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List of abbreviations 

Ag/AgCl: silver/silver chloride 

BBB: blood-brain barrier 

BCv1: barrier chip 

BCv2: barrier chip version 2 

BDF: Backward Differentiation Formula 

bFGF: basic fibroblast growth factor 

BSA: bovine serum albumin 

Caco-2: intestinal colon carcinoma derived epithelial cell line 

DMEM: Dulbecco’s modified Eagle medium 

EBA: Evans blue-labeled albumin 

EDTA: Ethylenediaminetetraacetic acid 

FD: FITC-dextran 4.4 kDa 

FBS: fetal bovine serum 

GCL: Gouy-Chapman layer 

GFAP: glial fibrillary acidic protein 

hCMEC/D3: human brain microvascular endothelial cell line 

ITO: Indium tin oxide 

LDv: laser-Doppler velocimetry 

LOC: lab-on-a-chip 

OC: organ-on-chip 

Papp: apparent permeability coefficient 

PBS: phosphate buffered saline 

PDMS: Polydimethylsiloxane 

PEI: polyethylenimine 

PET: Polyethylene terephthalate 

SF: sodium fluorescein 

α-SM: α-smooth muscle actin  



 

2 
 

Summary 

The importance of integrated biochips for studying biological barriers has been increased in the 

last decade. These lab-on-a-chip (LOC) devices offer effective ways to understand 

physiological functions, transport mechanisms, drug delivery and pathologies. However, there 

are only a few integrated biochips which are able to monitor several of the crucial parameters 

of cell-culture-based barrier models. The first aim of the study was to develop a simple but 

versatile LOC device that enables the complex investigation of barrier function. It’s main 

features are the possibility of co-culturing of 2 or 3 types of cells, automatic feeding of the cells, 

constant flow of culture medium, visual monitoring of the entire cell layer by microscopy, 

measurement of trans-endothelial/epithelial electric resistance, permeability assays. A 

poly(dimethylsiloxane)-based biochip with integrated transparent gold electrodes and with the 

possibility to connect tubing was built. 

Cell surface charge is a key element of biological barriers. The zeta potential of barrier forming 

cells is generally measured on cell suspensions but no chip device has been described to 

measure cell surface charge properties of confluent barrier cell monolayers, so far. The second 

aim of the study was to upgrade the LOC device to make it suitable for monitoring the streaming 

potential parallel to the surface of cell layers. 

Unlike previous systems, the structure of the new LOC device allowed a constant visual 

observation of cell growth over the whole membrane surface. Morphological characterization 

of the layers was also accomplished by immunohistochemical staining. The chip was applied 

to monitor and characterize models of the intestinal and the blood–brain barrier. The models 

were established using human Caco-2 intestinal epithelial cell line, hCMEC/D3 human brain 

endothelial cell line and primary rat brain endothelial cells co-cultured with primary astrocytes 

and brain pericytes. This triple primary co-culture blood–brain barrier model was assembled on 

a lab-on-a-chip device, and investigated under fluid flow for the first time. 

The streaming potential was successfully measured with the LOC device equipped with a pair 

of Ag/AgCl electrodes. The inclusion of these “zeta electrodes”, a voltage pre-amplifier and an 

oscilloscope in the set-up made it possible to record transient streaming potential signals 

describing the surface charge properties of blood-brain barrier model endothelial cell 

monolyaers. The data were verified by comparing the streaming potential results with those of 

commonly used laser-Doppler velocimetry and model simulations. Changes in the negative 

surface charge of the barrier model by treatments with neuraminidase enzyme modifying the 
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cell membrane glycocalyx or lidocaine altering the lipid membrane charge could be measured 

by both the upgraded LOC device and LDv.  

This versatile LOC device is expected to facilitate the kinetic investigation of various biological 

barriers. The new streaming potential function can help to gain meaningful new information on 

how surface charge is linked to barrier function in both physiological and pathological 

conditions. 
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Introduction 

Epithelial outer, and endothelial inner barriers of the body are important defense systems to 

maintain homeostasis and play a crucial role in drug absorption and transport (1). Culture 

models of biological barriers are important tools to study physiological functions, transport 

mechanisms, drug delivery and pathological processes (2). Tight intercellular junctions are 

fundamental features of epithelial and endothelial barriers in vivo, which are reflected in high 

electrical resistance and low passive permeability for hydrophilic compounds (1, 2). These 

physical and physico-chemical parameters describe the barrier integrity and function 

accurately. In more detail, the trans-endothelial/epithelial electric resistance (TEER) represents 

the paracellular ion mobility which gives information about the tightness of the intercellular 

junctions. The passive permeability of small, charged or electroneutral molecules describe the 

para- and transcellular pathways. Another important contributor to the barrier function could 

be the high negative surface charge of the cell monolayers, yet this is the least explored field of 

the physical properties of the biological barriers. 

The first in vitro models to measure these parameters, the cell culture inserts, were introduced 

in the 1980s. In the past 10 years, besides static models cultured on inserts (3, 4), dynamic lab-

on-a-chip (LOC)/organ-on-chip (OC) devices were developed to study cell-cell interactions, 

molecular pathways, pathological conditions and drug delivery in biological barriers (5-8). 

These models incorporate the use of fluid flow enabling the investigation of physiological-like 

functions such as receptor and mechanosensor expression, transport mechanisms, pathologies 

and drug delivery (9-16). LOC/OC devices became important tools since they provide 

controlled conditions for cellular signaling and external stimulus, and are able to track the 

development and changes in the barrier function. Integrated electrodes and sensors enable the 

monitoring of barrier functions real-time. Besides TEER, the impedance spectrum can be 

measured which gives further information about cell proliferation, differentiation, degeneration 

processes and cell recognition. Multi-electrode arrays are used to record field potential of 

electrically active cells. Programmable pumps and valves provide constant fluid flow to mimic 

blood flow and the possibility of switching medium composition for treatments. The 

hydrodynamic effects of the flow, such as the shear stress and hydrodynamic pressure are 

measured indirectly, based on the physical parameters of the barrier integrity and also the 

morphological changes of the monolayer-forming cell. 
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Confluent monolayers of adherent epithelial or endothelial cells grown on culture inserts are 

widely used static models for intestinal, lung and blood-brain barriers (BBB). The Caco-2 

human epithelial cell line is a well characterized model of the intestinal barrier applied for 

screening of drug candidates (13, 17-19). Culture-based BBB models greatly differ in 

complexity. Immortalized cell lines and mono-cultures of brain endothelial cells can be used as 

simplified BBB models (20-22), but the barrier properties of primary cell-based co-culture 

models are better (2, 23, 24). The field of biochips modeling gut and blood-brain barriers is 

rapidly evolving, and several models were developed in the last fifteen years which are listed 

in Table 1. These complex biochips integrate different types of imaging, microfluidics, 

measurement of resistance in mono- and co-culture systems. As all model systems, the focus of 

the devices shifts based on the main interest of the corresponding study. Our aim was to develop 

a versatile LOC device that can be used for different kinds of biological barriers and thus 

different kinds of approaches. Also, the measurement of all cucial physical parameters, such as 

TEER and pemeability assays are included. 

The negative surface charge of the cell layers is an important element of the defense system of 

barriers. The role of the negatively charged glycocalyx of the vascular endothelial barrier, for 

example, is well known in the protection of the cardiovascular system which can be damaged 

in diseases like atherosclerosis, ischemia due to blood vessel occlusion, diabetes, nephropathy, 

inflammation and sepsis (25, 26). The glycocalyx of biological barriers is also important in 

microbiological infections: the neuraminidase enzyme of different bacteria and viruses 

contribute to their virulence: for example, the neuraminidase of influenza viruses, causing 

pandemics, facilitates virus release by cleaving sialic acid residues (27). 

The blood-brain barrier (BBB), is a complex interface separating the central nervous system 

and the blood circulation. Cerebral endothelial cells lining the blood vessels in the brain have 

very specific properties within the vascular system (28). Brain capillary endothelial cells have 

an inherent role in forming the gatekeeping functions of the BBB, which consist of 

interendothelial tight junctions, low amount of intracellular vesicles, specialized and polarized 

influx and efflux transport systems (23, 29). The overall negative surface charge of endothelial 

cells of brain microvessels is higher than that of other vascular endothelial cells, as measured 

by laser-Doppler velocimetry (LDv) (30). On one hand, this negative charge of cerebral 

endothelial cells correlated with their higher phosphatidylserine and phosphatidylinositol 

content in the plasma membrane (30). On the other hand, the glycocalyx of cerebral endothelial  
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Microdevice Culture model Refs. 
Imaging 

F
lo
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P
er
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. TEER 

B
io

lo
gi

ca
l 

ba
rr

ie
r 

Cell type 

H
u

m
an

 

Co-culture 
with 

 

P
hC

 

F
lu

o 

Instrument 
Elec-
trode 

- + + + - - Gut 
Caco-2 cell 
line 

+  - (31) 

- - + + - - Gut 
Caco-2 cell 
line 

+ 
vascular 
endothelial 
cell 

(32)  

+ + + + 
87V 
Industrial 
Multimeter 

Ag/AgCl 
wire 

Gut 
Caco-2 cell 
line 

+ bacteria (33) 

+ + + + - - Gut 
Caco-2 cell 
line 

+ - (34) 

- + + - - - Gut 
HT29 cell 
line 

+ 
primary 
neurons 

(35) 

+ + + - - - Gut 
Caco-2 cell 
line 

+ - (36) 

- + + + - - BBB 
primary brain 
endothelial 

+ astrocytes (37) 

- - + + 
Flocel volt-
ohm meter 

built- in  BBB 
hCMEC/D3 
cell line 

- - (38) 

- + + - 
HP4194A 
impedance 
analyzer 

Pt wire BBB 
hCMEC/D3 
cell line 

+  - (39) 

+ + - + - - BBB 
RBE4 cell 
line 

- 
mixed glia & 
neuron culture 

(40) 

+ + + + - - BBB 
RBE4 cell 
line 

- - (11) 

- - + + 
Flocel volt-
ohm meter 

built- in  BBB 
primary brain 
endothelial  

+ 
astroglia, 
muscle 

(12) 

+ + + + - - BBB 
hBMVEC 
cell line 

+ 
human astro-
glia cell line 

(41) 

- + + + 
EVOM2 
volt-ohm 
meter 

Au/Ag/ 
AgCl film 

BBB 
bEnd.3 cell 
line 

- 
glia/glioma 
cell line 

(10, 
42, 43) 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

- 
- 
+ 
+ 

+ 
+ 
+ 
+ 

EVOM2 
volt-ohm 
meter 

Transpa-
rent  
Au film  

Gut 
 
BBB 
 
BBB 

Caco-2 cell 
line 
hCMEC/D3 
cell line 
primary brain 
endothelial  

+ 
 
+ 
 
- 

- 
 
- 
pericyte, 
astroglia 

Present 
model, 
2016/ 
2020 
paper 

- + + + 
EVOM2 
volt-ohm 
meter 

Ti/Au film BBB 
primary brain 
endothelial 

- glial cell (44) 

- + + + PGstat128N NA. BBB 
iPS-BMVEC 
stem cells 

+ 
pericyte, glial 
cell 

(16) 

Table 1. Comparison of microdevices developed for modeling biological barriers. PhC: phase contrast microscopy; 
Fluo: fluorescent microscopy; TEER: transendothelial electrical resistance, Perm.: permeability; BBB: blood-brain 
barrier; Caco-2 cell line; HT29 cell line: human colon epithelial cell line; bEnd.3: mouse brain endothelial cell line; 
RBE4: rat brain endothelial cell line; hCMEC/D3: human brain microvascular endothelial cell line; hBMVEC: human 
brain microvascular endothelial cell line. 
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 cells is denser, and covers larger areas of the microvessel lumen, than in the heart or lung (45).  

 In addition, after vascular injury induced by lipopolysaccharide, the endothelial glycocalyx 

coverage decreased in the brain, but almost completely disappeared in the peripheral organs, 

heart and lung, indicating that the brain-specific ultrastructure of the glycocalyx is an important 

element of the defense system of the BBB (45). This surface glycocalyx on brain endothelial 

cells is built from a mesh of glycolipids, sialo-glycoconjugates and heparan sulfate 

proteoglycans (46, 47). The negative surface charge at the BBB is not only providing an extra 

barrier function for the brain endothelial layer, but is also important in the regulation of the 

passage of charged molecules including drugs, delivery vectors and nanoparticles across the 

monolayer (46, 48-51). 

Therefore, a quantitative description of the surface electric properties of cell layers forming 

biological barriers is essential for the broader understanding of their function in physiological 

processes and diseases. A well-measurable physical quantity to characterize the charge density 

of surfaces in contact with fluids is the so-called zeta potential (52). Counter-ions of the liquid 

solution are distributed close to the charged surface of the particle, where, subjected to Coulomb 

force and Brownian motion, form a diffuse, electric double layer. Part of the ions inside the 

double layer is occluded in an adsorbed layer of water molecules (the “shear layer”), which, 

under flow conditions, does not move with the stream. The surface potential, therefore, cannot 

be measured directly, only the potential difference between the surface of the shear layer and 

the bulk of the liquid solution, which is called zeta potential. The most widely used method to 

measure zeta potential of suspended particles in a solvent (colloid particles or cells in an 

aqueous electrolyte) is LDv, which is able to detect the electrophoretic mobility of the 

microscopic particles with high precision (53), from which the zeta potential can be calculated. 

The group of Castanho measured the zeta potential of different mammalian cells in single-cell 

suspension by the LDv method, and revealed that brain endothelial cells have more negative 

zeta potential than other types of cells or endothelial cells from other vascular bed (30). Using 

this technique, Santa-Maria et al. have directly measured zeta potential changes in brain 

endothelial cells treated with lidocaine, a cationic lipophilic drug molecule, and discovered that 

lidocaine can alter the passage of positively charged molecules across a BBB culture model, 

indicating possible drug interactions due to charge at the level of BBB (51). 

While the surface charge of individual cells can be determined by LDv, for the in situ 

measurement of zeta potential of biological barrier layers forming large surfaces, this method 

cannot be applied. Nevertheless, in the vicinity of macroscopic surfaces (e.g., when fluids are  
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moving due to pressure difference through a channel of charged walls), a special electrokinetic 

technique, the streaming potential measurement can be used, instead, to determine the zeta  

potential at the channel wall (54, 55). Streaming potential refers to the transient potential 

difference developing under fluid flow conditions inside the channel along the flow direction, 

due to the migration of mobile counter-ions from the vicinity of the charged surface of the 

channel. Streaming potential, measured via a pair of electrodes, is considered to be proportional  

 to the zeta potential of the surface, under laminar flow conditions (54). 

Experiments to measure streaming potential in animals or in ex vivo tissues have been made 

since the late 60’s (Table 2). Streaming potentials due to the bloodstream in rabbit aorta and 

vena cava were measured by microelectrodes inserted into the vessels (measurement direction 

parallel to the vessel surface), and the endothelial surface lining these large vessels were highly 

negatively charged at physiological pH (56). In addition to these studies, parts of the 

Method to measure surface charge / 
zeta pontential 

Tissue/Cell Refs. 

Streaming 
potential / 
measurement 
direction 

Chip  
device 

Verifi-
cation  
by LDv 

Built in 
TEER 
electrodes 

Tissue / Cell 
type 

Human Biological 
Barrier 

 

Yes / parallel No No No 
Aorta and 
vena cava 

No Yes (56) 

Yes / 
perpendicular 

No No No Small intestine No Yes (57) 

Yes / 
perpendicular 

No No No 
Buccal 
mucosa 

No Yes (58) 

No (electro-
osmosis) / 
parallel 

No No No 

BGM (kidney) 
Hep-2 
(laryngeal 
carcinoma) 
RPMI-1846 
(melanoma) 

No 
Yes 
 
No 

Yes 
No 
 
No 

(59) 

Yes / parallel No No No 
3T12 
(fibroblast) 

No No (60) 

Yes / 
perpendicular 

No Yes No 

HEK293 
(kidney 
epithelial) 
EA926 
(endothelial) 
Caco-2 

Yes 
 
Yes 
Yes 

Yes 
 
Weak 
Yes 

(61, 
62) 

Yes / parallel Yes Yes Yes 
hCMEC/D3 
cell line 

Yes Yes 
Present 
model 

Table 2. Studies measuring streaming potential on tissues and cells. TEER: transendothelial electrical resistance; 
LDv: laser-Doppler velocimetry, hCMEC/D3: human brain microvascular endothelial cell line. 
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gastrointestinal tract, namely the small intestine (57) and the buccal mucosa (58) were also 

investigated by streaming potential measurements. In the latter case, however, the fluid flow 

was typically directed across the epithelial barrier layers (measurement direction perpendicular 

to the surface). Although, these pioneering papers have given important insight into the major  

role of surface charge of biological barriers in basic physiological mechanisms, with the 

increasing use of cell cultures in biomedical research new methods and devices are needed. 

Despite the recent boom in LOC devices, no biochip to determine the surface charge of intact 

cell layers forming biological barriers has been published, yet. Table 2 summarizes the studies 

in which the measurement of streaming potential of biological cell surfaces, including culture 

models, was investigated. In Table 2 we refer to four studies performed on cultured cells in 

which cell surface charge properties were determined (59-62). One of them used electroosmosis 

(59), three of them streaming potential (60-62), but none of them were using an LOC device. 

Other differences, as compared to the present study, include the use of non-barrier forming cells 

(60) and measurement of streaming potential across the cell layer (measurement direction 

perpendicular to the surface) (61, 62). 
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Goals of the thesis 

The first aim of the study was to design and fabricate a versatile lab-on-a-chip device that can 

monitor all the crucial properties of biological barrier models. The structure is based on the 

commercially available culture inserts, so a top and bottom channel is separated by a PET 

porous culture membrane that supports the barrier forming cells. The design should enable the 

mono- and co-culturing of different types of biological barriers. The trans-endohtelial/epithelial 

electric resistance can be measured with integrated, transparent gold electrodes, and the top and 

bottom channel enable permeability assays. The whole surface of the culture membrane can be 

monitored by phase contrast microscopy. Immunohistochemistry can be performed, and the 

cells on the removable culture membrane can be investigated by fluorescence microscopy. In 

addition, tubes and pumps can easily be connected to the device, thus the introduction of 

periodic or constant fluid flow can mimic certain biological processes, for instance blood flow 

in veins. 

The second goal was to improve the LOC device with the possibility of zeta potential 

measurement on cell monolayers. The strategy was to develop a streaming potential-based 

measurement technique, that can be used for determining the zeta potential. The transient signal 

of the streaming potential was planned to be recorded with a pair of Ag/AgCl electrodes, a 

voltage pre-amplifier and an oscilloscope. The results were supposed to be compared to model 

simulations and laser-Doppler velocimetry method. 
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Materials and Methods 

LOC design and fabrication process 

The device was formed by top and bottom channels, separated by a porous polyester (PET) 

membrane with 0.45 µm pore size, 2 × 106 /cm2 pore density and 23 µm thickness (It4ip, 

Belgium) (Figure 1A). The geometry of the channels enabled the measurement of trans-

endothelial electric resistance (TEER) and performance of permeability assays. The channels 

were fabricated from poly(dimethylsiloxane) (PDMS, Sylgard 184, Dow Corning GmbH, 

Germany) by injection moulding. In the first version of the Barrier Chip (BCv1), the dimensions 

for the top channel were 37 mm×2 mm×2 mm, while the bottom channel was 42 mm long with 

the same diameter and height. In the upgraded version (BCv2) for the second paper, the 

dimensions were slightly changed. In that case the length, width and height of the top and 

bottom channels were 36 mm×2 mm×1 mm and 57 mm×2 mm×2 mm, respectively. The 

initiator and base polymer were mixed in 1:10 ratio, and subsequently degassed by vacuum. 

The mixture was injected in brass molds that were the negatives of the channels. The PDMS 

was cured on 80 °C for 15 min to reach a rigid structure. To bind the channels to each other, 

the surfaces of the PDMS channels were treated with oxygen plasma. The vacuum chamber of 

the plasma cleaner (PDC-002, Harrick Plasma, USA) was evacuated to 200 mtorr then a steady 

400 mtorr pressure was set by oxygen stream. When the 400 mtorr oxygen pressure became 

stable, radio frequency (RF) excitation was used for oxygen plasma treatment for 45 seconds. 

Thus, the PDMS channels became adhesive and could be assembled with the porous membrane 

between. During the biochip fabrication process, several membrane types were tested for cell 

cultivation. Only one type of membrane from it4ip proved to be suitable for cell culture. This 

membrane, receiving the same treatment as the PDMS components, was mechanically 

sandwiched between the oxygen plasma treated PMDS parts at its circumference as shown in 

Figure 1A. There was no surface reaction between these two materials, the oxygen plasma 

treated PDMS had a poor adhesion to the PET membrane. There is a small area (2 mm × 2 mm) 

where the adhesion between the PET membrane and the PDMS for perfect sealing was provided 

by a droplet of a silicone sealant adhesive (Aquarium RTV Silicone Sealant, Adarsha Specialty 

Chemicals Pvt. Ltd., India). This sealant adhesive has a relatively high viscosity, so it can be 

applied precisely while it is soft for about 15 minutes. It reaches the fully cross-linked, solid 

state in 24 hours. 
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For the top and bottom side of the LOC device, plastic microscope slides (polystyrene, Ted 

Pella USA) were used. The top slide and the flat part of the male luer lock (Rotilabo, Carl Roth, 

Germany) inlets/outlets were drilled with a diameter of 2 mm using a commercial drilling 

machine (Figure 1A). The inlets were glued on the top slide using a photoresin (Norland optical 

adhesive 81, Norland Products, USA). The bottom sides of the luer locks were painted with the 

photoresin then placed above the holes on the top slide. After 30 seconds of exposure with a 

UV lamp (Newport New Illumination System, Newport Corp, USA), the resin reached the 

required structural rigidity. The gold electrodes for TEER measurement were formed on plastic 

microscope slides using sputter-coating (K975X, Emitec, France). The thickness of the gold 

layer was 25 nm, providing low enough resistance (ca. 10 Ohms), and approximately 70% 

transmission in the visible spectrum, to allow TEER measurements and simultaneous 

microscopic observation. Therefore, the cell growth could be monitored with a phase contrast 

microscope throughout the whole length of the channel. Conductive epoxy glue (CW2400, 

Figure 1 The structure of the biochip. (A) The two PDMS channels are separated by a porous PET culture 
membrane. The top and bottom plastic slides coated with the gold electrodes are closing down the two channels. 
The PDMS and the plastic slides are assembled with plastic screws to avoid shortcut between the electrodes. Luer-
lock inlets/outlets on the top slide provide easy access to the channels. The culture medium is circulated in the top 
channels, while the bottom channel is closed down using male luer cups (not shown). (B) Copper wires are glued 
to gold electrodes using conductive epoxy, so the instrument (EVOM2) to measure transendothelial electric 
resistance can be connected easily. (C) The biochip and the zeta electrodes. The PDMS channels and the plastic 
slides containing the electrodes for transendothelial electric resistance measurement were joined together with 
screws. The female luer inlets were located on the top, and provided easy access for both top and bottom channels. 
The Ag/AgCl electrodes were fit in a drilled channel of male-female luer lock caps, and fixed using Norland optical 
adhesive, thus the electrodes were easy to mount to the biochip for the experiments. 
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Chemtronics) was applied in order to link copper wires to the electrodes, and a 4-channel 

voltohmmeter (EVOM2, World Precision Intruments, USA) could be connected to the LOC 

device. The oxygen treated PDMS does not bond very well to metal surfaces either, so the 

microscope slides with gold electrodes were fixed to the PDMS with either silicone sealant 

adhesive (BCv1) or plastic screws (BCv2). In case of BCv1, the sealant was applied as a thin, 

continuous line on the surface of the PDMS. The fabrication procedure was monitored under a 

stereo microscope. In the end, we had a 0.1 mm thick sealant layer that provided a good 

adhesion for the glass slides, and sealed well both channels. For the easier assembly of BCv2, 

the top and bottom slides and the PDMS channels were screwed together. To avoid shortcut of 

the TEER electrodes, plastic screws were used in the process (Figure 1B). The ready-to-use 

devices were sterilized with oxygen plasma for 10 min and 70% ethanol for 30 min before cells 

were seeded to the system.  

Electrode fabrication for TEER and streaming potential detection 

For the resistance measurements, a pair of 25-nm thick, transparent, gold electrodes was formed 

on each glass slide using sputter-coating (sputtering machine: K975X, EMITEC, France). Thin 

copper wires were glued to the gold electrodes with conductive epoxy drops (CW2400, ITW 

Chemtronics, USA) in order to connect them with the 4-channel input of the voltohmmeter 

(EVOM, World Precision Instruments, USA). For comparison to the common indium tin oxide 

(ITO) electrodes, we performed a recording of impedance spectra in the chip with transparent 

gold (Au) and ITO electrodes (Figure 2A). A voltage source (sinus function generator, TE 8020, 

20 MHz), the sample using one electrode on the top and one on the bottom plate of the chip and 

a reference resistance (100 Ω) were switched in series, and the voltage drop on the resistance 

was registered by a storage oscilloscope (LeCroy Wave Runner 6010A), from which the sample 

resistance values were calculated at different frequencies. The frequency range span from 1 Hz 

to 20 MHz, with 3 records in each decade. Prior to the measurements, both of the channels were 

filled up with the same buffer as used in the cell culture experiments. Transmission spectra of 

gold and ITO electrodes were also evaluated (Figure 2B). 

For the detection of streaming potentials, Ag/AgCl electrodes were prepared and placed in luer 

lock connectors (Figure 1C), so they could be easily connected to the inlet and outlet side of 

the biochip. The silver wires (10 mm long, 0.5 mm width) were polished with a sandpaper and 

washed with ethanol, then were soldered to copper wires. The connectors were drilled at their 

diameter, and the silver wires were fitted in. Small drops of the Norland photoresin were applied 
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at openings between the connector and the silver cord to fix them, and were exposed to UV 

light using a mercury arch lamp for 30 seconds. The end of the copper wire connecting the 

silver was sealed with silicon glue to avoid shortcut during the subsequent electrolytic 

chloridisation. For this, the wires were immersed in 3 M KCl solution, one at the time, and a 3 

mA DC current was applied for 1 minute. The ready Ag/AgCl electrodes were rinsed with 

distilled water and dried under N2 stream. 

Zeta potential measurements: Detection of streaming potential 

Development of streaming potential is a well-known electrokinetic phenomenon occurring in 

microfluidic channels (20, 62). If the inner surface of the channel is covered with charges 

(intrinsic or adsorbed), it attracts counterions from the solution, and keeps them near the 

surface. Due to a balance of Coulomb attraction and Browninan motion, a diffuse double layer 

is formed by the mobile ions and the fixed surface charges, the Gouy-Chapman layer (GCL). 

As a consequence, an electric potential gradient develops perpendicular to the membrane plane, 

screening the surface potential of the membrane across the GCL. If a fluid flow is applied in 

the channel, a major part of the counterion cloud of GCL, divided by a “slipping plane” to a 

moving part and a layer sticking the channel wall, will be grabbed by the solution under 

Poisseuille flow. The resulting flow of net charge along the channel represents an electric 

current called streaming current, and the accompanying streaming potential can be detected by 

an electrode pair separated alongside the channel. The streaming potential under stationary 

conditions is proportional to the surface potential of the shear plane called zeta potential, 

Figure 2 Impedance and transmission spectra of the transparent gold and ITO electrodes on the chip. (A) 
Impedance is given in Ohm (Ω), frequency is in hertz (Hz). Measurements were performed between 1 Hz –
100MHz. (B) Transmission spectra were recorded at wavelengths between 400 and 700 nm. 
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according to the Helmholtz-Smoluchowski equation (52). Since the zeta potential can be 

relatively easily measured by electrokinetic methods, this is the very quantity that is used to 

characterize surface charge densities of artificial membranes or colloid particles. In this work, 

we measure a nonstationary (transient) streaming potential, in order to maximize the signal 

amplitude by applying high inlet flow rates. We provide both theoretical and experimental 

evidences that the amplitude of the transient signal is proportional to the zeta-potential at the 

surface, in this case, too. (For more details, see below, and under the Simulation section). 

The transient signal was gained and filtered with a low-noise voltage pre-amplifier (SR560, 

Stanford Research Systems, USA) (Figure 3A), recorded by a digital oscilloscope (Wave Ace, 

Teledyne LeCroy, USA), and further analysed via the Wavestudio software (Teledyne LeCroy, 

USA). The amplitude of the transient streaming potential signals was calculated with Matlab 

(MathWorks, USA). The difference between the baseline and the maximum of the curve 

defined the amplitude. The noise of the signals was eliminated with the function estimation of 

smoothing splines. (Figure 4A)  

Experimental validation of the system was performed by using a Nafion membrane inserted 

between the two PDMS channels. For the measurements performed on the confluent monolayer 

of hCMEC/D3 after 24 h flow, first the background streaming potential was registered under a 

1 ml/min flow rate, then cells were treated with 1 mM lidocaine for 30 min at 37 ºC or with 

1 U/ml neuraminidase in a serum-free medium for 1 h at 37ºC. After treatments, the streaming 

potential was measured again with the same electrodes and under the same conditions, and 

Figure 3 Methods of zeta potential measurement. (A) Sreaming potential. The counterions of the solution have a 
higher local concentration close to the negatively charged surface due to the electric double layer. The ion 
concentration of the diffuse layer was constant (fix cations close to the surface) while the cations of the slipping 
plane move towards the outlet under flow conditions and temporarily accumulate in the larger vicinity of the 
electrode resulting in a potential difference compared to the reference (inlet) electrode. (B) Laser-Doppler 
velocimetry. Electric field was applied on a suspension of charged particles (e.g. the Nafion beads) in the capillary 
channel and the beads moved toward the direction of the field. The electrophoretic mobility was measured with 
the intensity shift between two collimated, monochromatic, and coherent Laser beams, thus the zeta potential of 
the particles could be calculated. 
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changes were calculated. In case of cell monolayers in the control group, instead of any 

treatment, the medium was changed and incubated for 30 min or 1h at 37 ºC, before the 

streaming potential was measured. 

Zeta potential measurements: Laser-Doppler velocimetry 

LDv measures the electrophoretic mobility of charged particles with two collimated, 

monochromatic, and coherent laser light beams, forming a set of straight fringes by interference 

(53). The moving particles go through the fringes and reflect light to a photodetector. The 

frequency of the reflected light’s intensity fluctuation is proportional to the Doppler shift 

between the scattered and incident light, and the velocity of the particles is proportional to the 

Doppler shift. Using the Smoluchowski equation, the zeta potential  can be calculated as 

follows: 

ζ =
4πµη

ε
 

where μ is the electrophoretic mobility, η is 

the viscosity of the solvent and ε is the 

dielectric constant. 

In the experiments, a Zetasizer Nano ZS 

instrument (Malvern, UK) was used. First, 

LDv was performed using Nafion beads as 

a simple model for ionic surface changes. 

Nafion belongs to a class of polymers with 

ionic properties whose unique 

characteristics result from the incorporation 

of perfluorovinyl ether groups terminated 

with sulfonate groups onto a 

tetrafluoroethylene strength (63). To alter 

the negative surface charge of the Nafion 

particles, cationic polyethylenimine (PEI) 

polymer with good attachment properties 

was used. Nafion beads were stored in a 

mixture of water and ethanol. To measure 

the LDv of the Nafion beads, they were 

Figure 4 Comparison of the registered streaming potential 
and the model simulations. In both cases the reference was 
on the low-pressure end, so the positive potential difference 
corresponds to negative zeta potential since it measured the 
concentration of the counterions. (A) The registered signal 
on Nafion membrane measured in the biochip. (B) The 
result of the simulation. The streaming potential is shown 
in arbitrary units because the geometry of the model was 
proportionally decreased as compared to the chip device. 
The dynamics of the transient streaming potential signal is 
identical. 
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transferred into the same ionic solution used for measuring the surface charge of endothelial 

cells. First, 2 × 1 ml Nafion stock solution was spinned down with ultracentrifugation (T-1270 

fixed angle titanium rotor, Sorvall WX+100 Ultracentrifuge, ThermoFisher Scientific, USA) at 

45000 rpm for 30 min on 4 °C. The pellet in one of the vials was resuspended in 2 ml phosphate 

buffered saline (PBS) solution containing Ca2+ and Mg2+, while the other vial was resuspended 

in 3 ml PEI. Both samples were sonicated for 60 min. The PEI-treated sample was 

ultacentrifuged once more with the same settings and was resuspended in 2 ml of PBS 

containing Ca2+ and Mg2+ and sonicated for 1 hour. This step was repeated once more to remove 

any PEI which was not attached to the Nafion beads. Samples were measured by Zetasizer Nano 

ZS using a disposable zeta potential cuvette with gold plated beryllium/copper electrodes 

(DST1070, Malvern, UK). Before measurements cuvettes were rinsed with 100 % ethanol for 

activation and washed twice with distilled water. Then zeta cuvettes were calibrated with zeta 

standard solution (Malvern, UK), as described by the manufacturer’s protocol. Samples were 

measured at 25 ºC, with a minimum of 6 rounds (12 runs each), with an applied 40 V voltage 

(Figure 3B).  

Zeta potential of hCMEC/D3 brain endothelial cells was measured similarly (51). Before the 

cells in Petri dishes reached full confluence, were trypsinized and 105 cells were re-suspended 

for treatment in the appropriate buffer. As described in our previous work, 1 mM lidocaine was 

added to the cell suspension and incubated at 37ºC for 30 minutes (51). For neuraminidase 

treatment, cells in suspension were incubated with 1 U/ml of neuraminidase in a serum-free 

medium for 1 h at 37 ºC, before measurement. The zetasizer software v.7.12. calculated the zeta 

potential using the Smoluchowski equation.  

Simulations 

Model calculations were carried out on a flow channel by the COMSOL Multiphysics work 

package (Comsol Inc., USA) run on a personal computer, to describe time- and zeta potential 

dependence of the transient streaming potential signal. To optimize simulation time and 

disencumber processor capacity, a rectangular channel of proportionally reduced size and 

simplified geometry was used in the simulations. The average flow velocity at the inlet 

(3.8×10- 4 m/s) was adjusted to the reduced size, in order to be able to mimic the time course of 

the measured transient electric signal. The dimensions of the channel were 100 µm x 200 µm x 

1200 µm. In the middle of this channel a 200 µm by 300 µm inner wall segment, representing 

the slipping plane, was carrying a surface charge density of 0.172 C/m2. The electrolyte 
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comprised of a NaCl - water solution of 137 mM concentration, with ambient pressure and 

temperature values, to mimic typical measuring conditions. The simulations were carried out 

by solving coupled differential equations of the Electrostatics, Transport of diluted species and 

Creeping flow work packages, using the Poisson approximation (1-3) and the Nernst-Planck 

(4), and Navier-Stokes equations for the creeping flow of an incompressible fluid (5-6), 

respectively: 

 

𝛻 ∙ 𝑫 = 𝜌       (1) 

−𝒏 ∙ 𝑫 = 𝜎       (2) 

𝑬 = −∇V      (3) 

+ 𝛻 ∙ −𝐷 𝛻𝑐 − 𝑧 𝑢 , 𝐹𝑐 𝛻𝑉 + 𝒖 ∙ 𝛻𝑐𝒋 = 0 (4) 

0 = 𝛻 ∙ [−𝑝𝑰 +  𝜇(𝛻𝒖 + (𝛻𝒖) )] + 𝑭  (5) 

𝜌𝛻 ∙ (𝒖) = 0  (6) 

 

Here D and E are the electric displacement and field strength, respectively, V and S are the 

volume and surface charge densities, n is the normal vector of the surface, V is the electric 

potential, 𝑐  is the concentration of the jth ion of 𝑧  valency and 𝑢 ,  mobility, F is the Faraday 

constant, 𝒖 is the flow velocity, p is the pressure, I is the volumetric current flux, µ is the 

dynamic viscosity, F is the volumetric force, and (𝛻𝒖)  is the shear stress term. The simulations 

were carried out in two steps: first, under no-flow conditions a stationary state was developed, 

while in the second step, a creeping flow was also introduced. The coupled differential 

equations were solved by the implicit method of Backward Differentiation Formula (BDF). 

Statistics 

Data of the standardization of BCv1 are presented as means ± SD. Statistical significance 

between treatment groups was determined using two-way ANOVA following Bonferroni 

multiple comparison posttest (GraphPad Prism 5.0; GraphPad Software, USA). Changes were 

considered statistically significant at p < 0.05 (a, compared to Transwell inserts and b, 

compared to static chip conditions). All experiments were repeated at least three times, the 

number of parallel samples was 3-5. 

Data of the streaming potential measurements are presented as means ± SD. Statistical 

significance between groups was determined by one-way ANOVA with Bonferroni multiple 
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comparison test, by unpaired t-test or by paired t-test (GraphPad Prism 5.0, GraphPad software, 

USA). The number of parallel samples were minimum 3, and significance was considered at 

p<0.05. Experiments were repeated at least two times with multiple parallels. 

Cell cultures 

To test the versatility of the barrier chip, both epithelial and endothelial monolayers 

were cultured and monitored under static and flow conditions, as was appropriate. The 

transparent gold electrodes enabled a continuous visualization by phase contrast microscopy on 

the entire membrane surface, every day during the experiments. Visually confirmed leakage, 

holes on monolayers accompanied by low TEER resulted in the exclusion of the barrier chip 

from the experiments. Data were compared to measurements performed on Transwell cell 

culture inserts (Corning, USA). Cell cultures were grown in a humidified, 37 °C incubator with 

5 % CO2 in both experimental setups.  

Epithelial cells 

A human immortalized cell line, Caco-2 intestinal epithelial cells (ATCC, USA) were cultured 

under static conditions to model epithelial barrier on the chip. Vinblastine-selected Caco-2 cells 

(≤passage number 75; (17)) were cultured on rat tail collagen- (prepared in the laboratory with 

acetic acid extraction) coated Petri dishes in Dulbecco’s modified Eagle medium (DMEM, 

Biochrom, Germany) supplemented with 10 % fetal bovine serum (FBS, Pan Biotech, 

Germany) and 50 μg/ml gentamicin. The porous membrane of the chip was coated with rat tail 

collagen overnight at 4°C. After cell cultures reached 80 % confluency in the dishes, Caco-2 

cells (7 x 104 cells / chip) were subcultured to the chip using 0.05 % trypsin-EDTA solution 

(Pan Biotech, Germany). Confluent layers at maximal resistance were used for permeability 

measurements and immunolabeling (Figure 5A). Cells were also cultured on Transwell inserts 

for resistance and permeability data comparison (Figure 5B). Caco-2 cells were passaged to 

inserts at a cell number of 105 cells / insert (insert: 1.12 cm2, 0.4 µm pore size, 108 pores / cm2). 

Endothelial cells 

Brain microvascular endothelial cell line hCMEC/D3 (20) and primary rat brain endothelial 

cells (64-66) were used as models of the blood-brain barrier on the chip. Cultures of hCMEC/D3 

cells (≤ passage number 35) were grown in MCDB 131 medium (Pan Biotech) supplemented 

with 5 % FBS, GlutaMAX (100 x, Life Technologies, USA), lipid supplement (100 x, Life 

Technologies, USA), 10 µg/ml ascorbic acid, 550 nM hydrocortisone, 100 µg/ml heparin, 1 
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ng/ml basic fibroblast growth factor (bFGF, Roche, USA), insulin (2.5 µg/ml), transferrin (2.5 

µg/ml), sodium selenite (2.5 ng/ml) and 50 μg/ml gentamicin. hCMEC/D3 brain endothelial 

cells (6 x 104 cells / chip) were seeded to microdevices similarly to epithelial cells (Figure 5A). 

Static cultures were kept for 5 days before the permeability experiment. For flow studies cells 

were grown under static conditions until day 3, and left 48 h under dynamic conditions before 

permeability studies. After the first day in culture both models received 10 mM lithium chloride 

(Merck, USA) to induce barrier properties (20, 67, 68). D3 cells were also subcultured to 

Transwell inserts (1.12 cm2, 0.4 µm pore size, 4 × 106 pores / cm2) at a cell number of 4 x 104 

cells / insert (Figure 5B). 

Primary rat brain endothelial cells, pericytes and astroglia cells were isolated and cultured 

according to the method described in our previous studies (17, 64). To establish the triple 

culture model the upper compartment of the barrier chip was coated with rat tail collagen for 

endothelial cells and with collagen type IV. for pericytes and glial cells overnight at 4°C. 

Pericytes at passage number 3 (1.5 x 104 cells / chip) were seeded to the bottom side of the 

porous membrane according to the method of Nakagawa et al. (69, 70). Primary glial cells (105 

cells / chip) were seeded to the bottom of the lower chamber directly to the coated glass surface. 

Primary rat brain endothelial cells (7 x 104 cells / chip) were passaged to the upper side of the 

coated membrane with endothelial culture medium: DMEM/F12 supplemented with plasma-

derived bovine serum (15 %; First Link, UK), heparin (100 µg/ml), bFGF (1 ng/ml; Roche, 

Switzerland), insulin (5 µg/ml), transferrin (5 µg/ml), sodium selenite (5 ng/ml) and 

gentamycin (50 µg/ml). Static co-cultures were kept for 6 days before the permeability 

experiment. For flow measurements, cultures were grown under static conditions until day 4, 

and were kept for 48 h under dynamic conditions before permeability studies. After the second 

day in culture both models received 550 nM hydrocortisone. One day before the static 

permeability test or the beginning of flow experiments cells were treated with chlorophenylthio-

adenosine-3',5'-cyclic monophosphate (250 µM, CPT-cAMP) and RO 201724 (17.5 µM, 

Roche) to tighten junctions and elevate resistance (2, 71). For comparison cells were also kept 

on Transwell inserts (1.12 cm2, 0.4 µm pore size, 4 × 106 pores / cm2). Triple primary co-

culture BBB model was assessed as shown in Figure 5A and B and described previously (65, 

69, 72). 
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Automation of cell feeding and the dynamic flow conditions 

A syringe (20 ml plastic disposable syringe with luer cone, Braun) containing the culture 

medium was placed in a syringe pump (Legato 110, KDS products, USA) and connected to the 

device. The tubes (1 mm inner, 3 mm outer diameter, Carl Roth, Germany) were connected to 

the inlets/outlets via female luer-locks (Rotilabo, Carl Roth, Germany) to allow feeding during 

cell growth and constant medium-supply. During the cell growth phase, the syringe pump was 

programed to change the medium above the cell monolayer (static condition) with 500 µl/min 

flow rate every 8 hours. The transparency of the gold electrodes let us monitor the growth of 

the cell monolayer by phase contrast microscopy on the entire surface, and TEER was measured 

every day. If the cell layer was not continuous as reflected in low TEER values and visually 

detected holes, the device was excluded from the experiments. After the cell layer reached 90% 

confluency, a constant stream of culture medium was introduced by a peristaltic pump 

(Masterflex, Cole-Parmer, USA) for 24 hours (1 ml/min, flow condition) before zeta 

measurement and/or permeability studies.  

Cell culture treatments 

Lidocaine (Sigma L7757) was dissolved in water at 30°C to prepare a 20 mM stock solution. 

Working solutions of 1 mM concentration were prepared freshly before each experiment in 

culture medium and added to the cells. Neuraminidase from Clostridium perfringens (Sigma 

N2876) was dissolved in Dulbecco’s Modified Eagle’s Medium (DMEM) and aliquots of a 

10 U/ml stock were stored at -20ºC. A new neuraminidase stock vial was thawed before each 

Figure 5 Cell growth in the LOC device and culture inserts. (A) LOC setups with two types of cells. Epithelial 
cells (top, yellow cells) grow as monolayers on the porous membrane of the chip. Triple culture blood-brain 
barrier model using rat primary endothelial cells (green), pericytes (orange) and glial cells (blue) assembled in 
the biochip. (B) Transwell cell culture inserts with the same arrangements for epithelial or endothelial cell models 
as shown in the microchip. 
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experiment. For the treatment, neuraminidase was applied at 0.1, 0.3 and 1 U/ml concentrations 

to the cells, based on a preliminary study and literature data. 

Evaluation of barrier integrity  

Cells in the LOC device received fresh medium every 8 hours automatically, and TEER 

measurement was performed each day to follow barrier formation. Under dynamic flow 

conditions, no medium change was required, because the cell culture medium was moved 

continuously by the peristaltic pump positioned after the chip in the circuit. Permeability 

measurements as layer integrity tests and immunohistochemical labeling for morphological 

characterization were performed at the end of all experiments. Cells on Transwell inserts 

received fresh culture medium every second day. TEER was also measured according to culture 

protocols. After reaching appropriate TEER values, permeability experiments were performed. 

These methods are accepted and widely used in the barrier field as integrity measurements and 

testing model applicability.  

The flux of the hydrophilic tracers, sodium fluorescein (SF, MW: 376 Da) and fluorescein 

isothiocyanate-labeled dextran (FD, MW: 4.4 kDa) indicating paracellular permeability, was 

measured. Permeability of Evans blue-labeled albumin (EBA, MW: 67 kDa) was also tested 

across cell monolayers as previously described (65, 66). For the assay, cell culture medium was 

changed in the lower compartment of the chip to 500 µl Ringer-Hepes solution (118 mM NaCl, 

4.8 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 5.5 mM D-glucose, 10 mM Hepes, pH 7.4). In 

the upper compartment, the culture medium was replaced by 250 µl Ringer-Hepes solution 

containing either 10 µg/ml SF or 100 µg/ml FD and 165 µg/ml Evans blue bound to 1 % bovine 

serum albumin (BSA) simultaneously. At 20, 40 and 60 min of the permeability assay Ringer-

Hepes solution in the lower compartment was changed to a fresh 500 µl buffer. Samples from 

the luminal and abluminal compartments were collected. Permeability measurements were also 

performed on Transwell inserts using 500 µl volumes with marker molecules for the upper and 

1500 µl for the lower compartments (65, 66). During the experiments inserts were kept in 12-

well plates (Corning, USA) and inserts were moved after 20, 40 and 60 min to the next well of 

the plate. Barrier chips and plates with inserts were incubated on a horizontal shaker in the CO2 

incubator (100 rpm; Biosan, Latvia) at 37 °C for 1 h. SF and FD concentrations were 

determined by the same instrument using 485 nm excitation and 520 nm emission wavelengths. 

EBA content of samples was measured at 584 nm excitation and 680 nm emission wavelengths 
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(Fluostar Optima, BMG Labtechnologies, Germany). Apparent permeability coefficient (Papp) 

was calculated as described previously (17).  

Fluorescent immunostaining 

Morphological characterization of epithelial and endothelial cell lines grown in the barrier chip 

was performed by immunohistochemical staining for ZO-1 and β-catenin tight and adherens 

junction associated cytoplasmic linker proteins. In the triple co-culture model, endothelial cells 

were stained for ZO-1 and β-catenin, pericytes for α-smooth muscle actin (α-SM) and astroglial 

cells for glial fibrillary acidic protein (GFAP). Before ZO-1 labeling, double cell nucleus 

staining with ethidium homodimer-1 and bis-benzimide was performed to reveal cell death. 

After the permeability tests, cells were fixed with cold acetone-methanol solution (1:1) for 10 

min, washed with phosphate buffered saline (PBS), and non-specific binding sites were blocked 

with 3 % BSA-PBS for 1 h at room temperature. Incubation with rabbit-anti-ZO-1, rabbit anti-

β-catenin, mouse anti-α-SM (Dako, USA) and mouse-anti-GFAP primary antibodies lasted 

overnight at 4 °C. Cells were incubated with anti-rabbit secondary antibody labeled with CY3 

or anti-mouse secondary antibody labeled with Alexa Fluor 488 (Life Technologies, USA) and 

H33343 dye to stain nuclei for 1 h at room temperature. Between incubations, cells were 

washed three times with PBS. Chips were disassembled, cell culture membranes were removed 

from the chip, and were mounted in Fluoromount-G (Southern Biotech, USA), except for 

astroglia which were photographed in situ in PBS. Stainings were visualized by a Leica TCS 

SP5 confocal laser scanning microscope (Leica Microsystems, Germany). 

Surface glycocalyx staining 

Endothelial cells were cultured on rat tail collagen coated glass cover slips. After reaching 

confluence, cells were treated either with culture medium (control group) or with 

neuraminidase, as described in the Cell Culture Treatment section. After treatment, cells were 

fixed with 1% paraformaldehyde in PBS for 15 min at room temperature. To visualize the 

surface glycocalyx, fixed but unpermeabilized cells were incubated with wheat germ agglutinin 

(WGA) lectin conjugated with Alexa Fluor 488 (Invitrogen, W11261). WGA is specific for 

sialic acid and N-acetyl-D-glucosamine residues within the glycocalyx. The final concentration 

of WGA was 5 µg/ml in PBS and the incubation lasted for 10 min at room temperature (73). 

After thorough washing steps, preparations were mounted and pictures were taken with an 

Olympus FV1000 confocal microscope at different random positions. Minimum of 5 pictures 

were taken from each group at each experiment. The images were analyzed for staining 

intensity using the FIJI (ImageJ) software.   
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Results and discussion 

Design and operation of the device  

The basic structure of the barrier device mimics that of the culture inserts: top and bottom 

channels separated by a porous PET membrane (Figure 1A). The two parallel channels were 

made of PDMS. There are several setups have been built for similar purposes. Most of them 

consist of two channels, either parallel (31) or perpendicular to each other (39, 43), with a 

relatively small overlapping area. The arrangement of our channels enables a much larger 

overlapping area (ca. 1 cm2), allowing a larger surface and a bigger sampling size for in vitro 

permeability studies. The main difference between the BCv1 and BCv2 is the smaller hight of 

the top channel (2 mm and 1 mm, respectively). The reason of the decreased channel hight is 

that we wanted higher shear stress in the latter. 

The thin, transparent electrodes grant a special advantage to the chip, permitting a continuous 

visual monitoring of the cells by a microscope, above the entire membrane surface, during the 

full time span of the experiment. Such a feature is missing in other model systems using 

nontransparent electrodes that allow visual observation limited to the narrow slits between the 

electrodes (10, 43), therefore a full microscopic screening of the sample can only be done on 

the disassembled chip. This is a critical point for such assays that include monitoring of TEER 

or paracellular permeability of the barrier membrane, since local faults in the confluence of the 

cell layer, occurring usually at its perimeter and invisible for other methods, might seriously 

tamper the results.  

We tested transparent ITO electrodes as possible candidates, and measured their resistance. 

Figure 2A shows the impedance spectra of chips equipped either with a pair of transparent gold 

electrodes or ITO electrodes placed at the outer walls of the top and bottom channel, and 

separated by the porous membrane. In the low-frequency regime (between 1Hz and 1kHz) the 

electric double layer formed upon electrode polarization hinders the correct measurement of 

the ohmic resistance of the chip, while in the high-frequency regime (above 3 MHz), the 

reduced values of ionic mobilities limit conductivity. In between the two extremes, the sample 

resistance is nearly constant, but its value is an order of magnitude smaller with gold electrodes 

than with the ITO ones. This was the primary reason for which we used gold electrodes instead 

of ITO. Proper electrode patterning with ITO glass was not feasible with our laboratory 
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technique, therefore the standard four-electrode method, eliminating the effect of electrode 

polarization on TEER, could not be applied. 

On the other hand, low-resistance “non-polarizable” electrodes (platinized platinum or 

Ag/AgCl) proved not to be transparent enough (extinction coefficient > 1), hampering visual 

observation. The choice of a 25-nm inert, gold layer for TEER electrodes was found to be the 

best compromise between the opposing requirements of conductance and transparency (10 

Ohms, extinction coefficient 0.4, Figure 2A and B). Possible artifacts of the resistance 

measurements due to polarization of the gold electrodes were avoided by the four-electrode 

method. Rectangular pulses (12.5 Hz) were applied on the sample and kept controlled by a pair 

of electrodes, while another electrode pair was supplying load current via a feedback loop, to 

keep the transmembrane voltage constant during each half-period. The electric resistance of the 

system was found to be characteristic to the cell culture layer. 

The plastic tubes and the zeta electrodes were connected to the device via luer lock inlets. The 

Ag/AgCl zeta electrodes were inserted in luer connectors, so they could be mounted easily 

(Figure 1C). A programmable syringe pump fed the cells during the growth period (3 days) 

every 8 hours, while the TEER values were recorded and the monolayer was monitored with a 

phase contrast microscope, each day. Automatic feeding decreased the chances of 

contamination, too. The devices were connected in line (3 to 6 at one experiment), thus the flow 

rate and shear stress were the exact same in all cultures. After cell monolayers reached about 

90% confluency, a peristaltic pump was introduced for constant flow, to mimic the shear stress 

of the blood stream for 1 day. The flow rate was 500 µl/min during feeding, 1 ml/min during 

the constant flow and the shear stress values were 0.1 and 0.4 for BCv1 and BCv2, respectively.  

Under dynamic flow conditions, the input tube was immersed in the cell culture medium in the 

reservoir, and was connected to the inlet of the chip, while the output tube was connected to the 

reservoir via the peristaltic pump. This arrangement has three advantages: (i) the liquid pressure 

is always less than the air pressure outside, therefore there was no simmering or jamming failure 

(no „explosion”), (ii) the reservoir also acts as a bubble trap, since all bubbles (eg. from 

leakages) burst as the liquid is dripping out from the output tube, and none of them can reach 

the input of the chip at the bottom of the reservoir, (iii) since the reservoir of the circulated 

medium is located after the pump, it is not pressurized, and the medium inside can be promptly 

and continuously sampled or treated very easily. That could be very useful for both long- and 

short-term tests of various drugs influencing the permeability of the barrier layer. 
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The streaming potential was measured with the Ag/AgCl electrodes (Figure 1C) between the 

inlet and outlet sides of the top channel (Figure 3A). For the recording, the flow was periodically 

stopped and restarted after equilibration of the ions close to the surface of the cell monolayer. 

Please note that contrary to the usual streaming potential measurements working with moderate 

flow rates, we do not operate our device under stationary conditions where the forward 

streaming current and the backward conductive current keep an equilibrium, but rather measure 

transient signals (Figure 4A) by applying a strong input flow, in order to increase the signal-to-

noise ratio. Although, this case is beyond the scope of the Helmholtz-Smoluchowsky equation 

establishing a linear relationship between the zeta and steady-state streaming potentials, here 

we present experimental and theoretical evidence for the proportionality of the zeta potential 

and the amplitude of the transient streaming potential in our approach, as well. 

On the whole, the device enables several ways to study the barrier layer simultaneously: electric 

conductivity and streaming potetential measurement, molecule permeability and microscopic 

visualization of the (co-)cultured cells. In addition, morphological characterization of the layers 

is also possible by immunohistochemical staining. 

The streaming potential feature 

Experimental validation of the method  

In this work, the streaming potential was measured in BCv2 either on a test membrane or on 

cell monolayers, in the form of a transient potential difference evolving between the inlet and 

outlet electrodes, due to migration of ions from the vicinity of the negatively charged surface 

of the channel under flow conditions (Figure 3A). The negative charge derives from the 

overwhelming anionic groups on the surface of the confluent cell monolayer due to the lipid 

headgroups (30) and the surface glycocalyx in the BBB experiments (49), or from the sulfate 

groups of the Nafion membrane in the control measurements. The electric double layer close to 

a charged surface has a different ion concentration compared to the solution. If flow is applied 

to the system, the mobile part of the GCL containing an excess number of positive counterions 

move towards the outlet electrode, and temporarily increase the positive charge density in the 

larger volume of the socket of the electrode, giving rise to an increase in electric potential, as 

compared to the reference electrode (Figure 4A). As we show by both model calculations 

(Figure 4B) and control experiments using the LDv method, the amplitude of this transient 

streaming potential signal is proportional to the zeta potential of the membrane surface. 
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A highly negatively charged Teflon 

derivative, the sulfonated 

tetrafluoroethylene-based fluoropolymer-

copolymer called Nafion was selected to 

perform the proof-of-concept experiments 

by the streaming potential electrodes 

incorporated in the chip. Since Nafion is 

available both in 183-µm thick membrane 

sheets and in liquid suspension, it is suitable 

for both the transient streaming potential 

measurements and for LDv (Figure 6A and 

B), where the latter can serve as a control 

for calibration. 

For the streaming potential study, the PET 

membrane of the chip was replaced by a 

Nafion membrane, and the adjacent microfluidic channels were filled up by PBS, in order to 

mimic the ionic conditions of the incubating solution of endothelial cells, most frequently used 

in our earlier BBB chip experiments. Following the application of an inflow on the upper 

microfluidic channel of the device (Figure 3A), a well-measurable transient electric potential 

change could be recorded under 1 ml/min flow rate, using a voltage preamplifier and an 

oscilloscope (Figure 4A). The sign of the transient signal corresponded to a displacement of 

positive charges in the direction of the flow, indicating an overall negative zeta potential of the 

surface of the channel. After a 1-minute post-measurement incubation time without flow, the 

signal could be quantitatively reproduced. As a single-parameter descriptor of the transient 

signal, we chose its amplitude for comparison with the results of subsequent measurements. 

Note that here the convention of the sign was the opposite compared to the traditional streaming 

potential measurements (74), as the reference electrode was on the low-pressure end of the 

channel. Hence, the sign of the measured signal was the opposite of that of the zeta potential 

since the amplitude was proportional to the concentration of the counterions. According to the 

convention, the amplitude of the streaming potential of the untreated Nafion membrane was 

found to be -1.06 ± 0.0625 mV (Figure 6A).  

To change the surface charge density, the Nafion membrane, was treated for 30 min with PEI, 

known to be able to attach via highly positively charged ethyleneimine residues to the surface. 

Figure 6 Measurement of the surface charge of Nafion by 
streaming potential and by laser-Doppler velocimetry 
(LDv) methods. (A) Nafion film replaced the culture 
membrane in the biochip. It was treated with 
polyethyleneimine and the streaming potential was 
measured before and after the treatment. Values are 
presented as means ± SD, n=4. Data was analysed by 
unpaired t- test. **, p<0.01, compared to control. (B) 
Nafion beads were treated with PEI, and the samples were 
measured with LDv before and after the treatment. Values 
are presented as means ± SD, n=5. Data was analysed by 
unpaired t-test. ***, p<0.001, compared to control groups. 
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Its access quantity was subsequently washed away with PBS, and the streaming potential was 

measured again. The result showed a pronounced decrease of the absolute value of the 

amplitude to -0.68 ± 0.061 mV (Figure 6A). Control measurements without Nafion membrane 

showed negligible streaming potential signal, indicating that the zeta potential of the PDMS 

channel walls was insignificant, as compared to the highly negatively charged Nafion 

membranes (17). 

In order to calibrate the results gained by the transient streaming potential method with well-

established techniques, LDv was applied to measure the zeta potential of Nafion beads prepared 

of identical material characteristics to those of the membrane. The Nafion stock solution 

(pH=1.5) had a -76.2 ± 2.08 mV zeta potential measured with Malvern Zetasizer nano ZS. Then 

the stock was centrifuged and resuspended in PBS (pH=7.2), therefore the Nafion beads had 

the same ionic conditions as in the streaming potential experiments, and had a zeta potential of 

-37.13 ± 0.63 mV. Another batch of beads was then treated with PEI, and subsequently re-

centrifuged and resuspended in PBS. The PEI-treated beads showed a similar ratio of increase 

in zeta potential up to -26.58 ± 0.94 mV (Figure 6B), as it was observed for the streaming 

potentials of analogously treated Nafion membranes (Figure 6B).  

Based on the fact that the ratios of the zeta and streaming potentials of the native and PEI-

treated Nafion surfaces were the same within the experimental error, a proportionality between 

the data measured by the two different methods was suggested. Below, we present both 

theoretical and further experimental evidences supporting this finding. 

Simulations 

In order to give a theoretical background for the measured transient streaming potential signals, 

we carried out model calculations on a flow channel by the COMSOL Multiphysics work 

package. The dynamics of the system was modelled in two steps: 1) to establish stationary 

conditions without flow, first the system was let to equilibrate according to the Poisson-

Botzmann-Nernst-Planck approximation, assuming electro-neutrality of the channel-fluid 

system; 2) in the second step, a creeping flow with an average velocity of 3.8·10-4 m/s was 

applied to the inlet of the channel, and the electric potential was measured on two probe planes 

placed in front of and behind the charged surface, along the long axis of the channel. A typical 

voltage signal received by subtracting the two potentials is shown in Figure 4B, faithfully 

reflecting the time-evolution of the measured signal (Figure 4A). In order to establish the 

connection between the simulated signal amplitudes and the zeta potential, the latter was swept 

two orders of magnitude, and the simulated time-evolution of the streaming potential functions 

was recorded (Figure 7). Figure 8B shows the dependence of the amplitudes of these curves as  
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Figure 7 Simulated movement of the counterion cloud under creeping flow, and the time evolution of potential 
difference between the measuring and reference electrodes. Note that the vertical line at 300 m represents the 
reference electrode. 
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a function of the zeta potential, showing a clear linear relationship, in full concert with the 

experiments (see the previous section, and Figure 8A). 

The above experimental and model calculation results proved that the concept of upgrading our 

chip device by a streaming potential unit, to detect the zeta potential of the membrane insert 

and monitor its changes, is feasible. Nevertheless, it remained an important question whether 

the method is appropriate (i.e. sensitive enough) to characterize changes in the surface charge 

properties of cellular monolayers, such as those in biological barriers. We address this problem 

via the experimental investigation of the hCMEC/D3 BBB model system in later sections. 

Cell cultures 

In order to illustrate the main features of our LOC device, it was used to model three different 

biological barriers with cell cultures: human intestinal epithelial and brain endothelial cell lines 

as well as a triple primary co-culture BBB model were tested for barrier function in the chip.  

Barrier integrity of cell monolayers in the LOC device 

The two major passive permeability routes of biological barriers, including the BBB, are the 

transcellular and the paracellular or junctional pathways. The tightness of the paracellular 

pathway, restricted by tight intercellular junctions, can be tested with hydrophilic molecules (2, 

23, 75, 76). Electrical impedance measurement at low frequency (called as TEER) is the most 

sensitive method to characterize the paracellular barrier integrity for ions (2, 76). 

Figure 8 Correlation between streaming potential and laser-Doppler velocimetry data. (A) Correlation in the 
simulation. The zeta potential was set in the channel as a charged section of the wall and the corresponding 
streaming potential was calculated by the simulation. (B)The streaming potential and laser-Doppler velocimetry 
data measured on Nafion or the confluent brain endothelial cell layers were plotted and fitted with linear 
regression. The two goodness-of-fits are R2=0.996 and R2=0.986 respectively, which shows a clear linear 
relationship between the zeta and streaming potential. 
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Intestinal model 

The Caco-2 intestinal epithelial cell line formed the tightest monolayer among the 3 

models in the microdevice, with a TEER value of 578.3 ± 29.6 Ω cm2 (Figure 9). The tightness 

of the barrier was also indicated by the low Papp for all markers (SF: 0.55 × 10-6 cm/s; FD: 

0.36 × 10-6 cm/s; EBA: 0.10 × 10-6 cm/s). Cells had a cuboidal shape, grew in monolayers and 

stained well for ZO-1 and β-catenin. Cell morphology, good resistance and permeability 

properties of Caco-2 cells in the new device were similar to data obtained on Transwell culture 

inserts after 10 days of culturing. On culture inserts, TEER of Caco-2 monolayers reached 546.5 

± 33.9 Ω cm2. There was a significant difference in the measured permeability for SF 

(0.30 × 10-6 cm/s) compared to the biochip, but permeability for EBA (0.03 × 10-6 cm/s) shows 

no difference between the insert and the chip setup. There was a higher standard deviation for 

TEER in biochips during the growing phase. Since it was not possible to use the same 

membrane type as for Transwell inserts, there could be a difference in the kinetics of cell growth 

due to the different culture membranes, but after cells reach confluency and begin to form the 

barrier, TEER values become more uniform between the parallels, and reflect good barrier 

properties. Higher Lucifer yellow permeability has been described for the same cell type 

cultured in a microfluidic chamber, but that system did not allow measurement of TEER (31). 

Note that Caco-2 cells in a gut-on-a-chip model have reached tighter barrier properties when 

co-cultured with bacteria and/or immune cells, and exposed to low shear stress and cyclic strain 

to mimic peristaltic motion (13, 33).  

Figure 9 Characterization of the intestinal barrier model on the chip. Phase contrast microscopy images of Caco-
2 cells grown in the biochip on culture days 1-10, electrical resistance and permeability measurement data (day 
10) are presented. Resistance and permeability values for cell culture inserts are also indicated. Cell morphology 
was characterized by ZO-1 and β-catenin immunostaining in the device and visualized by confocal microscopy. 
Bar = 100 µm (phase contrast images), bar = 25 µm (confocal images), ND: no data available. 
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Blood-brain barrier models 

Brain endothelial cell line model 

The human hCMEC/D3 brain endothelial cell line is a well-characterized, simplified in vitro 

model of the BBB (21). Still, a comprehensive study on a human brain endothelial cell line in 

a microdevice, with a complex characterization of barrier properties including microscopy, has 

so far been missing. Previously, the rat cell line RBE4 was studied for a similar purpose (11, 

40). Biochips modeling the vascular system also widely use peripheral endothelial cells (77-

80).  

In our miniaturized model, D3 cells grew to confluency (Figure 10). After 3 days of static 

followed by 2 days of dynamic culture conditions, TEER values increased to 28.5 ± 7.2 Ω cm2. 

TEER values of the 5-day-old static culture were in the range of 19.0 ± 2.8 Ω cm2. The 

resistance values measured by the device were in concert with the ones obtained on culture 

inserts by our group (23.7 ± 3.5 Ω cm2), and with those described in the literature (21, 39). 

Permeability data were also compared between the static and dynamic cultures. On the static 

hCMEC/D3 barrier chip model, the permeability was 1.61 × 10-6 cm/s for SF, 1.55 × 10-6 cm/s 

for FD and 0.51 × 10-6 cm/s for EBA. Under dynamic culture conditions Papp of 1.57×10-

6 cm/s for SF, 1.32 × 10-6 cm/s for FD and 0.15 × 10-6 cm/s for EBA was measured. In dynamic 

Figure 10 Characterization of a simplified blood-brain barrier model on the chip. Phase contrast microscopy 
images of hCMEC/D3 human brain endothelial cells grown in the biochip on culture days 1-5, electrical resistance 
and permeability measurement data (day 5) are presented. Brain endothelial cells were kept under static 
conditions for 3 days followed by 2 days of flow (0.15 dyn) in the dynamic setup. Resistance and permeability 
values for cell culture inserts are also indicated. Cell morphology was characterized by ZO-1 and β-catenin 
immunostaining in the device and visualized by confocal microscopy. Statistically significant differences p<0.05 
(a, compared to culture inserts; b, compared to static chip cultures) are indicated. Bar = 100 µm (phase contrast 
images), bar = 25 µm (confocal images). 
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cultures, brain endothelial permeability for FD and EBA markers was significantly lower 

compared to the static model in the same device. Permeability data obtained on Transwell 

inserts (9.31 × 10- 6 cm/s for SF, 5.47 × 10-6 cm/s for FD and 0.87 × 10-6 cm/s for EBA) are in 

good correlation with the literature (20), but those measured in the biochip were found to be 

significantly lower for all marker molecules. Since we could not use the exactly same 

membrane type in both the Transwell and chip models (Figure 10), the effect of membrane 

thickness on permeability coefficients cannot be excluded. In the present study we could not 

reproduce the intensive increase of resistance after exposing hCMEC/D3 to shear stress (38, 

39), but we could observe a significantly reduced tracer permeability for larger marker 

molecules, indicating a barrier-tightening effect. Cells in both dynamic and static cultures were 

elongated, formed close contacts typical for endothelial monolayers, and stained well for ZO-1 

and β-catenin. 

Primary cell based co-culture model of the BBB 

Our primary-cell-based triple co-culture BBB model (69) was characterized for the first time in 

a miniaturized flow chip device. Co-culturing with glial cells and pericytes on Transwell inserts 

in the anatomical position (Figure 5) have proved to be the most efficient in the induction of 

barrier properties in brain endothelial cells; better than double cultures using only brain 

endothelial cell and glial cell or brain endothelial cell and pericyte combination as described 

previously by our group (69). In this model, brain endothelial cells are not directly contacting 

pericytes or glial cells (Figure 2). In the Transwell inserts a membrane with 0.4 µm pore size, 

12 µm thickness is used. A membrane with a same pore size was used in the chip, which does 

not allow cell migration. Growth factors and other barrier property inducing molecules are 

secreted into the common cell culture medium enabling communication between the three cell 

types through the porous culture membrane.  

Cell growth in the triple BBB model was followed by phase contrast microscopy. 

Immunolabeling showed a typical cell shape for all three kinds of cells (Figure 11). Endothelial 

cells had an elongated shape, and formed tight intercellular connections. Pericytes and glial 

cells were also stained by their cellular marker proteins, α-SM actin and GFAP. The rat primary 

triple co-culture BBB model on the chip formed a barrier with a TEER value of 114.2 ± 35.7 

Ω cm2. TEER values measured under static and dynamic conditions were not significantly 

different. These values are lower than data obtained on culture inserts (173.3 ± 21.6 Ω cm2). 

Compared to the results of our previous papers the TEER of the present triple model on  
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Transwell inserts was lower (173 vs. 350 Ω × cm2; (69)), but the permeability coefficient for 

fluorescein was better, 0.8 × 10-6 cm/s vs. 4 × 10-6 cm/s indicating a good barrier. In static 

conditions permeability values were 0.80 × 10-6 cm/s for SF, 0.24 × 10-6 cm/s for FD and 

0.12 × 10-6 cm/s for EBA on the BBB model. These permeability coefficient values are similar 

to data of previously described BBB models on Transwell inserts (17) and indicate a tight 

barrier. Dynamic cultures were kept under flow conditions for 48 h, then permeability 

measurements were performed. Papp values for the dynamic model were 1.15 × 10-6 cm/s for 

SF, 0.20 × 10-6 cm/s for FD and 0.04 × 10-6 cm/s for EBA. An elevated flux of SF across the 

monolayer was found after introducing low shear stress on the triple model. The permeability 

Figure 11 Characterization of a triple co-culture blood-brain barrier model on the chip. Phase contrast 
microscopy images of primary rat brain endothelial cells (culture days 1-6), primary rat pericytes and glial cells 
(day 1), electrical resistance and permeability measurement data (day 6) are presented. Primary endothelial cells 
in co-culture were kept under static conditions for 3 days followed by 2 days of flow (0.15 dyn) in the dynamic 
setup. Cell morphology was characterized by ZO-1 and β-catenin (endothelial cells), α-smooth muscle actin 
(pericyte) and glial fibrillary acidic protein (astroglia) immunostaining in the device and visualized by confocal 
microscopy. Statistically significant difference p<0.05 (a, compared to culture inserts; b, compared to static chip 
cultures) is indicated. Bar = 100 µm (phase contrast images), bar = 25 µm (confocal images), ND: no data 
available. 
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for SF on the triple BBB model grown on cell culture inserts was higher compared to the static 

biochip model (1.25 × 10-6 cm/s for SF and 0.19 × 10-6 cm/s for EBA). There was no difference 

in the flux of the other two permeability markers after flow conditions, neither in the static chip 

compared to the dynamic model, nor in the chip models compared to the Transwell inserts. In 

our setup, the low-shear-stress exposure did not elevate the resistance of primary endothelial 

cells. All these data indicate that under low flow conditions, barrier properties typical for 

venules may develop in a BBB model (12). The different biological response in a brain 

endothelial cell line as compared to primary cells emphasizes the difference between such 

models (38). 

Effects of surface charge modifications and measurement of streaming potential 

on the brain endothelial cell line model hCMEC/D3 

There is an increasing number of direct and indirect evidence that simple physical parameters 

such as surface charge density or the related zeta potential might control physiological functions 

of barrier properties (30, 51). The main sources of the, usually negative, surface charge densities 

of cells are the lipid head groups of the plasma membrane, and the so-called glycocalyx, 

composed of highly negatively charged polysaccharide chains at the surface of the cells (Figure 

12A). Glycocalyx forms a continuous coat on the luminal surface and plays important roles as 

both a mechanosensor (73) and as a physical barrier for nanoparticle permeability (50). The 

negative surface charge derived from the lipid head groups of the BBB regulates both drug 

delivery to the brain (48) and drug interaction at the level of brain endothelial cells (51). 

Therefore, the surface charge density of brain endothelial cells can be modified by both 

enzymatic digestion of the glycocalyx or cationic lipophilic molecules which are inserted to the 

plasma membrane (Figure 12A). To determine changes in the surface charge of individual cells, 

LDv measurements are used (30, 51). 

In this study we measured the streaming potential on confluent monolayers of hCMEC/D3 

barrier cells cultured in the LOC device for the first time. We used two clinically relevant 

surface charge modulators (Figure 12A). The antiarrhythmic intravenous drug, lidocaine 

incorporates into the plasma membrane of vascular endothelial cells and as it was demonstrated 

in a recent study it changes the zeta potential of brain endothelial cells (51). Neuraminidase, a 

glycoside-hydrolase enzyme, cleaves sialic acids and reduces the amount of negative charge on 

the glycocalyx, thus mimics glycocalyx shedding observed in sepsis. The efficiency of cleavage 

of sialic acid residues from the glycocalyx by neuraminidase was determined by the sialic acid-
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specific lectin WGA-Alexa 488 staining, followed by confocal microscopy and image analysis 

for staining intensity Cleavage of glycocalyx elements turns cellular surface charge more 

positive, although this change has not been measured directly on brain endothelial cells yet. 

The efficiency of cleavage of sialic acid residues from the glycocalyx by neuraminidase was 

determined by the sialic acid-specific lectin WGA-Alexa 488 staining, followed by confocal 

microscopy and image analysis for staining intensity (Figure 12B-C). A concentration-

dependent effect of the enzyme on lectin staining was obtained: neuraminidase treatment at 

1U/ml concentration reduced the labeling by 80% on the surface of BEC after 1h treatment, 

while lower concentrations were less effective (Figure 12B-C). 

The effects of the two different treatments were tested by measuring transient streaming 

potential signals on the chip (Figure 12D-E). To this end, a fluid flow of 1 ml/min was applied 

Figure 12 Measurement of surface charge and its modification on brain endothelial cells by streaming potential 
in the chip device and by laser-Doppler velocimetry (LDv). (A) The two strategies to modify the zeta potential 
were the cleavage of the glycocalyx or the insertion of positively charged molecules in the membrane. 
Neuraminidase enzyme cleaves the sialic acids of the polysaccharide sidechains, thus decreases the amount of 
negative charges on the cell surface. Lidocaine incorporates into the cell membrane and makes it more positive. 
(B) Representative pictures of the staining with wheat germ agglutinin (WGA) lectin labeled with Alexa 488, with 
or without treatments with different concentrations of neuraminidase, bar: 20µm. (C) Image analysis of the 
fluorescent intensity of the lectin labeling on pictures taken by confocal microscopy. Values are presented as 
means ± SD, n=30-66. Data was analysed by one-way ANOVA with Bonferroni post-test. ****, #### p<0.0001, 
### p<0.001. (D, E) Streaming potential values measured in the chip device. Values are presented as means ± 
SD, n=4. Data was analysed by unpaired t-test. **, p<0.01, compared to control. (F) Zeta potential results 
obtained with LDv method. Values are presented as means ± SD, n=12-60. Data was analysed by one-way ANOVA 
with Bonferroni post-test. ****, p<0.0001, compared to control. 
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on the upper channel of the device, containing the brain endothelial cell monolayer and the flow 

of charges were registered. As shown in Figure 12D-E, both treatments increased the streaming 

potential of the cell monolayers. Neuraminidase treatment was performed at a concentration of 

1 U/ml, since it was the most effective concentration in reducing sialic acids from the 

glycocalyx (Figure 12B-C). Addition of neuraminidase increased the streaming potential of cell 

layers to -0.268 ± 0.086 mV from -0.470 ± 0.047 mV (Figure 12D). Lidocaine, the other surface 

charge modulator in our experiments, is widely used as an anaesthetic or antiarrhythmic drug. 

It was demonstrated in a previous study by LDv that it modifies the zeta potential of brain 

endothelial cells (51). Since there found to be no toxic effect of lidocaine at 1 mM concentration 

(51), this concentration was used on the D3 monolayers cultured in the LOC device. In Figure 

12E, the streaming potential is shown to increase from -0.333 ± 0.089 mV to -0.161 ± 0.061 

mV upon lidocaine treatment. 

For comparison with the results obtained by the streaming potential measurements, single-cell 

experiments were performed using the same treatments but the LDv method. As shown in 

Figure 12F, neuraminidase treatment significantly increased the surface charge of D3 to -9.83 

± 1.67 mV, while lidocaine elevated it to -8.29 ± 1.71 mV from the -12.7 ± 1.71 mV measured 

in basal conditions when no treatment was applied. The efficiency of cleavage of sialic acid 

residues from the glycocalyx by neuraminidase was determined by the sialic acid specific lectin 

WGA-Alexa 488 staining, followed by confocal microscopy and image analysis for staining 

intensity (Figure 12B-C). The neuraminidase treatment (1U/ml) reduced the labeling by 80% 

on the surface of D3 after 1h treatment.  

After completing the experiments on both Nafion and cells, the streaming potential amplitudes 

recorded on the LOC device and the zeta potential values measured by the LDv technique were 

compared to seek possible correlation. Figure 8B shows the streaming potential results plotted 

as a function of zeta potential, including the Nafion results. The graph was fitted with linear 

regression, and the result showed a clear linear relationship between the data gathered by the 

two methods, with a goodness-of-fit of R2=0.988.  

The results clearly prove the feasibility of the new “zeta-feature” of the device, at the same time 

provide a calibration factor for the determination of the zeta potential of the cell layer. It was 

also shown that the sensitivity of the technique is sufficient to measure changes of the surface 

charge properties of the BBB layer that was demonstrated to be linked to altered penetration of 

charged molecules and nanoparticles (30, 50, 51). The question arises, however, whether the 

changes in surface charge measured by streaming or zeta potential were accompanied by 



 

38 
 

alterations in barrier parameters, such as permeability for ions (TEER) or neutral hydrophilic 

molecules. To investigate whether zeta potential changes are linked to changes in passive 

paracellular permeability or are independent indicators of barrier function, further experiments 

were performed.  

Barrier integrity of cell monolayers in the LOC device 

The resistance of the D3 cultures in the LOC device did not change after treatments (Figure 

13A), and the same result was shown on culture inserts for neuraminidase. Since the 

paracellular permeability for both ions and neutral hydrophilic molecules is regulated by the 

tight intercellular junctions, changes in the cell surface zeta potential are not expected to affect 

this pathway. The removal of the sialic acid residues from the glycocalyx or the insertion of a 

positively charged molecule in the plasma membrane of the cells did not result in any statistical 

difference in the paracellular permeability for dextran as compared to the control group, as it 

was expected for a neutral large tracer molecule (Figure 13B). The same was observed on 

culture inserts. These data are in agreement with a previous study describing that treatment of 

BBB culture models with lidocaine did not change the permeability of neutral hydrophilic 

markers such as dextran (51). In concordance with TEER and permeability data, the cell 

morphology of D3 was unchanged as the 

same immunostaining pattern was observed 

for the junctional linker protein β-catenin 

after treatments as compared to the control 

cells (Figure C). Similar D3 morphology 

was also observed after neuraminidase 

treatment by phase contrast microscopy. 

These control experiments prove that 

modulation of endothelial cellular surface 

charge with neuraminidase or lidocaine did 

not affect barrier integrity of the cell layers 

and that both TEER and zeta potential, two 

independent essential parameters can be 

measured with the device.  

Figure 13 The effects of the treatments modifying the 
surface charge of confluent brain endothelial cells on the 
paracellular barrier properties measured in the chip 
device. (A) Transendothelial electric resistance (TEER) 
results were normalised to the values of the control group 
which received culture medium instead of treatments for 
the same period. (B) Apparent permeability coefficient 
(Papp) of the brain endothelial monolayers for the neutrally 
charged fluorescently labeled 10 kDa dextran (FD10), a 
marker of paracellular permeability.  
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Conclusion 

The first goal of the study was to develop a general-purpose device that can be used to 

investigate multiple types of biological barriers as mono-, double- or triple cultures monitoring 

the electric conductivity and molecular permeability of the (co-)cultured cells under no-flow or 

low-flow conditions, at the same time allowing microscopic visualization of the whole 

membrane surface. The miniaturized chip was successfully used to model two different 

biological barriers with three types of cell cultures. Human intestinal epithelial and brain 

endothelial cells grew all well in the new microdevice, and showed cell morphology and barrier 

functions similar to cultures on inserts. The biochip was suitable for modeling the BBB: 

formation of barriers was observed for both the brain endothelial cell line and the co-culture 

model. The triple primary co-culture blood-brain barrier model was established on a lab-on-a-

chip device and investigated under fluid flow for the first time. The barrier-inducing effect of 

flow could be observed for the brain endothelial cell line. This was the first LOC device where 

resistance is measured by transparent gold electrodes, so that cellular growth can be monitored 

through the whole length of the device, not only through a small window and used for several 

different types of barrier models. 

The second goal was to develop a method to quantify the surface charge properties of cell 

monolayers. We successfully measured the streaming potential of a biological barrier culture 

model with the help of our versatile lab-on-a-chip device upgraded with two Ag/AgCl 

electrodes. The inclusion of the “zeta electrodes”, a voltage preamplifier and an oscilloscope in 

our set-up made it possible to successfully record signals describing the surface charge 

properties of brain endothelial cell monolayers used as a barrier model in our experiments. The 

new technique was verified by comparing streaming potential data obtained in the LOC device 

and zeta potential results by the commonly used LDv method. Changes in the negative surface 

charge of the barrier model by treatments with neuraminidase enzyme modifying the plasma 

membrane glycocalyx, or lidocaine altering the lipid membrane charge could be measured by 

both the novel LOC device and LDv. 

The device can be used for different types of biological barriers, such as respiratory and 

intestinal epithelial cell cultures and co-culture models of the BBB. Potential application of the 

new LOC zeta device can be two-fold. Surface charge and its changes can be measured by 

registering the streaming potential on other epithelial and endothelial barrier systems including 

lung, intestine, kidney and cornea. On the other hand, changes in either the glycocalyx of the 
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vascular-, or other barriers caused by pathologies such as diabetes, sepsis, hypertension or virus 

infection, or changes in the plasma membrane caused by charged molecules or drugs can be 

modeled and directly measured on intact cell layers. The new device can help to gain 

meaningful novel information on how surface charge is linked to barrier function in both 

physiological and pathological conditions. 
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a  b  s  t  r  a  c  t

Models  of  biological  barriers  are  important  to study  physiological  functions,  transport  mechanisms,  drug
delivery  and  pathologies.  However,  there  are  only  a few integrated  biochips  which  are  able  to monitor
several  of the  crucial  parameters  of  cell-culture-based  barrier  models.  The  aim  of this  study  was  to  design
and  manufacture  a simple  but versatile  device,  which  allows  a complex  investigation  of barrier  functions.
The  following  functions  and  measurements  are  enabled  simultaneously:  co-culture  of  2  or  3  types of  cells;
flow  of culture  medium;  visualization  of  the entire  cell  layer  by  microscopy;  real-time  transcellular  elec-
trical  resistance  monitoring;  permeability  measurements.  To  this  end,  a poly(dimethylsiloxane)-based
biochip  with  integrated  transparent  gold  electrodes  and  with  a possibility  to  connect  to  a peristaltic
pump  was  built.  Unlike  previous  systems,  the structure  of  the  device  allowed  a  constant  visual  observa-
tion  of  cell  growth  over  the whole  membrane  surface.  Morphological  characterization  of  the  layers  was
also  accomplished  by  immunohistochemical  staining.  The  chip  was  applied  to  monitor  and  character-
ize  models  of the  intestinal  and  lung  epithelial  barriers,  and  the  blood–brain  barrier.  The  models  were

established  using  human  Caco-2  intestinal  and  A549  lung  epithelial  cell lines,  hCMEC/D3  human  brain
endothelial  cell  line  and  primary  rat brain  endothelial  cells  co-cultured  with  primary  astrocytes  and  brain
pericytes.  This triple  primary  co-culture  blood–brain  barrier  model  was  assembled  on  a  lab-on-a-chip
device  and investigated  under  fluid  flow  for  the  first  time.  Such  a versatile  tool  is expected  to  facilitate
the  kinetic  investigation  of various  biological  barriers.
. Introduction

Epithelial outer, and endothelial inner barriers of the body are
mportant defense systems to maintain homeostasis and play a
rucial role in drug absorption and transport [1]. Culture models

f biological barriers are important tools to study physiological
unctions, transport mechanisms, drug delivery and pathologi-
al processes [2]. Tight intercellular junctions are fundamental

Abbreviations: A549, human alveolar type II like lung epithelial cell line; BBB,
lood–brain  barrier; BSA, bovine serum albumin; Caco-2, intestinal colon carci-
oma  derived epithelial cell line; DMEM, Dulbecco’s modified Eagle medium; EBA,
vans blue-labeled albumin; FBS, fetal bovine serum; FD, FITC-dextran 4.4 kDa;
FGF, basic fibroblast growth factor; GFAP, glial fibrillary acidic protein; hCMEC/D3,
uman brain microvascular endothelial cell line; ITO, indium tin oxide electrode;
app, apparent permeability coefficient; PBS, phosphate buffered saline; PDMS,
oly(dimethylsiloxane); SF, sodium fluorescein; �-SM, �-smooth muscle actin;
EER,  transendothelial/epithelial electrical resistance (TEER).
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features of epithelial and endothelial barriers in vivo which are
reflected in high electrical resistance and low passive perme-
ability for hydrophilic compounds [1,2]. Cell culture inserts with
porous membrane were introduced to measure these parameters
on in vitro models in the 1980s. Confluent monolayers of adherent
epithelial or endothelial cells grown on culture inserts are widely
used static models for intestinal, lung and blood–brain barriers
(BBB). The Caco-2 human epithelial cell line is a well character-
ized model of the intestinal barrier applied for screening of drug
candidates [3–6]. Several studies describe the lung epithelial cell
line A549 as a model of the lung barrier [7,8]. Culture-based BBB
models greatly differ in complexity. Immortalized cell lines and
mono-cultures of brain endothelial cells can be used as simplified
BBB models [9–11], but the barrier properties of primary cell-based
co-culture models are better [2,12,13]. We  established a syngeneic
rat BBB model based on the co-culture of primary brain endothelial
cells with pericytes and glial cells mimicking the in vivo anatomi-
cal position of the cells. This triple co-culture BBB model displays

barrier properties and in drug permeability assays shows good cor-
relation with in vivo BBB permeability data [14,15].

Microtechnology and new lab-on-chip devices with integrated
functions offer the possibility to study the barriers real-time, and

dx.doi.org/10.1016/j.snb.2015.07.110
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.snb.2015.07.110&domain=pdf
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Fig. 1. Structural assembly of the chip showing all layers of the device (on the left). PDMS reservoirs (gray) holding the inlet and outlet tubes are fixed to the top of the chip.
The  porous cell culture membrane (dotted sheet) is situated between the upper and the lower channels made of PDMS (light blue). This core is sandwiched by two glass
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lides with gold electrodes (yellow). 3D structural view of the chip connected to the
lack  lines.

nder more physiological conditions [16,17]. In contrast to the
tatic culture inserts, the cells can be exposed to fluid flow and shear
tress, which are especially important for the vascular endothelium
18–20]. Although a dynamic BBB model on a 3-dimensional tube
tructure with a continuous flow of culture medium has been pub-
ished, the real-time visualization of the cells is not possible with
he hollow fiber system [18,21].

The aim of this study was to design and manufacture a versatile
icrodevice, which enables the co-culture of 2 or 3 cell types, the

ow of the culture medium, visualization of the cells by microscopy,
onitoring of the transcellular electrical resistance, and the mea-

urement of monolayer permeability. An integrated lab-on-a-chip
easuring chamber was built and applied to monitor and charac-

erize four different barrier models. The chip proved to be suitable
or the complex characterization of Caco-2 human intestinal and
549 human lung epithelial cell lines, hCMEC/D3 human brain
ndothelial cell line and primary rat brain endothelial cells co-
ultured with primary astrocytes and brain pericytes.

. Materials and methods

.1.  Ethics statement

All  animal studies were done according to the 1998. XXVIII.
ungarian law and the EU Directive 2010/63/EU about animal pro-

ection and welfare. Approval for animal studies was  obtained
rom the local animal health authority, the Governmental Office
or Csongrád County, Directorate of Food Chain Safety and Animal
ealth (Permit number: XVI./834/2012).
.2. Materials

All  reagents were purchased from Sigma–Aldrich Ltd., Hungary,
nless otherwise indicated.
2 voltohmmeter (on the right). Electrodes and the connecting wires are shown as

2.3. Microfabrication process

The  barrier chip device, which is a two-layered, porous mem-
brane based model, was  fabricated using poly(dimethylsiloxane)
(PDMS, Sylgard 184, Dow Corning GmbH, Germany). Dimensions
for the top channel were 3.7 cm × 0.2 cm × 0.2 cm,  while the bot-
tom channel was 4.2 cm long with the same diameter and height.
For the chip parts, a 1:10 mixture of initiator and base material
(silicone elastomer) was used, mixed and degassed by vacuum.
After this step the material was poured on brass molds defining
the shape of the channels. On the filled molds PDMS was cured
at 75 ◦C on a hot plate for 30 min  to achieve structural rigidity. To
enable the composition of the model, the PDMS surfaces had to be
treated with oxygen plasma. The plasma cleaner (PDC-002, Harrick
Plasma, USA) and its chamber were evacuated to 150 mtorr, then a
constant 400 mtorr pressure was  set by excess oxygen. Having the
oxygen pressure been stabilized, oxygen plasma was induced in the
chamber by RF excitation (13.56 MHz, 29.6 W)  for 30 s. The treated
upper and lower PDMS parts became highly adhesive and ready
to assemble the microfluidic channels. A porous membrane (It4ip,
Belgium; PET, thickness: 23 �m,  pore size 0.45 �m, pore density
2 × 106/cm2) was  used for separating the upper and lower channels.
During the biochip fabrication process several membrane types
were tested for cell cultivation (Fig. S1). Only one type of mem-
brane from it4ip proved to be suitable for cell culture (Fig. S1). This
membrane, receiving the same treatment as the PDMS components,
was mechanically sandwiched between the oxygen plasma treated
PMDS parts at its circumference as shown in Fig. 1. There was  no
surface reaction between these two  materials, the oxygen plasma
treated PDMS had a poor adhesion to the PET membrane. There
is a small area (2 mm  × 2 mm,  Fig. 1) where the adhesion between

the PET membrane and the PDMS for perfect sealing was provided
by a droplet of a silicone sealant adhesive (Aquarium RTV Silicone
Sealant, Adarsha Specialty Chemicals Pvt. Ltd., India). This sealant
adhesive has a relatively high viscosity so it can be applied precisely
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hile it is soft for about 15 min. It reaches the fully cross linked,
olid state in 24 h. The oxygen treated PDMS does not bond very
ell to metal surfaces either, so the microscope slides with gold

lectrodes were fixed to the PDMS with the same sealant adhesive.
he sealant was applied as a thin, continuous line on the surface
f the PDMS. The fabrication procedure was monitored under a
tereo microscope. In the end, we had a 0.1 mm thick sealant layer
hat provided a good adhesion for the glass slides and sealed well
oth channels. PDMS blocks holding the inlet and outlet tubes (PCR
ubes, Eppendorf, Germany) were fixed to the upper glass surface
fter plasma treatment. These parts served as medium reservoirs
or the cell cultivation period (when flow was not applied). Four
oles were drilled across the top glass slide for medium transport.
rilling was performed using a 1.5 mm diamond core drilling bit

Eternal Tools, UK) and a commercial drilling machine with some
roplet of water added on the glass surface as coolant liquid at the
pot of the hole.

Cell  culture medium flow was driven by a peristaltic pump (Mas-
erflex, Cole-Parmer) through silicone tubing (1 mm inner, 3 mm
uter diameter, Carl Roth, Germany). The input tube was connected
o the inlet of the chip, while the output tube was  connected to
he reservoir via the peristaltic pump. For all flow experiments
ow-shear-stress conditions (0.15 dyn) were used.

For the resistance measurements, a pair of 25-nm thick, trans-
arent, gold electrodes was formed on each glass slide using
putter-coating (sputtering machine: K975X, EMITEC, France). The
xact dimensions of the glass slides were 26 × 76◦mm  (Menzel-
laser, Germany). Thin copper wires were glued to the gold
lectrodes with conductive epoxy drops (CW2400, ITW Chemtron-
cs, USA) in order to connect them with the 4-channel input of
he voltohmmeter (EVOM, World Precision Instruments, USA). For
omparison to the common indium tin oxide (ITO) electrodes,
e performed a recording of impedance spectra in the chip with

ransparent gold (Au) and ITO electrodes. A voltage source (sinus
unction generator, TE 8020, 20 MHz), the sample using one elec-
rode on the top and one on the bottom plate of the chip and

 reference resistance (100 �) were switched in series, and the
oltage drop on the resistance was registered by a storage oscil-
oscope (LeCroy Wave Runner 6010A), from which the sample
esistance values were calculated at different frequencies. The fre-
uency range span from 1 Hz to 20 MHz, with 3 records in each
ecade. Prior to the measurements both of the channels were filled
p with the same buffer as used in the cell culture experiments.
ransmission spectra of gold and ITO electrodes was  also evaluated
see Supplemetary material, Fig. S4).

The ready-to-use device was sterilized using 70% ethanol for
 h then was washed with sterile distilled water 6 times, and the
hip was treated with oxygen plasma again to turn the naturally
ydrophobic PDMS surface hydrophilic.

.4. Cell cultures

To  test the versatility of the barrier chip, both epithelial and
ndothelial monolayers were cultured and monitored under static
nd flow conditions, as was appropriate. The transparent gold
lectrodes enabled a continuous visualization by phase contrast
icroscopy on the entire membrane surface. Cells were checked

very day during the experiments. Visually confirmed leakage,
oles on monolayers were accompanied by low TEER and resulted

n the exclusion of the barrier chip from the experiments. Data were
ompared to measurements performed on Transwell cell culture

nserts (Corning, USA). Cell cultures were grown in a humidified,
7 ◦C incubator with 5% CO2 in both experimental setups. A detailed
escription of the laboratory setup is available in the Supplemen-
ary material (Fig. S3).
tors B 222 (2016) 1209–1219 1211

2.4.1. Epithelial cells
Two  human immortalized cell lines, Caco-2 intestinal epithe-

lial cells and human alveolar type II like lung epithelial cells A549
(both from ATCC, USA) were cultured under static conditions to
model epithelial barriers on the chip. A549 (≤passage number 35)
and vinblastine selected Caco-2 cells (≤passage number 75; [22])
were cultured on rat tail collagen (prepared in the laboratory with
acetic acid extraction) coated Petri dishes in Dulbecco’s modified
Eagle medium (DMEM, Biochrom, Germany) supplemented with
10% fetal bovine serum (FBS, Pan Biotech, Germany) and 50 �g/ml
gentamicin. The porous membrane of the chip was  coated with
rat tail collagen overnight at 4 ◦C. After cell cultures reached 80%
confluency in the dishes, Caco-2 cells (7 × 104 cells/chip) and A549
cells (8 × 104 cells/chip) were subcultured to the chip using 0.05%
trypsin-EDTA solution (Pan Biotech, Germany). Confluent layers
at maximal resistance were used for permeability measurements
and immunolabeling. Cells were also cultured on Transwell inserts
for resistance and permeability data comparison. Epithelial cells
were passaged to inserts at a cell number of 8 × 104 cells/insert for
A549 (insert: 1.12 cm2, 0.4 �m pore size, 4 × 106 pores/cm2) and
105 cells/insert for Caco-2 cells (insert: 1.12 cm2, 0.4 �m pore size,
108 pores/cm2).

2.4.2. Endothelial cells
Brain  microvascular endothelial cell line hCMEC/D3 [9] and

primary rat brain endothelial cells [23–25] were used as mod-
els of the blood–brain barrier on the chip. Cultures of hCMEC/D3
cells (≤passage number 35) were grown in MCDB 131 medium
(Pan Biotech) supplemented with 5% FBS, GlutaMAX (100×, Life
Technologies, USA), lipid supplement (100×, Life Technologies,
USA), 10 �g/ml ascorbic acid, 550 nM hydrocortisone, 100 �g/ml
heparin, 1 ng/ml basic fibroblast growth factor (bFGF, Roche,
USA), insulin (2.5 �g/ml), transferrin (2.5 �g/ml), sodium selenite
(2.5 ng/ml) and 50 �g/ml gentamicin. hCMEC/D3 brain endothe-
lial cells (6 × 104 cells/chip) were seeded to microdevices similarly
to epithelial cells. Static cultures were kept for 5 days before the
permeability experiment. For flow studies cells were grown under
static conditions until day 3, and left 48 h under dynamic condi-
tions before permeability studies. After the first day in culture both
models received 10 mM lithium chloride (Merck, USA) to induce
barrier properties [9,26,27]. D3 cells were also subcultured to Tran-
swell inserts (1.12 cm2, 0.4 �m pore size, 4 × 106 pores/cm2) at a
cell number of 4 × 104 cells/insert.

Primary  rat brain endothelial cells, pericytes and astroglia cells
were isolated and cultured according to the method described
in our previous studies [22,23]. To establish the triple culture
model the upper compartment of the barrier chip was  coated
with rat tail collagen for endothelial cells and with collagen
type IV for pericytes and glial cells overnight at 4 ◦C. Pericytes
at passage number 3 (1.5 × 104 cells/chip) were seeded to the
bottom side of the porous membrane according to the method
of Nakagawa et al. [14,15]. Primary glial cells (105 cells/chip)
were seeded to the bottom of the lower chamber directly to
the coated glass surface. Primary rat brain endothelial cells
(7 × 104 cells/chip) were passaged to the upper side of the coated
membrane with endothelial culture medium: DMEM/F12 supple-
mented with plasma-derived bovine serum (15%; First Link, UK),
heparin (100 �g/ml), bFGF (1 ng/ml; Roche, Switzerland), insulin
(5 �g/ml), transferrin (5 �g/ml), sodium selenite (5 ng/ml) and gen-
tamycin (50 �g/ml). Static co-cultures were kept for 6 days before
the permeability experiment. For flow measurements, cultures

were grown under static conditions until day 4, and were kept for
48 h under dynamic conditions before permeability studies. After
the second day in culture both models received 550 nM hydrocor-
tisone. One day before the static permeability test or the beginning



1212 F.R. Walter et al. / Sensors and Actuators B 222 (2016) 1209–1219

Fig. 2. (A) Schematic drawing of the flow circuit. Peristaltic pump moving the cell culture medium is positioned after the chip. Culture medium is stored in a glass reservoir
bottle providing constant circulation. (B) Biochip setups with two types of cells. Epithelial cells (top, yellow cells) grow as monolayers on the porous membrane of the chip.
T n), pe
c s as sh

o
a
R
t
i
m
d

2

e
m
i
m
m
c
t
a
o
d
r
p
b
b

3
4
m
a
F
p
N
1
w
1
t
6
c
t
a
u
1
i
i
t
h
3
s

riple  culture blood–brain barrier model using rat primary endothelial cells (gree
ulture inserts with the same arrangements for epithelial or endothelial cell model

f flow experiments cells were treated with chlorophenylthio-
denosine-3′,5′-cyclic monophosphate (250 �M,  CPT-cAMP) and
O 201724 (17.5 �M,  Roche) to tighten junctions and elevate resis-
ance [2,28]. For comparison, cells were also kept on Transwell
nserts (1.12 cm2, 0.4 �m pore size, 4 × 106 pores/cm2). Triple pri-

ary co-culture BBB model was assessed as shown in Fig. 2 and
escribed previously [15,24,29].

.5. Cell culture characterization

Cells  grown on the barrier chip received fresh culture medium
very day. Transendothelial/epithelial electrical resistance (TEER)
easurement was performed before every medium change, min-

mum once in every 24 h. Under dynamic flow conditions no
edium change was required, because the cell culture medium was
oved continuously by the peristaltic pump positioned after the

hip in the circuit. Permeability measurements as layer integrity
ests and immunohistochemical labeling for morphological char-
cterization were performed at the end of all experiments. Cells
n Transwell inserts received fresh culture medium every second
ay. TEER was also measured according to culture protocols. After
eaching appropriate TEER values permeability experiments were
erformed. These methods are accepted and widely used in the
arrier field as integrity measurements and testing model applica-
ility.

The flux of the hydrophilic tracers sodium fluorescein (SF, MW:
76 Da) and fluorescein isothiocyanate-labeled dextran (FD, MW:
.4 kDa) indicating paracellular permeability was measured. Per-
eability of Evans blue-labeled albumin (EBA, MW:  67 kDa) was

lso tested across cell monolayers as previously described [24,25].
or the assay cell culture medium was changed in the lower com-
artment of the chip to 500 �l Ringer-Hepes solution (118 mM
aCl, 4.8 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 5.5 mM d-glucose,
0 mM Hepes, pH 7.4). In the upper compartment culture medium
as replaced by 250 �l Ringer-Hepes solution containing either

0 �g/ml SF or 100 �g/ml FD and 165 �g/ml Evans blue bound
o 1% bovine serum albumin (BSA) simultaneously. At 20, 40 and
0 min  of the permeability assay Ringer-Hepes solution in the lower
ompartment was changed to a fresh 500 �l buffer. Samples from
he luminal and abluminal compartments were collected. Perme-
bility measurements were also performed on Transwell inserts
sing 500 �l volumes with marker molecules for the upper and
500 �l for the lower compartments [24,25]. During the exper-

ments inserts were kept in 12-well plates (Corning, USA) and
nserts were moved after 20, 40 and 60 min  to the next well of

he plate. Barrier chips and plates with inserts were incubated on a
orizontal shaker in the CO2 incubator (100 rpm; Biosan, Latvia) at
7 ◦C for 1 h. SF and FD concentrations were determined by the
ame instrument using 485 nm excitation and 520 nm emission
ricytes (orange) and glial cells (blue) assembled in the biochip. (C) Transwell cell
own in the microchip.

wavelengths. EBA content of samples was measured at 584 nm
excitation and 680 nm emission wavelengths (Fluostar Optima,
BMG Labtechnologies, Germany). Apparent permeability coeffi-
cient (Papp) was  calculated as described previously [3].

Morphological  characterization of epithelial and endothelial cell
lines grown in the barrier chip was  investigated by immunohis-
tochemical staining for ZO-1 and �-catenin tight and adherens
junction associated cytoplasmic linker proteins. In the triple
co-culture model endothelial cells were stained for ZO-1 and �-
catenin, pericytes for �-smooth muscle actin (�-SM) and astroglial
cells for glial fibrillary acidic protein (GFAP). Before ZO-1 label-
ing double cell nucleus staining with ethidium homodimer-1 and
bis-benzimide was  performed to reveal cell death. After the perme-
ability tests cells were fixed with cold acetone-methanol solution
(1:1) for 10 min, washed with phosphate buffered saline (PBS)
and non-specific binding sites were blocked with 3% BSA-PBS
for 1 h at room temperature. Incubation with rabbit-anti-ZO-1,
rabbit anti-�-catenin, mouse anti-�-SM (Dako, USA) and mouse-
anti-GFAP primary antibodies lasted overnight at 4 ◦C. Cells were
incubated with anti-rabbit secondary antibody labeled with Cy3
or anti-mouse secondary antibody labeled with Alexa Fluor 488
(Life Technologies, USA) and H33343 dye to stain nuclei for 1 h at
room temperature. Between incubations cells were washed three
times with PBS. Chips were disassembled, cell culture membranes
were removed from the chip and were mounted in Fluoromount-G
(Southern Biotech, USA), except for astroglia which were photo-
graphed in situ in PBS. Stainings were visualized by a Leica
TCS SP5 confocal laser scanning microscope (Leica Microsystems,
Germany).

2.6. Statistical analysis

Data  are presented as means ± SD. Statistical significance
between treatment groups was  determined using two-way ANOVA
following Bonferroni multiple comparison posttest (GraphPad
Prism 5.0; GraphPad Software, USA). Changes were considered sta-
tistically significant at p < 0.05 (a, compared to Transwell inserts
and b, compared to static chip conditions). All experiments were
repeated at least three times, the number of parallel samples was
3–5.

3. Results and discussion

3.1.  Chip structure and assembly
The structure of the barrier chip was fabricated by bonding five
layers including the bottom and top glass slides with the measuring
electrodes, the upper and lower channels made of PDMS, and the
porous membrane (Fig. 1).
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ig. 3. Impedance spectra of the chip equipped with transparent gold and ITO 

easurements were performed between 1 Hz and 20 MHz.

There are several setups built for similar purposes. Most of them
onsist of two channels, either parallel [30] or perpendicular to each
ther [19,31], with a relatively small overlapping area. The arrange-
ent of our channels enables a much larger overlapping area (ca.

 cm2), allowing a larger surface and a bigger sampling size for in
itro permeability studies.

The  thin, transparent electrodes grant a special advantage to
he chip, permitting a continuous visual monitoring of the cells
y a microscope, above the entire membrane surface, during the
ull time span of the experiment. Such a feature is missing in
ther model systems using nontransparent electrodes that allow
isual observation limited to the narrow slits between the elec-
rodes [16,19], therefore a full microscopic screening of the sample
an only be done on the disassembled chip. This is a critical
oint for such assays that include monitoring of TEER or paracel-

ular permeability of the barrier membrane, since local faults in
he confluence of the cell layer, occurring usually at its perime-
er and invisible for other methods, might seriously tamper the
esults.

We tested transparent ITO electrodes as possible candidates,
nd measured their resistance. Fig. 3 shows the impedance spectra
f chips equipped either with a pair of transparent gold elec-
rodes or ITO electrodes placed at the outer walls of the top and
ottom channel, and separated by the porous membrane. In the

ow-frequency regime (between 1 Hz and 1 kHz) the electric dou-
le layer formed upon electrode polarization hinders the correct
easurement of the ohmic resistance of the chip, and another dis-

ersion process occurs in the MHz  domain. In between the two
xtremes, the sample resistance is nearly constant, but its value is
n order of magnitude smaller with gold electrodes than with the
TO ones. The high resistance of the latter (>800 Ohms) is compa-
able to or higher than typical TEER values of biological barriers,
hich might tamper the results of TEER measurements performed

ith ITO electrodes. This was the primary reason for which we used

old electrodes instead of ITO. Another problem was  that proper
lectrode patterning with ITO glass was not feasible with our lab-
ratory technique, therefore the standard four-electrode method,
odes, respectively. Impedance is given in Ohms (�), frequency is in Herz (Hz).

eliminating  the effect of electrode polarization on TEER, could not
be applied.

On the other hand, low-resistance “non-polarizable” electrodes
(platinized platinum or Ag–AgCl) proved not to be transparent
enough (extinction coefficient > 1), hampering visual observation.
The choice of a 25-nm inert, gold layer for TEER electrodes was
found to be the best compromise between the opposing require-
ments of conductance and transparency (10 Ohms, extinction
coefficient 0.4, Fig. S4). Possible artifacts of the resistance mea-
surements due to polarization of the gold electrodes were avoided
by the four-electrode method. Rectangular pulses (12.5 Hz) were
applied on the sample and kept controlled by a pair of electrodes,
while another electrode pair was  supplying load current via a feed-
back loop, to keep the transmembrane voltage constant during each
half-period. The electric resistance of the system was  found to be
characteristic to the cell culture layer.

During the experiments, the medium was circulated by a peri-
staltic pump through silicone tubing (Fig. 2). PDMS blocks on the
top serve both as reservoirs and in- or outlets for tubing. The input
tube was immersed in the cell culture medium in the reservoir, and
was connected to the inlet of the chip, while the output tube was
connected to the reservoir via the peristaltic pump. This arrange-
ment has three advantages: (i) the liquid pressure is always less
than the air pressure outside, therefore there was  no simmering
or jamming failure (no “explosion”), (ii) the reservoir also acts as a
bubble trap, since all bubbles (e.g. from leakages) burst as the liquid
is dripping out from the output tube, and none of them can reach
the input of the chip at the bottom of the reservoir, (iii) since the
reservoir of the circulated medium is located after the pump, it is
not pressurized, and the medium inside can be promptly and con-
tinuously sampled or treated very easily. That could be very useful
for both long- and short-term tests of various drugs influencing the
permeability of the barrier layer.
On the whole, the device enables several ways to study the
barrier layer simultaneously: electric conductivity measurement,
molecule permeability and microscopic visualization of the (co-
)cultured cells. In addition, morphological characterization of the
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Fig. 4. Characterization of the intestinal barrier model on the chip. Phase contrast microscopy images of Caco-2 cells grown in the biochip on culture days 1–10, electrical
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esistance and permeability measurement data (day 10) are presented. Resistance
haracterized by ZO-1 and �-catenin immunostaining in the device and visualize
mages), ND: no data available.

ayers is also possible by immunohistochemical staining. The pro-
edure we used to create the device is not for industrial mass
roduction. The chip is a proof-of-concept device that can be mod-

fied according to various experimental requirements. A drawback
f the system is that it can be used as a disposable piece, and is not
et optimized for large scale applications like drug screening. We
lan to prepare plastic, reusable versions of the chip.

.2.  Cell cultures

In  order to illustrate the main features of our integrated
icrodevice,  it was used to model four different biological barri-

rs with cell cultures: human intestinal epithelial, lung alveolar
pithelial and brain endothelial cell lines as well as a triple primary
o-culture BBB model were tested for barrier function in the chip.

.2.1. Intestinal model
The  Caco-2 intestinal epithelial cell line formed the tightest

onolayer among the 4 models in the microdevice, with a TEER
alue of 578.3 ± 29.6 � cm2 (Fig. 4). The tightness of the barrier was
lso indicated by the low Papp for all markers (SF: 0.55 × 10−6 cm/s;
D: 0.36 × 10−6 cm/s; EBA: 0.10 × 10−6 cm/s). Cells had a cuboidal
hape, grew in monolayers and stained well for ZO-1 and �-catenin.
ell morphology, good resistance and permeability properties of
aco-2 cells in the new device were similar to data obtained on
ranswell culture inserts after 10 days of culturing. On culture
nserts, TEER of Caco-2 monolayers reached 546.5 ± 33.9 � cm2.
here was a significant difference in the measured permeability for
F (0.30 × 10−6 cm/s) compared to the biochip, but permeability for
BA (0.03 × 10−6 cm/s) shows no difference between the insert and
he chip setup. There was a higher standard deviation for TEER in
iochips during the growing phase. Since it was not possible to use
he same membrane type as for Transwell inserts (see Supplemen-
ary Material, Fig. S1), there could be a difference in the kinetics of

ell growth due to the different culture membranes, but after cells
each confluency and begin to form the barrier, TEER values become
ore uniform between the parallels and reflect good barrier prop-

rties. Higher Lucifer yellow permeability has been described for
ermeability values for cell culture inserts are also indicated. Cell morphology was
onfocal microscopy. Bar = 100 �m (phase contrast images), bar = 25 �m (confocal

the  same cell type cultured in a microfluidic chamber, but that sys-
tem did not allow measurement of TEER [30]. Note that Caco-2 cells
in a gut-on-a-chip model have reached tighter barrier properties
when co-cultured with bacteria and/or immune cells, and exposed
to low shear stress and cyclic strain to mimic  peristaltic motion
[4,32].

3.2.2. Lung model
Lung  epithelial A549 cell line grew well on the chip and easily

formed monolayers (Fig. 5). Compared to the case of Caco-2 cells,
these monolayers represented a weaker epithelial barrier. Lung cell
layers in the chip reached a maximum TEER of a 46.4 ± 17.0 � cm2,
and these values were in concordance with our data obtained
on A549 culture on Transwell inserts (27.8 ± 2.2 � cm2), as well
as with literature data for this cell line [33]. Average Papp val-
ues were 1.45 × 10−6 cm/s for SF, 1.24 × 10−6 cm/s for FD and
0.17 × 10−6 cm/s for EBA markers. No significant difference was
found in the permeability values as compared to data measured on
culture inserts (Papp: 0.9 × 10−6 cm/s for FD and 0.3 × 10−6 cm/s for
EBA). In accordance with the functional data, ZO-1 and �-catenin
staining was not as intensive and continuous as in Caco-2 cells, indi-
cating weaker intercellular junctions. Some lab-on-a-chip models
using A549 cells [7,33,34] have already been published, but none of
them offers simultaneous cell visualization, measurement of TEER
and the flux of marker molecules. Concerning the lung model the
chip will enable the establishment of a more complex model of
the alveolar capillary unit, by the co-culture of lung epithelial cells
with vascular endothelial cells at an air–liquid interface [35]. Mod-
eling lung barriers in air–liquid interface condition is important and
induces barrier properties. It is a limitation of the study that such
conditions were not included.

3.2.3.  Blood–brain barrier models
3.2.3.1. Brain endothelial cell line model. The human hCMEC/D3

brain endothelial cell line is a widely used, well-characterized and
simplified in vitro model of the BBB [10]. Still, a comprehensive
study on a human brain endothelial cell line in a microdevice,
with a complex characterization of barrier properties including



F.R. Walter et al. / Sensors and Actuators B 222 (2016) 1209–1219 1215

Fig. 5. Characterization of the lung epithelial barrier model on the chip. Phase contrast microscopy images of A549 cells grown in the biochip on culture days 1–5, electrical
r and pe
c d by c
i
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t
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t
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t
f
c
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esistance and permeability measurement data (day 5) are presented. Resistance 

haracterized by ZO-1 and �-catenin immunostaining in the device and visualize
mages), ND: no data available.

icroscopy, has so far been missing. Previously, the rat cell line
BE4 was studied for a similar purpose [17,36]. Biochips modeling
he vascular system also widely use peripheral endothelial cells
37–40].

In our miniaturized model, D3 cells grew to confluency (Fig. 6).

fter 3 days of static followed by 2 days of dynamic culture condi-

ions, TEER values increased to 28.5 ± 7.2 � cm2. TEER values of the
-day-old static culture were in the range of 19.0 ± 2.8 � cm2. The

ig. 6. Characterization of a simplified blood–brain barrier model on the chip. Phase co
he  biochip on culture days 1–5, electrical resistance and permeability measurement da
or 3 days followed by 2 days of flow (0.15 dyn) in the dynamic setup. Resistance and p
haracterized by ZO-1 and �-catenin immunostaining in the device and visualized by conf
nserts;  b, compared to static chip cultures) are indicated. Bar = 100 �m (phase contrast im
rmeability values for cell culture inserts are also indicated. Cell morphology was
onfocal microscopy. Bar = 100 �m (phase contrast images), bar = 25 �m (confocal

resistance  values measured by the device were in concert with the
ones obtained on culture inserts by our group (23.7 ± 3.5 � cm2),
and with those described in the literature [10,31]. Permeabil-
ity data were also compared between the static and dynamic
cultures. On the static hCMEC/D3 barrier chip model, the per-

meability was 1.61 × 10−6 cm/s for SF, 1.55 × 10−6 cm/s for FD
and 0.51 × 10−6 cm/s for EBA. Under dynamic culture condi-
tions Papp of 1.57 × 10−6 cm/s for SF, 1.32 × 10−6 cm/s for FD and

ntrast microscopy images of hCMEC/D3 human brain endothelial cells grown in
ta (day 5) are presented. Brain endothelial cells were kept under static conditions
ermeability values for cell culture inserts are also indicated. Cell morphology was
ocal microscopy. Statistically significant differences p < 0.05 (a, compared to culture

ages), bar = 25 �m (confocal images).
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Fig. 7. Characterization of a triple co-culture blood–brain barrier model on the chip. Phase contrast microscopy images of primary rat brain endothelial cells (culture days
1–6),  primary rat pericytes and glial cells (day 1), electrical resistance and permeability measurement data (day 6) are presented. Primary endothelial cells in co-culture were
kept  under static conditions for 3 days followed by 2 days of flow (0.15 dyn) in the dynamic setup. Cell morphology was  characterized by ZO-1 and �-catenin (endothelial cells),
� unosta
d s) is in
n
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c
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-smooth muscle actin (pericyte) and glial fibrillary acidic protein (astroglia) imm
ifference p < 0.05 (a, compared to culture inserts; b, compared to static chip culture
o  data available.

.15 × 10−6 cm/s for EBA was measured. In dynamic cultures, brain
ndothelial permeability for FD and EBA markers was  significantly
ower compared to the static model in the same device. Perme-
bility data obtained on Transwell inserts (9.31 × 10−6 cm/s for
F, 5.47 × 10−6 cm/s for FD and 0.87 × 10−6 cm/s for EBA) are in
ood correlation with the literature [9], but those measured in
he biochip were found to be significantly lower for all marker

olecules. Since we could not use the exactly same membrane
ype in both the Transwell and chip models as explained in the
upplementary material (Fig. S1), the effect of membrane thick-
ess on permeability coefficients cannot be excluded. In the present
tudy we could not reproduce the intensive increase in resis-
ance after exposing hCMEC/D3 to shear stress [31,41], but we
ould observe a significantly reduced tracer permeability for larger
arker molecules, indicating a barrier-tightening effect. Cells in

oth dynamic and static cultures were elongated, formed close con-
acts typical for endothelial monolayers, and stained well for ZO-1
nd �-catenin (Fig. 6).
.2.3.2.  Primary cell based co-culture model of the BBB. Our primary-
ell-based triple co-culture BBB model [15] was characterized for
he first time in a miniaturized flow chip device. Co-culture of brain
ndothelial cells with glial cells and pericytes on Transwell inserts
ining in the device and visualized by confocal microscopy. Statistically significant
dicated. Bar = 100 �m (phase contrast images), bar = 25 �m (confocal images), ND:

in  the anatomical position (Fig. 2) was the most efficient in the
induction of barrier properties as described previously by our group
[15]. Brain endothelial cells in this BBB model showed higher TEER
and lower permeability values, and expressed higher levels of junc-
tional proteins than in other triple or double cultures using different
combinations of brain endothelial cells, glial cells and pericytes [15]
highlighting the important and functional role of pericytes. In this
model, brain endothelial cells are not directly contacting pericytes
or glial cells (Fig. 2). In the Transwell inserts a membrane with
0.4 �m pore size, 12 �m thickness is used (Fig. S1). A membrane
with a same pore size was used in the chip, which does not allow
cell migration. Growth factors and other barrier property induc-
ing molecules are secreted into the common cell culture medium
enabling communication between the three cell types through the
porous culture membrane.

Cell  growth in the triple BBB model was followed by phase con-
trast microscopy. Immunolabeling showed a typical cell shape for
all three kinds of cells (Fig. 7). Endothelial cells had an elongated
shape, and formed tight intercellular connections. Pericytes and

glial cells were also stained by their cellular marker proteins, �-SM
actin and GFAP. The rat primary triple co-culture BBB model on the
chip formed a barrier with a TEER value of 114.2 ± 35.7 � cm2. TEER
values measured under static and dynamic conditions were not
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ignificantly different. These values are lower than data obtained
n culture inserts (173.3 ± 21.6 � cm2). Compared to the results
f our previous papers the TEER of the present triple model on
ranswell inserts was lower (173 vs. 350 � × cm2; [15]), but the
ermeability coefficient for fluorescein was better, 0.8 × 10−6 cm/s
s. 4 × 10−6 cm/s indicating a good barrier. In static conditions per-
eability values were 0.80 × 10−6 cm/s for SF, 0.24 × 10−6 cm/s for

D and 0.12 × 10−6 cm/s for EBA on the BBB model. These perme-
bility coefficient values are similar to data of previously described
BB models on Transwell inserts [3] and indicate a tight barrier.
ynamic cultures were kept under flow conditions for 48 h, then
ermeability measurements were performed. Papp values for the
ynamic model were 1.15 × 10−6 cm/s for SF, 0.20 × 10−6 cm/s for
D and 0.04 × 10−6 cm/s for EBA. An elevated flux of SF across the
onolayer was found after introducing low shear stress on the

riple model. The permeability for SF on the triple BBB model grown
n cell culture inserts was higher compared to the static biochip
odel (1.25 × 10−6 cm/s for SF and 0.19 × 10−6 cm/s for EBA). There
as no difference in the flux of the other two permeability mark-

rs after flow conditions, neither in the static chip compared to
he dynamic model, nor in the chip models compared to the Tran-
well inserts. In our setup, the low-shear-stress exposure did not
levate the resistance of primary endothelial cells. All these data
ndicate that under low flow conditions, barrier properties typical
or venules may  develop in a BBB model [21]. The different biologi-
al response in a brain endothelial cell line as compared to primary
ells emphasizes the difference between such models [42].

.3.  General considerations and comparison with other biochips
odeling  biological barriers

In  the permeability assays Caco and primary brain endothe-
ial cell based models which have the highest resistance, have the
owest permeability and the A549 and D3 models which present
ow resistance show high permeability for the markers (Figs. 4–7;
ig. S2), in agreement with literature data. All barrier models were
ested with double cell nucleus staining to reveal cell death. No red
taining for nuclei was observed, indicating viable and functioning
ells both in the static and dynamic models.

While several barrier functions were monitored, some aspects
f barrier functions in the present study were not investigated.
ucus layers are present and important for intestinal and lung bar-

iers including drug absorption [43]. In a recent three-dimensional
odel mimicking the microenvironment of the small intestine

ransport properties closer to the in vivo situation were mea-
ured [44]. At the blood–brain barrier the luminal surface of brain
ndothelium is covered by a relatively thick layer of glycocalyx
hich also acts as a physicochemical barrier blocking drug delivery

45]. We aim to further develop the culture models to study these
ore complex interactions. Culture models of barriers on planar

urfaces represent simplified systems, where imaging, measure-
ent of resistance, or drug transport studies are easier. However

here are models using 3D scaffold which represent more complex
ystems mimicking the anatomical position of cells, for example a
ulture model of the small intestine [44].

The field of biochips modeling gut, lung and blood–brain barri-
rs is rapidly evolving and several models were developed in the
ast ten years which are listed in Table 1. These complex biochips
ntegrate different types of imaging, microfluidics, measurement of
esistance in mono- and co-culture systems. To our best knowledge
he present paper is the first in which the same device is used for
hree different types of barrier models, resistance is measured by

ransparent gold electrodes, and cellular growth can be monitored
hrough the whole length of the device, not only through a small
indow. The triple cell culture model of the BBB we described on

ranswell inserts was also investigated for the first time in a biochip Ta
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nd under fluid flow. Integrated, complex microfluidic devices with
o-culture systems were already described for gut [32] and lung
47] barrier models imitating micromovements, but no BBB model
as established in an integrated chip with all the functions we
escribed in the present manuscript.

. Conclusion and perspectives

The  aim of the study was to develop a general-purpose device
hat can be used to investigate multiple types of biological bar-
iers as mono-, double- or triple cultures monitoring the electric
onductivity and molecular permeability of the (co-)cultured cells
nder no flow or low flow conditions, at the same time allow-

ng microscopic visualization of the whole membrane surface. The
iniaturized chip was successfully used to model three different

iological barriers with four types of cell cultures. Human intestinal
pithelial, lung alveolar epithelial and brain endothelial cells grew
ll well in the new microdevice, and showed cell morphology and
arrier functions similar to cultures on inserts. A similar co-culture
f epithelial and endothelial cells may  represent an anatomically
ore realistic model of the intestinal epithelium in the device and

 novel approach to study oral absorption of drugs. The biochip
as also suitable for modeling the BBB: formation of barriers was

bserved for both the brain endothelial cell line and the co-culture
odel. The triple primary co-culture blood–brain barrier model
as established on a lab-on-a-chip device and investigated under
uid flow for the first time. The barrier-inducing effect of flow could
e observed for the brain endothelial cell line, and further modifi-
ation of the chip will permit the study of different flow and shear
tress conditions. The device is expected to be a versatile tool for
urther examination of biological barriers, among them endothelial
arrier functions under flow conditions.
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A chip device to determine surface charge
properties of confluent cell monolayers by
measuring streaming potential†

András Kincses,ab Ana R. Santa-Maria, ac Fruzsina R. Walter, ad László Dér,a

Nóra Horányi,a Dóra V. Lipka,a Sándor Valkai, a Mária A. Deli *a and András Dér *a

Cell surface charge is an important element of the function of biological barriers, but no chip device has

been described to measure cell surface charge properties of confluent barrier cell monolayers. The aim of

this study was the design and fabrication of a dynamic lab-on-a-chip (LOC) device which is suitable to

monitor transcellular electrical resistance, as well as streaming potential parallel to the surface of cell layers.

We successfully measured the streaming potential of a biological barrier culture model with the help of our

previously published versatile lab-on-a-chip device equipped with two Ag/AgCl electrodes. The inclusion

of these “zeta electrodes”, a voltage preamplifier and an oscilloscope in our set-up made it possible to

successfully record signals describing the surface charge properties of brain endothelial cell monolayers,

used as a barrier model in our experiments. Data obtained on the new chip device were verified by

comparing streaming potential results measured in the LOC device and zeta potential results by the

commonly used laser-Doppler velocimetry (LDv) method and model simulations. Changes in the negative

surface charge of the barrier model by treatments with neuraminidase enzyme modifying the cell

membrane glycocalyx or lidocaine altering the lipid membrane charge could be measured by both the

upgraded LOC device and LDv. The new chip device can help to gain meaningful new information on how

surface charge is linked to barrier function in both physiological and pathological conditions.

Introduction

The physical and physico-chemical parameters of mammalian
cells and their outer membrane are important to determine
their integrity and function. In general, plasma membranes
possess an overall negative charge which is derived from
sulfate and sialic acid residues of the cell surface glycocalyx
and negative lipid headgroups phosphatidylserine and
phosphatidylinositol of the lipid bilayer.1,2 Basic biological
processes regulated by membrane charge include binding
and sorting of charged proteins1 and processes like immune
homeostasis and cancer cell attachment, migration and
metastasis formation.3

Biological barriers are layers of tightly attached epithelial
or endothelial cells specialized for the protection of the

organism from the environment and special organs within
the body.4 The negative surface charge of the cell layers is an
important element of the defense system of barriers. The role
of the negatively charged glycocalyx of the vascular
endothelial barrier for example is well known in the
protection of the cardiovascular system which can be
damaged in diseases like atherosclerosis, ischemia due to
blood vessel occlusion, diabetes, nephropathy, inflammation
and sepsis.5,6 The glycocalyx of biological barriers is also
important in microbiological infections: the neuraminidase
enzyme of different bacteria and viruses contribute to their
virulence: for example, the neuraminidase of influenza
viruses, causing pandemics, facilitates virus release by
cleaving sialic acid residues.7

An important inner biological barrier, the blood–brain
barrier (BBB), is a complex interface separating the central
nervous system and the blood circulation. Cerebral
endothelial cells lining the blood vessels in the brain have
very specific properties within the vascular system.8 Brain
capillary endothelial cells have an inherent role in forming
the gatekeeping functions of the BBB, which consist of
interendothelial tight junctions, low amount of intracellular
vesicles, specialized and polarized influx and efflux transport
systems.9,10 The overall negative surface charge of endothelial
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cells of brain microvessels is higher than that of other
vascular endothelial cells measured by laser-Doppler
velocimetry (LDv).2 On one hand, this negative charge of
cerebral endothelial cells correlated with their higher
phosphatidylserine and phosphatidylinositol content in the
plasma membrane.2 On the other hand, the glycocalyx of
cerebral endothelial cells is denser and covers larger areas of
the microvessel lumen, than in the heart or lung.11 In
addition, after vascular injury induced by lipopolysaccharide,
the endothelial glycocalyx coverage decreased in the brain
but almost completely disappeared in the peripheral organs
heart and lung, indicating that the brain specific
ultrastructure of the glycocalyx is an important element of
the defense system of the BBB.11 This surface glycocalyx on
brain endothelial cells is built from a mesh of glycolipids,
sialo-glycoconjugates and heparan sulfate proteoglycans.12,13

The negative surface charge at the BBB is not only providing
an extra barrier function for the brain endothelial layer, but
is also important in the regulation of the passage of charged
molecules including drugs, delivery vectors and
nanoparticles12,14–17 across the monolayer.

Therefore, a quantitative description of the surface electric
properties of cell layers forming biological barriers is
essential for the broader understanding of their function in
physiological processes and diseases. A well-measurable
physical quantity to characterize the charge density of
surfaces in contact with fluids is the so-called zeta
potential.18 Counter-ions of the liquid solution are
distributed close to the charged surface of the particle,
where, subject to Coulomb force and Brownian motion, form
a diffuse, electric double layer. Part of the ions inside the
double layer is occluded in an adsorbed layer of water
molecules (the “shear layer”), which, under flow conditions,
does not move with the stream. The surface potential,
therefore, cannot be measured directly, only the potential
difference between the surface of the shear layer and the bulk
of the liquid solution, which is called zeta potential. The
most widely used method to measure zeta potential of
suspended particles in a solvent (colloid particles or cells in
an aqueous electrolyte) is LDv, which is able to detect the
electrophoretic mobility of the microscopic particles with
high precision,19 from which the zeta potential can be
calculated. The group of Castanho measured the zeta
potential of different mammalian cells in single cell
suspension by the LDv method and revealed that brain
endothelial cells have more negative zeta potential than other
types of cells or endothelial cells from other vascular bed.2

Using this technique, we have directly measured zeta
potential changes in brain endothelial cells treated with
lidocaine, a cationic lipophilic drug molecule and discovered
that lidocaine can alter of the passage of positively charged
molecules across a BBB culture model indicating possible
drug interactions due to charge at the level of BBB.17

While the surface charge of individual cells can be
determined by LDv, for the in situ measurement of zeta
potential of biological barrier layers forming large surfaces,

this method cannot be applied. Nevertheless, in the vicinity
of macroscopic surfaces (e.g., when fluids are moving due to
pressure difference through a channel of charged walls), a
special electrokinetic technique, the streaming potential
measurement can be used, instead, to determine the zeta
potential at the channel wall.20,21 Streaming potential refers
to the transient potential difference developing under fluid
flow conditions inside the channel along the flow direction,
due to the migration of mobile counter-ions from the vicinity
of the charged surface of the channel. Streaming potential,
measured via a pair of electrodes, is considered to be
proportional to the zeta potential of the surface, under
laminar flow conditions.20

Experiments to measure streaming potential in animals or
in ex vivo tissues have been made since the late 60's
(Table 1). Streaming potentials due to the bloodstream in
rabbit aorta and vena cava were measured by microelectrodes
inserted into the vessels (measurement direction parallel to
the vessel surface), and the endothelial surface lining these
large vessels were highly negatively charged at physiological
pH.22 In addition to these studies, parts of the
gastrointestinal tract, namely the small intestine,23 and the
buccal mucosa24 were also investigated by streaming
potential measurements. In the latter case, however, the fluid
flow was typically directed across the epithelial barrier layers
(measurement direction perpendicular to the surface).
Although, these pioneering papers have given important
insight into the major role of surface charge of biological
barriers in basic physiological mechanisms, with the
increasing use of cell cultures in biomedical research new
methods and devices are needed.

In vitro culture models of biological barriers are widely used
tools for basic and applied research.25,26 In the past 10 years
besides static models cultured on inserts26,27 dynamic lab-on-a-
chip (LOC)/organ-on-chip (OC) devices were developed to study
cell–cell interactions, molecular pathways, pathological
conditions and drug delivery in biological barriers.28–31 These
models incorporate the use of fluid flow enabling the
investigation of physiological-like functions such as receptor and
mechanosensor expression, transport mechanisms, pathologies
and drug delivery.32–40 LOC/OC devices became important tools
since they provide controlled conditions for cellular signaling
and external stimulus and are able to track the development and
changes in the barrier function. Specific advantages of these
biochips are the possibility to monitor barrier integrity in real
time, constant fluid flow to mimic blood flow and shear stress,
and the opportunity of switching medium composition for
treatments with the help of valves and pumps. System-integrated
electrodes can be readily accommodated to LOC devices to
measure the impedance spectrum41 or the trans-endothelial/
epithelial electrical resistance (TEER),37,42 to characterize the
integrity of barrier-forming cellular monolayers. An alternative
method to monitor cell layer integrity by high-throughput optical
screening is the use of a microplate-compatible resonant
waveguide grating imager.43,44 Cells in LOC/OC devices, similarly
to cells cultured on inserts, can also be monitored with phase
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contrast microscopy, while good quality immunostaining and
pharmacologically relevant permeability assays are extra features
in two-compartment models.31,37

Despite the recent boom in LOC devices, no biochip to
determine the surface charge of intact cell layers forming
biological barriers has been published, yet. Table 1
summarizes the studies in which the measurement of
streaming potential of biological cell surfaces, including
culture models, was investigated.

In Table 1 we refer to four studies performed on cultured
cells in which cell surface charge properties were
determined.45–48 One of them used electroosmosis,45 three of
them streaming potential,46–48 but none of them were using
an LOC device. Other differences, as compared to the present
study, include the use of non-barrier forming cells46 and
measurement of streaming potential across the cell layer
(measurement direction perpendicular to the surface).47,48

Hence, our aim was to develop a new LOC device to
directly assess the surface charge of barrier cell monolayers
by applying a fluid flow parallel to the barrier surface. To
achieve this goal, we added Ag/AgCl electrodes for the
detection of streaming potential under microfluidic flow
conditions to our previously published LOC device,37

allowing measurement of streaming potential on a culture
model of a biological barrier. With this setup, we
characterized the zeta potential of a simple ionic model
membrane, Nafion, and of human brain endothelial cell
(BEC) monolayers as a simplified model of the BBB. LDv data
and model simulations were compared to the streaming
potential results and show that the zeta potential of the cell
surface is proportional to the peak value of the streaming
potential detected by our LOC validating measurements with
the new device.

Materials & methods
LOC and electrode fabrication process

The device was formed by top and bottom channels,
separated by a porous polyester (PET) membrane with 0.45
μm pore size, 2 × 106 cm−2 pore density and 23 μm thickness

(It4ip, Belgium) (Fig. 1A). The geometry of the channels
enabled the measurement of trans-endothelial electric
resistance (TEER) and performance of permeability assays
(Fig. 1B).37 The channels were fabricated from
poly(dimethylsiloxane) (PDMS, Sylgard 184, Dow Corning
GmbH, Germany) by injection molding. The length, width
and height of the top and bottom channels were 36 mm × 2
mm × 1 mm and 57 mm × 2 mm × 2 mm, respectively. The
initiator and base polymer were mixed in 1 : 10 ratio, and
subsequently degassed by vacuum. The mixture was injected
in brass molds that were the negatives of the channels. The
PDMS was cured on 80 °C for 15 min to reach a rigid
structure. To bind the channels to each other, the surfaces of
the PDMS channels were treated with oxygen plasma. The
vacuum chamber of the plasma cleaner (PDC-002, Harrick
Plasma, USA) was evacuated to 200 mtorr then a steady 400
mtorr pressure was set by oxygen stream. When the 400
mtorr oxygen pressure became stable, radio frequency (RF)
excitation was used for oxygen plasma treatment for 45
seconds. Thus, the PDMS channels became adhesive and
could be assembled with the porous membrane between.

For the top and bottom side of the LOC device, plastic
microscope slides (polystyrene, Ted Pella USA) were used.
The top slide and the flat part of the male Luer lock
(Rotilabo, Carl Roth, Germany) inlets/outlets were drilled
with a diameter of 2 mm using a commercial drilling
machine (Fig. 1A). The inlets were glued on the top slide
using a photoresin (Norland Optical Adhesive 81, Norland
Products, USA). The bottom side of the Luer locks were
painted with the photoresin then placed above the holes on
the top slide. After 30 seconds of exposure with a UV lamp
(Newport New Illumination System, Newport Corp, USA), the
resin reached the required structural rigidity. The gold
electrodes for TEER measurement were formed on plastic
microscope slides using sputter-coating (K975X, Emitec,
France). The thickness of the gold layer was 25 nm, providing
low enough resistance (ca. 10 Ohms), and approximately 70%
transmission in the visible spectrum, to allow TEER
measurements and simultaneous microscopic observation.37

Therefore, the cell growth could be monitored with a phase

Table 1 Studies measuring streaming potential on tissues and cells

Method to measure surface charge/zeta potential Tissue/cell

Ref.
Streaming potential/
measurement direction

Chip
device

Verification
by LDv

Built in TEER
electrodes Tissue/cell type Human

Biological
barrier

Yes/parallel No No No Aorta and vena cava No Yes 22
Yes/perpendicular No No No Small intestine No Yes 23
Yes/perpendicular No No No Buccal mucosa No Yes 24
No (electro-osmosis)/parallel No No No BGM (kidney) No Yes 45

Hep-2 (laryngeal carcinoma) Yes No
RPMI-1846 (melanoma) No No

Yes/parallel No No No 3T12 (fibroblast) No No 46
Yes/perpendicular No Yes No HEK293 (kidney epithelial) Yes Yes 47, 48

EA926 (endothelial) Yes Weak
Caco-2 Yes Yes

Yes/parallel Yes Yes Yes hCMEC/D3 cell line Yes Yes Present model
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contrast microscope throughout the whole length of the
channel. Conductive epoxy glue (CW2400, Chemtronics) was
applied in order to link copper wires to the electrodes, and a
4-channel voltohmmeter (EVOM,2 World Precision
Instruments, USA) could be connected to the LOC device.
The top and bottom slides and the PDMS channels were
screwed together with plastic screws to avoid shortcut of the
TEER electrodes (Fig. 1B, ESI† Video V1). The ready-to-use
device was sterilized with oxygen plasma for 5 min and 70%
ethanol for 30 min before cells were seeded to the system.

For the detection of streaming potentials Ag/AgCl
electrodes were prepared and placed in Luer lock connectors
(Fig. 1C), so they could be easily connected to the inlet and
outlet side of the biochip. The silver wires (10 mm long, 0.5
mm width) were polished with sandpaper and washed with
ethanol, then were soldered to copper wires. The connectors
were drilled at their diameter, and the silver wires were fitted
in. Small drops of the Norland photoresin were applied at
openings between the connector and the silver cord to fix
them, and were exposed to UV light using a mercury arc lamp

for 30 seconds. The end of the copper wire connecting the
silver was sealed with silicon glue to avoid shortcut during
the subsequent electrolytic chloridisation. For this, the wires
were immersed in 3 M KCl solution, one at the time, and a 3
mA DC current was applied for 1 minute. The ready Ag/AgCl
electrodes were rinsed with distilled water and dried under
N2.

Cell culture

To model the BBB, the hCMEC/D3 human brain endothelial
cell line was used (Merck, Germany).49 Cell cultures
(≤passage 35) were kept in MCDB 131 medium (Pan Biotech)
supplemented with 5% fetal bovine serum (FBS, Sigma),
Glutamax (100×, Life Technologies, USA), lipid mixture (100×,
Life Technologies, USA), 10 μg ml−1 ascorbic acid, 550 nM
hydrocortisone, 100 μg ml−1 heparin, 1 ng ml−1 human basic
fibroblast growth factor (bFGF, Roche, USA), insulin (2.5 μg
ml−1), transferrin (2.5 μg ml−1), sodium selenite (2.5 ng ml−1)
provided as a mix (ITS, Life Technologies, USA), and 50 μg

Fig. 1 The structure of the biochip. (A) The two PDMS channels are separated by a porous PET culture membrane. The top and bottom plastic
slides coated with the gold electrodes are closing down the two channels. The PDMS and the plastic slides are assembled with plastic screws to
avoid shortcut between the electrodes. Luer-lock inlets/outlets on the top slide provide easy access to the channels. The culture medium is
circulated in the top channels, while the bottom channel is closed down using male Luer cups (not shown). (B) Copper wires are glued to gold
electrodes using conductive epoxy, so the instrument (EVOM2) to measure transendothelial electric resistance can be connected easily. (C) The
biochip and the zeta electrodes. The PDMS channels and the plastic slides containing the electrodes for transendothelial electric resistance
measurement were joined together with screws. The female Luer inlets were located on the top and provided easy access for both top and bottom
channels. The Ag/AgCl electrodes were fit in a drilled channel of male–female Luer lock caps and fixed using Norland Optical Adhesive, thus the
electrodes were easy to mount to the biochip for the experiments.
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ml−1 gentamicin. Membranes in the LOC device were coated
with 0.5% gelatin from porcine skin (Sigma) and incubated at
37 °C for 20 min. hCMEC/D3 cells were seeded at a number of
1 × 105 into the device. On day 4 cells received LiCl (10 mM)
to elevate barrier tightness.27 As described in our previous
work, cell cultures were kept for 3 days under static
conditions in the device.37 A syringe (20 ml plastic disposable
syringe with Luer cone, Braun) containing the culture
medium was placed in a syringe pump (Legato 110, KDS
products, USA) and connected to the device. The tubes (1 mm
inner, 3 mm outer diameter, Carl Roth, Germany) were
connected to the inlets/outlets via female Luer-locks
(Rotilabo, Carl Roth, Germany) to allow feeding during cell
growth and constant medium-supply. During the cell growth
phase, the syringe pump was programed to change the
medium above the cell monolayer (static condition) with 500
μl min−1 flow rate every 8 hours. The transparency of the gold
electrodes lets us monitor the growth of the cell monolayer by
phase contrast microscopy on the entire surface, and TEER
was measured every day. If the cell layer was not continuous
as reflected in low TEER values and visually detected holes,
the device was excluded from the experiments. Before the cell
layer reached full confluence, a constant stream of culture
medium was introduced by a peristaltic pump (Masterflex,
Cole-Parmer, USA) for 24 hours (1 ml min−1, flow condition)
before zeta measurement and permeability studies.

Cell culture treatments

Lidocaine (Sigma L7757) was dissolved in water at 30 °C to
prepare a 20 mM stock solution. Working solutions of 1 mM
concentration were prepared freshly before each experiment
in culture medium and added to the cells.17 Neuraminidase
from Clostridium perfringens (Sigma N2876) was dissolved in
Dulbecco's modified Eagle's medium (DMEM) and aliquots
of a 10 U ml−1 stock were stored at −20 °C. A new
neuraminidase stock vial was thawed before each experiment.
For the treatment neuraminidase was applied at 0.1, 0.3 and
1 U ml−1 concentrations to the cells based on a preliminary
study and literature data.50

Zeta potential measurements: detection of streaming
potential

Development of streaming potential is a well-known
electrokinetic phenomenon occurring in microfluidic
channels.51,52 If the inner surface of the channel is covered
with charges (intrinsic or adsorbed), it attracts counterions
from the solution, and keeps them near the surface. Due to a
balance of Coulomb attraction and Brownian motion, a
diffuse double layer is formed by the mobile ions and the
fixed surface charges, the Gouy–Chapman layer (GCL). As a
consequence, an electric potential gradient develops
perpendicular to the membrane plane, screening the surface
potential of the membrane across the GCL. If fluid flow is
applied in the channel, a major part of the counterion cloud
of GCL, divided by a “slipping plane” to a moving part and a

layer sticking the channel wall, will be grabbed by the
solution under Poiseuille flow. The resulting flow of net
charge along the channel represents an electric current called
streaming current, and the accompanying streaming
potential can be detected by an electrode pair separated
alongside the channel. The streaming potential under
stationary conditions is proportional to the surface potential
of the shear plane called zeta potential, according to the
Helmholtz–Smoluchowski equation.18 Since the zeta potential
can be relatively easily measured by electrokinetic methods,
this is the very quantity that is used to characterize surface
charge densities of artificial membranes or colloid particles.
In this work, we measure a nonstationary (transient)
streaming potential, in order to maximize the signal
amplitude by applying high inlet flow rates. We provide both
theoretical and experimental evidence that the amplitude of
the transient signal is proportional to the zeta-potential at
the surface, in this case, too (for more details, see below, and
under the Simulation section).

The transient signal was gained and filtered with a low-
noise voltage pre-amplifier (SR560, Stanford Research
Systems, USA) (Fig. 2A), recorded by a digital oscilloscope
(Wave Ace, Teledyne LeCroy, USA), and further analyzed via
the Wavestudio software (Teledyne LeCroy, USA). The
amplitude of the transient streaming potential signals was
calculated with Matlab (MathWorks, USA). The difference
between the baseline and the maximum of the curve defined
the amplitude. The noise of the signals was eliminated with
the function estimation of smoothing splines (Fig. 3A).

Experimental validation of the system was performed by
using a Nafion membrane (Ion Power, USA) inserted between
the two PDMS channels. For the measurements performed
on the confluent monolayer of hCMEC/D3 after 24 h flow,
first, the background streaming potential was registered
under a 1 ml min−1 flow rate, then cells were treated with 1
mM lidocaine for 30 min at 37 °C or with 1 U ml−1

neuraminidase in a serum-free medium for 1 h at 37 °C. After
treatments, streaming potential was measured again with the
same electrodes and under the same conditions, and changes
were calculated. In case of cell monolayers in the control
group, instead of any treatment, the medium was changed
and incubated for 30 min or 1 h at 37 °C, before the
streaming potential was measured.

Zeta potential measurements: laser-Doppler velocimetry

LDv measures the electrophoretic mobility of charged
particles with two collimated, monochromatic, and coherent
laser light beams, forming a set of straight fringes by
interference.19 The moving particles go through the fringes
and reflect light to a photodetector. The frequency of the
reflected light's intensity fluctuation is proportional to the
Doppler shift between the scattered and incident light, and
the velocity of the particles is proportional to the Doppler
shift. Using the Smoluchowski equation the zeta potential ζ
can be calculated as follows:
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ξ ¼ 4πμη
ε

where μ is the electrophoretic mobility, η is the viscosity of

the solvent and ε is the dielectric constant.
In the experiments a Zetasizer Nano ZS instrument

(Malvern, UK) was used. First, LDv was performed using
Nafion beads (Ion Power, USA) as a simple model for ionic
surface changes. Nafion belongs to a class of polymers with
ionic properties, which unique characteristic results from the
incorporation of perfluorovinyl ether groups terminated with
sulfonate groups onto a tetrafluoroethylene strength.53 To
alter the negative surface charge of the Nafion particles
cationic polyethylenimine (PEI) polymer with good
attachment properties was used. Nafion beads were stored in
a mixture of water and ethanol. To measure the LDv of the
Nafion beads they were transferred into the same ionic
solution used for measuring the surface charge of endothelial
cells. First, 2 × 1 ml Nafion stock solution was spun down
with ultracentrifugation (T-1270 fixed angle titanium rotor,
Sorvall WX+100 ultracentrifuge, ThermoFisher Scientific,
USA) at 45000 rpm for 30 min on 4 °C. The pellet in one of
the vials was resuspended in 2 ml phosphate-buffered saline
(PBS) solution containing Ca2+ and Mg2+, while the other vial
was resuspended in 3 ml PEI. Both samples were sonicated
for 60 min. The PEI-treated sample was ultracentrifuged once
more with the same settings and was resuspended in 2 ml of
PBS containing Ca2+ and Mg2+ and sonicated for 1 hour. This
step was repeated once more to remove any PEI which was
not attached to the Nafion beads. Samples were measured by
Zetasizer Nano ZS using a disposable zeta potential cuvette
with gold plated beryllium/copper electrodes (DST1070,
Malvern, UK). Before measurements cuvettes were rinsed
with 100% ethanol for activation and washed twice with

Fig. 2 Methods of zeta potential measurement. (A) Streaming potential. The counterions of the solution has a higher local concentration close to
the negatively charged surface due to the electric double layer. The ion concentration of the diffuse layer was constant (fix cations close to the
surface) while the cations of the slipping plane move towards the outlet under flow conditions and temporarily accumulate in the larger vicinity of
the electrode resulting in a potential difference compared to the reference (inlet) electrode. (B) Laser-Doppler velocimetry. Electric field was
applied on a suspension of charged particles (e.g. the Nafion beads) in the capillary channel and the beads moved toward the direction of the field.
The electrophoretic mobility is measured with the intensity shift between two collimated, monochromatic, and coherent laser beams, thus the zeta
potential of the particles can be calculated.

Fig. 3 Comparison of the registered streaming potential and the
model simulations. In both cases the reference was on the low-
pressure end so the positive potential difference corresponds to
negative zeta potential since it measured the concentration of the
counterions. (A) The registered signal on Nafion membrane measured
in the biochip. (B) The result of the simulation. The streaming potential
is shown in arbitrary units because the geometry of the model was
proportionally decreased as compared to the chip device. The
dynamics of the transient streaming potential signal is identical.
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distilled water. Then zeta cuvettes were calibrated with zeta
standard solution (Malvern, UK) as described by the
manufacturer's protocol. Samples were measured at 25 °C,
with a minimum of 6 rounds (12 runs each), with an applied
40 V voltage (Fig. 2B).

Zeta potential of hCMEC/D3 brain endothelial cells was
measured similarly.17 Before the cells in Petri dishes reached
full confluence were trypsinized and 105 cells were re-
suspended for treatment in the appropriate buffer. As
described in our previous work, 1 mM lidocaine was added
to the cell suspension and incubated at 37 °C for 30 min.17

For neuraminidase treatment, cells in suspension were
incubated with 1 U ml−1 of neuraminidase in a serum-free
medium for 1 h at 37 °C before measurement. The Zetasizer
software v.7.12. calculated the zeta potential using the
Smoluchowski equation.

Evaluation of barrier integrity

hCMEC/D3 cultured in the LOC device received fresh
medium every 8 hours automatically, and TEER
measurement was performed each day to follow barrier
formation. After the 48 h flow in the device treatments
followed by permeability measurements were done to
determine the integrity of the cell layers. Permeability for
fluorescein isothiocyanate-labeled 10 kDa dextran (FD10, Sigma)
was done as described previously.37 In the lower compartment
the cell culture medium was changed to Ringer-Hepes buffer
(118 mM NaCl, 4.8 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4,
5.5 mM D-glucose, 10 mM Hepes, at pH 7.4) supplemented
with 1% FBS and 1% ITS. In the upper compartment of the
device the culture medium was changed for Ringer-Hepes
containing 10 μg ml−1 FD10 for control biochips, and Ringer-
Hepes containing 10 μg ml−1 FD10 and 1 mM lidocaine in
the lidocaine treatment group. For the neuraminidase
treatment cell culture medium was replaced for serum-free
medium containing 1 U ml−1 of neuraminidase and
incubated for 1 h at 37 °C. After streaming potential was
measured, permeability measurement was done replacing the
cell culture medium as described above. The devices were
kept in a CO2 incubator, on a horizontal shaker (150 rpm),
for 30 min during permeability measurements, then samples
were collected from both compartments of the device and
concentrations of the molecular marker were measured by
fluorescent spectrophotometry (Fluostar Optima, BMG
Labtechnologies, Germany) with 485 nm excitation and 520
nm emission wavelengths. Apparent permeability coefficient
(Papp) was calculated as described previously.54

Fluorescent immunostaining

Permeability measurements were followed by
immunohistochemical stainings for morphological
characterization.17 Brain endothelial cells were fixed with
cold acetone–methanol solution (1 : 1) for 2 min, washed with
PBS and stained for junctional associated protein β-catenin.
To block the non-specific binding sites cells were incubated

with 3% bovine serum albumin (BSA) in PBS for 1 h at room
temperature. Incubation with the primary antibody
polyclonal rabbit anti-β-catenin (Sigma, C2206; 1 : 200) lasted
overnight at 4 °C. The next day cell culture membranes were
incubated with secondary antibody anti-rabbit labeled with
Cy3 (Sigma C2306; 1 : 400) and bis-benzimide H33342 (Merck,
Germany) for nucleus staining, for 1 h at room temperature.
Between incubations membranes with cells were washed
three times with PBS. Pictures for the junctional staining
were visualized by a Leica TGS SP5 confocal laser scanning
microscope (Leica Microsystems, Germany).

Surface glycocalyx staining

Endothelial cells were cultured on rat tail collagen coated
glass cover slips. After reaching confluence cells were treated
either with culture medium (control group) or with
neuraminidase as described in the Cell culture treatment
section. After treatment cells were fixed with 1%
paraformaldehyde in PBS for 15 min at room temperature.
To visualize the surface glycocalyx fixed but unpermeabilized
cells were incubated with wheat germ agglutinin (WGA) lectin
conjugated with Alexa Fluor 488 (Invitrogen, W11261). WGA
is specific for sialic acid and N-acetyl-D-glucosamine residues
within the glycocalyx. The final concentration of WGA was 5
μg ml−1 in PBS and the incubation lasted for 10 min at room
temperature.55 After thorough washing steps preparations
were mounted and pictures were taken with an Olympus
FV1000 confocal microscope at different random positions.
Minimum of 5 pictures was taken from each group at each
experiment. The images were analyzed for staining intensity
using the FIJI (ImageJ) software.

Simulations

Model calculations were carried out on a flow channel by the
COMSOL Multiphysics work package (Comsol Inc., USA) run
on a personal computer, to describe time- and zeta potential
dependence of the transient streaming potential signal. To
optimize simulation time and disencumber processor
capacity, a rectangular channel of proportionally reduced size
and simplified geometry was used in the simulations. The
average flow velocity at the inlet (3.8 × 10−4 m s−1) was
adjusted to the reduced size in order to be able to mimic the
time course of the measured transient electric signal. The
dimensions of the channel were 100 μm × 200 μm × 1200
μm. In the middle of this channel a 200 μm by 300 μm inner
wall segment, representing the slipping plane, was carrying a
surface charge density of 0.172 C m−2. The electrolyte
comprised of a NaCl–water solution of 137 mM
concentration, with ambient pressure and temperature
values, to mimic typical measuring conditions. For details of
the simulation see ESI† Fig. S1. The simulations were carried
out by solving coupled differential equations of the
electrostatics, transport of diluted species and creeping flow
work packages (ESI† Fig. S1), using the Poisson
approximation (1)–(3) and the Nernst–Planck (4), and Navier–
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Stokes equations for the creeping flow of an incompressible
fluid (5)–(6), respectively:

∇·D = ρV (1)

−n·D = σS (2)

E = −∇V (3)

∂cj
∂t þ ∇· −Dj∇cj − zjum;jFcj∇V

� �þ u·∇cj ¼ 0 (4)

0 = ∇·[−pI + μ(∇u + (∇u)T)] + F (5)

ρ∇·(u) = 0 (6)

Here D and E are the electric displacement and field
strength, respectively, ρV and σS are volume and surface
charge densities, n is the normal vector of the surface, V is
the electric potential, cj is the concentration of the jth ion of
zj valency and um,j mobility, F is the Faraday constant, u is
the flow velocity, p is the pressure, I is the volumetric current
flux, μ is the dynamic viscosity, F is the volumetric force, and
(∇u)T is the shear stress term. The simulations were carried
out in two steps: first, under no-flow conditions a stationary
state was developed, while in the second step, a creeping flow
was also introduced. The coupled differential equations were
solved by the implicit method of backward differentiation
formula (BDF).

Statistics

Data are presented as means ± SD. Statistical significance
between groups was determined by one-way ANOVA with
Bonferroni multiple comparison tests, by unpaired t-test or
by paired t-test (GraphPad Prism 5.0, GraphPad software,
USA). The number of parallel samples were minimum 3, and
significance was considered at p < 0.05. Experiments were
repeated at least two times with multiple parallels.

Results and discussion
Design and operation of the device

The basic structure of the barrier device mimics that of the
culture inserts: top and bottom channels separated by a
porous PET membrane (Fig. 1A). The two parallel channels
were made of PDMS. The geometry of the top and bottom
channels are 36 mm × 2 mm × 1 mm and 42 mm × 2 mm × 2
mm, respectively, which 90% overlap providing higher
sensitivity for in vitro permeability assays. It should be noted
that the height of the top channels was reduced to half as
compared to the device in our previous publication.37 Plastic
slides with transparent gold TEER electrodes cover the two
channels (Fig. 1A). The 25 nm thick gold electrodes were
formed with a masking technique using sputter-coated gold
deposition.37 A four-point probe configuration was designed
for the precise impedance measurement, which electrically

covered and enabled monitoring of the whole surface of the
PET culture membrane (36 mm × 2 mm). Copper wires were
bound to the transparent gold electrodes using conductive
epoxy, thus the EVOM voltohmmeter could be connected to
the device (Fig. 1B).

The plastic tubes and the zeta electrodes were connected
to the device via Luer lock inlets. The Ag/AgCl zeta electrodes
were inserted in Luer connectors, so they could be mounted
easily (Fig. 1C). A programmable syringe pump fed the cells
during the growth period (3 days) every 8 hours, while the
TEER values were recorded and the monolayer was
monitored with a phase contrast microscope, each day.
Automatic feeding decreased the chances of contamination,
too. The devices were connected in line (3 to 6 at one
experiment), thus the flow rate and shear stress (0.4 dyn)
were the exact same in all cultures. Before the cell
monolayers reached full confluence, a peristaltic pump was
introduced for constant flow, to mimic the shear stress of the
bloodstream in veins for 1 day. The flow rate was 500 μl
min−1 during feeding, 1 ml min−1 during the constant flow.

The streaming potential was measured with the Ag/AgCl
electrodes (Fig. 1C) between the inlet and outlet sides of the
top channel (Fig. 2). For the recording, the flow was
periodically stopped and restarted after equilibration of the
ions close to the surface of the cell monolayer. Please note
that contrary to the usual streaming potential measurements
working with moderate flow rates, we do not operate our
device under stationary conditions where the forward
streaming current and the backward conductive current keep
an equilibrium, but rather measure transient signals (Fig. 3A)
by applying a strong input flow, in order to increase the
signal-to-noise ratio. Although, this case is beyond the scope
of the Helmholtz–Smoluchowski equation establishing a
linear relationship between the zeta and steady-state
streaming potentials, here we present experimental and
theoretical evidence for the proportionality of the zeta
potential and the amplitude of the transient streaming
potential in our approach, as well.

The streaming potential feature: experimental validation of
the method

In this work, the streaming potential was measured either on
a test membrane or on cell monolayers, in the form of a
transient potential difference evolving between the inlet and
outlet electrodes, due to migration of ions from the vicinity
of the negatively charged surface of the channel under flow
conditions (Fig. 2A). The negative charge derives from the
overwhelming anionic groups on the surface of the confluent
cell monolayer due to the lipid headgroups2 and the surface
glycocalyx in the BBB experiments,15 or from the sulfate
groups of the Nafion membrane in the control
measurements. The electric double layer close to a charged
surface has a different ion concentration compared to the
solution. If flow is applied to the system, the mobile part of
the GCL containing an excess number of positive counterions
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move towards the outlet electrode, and temporarily increase
the positive charge density in the larger volume of the socket
of the electrode, giving rise to an increase in electric
potential, as compared to the reference electrode (Fig. 3A). As
we show by both model calculations (Fig. 3B) and control
experiments using the LDv method, the amplitude of this
transient streaming potential signal is proportional to the
zeta potential of the membrane surface.

A highly negatively charged Teflon derivative, the
sulfonated tetrafluoroethylene-based fluoropolymer-
copolymer called Nafion was selected to perform the proof-
of-concept experiments by the streaming potential electrodes
incorporated in the chip. Since Nafion is available both in
183 μm thick membrane sheets and in liquid suspension, it
is suitable for both the transient streaming potential
measurements and for LDv (Fig. 4A and B), where the latter
can serve as a control for calibration.

For the streaming potential study, the PET membrane of
the chip was replaced by a Nafion membrane, and the
adjacent microfluidic channels were filled up by PBS, in
order to mimic the ionic conditions of the incubating
solution of endothelial cells, most frequently used in our
earlier BBB chip experiments.37 Following the application of
an inflow on the upper microfluidic channel of the device
(Fig. 2A), a well-measurable transient electric potential
change could be recorded under 1 ml min−1 flow rate, using
a voltage preamplifier and an oscilloscope (Fig. 3A). The sign
of the transient signal corresponded to a displacement of
positive charges in the direction of the flow, indicating an
overall negative zeta potential of the surface of the channel.
After a 1 minute post-measurement incubation time without

flow, the signal could be quantitatively reproduced. As a
single-parameter descriptor of the transient signal, we chose
its amplitude for comparison with the results of subsequent
measurements. Note that here the convention of the sign was
the opposite compared to the traditional streaming potential
measurements,56 as the reference electrode was on the low-
pressure end of the channel. Hence, the sign of the measured
signal was the opposite of that of the zeta potential since the
amplitude was proportional to the concentration of the
counterions. According to the convention, the amplitude of
the streaming potential of the untreated Nafion membrane
was found to be −1.06 ± 0.0625 mV (Fig. 4A).

To change the surface charge density, the Nafion
membrane, was treated for 30 min with PEI, known to be
able to attach via highly positively charged ethyleneimine
residues to the surface. Its access quantity was subsequently
washed away with PBS, and the streaming potential was
measured again. The result showed a pronounced decrease
of the absolute value of the amplitude to −0.68 ± 0.061 mV
(Fig. 4A). Control measurements without Nafion membrane
showed negligible streaming potential signal, indicating that
the zeta potential of the PDMS channel walls was
insignificant, as compared to the highly negatively charged
Nafion membranes.57

In order to calibrate the results gained by the transient
streaming potential method with well-established techniques,
LDv was applied to measure the zeta potential of Nafion
beads prepared of identical material characteristics to those
of the membrane. The Nafion stock solution (pH = 1.5) had a
−76.2 ± 2.08 mV zeta potential measured with Malvern
Zetasizer Nano ZS. Then the stock was centrifuged and
resuspended in PBS (pH = 7.2), therefore the Nafion beads
had the same ionic conditions as in the streaming potential
experiments, and had a zeta potential of −37.13 ± 0.63 mV.
Another batch of beads was then treated with PEI, and
subsequently re-centrifuged and resuspended in PBS. The
PEI-treated beads showed a similar ratio of increase in zeta
potential up to −26.58 ± 0.94 mV (Fig. 4B), as it was observed
for the streaming potentials of analogously treated Nafion
membranes (Fig. 4A).

Based on the fact that the ratios of the zeta and streaming
potentials of the native and PEI-treated Nafion surfaces were
the same within the experimental error, a proportionality
between the data measured by the two different methods
were suggested. Below, we present both theoretical and
further experimental evidence supporting this finding.

The streaming potential feature: simulations

In order to give a theoretical background for the measured
transient streaming potential signals, we carried out model
calculations on a flow channel by the COMSOL Multiphysics
work package. The dynamics of the system was modelled in
two steps: 1) to establish stationary conditions without flow,
first the system was let to equilibrate according to the
Poisson–Boltzmann–Nernst–Planck approximation, assuming

Fig. 4 Measurement of the surface charge of Nafion by streaming
potential and by laser-Doppler velocimetry (LDv) methods. (A) Nafion
film replaced the culture membrane in the biochip. It was treated with
polyethylenimine and the streaming potential was measured before
and after the treatment. Values are presented as means ± SD, n = 4.
Data was analysed by unpaired t-test. **, p < 0.01, compared to
control. (B) Nafion beads were treated with PEI and the samples were
measured with LDv before and after the treatment. Values are
presented as means ± SD, n = 5. Data was analysed by unpaired t-test.
***, p < 0.001, compared to control groups.
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electro-neutrality of the channel-fluid system; 2) in the
second step, a creeping flow with an average velocity of 3.8 ×
10−4 m s−1 was applied (ESI† Fig. S2)to the inlet of the
channel, and the electric potential was measured on two
probe planes placed in front of and behind the charged
surface, along the long axis of the channel. A typical voltage
signal received by subtracting the two potentials is shown in
Fig. 3B, faithfully reflecting the time-evolution of the
measured signal (Fig. 3A). In order to establish the
connection between the simulated signal amplitudes and the
zeta potential, the latter was swept two orders of magnitude,
and the simulated time-evolution of the streaming potential
functions was recorded (ESI† Fig. S3, Video V2). Fig. 5B
shows the dependence of the amplitudes of these curves as a
function of the zeta potential, showing a clear linear
relationship, in full concert with the experiments (see the
previous section, and Fig. 5A).

The above experimental and model calculation results
proved that the concept of upgrading our chip device by a
streaming potential unit, to detect the zeta potential of the
membrane insert and monitor its changes, is feasible.
Nevertheless, it remained an important question whether the
method is appropriate (i.e. sensitive enough) to characterize
changes in the surface charge properties of cellular
monolayers, such as those in biological barriers. In the
forthcoming sections, we address this problem via the
experimental investigation of an in vitro BBB model system.

Effects of surface charge modifications and measurement of
streaming potential on a cell culture model of the BBB

There is an increasing number of direct and indirect
evidence that simple physical parameters such as surface
charge density or the related zeta potential might control
physiological functions of barrier properties.2,17 The main

sources of the, usually negative, surface charge densities of
cells are the lipid head groups of the plasma membrane, and
the so-called glycocalyx, composed of highly negatively
charged polysaccharide chains at the surface of the cells
(Fig. 6A). Glycocalyx forms a continuous coat on the luminal
surface and plays important roles as both a mechanosensor55

and as a physical barrier for nanoparticle permeability.16 The
negative surface charge derived from the lipid head groups of
the BBB regulates both drug delivery to the brain14 and drug
interaction at the level of brain endothelial cells.17 Therefore,
the surface charge density of brain endothelial cells can be
modified by both enzymatic digestions of the glycocalyx or
cationic lipophilic molecules that are inserted into the
plasma membrane (Fig. 6A). To determine changes in the
surface charge of individual cells LDv measurements are
used.2,17

In our study, we measured the streaming potential on
confluent monolayers of barrier cells cultured in a LOC
device for the first time. We used two clinically relevant
surface charge modulators (Fig. 6A). The antiarrhythmic
intravenous drug, lidocaine incorporates into the plasma
membrane of vascular endothelial cells and as we
demonstrated in a recent study it changes the zeta potential
of brain endothelial cells.17 Neuraminidase, a glycoside-
hydrolase enzyme, cleaves sialic acids and reduces the
amount of negative charge on the glycocalyx, thus mimics
glycocalyx shedding observed in sepsis.6 Cleavage of
glycocalyx elements turns cellular surface charge more
positive, although this change has not been measured
directly on brain endothelial cells yet. The efficiency of
cleavage of sialic acid residues from the glycocalyx by
neuraminidase was determined by the sialic acid-specific
lectin WGA-Alexa 488 staining, followed by confocal
microscopy and image analysis for staining intensity
(Fig. 6B and C). A concentration-dependent effect of the

Fig. 5 Correlation between streaming potential and laser-Doppler velocimetry. (A) Correlation of the simulation. The zeta potential was set in the
channel as a charged section of the wall and the corresponding streaming potential was calculated by the simulation. (B) The streaming potential
and laser-Doppler velocimetry data measured on Nafion or the confluent brain endothelial cell layers were plotted and fitted with linear
regression. The two goodness-of-fits are R2 = 0.996 and R2 = 0.986 respectively, which shows a clear linear relationship between the zeta and
streaming potential.
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enzyme on lectin staining was obtained: neuraminidase
treatment at 1 U ml−1 concentration reduced the labeling by
80% on the surface of BEC after 1 h treatment, while lower
concentrations were less effective (Fig. 6B and C).

The effects of the two different treatments were tested by
measuring transient streaming potential signals on the chip
(Fig. 6D and E). To this end, a fluid flow of 1 ml min−1 was
applied on the upper channel of the device, containing the
brain endothelial cell monolayer and the flow of charges was
registered. As shown in Fig. 6D and E, both treatments
increased the streaming potential of the cell monolayers.
Neuraminidase treatment was performed at a concentration
of 1 U ml−1, since it was the most effective concentration in
reducing sialic acids from the glycocalyx (Fig. 6B and C).
Addition of neuraminidase increased the streaming potential
of cell layers to −0.268 ± 0.086 mV from −0.470 ± 0.047 mV
(Fig. 6D). Lidocaine, the other surface charge modulator in
our experiments, is widely used as an anaesthetic or
antiarrhythmic drug. We demonstrated in our previous study

by LDv that it modifies the zeta potential of BEC.17 Since we
found no toxic effect of lidocaine at 1 mM concentration,17

this concentration was used on the BEC monolayers cultured
in the LOC device. In Fig. 6E, the streaming potential is
shown to increase from −0.333 ± 0.089 mV to −0.161 ± 0.061
mV upon lidocaine treatment. For comparison with the
results obtained by the streaming potential measurements,
single-cell experiments were performed using the same
treatments but the LDv method. As shown in Fig. 6F,
neuraminidase treatment significantly increased the surface
charge of BEC to −9.83 ± 1.67 mV, while lidocaine elevated it
to −8.29 ± 1.71 mV from the −12.7 ± 1.71 mV measured in
basal conditions when no treatment was applied. The lower,
0.1 U ml−1 and 0.3 U ml−1 concentrations of neuraminidase
resulted in smaller changes in the zeta potential of BEC (ESI†
Fig. S4), in accordance with the glycocalyx staining results
(Fig. 6B and C).

After completing the experiments on both Nafion and
cells, the streaming potential amplitudes recorded on the

Fig. 6 Measurement of surface charge and its modification on brain endothelial cells by streaming potential in the chip device and by laser-
Doppler velocimetry (LDv). (A) The two strategies to modify the zeta potential were the cleavage of the glycocalyx or the insertion of positively
charged molecules in the membrane. Neuraminidase enzyme cleaves the sialic acids of the polysaccharide sidechains, thus decreases the amount
of negative charges on the cell surface. Lidocaine incorporates into the cell membrane and makes it more positive. (B) Representative pictures of
the staining with wheat germ agglutinin (WGA) lectin labeled with Alexa 488 with or without treatments with different concentrations of
neuraminidase, bar: 20 μm. (C) Image analysis of the fluorescent intensity of the lectin labeling on pictures taken by confocal microscopy. Values
are presented as means ± SD, n = 30–66. Data was analysed by one-way ANOVA with Bonferroni post-test. ****, #### p < 0.0001, ### p <

0.001. (D and E) Streaming potential values measured in the chip device. Values are presented as means ± SD, n = 4. Data was analysed by
unpaired t-test. **, p < 0.01, compared to control. (F) Zeta potential results obtained with LDv method. Values are presented as means ± SD, n =
12–60. Data was analysed by one-way ANOVA with Bonferroni post-test. ****, p < 0.0001, compared to control.
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LOC device and the zeta potential values measured by the
LDv technique were compared to seek possible correlation.
Fig. 5B shows the streaming potential results plotted as a
function of zeta potential, including the Nafion results. The
graph was fitted with linear regression, and the result showed
a clear linear relationship between the data gathered by the
two methods, with a goodness-of-fit of R2 = 0.988.

The results clearly prove the feasibility of the new “zeta-
feature” of the device, at the same time provide a calibration
factor for the determination of the zeta potential of the cell
layer. It was also shown that the sensitivity of the technique
is sufficient to measure changes in the surface charge
properties of the BBB layer that was demonstrated to be
linked to altered penetration of charged molecules and
nanoparticles.2,16,17 The question arises, however, whether
the changes in surface charge measured by streaming or zeta
potential were accompanied by alterations in barrier
parameters, such as permeability for ions (TEER) or neutral
hydrophilic molecules.

Barrier integrity of cell monolayers in the LOC device

To investigate if zeta potential changes are linked to changes in
passive paracellular permeability or are independent indicators
of function further experiments were performed. The tightness
of the paracellular pathway, restricted by tight intercellular
junctions, can be tested with hydrophilic molecules.9,25,58,59

Electrical impedance measurement at low frequency (called as
TEER) is the most sensitive method to characterize the
paracellular barrier integrity for ions.25,60 The TEER (measured
at 12.5 Hz) of the BBB model was determined both in the device
(Fig. 7) and in culture inserts (ESI† Fig. S5). The resistance of
the BEC cultures in the LOC device did not change after
treatments (Fig. 7A) and the same result was shown on culture
inserts for neuraminidase (ESI† Fig. S5A). Since the paracellular
permeability for both ions and neutral hydrophilic molecules is
regulated by the tight intercellular junctions, changes in the cell
surface zeta potential are not expected to affect this pathway.
The removal of the sialic acid residues from the glycocalyx or
the insertion of a positively charged molecule in the plasma
membrane of the cells did not result in any statistical difference
in the paracellular permeability for dextran as compared to the
control group, as it was expected for a neutral large tracer
molecule. The same was observed on culture inserts as shown
in ESI† Fig. S5B. These data are in agreement with our previous
results describing that treatment of BBB culture models with
lidocaine did not change the permeability of neutral hydrophilic
markers such as dextran.17 In concordance with TEER and
permeability data the cell morphology of BEC was unchanged
as the same immunostaining pattern was observed for the
junctional linker protein β-catenin after treatments as compared
to the control cells (Fig. 7C). Similar BEC morphology was also
observed after neuraminidase treatment by phase contrast
microscopy (ESI† Fig. S5C). These control experiments prove
that modulation of endothelial cellular surface charge with
neuraminidase or lidocaine did not affect barrier integrity of

the cell layers and that both TEER and zeta potential, two
independent essential parameters can be measured with the
device.

Conclusions and outlook

We successfully measured the streaming potential of a
biological barrier culture model with the help of our versatile
lab-on-a-chip device upgraded with two Ag/AgCl electrodes.
The inclusion of the “zeta electrodes”, a voltage preamplifier
and an oscilloscope in our set-up made it possible to
successfully record signals describing the surface charge
properties of brain endothelial cell monolayers, used as a
barrier model in our experiments. The new technique was
verified by comparing streaming potential data obtained in
the LOC device and zeta potential results by the commonly
used LDv method. Changes in the negative surface charge of
the barrier model by treatments with neuraminidase enzyme
modifying the plasma membrane glycocalyx or lidocaine
altering the lipid membrane charge could be measured by
both the novel LOC device and LDv. The device as we proved
earlier can be used for different types of biological barriers,

Fig. 7 The effects of the treatments modifying the surface charge of
confluent brain endothelial cells on the paracellular barrier properties
measured in the chip device. (A) Transendothelial electric resistance
(TEER) results were normalized to the values of the control group
which received culture medium instead of treatments for the same
period. (B) Apparent permeability coefficient (Papp) of the brain
endothelial monolayers for the neutrally charged fluorescently labeled
10 kDa dextran (FD10), a marker of paracellular permeability. (C) Cell
morphology was characterized by immunostaining for β-catenin, a
linker protein of adherens junctions, and visualised by confocal
microscopy. Bar: 20 μm.
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such as respiratory and intestinal epithelial cell cultures and
co-culture models of the BBB.37 Potential application of the
new LOC zeta device can be two-fold. Surface charge and its
changes can be measured by registering the streaming
potential on other epithelial and endothelial barrier systems
including lung, intestine, kidney and cornea. On the other
hand, changes in either the glycocalyx of the vascular or
other barriers caused by pathologies such as diabetes, sepsis,
hypertension or virus infection or changes in the plasma
membrane caused by charged molecules or drugs can be
modeled and directly measured on intact cell layers. Our
technique is, in principle, compatible with further
miniaturization of the channel to adapt the system for
screening purposes. The new device can help to gain
meaningful novel information on how surface charge is
linked to barrier function in both physiological and
pathological conditions.
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