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Bevezetés 

A 2019-évi KSH adatok szerint őszi búzát 954 943 hektáron, tavaszi búzát 16 804 

hektáron, a második legfontosabb gabonanövényünket, az őszi árpát, 161 711 hektáron, míg a 

tavaszi árpát 101 235 hektáron termesztettek. Az adatsor híven tükrözi, hogy a 

növénytermesztők az őszi gabonaféléket előnyben részesítik a tavasziakkal szemben, magasabb 

termőképességük, így nagyobb hozamuk miatt. Ezzel a döntéssel természetesen vállalják az 

átteleléssel járó kockázatot. A táplánszentkereszti kutatóállomáson évek óta tesztelik a 

Magyarországon termesztett őszi árpákat vetésidő kísérletben. Ez alapján a sokéves adatok 

egyértelműen az október közepi vetést erősítik meg, mint legmegfelelőbbet. Míg az október 

közepi vetés esetén csak 10% körüli kipusztulási százalék tapasztalható, addig a szeptember és 

november közepi vetésidőkben 50% fölötti ez az arány. A túl korai vetéseknél gyakran 

jelentkezik víruskártétel is, melyet a megtelepedő vektorok segítenek elő és további 

kipusztulást eredményezhet (http://web.archive.org/web/20160807064318/https:// 

www.agronaplo.hu/szakfolyoirat/2006/08/szantofold/oszi-arpa-termesztes-kulcskerdesei). 

Optimálisnak tekintik, ha a kicsírázott növénykék elérik a háromleveles fejlődési stádiumot a 

november végi, december eleji fagyok beköszöntéig. Azonban, ha megvizsgáljuk a napi 

hőmérsékleti fluktuációt is, akkor a meteorológiai adatok alapján azzal szembesülünk, hogy 

a -4 °C alatti napok száma októberenként az elmúlt húsz évben (1981-2010) tizenhat volt 

(Kalapos és mtsai., 2016), vagyis ezeknek a növényeknek a szántóföldön át kell vészelniük a 

fagyos éjszakákat. A genetikailag meghatározott fagyállóságot a gabonanövények több hétig 

tartó hidegedződés során érik el. Ebben a korai fázisban a csíranövények az edződési folyamat 

elején tartanak. A Föld mérsékelt égövén a nappalhossz, a hőmérséklet, a napfény erőssége és 

színképe évszakoktól és napszaktól függően évmilliók óta ciklikusan változik. Feltételezhető 

tehát, hogy a növények érzékelik ezeket a változásokat és evolúciós besorolásuktól függetlenül 

hasonló módon reagálnak rá. Nappal például a vörös/távolivörös (R/FR) fény aránya állandó és 

független a felhők jelenlététől, azonban alkonyatkor szignifikánsan csökken, amikor a Nap a 

horizont felett kevesebb, mint 10 ˚-on látható. A beeső fény színképében a távolivörös fény 

aránya megemelkedik, ahogy távolodunk az egyenlítőtől. Ez elsősorban a Föld északi 

féltekéjének mérsékelt és boreális (szubarktikus) égövein figyelhető meg. Novembertől 

alacsonyan jár a nap, és jellemzően alkonyatkor hosszú ideig tart a napfény színképének R/FR 

fény arányának csökkenése, amit pedig éjjel fagy követhet. Emiatt megalapozottnak tűnik az a 

hipotézis, hogy a növények a fény R/FR arányának csökkenését egyfajta jelként használhatják, 

ami beindítja a hidegakklimatizációs folyamatokat viszonylag magas, még nem 

hidegakklimatizációs hőmérsékleten, melynek eredménye a megnövekedett fagyállóság lesz. 

Ezt a hipotézist először lúdfű modellnövényben Franklin és Whitelam igazolta kísérletes módon 

2007-ben (Franklin és Whitelam, 2007). Később a martonvásári kollégák őszi gabonaféléken 

is megerősítették (Novak és mtsai., 2016), ugyanis mesterséges körülmények között +15 ℃-on 

az őszi gabonák (búza és árpa) fagyállóságát sikerült a megvilágításra használt fehér fény 

színképében a R/FR fény arányának csökkentésével növelni. Azt is igazolták, hogy ez a 

szabályozás a phy A és B fényreceptorokhoz kötött. 

Leírták azt is, hogy a kék fény hatást gyakorol a kriptokróm jelátviteli úton keresztül a 

hideg rezisztencia kialakulására lúdfűben (Imai és mtsai., 2021a, b). Kollégáim korábbi 



kutatásai alapján tisztázódott, hogy a monokromatikus kék fény indukálja a fagyállóságban 

szerepet játszó C-repeat binding factor 14 (CBF14) gén expresszióját gabonafélékben (Novak 

és mtsai., 2017). Korábbi kutatások alapján ismert, hogy a hidegkezelés változásokat indukál a 

lipid-összetételben (Chao és mtsai., 2011; Chen és mtsai., 2012; Chen és mtsai., 2008; Falcone 

és mtsai., 2004; Markham és mtsai., 2011; Saucedo-Garcia és mtsai., 2011; Wang és mtsai., 

2008). Azonban az a kérdés megválaszolatlanul maradt, hogy milyen metabolomikai 

változásokat indukál a fehér fény színképének távolivörössel történő kiegészítése a növények 

leveleiben, melyek eredményeként nő a fagytűrés. Az sem volt ismert, hogy a kék fénnyel 

történő kiegészítés befolyásolja-e a távolivörös fénykezelés hatását. Ezekre a kérdésekre 

kerestünk választ kutatásaink során. 

Célkitűzések 

Közismert, hogy a hidegedződés során változik a sejtmembrán lipidösszetétele, ezáltal 

csökken a viszkozitása, ami akadályozza a fagy okozta membránkárosodást. A PhD. 

dolgozatban részletezett kísérletek beállításakor azonban semmilyen információ nem állt 

rendelkezésre arról, hogy milyen lipidomikai változást okoz a növények megvilágítására 

használt fehér fény távolivörös fénnyel, illetve kék fénnyel való kiegészítése. Ezért az itt leírt 

kísérletek célja a hideg, illetve a modulált spektrum hatására bekövetkező membránlipid 

változások összehasonlítása volt. 

A következő kérdésekre és feltevésekre kerestünk választ: 

1. A fehér fény távolivörös és kék fénnyel kombinált kiegészítése miként befolyásolja az 

árpa levelek fagytűrését különböző hőmérsékleteken? 

2. A lipidek bioszintézisét meghatározó „kulcsgének” génexpressziós mintázatainak 

kiderítése megemelt arányú távolivörös megvilágítás mellett. 

3. Az alkalmazott mesterséges LED-es fényforrások által létrehozott alacsony 

vörös/távolivörös, továbbá a kombinált távolivörös + kék fény miként befolyásolja az 

árpa levelek lipid-összetételét normál (15 °C) és alacsony (5 °C) hőmérsékleten? 

Anyagok és módszerek 

Az általunk kiválasztott modellnövény a Hordeum vulgare ssp. vulgare őszi árpa fajta 

„Nure” volt. Három nappal a sötétben csíráztatás (21 ºC) után 480 magot ültettünk el 36 mm 

átmérőjű Jiffy-7 tápkorongokba (Jiffy Group, Oslo, Norvégia). Ezek után a csíranövényeket 

PGV-36 (Conviron PGV36, Controlled Environments Ltd., Winnipeg, MB, Canada) 

fitotronkamrában neveltük tovább, ahol a fényt modulálható mennyezeti LED megvilágítás 

szolgáltatta, 12 órás fotoperiódussal. A növényeket tizennégy napig fehér fénnyel világítottuk 

meg (Philips Lumileds, LXZ2-5790). A fény intenzitás 250 μmol m-2.s-1 (PAR) volt, a 

hőmérséklet 15 °C. A növényeket ½ Hoagland-tápoldattal öntöztük (Hoagland és Arnon, 1938). 

Amikor a növények elérték a háromleveles stádiumot, 13 a Zadok skálán  (Zadoks és 

mtsai., 1974), elkezdtük a kezeléseket. A kísérlet kezeléseit tekintve két eltérő hőmérsékletet 

(5 és 15 °C) alkalmaztunk. Négy különböző spektrális összetételű fényt alkalmaztunk: kontrol 

fehér fényt (WL), melyet a növénynevelés során is használtunk, a fehér fényt távolivörös 

fénnyel kiegészítve (WLFR) (a távoli vörös fényforrás: Edison Edixeon, 2ER101FX00000001), 



a WLFR változatot kék fénnyel kiegészítve (a kék fényforrás: P-Tech, PLBT-3535-DP UV) és 

monokromatikus kék fényt (410 nm) alkalmaztunk. A modulálható LED fénypanelt négy 

elkülöníthető részre osztottuk, az eltérő fénykezelésekhez. A megvilágítás erőssége 250 μmol 

m-2.s-1 fotonfluxus-sűrűségű, a R/FR arány ~0,5 míg a kék/vörös arány ~1,8 volt minden 

esetben. A hőmérséklet változatlan maradt a fénykezelések során. Ezzel a beállítással az 

október és november hónapok átlag hőmérsékletét imitáltuk (15 °C). A kezelés második 

szakaszában viszont ugyanezen fényviszonyok mellett, monokromatikus kék megvilágítás 

nélkül, hidegkezelést alkalmaztunk (5 °C). 

A kezelések után meghatároztuk a levél szegmensek fagyállóságát konduktancia méréssel 

(Webb és mtsai., 1994). A levélmintákat egy folyadékos Grant GP-200-R4 

fagyasztókészülékben (Grant Instruments, Sepreth, UK) fagyasztottuk meg. A fagyasztási 

hőmérséklet a 15 ˚C-on nevelt növények esetében, -5, -7, és -9 ˚C volt. Azok esetében, amelyek 

egy hétig 5 ˚C-on voltak tartva -8, -10 és -12 ˚C fagyasztási hőmérsékleteket alkalmaztunk egy 

órán keresztül. 

A különböző fénykezelések hatásosságát az árpa levelek fagyállóságára a klorofill-a 

fluoreszcencia értékének mérésével is meghatároztuk 0, 2 és 24 óra után a következő 

fagyasztási protokoll végrehajtását követően: 9 h 2 ˚C, 1 h 0 ˚C, 4 h -2 ˚C, 1 h -3 ˚C, 1 h -4 ˚C, 

1 h -5 ˚C, 5 h -6 ˚C, 1 h -5 ˚C, 1 h -3˚C, 1 h 0˚C. A klorofill-a fluoreszcencia tranziensét és 

abból a PSII maximális (Fv/Fm) és aktuális hatásfokát (Y(II)) impulzus amplitúdó modulált 

PAM-2000 fluorométer (Heinz Walz GmbH, Effeltrich, Németország) segítségével mértük 

meg. 

Az irodalomból jól ismert, hogy a membrán lipidösszetétele az élőlények hideg edződése 

során változik, valamint a lipid bioszintézis a CBF géncsalád szabályzása alatt is áll. A 

totállipid-extraktumot a begyűjtött és lefagyasztott árpalevelekből Welti és mtsai. 2002 által 

leírt módszer szerint vontuk ki. A lipidextrakcióhoz a leveleket három növényből külön-külön 

gyűjtöttük össze és -80 °C-on tároltuk feldolgozásig. A száraz súlyokat analitikai mérleggel 

határoztuk meg. 

Az összlipid-kivonat tömegspektrometriás elemzését MS-alapú módszerrel végeztük és 

a Kansas Lipidomics Kutatóközpont elemző laboratóriumában hajtották végre 

(https://www.kstate.edu/lipid/analytical_laboratory/lipid_profiling/index.html). 

ESI-MS/MS lipidprofil meghatározása során automatizált elektrospray ionizációs-tandem 

tömegspektrometriás eljárást alkalmaztak. Az adatgyűjtést, az elemzést és az acilcsoport-

azonosítást a leírtak szerint hajtották végre (Xiao és mtsai., 2010). A belső standardok pontos 

mennyiségét a korábban leírtak szerint számszerűsítették (Welti és mtsai., 2002). 

A lipidkivonatokat folyamatos injektálással vezették be az ESI-forrásba triple quadrupole 

MS/MS-en (API4000, ABSciex, Framingham, MA, USA). Az adatfeldolgozást a Kansas 

Lipidomics Kutatóközpont honlapján ismertették: 

https://www.k- state.edu/lipid/analytical_laboratory/lipid_profiling/index.html. 

A különböző molekulafajtákat az adott fejcsoport-fragmentum és a tömegük alapján 

azonosították. A mennyiségeket mol%-ra számították ki. A mintában szereplő csúcsok és a 



belső standardok csúcsainak összehasonlításához átlag értéket alkalmaztak. 1 jel egység 

megegyezik 1 nmol belső standarddal ugyanabból a lipidcsoportból (általában a variancia 

korrekciójával m/z alapján) (https://www.ktate.edu/lipid/analytical_laboratory/ 

protocols_and_methodology/lipid_extraction_arabidopsis_leaves/index.html). A termékion-

letapogatás felhasználható a képződött fejcsoport vagy más fragmensek meghatározására, 

valamint a zsírsav-csoportok azonosítására, különösen a poláris lipid fajták esetében. 

Az egyes lipid molekulák telítetlenségi indexét a következő képlet szerint határoztuk 

meg: DBI= [Σ (a normalizált jelintenzitás %/lipid fajta száraz tömege × kettős kötések száma)] 

/100 (Falcone és mtsai., 2004). 

A génexpressziós vizsgálatokat a következő protokoll szerint végeztük. A begyűjtött 

levélmintákból össz RNS-t izoláltunk a Direct-zol ™ RNA MiniPrep készlet segítségével 

(Zymo Research Corp., Irvine, CA, USA) a gyártó által meghatározott protokoll szerint. Ezt 

követően cDNS könyvtárakat készítettünk Moloney Murine Leukemia Virus (M-MLV) reverz 

transzkriptáz és oligo (dT) primerek felhasználásával (Promega Corporation, Madison, WI, 

USA). A relatív expressziós szinteket a KAPA SYBR® FAST, Master Mix (2X), Universal 

qPCR kit (Kapa Biosystems, Inc., Wilmington, MA, USA), CFX96 Touch ™ valós idejű PCR 

detektáló rendszer (Bio-Rad Hungary Ltd., Budapest, Magyarország) alkalmazásával 

határoztuk meg. A PCR primerek az NCBI-Primer Design Tool (Országos Biotechnológiai 

Információs Központ, Bethesda, MD, USA) szoftver felhasználásával terveztük meg. A relatív 

expressziós szinteket ΔΔCt módszerrel számoltuk ki, ahol referenciagénként ciklophilint 

használtunk (Livak és Schmittgen, 2001). Az adatok kiértékelése után elsősorban a lipid 

anyagcserében résztvevő főbb enzimek génjeire összpontosítottunk. 

A bemutatott eredmények minden esetben legalább három független kísérlet méréseiből 

számolt átlagok, szórásként pedig az átlaghibát tüntettük fel. A statisztikai elemzést egy-utas 

ANOVA és Dunnett post-hoc teszttel végeztük el, a 15 °C-on nevelt fehér fényen nevelt egy 

napos mintákat használva kontrollként. Egyes esetekben t-tesztet alkalmaztunk.  

Összefoglalás 

A növények genetikailag meghatározott fagytűrésének kialakulásához egy hosszú 

akklimatizációs folyamat szükséges (hidegedződés), melyet döntően a külső hőmérséklet és a 

fényviszonyok határoznak meg. A növények hideghez történő alkalmazkodása során 

dinamikusan változik sejtjeik membránjainak lipid-összetétele. Választ kerestünk arra a 

kérdésre, hogy a fehér fény távolivörössel és kék fénnyel kombinált kiegészítése miként 

befolyásolja az árpa levelek memránlipid-összetételét különböző hőmérsékleteken. Ezen a 

kérdés körön belül első sorban az árpa levelek lipid bioszintézisben résztvevő főbb gének 

expressziós mintázatát, lipid-összetételét és a lipidek zsírsavláncainak kettős kötés tartalmát 

vizsgáltuk. 

Eredményeink alapján a következő megállapításokat vonhatjuk le: 

1. A fagytűrés meghatározására alkalmazott vezetőképességen alapuló módszer és a klorofill 

fluoreszencia vizsgálatok alapján elmondhatjuk, hogy a hozzáadott távolivörös és kék fény 

növeli az árpa fagytűrő képeségét. A kék fénykiegészítés 15 ˚C-on elősegíti a membránok 

integritásának megőrzését. A lipid metabolizmust képes befolyásolni a kék és a távolivörös 



fény, mely szignálként szolgál. 

2. A távolivörös fény hatást gyakorol a lipid metabolizmus néhány meghatározó génjének az 

expressziójára. Esetünkben a távolivörös megvilágítás többszörösére növelte a DGD1 

expresszióját 15 ˚C-on függetlenül a megvilágítás hosszától. Alacsony hőmérsékleten 

(5 ˚C) a távolivörös fény kevésbé hatott, sőt az egy napos kezelés még gátolta is e gének 

expresszióját. Azonban, az MGDG és a DGDG mennyisége nem korrelált az MGD2 és a 

DGD1 gének kifejeződésével, mivel össz mennyiségüket nem befolyásolta a távolivörös 

fénykezelés. 

Az NC gén expressziója a DGD1 expressziójával parallel változott. Ez a változás igazolja, 

hogy a ceramidok, mint jelátviteli lipidek fontos szerepet játszhatnak a hidegakklimáció 

fényregulációjában. 

A megemelt arányú távolivörös kezelés átmenetileg csökkentette a PLDα3 expresszióját 

egy napnyi 5 ˚C-os kezelés után. Azonban, ez a pozitív hatás egy hét elteltével elmúlt. Bár 

a génexpresszió még mindig alacsonyabb volt a 15 ˚C-on tartott kontroll mintákhoz képest, 

de magasabb, mint a fehér fénnyel megvilágított 5 ˚C-on nevelt kontroll mintáké. Ez a 

jelenség arra utal, hogy a távolivörös kiegészítés ebben a tekintetben ellentétesen hat a 

hidegkezeléshez viszonyítva. 

A LOC relatív expressziója a megemelt arányú távolivörös megvilágítás szabályozása alatt 

állhat hőmérsékletfüggő módon, mivel 5 ˚C-on a LOC mRNS expressziója lecsökkent a 

távolivörös kiegészítő fény alkalmazása során. Ebből levonható az a következtetés, hogy 

a megemelt arányú távolivörös megvilágítás hatására a növény lipidbontó folyamatai 

gátlódnak. Feltételezhető, hogy e módon a távolivörös fény hozzájárul a fagytűrés 

növeléséhez. 

3. A „Nure” őszi árpa levél membránjainak összlipid tartalma változott különböző spektrális 

összetételű megvilágítás hatására. Valószínűsíthető, hogy a távolivörös fény és a kék fény 

kiegészítés által indukált MGDG koncentráció növekedés a kloroplasztisz membránban 

hozzájárulhatott az árpa levelek fagytűrésének növekedéséhez. 

Feltételezzük, hogy a fénykezelések által indukált átmenetileg magasabb PG-tartalom 

elősegíthette a tilakoidmembrán megfelelő működését 5 ˚C-on. 

Esetünkben a PC mennyisége hőmérséklettől függetlenül szignifikánsan emelkedett kék 

fénykezelés hatására, míg a távolivörös fény nem hatott rá. 

Kísérleteink során a hozzáadott távolivörös kezelés hatására a PA szint nem változott, 

viszont a távolivörössel kombinált kék fény és a monokromatikus kék hatására lecsökkent. 

Ez a tendencia független volt a hőkezeléstől. A PA mennyisége a több lipid családhoz 

hasonlóan jelentősen változott a kezelések hatására, mely összefügghet azzal, hogy a PA a 

lipidszintézis egyik legfontosabb prekurzora. 

4. A különböző spektrális összetételű megvilágítás hatást gyakorol a membrán 

DGDG/MGDG arányára. Kísérleti eredményeink szerint a fénykezelésre a 

DGDG/MGDG arány csökkent, ennek pedig nem volt negatív hatása az árpa levelek 

membrán stabilitására. A kék fény megvilágítás erőteljesebben csökkentette ezt az arányt, 

mint a távolivörös kiegészítés és ez a változás lényegesen hozzájárulhatott a fagytűrés 

növekedéséhez. 

5. A sejtmembránt alkotó foszfolipidek mennyisége különböző spektrális összetételű 

megvilágítás hatására változik. A foszfolipidek mennyisége kis mértékben megemelkedett 



a nagyobb arányú távolivörös megvilágítás hatására, ez pedig javíthatja a hidegtűrést. A 

távoli vörös kiegészítés alkalmazása során mind a PC, mind a PE mennyisége 

megemelkedik, de PC/PE arány nem változik. Ugyanakkor a távolivörössel kombinált kék 

fénykezelés hatására a PC és a PE mennyisége ellentétes irányba változik, a PC/PE arány 

növekedését eredményezve. Ez a változás nagy valószínűséggel az egyik lényeges oka 

annak, hogy a kék fény hozzáadva a fehér + távolivörös fény kombinációhoz, tovább 

növeli a fagyállóságot. A PC köztudottan alkotó eleme a kettős-lipidmembránnak míg a 

PE nem. A PC/PE arány növekedése stabilizálhatja a membránt stressz körülmények 

között. 

6. A membránt alkotó lipidek zsírsavláncainak kettőskötés-tartalmára is hatást gyakorolt a 

különböző spektrális összetételű megvilágítás. Korábbi megállapítások szerint a PE lipid 

család telítettlenségének változása együtt jár a gabonák fagytűrő képeségének 

emelkedésével. Eredményeink összecsengenek ezzel az állítással. Valamint a megemelt 

arányú távolivörös, a távolivörössel kombinált kék és a monokromatikus kék fény a PE 

fajták változtatásával már 15 ˚C-on megemelte a „Nure” fagytűrő őszi árpa 

hidegakklimatizációs szintjét. A kettőskötések számának növekedése következtében 

természetesen a membránlipidek kettős kötés indexének értéke is nőtt a különböző 

spektrális összetételű megvilágítás hatására. Már 15 ˚C-on is megemelkedett a vizsgált 

őszi árpa levelek össz kettős kötés indexe hozzáadott fény kiegészítés hatására. 

Kiemelendő a PG kettős kötés indexének emelkedése, kék fény hatására, mely 

elősegítheti a tilakoid membránban helyet foglaló fotoszintetikus elektrontranszportláncot 

alkotó fehérjekomplexek kiegyensúlyozott működését. 

7. Bizonyos esetekben a membránt alkotó lipid fajták változása következett be, valamint a 

rövidebb lipidláncok mennyisége és azok telítetlensége megnőtt különböző spektrális 

összetételű megvilágítás hatására. Az eredményeink alapján a különböző spektrumú 

hozzáadott fény-és hőmérsékletkezelés hatására jellemzően a legnagyobb mennyiségben 

előforduló lipid fajták szintje emelkedett meg a kloroplasztiszra jellemző lipid 

családokban, mint a 36:6, 36:5, 36:4, 36:2, 34:3 és 34:1. Ezek a változások elősegítik a 

kloroplasztisz lipidmembránok fluiditásának növelését.  

8. A kék monokromatikus megvilágítás, illetve a távolivörös fénykezeléssel kombinált kék 

fénykiegészítés hatására a vizsgált levelek lizol tartalma csökkent. Ez az alkalmazott 

fénykezelés által indukált összlipid mennyiség megemelkedésével, valamint az átépítő 

folyamatok serkentésével magyarázható. 

9. A levelek HexCer tartalmának változását detektáltuk különböző spektrális összetételű 

megvilágítás mellett. Egyes HexCer fajták jelentősen megemelkedtek a fehér fényt 

kiegészítő távolivörös fény alkalmazása során. Ezeknek a csoportoknak szerepük lehet a 

jelátvitelben. 

A fent leírt eredmények alapján elmondhatjuk, hogy a fényösszetétel által indukált 

fagytolerancia fontos része az előedzési folyamatoknak. Összeségében elmondható, hogy a 

hideg kezelés által indukált lipidóm változása jól korrelál a hidegakklimatizációval és a 

megvilágítás összetétele hatást gyakorol a fagytolerancia kialakulására. Megfigyeléseinket a 1. 

ábrán foglaltuk össze. 

 



 

1. ábra A hidegkezelésre és a különböző megvilágítások hatásának összesítése. A mintákat megvilágítottuk 

távolivörössel kiegészített fehér fénnyel (WLFR), kombinált távolivörös + kék fénnyel (WLFR+BL), valamint 

monokromatikus kék fénnyel (BL, 410 nm, csak 15 ˚C-on). A fénykezelés mellett két fajta nevelési hőmérsékletet (5 

és 15 ˚C) alkalmaztunk. A mintákat a kezelés első (1. nap) és utolsó napján vettük le, amely a 15 ˚C esetében tíz 

nap (10. nap) volt, míg az 5 ˚C esetében hét (7. nap). A levélmintákat minden esetben a harmadik levél szint 

középső részéből metszettük ki. Az eredményeket az ábrákon a kezelések szerint csoportosítottuk, valamint az 

értékek változása, a génexpresszió, a lipid családok és a kalkulált értékek szerint. Minden kezelés alatt bemutatjuk 

az eddig felderített ismereteket. Úgy mint, hogy a megemelt arányú távolivörös fény kiegészítés gátolja a PHYB 

átíródását, ez által a PHYA átíródása felszabadul a gátlás alól és serkenti a CBF14 géncsalád átíródását. A 410 

nm-es megvilágítás mind 15 mind 5 ˚C-on aktiválja a CRY-t. A CBF14 aktiválása elindítja a COR génekét is, ez a 

folyamat hatást gyakorol a GDSL-kötő lipázok és foszfolipázok aktivitására. Továbbá ismert, hogy a távolivörös 

fény hatására az MGD1 enzim mennyisége megemelkedik hőmérséklettől függetlenül. Kék fény hatására a PLDa1 

enzim mennyisége emelkedik meg szintén hőmérséklettől függetlenül. A statisztikai elemzést egyutas ANOVA és 

Dunnett post-hoc tesztel végeztük a fehér fénnyel megvilágított (WL) mintákat használva kontrollként. A statisztikai 

próbát 3-9 független biológiai ismétlésen végeztük el. Az ábrán azok a paraméterek találhatóak meg, melyek 

legalább 0,1 szignifikanciaértékkel térnek el a kontroll (WL) mintáktól. 

Rövidítések: alkalin ceramidáz 1 (ACER1); alkohol dehidrogenáz 3 (AD3); NADPH-függő aldehid reduktáz kötő 

protein, kloroplasztisz (ARL); digalaktozildiacil glicerin szintáz 1 (DGD); digalaktozil diacilglicerin (DGDG); 

nem-lizoszomális glükozilceramidáz (GC); ceramid (HexCer); a tilakoid membránt alkotó lipidek hosszának és 

kettőskötés számának a megoszlása (HK); linolát 9S-lipoxigenáz 2 (LLO 2); lipoxigenáz 2.3, kloroplaszt (LOC); 

monogalaktozil diacilglicerin szintáz 2 (MGD2); monogalaktozil-diacil-glicerin (MGDG); mono-galaktozil-

diacil-glicerin/ di-galaktozil-diacil-glicerin arány (MGDG/ DGDG); neutrális ceramidáz (NC); foszfatidil-kolin 

(PC); foszfatidil-kolin/ foszfatidil-etanolamin arány (PC/ PE); foszfatidil-etanolamin (PE); foszfatidil-glicerin 

(PG); foszfatidil-inozitol (PI); foszfolipáz-D-alfa 1 (PLDα1); foszfolipáz-D alfa 2 (PLDα2); foszfolipáz-D alfa 3 

(PLDα3); foszfatidil-szerin (PS) 
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