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1. INTRODUCTION 

1.1. Basis of adaptive immune recognition 

In the second half of the 20th century, the self-nonself theory was the general view in 

immunology, which suggests that the immune system's primary goal is to discriminate between 

self and nonself (1, 2). Therefore, an immune response is triggered against foreign entities, but 

not against the organism's own materials (3). 

In the 1990s, Matzinger outlined the danger theory, which suggests the immune system has a 

principal role in the danger detection and protection against harmful agents (4). It claims that 

self-elements can trigger an immune response if they are dangerous (e.g., cellular stress); and 

nonself constituents can be tolerated if they are not dangerous (e.g., commensal bacteria) (4). 

Immune responses are triggered by 'danger/alarm signals', which are released by the organism's 

own cells (4). 

In sum, if the immune system could effectively recognize cells that contain mutated proteins or 

intracellular pathogens, then there is a higher chance for it to destroy them.  

The immune system is typically divided into two subsystems - innate and adaptive – which 

operate in various but coordinated ways. Innate immunity is ready for action from the very 

beginning of an infection. After it has detected the presence of pathogens, it enhances the gene 

expression and protein synthesis of molecules associated with immune response. Innate 

immunity alone is unable to defeat most infections. Therefore, the adaptive immune system 

joins the battle and responds to the intruder in a very specific and more effective way. Antigens 

play a key role in the adaptive immune response. These molecules are originated from 

pathogens or are produced by human cells and can trigger an immune response. The adaptive 

immune response is specific for antigens and provides long-lasting immunity against pathogens 

(5). 

The T cell activation is the result of innate immune processes in cells (phagocytosis, increasing 

of the expression of certain cytokines) and the formation of the immunological synapse (6). The 

latter structure consists of the peptide-human leukocyte antigen (pHLA) complex, T cell 

receptor (TCR), adhesion molecules, and checkpoint receptors (6). In the following, I present 

the most important properties of human leukocyte antigen (HLA) molecules.  
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HLA molecules have a major role in peptide presentation during the adaptive immune response. 

These molecules are encoded by the human leukocyte antigen super-locus, which represents a 

genomic region at the chromosomal position 6p21 (7). HLA genes are extremely polymorphic: 

more than 20,000 HLA alleles are registered currently (8). Generally, HLA molecules are 

classified into two classes: HLA-I and HLA-II. Classical HLA-I molecules (HLA-A, HLA-B, 

and HLA-C) are expressed in almost all cells, while HLA-II molecules (HLA-DP, HLA-DQ, 

and HLA-DR) are mainly found in B cells, myeloid dendritic cells and monocytes (9). Normal 

and mutated self-peptides and the ones that are originated from intracellular pathogens are 

presented by HLA-I molecules. At the same time peptides of extracellular proteins and 

extracellular pathogens appear on the cell surface bound to HLA-II molecules. 

In my thesis, I am going to focus on HLA-I-presented peptides therefore I explain the intrinsic 

antigen presentation pathway in detail. Self or pathogen-associated proteins are cleaved to 8-11 

(most often 9) amino acids long fragments by proteasomes (10) and aminopeptidases (11) in 

the cytosol. These peptide fragments are translocated to the endoplasmic reticulum via the 

transporter associated with antigen processing (TAP) molecule (12). HLA-I molecules bind 

peptides within the peptide loading complex (13). The resulting pHLA-I complex is transported 

to the cell surface, where it is anchored to the cell membrane (5). It is important to emphasize 

that the HLA-I presentation of peptides is highly dependent on the expression of the encoding 

gene (14). 

Adaptive immune recognition is dependent on the presence of antigen-specific T cells in the T 

cell repertoire (15). If antigen-specific cytotoxic T cells (CTL) can be found in the repertoire, 

the immunological synapse can be formed. In a healthy state, the immune response is dependent 

on the peptides presented on the cell surface: tolerance is developed to cells presenting only 

self-peptides, and the immune system eliminates cells presenting foreign or dangerous peptides 

(infected cells, tumor cells). If there are no specific T cells in the T cell repertoire, the antigen-

specific immune response is lacking.  
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1.2. T cell receptors recognize T cell exposed motifs of peptide sequences 

In the peptide-HLA-TCR complex, some amino acids of the peptide have a critical role in HLA 

binding (anchor residues) and are partially hidden from the TCR, while others are mainly 

responsible for TCR binding (16, 17). 

A computational study described that in a nine amino acids long (9-mer) peptide positions 4–8 

have a significantly higher number of interactions with TCRs than positions 1–3 and 9 (17). In 

my analyses, I will focus on the T cell exposed motif (TCEM) which can be found between 

positions 4 to 8 of 9-mers as defined by Bremel and Homan (Figure 1) (18).  

 

Figure 1. Schematic diagram of the interaction between peptide, HLA-I, and TCR. T-cell exposed 

amino acids of a 9-mer are colored red. Amino acids having only a minor role in TCR binding are 

colored green. 

1.3. The development of the T cell repertoire 

The T cell repertoire is formed during fetal development, and it is already established at birth 

(19). Positive and negative selection processes are key to establish a functionally competent 

and self-tolerant T cell repertoire. These processes occur in a discrete microenvironment, in the 

cortex and the medulla of the thymus (15, 20). Although TCRs are generated by a quasi-random 

process of somatic recombination, the mature T cell repertoire – the subset of all possible TCRs 

– is far from random, whereas the aim is to develop a T cell population that is effective in 

fighting pathogens (21). Selection processes are dependent on the presented self-peptides by 

thymic antigen-presenting cells.  
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1.4. Positive selection and thymoproteasomal cleavage in cortical thymic epithelial cells 

T cell precursors (thymocytes) evolve to double-positive T cells expressing CD4 and CD8 

coreceptors as a result of certain intracellular stimuli (e.g. RAG1, RAG2, TCRβ then TCRα 

expression) (22). During positive selection, these cells become CTLs if they recognize self-

pHLA-I complexes on cortical thymic epithelial cells (cTEC) (22). This encounter represents 

an essential signal for thymocyte survival and differentiation. T cells incapable of binding 

pHLA-I complexes die by neglect (15, 21, 23). It is important to emphasize that the TCR ligand 

pool is composed of self-pHLAs (15, 21, 23–25). 

The unique protein degradation machinery of cTECs was described in the previous two decades 

(23). cTECs exclusively express a particular proteinase complex, called thymoproteasome (26), 

which produces unique peptide motifs for the positive selection of CTLs (25, 27). As 

thymoproteasomes contain β5t subunit in contrast to the constitutive proteasome and 

immunoproteasome (26), and the pocket of β5t is mostly composed of hydrophilic amino acids, 

these are less potent in generating peptides with hydrophobic C termini (25, 27). Peptides 

generated by thymoproteasomes exhibit low affinity to TCRs and induce large fractions of 

CD8+ cells (25). A recent study published the amino acid preferences of the thymoproteasome 

around the cleavage site (25). Experiments confirmed that thymoproteasomes are essential for 

the positive selection of an adequate number of CTLs (26, 28). To note, cathepsin-L and the 

thymus-specific serine protease in the cTECs are responsible for generating ligands of CD4+ T 

cell positive selection (15).  

1.5. Negative selection 

Positively selected T cells migrate into the medulla where they interact with antigen-presenting 

cells (medullary thymic epithelial cells, dendritic cells) (22). During negative selection (also 

known as clonal deletion) T cells expressing TCRs that bind self-pHLA ligands with high 

affinity die by apoptosis (15, 22, 29). It is critical because mature T cells that bind self-pHLAs 

with high affinity could trigger an autoimmune response. Negative selection mainly takes place 

in the medulla, but the process already begins around cortical dendritic cells (15). Medullary 

thymic epithelial cells express many tissue-specific genes generating qualitatively and 

quantitatively different peptide pools compared to cTECs (30, 31). It is reported that after 
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negative selection the estimated number of different TCRs is < 108 in the human naive T cell 

pool, which is much less than the count of different peptide motifs (32). 

A relevant fraction of autoreactive T cells is transformed to regulatory T cells, which fulfill a 

key role in the maintenance of tolerance to self-antigens and in preventing autoimmune diseases 

(33, 34). 

1.6. Peripheral tolerance 

Although central tolerance is highly efficient, the control of self-reactivity is not yet perfect. 

The essence of the peripheral tolerance processes is to provide additional control over self-

reactivity: self-reactive T cells become functionally unresponsive (anergic) or are deleted after 

binding self-antigens outside of the thymus (35). 

1.7. The binding strength of pHLA-TCR affects the fate of T cells 

During positive selection, the recognition of self-pHLA complexes eventuates in survival, while 

negative selection – mediated also by self-pHLA complexes - can be a death verdict. The 

classical affinity model could dissolve this paradox. The strength of the interaction between the 

TCR and self-pHLA complexes is substantial in the further fate of the T cell (23). At least weak 

interaction is required to survive positive selection, but strong binding results in apoptosis of 

the cell during negative selection (15, 34, 36) (Figure 2). Consequently, TCRs interacting with 

weak to medium affinity with self-pHLA-I complexes are the most likely to survive. 

On the other hand, recent studies reported a direct positive relationship between the strength of 

self and foreign pHLA binding by TCRs. Consequently, T cells with higher self-reactivity 

predominate the acute immune response to pathogens (21, 37). In other words, self-pHLA 

complexes make it possible that T cells in the repertoire function well enough against 

pathogens.  



13 

 

 

Figure 2. The affinity model of thymocyte selection. Weak interactions are required to protect 

thymocytes from death during positive selection. Strong interactions cause negative selection by 

apoptosis. (Figure based on Klein et al. 2014 Box 1. (15)) 

1.8. Immunogenicity of nonself peptides and cross-reactivity of T cells 

How can T cells differentiate between self and nonself peptides, dangerous and harmless signs? 

T-cell responses to a given peptide are influenced by several factors. One of the most important 

factors is the similarity to self-antigens or commensal antigens. Numerous studies showed that 

peptides similar to self-antigens have lower immunogenicity, presumably as a result of the 

negative selection of T cells (38, 39). TCRs are typically able to bind not just one particular 

peptide but a set of peptides (cross-reactivity of TCRs) (40), which consists of closely related 

sequences. As T cells are cross-reactive, a significant fraction of nonself peptides is 

indistinguishable from presented self-peptides and T cells are missing from the repertoire or 

they are tolerant to these peptides (39). Note, the size of the peptide set (polispecificity) varies 

between TCRs (21, 41, 42). Moreover, cross-reactivity is not independent of the development 

of the T cell repertoire: a study showed that thymic negative selection against fewer self-

peptides resulted in a more cross-reactive T cell repertoire (43). 

At the same time, it is widely accepted that nonself peptides highly dissimilar to human proteins 

are more immunogenic (44, 45). A study suggested that the immune recognition of peptides is 

less likely if they are conserved in the commensal microbiome (38). This observation can be 

explained as a result of peripheral tolerance. Another study showed that microbiota peptide 

similarity can either enhance or reduce the immunogenicity of peptides (46).  
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2. AIMS - HYPOTHESIS - RESEARCH QUESTIONS 

It has been suggested that as a result of T cell positive selection, both the CD4+ and CD8+ T 

cell repertoires are skewed to greater self-reactivity, and T cells that bind self-peptides stronger 

also bind the foreign agonist peptides more effectively (21, 37, 47). In other words, self-peptides 

mediating positive selection can be considered as a 'test-set' selecting T cells that recognize 

foreign peptides with higher effectivity. But is there any negative consequence of this 

mechanism? 

Our hypothesis suggests a fundamental side-effect of T cell positive selection on the recognition 

of nonself peptides. 

 

As sequences of self-proteins mediate positive selection, a large fraction of nonself 

peptides is not recognized by the immune system even if T cells are cross-reactive. 

 

As T cell positive selection is mediated by TCEMs of self-peptides, the hypothesis predicts that 

it is less likely to detect specific T cells in the repertoire for TCEMs that are 1) extremely rare 

or missing from human proteins, 2) not expressed in cTECs, or 3) not presented on the surface 

of cTECs. 

Additionally, the hypothesis raises several questions. Is it possible that a peptide is overly 

different from self-proteins and consequently it is not recognized by T cells? Could T cell cross-

reactivity compensate for this side-effect of T cell positive selection? Does this phenomenon 

have any effect on the susceptibility to infections? In my thesis, I aim to confirm the predictions 

of the hypothesis and answer the questions that arose.  
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3. METHODS 

3.1. In vitro datasets 

Our hypothesis was tested on two independent in vitro datasets. HLA-I bound peptides were 

collected from the Immune Epitope Database (IEDB) (48) which contains the details of nearly 

400,000 T cell activation assays. The database is strictly curated and has a standardized decision 

algorithm to determine whether a given assay is positive or not (49). The final datasets were 

compiled using strict selection criteria (Figure 3) detailed below. 

After the first selection steps, the allele-peptide pairs met the following criteria: alleles were 

determined with high resolution (both the allele group and the specific HLA protein are known 

(50)), peptides were linear, 9 or 10 amino acids long and contained only the 20 standard amino 

acids. 

HLA binding is the prerequisite of T cell activation. Therefore, the HLA binding of peptides 

was confirmed by two alternative approaches: 

(1) The binding between peptides and alleles was determined using the state-of-the-art 

bioinformatics tool, NetMHCpan (51). This software predicts the binding of peptides to 

numerous HLA molecules utilizing artificial neural networks. The general guidelines were used 

to select bound peptides: either the binding affinity had to be lower than 500 nM, or the binding 

rank percentile had to be lower than 2% (dataset 1, left branch on Figure 3). 

(2) To avoid the bias associated with the computational prediction of HLA binding (52, 53), 

HLA binding assays that were also collected in IEDB were matched with allele-peptide pairs 

of activation assays. Pairs that were found in at least two binding assays were retained and the 

fraction of positive binding assays was more than 60% (dataset 2, right branch on Figure 3). 

Previous works have suggested that the overrepresentation of highly similar sequences due to 

collection bias in the IEDB could influence the analysis results (54, 55). Consequently, in the 

case of dataset 2, a highly diverse peptide set was created using a previously established 

iterative method, which excluded similar peptide sequences from peptides (56). Briefly, the k-

tuple distance between all peptide sequences was determined in each iteration using Clustal 

Omega (57). Peptide pair(s) with the lowest distance values were determined and the peptide 

having the lowest mean distance from all other sequences was excluded. We repeated these 
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iterations until only peptides with at least 0.5 k-tuple distance from all other sequences remained 

in the dataset (58). This distance value corresponds to a maximum 50% overlap between 

sequences. As the result of this step, the filtered peptide set covered the sequence space more 

homogeneously. 

In the case of both datasets, allele-peptide pairs were kept if they occurred in at least two 

activation assays. Sequences occurring in the human reference proteome (59) were excluded. 

Peptides were classified into two groups: in both datasets, allele-peptide pairs with solely 

negative T cell assays were defined as nonimmunogenic and the ones with more positive than 

negative T cell assays as immunogenic. Allele-peptide pairs that did not belong to any of these 

categories were dropped. Peptide sequences tested for multiple alleles, but with the opposite T 

cell activation results were also excluded. Finally, to avoid any overlap between the two 

datasets, peptides found in both datasets were only kept in the second one. After filtering, the 

number of peptides in datasets 1 and 2 were 3,380 and 635, respectively (Table 1). 

 

Table 1. The number of immunogenic and nonimmunogenic peptides in datasets 1 and 2. 

 Dataset 1 Dataset 2 

Immunogenic peptides  1093 360 

Nonimmunogenic peptides 2287 275 
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Figure 3. The assembly of peptide sets used throughout our study. Ellipses indicate filtering criteria 

at each step. T cell activation data on peptide-HLA pairs were collected from the IEDB and filtered 

(steps 1 and 2). The HLA binding of peptides was confirmed with computational prediction in the first 

dataset and with HLA binding assay data in the second dataset (step 3). Allele-peptide pairs, whose 

binding was not confirmed were discarded. Moreover, allele-peptide pairs were excluded, if they were 

tested in only one T cell assay (step 4) and/or the peptide was found in the reference human proteome 

(step 5). Next, the allele-peptide pairs were classified into immunogenic and nonimmunogenic groups, 

and the pairs having controversial assay results were excluded (step 6). In both datasets, peptides 

having conflicting results with different alleles were also excluded (step 7). The remaining peptides in 

dataset 2 were filtered for nonsimilar sequences (step 8, right branch). To avoid overlap, peptides found 

in both datasets were kept only in dataset 2 (step 8, left branch).  
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3.2. TCEM frequency 

For each peptide, TCEM was defined as the amino acid sequence from positions 4 through 8 

for 9-mers (18) and the amino acid sequence between positions 5 and 9 for 10-mers. The latter 

definition is based on the fact, that numerous common HLA alleles, like A*02:01, prefer certain 

amino acids at position 4 (see binding logos in a recently published immunopeptidomics study 

(60)). Since there are 20 standard amino acids, 205 = 3,200,000 different five amino acid-long 

sequences (pentamers) are possible. TCEM frequency in the human proteome was determined 

for each pentamer as follows. Proteins in the human reference proteome were decomposed into 

overlapping 9-mers. Sequences between the 4th and the 8th amino acids were determined and 

the number of occurrences was counted for each possible pentamer. Pentamers that contain 

selenocysteine were excluded. 

3.3. TCEM expression 

A recently published study reported the gene expression of human thymic cortical epithelial 

cells from infants (61). Raw data were downloaded. Columns of the count matrix were scaled 

using the calcNormFactors function in the edgeR R library. Next, RPKM values were 

calculated using the rpkm function of edgeR and exon length data of the GenomicFeatures R 

library. The median RPKM value in cTEC samples was determined for each gene. Matching of 

ENSEMBL gene IDs (used in the expression dataset) with UniProt IDs was unsatisfactory, as 

40% of UniProt protein IDs in the dataset did not have corresponding ENSEMBL gene IDs in 

the downloaded expression set. Consequently, ENSEMBL gene IDs and UniProt IDs were first 

converted to HUGO IDs using the org.Hs.eg.db R library and protein information in the UniProt 

database, respectively. Next, the proteins and genes were matched using HUGO IDs. With this 

approach, the expression of encoding genes could be determined for more than 90% of proteins. 

To assign an expression value to a TCEM, the proteins containing a given TCEM were 

collected. The median expression of genes encoding these proteins was calculated to 

approximate the chance for a given TCEM being expressed in cTECs (TCEM expression). If 

a given TCEM was found multiple times in the same protein, the expression of the encoding 

gene was included the same number of times in the calculation. TCEMs encoded by 

housekeeping genes were determined using data from a recent study (62).  
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3.4. Thymoproteasomal cleavage score 

A previous study reported the amino acid prevalence around the cleavage site of the thymo- 

and immunoproteasome (25). Briefly, the authors carried out thymo- and immunoproteasomal 

digestion of three proteins and determined the fraction of amino acids found on five positions 

towards the C and N-termini around the cleavage site. They also provided amino acid 

frequencies in the three proteins, which would be found if they were randomly cleaved. We 

developed a score, which estimated the probability of cleavage between two amino acids at a 

given amino acid environment. We first normalized amino acid prevalence values at each 

position around the cleavage site by dividing them with their prevalence in the substrates 

yielding amino acid preference scores: ci,j referring to the score of amino acid j at position i 

(between -5 and 5) around the cleavage site (Figure 4 A). Next, we determined the probability 

of proteasomal cleavage (C) at each site of the human proteome by calculating the median of 

𝑐𝑖,𝑗 values at positions around the cleavage site (Figure 4 B). We approximated the probability 

of peptide formation upon proteasomal cleavage by implementing cleavage scores. 

Specifically, for each 9-mer peptide in the human proteome, we determined the probability of 

peptide formation upon proteasomal cleavage by calculating the mean of C values before the 

N-terminal (𝐶𝑁) and the C-terminal (𝐶𝐶) of the 9-mer yielding 𝐶̅ (Figure 4 C). Then for each 

pentamer, we calculated the median of 𝐶̅ values of all 9-mers that contain the given pentamer 

in the TCEM region yielding the thymoproteasomal cleavage score (Figure 4 D). 

We calculated the immunoproteasomal cleavage score using the same approach and considering 

the amino acid preference of the immunoproteasome. This score served as a control in the 

analysis. 
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Figure 4. Calculation of proteasomal cleavage score. A) Amino acid preference values around the 

proteasomal cleavage site were calculated using data from a previous study (25). The probability of 

cleavage at a given site of a protein sequence was estimated by calculating the median of preference 

values associated with the amino acids that were found at the five positions towards the C and N-termini. 

B) The probability of proteasomal cleavage (C) was calculated at each site of the human proteome. C) 

For each 9-mer in the human proteome, the C values were averaged before the N- and after the C-

terminal amino acids to estimate the probability of peptide formation upon proteasomal cleavage (𝐶̅). 

D) Finally, for each TCEM, the median of 𝐶̅ values associated with the peptides that include the given 

TCEM were calculated.  
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3.5. Sequence similarity score 

Sequence similarity score was calculated using an established method (46). The similarity 

between a given peptide and the most similar sequence in the human reference proteome was 

estimated using the BLOSUM62 substitution matrix. First, the most similar peptides in the 

human proteome for a given peptide were found with BLAST software, and then the similarity 

score was calculated between each pair using an established formula (38). 

3.6. SARS-CoV-2 specific T cells in the repertoire 

Multiplex Identification of T-cell Receptor Antigen Specificity (MIRA) data on 27 healthy 

individuals were acquired from the website of Adaptive Biotechnologies (63). The authors co-

cultured naive CD8+ T cells of healthy donors with dendritic cells, loaded with a pool of 

examined peptides of SARS-CoV-2. Then, they used the MIRA technology to identify antigen-

specific T cells. The MIRA technology combines conventional T cell assays with immune 

repertoire sequencing to identify a large number of antigen-specific T cells in the repertoire 

simultaneously (64).  

First, HLA-I allele-peptide pairs were determined, for which carrying of a given allele could 

potentially be associated with the prevalence of specific naive CD8+ T cells in the repertoire. 

Specifically, the binding of each examined peptide by the HLA alleles carried by any 

individuals was predicted using NetMHCpan software (51). The prevalence of peptide-specific 

T cells was associated with carrying a given HLA allele, if the predicted values suggested strong 

binding (i.e., affinity was lower than 50 nM and rank percentile was under 0.5%) and peptide-

specific T cells were found in at least two individuals carrying the given allele. These rigorous 

criteria for HLA binding were used to decrease false positive hits. For each patient, the expected 

peptides with specific T cells in the repertoire were determined considering the previously 

specified peptide-allele pairs and the HLA genotype of the individual. Participants with specific 

T cells found for at least 20 SARS-CoV-2 peptides were included. This filtering step yielded 

data on 22 individuals for further analysis.  
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3.7. The level of T cell cross-reactivity 

Data on the binding strength of T cells were reported in two studies (65, 66). Each study 

examined the shift in peptide-binding by TCRs when sequentially changing amino acids at each 

peptide position. The analysis was narrowed down to the TCEM sequence, and the BLOSUM62 

similarity was determined between the TCEM of the original and the modified peptides as 

described previously (38). ROC curves and ROC AUC values were determined using the ROCR 

R library. The optimal cutoff was estimated by implementing an established cost-benefit 

method (67). In the case of the NY-ESO-1 epitope and TCR C259, the level of TCR binding 

strength was determined, under which T cell activation is negligible. To identify this value, T 

cell activation data of the sequentially modified NY-ESO-1 epitopes (reported in the same 

study) were used (65). Lower than 10% of original TCR binding strength was selected as 

insufficient binding because the median level of T cell activation by peptides under this cutoff 

was only 7.9% of the original peptide's T cell activating ability. 

3.8. Determining bound peptides and np-TCEMs in the proteomes of intracellular pathogens 

The reference proteomes of 50 well-known intracellular pathogens were downloaded from the 

UniProt database (59). First, the TCEMs of each 9-mer in the proteome of each pathogen and 

their prevalence in the human proteome, expression in cTECs, and the probability of 

proteasomal cleavage were determined as previously described. np-TCEMs were defined as the 

ones found less than 4 times in the human proteome or have low expression in cTECs or low 

probability of thymoproteasomal cleavage. Then, the binding of each 9-mer to common HLA 

alleles was predicted with NetMHCpan (51). HLA-A and B alleles listed in a reference set with 

maximal population coverage were used (68). As the list did not include data for HLA-C, the 

first four-digit allele from each two-digit HLA-C allele class was selected. To decrease the 

prevalence of false-positive binding results, 9-mers bound strongly were identified (i.e., rank 

percentile value was under 0.5% and the binding affinity value was under 50 nM). To alleles, 

for which the prediction could not detect any bound peptides in the proteome of the pathogen, 

N peptides with the lowest predicted binding affinity values were assigned, in which N refers 

to the median number of peptides bound by other alleles at the same loci. For each allele-species 

pair, the fraction of np-TCEMs in bound peptides was calculated.  
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3.9. HLA association data 

To identify HLA allele associations with infectious diseases, a literature mining was carried 

out. We focused on meta-analyses to collect highly reliable HLA associations. We searched 

PubMed with the “hla infection meta analysis” and “hla association meta analysis” keywords. 

HLA association meta-analysis studies were found for hepatitis B (69), hepatitis C (70), dengue 

virus (68), and human papillomavirus (71). In the case of hepatitis B, C, and HPV studies, 

significant associations between HLA allele groups and infections or response to treatment were 

selected. In the case of the meta-analysis for dengue infection, P-values were not determined 

by the authors. They ranked associations of different HLA allele groups with the infection along 

17 studies and considered the allele with the best rank as protective ones. We followed the 

method of the authors but only considered those allele groups that were included in at least 75% 

of studies to increase the reliability of the analysis. After calculating the rank percentile of odds 

ratio (OR) values associated with the allele groups in each study, the mean rank percentile of 

each allele group was calculated. The group with the lowest rank percentile was associated with 

protection and the group with the highest rank percentile was associated with susceptibility. As 

the results of all studies were published for allele groups or serotypes and not individual alleles, 

the fraction of np-TCEMs in presented peptides was calculated as follows. For serotypes, the 

mean values of alleles belonging to the given serotype were calculated. In the case of allele 

groups (i.e., associations published for two digits resolution), the mean values of alleles were 

calculated, which are marked as common in the Common and Well-Documented Alleles 

Catalog (72). 

3.10. Statistical analysis and visualization 

For statistical analyses, R (version 3.6.3) was used in the RStudio (version 1.2.5033) 

environment. The ggplot2, ggpubr, grid, gridExtra, ggsci, scales, ComplexHeatmap, ggrepel, 

and png R libraries were used for visualization. Smooth curves on plots were fitted with cubic 

smoothing spline method (73). Figure 14 A and Figure 16 were created with BioRender.com. 

A typical boxplot in figures includes a horizontal line within the box (median data value), a box 

(encompasses half of the data values; lower limit and upper limit of the box indicates the 1st 

and 3rd quartile, respectively), vertical lines indicate 1st quartile - 1.5 x IQR and 3rd quartile + 

1.5 x IQR.  
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4. RESULTS 

4.1. Analysing the effect of T cell positive selection on peptide immunogenicity 

The three predictions of the hypothesis were examined in parallel on two nonoverlapping in 

vitro T cell activation datasets. Dataset 1 contained a high number of peptides, while dataset 2 

ensured that the findings are not confounded by computational prediction or the presence of 

similar sequences. In dataset 2, the diversity of peptides was high and showed a similar 

distribution in immunogenic and nonimmunogenic groups (Figure 5). 

 

Figure 5. Diversity of peptide sequences. A) Plots indicate the density of BLOSUM62 similarity values 

(n = 64,620 and 37,675 for immunogenic and nonimmunogenic sequences, respectively) between all 

pairs of immunogenic and nonimmunogenic peptides in dataset 2. Both groups contain highly diverse 

and dissimilar sequences. BLOSUM62 similarity values between peptide pairs were calculated with the 

protr R library. B-C) Peptide sequences of dataset 2 cover the sequence space more homogeneously 

after excluding similar sequences (n = 853 and 525 before and after filtering). Multiple correspondence 

analysis (MCA) was carried out on 9 amino acid-long peptide sequences as follows. Each position of 

the peptide (B) or its TCEM region (C) was treated as a categorical variable having the 20 amino acids 

as possible categories. The distribution of peptides (B) or TCEMs (C) in sequence space is shown on 

MCA biplots. The number of sequences in equal-size hexagons is shown color-coded. The distribution 

of sequences was less heterogeneous after similarity reduction (B and C).  
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To confirm our predictions, the following attributes of peptides of datasets 1 and 2 were 

determined (Methods):  

i. TCEM frequency in human proteins. 

ii. Median expression of genes in cTECs that encode proteins containing a given TCEM. 

iii. Thymoproteasomal and immunoproteasomal cleavage score of TCEMs. 

4.1.1. TCEM frequency in the human proteome and peptide immunogenicity 

The distribution of TCEM frequency in the human proteome had a long right tail: a considerable 

fraction of motifs was rarely or not found in the human proteome, but some reached very high 

frequencies (Figure 6). 

 

Figure 6. The distribution of TCEM frequency in the human proteome. The histograms indicate the 

number of times TCEMs were found in the human proteome (n = 3,194,577, 3,031 and 630 for all 

possible TCEMs and motifs in datasets 1 and 2, respectively). Note, that only TCEM sequences 

occurring less than 51 times in the human proteome are shown on the plot for visualization purposes.  
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Our hypothesis predicted the following: if a TCEM is very rare in the human proteome, specific 

T cells will unlikely survive the positive selection around cTECs, and they will be potentially 

missing from the T cell repertoire. Consequently, motifs very rarely or not found in the human 

proteome are less likely to be immunogenic. Indeed, the TCEM frequency of immunogenic and 

nonimmunogenic peptides was significantly different in both datasets: immunogenic peptides 

contained more frequent TCEMs (Figure 7 A). Accordingly, if peptides were classified into two 

groups based on their TCEM frequencies (cutoff = 4), immunogenic peptides were more likely 

found in the group of relatively frequent TCEMs (Figure 7 B). The result suggests that an 

appropriate occurrence of TCEMs in human proteins is needed for immunogenicity. 

 

Figure 7. Peptide immunogenicity is influenced by TCEM frequency in human proteins. A) The plot 

indicates the number of times immunogenic (+, n = 1093 and 360 in datasets 1 and 2, respectively) and 

nonimmunogenic (-, n = 2287 and 275 in datasets 1 and 2, respectively) TCEMs found in human 

proteins. In both datasets, TCEMs of immunogenic peptides were found more times in human proteins 

than TCEMs of nonimmunogenic ones. Outliers are not shown for visualization purposes. The P-values 

of two-sided Wilcoxon's rank-sum tests are indicated. B) TCEMs found more than 3 times in the human 

proteome (group 'High' on the plot) were more likely to activate T cells. The ORs and P-values of two-

sided Fisher's exact tests are shown. DS1: dataset 1, DS2: dataset 2.  
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4.1.2. TCEMs not expressed in cTECs are less immunogenic 

In the subsequent analyses, the focus was on motifs that occurred at least once in the human 

proteome. It was reported that the HLA-I presentation of peptides is highly dependent on the 

expression of the encoding gene (14). 

Our hypothesis predicts that TCEMs encoded by genes having low or undetectable expression 

in cTECs cannot mediate the positive selection of specific T cells. At the same time, the immune 

response is not expected to TCEMs that are encoded by abundantly expressed housekeeping 

genes, because the response to these TCEMs may be blocked by central or peripheral immune 

tolerance mechanisms (74, 75). 

To examine the potentially biphasic relationship between TCEM expression and T cell 

activation, the probability for a TCEM of being immunogenic was plotted as a function of its 

expression using lowess smoothing (Figure 8 A). The distribution density of TCEM expression 

in the immunogenic and nonimmunogenic peptide groups was also examined separately 

(Figure 8 B). In line with our expectation, TCEMs having either low or high expression in 

cTECs were similarly less likely to activate T cells than the ones in the medium expression 

group (Figure 8 A-B). 

Indeed, if the peptides were classified into low (bottom 15 percentile), medium (15-75 

percentiles), and high (upper 75 percentile) expression groups, immunogenic peptides were less 

likely found in both low and high expression groups (Figure 8 C). These results suggest missing 

T cell responses to TCEMs not expressed in cTECs, at the site of positive selection.  
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Figure 8. Peptide immunogenicity is influenced by TCEM expression in cTECs. A) The plots show 

the probability of a TCEM being immunogenic as the function of its expression in cTECs. The curves 

were fitted using lowess regression. B) The plots indicate the probability density of the expression of 

immunogenic (n = 997 and 326 for datasets 1 and 2, respectively) and nonimmunogenic (n = 2040 and 

247 for datasets 1 and 2, respectively) TCEMs. For visualization purposes, gene expression values were 

transformed by calculating their percentile rank. Vertical dashed lines indicate cutoff values used for 

OR calculation in panel C. C) Peptides were classified based on their TCEM's expression in cTECs into 

“Low” (bottom 15 percentile), “Medium” (15-75 percentile), and “High” (upper 75 percentile) groups. 

Immunogenic peptides were less likely found in both “Low” and “High” expression groups. The ORs 

and P-values of two-sided Fisher's exact tests are shown. DS1: dataset 1, DS2: dataset 2. 

Next, the association between the prevalence of TCEM-encoding housekeeping genes and gene 

expression in cTECs was examined. As expected, TCEMs in the high expression group were 

more likely to be found in proteins encoded by housekeeping genes (Figure 9). 

 

 

Figure 9. The prevalence of TCEM-encoding housekeeping genes in different TCEM expression 

groups. Peptides were classified into twenty groups with increasing TCEM expression in cTECs. Highly 

expressed TCEMs in cTECs are more likely to be encoded by housekeeping genes. For each TCEM, the 

genes encoding their sequence were collected. Then, the relative fraction of housekeeping genes was 

determined among them. The mean of these values is indicated for each TCEM expression group. The 

dashed lines indicate smooth curve fitted using cubic smoothing spline method in R (Methods).  
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4.1.3. TCEMs that are unlikely to be presented on cTECs are less immunogenic 

In cTECs, a specific proteasome called the thymoproteasome generates most peptides from 

intracellular proteins for T cell positive selection (25). If a peptide is generated with a low 

probability after thymoproteasomal cleavage, it has a little chance to be presented on the cell 

surface in complex with HLA molecules even if it has a high expression in the cell. 

Consequently, lower immunogenicity was expected for TCEMs that are less likely to be 

generated after thymoproteasomal cleavage. At the same time, no effect of immunoproteasomal 

cleavage was expected on immunogenicity, because it had only minor importance in cTECs 

(25). The so-called immuno- and thymoproteasomal cleavage scores were calculated to 

approximate the chance of TCEM formation in the cell after proteasomal cleavage. In line with 

expectations, TCEMs of immunogenic peptides were more likely to be generated by 

thymoproteasomal cleavage than nonimmunogenic ones (Figure 10 A), while 

immunoproteasomal cleavage did not affect immunogenicity (Figure 10 B). Accordingly, 

immunogenic peptides were more likely found in the group containing TCEMs with high 

thymoproteasomal cleavage score (i.e., score higher than the 25th percentile, Figure 10 C), while 

this is not the case for immunoproteasomal cleavage (Figure 10 D).  
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Figure 10. Peptide immunogenicity is influenced by TCEM presentation on cTECs. A-B) The scores 

representing the likelihood of TCEM formation after thymoproteasomal (A) and immunoproteasomal 

(B) cleavage are presented on the vertical axes. TCEMs of immunogenic peptides were more likely to 

be generated and presented after thymoproteasomal, but not immunoproteasomal cleavage (n = 997 

and 327 for immunogenic and 2,046 and 248 for nonimmunogenic TCEMs in datasets 1 and 2, 

respectively). Outliers are not shown for visualization purposes. The P-values of two-sided Wilcoxon's 

rank-sum tests are indicated. C-D) Peptides were classified based on their 

thymoproteasomal/immunoproteasomal cleavage score into a “Low” and a “High” group (cutoff = 25th 

percentile). Immunogenic peptides were less likely found in groups with a low thymoproteasomal 

cleavage score (C). Immunoproteasomal cleavage did not affect immunogenicity (D). The ORs and P-

values of two-sided Fisher's exact tests are shown. DS1: dataset 1, DS2: dataset 2.  
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4.1.4. The robustness of results 

Three lines of evidence were reported suggesting that the self-mediated positive selection of T 

cells results in a defective T cell repertoire with implications on the recognition of nonself 

peptides. First, TCEMs that are very rare or not found in human proteins are less likely to be 

immunogenic (Figure 7). Second, the scarce expression of TCEMs in cTECs is also associated 

with lower immunogenicity (Figure 8). Third, TCEMs that are improbably generated by the 

cTEC-specific thymoproteasome are less likely to be immunogenic (Figure 10). 

These effects on immunogenicity are held in multivariate logistic regression models indicating 

that they are not confounded by and independent of each other (Figure 11, Table 2). 

  

Figure 11. The effects of TCEM frequency, expression and thymoproteasomal cleavage score are not 

confounded by and independent of each other. Univariate, bivariate and trivariate logistic regression 

models were constructed to examine the effect of each variable on T cell activation. Models were 

compared with ANOVA and the two-sided P-values for datasets 1 (left) and 2 (right) are shown on 

arrows. P-values lower than 0.05 indicate that the more complex model fits better than the simpler ones 

(See also Table 2). Akaike information criterion (AIC) values are shown for datasets 1 (left) and 2 

(right). All bivariate models fitted significantly better than univariate ones. Additionally, the trivariate 

model fitted significantly better than the bivariate ones. For detailed data on models, see Table 2.  
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Table 2. A detailed description of logistic regression models in Figure 11. The coefficients and the two-

sided P-values of Z statistics are indicated for each independent variable. AIC: Akaike information 

criterion. 

Dataset Model 

TCEM 

frequency 

coefficient 

TCEM 

frequency 

P-value 

TCEM 

expression 

coefficient 

TCEM 

expression 

P-value 

TCEM 

thymoprot. 

cleavage 

score 

coefficient 

TCEM 

thymoprot. 

cleavage 

score P-value 

AIC 

D
at

as
et

 1
 

model 1 (univariate) 2.31 2 x 10-9     3806 

model 2 (univariate)   0.32 8 x 10-5   3827 

model 3 (univariate)     1.02 0.017 3837 

model 4 (bivariate) 0.20 4 x 10-7 0.19 0.025   3803 

model 5 (bivariate) 0.25 1 x 10-10   1.50 7 x 10-4 3796 

model 6 (bivariate)   0.33 5 x 10-5 1.13 0.009 3822 

model 7 (trivariate) 0.23 4 x 10-8 0.19 0.023 1.51 6 x 10-4 3793 

D
at

as
et

 2
 

model 1 (univariate) 0.29 9 x 10-4     776 

model 2 (univariate)   0.65 2 x 10-4   773 

model 3 (univariate)     1.96 0.035 783 

model 4 (bivariate) 0.21 0.027 0.51 0.006   770 

model 5 (bivariate) 0.31 5 x 10-4   2.18 0.020 772 

model 6 (bivariate)   0.63 3 x 10-4 1.76 0.061 772 

model 7 (trivariate) 0.23 0.017 0.47 0.010 1.97 0.037 768 

 

Additionally, the effect of these attributes was additive: rare TCEMs having low expression in 

cTECs and low thymoproteasomal cleavage score were less likely to be immunogenic than 

TCEMs having only one or two of these attributes (Table 3).  
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Table 3. The effect of TCEM attributes on immunogenicity is additive. In both datasets, rare TCEMs 

having low expression in cTECs and low thymoproteasomal cleavage score are associated with much 

lower immunogenicity than TCEMs explained by one or two of the three attributes. OR: Odds ratio 

(immunogenic vs. nonimmunogenic) in the examined TCEM group. Two-sided P-values of Fisher's exact 

tests are shown. 

Dataset TCEM frequency < 4 TCEM expression < 15% 

TCEM 

thymoproteasomal 

cleavage score < 25% 

OR P-value 

D
at

as
et

 1
 

●   0.68 3 x 10-7 

 ●  0.71 0.002 

  ● 0.77 0.004 

● ●  0.44 2 x 10-6 

●  ● 0.64 0.003 

 ● ● 0.50 0.002 

● ● ● 0.31 0.002 

D
at

as
et

 2
 

●   0.61 0.003 

 ●  0.48 0.003 

  ● 0.67 0.041 

● ●  0.43 0.009 

●  ● 0.47 0.007 

 ● ● 0.33 0.018 

● ● ● 0.26 0.027 

 

Next, we aimed to exclude the possibility that our findings may be confounded by a single 

amino acid with a peculiar effect on immunogenicity. To test it, the prevalence of the twenty 

amino acids in immunogenic and nonimmunogenic TCEMs was examined. The most 

significant difference was found for tyrosine and phenylalanine enriched in nonimmunogenic 

motifs, and glycine and alanine enriched in immunogenic ones (Table 4, 3rd column). This is in 

line with expectation as the former amino acids are rare, while the latter ones are commonly 

found in human proteins (Table 4, 2nd column). Surprisingly, tryptophan, the rarest amino acid 

was more common in immunogenic TCEMs, which can be explained by its major role in 

peptide immunogenicity (76–78). Reassuringly, this phenomenon did not affect our results: the 

main analysis was iteratively repeated by excluding TCEMs containing certain amino acids, 

and all findings remained significant (Table 4).  
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4.2. The frequency, expression, and presentation of TCEMs determine the prevalence of 

specific naïve CD8+ T cells in the repertoire 

To confirm the previous findings, the predictions of the primary hypothesis were directly 

demonstrated on T cell repertoires of healthy individuals. Based on the hypothesis, it is less 

likely to detect a given naïve T cell in the repertoire that is specific for infrequent TCEMs in 

human proteins, for TCEMs not expressed in cTECs, or for TCEMs not presented on the surface 

of cTECs. Recently published data were utilized to demonstrate the absence of such T cells in 

the repertoire of healthy individuals (63). The dataset characterized in the Methods section is 

exceptional because the peptide sequence specificity of a large number of TCRs was determined 

using the MIRA technology. The peptides were grouped based on the prevalence, expression, 

and proteasomal cleavage scores of their TCEMs as described previously. For each individual 

and in each peptide group, the fraction of HLA-presented peptides recognized by at least one 

TCR in the repertoire was determined (Methods). Specific naive CD8+ T cells were less likely 

to be present for rare than nonrare TCEMs in the repertoire of healthy individuals (Figure 12 A). 

Similarly, it was less likely to observe specific T cells for TCEMs having either negligible or 

overly high expression in cTECs (Figure 12 B). Moreover, TCEMs with low thymoproteasomal 

cleavage scores were less likely to be associated with the presence of specific T cells in the 

repertoire (Figure 12 C), while the immunoproteasomal cleavage score did not show this 

relationship (Figure 12 D). In sum, these findings on T cell repertoire data confirmed the ones 

on in vitro T cell activation data.  
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Figure 12. Specific naive CD8+ T cells were less likely to be present for TCEMs found rarely in 

human proteins (A), having low expression in cTECs (B), or low thymoproteasomal cleavage score 

(C). The vertical axes represent the fraction of peptides, for which specific T cells were detected. Point 

pairs (or triplets on panel B) indicate values belonging to a given individual (n = 22). Two-sided P-

values of paired Wilcoxon's rank-sum tests are shown. TCEMs were stratified into expression groups 

based on tertiles, and into thymoproteasomal (TP) or immunoproteasomal (IP) cleavage score groups 

based on the 1st quartile.  
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4.3. Decreased immunogenicity of overly dissimilar peptides to human proteins 

The leading hypothesis predicted a rather provocative relationship: in contrast with expectation, 

overly dissimilar peptides are not recognized by the immune system, because self-peptides 

mediate the positive selection of specific T cells. Put differently, it is less likely to find TCEMs 

of highly dissimilar peptides in the human proteome and, thus, specific positively selected T 

cells are potentially absent from the repertoire. To examine this assumption, for each peptide 

of the datasets used in our study its most similar counterpart in the human proteome was 

determined using established methods (46, 79) (Methods). As expected, peptides with 

exceptionally rare TCEMs (occurring zero to three times) in the human proteome had lower 

similarity than other peptides (Figure 13 A). Accordingly, overly dissimilar peptides of datasets 

1 and 2 were less likely to be immunogenic just like highly similar ones (Figure 13 B). To 

corroborate these results, the self-similarity of SARS-CoV-2 peptides was analyzed. 

Reassuringly, naive CD8+ T cells specific for highly dissimilar peptides were found in the 

repertoire of fewer individuals (Figure 13 C). 

We conclude that while a given level of peptide dissimilarity to human proteins is essential for 

self-nonself discrimination, overly dissimilar peptides are less likely to be recognized by the 

immune system because specific T cells are not present in the repertoire. 
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Figure 13. Overly dissimilar peptides to human proteins are less immunogenic. A) Peptides in datasets 

1 and 2 with TCEMs found less than four times in human proteins are less similar to the closest hit in 

the human proteome. (n = 1,706 and 2,309 in the 0-3 and 4- TCEM frequency groups, respectively) 

Outliers are not shown for visualization purposes. B) Peptides in datasets 1 and 2 were pooled and 

stratified into twenty-five groups based on similarity. In each group, the ratio between immunogenic 

and nonimmunogenic peptides was calculated. Groups are shown in increasing order of similarity. The 

horizontal axis indicates the mean similarity in the given group. The vertical dashed line indicates the 

group having the highest fraction of immunogenic peptides. The curve was fitted with a cubic smoothing 

spline method in R (Methods). The background shading represents the similarity ranges of peptide 

groups on panel C. C) T cells specific for overly dissimilar peptides were found in the repertoire of 

fewer individuals. Peptides were stratified into sequence similarity groups based on the median value 

(n = 149 and 147 in the lower and higher similarity groups, respectively). The similarity ranges are 

also indicated on panel B with background colors. Note, that the dataset of SARS-CoV-2 peptides did 

not include peptides that are highly similar to human proteins. On panels A and C, P-values of two-

sided Wilcoxon's rank-sum tests are indicated.  
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4.4. Cross-reactivity is not able to compensate for the side-effect of self-mediated positive 

selection of T cells 

Our results suggest that the mechanism of positive selection results in a defective T cell 

repertoire. Is the cross-reactivity of TCRs able to compensate for these defects? To answer this 

question, two groups of TCEMs were first created (Figure 14 A). The first group consisted of 

motifs in datasets 1 and 2, for which it is the least likely to find specific positively selected T 

cells in the repertoire based on the previous findings on T cell activation data (n = 43, these 

TCEMs were nonimmunogenic, found less than 4 times in the human proteome, had low 

expression in cTECs and low thymoproteasomal cleavage score). The second group consisted 

of all possible TCEM sequences (n = 323,470), for which the presence of specific T cells in the 

repertoire is likely: they were found more than 3 times in the human proteome, expressed in 

cTECs, and had normal thymoproteasomal cleavage scores. For each TCEM in the first set, its 

BLOSUM62 similarity to every TCEM in the second set was calculated to explain their 

proximity in sequence space (Figure 14 A). 

Next, the level of TCR cross-reactivity was estimated in the sequence space of TCEMs. 

Empirical data was downloaded from a recent study. The authors measured the binding strength 

of the well-known NY-ESO-1 epitope to TCR C259, when sequentially replacing every amino 

acid in different positions of the epitope (65). We determined the BLOSUM62 similarity 

between the TCEM of the original and the modified peptide sequences and we found a strong 

positive correlation between the similarity of the original to the modified TCEM and the peptide 

binding strength to TCR C259 (Figure 14 B). 

Then a TCEM similarity cutoff value was determined, under which the binding to the TCR is 

too weak to induce T cell activation (Figure 14 A). The relationship between the TCR binding 

strength and T cell activation was examined. Less than 10% of original binding strength as 

insufficient binding was fixed because the ability of peptides to activate T cells was negligible 

below this cutoff (Methods). The similarity between the modified and the original TCEM was 

able to accurately predict whether the peptide will be bound by the TCR with strength above 

this level (Figure 14 C). An established “cost-benefit” method (67) was then used to determine 

the optimal TCEM similarity cutoff for binding (value = 0.61, Methods). Reassuringly, a very 
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similar cutoff value was obtained, when using data of an independent study on the A6 TCR and 

its target epitope, the Tax peptide of HTLV-1 (66) (Methods). 

Are T cells that are specific for TCEMs in the second group able to bind TCEMs in the first 

group? We found that only an insignificant minority (ranging from 0.0006% to 0.043% for 

TCEMs in the first group, median = 0.015%) of similarity values reached the previously 

determined cutoff values of T cell cross-reactivity (Figure 14 D). This result suggests that T 

cells in the repertoire (specific for TCEMs in the second group) are unlikely to recognize 

TCEMs, whose recognition is negatively affected by self-mediated positive selection (i.e., 

TCEMs in the first group). Although the result is indicative, it is important to highlight that 

cross-reactivity was inferred based on the data for two TCRs, and the results need future 

validation using data of more TCRs.  



42 

 

 

Figure 14. TCR cross-reactivity is unlikely to compensate for the defects in the T cell repertoire. A) 

Schematic diagram of the analysis. To determine whether T cell cross-reactivity can bridge defects in 

the repertoire, two groups of TCEMs were created (I). The first group consisted of motifs, for which it 

is the least likely to find specific positively selected T cells in the repertoire based on our results (marked 

with red color on the sketch). The second group consisted of all TCEMs, for which it is likely to find 

specific T cells in the repertoire (marked with green color on the sketch). The pairwise similarity was 

calculated between the members of the two TCEM groups (II). The higher the similarity between two 

TCEMs, the closer they reside in the sequence space resulting in smaller distance (d) values. Next, the 

level of T cell cross-reactivity was estimated in TCEM sequence space (III). Cross-reactivity was defined 

as the lowest similarity between a given TCEM sequence and the TCR's cognate TCEM sequence that 
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is needed for a reasonable TCR binding strength and T cell activation. Finally, the number of cases was 

determined when members of the first and second groups are close enough to be recognized by the same 

TCR. B) The amino acids of the NY-ESO-1 epitope were sequentially changed and the binding strength 

to TCR C259 was measured in a previous study (65). The relative binding strength of the modified (n = 

135) and the original peptide to TCR C259 is shown as a function of the BLOSUM62 similarity between 

their TCEM sequences. The horizontal line indicates 10% of the original binding value, which was 

considered as a cutoff for improbable binding (Methods). Spearman's rho and the P-value of a two-

sided correlation test are indicated. The red line indicates a smooth curve fitted using a cubic smoothing 

spline method in R (Methods). C) The ROC curve demonstrates the accuracy of BLOSUM62 similarity 

in classifying peptides into binding and nonbinding (i.e., lower than 10% of original binding) groups. 

AUC: area under the curve D) The density of all similarity values (n = 13,909,210) between TCEMs in 

group 1 and group 2. Vertical lines on panels B and D represent the optimal cutoff (0.61) for 

classification.  
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4.5. Positive selection of T cells and susceptibility to infections 

The adaptive recognition of pathogen-associated peptide sequences is essential for the initiation 

of an effective immune response. Presented results suggest that many such sequences are 

potentially nonimmunogenic because specific T cells are not observed in the CD8+ T cell 

repertoire. We aimed to determine the frequency of these peptides in proteins of intracellular 

pathogens. To this end, reference proteomes of 50 familiar intracellular pathogens were used. 

In the proteome of each species, the prevalence of TCEMs was determined, that are either rare 

or not found in human proteins and/or not or lowly expressed in cTECs and/or unlikely to be 

presented after thymoproteasomal cleavage (called np-TCEMs hereafter, referring to TCEMs 

for which we expect to find specific positively selected T cells with lower probability) 

(Methods). The frequency of these np-TCEMs ranged from 58% to 71% in different species. 

(Figure 15 A). 

This high fraction of np-TCEMs could hinder immune recognition, especially when only a few 

peptides of the pathogen are presented because either the proteome of the pathogen is small 

and/or the HLA allele has a narrow binding repertoire. To this end, the binding of all 9-mer 

peptides found in the proteome of pathogens was predicted to the most common HLA-I alleles 

(Methods). For each allele-species pair, the fraction of np-TCEMs was calculated in the 

presented peptides and the result was visualized on a heatmap (Figure 15 B). As expected, the 

fraction of presented peptides with np-TCEMs was extremely variable between HLA alleles 

when the pathogens had small proteomes (Figure 15 C). This group of pathogens was 

dominated by viruses, like Human parvovirus B19, Hepatitis viruses, Human papillomavirus, 

etc. On the contrary, HLA alleles presented a similar fraction of np-TCEMs from large 

proteomes of protozoal and bacterial species. 

We expected an HLA-dependent effect of np-TCEMs on disease risk. To this end, HLA 

association meta-analysis data were collected (Methods). Allele groups with positive or 

negative associations were selected and the fraction of np-TCEMs presented by alleles in each 

group from all peptides of the causative pathogens were calculated. Allele groups associated 

with infections or treatment failure dominantly presented np-TCEMs in contrast with protective 

allele groups (Figure 15 D).  
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These results suggest that the proposed side-effect of T cell positive selection influences the 

adaptive immune recognition of intracellular pathogens. 

 

Figure 15. The effect of self-mediated positive selection on the recognition of pathogens. A) The 

prevalence of np-TCEMs in the proteome of different pathogens (n = 50). np-TCEMs were defined as 
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being found less than 4 times in the human proteome or having low expression in cTECs or low 

thymoproteasomal cleavage score. Pathogens are ordered by increasing proteome size. B) The heatmap 

shows the prevalence of np-TCEMs in peptides of intracellular pathogens that are presented by common 

HLA alleles. C) The plot shows the variance of presented np-TCEMs by different HLA alleles. The 

variance decreases with increasing proteome size of pathogens (Spearman's rho: -0.93, two-sided 

correlation test P = 9.13 x 10-23). D) The fraction of np-TCEMs in peptides that are presented by risk (n 

= 6) and protective (n = 7) HLA allele groups. Group-specific values were calculated by averaging 

values for common alleles in each group (Methods). In contrast with protective allele groups, 

predisposing ones present mainly peptides with np-TCEMs in their sequence (two-sided Wilcoxon's 

rank-sum test P = 0.004). HBV: Hepatitis B virus; HCV: Hepatitis C virus; HPV: Human 

papillomavirus.  
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5. DISCUSSION 

5.1. The relationship between T cell positive selection and the nonresponsiveness to nonself 

peptides 

The prevalence of specific T cells in the repertoire is essential for adaptive immune recognition 

of HLA-presented peptides. It has been suggested that during positive selection, self-peptides 

on the surface of cTECs can be considered as a test set for thymocytes: cells that recognize 

these peptides survive, potentially recognize nonself peptides more effectively and, 

consequently, dominate the immune response to the foreign antigens (21, 37, 47). Our results 

suggest that the nonresponsiveness to many nonself peptides can also be explained by the 

mechanism of T cell positive selection because it is mediated by self-peptides. Put differently, 

self-mediated positive selection has a negative trade-off on the recognition of foreign peptides. 

Importantly, the T cell cross-reactivity cannot compensate for this side effect set up by T cell 

positive selection (Figure 14). 

5.2. The TCEM region is crucial in the recognition of peptide sequences 

In our research, three lines of evidence were presented supporting the leading hypothesis on 

two reliable and nonoverlapping peptide sets (Figures 7, 8 and 10). We focused on the TCEM 

region of peptides. Although amino acids in other positions may also contact with TCR, 

extensive literature information supports that the amino acids between positions 4 and 8 are the 

main contacting residues with TCRs. In an extensive and highly cited review, authors examined 

molecular structures of many pHLA-TCR complexes and reported that mainly amino acids at 

positions 4 through 8 are in contact with TCRs (17). Importantly, other studies also suggested 

that self-nonself discrimination is governed by these short motifs (18, 80–82). Moreover, our 

analysis on TCR cross-reactivity also supported these findings: the TCEM sequences of the 

modified NY-ESO-1 peptides alone were able to determine the binding of the peptide to the 

TCR C259 (Figure 14 B). While the TCEM region is essential in TCR binding, it has been at 

issue how such short peptides can make it possible for the immune system to differentiate 

between self and nonself peptides (81, 83). Namely, human peptides contain around 75% of all 

possible pentamer sequences (81) (73.1% in our analysis) that largely overlap with the ones 

found in commensal and pathogenic bacteria (81). Our findings suggest that the overlap 
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between self and nonself motifs is far from being disadvantageous. On the contrary, it is crucial 

for the positive selection of T cells that are specific for foreign peptides. In other words, the 

overlap between motifs makes it possible to recognize nonself. 

5.3. Are there holes in the T cell repertoire? 

Our hypothesis was supported with direct evidence by examining naïve CD8+ T cell repertoires 

of healthy individuals. The results suggest that self-mediated positive selection has a negative 

effect on the prevalence of SARS-CoV-2 peptide-specific T cells in the repertoire (Figure 12). 

Importantly, it has already been suggested that “holes” in the T cell repertoire hinder the 

recognition of certain pathogens (84–87) and the studies explained the presence of such holes 

by central tolerance (84, 87). On the other hand, Yu et al. suggested that there are no significant 

holes in the repertoire because clonal deletion affects only the most self-reactive T cells (88). 

Consequently, every possible HLA-presented peptide could be recognized by T cells, but many 

T cells are anergic due to immune tolerance mechanisms. However, our results suggest there 

are gaps in the T cell repertoire caused by positive selection. 

5.4. T cell positive selection affects the recognition of peptides of pathogens 

The fraction of those peptides in pathogens whose recognition could be affected by self-

mediated positive selection to some extent was also estimated. A significant proportion of 

peptides - varying between 58% and 71% in various species – fell into this category (Figure 15 

A). If we also consider that around one-third of nonself peptides are indistinguishable from self-

ones due to high similarity (39), it is not surprising that at least 50% of HLA-A*02:01- 

presented vaccinia and HIV sequences were reported to be nonimmunogenic in previous studies 

(39, 84, 89). At the same time, it depends on the specificity of HLA alleles, which peptides are 

presented to the T cells. Accordingly, the results showed that HLA alleles, which predominantly 

present peptides of HBV, HCV, HPV, and dengue virus without specific positively selected T 

cells, are associated with infections or worse response to therapy (Figure 15 D). To note, a 

similar mechanism could also explain variable responses to vaccines that deserve further 

investigation.  
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5.5. Overly dissimilar peptides are potentially not recognized by the immune system 

Finally, presented results do not support a conventional interpretation of self-nonself 

discrimination, which suggests that the more dissimilar a peptide to self, the more likely it is to 

be immunogenic (44, 45, 90, 91). Our results showed that the more dissimilar a peptide to 

human proteins, the less likely it is to find its TCEM in the human proteome (Figure 13 A). 

Consequently, specific positively selected T cells are potentially absent from the repertoire 

above a level of dissimilarity (Figure 13 B and C). In sum, although a certain level of 

dissimilarity is essential for the discrimination of self and nonself, overly dissimilar peptides 

are potentially unrecognized by the immune system (Figure 16). While these results indicate 

the importance of this blind spot in the immune response to infections, it is a question to be 

clarified in future works, whether mutated cancer peptides can also reach this level of 

dissimilarity. In the same way, evaluating our hypothesis on HLA-II presented peptides and 

CD4+ T cells is also an important area of subsequent research. 

 

Figure 16. The blindness of immune recognition for peptides that are overly dissimilar to human 

proteins. A) Immune system tolerates peptides that are similar to self-proteins. T cells recognizing these 

peptides are either deleted in the thymus or unresponsive due to peripheral tolerance mechanisms (38). 

B) Peptides with a certain level of dissimilarity to human proteins are recognized as nonself resulting 

in T cell activation and immune-mediated destruction of cells. C) Peptides that are overly dissimilar to 

human proteins are not recognized by the immune system, because specific positively selected T cells 

are absent from the repertoire.  
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