Software Maintenance Experiments
with the A+ Programming Language

and the Primitive Obsession
Bad Smell

Summary of the Ph.D. Dissertation

by
Péter Gal

Supervisor:
Dr. Akos Kiss

Doctoral School of Informatics
Department of Software Engineering

Faculty of Science and Informatics

University of Szeged

Introduction

Software maintenance is an extensive and diverse topic that focuses not only on fixing
defects found in applications, but also on software re-engineering, source code analysis,
calculation/evaluation of source code metrics, and detection of various code bad smells. Out
of these diverse topics, the author worked on two areas and the thesis is divided accordingly
into two parts. The experiments with the A+ programming language and the investigation of
the Primitive Obsession bad smell. These topics are tightly related to software maintenance
and quality aspects.

The first part focuses on the A+ language, creating a clean-room implementation for
the language on top of .NET. This implementation also provides insight into a few minor
challenges faced when software is re-implemented to be compatible with the original. The
runtime and source code metric comparisons of the original interpreter and the .NET variant
provide insight into both systems. In order to ease the connection between the NET and A+
worlds, a new language extension was developed that allows accessing various object-oriented
elements for A+.

In the second part, a newly created set of metrics are presented to handle a part of the
Primitive Obsession bad smell. The new metric is the Primitive Enthusiasm and its variants.
The idea was to highlight methods with comparatively more primitively typed arguments
than other methods in the same class. A derivation of this metric compares the method to
all other methods in the system and a variant that encapsulates both class local and system
level information.

Between these two main thesis points, the author states four main results as listed below:

1. A+ NET Implementation and Comparison of Runtimes

2. A+.NET Language Extension

3. Definition and Evaluation of Primitive Enthusiasm Metrics

4. The Bug Prediction Capabilities of the Primitive Enthusiasm Metrics

In the rest of the booklet, we summarize the results for each thesis point.

I. Experiments with the A+ Programming Language

The first thesis point discusses the A+.NET implementation and comparison of runtimes
with the addition of the object-oriented language extension. These are separated into two
main results that are presented in the following two sections.

1. A4+.NET Implementation and Comparison of Run-
times

There are only two official sources of information available on the syntax of A+: the Language
Reference [12], which gives only a textual description of the language, and the source code
of the reference implementation, which contains a hand-written lexer and parser, from which
the formal rules are non-trivial to reverse engineer. However, to ease the development of the
NET runtime, the A+ grammar had to be formalized.

In order to do this, the grammar of the A+ language reference was extensively investigated
and methodically processed. Furthermore, a multitude of simple and complex grammar tests
were created to understand the syntactic and semantic behaviour of the language. In the end,
a context-free grammar was constructed which can handle the required language elements
as described in the reference document. With the formalized grammar using a parser-lexer
generator, most of the A+ source code processing components can be generated. In our case,
we chose the ANTLR [13] parser generator framework to generate the required C# classes.
Interestingly, there were differences between the textual description for a given element in
the language reference and its allowed usage in the interpreter. In most cases, we tried to
follow the original interpreter’s behaviour to not break any existing A+ codes that were built
on such edge cases.

The high-level system design of the A+.NET runtime is depicted in Figure 1, highlighting
the main components layered on top of each other. The white boxes denote components
provided by the .NET framework, including the base class library and the DLR that aids
the adaptation of scripting languages to .NET. The shadowed boxes form the system that
was implemented by us.

Figure 1: Components of the A+ .NET runtime

Execution Engine

Code Generator

Parser Helpers

DLR

Lexers

.NET Base Class Library

The output of the generated parser is an abstract syntax tree (AST), which is transformed
by the Code Generator module into DLR Expression Trees (ET). During transformation,

2

part of the semantics — especially control structures and the structure of statements — are
expressed using ETs, while complex functionalities operating on diverse data structures get
usually transformed to method calls to various helper functions implemented in C#. The
entry point for the execution of an A+ script is the Execution Engine. This glues together
the parser, the Code Generator, and the DLR subsystem by feeding the A+ source code into
the lexer-parser, giving the resulting AST to the Code Generator, passing the generated ET
to the compiler of DLR, and finally, calling the compiled executable .NET IL code.

The .NET-based A+ execution engine can be used in two ways. Since DLR provides a
command line hosting API, it is easy to implement a Read-Eval-Loop interface that mimics
the behaviour of the reference interpreter implementation. However, the biggest advantage
of the .NET-based implementation is that it is just as simple to embed the runtime into
other .NET applications. Moreover, it is also possible to expose .NET methods and values
into the A+.NET runtime.

In order to do this, each value or function that the developer wants to register into the
A+ NET runtime must be wrapped into an AType and added to the engine’s runtime scope.
There are five types of values that can be registered: integers, doubles, characters, symbols,
and functions. The A+.NET types for these are AInt, AFloat, AChar, ASymbol, and AFunc
respectively. Naming the double type as float might seem strange at first sight. However,
floats represent double precision floating point number in A+ terminology. Functions require
a bit of special handling because each method that the developer wants to add to the scope
must adhere to some rules :

1. The method must be a static method.

2. The return type must be AType, which is the base interface type for all types in the
runtime.

3. The first argument must be an Aplus type, which contains the runtime environment
information and can be accessed by the method.

4. Any other arguments must be of AType type, and — most importantly — they must be
in reverse order.

The reverse order is required because the A+ language evaluates function arguments
from right to left while C# does not. Thus, in A+.NET runtime, we perform a trick and
require all methods to have a reverse order of arguments. So for an A+ function that accepts
two parameters, the second argument of the A+ function becomes the first non-environment
argument of the registered C# method, and the first argument in A+ will be the last
parameter in C#.

After the AType was created, it can be added to the runtime scope via the set variable
method call programmatically. In the case of functions, two annotations were developed to
make it possible to automatically load functions into the runtime. These annotations are
the AplusContext and AplusContextFunction. The annotation AplusContext specifies the
context name under which the methods should be registered and is part of the A+.NET run-
time. The function annotation specifies the name by which the method should be accessible
from A+. These classes and functions are looked up when the $load system command is
used with a context name. Under the hood, the load function will traverse the DLL files
currently loaded and will search for the AplusContext that has the given context name and
add each method annotated with AplusContextFunction to the current scope.

3

When the required functions or values are added to the A+.NET runtime’s scope it is
possible to use them just like any other variable/function in A+.

As the .NET version of A+ is now available, a comparison can be made to see how the
two engines perform. This was done in multiple ways. We compared the execution speed
and source code metrics focusing on maintainability. Although our primary goal for the
initial implementation of the .NET-based runtime was to make its observable behaviour
equivalent to the reference implementation as possible and, thus, we did not focus especially
on optimisations, we still wanted to get preliminary results on its runtime performance. In
order to do this, we extracted a code fragment from a real-life code base and extended it
with some code performing execution time measurement. The extracted A+ fragment was a
simple URL encoding algorithm. Four experiments were done that are depicted in Figure 2.

Figure 2: FEzecution times of the test script A) on the Linuz reference implementation, B)
on the .NET implementation, C) on the .NET implementation with string. join replaced,
and D) on the .NET implementation with uri.encode replaced.

60

'g 50
3 40—

~

o
£ 307

S
220
101

Column A is the execution time of the A+ script with the reference implementation.
Column B is the run time of the A+.NET execution. According to the measurements, the
reference implementation is about seven times faster than the .NET port at the moment.

In the case of column C, the string join method in the script was replaced by the equivalent
NET variant. This led to nearly 30% speedup in execution time. Finally, in column D, the
whole URL encoding code part was replaced by its .NET counterpart. The execution time
in this experiment dropped to 20% of the time measured for the reference implementation,
which is equivalent to a 5-fold speedup.

In terms of source code metrics, we determined functionally equivalent parts between the
two runtimes by using a common set of A+ test scripts to calculate source code function
level coverage. The two function sets, one in each system, are of comparable size and of
equivalent functionality and was used for further investigation into the maintainability of
the two systems. We used the Columbus toolchain [3] to analyse the sources, and as a result,
we got two size metrics — LOC ! and NOS ? — and two complexity metrics — McCC 3 and
NLE # — for each function.

ILOC: executed lines of code

2NOS: number of statements

3McCC: McCabe’s cyclomatic complexity
4NLE: nesting level

Table 1: Maintainability-related metrics measured for the A+ reference interpreter and

A+.NET
Metric Reference Interpreter A+ NET
min / avg / max |min/ avg / max
LOC 1 /10.07/ 375 1 /11.46 / 275
NOS 0 /13.08/ 372 | 0 /473) 71
McCC 1 /445 / 123 | 1 /238 / 71
NLE 0 / 104/ 6 0 /05 / 5

As depicted in Table 1, the averages of NOS, McCC [10], and NLE, and the maximums
of all metrics show that the size and the complexity of the functions in the reference imple-
mentation are larger than in A+.NET.

We also experimented with and investigated derived metrics. The calculation of state-
ments per line metric (NOS/LOC) revealed that in the reference implementation, the average
number of statements in every executable line of source code is about 3. Moreover, the most
“crowded” function contains 37 top-level statements in a line on average. This instance turned
out to be a single-line function. Overall, 30% of the investigated functions of the reference
interpreter have more than two statements on a line on average. For the A+.NET variant,
this is 0%. The combination of McCC and NOS metrics re-confirmed that circa 70% of the
compared A+.NET implementation functions are small and less complex methods. Overall,
the A+.NET version displayed better results in terms of maintainability.

With the creation of the A+.NET runtime, the lifetime of existing A+ applications can
be extended.

2. A4+.NET Language Extension

Exposing methods for A+ scripts requires a bit of boilerplate code, as in order to expose
a .NET method into the runtime, writing wrapper functions were required. To improve
the situation on this, we have reviewed the object-oriented concepts and investigated the
requirements for the A+ language to handle external objects conveniently, as the language
itself is not an object-oriented one by design.

The first step for this was the investigation of the required operations to handle objects
in a language. Based on this, the introduction of a way to represent objects in the runtime
is required. In the case of A+, this essentially means that a new type should be added to
the language. This was named AObject internally.

Furthermore, we identified four basic operations that should be supported by a language
to handle the most basic tasks on objects. These are the following:

e Accessing members (methods, variables, and properties): this SelectMemeber operation
provides the means to read variables and properties and to access methods. In most
cases, a name lookup on the input class or instance can find the required member. In
the case of A+, there is already a notation to do a similar lookup, but it is done on a

context. In order to integrate seamlessly into the syntax of the A+, the existing but
hitherto unused & symbol was chosen.

e Modifying variables and properties: the SetMember operation makes it possible to
assign new values to properties and values. Similarly to the previous case, a name
lookup is performed to find the member whose values should be changed. For this
operation, however, there is no need to introduce a new symbol. The same © symbol
can be used, and during the parsing, it is possible to detect if this symbol is on the left
side of an assignment or not. If it is on the left side, then it is a SetMember operation
otherwise it is a SelectMember operation.

e Using indexer properties: in .NET, indexing objects is done via a special property and
there are compound types where there is no other way of accessing elements, e.g., in
ArrayList. This is mainly required for the .NET binding. Fortunately, A+ already has
a syntax for indexing so we can leverage the already existing indexing operation, and if
a AObject is found then we can perform the indexing operation on the target object.

e Type casting: A new ¢ symbol is introduced into the language, providing the means
to perform the .NET type casting functionality in the runtime from the A+ code.

Using these and the power of the .NET runtime, it is possible to provide general functions
for A+.NET that can perform the required lookups and runtime code generations to avoid
unnecessary and repetitive manual coding. The most important requirement for the language
extension is that it must take into account the language’s most unique aspects, which is the
order of evaluation. The main reason for this is to not break existing code by adding new
precedence into the language.

As mentioned before in the SelectMember operations, .NET methods are looked up by
their names. However, just a method name is not always enough to correctly match a method
for invocation. It is possible that there is more than one method with the same name and
the difference is only in the number of arguments or in their types. Thus, to correctly select
a method, the types and number of parameters are also required. In such cases, a type
matching should be performed to see which is the most suitable method for a given method
call.

For the A+.NET, a type distance vector based type matching algorithm was developed.
First, any method is ignored if it does not have the same number of arguments as the number
of arguments supplied for the method invocation. In case there are no methods left to select
from, an error is reported during runtime that the number of parameters is incorrect. Second,
as the number of arguments is now correct, we can calculate the type distances. The type
distance calculation of non-primitive types (i.e., classes) is based on the inheritance hierarchy
of .NET types. If two types are in an inheritance relation, then the type distance of those
types is the length of the shortest path between them in the inheritance graph, with the
result of 0 if the two types are the same. If the two types are unrelated inheritance-wise,
their type distance is specified as infinite. For example: if there is a class named Bar which is
a subclass of class Place then the type distance between Bar and Place is one. For primitive
types, inheritance hierarchy is not applicable. However, the C# reference documentation [2,
§ 11.2] specifies conversion tables, which help to define a pseudo-hierarchy between them and
can be used the same way as the real inheritance for non-primitive types

Based on this type of distance information, it is now possible to define the type distance
vector. The type distance vector is a vector of N elements where N is the number of input
parameters for the current method invocation, and for each element, the type distance is
calculated between the input parameter and the parameter of the potential method. After
the distance calculations, the best method is chosen. A method is considered better than
the other if each element of its type distance vector is smaller or equal to the corresponding
element in the other method’s vector, but at least one element is strictly smaller than its
corresponding element.

The Author’s Contributions

The author worked on designing and developing the A+.NET clean-room implementation.
He designed the formal grammar for A+ that was previously non-existent. The comparison
and evaluation of the two A+ runtimes were carried out by the author both in terms of
runtime and in terms of source code/maintainability metrics. The author constructed and
formalized four new operations in order to allow object-oriented components to be used in
the A+ language. To resolve method call ambiguities, the author formalized a type vector
based approach.
The publications related to this thesis point are the following:

[7] Péter G4l and Akos Kiss. Implementation of an A+ Interpreter for .NET. In
Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT
2012), pages 297-302, Rome, Italy, July 2012. SciTePress.

[8] Péter Gal and Akos Kiss. A Comparison of Maintainability Metrics of Two A+ Inter-
preters. Proceedings of the 8th International Joint Conference on Software Technologies
(ICSOFT 2013), pages 292-297, Reykjavik, Iceland, July 2013. SciTePress.

[6] Péter Gal, Csaba Batori, and Akos Kiss. Extending A+ with Object-Oriented Ele-
ments: A Case Study for A+.NET. In 21st International Conference on Computational
Science and Its Applications (ICCSA 2021), Proceedings, Part IX, volume 12957 of
Lecture Notes in Computer Science (LNCS), pages 141-153, Cagliari, Italy, September
2021. Springer. Best paper award.

II. Primitive Enthusiasm Metrics

In this thesis point, our goal was to quantify the “too many primitives” definition seen in the
description of the Primitive Obsession bad smell or at least a part of it. This was achieved
by the creation of the Primitive Enthusiasm metrics and was shown that it can be used
to improve bug predictions. The two main results of this thesis point is presented in the
following sections.

3. Definition and Evaluation of Primitive Enthusiasm
Metrics

Primitive Obsession is a type of code smell that has lacked the attention of the research
community. Since defining Primitive Obsession is challenging with a single formula, the
author chose to deconstruct the bad smell into a smaller part.

A part of this deconstruction is the new Primitive Enthusiasm (PE) metric. The idea is
to quantify the primitive typed arguments in a function in such a way that the methods can
be compared to other methods in the same system. This metric does not employ a globally —
as in outside of a selected project’s scope — defined value but tries to capture each system’s
uniqueness by comparing the results to other methods in the same system. For the base of
the PE metric, the Formula 1 was created by us, which describes how the primitive-typed
parameters are collected for a given M; method.

Primitives(M;) = (P, ;|1 < 7 <|Pa;| A Pug,; € PrimitiveTypes) (1)
For this formula, the definitions of the parameters are the following:

e PrimativeT ypes is the set of types that are handled as primitive ones. For Java, this
contains the following types: boolean, byte, short, int, long, char, float, double,
and String.

e N represents the number of methods in the current class.

M; denotes the 2th method of the current class.

M. denotes the current method under investigation in the current class.
e P, denotes the list of types used for parameters in the M; method.
o Py, ; defines the type of the jth parameter in the M; method.

Using this Primitives function, we created three metrics. These are the Local Primitive
Enthusiasm (LPE), Global Primitive Enthusiasm (GPE), and Hot Primitive Enthusiasm
(HPE) metrics and are presented in the Formulae 2, 3, and 4 respectively.

N
> | Primitives(M;)|

LPE(M,) = = | Primitives(M.)|

| Py, |

=

1

(2

G|
> | Primitives(G;)|

GPE(M,) = = | Primitives(M,)| 3)
] | P, |
Z | P,
i=1
HPE(M,) == LPE(M,) A GPE(M,) (4)

In case of LPE and GPE the right hand side of the inequality is calculated for the
currently investigated method, whilst the left hand side gives the baseline. For LPE this
is the percentage of how many parameters of the current class are of primitive types. In
similar fashion, in the GPE formulae the left-hand side now describes the average number
of primitive-typed arguments in the whole system. The combination of these metrics is the
HPE metric. By definition these metrics are function level metrics but can be aggregated to
be a class level metric.

The metric calculation was implemented in the Open Static Analyzer [1] for JAVA.
For evaluation three often used projects were selected: Joda-Time version 2.9.9 5, Apache
Log4j ¢, and Apache Commons Math version 3.6.1 7. We experimented with the inclusion, or
exclusion of Java wrapper classes to see how the reported methods and classes change. The
results shown that there were only a few method difference by including or excluding these
wrapper classes. With the addition of a method skipping strategy to exclude all methods
that only have a single parameter, the number of suspicious methods were reduced. With
this experiment the best result was achieved when the HPE metric with wrapper classes were
taken into account.

4. The Bug Prediction Capabilities of the Primitive
Enthusiasm Metrics

In order to evaluate the bug prediction capabilities of the PE metrics and already existing
bug dataset [4] was used that contained pre-calculated metrics. This dataset was extended
with the PE metrics. However, the PE metrics are inherently method-based metrics. In
order to resolve this minor incompatibility, the PE metrics were aggregated by class.

An interesting experiment was to see what kind of correlation is there between the already
existing metrics and the new PE metrics. Not surprisingly, there were positive correlations
between PE and older metrics that are based on the number of parameters or the number
of methods as their base and the highest correlation was found between the NLM and LPE
metrics with a value of 0.58. The correlation between a few metrics that are calculated from
the number of methods was also investigated. These were the NLM®, TNLM®, NLPM!?,

Shttps://github.com/JodaOrg/joda-time
Shttps://github.com/apache/log4;
"https://github.com/apache/commons-math
8NLM: Number of Local Methods

9TNLM: Total Number of Local Methods
1IONLPM: Number of Local Public Methods

TNLPM!!, RFC'2, and WMC! metrics. Between these metrics — excluding the WMC - the
correlation values were above 0.70 in every case, and in some instances, it is even above 0.90.
The other set of interesting correlations with PE metrics are the ones related to lines of code:
LOCH, LLOC'®, CLOC!'®, DLOC!?, TLOC®, TLLOC' TCLOC?°, TNOS?', NOS?2. The
connection between these and the PE metrics can be attributed to the fact that if there are
more lines of code, then there are usually more methods in an application. With the 0.51
correlation value, the LPE, LOC, and TLOC metrics are the most connected. In every other
case, the correlation was less. Correlation between a selected set of line count related metrics
is similarly strong as in the number of methods based metrics case.

The bug prediction capabilities were tested by using the original and extended datasets
from which were 33 selected systems. We trained and evaluated them to see the weighted
F-measure changes between them. Furthermore, this training and evaluation were done in
two ways. First, a cross-project based evaluation was performed where each project was
trained and compared to another project. Out of the 1089 cases, the weighted F-measure
changes that are greater than or equal to 0.05 were observed in 123 cases, and in 107 cases,
the changes are less than -0.05. Overall, there were more improvements than reductions.

In the second experiment, the training and evaluation were done across project versions.
The worst results were provided by the Ant project and its various versions. In this case,
there are a bit more than 10 cases where the addition of the PE metrics resulted in slightly
negative values. However, overall the F-measure changes are small. The Velocity project
gave one of the best results with the addition of the PE metrics. In almost every version
combination, the addition of the new metrics improved the F-measure values. Based on
these results, we can conclude that adding the PE metrics to perform bug prediction across
multiple versions is a viable option.

The Author’s Contributions

The author designed the original Primitive Enthusiasm metric. Implemented the calculation
of this metric into a static analyzer for Java systems. The author participated in the selection
of the analyzed systems and the evaluation of the original Primitive Enthusiasm metric. He
designed the experiment to see how Java wrapper classes affect the metric results. Based
on the Primitive Enthusiasm metric, the LPE, GPE, and HPE metrics were formalized by
the author. With the usage of an existing bug dataset, correlations between the new metrics
and other existing ones were investigated by the author. For the bug prediction capabilities,
the target systems were selected by the author. He executed and evaluated the cross-project

HTNLPM: Total Number of Local Public Methods
I2RFC: Response set For Class

BBWMC: Weighted Methods per Class
ML,0OC: Lines of Code

ISLLOC: Logical Lines of Code

I6CLOC: Comment Lines of Code
1"DLOC: Documentation Lines of Code
BTLOC: Total Lines of Code

TLLOC: Total Logical Lines of Code
20TCLOC: Total Comment Lines of Code
2ITNOS: Total Number of Statements
22NOS: Number of Statements

10

based bug prediction experiment with the addition of PE metrics. The version-based bug
prediction investigation was also done by the author.
The publications related to this thesis point are the following:

[9] Péter Gal and Edit Peng6. Primitive Enthusiasm: A Road to Primitive Obsession.
In The 11th Conference of PhD Students in Computer Science (CSCS 2018), Volume
of short papers, pages 134-137, Szeged, Magyarorszag, June 2018.

[14] Edit Pengé and Péter G&l. Grasping Primitive Enthusiasm - Approaching Primitive
Obsession in Steps. In Proceedings of the 15th International Conference on Software
Technologies (ICSOFT 2018), pages 389-396, Porto, Portugal, July 2018. SciTePress.

[5] Péter GAal. Bug Prediction Capability of Primitive Enthusiasm Metrics. In 21st
International Conference on Computational Science and Its Applications (ICCSA 2021),
Proceedings, Part VII, volume 12955 of Lecture Notes in Computer Science (LNCS),
pages 246-262, Cagliari, Italy, September 2021. Springer.

11

Summary

In this thesis, two main points were discussed. Both of these topics are related to software
maintenance. The first is in connection with the A+ language, and the second is with the
Primitive Obsession bad smell.

In the first thesis point, the research focused on the A+.NET clean-room implementation
of the A+ language. During this work, we created a formalized grammar for A+ and
implemented the core components of the runtime. Using the reference implementation and
the .NET variant, the run time and source code metric evaluations were done. The reference
implementation is faster by default, but its maintainability aspects are questionable. Whereas
the .NET variant is better in terms of source code metrics but slower at the moment. Still,
the ability of the new version is that other .NET developers can easily extend it to expose
various components into the runtime. Furthermore, the ability to run A+ scripts not only on
Unix-like platforms can extend the lifetime of critical A+ applications. In order to further
ease the usage of .NET classes, the A+ language was extended with new operations which
bring object-oriented notations into the language. These notations enable access to class
members, change property values, and resolve method ambiguities without changing existing
language rules. However, even with this, the A+ language itself is still not an object-oriented
language. The two main results of the first thesis point are the new A+.NET interpreter
and the object-oriented language extension.

The second thesis point deals with the Primitive Obsession bad smell. The original idea
that “too many primitives are used” is a bit vague. In order to resolve this, we created
a concrete calculable metric to capture part of this bad smell, and it is called Primitive
Enthusiasm (PE), which we later renamed to Local Primitive Enthusiasm (LPE). This
metric captures the number of primitively typed parameters for a method in a given class
and compares it to the averages of the same class. We implemented the metric calculation
in the Open Static Analyzer [1] framework for the Java language and was evaluated on three
selected systems. During the evaluation, the effect of including or excluding Java wrapper
classes was investigated, resulting in a negligible difference. Based on this metric, we created
two other variants: Global Primitive Enthusiasm (GPE) and Hot Primitive Enthusiasm
(HPE). The GPE variant changes the metric’s formulae in a way that it now compares the
current function under investigation to the whole system. HPE then incorporates both LPE
and GPE results into a single result. We spent further work to see how the bug prediction
capabilities changes when the new PE metrics are added. We used an already existing bug
dataset [4] that contained pre-calculated metrics for this. We extended this dataset with
the PE metrics. However, the PE metrics are inherently method-level metrics, but this was
resolved by aggregating the PE metrics by class. An interesting experiment was to see the
correlation between the already existing metrics and the new PE metrics. There were a
few connections between the metrics, but overall it can be concluded that PE metrics can
provide benefits. We tested the bug prediction capabilities by using the original and extended
datasets. We done this training and evaluation in two ways. A cross-project based version,
where we trained on each project and evaluated it with all others, and a project-version,
where we used the different versions of the same system as training data and evaluated them
on the other versions. Based on the results provided by these experiments, we can conclude
that adding the PE metrics to aid in bug prediction is a viable option. In this second thesis
point the main results were the definition and evaluation Primitive Enthusiasm metrics and

12

the investigation of the bug prediction capabilities of the same metrics.
Finally, Table 2 summarizes the relation between the thesis points and the corresponding
publications.

Table 2: Correspondence between the main thesis points and the corresponding publications

[[7 8] [6]][9] [14] [5]

Acknowledgments

Firstly, I would like to thank Dr. Akos Kiss, my supervisor, for his professional help and
unique opinions during my PhD studies. Secondly, to co-author Csaba Batori, who also
shared the bizarre endeavour known as the A+ language, and to my other co-author and
PhD study partner, Edit Pengé. Finally, I would also like to express my gratitude for the
continuous support of my mother, my grandmother and my whole family

e Part ot this thesis was supported by grant NKFIH-1279-2/2020 of the Ministry for
Innovation and Technology, Hungary.

e This thesis was partially supported by the EU-funded Hungarian national grant GINOP-
2.3.2-15-2016-00037 titled “Internet of Living Things” and by the project “Integrated
program for training new generation of scientists in the fields of computer science”, no
EFOP-3.6.3-VEKOP-16-2017-0002. Part of this work was supported by the European
Union and co-funded by the European Social Fund.

e This thesis was partially supported by the EU-supported Hungarian national grant
GINOP-2.3.2-15-2016-00037 and by grant NKFIH-1279-2/2020 of the Ministry for
Innovation and Technology, Hungary.

References

[1] Department of Software Engineering, University of Szeged. Open Static Analyser. https:
//github.com/sed-inf-u-szeged/OpenStaticAnalyzer. [Last accessed: 3 May 2022].

[2] ECMA International. ECMA-33/ - C# Language Specification. 5th edition, December
2017. https://www.ecma-international.org/wp-content/uploads/ECMA-334_5th_
edition_december_2017.pdf [Last accessed 14 May 2022].

13

https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
https://www.ecma-international.org/wp-content/uploads/ECMA-334_5th_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-334_5th_edition_december_2017.pdf

3]

[10]

[11]

[12]

[13]

[14]

Rudolf Ferenc, Arpéd Beszédes, Mikko Tarkiainen, and Tibor Gyimoéthy. Columbus —
reverse engineering tool and schema for C++. In Proceedings of the 18th International
Conference on Software Maintenance (ICSM 2002), pages 172-181, Montréal, Canada,
2002. IEEE.

Rudolf Ferenc, Zoltan Téth, Gergely Ladanyi, Istvan Siket, and Tibor Gyimdéthy. A pub-
lic unified bug dataset for java and its assessment regarding metrics and bug prediction.
Software Quality Journal, Jun 2020.

Péter Gal. Bug prediction capability of primitive enthusiasm metrics. In Computational
Science and Its Applications — ICCSA 2021: 21st International Conference, Cagliari,
Italy, September 15-16, 2021, Proceedings, Part VII, pages 246-262, Berlin, Heidelberg,
2021. Springer-Verlag.

Péter Gal, Csaba Batori, and Akos Kiss. Extending A+ with object-oriented elements: A
case study for A+.NET. In Computational Science and Its Applications — I[CCSA 2021:

21st International Conference, Cagliari, Italy, September 13-16, 2021, Proceedings, Part
IX, page 141-153. Springer, 2021.

Péter Gal and Akos Kiss. Implementation of an A+ interpreter for .NET. In Proceedings
of the 7th International Conference on Software Paradigm Trends (ICSOFT 2012), pages
297-302, Rome, Italy, July 24-27, 2012. SciTePress.

Péter G4l and Akos Kiss. A comparison of maintainability metrics of two A+ interpreters.
In Proceedings of the Sth International Joint Conference on Software Technologies -
ICSOFT-EA, (ICSOFT 2013), pages 292-297. INSTICC, SciTePress, 2013.

Péter Gal and Edit Pengd. Primitive enthusiasm: A road to primitive obsession. In
The 11h Conference of PhD Students in Computer Science, pages 134-137. University
of Szeged, 2018.

Thomas J. McCabe. A complexity measure. IEEFE Transactions on Software Engineering,
(4):308-320, 1976.

Microsoft. Dynamic Language Runtime Querview. https://docs.
microsoft.com/en-us/dotnet/framework/reflection-and-codedom/
dynamic-language-runtime-overview |[Last accessed: 28 April 2022].

Morgan Stanley. A+ Language Reference, 1995-2008. https://github.com/
PlanetAPL/a-plus/blob/master/docs/language_reference.pdf [Last accessed: 15
August 2022].

Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Programmers. Pragmatic Bookshelf, first edition, May 2007.

Edit Pengd6. and Péter Gal. Grasping primitive enthusiasm - approaching primitive
obsession in steps. In Proceedings of the 15th International Conference on Software
Technologies. ICSOF'T, pages 389-396. INSTICC, SciTePress, 2018.

14

https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://github.com/PlanetAPL/a-plus/blob/master/docs/language_reference.pdf
https://github.com/PlanetAPL/a-plus/blob/master/docs/language_reference.pdf

(")sszefoglalé

A disszertacio ketto tézispontra bonthatd. Az elsé rész az A+ nyelvvel végzett kisérleteket
taglalja, mig a masodik rész a Primitive Obsession gyanus kdddal foglalkozik.

Az elsé tézispontban a kutatds egy A+ nyelv interpreter implementélasat targyalja amely
a .NET keretrendszerre épiil. Ezen munka soran formalizaltuk az A+ nyelvtan, mivel ezidaig
az A4-nak nem volt formélisan leirt nyelvtana. A nyelv dinamikussagdnak a tamogatasaért a
Dynamic Language Runtime [11] volt hasznélva. Az eredeti interpretert és a NET valtozatot
felhasznalva futas ideji és forraskdéd metrika alapu kiértékelés végeztiink. Az eredmények
alapjan a referencia implementacié ugyan gyorsabb, de karbantarthatésagi szempontbol rossz-
abbul teljesit a .NET verzidhoz képest. Ezzel szemben, a .NET lassabb, de jobb forraskéd
metrika adatokkal rendelkezik. A .NET interpreter fontos tulajdonsidga, hogy egyszeri
béviteni akar meglévo C# eljarasokkal, melyeket zokken6mentesen lehet A+ programok-
ban hasznalni. Ezzel akar a lassu kodrészleteket ki lehet cserélni .NET megfelel6jiikre.
Tovabba egy masik fontos aspektus, hogy a .NET valtozat kitolhatja a kritikus A+ alka-
lmazasok életidejét, hiszen nem csak Unix-szeri rendszereken miikodik. A .NET-ben talalhaté
kiilonféle osztalyok hasznalatanak megkonnyitése érdekében az A+ nyelvet kiterjesztettiik 1j
elemekkel. Ezek az 1j eljardsok, annotacidk lehetové teszik, hogy objektumorientalt jellegii
jelolésrendszerrel osztalyok adattagjait érhessiik el, extra csomagold eljardasok készitése nélkiil.
Fontos szempont volt a kiterjesztés soran, hogy a meglévé nyelvi szabalyokat ne sértsiik meg.
Azonban, ezzel maga az A+ nyelv még nem lett objektumorientalt. Az 1j A+.NET értelmezo
és az objektumorientalt nyelvi kiterjesztés az elso tézispont két {6 eredménye.

A maésodik tézispont a Primitive Obsession gyantus kéddal foglalkozik. Az eredeti gondo-
lat, miszerint “tul sok primitiv adattipus van hasznalva” nem jol behatarolhaté. Ezért egy
konkrétan kiszamithaté metrikat hoztunk létre ennek a gyants kdédnak a mérésére. Ezt Prim-
itive Enthusiasm (PE)-nak neveztiik el, amit kés6bb atneveztiink Local Primitive Enthusiasm
(LPE)-ra. A metrika egy adott eljards primitiv tipusi paramétereinek az ardanyéat hasonlitja
Ossze az aktudlisan vizsgalt osztdlyban talalhaté primitiv paramétereknek az aranyaval. A
metrika szamitasat beleintegraltuk az Open Static Analyzer [1] keretrendszerbe és harom
Java alapu rendszeren kiértékeltiik. A kiértékelés soran megvizsgaltuk, hogy a Java csomagold
osztalyok bevondsa vagy kizarasa milyen hatassal van a detektalt eljarasok mennyiségére.
Az eredmények alapjan az eltérés elhanyagolhaté. Az eredeti metrika alapjan ketté masik
véltozatot is készitettiink, A Global Primitive Enthusiasm (GPE) és a Hot Primitive En-
thusasm (HPE)-t. A GPE valtozat esetén az aktuédlis fiiggvény a rendszerben taldlhato
osszes eljarashoz van aranyositva, ezzel egy mas hatarértéket adva mint az LPE esetén. A
HPE pedig az LPE-t és GPE-t kombinalja egyetlen eredménybe. Ezutan megvizsgaltuk,
hogy az 14j metrikdkat hozzdadva egy meglévé hiba adatbézishoz [4] hogyan valtoznak a
hiba-elorejelzési lehetoségek. A meglévo adatbazis tobbféle osztaly szintli metrikat tartalmaz,
azonban a a PE metrikak a definicigjukbdl eredve eljaras szintii metrikak. Viszont a PE
értékek Osszegzésével osztaly szintli metrikat kaphatunk. Egy masik érdekes kisérletben
megnéztiik, hogy mekkora korrelacié van a meglévé metrikdk és a PE metrikak kozott. Bi-
zonyos eljaras szamossagot figyelembe vevd metrika esetén kapcsolat van a PE metrikakkal.
De 0Osszességében a PE metrikdk egy alternativat nyujtanak az eddigi metrikdkhoz képest. A
hiba-elorejelzési valtozast az eredeti és a PE metrikakkal kibovitett adathalmazon végeztiik el.
A tanitas és kiértékelés kétféleképpen tortént. Az elsé esetben, egy a projektet minden mas
projekttel vald tanitas-kiértékelés sorozatnak vetettiik ala. Mig a masik esetben ugyanazon

15

projekt kiilonboz6 verzidin tortént a tanitas és kiértékelés. Mindkét kisérlet alapjan arra a
kovetkeztetésre jutottunk, hogy a PE metrikdk hozzdadasa hibaadatbazisokhoz segithet a
hibak elorejelzésében. A masodik tézispont ketto f6 eredménye a PE metrikak megalkotésa,
azoknak a kiértékelése és a hiba-elorejelzési képességének a vizsgalata.

16

Témavezetoi Nyilatkozat

Alulirott Dr. Kiss Akos, mint Gal Péter doktorjeldlt témavezetéije kijelentem, hogy a jeldlt
"Software Maintenance Experiments with the A+ Programming Language and the
Primitive Obsession Bad Smell” cim értekezésében felhasznalt eredmények a jelolt sajat
hozzajarulasat tiikrozik.

Szeged, 2022. augusztus 23.

Dr. Kiss Akos
Témavezetd

Tarsszerzoi Nyilatkozat

Kijelentem, hogy ismerem Gal Péter PhD fokozatra palyazé "Software Maintenance Ex-
periments with the A+ Programming Language and the Primitive Obsession Bad
Smell” cim(i disszertdcidjat. A disszertacioban szerepld €s a

1.

Péter Gal and Akos Kiss. Implementation of an A+ Interpreter for .NET. In Proceed-
ings of the 7th International Conference on Software Paradigm Trends (ICSOFT 2012),
pages 297-302, Rome, Italy, July 2012. SciTePress.

Péter Gal and Akos Kiss. A Comparison of Maintainability Metrics of Two A+ In-
terpreters. Proceedings of the 8th International Joint Conference on Software Tech-
nologies (ICSOFT 2013), pages 292-297, Reykjavik, Iceland, July 2013. SciTePress.

Péter Gal, Csaba Bétori, and Akos Kiss. Extending A+ with Object-Oriented Ele-
ments: A Case Study for A+.NET. In 21st International Conference on Computational
Science and Its Applications (ICCSA 2021), Proceedings, Part IX, volume 12957 of Lec-
ture Notes in Computer Science (LNCS), pages 141-153, Cagliari, Italy, September
2021. Springer.

cikkekben publikélt eredményekre vonatkozdan kijelentem, hogy az aldbbi eredményekben
a palydzé hozzajaruldsa volt meghatdrozo:

Az A+ nyelvhez kordbban nem létez6 kornyezetfiiggetlen nyelvtan formalizélasa.
[1] (4. fejezer)

Az A+ .NET futtaté kornyezet tervezése és fejlesztése. [1] (4. fejezet)

Az eredeti A+ interpreter és az A+.NET Osszehasonlitdsa sebesség €s szoftver kar-
bantarthatésdgi metrikdk alapjan. [2] (5. fejezet)

Az A+ nyelvhez a kiils6 objektumok kezelését lehet6vé tevo nyelvi elemek tervezése
és formalizalasa. [3] (6. fejezet)

Az objektum orientalt kiterjesztéshez hasznalt tipusegyezést keresé vektor alapii megoldds
kidolgozasa. [3] (6. fejezet)

Szeged, 2022. augusztus 23.

L.’/

Dr. Kiss Akos
Tarsszerz6 és Témavezetd

Tarsszerzoi Nyilatkozat

Kijelentem, hogy ismerem Gal Péter PhD fokozatra palyazo "Software Maintenance Ex-
penments with the A+ Programming Language and the Pmmtxve Obsession Bad
Smell” cimi disszertaciGjat. A disszertdcidban szereplS és a

1. Péter Gal, Csaba Batori, and Akos Kiss. Extending A+ with Object-Oriented Ele-
ments: A Case Study for A+.NET. In 21st International Conference on Computational
Science and Its Applications (ICCSA 2021), Proceedings, Part IX, volume 12957 of Lec-
ture Notes in Computer Science (LNCS), pages 141-153, Cagliari, Italy, September
2021. Springer.

cikkben publikélt eredményekre vonatkozdan kijelentem, hogy az alabbi eredményekben
a palydzo hozzajdruldsa volt meghatirozo:

* Az A+ nyelvhez a kiilsé objektumok kezelését lehetdvé tev6 nyelvi elemek tervezése
és formalizalasa. [1] (6. fejezet)

e Az objektum orientalt kiterjesztéshez hasznalt tipus egyezést keresd vektor alapi
megoldds kidolgozdsa. [1] (6. fejezet)

A kovetkezd eredményekben az én hozzajaruldsom volt meghatdrozo:

* Az A+.NET-hez a formalizdlt nyelvi kiterjesztés implementdldsa és tesztelése. [1] (6.
fejezet)

* A vektor alapu tipus egyezést vizsgdlé algoritmus implementdldsa. [1] (6. fejezet)

Szeged, 2022. mdjus 4.

e C

Batori Csaba
Tarsszerzd

Tarsszerzoi Nyilatkozat

Kijelentem, hogy ismerem Gal Péter PhD fokozatra pélydz6 "Software Maintenance Ex-
periments with the A+ Programming Language and the Primitive Obsession Bad
Smell” cimi disszertdcidjat. A disszertacidban szerepld és a

1. Edit Pengd and Péter Gal. Grasping Primitive Enthusiasm - Approaching Primitive
Obsession in Steps. In Proceedings of the 13th International Conference on Software
Technologies (ICSOFT 2018), pages 389-396, Porto, Portugal, July 2018. SciTePress.

2. Péter Gal and Edit Peng6. Primitive Enthusiasm: A Road to Primitive Obsession.
In The 11th Conference of PhD Students in Computer Science (CSCS 2018), Volume of
short papers, pages 134-137, Szeged, Magyarorszdg, June 2018.

cikkekben publikalt eredményekre vonatkozdan kijelentem, hogy a kovetkezé eredményekhez
valé hozzadjarulasunk oszthatatlan:

¢ A statikus elemzéshez haszndlt Java rendszerek kivalasztdsa. [1, 2] (11. fejezet)
¢ Az elemzési eredmények kiértékelése, statisztikdk készitése. [1, 2] (11. fejezet)
A kovetkezd eredményekben a pdlydzé hozzijaruldsa volt meghatdrozé:

* A Primitive Enthusiasm objektum orientalt forrdskdd metrika kidolgozasa. [1, 2]
(10. fejezet)

* A Primitive Enthusiasm metrikat szdmitd statikus elemz6 komponens implementalasa.
[1, 2] (11. fejezet)

* A Java csomagol6 osztdlyokkal vald kisérlet kidolgozdsa. [2] (11. fejezet)
* Az LPE, GPE, HPE metrikdk elméleti kidolgozasa és formalizdldsa. [2] (10. fejezet)
A kovetkez6 eredményekben az én hozzdjaruldsom volt meghatdrozd:

¢ A code smell-ekkel, statikus elemzéssel kapcsolatos irodalom feldolgozasa. [1, 2]

Az MPC, SFPU, SFP-SCU metrikdk elméleti kidolgozdsa. [1]

Az elemzés sordn haszndlt elimindciés mddszerek kidolgozésa. [2]

A tovabbfejlesztett metrikdkat szamitd statikus elemzd komponens implementéldsa.

[2]

Szeged, 2022. mdjus 4.

) =
\ ‘ih r(_ \ IJ
o
Pengd Edit
TArsszerzd

