pn,
and µ = 0. Then we have

I ′1 = β

n∑
k=1

Ik

(
1−

n∑
k=1

Ik

)
− pI1,

I ′2 = pI1 − pI2,

... (3.22)

I ′n = pIn−1 − pIn.

From (3.4) and (3.5), we obtain the basic reproduction number and the EE as

R0 =
β · n
p

, I∗1 = I∗2 = · · · = I∗n =
1− p

βn

n
. (3.23)

Theorem 3.3.2. The characteristic polynomial of (3.22) at the EE is

χn(λ) = (−1)n

(
(p+ λ)n +

(
β − 2p

n

)
·
n−1∑
i=0

(p+ λ)i · pn−1−i

)
. (3.24)

Proof. We use the notation [(p+ λ)i][X] for the coefficient of (p+ λ)i in some expression X.
With such a notation, we will prove by induction that

[(p+ λ)i][χn(λ)] =

{
(−1)n, i = n

(−1)n ·
(
β − 2p

n

)
· pn−1−i, i = 0, 1, . . . , n− 1.

From (3.22) and (3.23) we obtain the n× n-size characteristic matrix

Dn(λ) =


2p
n
− β − p− λ 2p

n
− β 2p

n
− β . . . 2p

n
− β

p −p− λ 0 . . . 0
0 p −p− λ . . . 0
...

...
...

. . .
...

0 0 0 . . . −p− λ

 ,

and we look for it’s determinant. One can easily check the n = 1 case. If we expand |Dn(λ)|
by the last column, we find

χn(λ) = |Dn(λ)| = (−1) · (p+ λ) · |Cn−1(λ)|+ (−1)n+1
(2p
n

− β
)
· pn−1, (3.25)

where
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Cn−1(λ) =


2p
n − β − p− λ 2p

n − β 2p
n − β · · · 2p

n − β
p −p− λ 0 · · · 0
...

...
...

...
...

0 0 · · · p −p− λ

 ∈ R(n−1)×(n−1).

From the Leibniz formula of computing determinants, we deduce

[(p+ λ)i][|Cn−1(λ)|] =

(−1)n−1, i = n− 1

[(p+ λ)i][|Dn−1(λ)|] ·
β− 2p

n

β− 2p
n−1

, i = 0, 1, . . . , n− 2.

Combining this with (3.25) and using the induction hypothesis for n− 1, we arrive at

[(p+ λ)i][χn(λ)] =

{
(−1)n, i = n

(−1)npn−1−i ·
(
β − 2p

n

)
, i = 0, 1, . . . , n− 1.

Theorem 3.3.3. The endemic equilibrium of (3.22) is stable.

Proof. We prove first that for 1 < R0 ≤ 2 the characteristic equation does not have a
root with positive real part. Substituting α + iω with α > 0 to the characteristic equation
χn(λ) = 0 and dividing by the non-zero (p+ α + iω)n yield

1 =

(
2p

n
− β

)
·

(
1

p+ α + iω
+

p

(p+ α + iω)2
+ · · ·+ pn−1

(p+ α + iω)n

)
. (3.26)

Taking the absolute value of both sides, we get

1 =

(
2p

n
− β

)
·
∣∣∣∣ 1

p+ α + iω
+

p

(p+ α + iω)2
+ · · ·+ pn−1

(p+ α + iω)n

∣∣∣∣ , (3.27)

because 1 < R0 ≤ 2 implies the nonnegativity of
2p

n
− β. The right-hand side is clearly

smaller than

n ·
∣∣∣∣ 1

p+ α + iω

∣∣∣∣ ,
so

1 < n

(
2p

n
− β

)∣∣∣∣ 1

p+ α + iω

∣∣∣∣ = (2p− βn)

∣∣∣∣ 1

p+ α + iω

∣∣∣∣ . (3.28)

Since R0 > 1 implies βn > p, we have (2p− βn) < p and thus

1 < (2p− βn)

∣∣∣∣ 1

p+ α + iω

∣∣∣∣ < p

∣∣∣∣ 1

p+ α + iω

∣∣∣∣ < 1 (3.29)

whenever α > 0, which is a contradiction.
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The next step is to prove that (3.24) does not have a root iω with ω > 0 for any R0 > 1.
Substituting iω to χn(λ) = 0 and dividing by (p+ iω)n we derive

1 =

(
2p

n
−β

)
·

(
1

p+ iω
+

p

(p+ iω)2
+· · ·+ pn−1

(p+ iω)n

)
=

(
2p

n
−β

)
·
1−

( p

p+ iω

)n
iω

. (3.30)

This implies

iω −

(
2p

n
− β

)
= (−1) ·

(
2p

n
− β

)
·

(
pn

(p+ iω)n

)
. (3.31)

Taking the absolute value of both sides yields∣∣∣∣∣iω −

(
2p

n
− β

)∣∣∣∣∣ =
∣∣∣∣∣
(
2p

n
− β

)∣∣∣∣∣ ·
∣∣∣∣∣ pn

(p+ iω)n

∣∣∣∣∣, (3.32)

and there is a contradiction, because of ω > 0, the left-hand side is greater than |2p
n
− β|

and the right-hand side is less than |2p
n
− β|. This implies the stability of the equilibrium

because the eigenvalues are depending continuously on the characteristic equation (see [30]).
Since the endemic equilibrium is stable for R0 ≤ 2, if it would be unstable for some (β, n, p)
configuration, there must be a configuration with purely imaginary root iω as well, which is
not possible.

Unstable case

We have seen that the endemic equilibrium in system (3.3) can be stable. Now we would
like to show that one can choose the parameters such that the endemic equilibrium will be
unstable, therefore we can discover oscillation in the dynamics. We will set now in (3.3)
β1 = β > 0, β2 = β3 = · · · = βn = 0, p1 = p > 0, p2 = p3 = · · · = pn = q > 0 and µ = 0, this
means we reduced (3.3) to

I ′1 = βI1

(
1−

n∑
k=1

Ik

)
− pI1,

I ′2 = pI1 − qI2,

I ′3 = qI2 − qI3,

...

I ′n = qIn−1 − qIn.

(3.33)

It is easy to calculate the basic reproduction number as R0 =
β

p
. The endemic equilibrium

satisfies I∗2 = · · · = I∗n = p
q
I∗1 , and substituting to the first equation yields

I∗1 =
1− p

β

(n− 1)p
q
+ 1

, I∗2 = · · · = I∗n =
p

q

1− p
β

(n− 1)p
q
+ 1

. (3.34)
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Theorem 3.3.4. The characteristic polynomial of (3.33) is

χn(λ) = (−1)n
(
(q + λ)n−1(β · I∗1 + λ) +

p · β · I∗1
λ

(
(q + λ)n−1 − qn−1

))
. (3.35)

Proof. We prove this by induction. One can easily check the base case n = 1. For the
induction step, assume that (3.35) holds for some n, and our goal is to show

χn+1(λ) = (−1)n+1

(
(q + λ)n(β · I∗1 + λ) +

p · β · I∗1
λ

(
(q + λ)n − qn

))
.

We have to compute the following determinant:

χn+1(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−β · I∗1 − λ −β · I∗1 −β · I∗1 −β · I∗1 · · · −β · I∗1 −β · I∗1
p −q − λ 0 0 · · · 0 0
0 q −q − λ 0 · · · 0 0
0 0 q −q − λ · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 · · · q −q − λ 0
0 0 0 · · · 0 q −q − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We start to expand it by the last column:

χn+1(λ) = (−1)(q + λ)χn(λ) + (−1)n+1(β · I∗1 ) · p · qn−1.

Using (3.35) yields

χn+1(λ) = (−1)n+1

(
(q + λ)n(β · I∗1 + λ)

)
+ (−1)n+1(q + λ)

p · β · I∗1
λ

(
(q + λ)n−1 − qn−1

)
+ (−1)n+1β · I∗1 · p · qn−1.

Notice that

(q + λ)
p · β · I∗1

λ

(
(q + λ)n−1 − qn−1

)
=

p · β · I∗1
λ

(q + λ)n − p · β · I∗1
λ

qn − p · β · I∗1 · qn−1,

Removing the parentheses,

χn+1(λ) = (−1)n+1(q + λ)n(β · I∗1 + λ) +
p · β · I∗1

λ
(−1)n+1 · (q + λ)n

+
p · β · I∗1

λ
(−1)nqn−1(q + λ) + (−1)n+1β · I∗1 · p · qn−1,

and

χn+1(λ) = (−1)n+1(q + λ)n(β · I∗1 + λ) +
p · β · I∗1

λ
(−1)n+1(q + λ)n +

p · β · I∗1
λ

(−1)nqn +Θ,

where

Θ = (−1)n · p · β · I∗1 · qn−1 + (−1)n+1 · p · β · I∗1 · qn−1 = 0.
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Now we have

χn+1(λ) = (−1)n+1

(
(q + λ)n(β · I∗1 + λ) +

p · β · I∗1
λ

(
(q + λ)n − qn

))
,

and the induction step is completed.

We will prove that χn(λ) has pure imaginary roots λ = iω. With the notation
p

q
=

α,
λ

q
= z and using

β

p
= R0, after some manipulation we can write χn(λ) = 0 in the form

z +
α · (R0 − 1)

(n− 1) · α + 1
+

α

z
· α · (R0 − 1)

(n− 1) · α + 1

(
1− 1

(z + 1)n−1

)
= 0. (3.36)

Substituting z = iω yields

iω +
α · (R0 − 1)

(n− 1) · α + 1
− i

α

ω
· α · (R0 − 1)

(n− 1) · α + 1

(
1− 1

(iω + 1)n−1

)
= 0. (3.37)

The real and imaginary parts of this equation are

(i)
α · (R0 − 1)

(n− 1) · α + 1
− α

ω
· α · (R0 − 1)

(n− 1) · α + 1
· Im

(
1

(iω + 1)n−1

)
= 0,

(ii) ω2 = α · α · (R0 − 1)

(n− 1) · α + 1

(
1− Re

(
1

(iω + 1)n−1

))
.

Solving these equations for α and σ := R0 − 1, we find

α =
ω

Im
(

1
(iω+1)n−1

) , (3.38)

σ =
Im
(

1
(iω+1)n−1

)(
(n− 1) · ω + Im

(
1

(iω+1)n−1

))
1− Re

(
1

(iω+1)n−1

) .

Theorem 3.3.5. For every n ≥ 4 there is a suitable ω > 0, α > 1 and σ > 0 that solves
(3.38) and the transversality condition Re z′(σ) ̸= 0 is satisfied for (3.36). Therefore a Hopf
bifurcation occurs, and the endemic equilibrium can be unstable.

Proof. Using

Re

(
1

(iω + 1)n−1

)
=

cos ((n− 1) · arctanω)
(1 + ω2)

n−1
2

, (3.39)

and

Im

(
1

(iω + 1)n−1

)
= −sin ((n− 1) · arctanω)

(1 + ω2)
n−1
2

, (3.40)

it is clear that −1 < Re
(

1
(iω+1)n−1

)
< 1, so whenever

0 < Im

(
1

(iω + 1)n−1

)
< ω (3.41)
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holds, from (3.38) we can see that α > 1 and σ > 0. We confirm that

ω = tan

(
5π

12

)
is suitable for n = 4, (3.42)

ω = tan

(
π

n− 2

)
is suitable for every n > 4.

In the case n = 4, using (3.40),

Im

(
1

(iω + 1)n−1

)
= − sin

(
15π

12

)
· cos3

(
5π

12

)
=

(
√
3− 1)3

32
,

which is positive, but smaller than tan
(
5π
12

)
= 2 +

√
3. Similarly, for n > 4,

Im

(
1

(iω + 1)n−1

)
= − sin

(
(n− 1)π

n− 2

)
· cosn−1

(
π

n− 2

)
.

Since − sin

(
(n− 1)π

n− 2

)
= sin

(
π

n− 2

)
< tan

(
π

n− 2

)
, (3.41) holds.

We found that for n ≥ 4, purely imaginary roots may exist. Implicit differentiation of

G(z(σ), σ) := z +
α · σ

(n− 1) · α + 1
+

α

z
· α · σ
(n− 1) · α + 1

(
1− 1

(z + 1)n−1

)
= 0

shows that Re z′(σ) ̸= 0 if and only if

Re

(
−∂G

∂σ

/ ∂G

∂z

)
̸= 0.

Noting that
∂G

∂σ
=

G− z

σ
= − z

σ
,

and

∂G

∂z
= 1− 1

z
·
(
−z − ασ

(n− 1) · α + 1

)
+

α

z
· ασ

(n− 1) · α + 1
(n− 1) · 1

(1 + z)n
,

at z = iω it is enough to show that

Im
∂G

∂z
= − ασ

(n− 1) · α + 1
· 1
ω
− α

ω

ασ

(n− 1) · α + 1
(n− 1)

cos (n arctanω)

(1 + ω2)
n
2

̸= 0.

We can divide by the nonzero
ασ

(n− 1) · α + 1
· 1
ω

to obtain

−1− α · (n− 1) · cos (n arctanω)

(1 + ω2)
n
2

̸= 0. (3.43)

In the case of n = 4, the left hand side is

−1 +
3 sin

(
5π
12

)
sin
(
15π
12

)
cos3

(
5π
12

) · cos(20π

12

)
· cos4

(
5π

12

)
= −1− 3

4
√
2
.
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If n > 4, we get from (3.38) and (3.42) that α =
1

cosn
(

π
n−2

) , so we can write (3.43) as

−1− (n− 1) · cos
(

n

n− 2
π

)
̸= 0.

This is equivalent to

cos

(
2π

n− 2

)
̸= 1

n− 1
,

and one can check by elementary calculus that this holds for any integer n ≥ 5.
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4

Instability in an SEIRS model

In [31], the transmission dynamics of an SEIRS model was investigated for an infectious
disease with n infectious stages, given by the system

S ′ = π + θR−
n∑

k=1

βkIk
N

S − µSS,

E ′ =
n∑

k=1

βkIk
N

S − σEE − µEE,

I ′1 = σEE − σ1I1 − µ1I1 − δ1I1,

I ′j = σj−1Ij−1 − σjIj − µjIj − δjIj, ; j = 2, 3, . . . , n

R′ = σnIn − θR− µRR,

(4.1)

where π is the recruitment rate of susceptible individuals into the population, θ is the rate
of the loss of immunity among recovered individuals, βk are the effective contact rates and
σE, σIk , µS, µE, µIk , µR, δk (k = 1, 2, . . . , n) describe per capita rates of disease progression,
natural death and disease-induced death, respectively. We assume that all these parameters
are nonnegative. We denote by N the total population (N = S+E+

∑n
k=1 Ik+R), by E the

compartment of exposed individuals, by Ij the compartment of infected individuals in disease
stage j, and by R the compartment of recovered and immune individuals. By applying a
similar method as in Theorem 3.3.5, we can show that the endemic equilibrium can be
unstable. In [31], the authors formulated Conjecture 1 about the global asymptotic stability
of the endemic equilibrium. Consequently, in light of Proposition 4.0.1, this conjecture is
also disproved, which can also be illustrated by the periodic solution in Figure 4.1.

0 5 10 15 20
t0.00

0.01
0.02
0.03
0.04
0.05
I 2 (t)

100 105 110 115 120
t0.00

0.01
0.02
0.03
0.04
0.05

I 2 (t)

Figure 4.1: Snapshots of an oscillatory solution of system (4.3) with parameter configuration
(4.5), with t ∈ [0, 20] (in the left) and t ∈ [100, 120] (in the right).
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Proposition 4.0.1. There exist a parameter set for (4.1) such that the endemic equilibrium
exists and it is unstable.

Proof. Let n = 3 and set

π = 0, N = 1, µS = µE = µ1 = µ2 = µ3 = µR = 0, σE = p,

σ1 = q, σ2 = σ3 = θ = r, β2 = β3 = 0.
(4.2)

Normalizing the constant population size to unity, we can omit S from the system to get

E ′ = β1I1

(
1− E −

3∑
k=1

Ik −R

)
− pE,

I ′1 = pE − qI1,

I ′2 = qI1 − rI2,

I ′3 = rI2 − rI3,

R′ = rI3 − rR.

(4.3)

Using (3.4) and (3.5) to calculate the positive equilibrium and R0, we find

E∗ =
r

p

β1

q
− 1

β1

q
( r
p
+ 3 + r

q
)
, I∗1 =

r

q

β1

q
− 1

β1

q
( r
p
+ 3 + r

q
)
, I∗2 = I∗3 = R∗ =

β1

q
− 1

β1

q
( r
p
+ 3 + r

q
)
and R0 =

β1

q
.

One can easily compute the characteristic matrix

C =


r
q

q−β1

3+ r
p
+ r

q
− p− λ q + r

q
q−β1

3+ r
p
+ r

q

r
q

q−β1

3+ r
p
+ r

q

r
q

q−β1

3+ r
p
+ r

q

r
q

q−β1

3+ r
p
+ r

q

p −q − λ 0 0 0
0 q −r − λ 0 0
0 0 r −r − λ 0
0 0 0 r −r − λ

 .

If we denote r
q

q−β1

3+ r
p
+ r

q
by s, the characteristic polynomial can be written as

|C| = A1 · λ5 + A2 · λ4 + A3 · λ3 + A4 · λ2 + A5 · λ+ A6, (4.4)

where

A1 = −1,

A2 = −p− q − 3r + s,

A3 = −3pr − 3qr − 3r2 + ps+ qs+ 3rs,

A4 = −3pr2 − 3qr2 − r3 + pqs+ 3prs+ 3qrs+ 3r2s,

A5 = −pr3 − qr3 + 3pqrs+ 3pr2s+ 3qr2s+ r3s,

and A6 = 3pqr2s+ pr3s+ qr3s.

Setting
β1 = 1500, q = 1400, p = 5000 and r = 4, (4.5)
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we have eigenvalues
λ1 ≈ 0.0616677− 10.5925i,

λ2 ≈ 0.0616677 + 10.5925i,

hence, the endemic equilibrium is unstable and there is oscillation in the dynamics (see
Figure (4.1)). From the continuous dependence of the eigenvalues on parameters (see [30]),
we find that instability is possible when all parameters are positive as well.

This proposition contradicts Theorem 3 of [31], which stated that the endemic equilibrium
of system (4.1) is always locally asymptotically stable, therefore that theorem seems to be
false. In this Theorem the authors apply the Krasnoselskii sub-linearity trick, which is
a common approach to prove the local stability of the endemic equilibrium. We refer to
Hethcote and Thieme [25] for the explanation of this method.

The method is, if x′ = f(x) is an n× n system of differential equations and x ∈ Rn is an
equilibrium point, then the linearized equation

Z′(t) = Mf(x̄)Z

has no solution with the form of

Z(t) = Z0e
ωt

with Z0 ∈ C\{0},Z0 = (Z0, Z1, . . . , Zm, Zm+1) , Zi ∈ C, ω ∈ C and Re(ω) ⩾ 0.
When authors derive the proof of local stability, an important technical step is to ensure

that if Re(ω) > 0 holds then Re(µ(ω)) > 0 also stands for some function µ(ω). In various
papers, however, authors use this method for a function of the form

µ(ω) =
1

(ω + k0) · (ω + k1)

with k0, k1 ∈ R. This can have a negative real part, for example ω = 1 + 4i, z0 = z1 = 1.
Overall, we found 14 published papers in the literature with such an incorrect application of
Krasnoselskii’s method.
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5

Dynamics of a COVID-type model
with symptom-based testing

5.1 Model construction

In this work, we consider an extended SEIR-type compartmental model for the transmission
dynamics of COVID-19. We incorporate symptom-based testing of patients and isolation
upon positive result i.e. removal from the infectious chain. The clinical symptoms that
trigger the testing of individuals is referred to as indicator symptom. The force of testing is
defined as the rate at which infected individuals are tested, see Sect. 5.2. It is described by a
nonlinear function of the state of the epidemic and of all individuals displaying the indicator
symptom at a given time, with or without COVID-19 infection, hence, it is considerably
different from previous approaches. Our goal is to understand the impact, and especially
the limitations of this testing strategy, hence we model neither contact-tracing of patients
with positive tests nor the testing of a fraction of non-symptomatic contacts, both of which
are common and efficient improvements and result in removal of additional patients from
the infectious chain. Moreover, we assume perfect testing, that is we do not consider false
positive or false negative results.

According to the current understanding of the disease, none of the symptoms are specific
solely for COVID-19, thus, the chosen indicator symptom may and will be present amongst
other individuals not infected with SARS-CoV-2. All patients, with or without COVID-19
infection, displaying the indicator symptom form the so-called primary symptom pool, whilst,
those without COVID-19 infection (but with the same indicator symptom) are members of
the secondary symptom pool, see Sect. 5.2. Naturally, choosing the indicator symptom for a
testing campaign should be affected by its prevalence and by the historical statistics for the
size of the associated secondary symptom pool. We emphasize that the latter might undergo
seasonal variations as is typical with respiratory symptoms peaking in influenza season [11].
This is a common but not uniform feature of COVID-19 symptoms, e.g. gastrointestinal
symptoms might show no seasonal variations, depending on age-groups [12].

The chapter is structured as follows. Sect. 5.2 presents the compartmental epidemic
model and its parametrization. In addition, the next generation matrix computations are
included that are used to derive formulae for the reproduction number. Then, Sect. 5.3

37



38 5. DYNAMICS OF A COVID-TYPE MODEL WITH SYMPTOM-BASED TESTING

establishes several boundedness and monotonicity-type results on key characteristics of the
epidemic model. The results of numerical simulations are discussed in Sect. 5.4.

5.2 The epidemic model of indicator symptom-based

testing

To assess the effectiveness of indicator symptom based testing in controlling the spread of
COVID-19, we developed a compartmental population model based on the general SEIR
formulation without vital dynamics.

We divide the population into five classes: susceptible (S), latent (L), pre-symptomatic
(P ), infected (I), and removed (R). Susceptibles are those who can get infected by SARS-
CoV-2. The members of the latent compartment L have already been infected, but are not
yet infectious nor do they display any symptoms. After that, latent individuals move to the
pre-symptomatic class P meaning that, due to the increased viral load, they are able to infect
susceptible individuals, even though, they still not display any symptoms. The existence of
pre-symptomatic transmission is of particular importance in analyzing COVID-19 as it is
one of the key features of the disease that makes controlling the outbreak difficult. Then, in
our model, after the incubation period, at disease onset, members of P move to the infected
class I. We note that another challenge with COVID-19 is that many patients will develop
mild symptoms or none at all, yet being infectious. It is thus customary to collect these
individuals in a separate compartment of asymptomatic individuals [9, 10]. Nevertheless,
this distinction is not needed in our model as we will explain later in this section. Finally,
patients transit to the removed compartment R by either recovery or by isolation after testing
positive for COVID-19.

The above considerations are formulated in the following system of ordinary differential
equations

S ′(t) = −β
S(t)

N(t)
(P (t) + I(t)) ,

L′(t) = β
S(t)

N(t)
(P (t) + I(t))− αL(t),

P ′(t) = αL(t)− ρP (t),

I ′(t) = ρP (t)− γI(t)− k
pI(t)

pI(t) + σ
,

R′(t) = γI(t) + k
pI(t)

pI(t) + σ
.

(5.1)

The disease transmission rate is denoted by the parameter β, the incubation period is α−1 +
ρ−1, which is the sum of the duration of the latent period and the pre-symptomatic period,
and, finally, γ−1 stands for the symptomatic infectious period. The transmission diagram of
(5.1) is depicted on Fig. 5.1.

The force of infection is the rate associated with the outward flow from S to L, namely,

λ = β
1

N
(P + I).
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S L P I R

β
1
N

(P + I)
α ρ γ

k
p

pI + σ

Figure 5.1: The transmission diagram of the SLPIR model (5.1). Arrows represent the
transition rates between the compartments.

The indicator symptom-based testing is represented by the term

k
pI

pI + σ
,

where k gives the number of tests done per unit time also referred to as the testing rate, the
probability p describes how likely is that a member of compartment I displays the chosen
indicator symptom. Note that this probability removes the need for an asymptomatic/mild
compartment as it is straightforward to adjust p to account for all COVID-19 patients. The
final term σ (possibly time-dependent) represents those individuals who are not infected
by COVID-19, yet they show the very same symptom we base our testing upon. In this
chapter, we refer to σ as the secondary symptom pool, whereas, the primary symptom pool
Σ is composed of all members (with or without COVID-19 infection) of the population
displaying the indicator symptom at a given time, that is

Σ = pI + σ.

The testing rate k has a natural upper bound, namely,

k ≤ Σ

as we solely test patients displaying the indicator symptom. By reformulating the testing
term as

k
pI

pI + σ
=

k

Σ
· p · I,

it is interpreted as the removal of the k
Σ

fraction of COVID-19 patients displaying the
indicator symptom.

The rate of the testing-induced outward flow from I to R is referred to as the force of
testing given by

τk,p,σ = k
p

pI + σ
. (5.2)

Finally, we introduce the positivity rate of testing as

θ =
pI

pI + σ
, (5.3)
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that may serve as a real-time indicator of the severity of an ongoing epidemic, and the
adequateness of the testing rate.

Note that (5.1) is, in part, simpler than many other variants that have been used to
assess the spread of COVID-19 as the infectious and latent compartments are not split into
multiple stages [4, 9, 10, 13, 14]. However, these additional classes carry little significance
for the testing strategies and to the analysis presented in this chapter. Hence, we chose to
use this less complicated structure so that the emphasis is put on the testing itself.

We have parametrized (5.1) following [6]. From the infectivity profile of COVID-19
[65, 66, 67], we can see that most transmissions occur between 3 days prior to and 4 days
after symptom onset, with the pre-symptomatic infection fraction being 43.7%. Thus, it
is a reasonable approximation to set the pre-symptomatic period ρ−1 as 3 days, and the
symptomatic infectious period γ−1 as 4 days, with the same infectiousness β during this
period. The estimated mean incubation period of COVID-19 is 5.5 days [15], thus, the
latent period α−1 is taken as 2.5 days, see Table 5.1. The choice of the transmission rate
β is discussed in Sect. 5.2.1 and the testing parameters k, p, σ are varied throughout the
analysis.

Table 5.1: Parameters of the SLPIR model
Parameter Notation Value

Transmission rate β Sect. 5.2.1.
Latent period α−1 2.5 days
Pre-symptomatic (infectious) period ρ−1 3 days
Infectious period γ−1 4 days
Testing rate k varies
Secondary symptom pool σ varies
Probability of symptom amongst
COVID-19 patients

p varies

5.2.1 Choosing the transmission rate β

Now, we concentrate on establishing the relationship between the transmission rate β in (5.1)
and the basic reproduction number R0 of the epidemic. We shall follow the terminology and
techniques of [16] to compute the Next Generation Matrix (NGM) and the R0 as its spectral
radius.

First, let us consider the infectious subsystem of (5.1), namely, equations describing
L(t), P (t), and I(t). Linearizing this subsystem w.r.t. the disease free equilibrium yields the
linearized infectious subsystem

X ′(t) = (F−V) ·X(t),

where the matrices F and V are the Jacobians of the transmission and the transitional part,
respectively:

F =
[
∂Fi

∂Ij
(DFE)

]
, V =

[
∂Vi

∂Ij
(DFE)

]
.
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the state is described by

X(t) =

 L(t)
P (t)
I(t)

 .

The transmission matrix F has the form

F =

0 β β
0 0 0
0 0 0

 ,

and the transitional matrix V is, clearly, written as

V =

−α 0 0
α −ρ 0
0 ρ −γ

 .

The basic reproduction number R0 is then obtained by computing the spectral radius of
−FV−1 that is

R0 = ρ(−FV−1).

Therefore, as

−FV−1 =

β
γ
+ β

ρ
β
γ
+ β

ρ
β
γ

0 0 0
0 0 0

 ,

it follows that

R0 = β

(
1

ρ
+

1

γ

)
,

providing a scheme for computing β. We list the corresponding transmission rates for the
sample values of R0 used for illustrations in Table 5.2.

Table 5.2: The basic reproduction number R0 and the corresponding transmission rate β

R0 2.2 1.8 1.3 1.1

β 0.338 0.277 0.2 0.169

The basic reproduction number R0 is descriptive for the epidemic at the very beginning
of an outbreak and in absence of control measures. For simplicity, we use the phrase basic
reproduction number even if social distancing is in place, and by control measure in this
chapter we mean the testing, the absence of which is modeled by k = 0. Similar key
characteristics are the control reproduction number Rc and the effective reproduction number
Rt. The former describes the epidemic incorporating the effect of interventions, in our case
indicator symptom-based testing, but still at the beginning of the outbreak. In contrast, the
latter is suitable to measure the spread of the disease as the epidemic is progressing. The
corresponding formulae may be obtained via analogous computations to those above as

Rc = β

(
1

ρ
+

1

γ + k p
σ

)
= β

(
1

ρ
+

σ

σγ + kp

)
(5.4)
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and

Rt = β
S(t)

N

(
1

ρ
+

1

γ + τk,p,σ

)
= β

S(t)

N

(
1

ρ
+

Σ

Σγ + kp

)
= β

S(t)

N

(
1

ρ
+

1

γ + k
Σ
p

)
.

As the testing rate k is bound by the size of the primary symptom pool Σ, it is apparent
that both of the above reproduction numbers satisfy

β
S

N

(
1

ρ
+

1

γ + p

)
≤ Rc,Rt ≤ R0. (5.5)

5.3 Dependence of key epidemic quantities on the testing

strategy

This section analyzes the symptom-based testing strategy with emphasis on how the force
of testing and the effective reproduction number are affected by the particular choice of
strategy. Repeatedly, we shall utilize the monotonicity of

f(x) =
a+ x

b+ x
, x1 ≤ x2 ⇒ f(x1) ≤ f(x2),

where 0 < a ≤ b and 0 ≤ x.

First, we summarize trivial monotonicity properties of the force of testing τk,p,σ.

Proposition 5.3.1. Given a fixed state of (5.1), the force of testing τk,p,σ is

a) monotonically increasing in k,

b) monotonically increasing in k
Σ
.

In particular, as τk,p,σ = kp
Σ
, if k

Σ
= const, then τk,p,σ = const, i.e. the force of testing

strongly correlates to what portion of the primary symptom pool is being tested.

As the epidemic is progressing, we may want to maintain the force of testing by increasing
the testing rate k that is testing the same portion of individuals displaying the indicator
symptom. Clearly, the required adjustment is linear w.r.t. the size of compartment I, thus,
the given constant force of testing may be maintained as long as other logistical constraints
make increasing the testing rate feasible.

The choice of the indicator symptom that serves as a basis for selecting patients for testing
is clearly of importance. Different indicator symptoms typically have different associated
probabilities and secondary symptom pools of non-equal sizes. Thus, it is natural to ask
what (p, σ) pair is optimal.

Proposition 5.3.2. The force of testing τk,p,σ is monotonically decreasing in σ
p
.
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Proof. Clearly,

k
p1

p1I + σ1

= τk,p1,σ1 ≤ τk,p2,σ2 = k
p2

p2I + σ2

is equivalent to
1

I + σ1

p1

≤ 1

I + σ2

p2

that, in turn, simplifies to
σ2

p2
≤ σ1

p1

yielding the required result.

As we have seen, keeping the fraction k
Σ
constant results in constant force of testing τk,p,σ.

The authorities might obtain some data on the size of the primary symptom pool Σ during
an outbreak and use this information for adjusting k on-the-go. When planning for a second
wave, historical data on the size of the secondary symptom pool σ may give information
on the required level of preparedness. Namely, if we know that σ has now a different size
compared to the former outbreak, e.g. due to a seasonal variation, we may utilize the size
difference of the secondary symptom pools as a guidance for the need for testing capacities
as follows.

Proposition 5.3.3. Given a fixed state of (5.1), consider two secondary symptom pools, 0 ≤
σ1 ≤ σ2 for the same indicator symptom that appears amongst members of the compartment
I with probability p. Let k1 and k2 be two testing rates corresponding to the testing strategies
for σ1 and σ2, respectively. Then,

k2
k1

=
σ2

σ1

implies

τk1,p,σ1 ≤ τk2,p,σ2 .

Proof. As the state is fixed, the two strategies having equal effect corresponds to the equality

k1
p

pI + σ1

= τk1,p,σ1 = τk2,p,σ2 = k2
p

pI + σ2

that simplifies to
k2
k1

=
pI + σ2

pI + σ1

.

Then, using the aforementioned monotonicity of f(x), we obtain

k2 ≤
σ2

σ1

k1.

Finally, the monotonicity of τk,p,σ in k completes the proof.
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Recall, that the force of testing τk,p,σ explicitly appears in the formula for the effective
reproduction number Rt as

Rt = β
S

N

(
1

ρ
+

1

γ + τk,p,σ

)
.

Accordingly, Rt may be kept decreasing by varying k as discussed in the first half of this
section that is by keeping τk,p,σ constant or increasing. However, in practice, increasing k
may eventually become infeasible. At that point, the force of testing will decrease, hence, Rt

may increase temporarily, within the bounds given in (5.5), despite the constantly decreasing
number of susceptible individuals S(t).

A reasonable goal for the authorities is to keep Rt close to a designated value, ideally
close to 1 to suppress the epidemic. Running estimates of the actual Rt might be obtained
[10, 18, 19], hence, we investigate if, by an increase of the testing rate, we can alter Rt as
desired.

Proposition 5.3.4. Let 0 ≤ k1 ≤ k2 be two testing rates. Consider an epidemic described
by (5.1) with daily testing rate k1, and the associated effective reproduction number Rt(k) as
a function of k.

Then, the ratio of the effective reproduction numbers corresponding to altering the testing
rate from k1 to k2

r =
Rt(k2)

Rt(k1)

satisfies the following inequality

max

{
k1
k2

,
γ

ρ+ γ

}
≤ r ≤ 1.

Proof. The right bound is trivial as Rt is monotonic in k. Now, observe that

r =

Σ
k2p+Σγ

+ 1
ρ

Σ
k1p+Σγ

+ 1
ρ

.

Then,

r =

Σρ+Σγ+k2p
k2pρ+Σγρ

Σρ+Σγ+k1p
k1pρ+Σγρ

=
Σ(ρ+ γ) + k2p

Σ(ρ+ γ) + k1p
· k1pρ+ Σγρ

k2pρ+ Σγρ
=

Σ(ρ+ γ) + k2p

Σ(ρ+ γ) + k1p
· k1p+ Σγ

k2p+ Σγ
.

The first term is ≥ 1, thus,

r ≥ k1pρ+ Σγρ

k2pρ+ Σγρ
≥ k1p

k2p
=

k1
k2

using the monotonicity of f(x) noted at the beginning of this section.
Now, consider reordering the product as

r =
Σ(ρ+ γ) + k2p

k2p+ Σγ
· k1p+ Σγ

Σ(ρ+ γ) + k1p
.
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Again, the first term is ≥ 1, therefore,

r ≥ k1p+ Σγ

Σ(ρ+ γ) + k1p
≥ Σγ

Σ(ρ+ γ)
=

γ

ρ+ γ

holds using, again, the monotonicity of f(x).
Combining the two inequalities above completes the proof.

The implications of Prop. 5.3.4 on goals for the testing strategy are rather important as
they point out some hard limitations. Clearly, as

0.43 ∼ γ

ρ+ γ
,

no matter our testing capacity or indicator symptom, we may not suppress the epidemic any
further. As an example, if our current estimates for Rt are above 2.4, then we cannot expect
the pure indicator symptom-based testing strategy (without contact-tracing) to be able to
suppress the epidemic as 2.4 · 0.43 ∼ 1.03. Additionally, as the indicator symptom limits
our testing rate to k ≤ Σ = pI + σ, we obtain another hard constraint, namely,

r ≥ k1
Σ

that is the ratio describing what proportion of the primary symptom pool is being tested
directly limits the factor which the effective reproduction number may be decreased with via
larger testing rates. Finally, we note that reordering the inequality yields k2 ≥ k1

r
as a lower

requirement for the required testing rate – given that the reduction by factor r is achievable.

We have discussed from various aspects that increasing the testing rate k decreases
the effective reproduction number Rt that is it has a positive effect on the severity of
the epidemic. Nevertheless, this positive effect is gradually decreasing as described by the
following Proposition.

Proposition 5.3.5. Consider the logarithmic derivative of Rt w.r.t. the testing rate k that
is

R∗
t =

∂

∂k
log(Rt).

Then, R∗
t is negative and monotonically increasing in k.

Proof. Clearly,

R∗
t =

∂Rt

∂k

Rt

=
−Σρp

(kp+ Σγ)(kp+ Σ(ρ+ γ)
≤ 0.

Then,
∂R∗

t

∂k
=

(Σρp)(2kp+ Σp(ρ+ 2γ))

(kp+ Σγ)2(kp+ Σ(ρ+ γ)2
≥ 0

completes the proof.

This logarithmic derivative is a measure of the relative change inRt w.r.t. the testing rate
k. Prop. 5.3.5 states that the relative change is decreasing in absolute value as k increases.
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5.4 Numerical simulations

This section presents the results from several numerical simulations demonstrating the
impact of the key parameters of the epidemic model (5.1). All simulations were executed
with a sample population of size 10, 000, 000 with initial conditions placing 1000 individuals
into the class L and the rest into S.

First, Sect. 5.4.1 presents the numerical analysis of the control reproduction number Rc.
Then, we investigate the connection between the progress of an outbreak and the positivity
rate of testing in Sect. 5.4.2. We study the implications of maintaining a constant force of
testing τp,k,σ in Sect. 5.4.3. The significance of the seasonality of the secondary symptom
pool σ is analyzed in Sect. 5.4.4. Finally, in Sect. 5.4.5, we assess how an increased testing
rate may delay the progress of COVID-19.

5.4.1 The effect of testing on the control reproduction number Rc

The control reproduction number Rc, given in (5.4), describes the initial progress of the
epidemic at its very beginning. Fig. 5.2 demonstrates what effect of indicator symptom-
based testing has on Rc for various values of R0 and σ.
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R0 = 1.9, σ = 2,000
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R0 = 1.9, σ = 50,000

Figure 5.2: The effect of indicator symptom-based testing on Rc for p = 0.25.

Clearly, larger maximal testing rate k results in lower Rc. The size of the secondary
symptom pool σ apparently greatly affects the decrease we may achieve by larger k.

5.4.2 The progress of an outbreak and the positivity rate θ

Recall that the positivity rate θ, see (5.3), is a key feature of the testing strategy that may be
readily observed during an outbreak. If the efforts aimed at suppressing COVID-19 are not
successful, the rate θ will increase as the term pI(t) will eventually dominate the secondary
symptom pool σ. Fig. 5.3 demonstrates that the changes in θ are in close connection with
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Figure 5.3: Evolution of the positivity rate during outbreaks of different magnitudes. The
prevalence of the indicator symptom is p = 0.1 with a maximal testing capacity k = 10,000
and secondary symptom pool σ = 10,000.

the dynamics of I(t). This relationship between θ and I(t) carries a certain benefit for the
authorities as the increase of the positivity rate precedes that of the epidemic curve, hence,
it may serve as a primary indicator for the progress of an epidemic.
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5.4.3 Implications of constant force of testing τp,k,σ

As we have discussed in Sect. 5.3, a constant force of testing τp,k,σ is achieved by testing a
fixed portion of the primary symptom pool Σ, i.e. k

Σ
is constant. For an ongoing epidemic

this results in a constant increase in the required daily testing rate k. We have analyzed the
maximal required testing capacity w.r.t. COVID-19 patients in Fig. 5.4.
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4447.07

10301.04
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Figure 5.4: Required testing capacity to maintain a constant force of testing τp,k,σ. The
vertical axis describes the desired portion for testing the primary symptom pool and the
horizontal axis represents the underlying basic reproduction number R0. The prevalence of
the indicator symptom is set to p = 0.1.

Note that for constant τp,k,σ, the system (5.1) is independent of the secondary symptom
pool σ, thus, this requirement must be adjusted based on historical data on the size of σ to
obtain the total maximal required capacity.
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5.4.4 Seasonality of the secondary symptom pool σ

Now, let us investigate the epidemic curves in case of a periodically varying secondary
symptom pool. To that end, we employ a commonly used seasonality function

ω(t) = 365 · 10b cos(
2π(t−c)

365 )∫ 365

0
10b cos(

2π(t−c)
365 )dt

,

with b = 0.5 and consider σ = σavg · ω(t). The parameter c is used to model shift in
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Figure 5.5: The seasonality function ω(t) with c = 183. This corresponds to minimal
secondary symptom pool at the beginning of an outbreak.

the seasonality, i.e. to analyze the differences between an outbreak starting at minimal or
maximal secondary symptom pools. The function ω(t) is displayed on Fig. 5.5 for the case
of minimal secondary symptom pool at time t = 0 that is for a shift c = 183.

Fig. 5.6 demonstrates the effect of having seasonality in σ and the COVID-19 outbreak
beginning around the minimal size of the secondary symptom pool. This comparison shows
that we may expect a slight, but notable, delay in this scenario compared to the non-seasonal
setting.

5.4.5 The effect of varying the testing rate k

Increasing the testing rate k has a beneficial effect. We demonstrate this via transitional
plots on Fig. 5.7. Note that a larger maximal k both delays in time and decreases in size the
peak of the epidemic.
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Figure 5.6: The impact of seasonal σ with minimal (left) and maximal (right) size at the
beginning of the outbreak. R0 = 1.9, p = 0.1, k = 10,000, σ = 10,000. The blue curve
corresponds to assuming a constant (average) secondary symptom pool, whilst, the red
curve depicts the effect of seasonality.
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Figure 5.7: The impact of increasing the testing rate from 1,000 (red) to 10,000 (blue) using
parameters R0 = 1.6, p = 0.1, 1, 000 ≤ k ≤ 10,000, σ = 10,000.



6

Adaptive group testing in a
compartmental model of COVID-19

6.1 Transmission models with pooling

In this section, we develop a compartmental model to describe mass testing along with
the application of various pooling methods and confinement of those tested positively. The
population is divided into five classes: susceptibles, latent, presymptomatic, infected and
removed, denoted by S, L, P , I and R, respectively. Susceptibles are those who can
be infected by coronavirus, latent are those who have been infected, but do not show
symptoms, and neither can transmit the disease. Presymptomatic individuals still do not
show symptoms but they can infect others as well. Latent individuals move to the infected
class after a latency period, while following recovery, people from the infected class proceed
to the removed compartment. In this model, we ignore any disease-induced death and
demography. This SLPIR model is further developed by considering the effects of mass
testing in our equations, i.e., we include terms for removing individuals whose test evaluated
positively (from any of the five classes). In the following, compartment Q(t) will stand
for the temporarily confined at time t, and we assume an active quarantine, in which
the population compensates the loss of links rewiring the ineffective connections towards
nonquarantining nodes [63]. After an isolation of τ days, the quarantined individuals move
back into the S or R class, depending on the status of a given individual. We introduce the
notation N(t) = S(t)+L(t)+P (t)+ I(t)+R(t) for the total active population, i.e. for those
who are not in confinement. We note that, as we mentioned before, the total population
S(t) + L(t) + P (t) + I(t) +R(t) +Q(t) = Π is constant.

Removal of positively tested individuals and putting back those who have passed τ days
in confinement are both considered in various ways in the equations, modeling different
methods applied in mass testing. Namely, we consider two different pooling methods.

51
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Figure 6.1: Transmission diagram for the SLPIR model with quarantine.

6.2 Regular pooling

In the case of regular pooling, we select k individuals and perform a single RT-PCR test on
their combined (pooled) samples. Even if the test comes back as positive, no additional tests
are performed to identify the infected individuals, instead of that, everybody in the pool will
be confined. We apply the notation p for the sensitivity of the test, i.e. the probability that
a test gives a correct positive result when the sample contains viral particles. In general,
the sensitivity of the tests may depend on several factors, for example the brand of the
test, whether the tested individual was symptomatic or asymptomatic, the number of days
elapsed since exposure, in the case of pooling the size and the composition of the pool. For
simplicity, here we assume an average sensitivity value p = 0.9, which is in line with [50, 61],
and use this value throughout the chapter. We denote by 1−ρ the specificity of the test, i.e.
ρ is the probability of the test giving a false positive result in case of a non-infected person
being tested. In the following, σ stands for the number of people tested each day. With
this approach, we determine the number of individuals removed from each compartment
on a given day. We note that the sensitivity and specificity of testing a pool of several
samples might differ from those of an individual test as it might depend on the number of
positive samples included in the pool. However, for the sake of simplicity, we will ignore this
difference in this chapter.

The number of individuals isolated from the L, P or I compartments is given by the
number of individuals from these compartments being tested multiplied by the sensitivity,
i.e. σ · L(t)

N(t)
· p, σ · P (t)

N(t)
· p and σ · I(t)

N(t)
· p, respectively.

The number of individuals isolated from the S or R compartments can be obtained by
the following. Assume someone is in a positive pool. Considering the other k−1 individuals
in the same pool,

1. either there is an individual who is in compartment L, P or I and the pool is true
positive,
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2. or everyone else is from the S or R compartment as well, and the pool is false positive.

Therefore we obtain that the expected number of individuals being isolated from the S or
R compartment can be obtained as

σ · S(t)
N(t)

· U(t) and σ · R(t)
N(t)

· U(t), respectively,

where

U(t) =

[
1−

(
S(t)+R(t)

N(t)

)k−1
]
· p+

(
S(t)+R(t)

N(t)

)k−1

· ρ

=
[
1− (1− π(t))k−1

]
· p+ (1− π(t))k−1 · ρ,

where π(t) = L(t)+P (t)+I(t)
N(t)

stands for the disease prevalence. The delay differential equation

system describing the dynamics (we start to test individuals at t = 0) can be written as

S ′(t) = − β
S(t)

N(t)
(I(t) + P (t))− σ · S(t)

N(t)
· U(t)

+ σ · S(t− τ)

N(t− τ)
· U(t− τ) ·H(t− τ),

L′(t) = β
S(t)

N(t)
(I(t) + P (t))− α

L
L(t)− pσ

L(t)

N(t)
,

P ′(t) = α
L
L(t)− α

P
P (t)− pσ

P (t)

N(t)
,

I ′(t) = α
P
P (t)− γI(t)− pσ

I(t)

N(t)
,

R′(t) = γI(t)− U(t)σ
R(t)

N(t)

+H(t− τ)pσ
L(t− τ) + P (t− τ) + I(t− τ)

N(t− τ)

+H(t− τ) · U(t− τ)σ
R(t− τ)

N(t− τ)
,

(6.1)

where

H(t− τ) =

{
0, t < τ,

1, t ≥ τ

is the Heaviside step function. The parameter β is used for disease transmission rate,
α−1

L
denotes the average length of the latent period, α−1

P
stands for the average time from

becoming infectious until symptoms onset, while γ denotes recovery rate.
The above mentioned compartment Q(t) is aggregated as

Q′(t) = U(t) · σS(t) +R(t)

N(t)
−H(t− τ)U(t− τ)σ

S(t− τ) +R(t− τ)

N(t− τ)

+ pσ
L(t) + P (t) + I(t)

N(t)
−H(t− τ)pσ

L(t− τ) + P (t− τ) + I(t− τ)

N(t− τ)
.
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Let us note that the quarantine compartment does not appear in any of the equations of
(6.1), hence, it can be studied independently from the equation of Q(t).

System (6.1) is an SLPIR-type disease model assuming exponentially distributed latent,
presymptomatic and infectious period. The basic reproduction number of the model without
mass testing (i.e. for σ = 0), considering infectiousness for compartments P and I is given
by

R0 = β ·
(
α−1

P
+ γ−1

)
.

We assume that infected individuals are removed from compartments L, P and I with rate
pσ and put back to the compartments τ days later. We catch the latter event in the system
using terms with time-delay. Therefore, introducing the notation σ̂ = σ

Π
for the fraction

of the population tested each day, and tracking the progress of a single infected individual
through the infected compartments, we get the control reproduction number as

Rc,mass =
α

L

α
L
+ pσ̂

· β

α
P
+ pσ̂

+
α

L

α
L
+ pσ̂

· α
P

α
P
+ pσ̂

· β

γ + pσ̂

=
α

L
β(α

P
+ γ + pσ̂)

(α
L
+ pσ̂)(α

P
+ pσ̂)(γ + pσ̂)

.

The parameters and their values used in our simulations are shown in Table 6.1. The
model is parametrized by values from various studies in the literature [58, 59, 60, 61, 62].

Parameter Interpretation Value (range) Reference
R0 Basic reproduction number varies [58]
α−1

L
Latent period 2.5 (days) [59]

α−1
P

Presymptomatic period 3 (days) [59]
γ−1 Infectious period 4 (days) [59]
β Transmission rate varies calculated from R0

1− ρ Specificity 0.98 (0.9–1) [60]
p Sensitivity 0.9 (0.62–0.98) [50, 61, 62]
Π Population size 10, 000, 000 -
σ Number of individuals tested each day [0,Π] -
k Number of samples in a pool 1–32 [50]
τ Duration of quarantine 14 days [57]

Table 6.1: Parameters and values applied in simulations.

6.2.1 Numerical results for regular pooling

In this subsection, we present the effect of regular pooling on the epidemic curves of the
infected and quarantined. Below we compare six different scenarios: a simple mass testing
method with 1% of the population tested daily, and five cases of regular pooling with pool
sizes of 5, and 1–5% of the population being tested daily. Figure 6.2 shows a comparison of
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these scenarios, suggesting that with the same amount of tests performed, pooling can be
much more effective for mitigating the epidemic. However, regular pooling with a large pool
size will increase the number of quarantined people to such an extent which is impossible to
be realized in real life.
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Figure 6.2: Epidemic curves with different pooling methods with parameters taken from
Table 6.1, and Rc = 1.8. The black curves represent the regular mass testing method with
1% of the population being tested each day. It is worth mentioning that we need the same
number of tests for the strategies leading to the black and the orange curve.

6.2.2 Dorfman pooling

In the case of Dorfman pooling, we select k individuals and perform a single RT-PCR test
on their combined (pooled) samples. If the pooled test yields a positive result, then each
sample is retested separately and we only remove those individuals who were retested as
positive; otherwise, everyone is declared negative. We note that there are other, more
intricate methods for arranging the pools [64].

We determine the number of individuals removed from each compartment on a given
day. If this person is from compartment L, P or I, then we obtain the expected number
of individuals being isolated from these compartments by multiplying the number of latent,
presymptomatic or infected people being tested with two probabilities: that of the pool
comes back as positive and that of the individual test gives a correct positive result.

This product gives us σ L(t)
N(t)

· p2, σ P (t)
N(t)

· p2, and σ I(t)
N(t)

· p2, respectively.
The number of individuals isolated from the S or R compartments can be obtained by

the following. Assume that a non-infected is in a positive pool. Considering the other k− 1
individuals in the same pool,

1. either there is an individual who is in compartment L, P or I, the pool is true positive
and the individual test is a false positive;

2. or everyone else is from the S or R compartment as well, the pool is false positive and
the individual test is false positive result as well.

Therefore we obtain that the expected number of individuals being isolated from the S or
R compartment can be obtained as
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σ · S(t)
N(t)

· U(t) and σ · R(t)
N(t)

· U(t), respectively,

where

U(t) =

([
1−

(
S(t)+R(t)

N(t)

)k−1
]
· p · ρ+

(
S(t)+R(t)

N(t)

)k−1

· ρ2
)
.

The system describing the dynamics can be written as

S ′(t) = − β
S(t)

N(t)
(I(t) + P (t))− U(t) · σ S(t)

N(t)
+H(t− τ)U(t− τ)σ

S(t− τ)

N(t− τ)
,

L′(t) = β
S(t)

N(t)
(I(t) + P (t))− α

L
L(t)− p2σ

L(t)

N(t)
,

P ′(t) = α
L
L(t)− α

P
P (t)− p2σ

P (t)

N(t)
, (6.2)

I ′(t) = α
P
P (t)− γI(t)− p2σ

I(t)

N(t)
,

R′(t) = γI(t)− U(t)σ
R(t)

N(t)
+H(t− τ)p2σ

L(t− τ) + P (t− τ) + I(t− τ)

N(t− τ)

+H(t− τ) · U(t− τ)σ
R(t− τ)

N(t− τ)
,

with the equation for the quarantine compartment Q(t) obtained as

Q′(t) = U(t) · σS(t) +R(t)

N(t)
−H(t− τ)U(t− τ)σ

S(t− τ) +R(t− τ)

N(t− τ)

+ p2σ
L(t) + P (t) + I(t)

N(t)
−H(t− τ)p2σ

L(t− τ) + P (t− τ) + I(t− τ)

N(t− τ)
.

The control reproduction number of the model with pooling using follow-up can be calculated
as

Rc,pool-with-follow-up =
α

L

α
L
+ p2σ̂

· β

α
P
+ p2σ̂

+
α

L

α
L
+ p2σ̂

· α
P

α
P
+ p2σ̂

· β

γ + p2σ̂
.

6.2.3 Comparison of regular and Dorfman pooling

In this subsection, we compare the effect on the epidemic curves of the infected and quarantined
applying regular and Dorfman pooling.

Figure 6.3 shows a comparison of these scenarios, suggesting that with Dorfman pooling,
the number of infected slightly increases. An explanation to this is that individuals from the
infectious compartments need to give an additional true-positive test in order to get confined.
The most important effect of the followup measure shows on the number of quarantined. This
is caused by the fact that the number of individuals getting quarantined from non-infected
compartments decreases substantially.

Using Dorfman pooling has another important advantage. Considering a situation after
the outbreak diminishes, susceptible or removed individuals will get confined because of
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the false-positive tests. With regular pooling, one false-positive test is enough to become
isolated, that is,

lim
t→∞

Q(t) = σ · ρ · τ,

while, with Dorfman pooling,
lim
t→∞

Q(t) = σ · ρ2 · τ.
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Figure 6.3: Comparison of regular and Dorfman pooling in terms of the infected and
quarantined. Parameters p and ρ are taken from Table 6.1, Rc = 2.5.

We have to consider, though, that in (6.2), considering Dorfman pooling, if we test the
same number of individuals, we require significantly more tests because of those we use for
the individual tests. In Section 6.3, we investigate this issue rigorously.

6.3 Optimization of Dorfman pooling

As we mentioned, Dorfman pooling is more feasible in terms of the number of isolated
people, but on the other hand, it requires higher testing capacity. It is straightforward that
as the prevalence increases, the probability of a positive pool increases as well, therefore we
need more tests and fewer people can be removed from the epidemic chain. Note that, in
general, testing capacities are limited, usually there is a certain number of tests which can
be evaluated in a day. In the following, let us denote the number of tests available for one
day by T . We consider a feasible range of prevalence π varying during the course of the
outbreak as 0 ≤ π ≤ 0.1.

Thus, we can derive

T = #{pools}+ k ·#{positive pools}

=
σ

k
+ k · σ

k
· P (a pool is positive)

=
σ

k
+ σ ·

((
1−

(
1− π

)k) · p+
(
1− π

)k · ρ).
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Which yields

σ =
T

1

k
+ P (a pool is positive)

=
T

1

k
+

(
1−

(
1− π

)k) · p+
(
1− π

)k · ρ. (6.3)

We would like to emphasize that the prevalence is changing according to the disease dynamics,
therefore, σ is changing in time as well.

6.4 Finding T for a fixed pool size

Now we can determine the maximal number of tests which could be necessary for obtaining
the blue curve on Figure 6.2. Using the parameters from Table 6.1 for p and ρ, with basic
calculus we can obtain that the maximum of the denominator in (6.3) is obtained at π = 0.1
indeed, and it is

100, 000 ·
(
1

5
+

(
1−

(
1− 0.1

)5) · 0.9 +
(
1− 0.1

)5 · 0.02) ≈ 58, 037

However, we only need 100, 000/5 = 20, 000 tests per day for obtaining the red (regular
pooling) curve.

6.4.1 Optimizing the pool size depending on prevalence

An important question regarding pooling is to determine the optimal pool size. Large pool
size enable to test several samples at the same time, however, a large sample size can lead
to inaccuracies and also increases the probability of the presence of a positive sample. This,
in turn implies that all samples in that pool have to be tested again. Hence, if prevalence is
high, then large pool sizes might make nullify the benefits of pooling. On the other hand, if
prevalence is low, larger pool sizes seem to be the better choice as there is a larger probability
of samples being negative.

To complete all the necessary follow-up tests, we need to allocate a fraction of available
tests. Next we determine the minimal quantity required for this purpose, which are sufficient
for any possible prevalence.

We would like to determine the worst case scenario, namely, the minimal value of σ(t) with
our restrictions. We can always confine that many individuals, regardless of the prevalence.

In other words, we are looking for the maximum of the denominator in (6.3).
To determine the optimal pool size k in order to maximize the denominator in (6.3), we

differentiate
1

k
+

(
1−

(
1− π

)k) · p+
(
1− π

)k · ρ
w.r.t. k to obtain the extreme value rounded up to the nearest integer, depending on π. We
also give the ratio T

σ
, namely, the number of tests needed to use for one individual during

the testing process. We summarize these results in Figure 6.4; the optimal pool size k which
maximizes σ for a given interval of prevalence π and the corresponding value of T

σ
.
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0.0485 ≤ π ≤ 0.078 5 0.523859
0.078 ≤ π ≤ 0.1 4 0.538242

Figure 6.4: Optimal pool size as a function of disease prevalence.
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6.5 Strategies employing optimized Dorfman pooling

In this section, we present some numerical results employing optimized strategies with
Dorfman pooling.

6.5.1 Fixed pool size during the pandemic

First, we consider different, fixed pool size values k which we apply in (6.2) regardless of the
prevalence, and a corresponding optimized σ according to (6.3). In the following, the daily
testing capacity T is fixed to 100, 000 which is feasible as it is 1% of the total population Π.
According to the result in Section 6.4, for the optimized strategy we take π = 0.1. Figure
6.5 shows a comparison for these scenarios for different k values. We can see that choosing
pool size k = 4 is the best strategy, and considering Π = 10, 000, 000, ≈ 2% of the total
population can avoid the infection simply by choosing another, more appropriate pool size.
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Figure 6.5: Epidemic curves of the cumulative infected with a fixed pool size during the
course of the epidemic. Parameters p and ρ are taken from Table 6.1, Rc = 1.8.

6.5.2 Adaptive strategy: variable pool size

In this section, we consider a changing pool size k(π(t)) dependent on the disease prevalence
(see Section 6.4.1). In Figure 6.6 and Figure 6.7 we compare all testing methods we discussed
earlier: mass testing without pooling, regular pooling, Dorfman pooling with optimized σ
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for every prevalence 0 ≤ π(t) ≤ 0.1 and adaptive, changing pool size k(π(t)) and σ(π(t)).
We can see that choosing a large pool size and a corresponding σ at the start of the testing
allows a widespread testing opportunity in the population. This intervention is enough to
prevent an outbreak (see Figure 6.6) or in the case of a bigger reproduction rate it is capable
to shift the peak and flatten the curve for a foreseeable time period.
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Figure 6.6: Comparison of different testing strategies. Parameters p and ρ are taken from
Table 6.1, Rc = 1.4.
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Figure 6.7: Comparison of different testing strategies. Parameters p and ρ are taken from
Table 6.1, Rc = 1.7.
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Summary

After a short introduction, in Chapter 2, this thesis firstly aims to give an overview on SIS
models, from the very basics to extensions and generalizations.

Then, in Chapter 3 and 4, we studied a multistage SIS model, also known as SI1I2 . . . InS
model, where infectious individuals progress through a number of disease stages. The
model was rigorously analyzed to gather information about its dynamical features. We
have calculated the basic reproduction number R0 and shown its threshold property, namely
that whenR0 is less than or equal to 1, the disease-free equilibrium is globally asymptotically
stable, and when R0 > 1, the disease persists uniformly in the population. So far this is a
standard result for many epidemiological models. The main result of these chapters is that
the stability properties of the endemic equilibrium depend on the number of infectious stages.
For n = 1, 2, 3, the endemic equilibrium is always stable whenever exists, regardless of the
particular choice of transmission and progression parameters βj, pj. However, for n ≥ 4,
instability of the endemic equilibrium is possible, and for any n ≥ 4 there exist stable and
unstable configurations of the parameters. In the unstable case, we expect oscillatory disease
dynamics. This has an important implication for the modelling of infectious diseases with
varying infectivity. During the course of infection, the infectivity of a host naturally changes
continuously alongside disease progression, and this may cause oscillations, as it has been
pointed out is some models in the context of HIV [34]. Multistage compartmental models
represent a discretization of this variation of infectivity in time. For some cases it may very
well be a possibility, that the real life disease dynamics is oscillatory, which we can capture
by a model with sufficiently many stages, but an oversimplification to three or less disease
stages causes that the model prediction of global stability will be false.

A somewhat similar phenomenon has been observed for waning immunity models of
SIR1 . . . RnS-type, where the immune period was divided into stages, and the stability
could be lost if there were at least three R-stages, see Section 4 in [24]. Since from an
epidemiological point of view it does not make a difference if a host is in an R-compartment,
or in an I-compartment with zero infectivity, the SIRS model in Section 4 of [24] can be
considered as a very special case of our system (3.1) with βj = 0 for j > 1 and p2 = · · · = pn.
Similarly, multistage SEIRS models can also be considered as special cases of SIS model
(3.1) with setting the transmission parameter βk = 0 for some appropriate compartments.
In this regard, we found a mistake in the literature where local asymptotic stability of the
endemic equilibrium in a multistage SEIRS model was claimed while in fact the endemic

63
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equilibrium can be unstable.
Then, in Chapter 5, we have investigated the effects of indicator symptom-based testing

on COVID-19. The benefits of increasing the testing rate k are demonstrated, suggesting
that, as long as other logistical constraints allow, the authorities should aim to keep it as
high as possible. The choice of the indicator symptom is of importance. We have shown that
not just its prevalence p should be taken into account but the size and seasonality of the
associated secondary symptom pool σ as well. Note that the analysis in this chapter did not
directly consider contact/transmission-reducing nonpharmaceutical interventions (NPIs), i.e.
curfew, closures of schools, wearing of masks, etc. Naturally, these interventions would affect
not just the spread of COVID-19, but of other diseases, hence, potentially decreasing the
secondary symptom pool σ as well. Such NPIs may be fitted into the presented framework
by varying the basic reproduction number R0 and σ, as seen in Sect. 5.4.1.

The quality of tests was not considered. The false negativity rate could be easily
modeled by a reduction factor in k. Handling the false positivity rate is more involved as
susceptible individuals (susceptible to COVID-19, but still displaying the indicator symptom,
i.e. members of σ) may be temporarily removed from the infectious chain just to reappear
later, after a precautionary quarantine. However, rRT-PCR-tests have very high specificity,
hence, false positives are rare.

We have modeled the transmission of COVID-19 using identical rates for the presymptomatic
P and symptomatic I classes. This choice is influenced by the current understanding that
according to the inferred infectivity profiles, the transmissibility prior to and after the onset
of symptoms is of similar magnitude, and the ratio of presymptomatic transmissions is almost
50% [65, 66, 67]. Nevertheless, using different rates for the two compartments would not
alter the computations heavily.

It is clear from the numerical simulations that indicator symptom-based testing, alone,
cannot prevent an outbreak. It has a modest effect in delaying and slowing down the
epidemic. Thus, symptom based testing alone may have clinical importance by providing
guidance about how to treat a given patient, but its impact as epidemic mitigation is
negligible. Therefore, in practice, authorities should opt to perform agile contact-tracing
based on positive COVID-19 tests. The effect of this additional intervention is not included
in our analysis. Nevertheless, it is safe to claim that the addition of contact-tracing would
considerably increase the benefits of any testing strategy, in particular, some individuals
would get removed from the presymptomatic compartment P and the latent compartment L
as well via additional testing or general quarantine for contacts of COVID-19 patients with
positive test result.

Then, in Chapter 6, we aim to analyse the possible application of mass testing in
mitigating the epidemic. Using a system of delay differential equations, we have established
a compartmental model including a temporary isolation of those tested positively (correctly
or falsely) during a mass testing. We consider mass testing with pooling (i.e. mixing several
samples and testing the mixed sample with a diagnostic test). We consider regular and
Dorfman pooling as well. The latter means that all individuals whose sample were included
in positively tested pools are tested once again, this time individually. Our results show
that although it may effectively reduce the number of infected, regular pooling increases the
number of quarantined people to such an extent that it makes a real-life application of this
method impossible.
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On the other hand, though requiring more tests, Dorfman pooling is shown to be an
efficient tool. At the same time, using some kind of pooling method, we can avoid placing
healthy people in quarantine unnecessarily. We have shown that choosing an optimal
(fixed) pooling size, disease burden can be reduced significantly. Furthermore, if pool size
is continuously adapted during the epidemic to the actual prevalence, one may achieve a
remarkable reduction in the number of infections with a significant shift in the time of the
epidemic peak even in the case of a severe outbreak. In the case of a milder epidemic with a
lower reproduction number, applying such an intervention may even completely prevent an
outbreak.

There are many layers of complexities of the COVID-19 pandemic that we have not
considered in our model. Here we have focused solely on the benefits of pooling, and its
optimization. As future work we propose to study the combination of pooling and more
involved testing strategies, such as risk oriented testing, where risk can be assessed by
symptoms, contacts, activity, or exposure.

The dissertation is based on three articles of the author. These publications are the
following:
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Összefoglaló

A disszertáció célja, hogy fertőző betegségek terjedésének dinamikáját léıró matematikai
modelleket álĺıtson fel, valamint e modellek matematikai anaĺızisét végezze el. A bevezetés
után a 2. fejezetben az SIS járványterjedési modelleket tekintjük át, a legegyszerűbbtől
kezdve az általánośıtott és továbbfejlesztett konstrukciókig. Majd, a 3. és 4. fejezetekben
egy több fertőző szakaszból álló SI1I2 . . . InS modellt vizsgálunk. Meghatározzuk a dinamika
szempontjából legfontosabb jellemzőket, az R0 reprodukciós számot és annak fontos küszöb-
tulajdonságát, nevezetesen, ha R0 kisebb vagy egyenlő, mint 1, akkor a betegségmentes
egyensúly globálisan aszimptotikusan stabil, ha pedig ez a mennyiség nagyobb, mint 1,
akkor a betegség egyenletesen perzisztens a populációban. Ezzel analóg eredmények az
irodalomban számos epidemiológiai modellel kapcsolatos munkában megtalálhatók. A 3. és
4. fejezet fő eredménye, hogy az endemikus egyensúly stabilitása nagyban függ a fertőző
szakaszok számától. Ha a fertőző I osztályt n = 1, 2 vagy 3 szakaszra osztjuk, a paraméterek
választásától függetlenül az endemikus egyensúly mindig stabil, amikor létezik. Viszont,
n ≥ 4 fertőző szakasz esetén minden n-re választhatók a paraméterek úgy, hogy az endemikus
egyensúly stabil legyen, de ugyanolyan n-re létezik olyan paraméterválasztás is, hogy az
endemikus egyensúly instabil legyen. Az instabil esetben oszcilláló dinamika figyelhető meg.
A fejezet eredményeinek következményei igen fontosak lehetnek a váltakozó fertőzékenységű
betegségek, mint például a HIV modellezésének kapcsán, ahol az oszcilláló dinamika lehetőségét
a [34] cikk vizsgálja. A több fertőző szakaszból álló, ún. multistage modellek diszkretizálják
ezt a változó fertőzékenységet. Az oszcilláló dinamikát megfelelő számú fertőző szakasz
bevezetésével meg lehet jeleńıteni a modellben, de egy túlságosan leegyszerűśıtett konstrukció
tévesen feltételezett globális stabilitást eredményezhet.

Hasonló jelenség figyelhető meg az eltűnő immunitást modellező, SIR1R2 . . . RnS-t́ıpusú
modellek esetében, ahol az immunis, R-periódus van szakaszokra osztva. Ha legalább három
R kompartmentre bontjuk az immunis időszakot, oszcilláló dinamika következhet be, lásd a
[24] 4. fejezetét. Epidemiológiai szempontból ekvivalens, ha a személy egy nulla fertőzékenységű
I-nek nevezett, vagy egy immunis, R-nek nevezett periódusban található, ı́gy a [24] cikk 4.
fejezetében szereplő SIRS modell a (3.1) modell egy speciális esetének tekinthető, zéró
fertőzési ráták és egyenlő p2 = · · · = pn paraméterek esetén. Hasonlóképp, a több szakaszra
bontott SEIRS-t́ıpusú modellek a transzmissziós βk paraméterek megfelelő választása esetén
az (3.1) SIS-modell speciális esetének tekinthetők. Így, az irodalomban szereplő néhány
cikkben az endemikus egyensúly általános lokális stabilitásáról szóló eredmények tévesek.
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Ezután, az 5. fejezetben a COVID-19 indikátortünet-alapú tesztelésének hatásait
vizsgáljuk. A k tesztelési ráta növelésének előnyeit mutatjuk be. Eredményünk szerint
érdemes a lehető legmagasabb tesztelési rátát alkalmazni, amı́g ezt más, pl. logisztikai
szempontok lehetővé teszik. Az indikátortünet megfelelő megválasztása is nagy jelentőséggel
b́ır, megmutatjuk, hogy ehhez nem csak a p prevalenciát kell figyelembe venni, hanem az
ún. másodlagos tünetesek csoportjának méretét és szezonalitását. Megjegyezzük, hogy
ebben a munkában nem vettünk figyelembe egyéb, nem-farmakológiai intézkedéseket (iskolák
bezárása, maszkviselés, stb.). Ezen intézkedések használata nem csak a COVID-19 terjedését
csökkenti, hanem más betegségekét is, ı́gy a másodlagos tünetesek csoportjának σ méretét
is. A nem-farmakológiai intézkedéseket az R0 alap reprodukciós szám és a σ változtatásával
tudjuk megjeleńıteni a modellben, lásd az 5.4.1 fejezetet. A fejezetben szereplő tesztelésnél
elhanyagoljuk a fals negat́ıv és fals pozit́ıv tesztarányt. A fejezetben a COVID-19 terjedésének
kapcsán mindenhol feltesszük, hogy a tünetmentesen fertőző P és a tüneteket produkáló
fertőző I osztályba tartozók ugyanolyan rátával fertőznek. Ezt a választást a [65, 66, 67]
cikkek indokolták. Megjegyezzük, hogy különböző rátákat alkalmazva a P és az I osztályban,
a modell dinamikája nem változik jelentős mértékben.

Szimulációink megmutatják, hogy az indikátortünet-alapú tesztelés önmagában nem alkal-
mas egy járványkitörés megelőzésére, pusztán a járvány csúcsának mérsékelt késleltetésére
és a terjedés csillaṕıtására. Ezért, a e módszer a járvány kezelésének szempontjából nem
jelentős. Így a hatóságok számára inkább hatékony kontaktkutatás javallott, mely eljárás
modellezésére a fejezet nem tér ki.

Ezután, a 6. fejezetben tömeges tesztelési eljárások modellezését mutatjuk be. Késleltetett
differenciálegyenlet-rendszert használva, ún. kompartmentális modellt alkotunk, amelyben
a pozit́ıv tesztet adók ideiglenes izolációja is szerepel. Kétféle ún. pooling teszteléssel
(a módszer több minta összeöntését, majd az összeöntött minta egy mintaként történő
kiértékelését jelenti) is foglalkozunk, bemutatjuk e tesztelés reguláris, illetve a Dorfman-féle
variációját. Utóbbi jelentése, hogy a pozit́ıv eredményt produkáló csoportokban összeöntött
mintákon külön-külön elvégzett teszteket hajtunk végre. Megmutatjuk, hogy ezzel a fertőzött-
ek száma bár jelentősen lecsökkenthető, a csoportos tesztelési eljárás miatt megnövekedett
fals pozit́ıv arány miatt a karanténba kerültek száma oly magas, ami a módszert alkalmazhatat-
lanná teszi.

Összehasonĺıtásunk alapján, habár az egyéni tesztek száma miatt nagyobb kapacitást
igénylő intézkedésről van szó, a Dorfman-féle csoportos tesztelés hatékony beavatkozásnak
minőśıthető. Ezzel egyidejűleg, a mintákat megfelelően csoportośıtva, hatékonyabbá tehetjük
az eljárást. Megmutatjuk, hogy optimalizált csoportméretet választva, jelentős számú megbe-
tegedést és elhalálozást akadályozhatunk meg. Továbbá rámutatunk, hogy adapt́ıv módszerrel,
a prevalenciától függő, optimalizált csoportméretet használva a járvány terjedése még jobban
csillaṕıtható. A járvány csúcsa nagyobb reprodukciós szám esetén is késleltethető, kisebb
R0 esetén pedig ez az intézkedés a járvány kitörését is megfékezheti. A fejezetben szereplő
modell tovább pontośıtható. A csoportos tesztelési módszer, más módszerekkel, pl. az
indikátortünetek figyelembe vételével egy jövőbeli kutatás alapját képezheti.
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[48] M. Salathé, C. L. Althaus, R. Neher, S. Stringhini, E. Hodcroft, J. Fellay et al.,
COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and
isolation, Swiss Med Wkly. 150(2020), w202205. https://dx.doi.org/10.4414/smw.
2020.20225

[49] R. Dorfman, The detection of defective members of large populations, Ann. Math.
Statistics, 14(1943), No. 4, 436–440. https://dx.doi.org/10.1214/aoms/1177731363

[50] I. Yelin, N. Aharony, E. Shaer-Tamar, A. Argoetti, E. Messer, D. Berenbaum et
al., Evaluation of COVID-19 RT-qPCR test in multi-sample pools, Clin. Infect. Dis.
71(2020), 2073–2078. https://dx.doi.org/10.1093/cid/ciaa531

[51] Y. Xing, G. W. K. Wong, W. Ni, X. Hu, Q. Xing, Rapid response to an outbreak
in Qingdao, China, N. Engl. J. Med. 383 (2020), e129. https://doi.org/10.1056/
NEJMc2032361

[52] Slovakia’s mass coronavirus testing finds 57,500 new cases, Financial Times,
10 November 2020. https://www.ft.com/content/6d20007c-25ad-4d1a-b678-

591acaa57df9

[53] E. Mahase, Operation Moonshot: GP clinics could be used to improve access to COVID-
19 tests, BMJ 370(2020), m3552. https://doi.org/10.1136/bmj.m3552

[54] Austria to roll out free home coronavirus testing from March, The Local,
15 February 2021. https://www.thelocal.at/20210215/free-coronavirus-home-

tests-to-be-rolled-out/

[55] “Alles gurgelt”, www.allesgurgelt.at.

[56] R. Verity, L. C. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, et al., Estimates
of the severity of coronavirus disease 2019: a model-based analysis, Lancet Infect. Dis.
20 (2020), 669–677. https://doi.org/10.1016/S1473-3099(20)30243-7

[57] World Health Organization, Considerations for quarantine of individuals in the
context of containment for coronavirus disease (COVID-19), Interim guidance, 19
March 2020. https://apps.who.int/iris/bitstream/handle/10665/331497/WHO-

2019-nCoV-IHR_Quarantine-2020.2-eng.pdf

[58] J. Riou, C. L. Althaus, Pattern of early human-to-human transmission of Wuhan
2019 novel coronavirus (2019-nCoV), December 2019 to January 2020, Euro Surveill.
25(2020), 2000058. https://doi.org/10.2807/1560-7917.ES.2020.25.4.2000058

[59] R. Moss, J. Wood, D. Brown, F. Shearer, A. J. Black, A. Cheng et al. Modelling the
impact of COVID-19 in Australia to inform transmission reducing measures and health
system preparedness medRχiv 2020.04.07.20056184, 2020, https://doi.org/10.1101/
2020.04.07.20056184

https://doi.org/10.1136/bmj.m1090
https://dx.doi.org/10.4414/smw.2020.20225
https://dx.doi.org/10.4414/smw.2020.20225
https://dx.doi.org/10.1214/aoms/1177731363
https://dx.doi.org/10.1093/cid/ciaa531
https://doi.org/10.1056/NEJMc2032361
https://doi.org/10.1056/NEJMc2032361
https://www.ft.com/content/6d20007c-25ad-4d1a-b678-591acaa57df9
https://www.ft.com/content/6d20007c-25ad-4d1a-b678-591acaa57df9
https://doi.org/10.1136/bmj.m3552
https://www.thelocal.at/20210215/free-coronavirus-home-tests-to-be-rolled-out/
https://www.thelocal.at/20210215/free-coronavirus-home-tests-to-be-rolled-out/
www.allesgurgelt.at
https://doi.org/10.1016/S1473-3099(20)30243-7
https://apps.who.int/iris/bitstream/handle/10665/331497/WHO-2019-nCoV-IHR_Quarantine-2020.2-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/331497/WHO-2019-nCoV-IHR_Quarantine-2020.2-eng.pdf
https://doi.org/10.2807/1560-7917.ES.2020.25.4.2000058
https://doi.org/10.1101/2020.04.07.20056184
https://doi.org/10.1101/2020.04.07.20056184


76 BIBLIOGRAPHY

[60] P. Kostoulas, P. Eusebi, S. Hartnack, Diagnostic Accuracy Estimates for COVID-19
Real-Time Polymerase Chain Reaction and Lateral Flow Immunoassay Tests With
Bayesian Latent-Class Models, Am J Epidemiol. 190 2021 (8) : 1689-1695. https:
//doi.org/10.1093/aje/kwab093

[61] S. Clifford, B. J. Quilty, T. W. Russell, Y. Liu, Y-W. D. Chan, C. A. B. Pearson
et al., Strategies to reduce the risk of SARS-CoV-2 re-introduction from international
travellers: modelling estimations for the United Kingdom, July 2020. Euro Surveill.
26(2021), 2001440. https://doi.org/10.2807/1560-7917.ES.2021.26.39.2001440

[62] J. Hellewell, T. W. Russell, The SAFER Investigators and Field Study Team. et
al., Estimating the effectiveness of routine asymptomatic PCR testing at different
frequencies for the detection of SARS-CoV-2 infections. BMC Med. 19(2021), 106.
https://doi.org/10.1186/s12916-021-01982-x

[63] M. Mancastroppa, R. Burioni, V. Colizza, A. Vezzani, Active and inactive quarantine
in epidemic spreading on adaptive activity-driven networks. Phys. Rev. E 102 2020,
020301(R). https://doi.org/10.1103/PhysRevE.102.020301
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