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Introduction

Software maintenance is an extensive and diverse topic that focuses not only on fixing
defects found in applications, but also on software re-engineering, source code analysis,
calculation/evaluation of source code metrics, and detection of various code bad smells. Out
of these diverse topics, the author worked on two areas and the thesis is divided accordingly
into two parts. The experiments with the A+ programming language and the investigation of
the Primitive Obsession bad smell. These topics are tightly related to software maintenance
and quality aspects.

The first part focuses on the A+ language, creating a clean-room implementation for
the language on top of .NET. This implementation also provides insight into a few minor
challenges faced when software is re-implemented to be compatible with the original. The
runtime and source code metric comparisons of the original interpreter and the .NET variant
provide insight into both systems. In order to ease the connection between the .NET and A+
worlds, a new language extension was developed that allows accessing various object-oriented
elements for A+.

In the second part, a newly created set of metrics are presented to handle a part of the
Primitive Obsession bad smell. The new metric is the Primitive Enthusiasm and its variants.
The idea was to highlight methods with comparatively more primitively typed arguments
than other methods in the same class. A derivation of this metric compares the method to
all other methods in the system and a variant that encapsulates both class local and system
level information.

Between these two main thesis points, the author states four main results as listed below:

1. A+.NET Implementation and Comparison of Runtimes

2. A+.NET Language Extension

3. Definition and Evaluation of Primitive Enthusiasm Metrics

4. The Bug Prediction Capabilities of the Primitive Enthusiasm Metrics

In the rest of the booklet, we summarize the results for each thesis point.
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I. Experiments with the A+ Programming Language

The first thesis point discusses the A+.NET implementation and comparison of runtimes
with the addition of the object-oriented language extension. These are separated into two
main results that are presented in the following two sections.

1. A+.NET Implementation and Comparison of Run-

times

There are only two official sources of information available on the syntax of A+: the Language
Reference [12], which gives only a textual description of the language, and the source code
of the reference implementation, which contains a hand-written lexer and parser, from which
the formal rules are non-trivial to reverse engineer. However, to ease the development of the
.NET runtime, the A+ grammar had to be formalized.

In order to do this, the grammar of the A+ language reference was extensively investigated
and methodically processed. Furthermore, a multitude of simple and complex grammar tests
were created to understand the syntactic and semantic behaviour of the language. In the end,
a context-free grammar was constructed which can handle the required language elements
as described in the reference document. With the formalized grammar using a parser-lexer
generator, most of the A+ source code processing components can be generated. In our case,
we chose the ANTLR [13] parser generator framework to generate the required C# classes.
Interestingly, there were differences between the textual description for a given element in
the language reference and its allowed usage in the interpreter. In most cases, we tried to
follow the original interpreter’s behaviour to not break any existing A+ codes that were built
on such edge cases.

The high-level system design of the A+.NET runtime is depicted in Figure 1, highlighting
the main components layered on top of each other. The white boxes denote components
provided by the .NET framework, including the base class library and the DLR that aids
the adaptation of scripting languages to .NET. The shadowed boxes form the system that
was implemented by us.

Figure 1: Components of the A+ .NET runtime

The output of the generated parser is an abstract syntax tree (AST), which is transformed
by the Code Generator module into DLR Expression Trees (ET). During transformation,
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part of the semantics – especially control structures and the structure of statements – are
expressed using ETs, while complex functionalities operating on diverse data structures get
usually transformed to method calls to various helper functions implemented in C#. The
entry point for the execution of an A+ script is the Execution Engine. This glues together
the parser, the Code Generator, and the DLR subsystem by feeding the A+ source code into
the lexer-parser, giving the resulting AST to the Code Generator, passing the generated ET
to the compiler of DLR, and finally, calling the compiled executable .NET IL code.

The .NET-based A+ execution engine can be used in two ways. Since DLR provides a
command line hosting API, it is easy to implement a Read-Eval-Loop interface that mimics
the behaviour of the reference interpreter implementation. However, the biggest advantage
of the .NET-based implementation is that it is just as simple to embed the runtime into
other .NET applications. Moreover, it is also possible to expose .NET methods and values
into the A+.NET runtime.

In order to do this, each value or function that the developer wants to register into the
A+.NET runtime must be wrapped into an AType and added to the engine’s runtime scope.
There are five types of values that can be registered: integers, doubles, characters, symbols,
and functions. The A+.NET types for these are AInt, AFloat, AChar, ASymbol, and AFunc

respectively. Naming the double type as float might seem strange at first sight. However,
floats represent double precision floating point number in A+ terminology. Functions require
a bit of special handling because each method that the developer wants to add to the scope
must adhere to some rules :

1. The method must be a static method.

2. The return type must be AType, which is the base interface type for all types in the
runtime.

3. The first argument must be an Aplus type, which contains the runtime environment
information and can be accessed by the method.

4. Any other arguments must be of AType type, and – most importantly – they must be
in reverse order.

The reverse order is required because the A+ language evaluates function arguments
from right to left while C# does not. Thus, in A+.NET runtime, we perform a trick and
require all methods to have a reverse order of arguments. So for an A+ function that accepts
two parameters, the second argument of the A+ function becomes the first non-environment
argument of the registered C# method, and the first argument in A+ will be the last
parameter in C#.

After the AType was created, it can be added to the runtime scope via the set variable
method call programmatically. In the case of functions, two annotations were developed to
make it possible to automatically load functions into the runtime. These annotations are
the AplusContext and AplusContextFunction. The annotation AplusContext specifies the
context name under which the methods should be registered and is part of the A+.NET run-
time. The function annotation specifies the name by which the method should be accessible
from A+. These classes and functions are looked up when the $load system command is
used with a context name. Under the hood, the load function will traverse the DLL files
currently loaded and will search for the AplusContext that has the given context name and
add each method annotated with AplusContextFunction to the current scope.
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When the required functions or values are added to the A+.NET runtime’s scope it is
possible to use them just like any other variable/function in A+.

As the .NET version of A+ is now available, a comparison can be made to see how the
two engines perform. This was done in multiple ways. We compared the execution speed
and source code metrics focusing on maintainability. Although our primary goal for the
initial implementation of the .NET-based runtime was to make its observable behaviour
equivalent to the reference implementation as possible and, thus, we did not focus especially
on optimisations, we still wanted to get preliminary results on its runtime performance. In
order to do this, we extracted a code fragment from a real-life code base and extended it
with some code performing execution time measurement. The extracted A+ fragment was a
simple URL encoding algorithm. Four experiments were done that are depicted in Figure 2.

Figure 2: Execution times of the test script A) on the Linux reference implementation, B)
on the .NET implementation, C) on the .NET implementation with string.join replaced,
and D) on the .NET implementation with uri.encode replaced.

Column A is the execution time of the A+ script with the reference implementation.
Column B is the run time of the A+.NET execution. According to the measurements, the
reference implementation is about seven times faster than the .NET port at the moment.

In the case of column C, the string join method in the script was replaced by the equivalent
.NET variant. This led to nearly 30% speedup in execution time. Finally, in column D, the
whole URL encoding code part was replaced by its .NET counterpart. The execution time
in this experiment dropped to 20% of the time measured for the reference implementation,
which is equivalent to a 5-fold speedup.

In terms of source code metrics, we determined functionally equivalent parts between the
two runtimes by using a common set of A+ test scripts to calculate source code function
level coverage. The two function sets, one in each system, are of comparable size and of
equivalent functionality and was used for further investigation into the maintainability of
the two systems. We used the Columbus toolchain [3] to analyse the sources, and as a result,
we got two size metrics – LOC 1 and NOS 2 – and two complexity metrics – McCC 3 and
NLE 4 – for each function.

1LOC: executed lines of code
2NOS: number of statements
3McCC: McCabe’s cyclomatic complexity
4NLE: nesting level
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Table 1: Maintainability-related metrics measured for the A+ reference interpreter and
A+.NET

Metric Reference Interpreter A+.NET
min / avg / max min / avg / max

LOC 1 / 10.07 / 375 1 / 11.46 / 275
NOS 0 / 13.08 / 372 0 / 4.73 / 71
McCC 1 / 4.45 / 123 1 / 2.38 / 71
NLE 0 / 1.04 / 6 0 / 0.59 / 5

As depicted in Table 1, the averages of NOS, McCC [10], and NLE, and the maximums
of all metrics show that the size and the complexity of the functions in the reference imple-
mentation are larger than in A+.NET.

We also experimented with and investigated derived metrics. The calculation of state-
ments per line metric (NOS/LOC) revealed that in the reference implementation, the average
number of statements in every executable line of source code is about 3. Moreover, the most
“crowded” function contains 37 top-level statements in a line on average. This instance turned
out to be a single-line function. Overall, 30% of the investigated functions of the reference
interpreter have more than two statements on a line on average. For the A+.NET variant,
this is 0%. The combination of McCC and NOS metrics re-confirmed that circa 70% of the
compared A+.NET implementation functions are small and less complex methods. Overall,
the A+.NET version displayed better results in terms of maintainability.

With the creation of the A+.NET runtime, the lifetime of existing A+ applications can
be extended.

2. A+.NET Language Extension

Exposing methods for A+ scripts requires a bit of boilerplate code, as in order to expose
a .NET method into the runtime, writing wrapper functions were required. To improve
the situation on this, we have reviewed the object-oriented concepts and investigated the
requirements for the A+ language to handle external objects conveniently, as the language
itself is not an object-oriented one by design.

The first step for this was the investigation of the required operations to handle objects
in a language. Based on this, the introduction of a way to represent objects in the runtime
is required. In the case of A+, this essentially means that a new type should be added to
the language. This was named AObject internally.

Furthermore, we identified four basic operations that should be supported by a language
to handle the most basic tasks on objects. These are the following:

• Accessing members (methods, variables, and properties): this SelectMemeber operation
provides the means to read variables and properties and to access methods. In most
cases, a name lookup on the input class or instance can find the required member. In
the case of A+, there is already a notation to do a similar lookup, but it is done on a
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context. In order to integrate seamlessly into the syntax of the A+, the existing but
hitherto unused ⊖ symbol was chosen.

• Modifying variables and properties: the SetMember operation makes it possible to
assign new values to properties and values. Similarly to the previous case, a name
lookup is performed to find the member whose values should be changed. For this
operation, however, there is no need to introduce a new symbol. The same ⊖ symbol
can be used, and during the parsing, it is possible to detect if this symbol is on the left
side of an assignment or not. If it is on the left side, then it is a SetMember operation
otherwise it is a SelectMember operation.

• Using indexer properties: in .NET, indexing objects is done via a special property and
there are compound types where there is no other way of accessing elements, e.g., in
ArrayList. This is mainly required for the .NET binding. Fortunately, A+ already has
a syntax for indexing so we can leverage the already existing indexing operation, and if
a AObject is found then we can perform the indexing operation on the target object.

• Type casting: A new ⋄ symbol is introduced into the language, providing the means
to perform the .NET type casting functionality in the runtime from the A+ code.

Using these and the power of the .NET runtime, it is possible to provide general functions
for A+.NET that can perform the required lookups and runtime code generations to avoid
unnecessary and repetitive manual coding. The most important requirement for the language
extension is that it must take into account the language’s most unique aspects, which is the
order of evaluation. The main reason for this is to not break existing code by adding new
precedence into the language.

As mentioned before in the SelectMember operations, .NET methods are looked up by
their names. However, just a method name is not always enough to correctly match a method
for invocation. It is possible that there is more than one method with the same name and
the difference is only in the number of arguments or in their types. Thus, to correctly select
a method, the types and number of parameters are also required. In such cases, a type
matching should be performed to see which is the most suitable method for a given method
call.

For the A+.NET, a type distance vector based type matching algorithm was developed.
First, any method is ignored if it does not have the same number of arguments as the number
of arguments supplied for the method invocation. In case there are no methods left to select
from, an error is reported during runtime that the number of parameters is incorrect. Second,
as the number of arguments is now correct, we can calculate the type distances. The type
distance calculation of non-primitive types (i.e., classes) is based on the inheritance hierarchy
of .NET types. If two types are in an inheritance relation, then the type distance of those
types is the length of the shortest path between them in the inheritance graph, with the
result of 0 if the two types are the same. If the two types are unrelated inheritance-wise,
their type distance is specified as infinite. For example: if there is a class named Bar which is
a subclass of class Place then the type distance between Bar and Place is one. For primitive
types, inheritance hierarchy is not applicable. However, the C# reference documentation [2,
§ 11.2] specifies conversion tables, which help to define a pseudo-hierarchy between them and
can be used the same way as the real inheritance for non-primitive types
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Based on this type of distance information, it is now possible to define the type distance
vector. The type distance vector is a vector of N elements where N is the number of input
parameters for the current method invocation, and for each element, the type distance is
calculated between the input parameter and the parameter of the potential method. After
the distance calculations, the best method is chosen. A method is considered better than
the other if each element of its type distance vector is smaller or equal to the corresponding
element in the other method’s vector, but at least one element is strictly smaller than its
corresponding element.

The Author’s Contributions

The author worked on designing and developing the A+.NET clean-room implementation.
He designed the formal grammar for A+ that was previously non-existent. The comparison
and evaluation of the two A+ runtimes were carried out by the author both in terms of
runtime and in terms of source code/maintainability metrics. The author constructed and
formalized four new operations in order to allow object-oriented components to be used in
the A+ language. To resolve method call ambiguities, the author formalized a type vector
based approach.

The publications related to this thesis point are the following:

[7] Péter Gál and Ákos Kiss. Implementation of an A+ Interpreter for .NET. In
Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT
2012), pages 297-302, Rome, Italy, July 2012. SciTePress.

[8] Péter Gál and Ákos Kiss. A Comparison of Maintainability Metrics of Two A+ Inter-
preters. Proceedings of the 8th International Joint Conference on Software Technologies
(ICSOFT 2013), pages 292-297, Reykjav́ık, Iceland, July 2013. SciTePress.

[6] Péter Gál, Csaba Bátori, and Ákos Kiss. Extending A+ with Object-Oriented Ele-
ments: A Case Study for A+.NET. In 21st International Conference on Computational
Science and Its Applications (ICCSA 2021), Proceedings, Part IX, volume 12957 of
Lecture Notes in Computer Science (LNCS), pages 141-153, Cagliari, Italy, September
2021. Springer. Best paper award.
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II. Primitive Enthusiasm Metrics

In this thesis point, our goal was to quantify the “too many primitives” definition seen in the
description of the Primitive Obsession bad smell or at least a part of it. This was achieved
by the creation of the Primitive Enthusiasm metrics and was shown that it can be used
to improve bug predictions. The two main results of this thesis point is presented in the
following sections.

3. Definition and Evaluation of Primitive Enthusiasm

Metrics

Primitive Obsession is a type of code smell that has lacked the attention of the research
community. Since defining Primitive Obsession is challenging with a single formula, the
author chose to deconstruct the bad smell into a smaller part.

A part of this deconstruction is the new Primitive Enthusiasm (PE) metric. The idea is
to quantify the primitive typed arguments in a function in such a way that the methods can
be compared to other methods in the same system. This metric does not employ a globally –
as in outside of a selected project’s scope – defined value but tries to capture each system’s
uniqueness by comparing the results to other methods in the same system. For the base of
the PE metric, the Formula 1 was created by us, which describes how the primitive-typed
parameters are collected for a given Mi method.

Primitives(Mi) := ⟨PMi,j|1 ≤ j ≤ |PMi
| ∧ PMi,j ∈ PrimitiveTypes⟩ (1)

For this formula, the definitions of the parameters are the following:

• PrimitiveTypes is the set of types that are handled as primitive ones. For Java, this
contains the following types: boolean, byte, short, int, long, char, float, double,
and String.

• N represents the number of methods in the current class.

• Mi denotes the ith method of the current class.

• Mc denotes the current method under investigation in the current class.

• PMi
denotes the list of types used for parameters in the Mi method.

• PMi,j defines the type of the jth parameter in the Mi method.

Using this Primitives function, we created three metrics. These are the Local Primitive
Enthusiasm (LPE), Global Primitive Enthusiasm (GPE), and Hot Primitive Enthusiasm
(HPE) metrics and are presented in the Formulae 2, 3, and 4 respectively.

LPE(Mc) :=

N∑
i=1

|Primitives(Mi)|

N∑
i=1

| PMi
|

<
|Primitives(Mc)|

| PMc |
(2)
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GPE(Mc) :=

|G|∑
i=1

|Primitives(Gi)|

|G|∑
i=1

| PGi
|

<
|Primitives(Mc)|

| PMc |
(3)

HPE(Mc) := LPE(Mc) ∧GPE(Mc) (4)

In case of LPE and GPE the right hand side of the inequality is calculated for the
currently investigated method, whilst the left hand side gives the baseline. For LPE this
is the percentage of how many parameters of the current class are of primitive types. In
similar fashion, in the GPE formulae the left-hand side now describes the average number
of primitive-typed arguments in the whole system. The combination of these metrics is the
HPE metric. By definition these metrics are function level metrics but can be aggregated to
be a class level metric.

The metric calculation was implemented in the Open Static Analyzer [1] for JAVA.
For evaluation three often used projects were selected: Joda-Time version 2.9.9 5, Apache
Log4j 6, and Apache Commons Math version 3.6.1 7. We experimented with the inclusion, or
exclusion of Java wrapper classes to see how the reported methods and classes change. The
results shown that there were only a few method difference by including or excluding these
wrapper classes. With the addition of a method skipping strategy to exclude all methods
that only have a single parameter, the number of suspicious methods were reduced. With
this experiment the best result was achieved when the HPE metric with wrapper classes were
taken into account.

4. The Bug Prediction Capabilities of the Primitive

Enthusiasm Metrics

In order to evaluate the bug prediction capabilities of the PE metrics and already existing
bug dataset [4] was used that contained pre-calculated metrics. This dataset was extended
with the PE metrics. However, the PE metrics are inherently method-based metrics. In
order to resolve this minor incompatibility, the PE metrics were aggregated by class.

An interesting experiment was to see what kind of correlation is there between the already
existing metrics and the new PE metrics. Not surprisingly, there were positive correlations
between PE and older metrics that are based on the number of parameters or the number
of methods as their base and the highest correlation was found between the NLM and LPE
metrics with a value of 0.58. The correlation between a few metrics that are calculated from
the number of methods was also investigated. These were the NLM8, TNLM9, NLPM10,

5https://github.com/JodaOrg/joda-time
6https://github.com/apache/log4j
7https://github.com/apache/commons-math
8NLM: Number of Local Methods
9TNLM: Total Number of Local Methods

10NLPM: Number of Local Public Methods
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TNLPM11, RFC12, and WMC13 metrics. Between these metrics – excluding the WMC – the
correlation values were above 0.70 in every case, and in some instances, it is even above 0.90.
The other set of interesting correlations with PE metrics are the ones related to lines of code:
LOC14, LLOC15, CLOC16, DLOC17, TLOC18, TLLOC19, TCLOC20, TNOS21, NOS22. The
connection between these and the PE metrics can be attributed to the fact that if there are
more lines of code, then there are usually more methods in an application. With the 0.51
correlation value, the LPE, LOC, and TLOC metrics are the most connected. In every other
case, the correlation was less. Correlation between a selected set of line count related metrics
is similarly strong as in the number of methods based metrics case.

The bug prediction capabilities were tested by using the original and extended datasets
from which were 33 selected systems. We trained and evaluated them to see the weighted
F-measure changes between them. Furthermore, this training and evaluation were done in
two ways. First, a cross-project based evaluation was performed where each project was
trained and compared to another project. Out of the 1089 cases, the weighted F-measure
changes that are greater than or equal to 0.05 were observed in 123 cases, and in 107 cases,
the changes are less than -0.05. Overall, there were more improvements than reductions.

In the second experiment, the training and evaluation were done across project versions.
The worst results were provided by the Ant project and its various versions. In this case,
there are a bit more than 10 cases where the addition of the PE metrics resulted in slightly
negative values. However, overall the F-measure changes are small. The Velocity project
gave one of the best results with the addition of the PE metrics. In almost every version
combination, the addition of the new metrics improved the F-measure values. Based on
these results, we can conclude that adding the PE metrics to perform bug prediction across
multiple versions is a viable option.

The Author’s Contributions

The author designed the original Primitive Enthusiasm metric. Implemented the calculation
of this metric into a static analyzer for Java systems. The author participated in the selection
of the analyzed systems and the evaluation of the original Primitive Enthusiasm metric. He
designed the experiment to see how Java wrapper classes affect the metric results. Based
on the Primitive Enthusiasm metric, the LPE, GPE, and HPE metrics were formalized by
the author. With the usage of an existing bug dataset, correlations between the new metrics
and other existing ones were investigated by the author. For the bug prediction capabilities,
the target systems were selected by the author. He executed and evaluated the cross-project

11TNLPM: Total Number of Local Public Methods
12RFC: Response set For Class
13WMC: Weighted Methods per Class
14LOC: Lines of Code
15LLOC: Logical Lines of Code
16CLOC: Comment Lines of Code
17DLOC: Documentation Lines of Code
18TLOC: Total Lines of Code
19TLLOC: Total Logical Lines of Code
20TCLOC: Total Comment Lines of Code
21TNOS: Total Number of Statements
22NOS: Number of Statements
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based bug prediction experiment with the addition of PE metrics. The version-based bug
prediction investigation was also done by the author.

The publications related to this thesis point are the following:

[9] Péter Gál and Edit Pengő. Primitive Enthusiasm: A Road to Primitive Obsession.
In The 11th Conference of PhD Students in Computer Science (CSCS 2018), Volume
of short papers, pages 134-137, Szeged, Magyarország, June 2018.

[14] Edit Pengő and Péter Gál. Grasping Primitive Enthusiasm - Approaching Primitive
Obsession in Steps. In Proceedings of the 13th International Conference on Software
Technologies (ICSOFT 2018), pages 389-396, Porto, Portugal, July 2018. SciTePress.

[5] Péter Gál. Bug Prediction Capability of Primitive Enthusiasm Metrics. In 21st
International Conference on Computational Science and Its Applications (ICCSA 2021),
Proceedings, Part VII, volume 12955 of Lecture Notes in Computer Science (LNCS),
pages 246-262, Cagliari, Italy, September 2021. Springer.
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Summary

In this thesis, two main points were discussed. Both of these topics are related to software
maintenance. The first is in connection with the A+ language, and the second is with the
Primitive Obsession bad smell.

In the first thesis point, the research focused on the A+.NET clean-room implementation
of the A+ language. During this work, we created a formalized grammar for A+ and
implemented the core components of the runtime. Using the reference implementation and
the .NET variant, the run time and source code metric evaluations were done. The reference
implementation is faster by default, but its maintainability aspects are questionable. Whereas
the .NET variant is better in terms of source code metrics but slower at the moment. Still,
the ability of the new version is that other .NET developers can easily extend it to expose
various components into the runtime. Furthermore, the ability to run A+ scripts not only on
Unix-like platforms can extend the lifetime of critical A+ applications. In order to further
ease the usage of .NET classes, the A+ language was extended with new operations which
bring object-oriented notations into the language. These notations enable access to class
members, change property values, and resolve method ambiguities without changing existing
language rules. However, even with this, the A+ language itself is still not an object-oriented
language. The two main results of the first thesis point are the new A+.NET interpreter
and the object-oriented language extension.

The second thesis point deals with the Primitive Obsession bad smell. The original idea
that “too many primitives are used” is a bit vague. In order to resolve this, we created
a concrete calculable metric to capture part of this bad smell, and it is called Primitive
Enthusiasm (PE), which we later renamed to Local Primitive Enthusiasm (LPE). This
metric captures the number of primitively typed parameters for a method in a given class
and compares it to the averages of the same class. We implemented the metric calculation
in the Open Static Analyzer [1] framework for the Java language and was evaluated on three
selected systems. During the evaluation, the effect of including or excluding Java wrapper
classes was investigated, resulting in a negligible difference. Based on this metric, we created
two other variants: Global Primitive Enthusiasm (GPE) and Hot Primitive Enthusiasm
(HPE). The GPE variant changes the metric’s formulae in a way that it now compares the
current function under investigation to the whole system. HPE then incorporates both LPE
and GPE results into a single result. We spent further work to see how the bug prediction
capabilities changes when the new PE metrics are added. We used an already existing bug
dataset [4] that contained pre-calculated metrics for this. We extended this dataset with
the PE metrics. However, the PE metrics are inherently method-level metrics, but this was
resolved by aggregating the PE metrics by class. An interesting experiment was to see the
correlation between the already existing metrics and the new PE metrics. There were a
few connections between the metrics, but overall it can be concluded that PE metrics can
provide benefits. We tested the bug prediction capabilities by using the original and extended
datasets. We done this training and evaluation in two ways. A cross-project based version,
where we trained on each project and evaluated it with all others, and a project-version,
where we used the different versions of the same system as training data and evaluated them
on the other versions. Based on the results provided by these experiments, we can conclude
that adding the PE metrics to aid in bug prediction is a viable option. In this second thesis
point the main results were the definition and evaluation Primitive Enthusiasm metrics and
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the investigation of the bug prediction capabilities of the same metrics.
Finally, Table 2 summarizes the relation between the thesis points and the corresponding

publications.

Table 2: Correspondence between the main thesis points and the corresponding publications

[7] [8] [6] [9] [14] [5]

I. • • •
II. • • •
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reverse engineering tool and schema for C++. In Proceedings of the 18th International
Conference on Software Maintenance (ICSM 2002), pages 172–181, Montréal, Canada,
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Összefoglaló

A disszertáció kettő tézispontra bontható. Az első rész az A+ nyelvvel végzett ḱısérleteket
taglalja, mı́g a második rész a Primitive Obsession gyanús kóddal foglalkozik.

Az első tézispontban a kutatás egy A+ nyelv interpreter implementálását tárgyalja amely
a .NET keretrendszerre épül. Ezen munka során formalizáltuk az A+ nyelvtan, mivel ezidáig
az A+-nak nem volt formálisan léırt nyelvtana. A nyelv dinamikusságának a támogatásáért a
Dynamic Language Runtime [11] volt használva. Az eredeti interpretert és a .NET változatot
felhasználva futás idejű és forráskód metrika alapú kiértékelés végeztünk. Az eredmények
alapján a referencia implementáció ugyan gyorsabb, de karbantarthatósági szempontból rossz-
abbul teljeśıt a .NET verzióhoz képest. Ezzel szemben, a .NET lassabb, de jobb forráskód
metrika adatokkal rendelkezik. A .NET interpreter fontos tulajdonsága, hogy egyszerű
bőv́ıteni akár meglévő C# eljárásokkal, melyeket zökkenőmentesen lehet A+ programok-
ban használni. Ezzel akár a lassú kódrészleteket ki lehet cserélni .NET megfelelőjükre.
Továbbá egy másik fontos aspektus, hogy a .NET változat kitolhatja a kritikus A+ alka-
lmazások életidejét, hiszen nem csak Unix-szerű rendszereken működik. A .NET-ben található
különféle osztályok használatának megkönnýıtése érdekében az A+ nyelvet kiterjesztettük új
elemekkel. Ezek az új eljárások, annotációk lehetővé teszik, hogy objektumorientált jellegű
jelölésrendszerrel osztályok adattagjait érhessük el, extra csomagoló eljárások késźıtése nélkül.
Fontos szempont volt a kiterjesztés során, hogy a meglévő nyelvi szabályokat ne sértsük meg.
Azonban, ezzel maga az A+ nyelv még nem lett objektumorientált. Az új A+.NET értelmező
és az objektumorientált nyelvi kiterjesztés az első tézispont két fő eredménye.

A második tézispont a Primitive Obsession gyanús kóddal foglalkozik. Az eredeti gondo-
lat, miszerint “túl sok primit́ıv adatt́ıpus van használva” nem jól behatárolható. Ezért egy
konkrétan kiszámı́tható metrikát hoztunk létre ennek a gyanús kódnak a mérésére. Ezt Prim-
itive Enthusiasm (PE)-nak neveztük el, amit később átneveztünk Local Primitive Enthusiasm
(LPE)-ra. A metrika egy adott eljárás primit́ıv t́ıpusú paramétereinek az arányát hasonĺıtja
össze az aktuálisan vizsgált osztályban található primit́ıv paramétereknek az arányával. A
metrika számı́tását beleintegráltuk az Open Static Analyzer [1] keretrendszerbe és három
Java alapú rendszeren kiértékeltük. A kiértékelés során megvizsgáltuk, hogy a Java csomagoló
osztályok bevonása vagy kizárása milyen hatással van a detektált eljárások mennyiségére.
Az eredmények alapján az eltérés elhanyagolható. Az eredeti metrika alapján kettő másik
változatot is késźıtettünk, A Global Primitive Enthusiasm (GPE) és a Hot Primitive En-
thusasm (HPE)-t. A GPE változat esetén az aktuális függvény a rendszerben található
összes eljáráshoz van arányośıtva, ezzel egy más határértéket adva mint az LPE esetén. A
HPE pedig az LPE-t és GPE-t kombinálja egyetlen eredménybe. Ezután megvizsgáltuk,
hogy az új metrikákat hozzáadva egy meglévő hiba adatbázishoz [4] hogyan változnak a
hiba-előrejelzési lehetőségek. A meglévő adatbázis többféle osztály szintű metrikát tartalmaz,
azonban a a PE metrikák a defińıciójukból eredve eljárás szintű metrikák. Viszont a PE
értékek összegzésével osztály szintű metrikát kaphatunk. Egy másik érdekes ḱısérletben
megnéztük, hogy mekkora korreláció van a meglévő metrikák és a PE metrikák között. Bi-
zonyos eljárás számosságot figyelembe vevő metrika esetén kapcsolat van a PE metrikákkal.
De összességében a PE metrikák egy alternat́ıvát nyújtanak az eddigi metrikákhoz képest. A
hiba-előrejelzési változást az eredeti és a PE metrikákkal kibőv́ıtett adathalmazon végeztük el.
A tańıtás és kiértékelés kétféleképpen történt. Az első esetben, egy a projektet minden más
projekttel való tańıtás-kiértékelés sorozatnak vetettük alá. Mı́g a másik esetben ugyanazon
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projekt különböző verzióin történt a tańıtás és kiértékelés. Mindkét ḱısérlet alapján arra a
következtetésre jutottunk, hogy a PE metrikák hozzáadása hibaadatbázisokhoz seǵıthet a
hibák előrejelzésében. A második tézispont kettő fő eredménye a PE metrikák megalkotása,
azoknak a kiértékelése és a hiba-előrejelzési képességének a vizsgálata.
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