




Introduction
With the emergence of personalized therapeutic approaches, com-
putational drug testing, and even artificial tissue engineering
modeling of cell cultures have become a prominent area of math-
ematical and in silico biology. Understanding the complex collec-
tive behavior emerging from simple phenomena, such as migra-
tion, proliferation, or intercellular communication of individual
cells is essential to be productive in these fields.

Researchers use a wide variety of mathematical and numerical
tools to describe the behavior of populations. A feasible modeling
framework should be able to spatial behavior of the population,
incorporate actors that are discrete entities, often very few in
number. Moreover, the behavior of these actors are driven by a
large variety of traits, and we are interested in the dynamics that
evolves through the actual interactions between them.

In this thesis we follow the agent based computational simula-
tion approach to investigate the behavior of cell cultures. ABMs,
unlike continuum models, regard every particle as an individual
that follows a prescribed set of rules. Information about the sys-
tem can be obtained by analyzing the collective behavior of the
agents with statistical methods.

Background
In this thesis, we shall adapt and improve the stochastic simula-
tion algorithm (SSA)1 introduced by D.T. Gillespie to produce
computer-based numerical experiments of chemical reactions. A

1
A general method for numerically simulating the stochastic time evolution

of coupled chemical reactions,

Journal Of Computational Physics 22 (1976), 403–434
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key assumption in the SSA is that the chemical species are re-
acting in a well stirred environment. This may be feasible in
chemical systems, but seems to serve poor results for spatially
inhomogeneous biological systems.

Gillespie’s method was applied by Baker and Simpson to model
interacting cells that may move and divide on a lattice2. Al-
though the discrete lattice may at first appear to be a crude
approximation of the continuous space, it turned out to be ex-
tremely practical when the effect of volume exclusion plays im-
portant role.

Volume exclusion asserts that two cells cannot occupy the same
volume in space, thus cells are physical obstacles to each other.

Methods
In this work we introduced new stochastic simulation models and
the corresponding algorithms to efficiently simulate cell cultures
on a lattice of 1, 2 or 3 spatial dimensions. We used probabilistic
reasoning to show the equivalence of the new algorithm with the
former widely used one.

We implemented these algorithms in Python and run in silico

experiments to explain the behavior of cell populations. We also
fitted our models to real in vitro experimental data to check the
accuracy of the models.

2
Baker, R. E., and Simpson, M. J. Correcting mean-field approximations

for birth-death-movement processes. Phys. Rev. E 82 (10 2010), 041905
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Figure 0.1: Time evolution of a cell culture. The top left figure shows the

time evolution of a proliferating cell population on a lattice with car-

rying capacity K = 2500. In this experiment we chose the prolifera-

tion rate to be 1 and we assumed that no other reaction can happen to

the cells. The bottom left figure shows a snapshot of the ratio of cells

with j free neighbors in the population at t⇤ = 4.8 (see the formula in

the figure). In this state the total number of cells is N(t⇤) = 1000 and

very few cells – only 1.1% of the population – have j = 4 free adjacent

sites. In fact, most of the cells have j = 2 neighbors at t⇤. The top
right figure shows a snapshot of the lattice configuration at t⇤ and

the bottom right figure is an enlarged part of the highlighted area of

the whole lattice. On this latter figure we selected some cells: A, B,

C, D, and E having 0 . . . 4 free adjacent sites, in order. Their corre-

sponding free neighbors are colored green and the border of the lattice

is marked in gray. We assume that the cells perceive the boundary as

an occupied neighbor – thus both ’A’ cells have zero neighbors at t⇤.
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Summary of the research
We introduced a novel approach to incorporate possible cellu-
lar reactions into stochastic models of cell populations. To the
best of our knowledge, these reaction types have not been taken
into account in lattice-based stochastic simulations of cell cul-
tures. These new types of reactions may be easily applied to
complicated systems, enabling the generation of biologically fea-
sible stochastic cell culture simulations.

• We treat the reactions systematically and categorized them
according to how they depend on the local environment of
the cells.

• We introduced contact-inhibited, contact-promoted, and
spontaneous reactions. See Fig. 0.2.

Figure 0.2: Common types of reactions that may occur in a cell culture.

Symbol ⌦ indicates volume exclusion. The reactions defined in this

table are intended to provide a modeling framework for the exact

simulation of cell cultures, that can be easily adapted to the problem

the reader is considering.

We improved and derived new general purpose cell culture sim-
ulation algorithms.

• We significantly extended the lattice based cellular sim-
ulation algorithm by Baker and Simpson with the newly
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defined reactions. We call this algorithm the Prompt De-
cision Method (PDM). The PDM algorithm is a classical
accept–reject montecarlo simulation algorithm that may be
very computationally intensive due to the possible large
number of rejections in a crowded environment.

• Then we proposed and derived from first principles our ex-
act method, the Reduced Rate Method (RRM). It is based
on the classification of cells according to their free adjacent
sites (see Fig. 0.1).
In this algorithm, every selected reaction is executed, and
therefore, the running time and the resource requirements
see dramatic reductions.
From a theoretical viewpoint, this approach enables us to
define a state space in which the system is ’well-stirred’ in
the sense that the probability of a reaction to happen in the
next time interval �t does not depend explicitly on the posi-
tions of the reactants (cells), it only depends on the number
of their free adjacent sites. Thus, with the proper scaling
of the reaction rates and some appropriate assumptions, we
reduce the problem to Gillespie’s SSA formalism

• We proposed the equivalent but simplified version of the
RRM algorithm, the marginal Reduced Rate Method (see
Fig. 0.3)

• We showed that the PDM algorithm and our RRM algo-
rithm are mathematically equivalent.

• Since the design of the RRM and mRRM algorithm is based
on the classification of cells according to their free adjacent
sites, including new classes to this method is straightfor-
ward. For example, one may include several cell types.
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Figure 0.3: Illustration of the distributions in the marginal RRM algo-
rithm. The figures correspond to the snapshot of Fig.0.1. Suppose

we had all three reaction types in the simulation at state X(t⇤) of the

system. In case the next reaction would be a spontaneous reaction,

we should choose the class j of the target cell according to the distri-

bution on the middle figure, and then choose a particular target cell

from class j at random. This is equivalent of choosing a cell randomly

from the total population. It is clear from the figure that we would

choose the cell class j = 2 cell with the highest probability, as the ra-

tio of cells with two free adjacent sites is the highest in the population.

Since there are cells in all five classes, we may choose any class with

nonzero probability in a spontaneous reaction. If the next reaction

would be a contact-inhibited reaction, we should choose the class of

the target cell according to the distribution on the left figure. Since

0·N0 = 0, we choose class j = 0 with zero probability. Thus cells with

zero free neighbors do not participate in contact-inhibited reactions.

At this state of the system we would choose a class j = 2 cell with the

highest probability. If the next reaction would be a contact-promoted
reaction, we should choose the target cell type from the distribution

on the right. Since (4 � 4) · N4 = 0, we choose class j = 4 with

zero probability – cells with 4 free adjacent sites do not participate

in contact-promoted reactions. We would choose class j = 1 with the

highest probability at this state.

This could be achieved in the PDM method only in very
inconvenient ways, if it is possible at all.

We incorporated realistic cell cycle length to our models.

• We presented a new model and a new algorithm that is able
to model the evolution of cell populations with realistic cell
cycle length of any distribution.

• Our delay model stratifies the cell cell cycle to two stages:
Proliferating (P) and Motile (M). This simple approach
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makes it more convenient compared to multistage models3
where a large number (possibly hundreds) of stages are re-
quired to obtain acceptable results.

• We showed that cells may stay in a synchronized state for
a long period of time in our modeling method (Fig. 0.4).

Figure 0.4: Step-wise synchronization of cells may last for a long time, but it is

sensitive for the initial conditions. The figures show that the charac-

teristic step-like dynamics may cease to exist if the initial cell popu-

lation is in the proliferating state and their scheduled division events

are scattered uniformly in the interval [0,#].

• We also fit our model to in vitro experimental data (see
Fig. 0.5) measured by Vitadello et al.3.

Then, we put together the tools we have developed to propose
the Go or Grow algorithms that may generate accurate dynamics
of the behavior of certain tumor cells.

• We proposed four new models and algorithms to overcome
the difficulties that cell cycle causes in a spatial population
model.

3
Vittadello, S. T., McCue, S. W., Gunasingh, G., Haass, N. K., and Simp-

son, M. J. Mathematical models incorporating a multi-stage cell cycle

replicate normally-hidden inherent synchronization in cell proliferation.

Journal of The Royal Society Interface 16, 157 (2019), 20190382
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Figure 0.5: Cell cycle model with delay fitted to the experimental data by Vi-

tadello et al
3
. The scatter plot represents the measured data points,

the solid lines are the simulation outputs with the fitted parameters.

• Although all of them are based on very different assump-
tions, they show similar dynamics. Remarkably, the pa-
rameter domain for which synchronicity is preserved, is al-
most the same in all of them (see Fig. 0.6), suggesting that
this family of models is robust for this preserving property.
Thus, when only synchronicity is concerned, a wrong model
selection due to our possibly insufficient knowledge about
the system does not seem to elicit problematic behavior.

• We highlighted the possible therapeutic implications of our
findings.
Several antitumor therapies act at a specific stage in the
cell cycle. If we manage to include a step to the thera-
peutic process, in which we syncgronize the cells before the
antitumor drug is administered, we may reduce the effective
dosis of this substance.

Finally, we introduced the mean field delay differential equation
that is obtained from our stochastic cell cycle model.

• We investigated the model with analytical methods and
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Figure 0.6: The synchronicity landscape may help us to plan tumor therapies

which involves manipulation of the cell cycle length or proliferation

rate of cells.

compared the model predictions with the predictions of the
stochastic model.
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Összefoglalás
A személyre szabott terápiás megközelítések, a számítógépes gyó-
gyszerkísérletek, sőt a mesterséges szövet tenyésztés megjelenésé-
vel a sejtkultúrák modellezése a matematikai és in silico biológia
kiemelkedően fontos területévé vált.

Az egyszerű jelenségekből, például az egyes sejtek migrációjából,
proliferációjából vagy sejtek közötti kommunikációjából eredő
komplex kollektív viselkedés megértése elengedhetetlen ahhoz,
hogy eredményesek legyünk ezeken a területeken.

Ebben a dolgozatban az ágens alapú számítógépes szimulá-
ciós megközelítést (ABM - ágens alapú modell) követjük a sejt-
kultúrák viselkedésének vizsgálatához. Az ABM-ek a kontinuum-
modellektől eltérően minden modellbeli szereplőt diszkrét en-
titásnak tekintenek, amelyek egy előírt szabályrendszert követ-
nek. A rendszerről az ágensek kollektív viselkedésének statisztikai
módszerekkel történő elemzésével kap-hatunk információt.

A dolgozatban Baker és Simpson sejtek mozgását és osztódását
rácson vizsgáló modelljét4 jelentősen bővítve jutunk el egy olyan
modellezési rendszerig (PDM - Azonnali Döntési Módszer), amely
új, eddig nem használt reakciók hatását is bevonja a modellbe.

Majd első elvekből származtatunk két ekvivalens modellt (RRM
- Redukált Ráta Módszer és mRRM - marginális RRM), melyek
lényegesen gyorsabbak a korábbi megközelítéseknél. Megmutat-
juk, hogy a PDM és RRM módszerek matematikailag ekvivalensek.

A modelleket továbbfejlesztjük úgy, hogy alkalmasak legyenek
arra, hogy a sejtek valós sejtciklus hosszát is figyelembe vegyék.

Részletezzük az eredmények alkalmazhatóságát, sőt kiemeljük
azokat a lehetőségeket, melyek egy esetleges terápiás folyamat op-
timalizálásával csökkenthetik a terápiás gyógszerek mennyiségét.

4
Baker, R. E., and Simpson, M. J. Correcting mean-field approximations

for birth-death-movement processes. Phys. Rev. E 82 (10 2010), 041905
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