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1 Bevezetés, a kutatás aktualitása, célkitűzések 

A klímaváltozás következményeként a gazdaság fókusza, a társadalom figyelme 

az olcsóbb és fenntartható előállítású karbonsemleges energia kutatására és 

hasznosítására irányul. Az IEA – International Energy Agency – közlése alapján 2020-

ban a megújuló energiaforrások felhasználása 3%-kal nőtt, míg a fosszilis energiafajta 

iránti kereslet csökkent. Az elsődleges hajtóerőt a megújuló forrásokból származó 

villamosenergia-termelés közel 7%-os növekedése jelentette. A hosszú távú 

szerződések, a hálózathoz való elsőbbségi hozzáférés és az új erőművek folyamatos 

telepítése támogatta a megújuló energiaforrások növekedését. Mindez bekövetkezett az 

anomális 2020-as évben tapasztalt alacsonyabb villamosenergia-kereslet, az ellátási 

lánc kihívásai és a világ számos részén tapasztalható építési késedelmek ellenére. Ennek 

megfelelően a megújuló energiaforrások részaránya a globális villamosenergia-

termelésben a 2019-es 27%-ról 2020-ra 29%-ra nőtt. /https://www.iea.org/reports/global-

energy-review-2021/renewables / 

Ugyanakkor a geotermikus energia szektor növekedése nemzetközi szinten is 

elmaradt más megújuló energia fajták hasznosításának mértékétől, különösen a nap és 

szélenergia tekintetében (RYBACH 2010). A nap és szélenergia szektor exponenciális 

növekedésével szemben a geotermikus energiahasznosítás utóbbi éveit lassú, monoton 

növekedés jellemzi (1. ábra). Ennek számokban kifejezhető paramétereit az 1. táblázat 

mutatja be. 

 

1. ábra. Geotermális villamos kapacitás alakulása (https://www.irena.org/geothermal) 
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A földhő helyben található, időjárásfüggetlen energiaforrás, így egységnyi 

beépített teljesítmény hatékonyabban hasznosítható más megújuló energiákhoz képest 

(REN21 2019, SZANYI 2019). Ez az energiatípus a földkéreg minden pontján jelen van, 

kinyerése fluidumhoz kötött. Bár a geotermikus energia kimeríthetetlennek tűnik – a 

Földön kitermelhető nem fosszilis energiafajták mintegy kétharmadát képviseli (WEA 

2000) – csak részlegesen tekinthető megújulónak.  

1. táblázat. A világ geotermikus iparának statisztikái 2015-2020 között  

Az energetikai projektekhez fúrt kutak száma összesen 1159 

Energetikai projektekre fordított millió dollár 10,367 

Az energetikai projektekre fordított személyi évek száma 30,491 

/Forrás: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01017.pdf / 

Magyarországon a geotermikus energia részaránya az energiaellátásban – az 

ország potenciáljához képest – alacsony, lassú növekedésnek lehetünk tanúi (SZANYI et 

al. 2021).  

A geotermikus energiahasznosítás, a pórustérrel való gazdálkodás egyik formája. 

A pórusteret hasznosítjuk a termálvíz termelés–visszasajtolás, a CH tárolás, CO2 

elhelyezés által, de a felszínközeli bányaüregek, bányák másodlagos hasznosítása is 

ebbe a témakörbe tartozik. A pórustér, mint hasznosítható véges térfogat a jövőben 

várhatóan jelentősen fel fog értékelődni.  

A különböző energiafajták versenyeznek egymással, beleértve mind a fosszilis 

mind a megújuló energiákat. Ez megteremtette az igényt, hogy a különböző típusú 

energiakészletek és vagyonosztályozási rendszerek pénzügyi, környezeti és társadalmi 

szempontból egyaránt összemérhetők legyenek. Az Egyesült Nemzetek Európai 

Gazdasági Tanácsa (United Nations Economic Commission for Europe – UNECE 2016) 

ezt felismerve, a fosszilis energiahordozó- és ásványi nyersanyagkészletre és vagyonra 

vonatkozó osztályozási keretrendszert dolgozott ki UNFC-2009 kód néven (The United 

Nations Framework Classification for Fossil Energy and Mineral Reserves and 

Resources 2009), majd ezt kiterjesztette a megújuló energia fajtákra is (Classification 

of renewable energy resources – UNECE 2016).  

Alkalmazásával harmonizálhatók és összevethetők az ásványvagyon-

gazdálkodási tevékenységek, üzleti folyamatok, miközben a keretrendszer megfelel a 



3 

pénzügyi jelentések sztenderdjeinek is. Maga az értékelés alapvetően statikus, bár 

valószínűségi alapon kezeli a bizonytalanságot (NÁDOR 2016, NÁDOR et al. 2019). 

Ugyanakkor lehetővé teszi, de nem írja elő a dinamikus készletbecslést, a numerikus 

szimulációk használatát. A geotermális folyamatok jobb megértését a numerikus 

szimulációk nagyban segítik. Emellett a hidrodinamikai és hőtranszport modulok, 

lehetővé teszik a dinamikus készletek becslését akár többféle forgatókönyv szerint.  

Jelen tanulmány vizsgált területe a hazai EGS kialakítás egyik célterületének 

tartott Battonya–Pusztaföldvári-hát (más néven Battonyai-hát) (DÖVÉNYI et al. 2005, 

MÁDLNÉ SZŐNYI et al. 2008). Az Alföld aljzati képződményeiről alkotott ismeretanyag 

jelentősen bővült az utóbbi évtizedben (M. TÓTH et al. 2021) beleértve DK-

magyarországi régiót is, ennek ellenére továbbra is szükséges modellvizsgálatok során 

bizonyos előfeltevésekkel élni, analógiákat használni. Erre a legjobb példa az 

atomerőművi kis és közepes radioaktivitású hulladékok végleges elhelyezését célzó 

földtani kutatás (Bátaapáti és térsége), ahol egy sekély mélységű eltemetett paleozoos 

rögnek a részletes és széles méretskálán végzett geológiai, hidrogeológiai célú 

vizsgálatsorozata történt meg (BALLA et al. 2004). Az aljzati kiemelkedéseknek, 

hátságoknak – köztük a Battonya–Pusztaföldvári hátnak – már évtizedek óta kiemelt 

szerepe van a szénhidrogén bányászatban, és a tendenciák is azt mutatják, hogy a 

geotermikus kutatások (HORVÁTH et al. 2015, VASS et al. 2018), ill. koncessziós 

tanulmányok (Érzékenységi és terhelhetőségi vizsgálatok – Gádoros, Battonya, ZILAHI-

SEBESS & GYURICZA, 2012, 2013) is kiemelten fókuszálnak ezekre a térségekre, pl. az 

EU-FIRE Battonya projektje (http://www.eu-fire.hu/pages/egs-hungary, ÁDÁM & 

CLADOUHOS, 2016), Fábiánsebestyén–Nagyszénás lehetséges térsége (SZŰCS et al. 

2017) vagy Tótkomlóson a mezozoos aljzatra újonnan telepített kutakra épülő 

hőhasznosítás (https://www.totkomlos.hu/palyazatok/KEHOP-5.3.2-17-2017-00013/).  

A felszínközeli porózus, zömmel kainozoos üledékek geotermikus hasznosítási 

lehetősége mellett a kettős vagy akár hármas porozitással rendelkező repedezett és/vagy 

karsztosodott, magmás, metamorf és karbonátos kőzetek is alkalmasak:  

o geotermális energia hasznosítására (az energiaellátástól az üvegházak fűtésén 

keresztül a balneológiai hasznosításig);  

o olaj, gáz és (termál)víz kinyerésére; 
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o a pórustér hasznosítás témakörét érintő szén-dioxid (SZABÓ-KRAUSZ et al. 2017) 

és további gázok, fluidumok elhelyezésére.  

A repedezett, hasadozott és vagy karsztosodott tárolókban – ellentétben a porózus 

kőzetekben kvázi egyenletesen áramló vízmozgásától – bonyolult struktúrában történik 

a fluidum áramlása, mely matematikailag egyértelműen nem leírható, valamint több 

mérettartományban történő folyamatok is nagyban befolyásolják. A földtani–

vízföldtani kutatás elsődlegesen az információszerzésről szól, hiszen nincs tökéletesen 

ismert közeg, pontról pontra változhat az áramló fluidum sűrűsége, fajhője stb. A 

hiányzó ismeretek ”pótlása” modellvizsgálatokon keresztül is történhet, egyrészt maga 

a folyamat logikája segít az adatok értelmezésében, másrészt rámutathat területi 

információ hiányokra, meghatározva akár a továbbkutatás irányát. 

E tanulmány tágabb értelembe vett előzményeként a vízbázisvédelmi programban 

[123/1997. (VII. 18.) Korm. rendelet a vízbázisok, a távlati vízbázisok, valamint az 

ivóvízellátást szolgáló vízilétesítmények védelméről] szerzett tapasztalatok nevezhetők 

meg. Ennek keretén belül merült fel először a csatolt hőtranszport alkalmazása 

termálkarsztos vízkivételek esetében, mint pl. Harkány és Siklós, Egerszalók, Eger, 

Petőfi-téri, Miskolc város termálkútjai stb. (Smaragd-GSH Kft). Az MBFSZ 

munkatársaival fejlesztett Pannon-XL határon túlnyúló nagyregionális modellvizsgálat 

is szemléletformáló tapasztalatszerzést jelentett. Közvetlen előzményként a Mezősas–

Furta térség szimulációja (KUN et al. 2011) tekinthető, melyben a potenciális 

geotermális energiamezők kinyerési és kutatási módozatainak vizsgálata történt, 

többléptékű földtani vizsgálatra alapozva.  

A robusztus hidrodinamikai és hőtranszport modellvizsgálatok lehetővé teszik 

viszonylag nagyszámú szcenáriók kidolgozását, sokszorosára növelve a lehetőséget, 

hogy ezeket a tárolókat minél jobban megértsük (KUN et al. 2019)  

A Battonya–Pusztaföldvári-hát, mint aljzati kiemelkedés repedezett kristályos 

kőzeteiben kialakuló folyadék- és hőáramlási viszonyainak vizsgálata történt meg 

végeselem módszert alkalmazó, modellező szoftver segítségével. Úgy, hogy a nagyfokú 

földtani és áramlástani bizonytalanságok – melyek a geotermikus fejlesztések 

elmaradásának egyik fő oka – csökkentésének lehetséges módjai is bemutatásra 

kerüljenek.  
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1.1 Célkitűzés 

Jelen disszertáció célkitűzése a meghatározó áramlási és hőtranszport folyamatok 

leképzése a Battonya–Pusztaföldvári-hát környezetében, figyelembe véve az Alföld nagy 

regionális áramláshoz kötött hidrodinamikai tulajdonságait, valamint a potenciális 

hőhasznosítások lehetőségeit. A következő kérdésekre kerestem választ: mennyi ideig 

tudunk gazdaságosan hőt termelni termálvíz-kivétellel egy aljzati típusú tárolóból; milyen 

hasznosítások lehetségesek; alkalmas-e a vizsgált rezervoár áramtermelésre, ha igen 

melyek ennek a kritériumai. További célom volt, hogy hidrodinamikai és hőtranszport 

szimuláció alkalmazásán keresztül dinamikus készletbecsléssel meghatározzam EGS-

hasznosítások (növelt hatékonyságú geotermikus rendszer) peremfeltételeit, illetve ennek 

adott térségre vonatkoztatott létjogosultságát, (az egy kútpárral kitermelhető hőmennyiség 

nagyságrendjét), figyelembe véve a rendelkezésre álló technológiák korlátait.  

A célkitűzés megvalósításához egyrészt modellezett kapcsolt hőtranszport 

folyamatokkal leképeztem az anomálisan felfűtött aljzati kiemelkedés hidrogeológiai és 

hőmérsékleti viszonyát, másrészt egy fiktív, nagy entalpiájú hőhasznosítás (doublet – 

kétkutas rendszer) példáján bemutattam az aljzat és a fölötte települő medenceüledék 

hidraulikai egymásrahatását több lehetséges hasznosítási szcenárió mellett. Ehhez 

végeselem módszert alkalmazó, modellező szoftvert használtam 

Mivel az alaphegységi kutatások leginkább csak költséges fúrások által 

kivitelezhetők, a hidrodinamikai és hőtranszport modellezés és szcenáriók futtatásának 

eredményei mind elméleti, mind gyakorlati szempontból támogatást nyújthatnak a 

heurisztikus kérdésektől a döntéshozatalig. 

1.2 A vizsgálatba vont terület 

Az Alföld vastag medenceüledéke alatt húzódó prekainozoos aljzat kutatása 

visszanyúlik a múlt század közepére és jelentős mennyiségű dokumentáció áll 

rendelkezésre. A kutatások egyik fő hajtóereje a szénhidrogén ipar volt és még a mai napig 

is az egyik legdominánsabb szereplő, mely mellé fokozatosan nő fel a geotermikus kutatás. 

A vizsgált terület, a Battonya–Pusztaföldvári-hát, (2. ábra) és azt körülvevő mély helyzetű 

aljzati mélyedések tengelyében húzódik. Délkeleti része átnyúlik Romániába, ahol az aljzat 

egyre sekélyebb helyzetből végül a felszínre is bukkan. Egyszerűsítve a terület földtani 

felépítésében a hátság paleozoos gránitból, metamorfitokból, perm és triász korú 
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törmelékes és karbonátos üledékekből és perm vulkanitokból álló medencealjzata és azt 

fedő, 1000–1500 m vastag prekainozoos – neogén medenceüledék vesz részt.  

A Battonyai–Pusztaföldvári-hát régiójának főbb vízadó/tároló típusai: 

a)  porózus medenceüledékek, 

b) aljzat mállási zónája,  

c) gránitos / karbonátos aljzat repedésekkel átjárt zónája 

A kutatási területen közel 800 fúrást lehetett azonosítani, melynek jelentős hányada 

elérte az aljzatot főként a hát területén, ugyanakkor csak alig néhány 10 m-ben harántolták 

a gránitot. A Makói-árokban és a Békési-medencében találhatók Magyarország rekorder 

fúrásmélységgel rendelkező objektumai. 

 

2. ábra. A Battonya-Pusztaföldvári hát modellezési területe 

 

1.3 A pórustérrel való gazdálkodás elméleti alapjai 

A pórustérrel való gazdálkodás témakörének jelentőségét a jövőbeni hasznosítások 

tömegessé válása fogja igazolni: a pórustér ugyanis, mint hasznosítható, de véges térfogat 
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várhatóan a jövőben kimagaslóan nagy értéket fog képviselni. Már napjainkban is a 

pórusteret hasznosítjuk a termálvíz termelés-visszasajtolás, a CH tárolás, CO2 elhelyezés 

által, valamint a felszínközeli bányaüregek, bányák másodlagos hasznosítása is ebbe a 

témakörbe tartozik.  

A pórustér-gazdálkodás igényli egyrészről a fogalmak tisztázását, jogi hátterét, 

másrészt Magyarország felszín alatti térrészén belül a releváns (használható) térrészek 

lehatárolását, tipizálását és az ebből levonható kőzetfizikai paraméterek számbavételét. 

FIELD et al. (2018) megállapítja a pórusterek stratégiai jelentősége idővel változhat, amint 

azt tanúsítja az áremelkedésre reagáló nem hagyományos olaj/gázkitermelés növekedése, 

vagy a geotermikus erőforrások iránti fokozott érdeklődés és a CO2-tároló tér iránti igény 

növekedése az éghajlatváltozás mérséklése érdekében.  

A mélységi pórusterek leggyakoribb hasznosítási formái: 

 CH kutatás, termelés, felhagyás 

 geotermikus hasznosítás visszatáplálással (vagy anélkül); meglévő, vagy kialakított, 

javított (pl. EGS rendszer) pórustér esetében, 

 hévízhasznosítás, közvetlen, vagy kaszkádos, vagy részben visszatáplált vizekkel 

(csatolt geotermikus hasznosítással, ezen belül a hasznosítási formák külön, vagy 

összekapcsolt módon), 

 geotermikus, vagy hévízhasznosítás, a vízben lévő, vagy a munka-fluidum segítségével 

oldatba vitt hasznosítható anyagok bányászatával vagy termelésével, (ideértve a 

különleges gyógyvíz alkotókat, iparilag hasznosítható anyagokat, sókat, fémeket, pl. 

lítiumot), 

 CH gáztárolások 

 CO2 geológiai tárolásai, 

 tiszta szén technológia pórustereket érintő folyamatai, 

 felhagyott bányászati üregrendszerek tárolási, hőkinyerési, ásványianyag-kinyerési 

esetei, (ismeretterjesztési, búvároktatási stb.) 

 felhagyott bányászati és más mélyépítési üregrendszerek általi veszélyeztetések, 

öregségi vizek szennyeződései, védelmi, tisztítási, hasznosítási kérdései. 

 

A fenti felsorolásban a pórusterek azonosítása hasznosításuk szerint történik, de szem 

előtt kell tartani a jelenleg nem hasznosított, így kategórián kívül eső pórustereket is. Az 

egyes használatok között sok esetben pillér (nem hasznosítható térrész) kialakítása 

szükséges, ezek alkotják a nem hasznosítható pórusterek egy csoportját.  
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Speciális pórusterek: 

 pillérek 

 barlangok 

 antropogén környezet sekélymélységű pórusterei (ide tartoznak a mélygarázsok, pincék, 

közműalagutak stb.) 

A pórustérre és az azzal való gazdálkodásra célszerű úgy tekinteni, mint stratégiai 

eszközre, amelynek a jövőben valószínűleg lesznek potenciális felhasználási lehetőségei, 

és amelynek közvetlen és közvetett kölcsönhatásait értékelni és rangsorolni kell. (FIELD et 

al., 2018).  

HÁMOR-VIDÓ et al. (2021) rámutat, hogy az öröklött jogok, a “first-come-first-serve” 

az "érkezési sorrend elve" a közösségi vívmányokban (létfontosságú infrastruktúra, közös 

érdekű energiainfrastruktúra) és a nemzeti jogszabályokban meghatározott meglévő 

prioritások blokkolhatják azokat az új projekteket, amelyek földalatti erőforrásokat vagy 

teret használnának (pl. pórusteret).  

A geotermikus mélységi pórustérhasznosításnak elengedhetetlen feltétele a 

visszasajtolás sikeressége, melynek fő gátló tényezői a szűrő kolmatációja és az indukált 

szeizmicitás lehet. SHERBURN et al. (2015) szerint az alábbi kitételek növelhetik az indukált 

szeizmicitás valószínűségét: 

1. Mélyen, ~1,5 km alatt történő újbóli betáplálás.  

2. A természetes tározóhőmérsékletnél lényegesen hidegebb folyadékok 

befecskendezése (>100 oC hőmérsékletkülönbség). 

3. Befecskendezés megfelelő nyomáson vagy áramlási sebességgel ahhoz, hogy a 

pórusfolyadék nyomása nagy tározó térfogatú (>1 km3) tározóba növekedjen. 

4. Befecskendezés kritikusan terhelt területre, ahol nagyfokú természetes 

szeizmikus aktivitás tapasztalható. 

5. Olyan aktív törések és kapcsolódó törések jelenléte, amelyek a 

feszültségmezőben bekövetkező zavarok vagy a kőzet kohéziós szilárdságának 

változásai esetén könnyen megcsúszhatnak. 

A geotermikus energiahasznosítás módját a hordozó közeg mennyisége és 

hőmérséklete határozza meg. A magasabb hőmérsékletektől kiindulva – és a gazdaságos és 

fenntartható üzemeltetést szolgálva – lehetőség szerint egymás után felfűzve, ún. 

kaszkádrendszerben, az alábbi főbb hasznosítások ismertek (villamos áram-termelés és 

közvetlen hőhasznosítás beleértve a hőszivattyúzást és balneológiai hasznosítást). 
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A geotermikus energiatermelés során is alkalmazni kell a szénhidrogén-termelés 

bevált technológiáit, illetve a meddő szénhidrogén-kutak geotermikus célú hasznosítását. 

A termelő és visszasajtoló technológiák fejlesztése a cél, illetve a megfelelő kútfej és 

csővezeték tervezés termál energia szállítási veszteség csökkentésére, és a korrózió és 

vízkőkiválás kezelésére. 

A javított hatékonyságú geotermikus rendszerek (EGS) fejlesztése ipari méretű 

villamos energia előállítása céljából meghatározó fontosságú. 2050-ig célként 

megjelölhető, hogy a földhő alapú villamosenergia-termelésben az EGS legyen a domináns 

technológia. A zárt rendszerű EGS-technológia körültekintő alkalmazása megfelel a 

vízvédelmi elvárásoknak, hiszen nem természetes rétegvizet hasznosít. A ’Nemzeti 

Energiastratégia 2030’1 deklarálja a külső költségek, gazdasági hatások (externáliák) 

számszerűsítését, és a különböző energiatermelési-módok reális összehasonlítása 

érdekében életciklus szemléletű költségelemzésekben kell értékelni a technológiákat. A 

feltételesen megújuló energiaforrások (biomassza és geotermikus energia) hasznosításának 

területén szükséges környezeti szempontok fokozott figyelembevétele és fenntarthatósági 

kritériumok alkalmazása, amelyek kiemelten kezelik a vízgazdálkodási és talajvédelmi 

kérdéseket.  

1.4 A pórustérrel való gazdálkodás jogi háttere 

A pórustérrel való komplex gazdálkodás szükségességét már a múlt század 70-es 

éveiben felismerték. (EVERDINGEN & FREEZE, 1971). Az, hogy a pórustér földtani 

értelmezésben önállóan definiált fogalomként, illetve a gazdasági tevékenység során 

körülírható objektumként jelenik meg, az egységes szabályozás kialakításának szükséges, 

de nem elégséges feltétele. Oka ennek elsősorban az, hogy a technológiai előírások 

legnagyobb része a használati területenként eltérő igények és feltételek miatt nem fedhető 

le közvetlenül a jelenlegi jogi szabályozással.  

A pórustér fogalma a jelenlegi jogalkotásban nem ismert, de az érvényben lévő 

jogszabályok jelentős része közvetve vonatkoztatható a pórustérre is. A nemzeti vagyonról 

szóló 2011. évi CXCVI. törvény (Nvtv.) II. fejezete rendelkezik a nemzeti vagyon körébe 

 

1 /Nemzeti Energiastratégia 2030 (Nemzeti Fejlesztési Minisztérium., 2012), /https://2010-
2014.kormany.hu/download/4/f8/70000/Nemzeti%20Energiastrat%C3%A9gia%202030%20teljes%20v
%C3%A1ltozat.pdf / 
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tartozó egyes vagyontípusokról. Itt a 4. § (1) bekezdése alapján az állam kizárólagos 

tulajdonába tartozik: 

c) a föld méhének kincsei természetes előfordulási helyükön, illetve: 

l) a földgáz biztonsági készletezéséről szóló 2006. évi XXVI. törvény szerinti 

biztonsági földgáztároló. 

Belátható, hogy bár igen közvetett úton, de a rendelkezés két pontjának együttes 

értelmezésében megjelenik a pórustér kezelésével kapcsolatos szabályozás. Abban az 

esetben, ha a c) pontot a teljes kőzettestre vonatkoztatjuk — más értelmezés nem igazán 

indokolható — akkor nyilvánvaló, hogy ebben benne foglaltatik a kőzettest akár ¼-ét is 

kitevő pórustér, függetlenül annak jellegétől (mint pl. a szemcsék közötti üres terek a 

homokköves, vagy a szemcseközi tereken kívül lévő repedések, üregek a karbonátos 

képződmények esetében), függetlenül attól, hogy tartalmaz-e gazdasági szempontból 

értékelendő fluidumokat vagy gázokat. 

Önmagával a pórustérrel kapcsolatban általános rendelkezés még közvetett 

értelemben sincs. Ugyanakkor a pórustérben lévő anyagok kitermeléséről vagy a 

visszamaradt tér használatáról szakterületenként több jogszabály is fellelhető. 

A pórustérrel történő gazdálkodás jelentősége akkor nyilvánul meg határozottabb 

formában, amikor nem egyszerű vízkivétel történik, hanem a művelet az energiatartalom 

kinyerésére irányul, ami a rétegnyomás fenntartását, vagyis visszasajtolást igényel (ÁDÁM, 

2011). A vízkészlet védelme érdekében a rezervoárba csak olyan víz sajtolható vissza, mely 

nem okoz minőségromlást, erre legalkalmasabb a felhasznált, lehűlt termálvíz. 

A pórustérrel történő gazdálkodás másik fontos eleme a földtani közegnek tározóként 

történő alkalmazási lehetőségeit foglalja magában. Az alkalmazási területek elsősorban két 

tevékenységre összpontosulnak: az első a pórustér gáztározóként történő használata, a 

másik, nemzetgazdasági szempontból egyelőre alárendelt formája a szén-dioxid tároláshoz 

kapcsolódik (TÓTH & BÓDI 2012). 

Tárolásra alkalmas pórusterek akkor jöhetnek létre, amikor a kőzettest szénhidrogén-

tartalmát letermelik. A visszamaradó pórustérnek olyan állapotban kell lennie, hogy a 

fluidumok benne szabadon áramolhassanak. A zárt, szárazgáz tartalmazó telepek 

lényegesen gazdaságosabban használhatók gáztározóként, mint a gázcsapadék, illetve 

kőolajtelepekben kialakított tározók. Utóbbiaknál a gázkondenzátum és az olaj illékony 
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komponenseinek visszatermelése bonyolultabb, a gáz előkészítése szállításra költségesebb. 

Vizes tárolóban történő tárolásnál esetenként háromszor nagyobb költséggel kell számolni, 

mint a leművelt gáztelepek esetében.  

Ahol tehát a jogi szabályozás előtérbe léphet, az a felhagyás/átadás folyamata, vagyis 

a pórustér, mint nemzeti vagyon megőrzése a későbbi tevékenység számára. A másik 

hasonló terület a felismerten alkalmas, de használatba gazdasági vagy egyéb okok miatt 

átmenetileg, vagy hosszú távra beláthatóan nem vett pórusterek védelmének kérdése. Tehát 

itt felmerül a prioritás kérdése: melyek azok a tevékenységek, melyek gazdasági 

szempontból a leghatékonyabbak, melyek számára kell elsőbbséget biztosítani a pórustér-

gazdálkodásban. 

A szén-dioxid felszín alatti tárolásánál ez utóbbi probléma azonnal a felszínre kerül. 

A szén-dioxid elhelyezésére elsősorban nyilvánvalóan a lemerült, zárt gáztározók lehetnek 

alkalmasak. Ez technikailag megoldott kérdés, azonban a tároláshoz felhasznált kőzettest 

pórustere a későbbiekben akár a későbbi szénhidrogén-termelés (a keveredés miatt a 

tározóban maradt földgáz fűtőértéke leromlik), akár a földgáztárolás szempontjából 

alkalmatlanná válik. 

Összességében belátható, hogy a pórusterek kezelése egy olyan, nemzetgazdasági és 

szakmai szempontból fontos, komplex tevékenység, mely a fogyasztói igények és a 

környezetvédelem szempontjából is egyértelmű, a probléma minden részletére kiterjedő 

szabályozást igényel.  

1.5 Magyarország geotermikus potenciáljának számítása 

Az elmúlt évek tanulmányai alapján Magyarországon a geotermikus potenciál alulról 

közelítő becslések szerint is legalább ~60 PJ/év (REZESSY et al. 2005; MÁDLNÉ SZŐNYI ET 

AL. 2008). 

Reálisan kitermelhető vagyonként ZILAHI-SEBESS et al. (2012) 130 PJ/év (a 

prepannóniai rétegekből vízzel kitermelhető), illetve 60 PJ/év (a pannóniai porózus 

rétegekből vízzel kitermelhető) értéket számolt, melyet NÁDOR (2016) „felderített vagyon” 

kategóriájának feleltetett meg.  
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ZILAHI-SEBESS tanulmányában (2013) tárolótípusonként vizsgálta a porozitáshoz 

és a rétegvastagsághoz kötődő hőtartalmat (3. ábra, 4. ábra). A pórusterek befoglaló 

közegének főbb csoportosítása: 

o medenceüledékek 
o alapkonglomerátum + mállási kéreg 
o karbonátos (karsztosodó) kőzetek  
o tektonikai zónák 

 

3. ábra. A Pannóniai üledékes medence elterjedése (részmedencék feltüntetésével) az 1 m2-re eső 
hőtartalom eloszlásának megadásával [GJ/m2] (ZILAHI-SEBESS, 2013) 

 

4. ábra. Bázis konglomerátum (alaphegység) és mállott zónájának elterjedése az 1 m2-re eső hőtartalom 
eloszlásának megadásával [GJ/m2). (ZILAHI-SEBESS, 2013) 
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A tároló kapacitást az effektív porozitás nagyban befolyásolja, a mérési módszerek 

közül a porozitáskövető módszerek azok, amelyeknek indikációi elsősorban a kőzet 

pórustérfogatával arányosak, vagyis porozitásra hitelesíthetőek, míg a mátrix anyaga, 

valamint a póruskitöltő fluidum medence kitöltő üledékes kőzetekben egy adott szakaszon 

belül helytől függetlenül állandó paraméterekkel jellemezhetőek. A hasznosítások egy 

részében egyszerre kell figyelembe venni a kőzetösszlet, rezervoár tulajdonságait 

(porozitás, permeabilitás), és a lehetséges műszaki megoldásokat, beleértve a lakott 

területek jelenlétét is, melyek lehetnek gátló (pl. CO2 tárolás), illetve elősegítő (pl. hőpiac) 

faktorok egyaránt. Sokszor az együttes alkalmazás lehet a legcélravezetőbb, jó példa erre a 

sósvizes rezervoárok CO2-tárolásra történő hasznosítása során rezervoárok geotermikus 

hasznosításának vizsgálata. (FALUS et al. 2011) 

2 Elméleti háttér, alkalmazott módszerek, a modellvizsgálat lépései 

A hidrodinamikai és hőtranszport folyamatok elméleti hátterének és alkalmazásának 

teljes körű bemutatása kifeszítené e dolgozat kereteit, viszont vázlatos ismertetésük 

szükségszerű, kiemelve a modellvizsgálatoknál alkalmazott megfontolásokat, főbb 

szempontokat és döntési mechanizmusokat. 

2.1 Hidrodinamikai paraméterek  

A porozitás és a permeabilitás, illetve szivárgási tényező a felszín alatti áramlás 

meghatározó fő paraméterei. A permeabilitás mérettartománya több nagyságrend, míg a 

porozitás gyakorlati határai kb. 40%-tól 0,1%-ig terjednek.  

2.1.1 Permeabilitás, szivárgási tényező 

Az alkalmazott FEFLOW® modellező szoftver, sok más szoftverhez hasonlóan, a 

szivárgási tényező értékét alkalmazza a permeabilitás helyett, ugyanis ebben a 

paraméterben már benne foglaltatik nemcsak a kőzet, hanem az áramló fluidum 

tulajdonsága is. Az egyes kőzetek és konszolidálatlan üledékek szivárgási tényező és 

permeabilitás értékei a 5. ábra szemlélteti (FREEZE ÉS CHERRY, 1979 nyomán, MÁDLNÉ 

SZŐNYI et al. 2013.)  
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5. ábra. Különböző kőzet és üledék típusokra jellemző hidraulikus vezetőképesség (K) értékek (FREEZE & 

CHERRY, 1979 nyomán MÁDLNÉ SZŐNYI et al. 2013) 

A permeabilitás a kőzetek folyadék vezetőképessége, amely nem függ az áramló 

folyadék tulajdonságaitól. Definíció szerint 1 Darcy permeabilitása van a kőzetnek 

egyfázisú, 1 centipoise viszkozitású, a teljes rendelkezésre álló pórusteret kitöltő 

folyadékáramlás esetén, ha a folyadék 1cm/sec sebességgel áramlik át a kőzet 1cm2 

keresztmetszetű felületén 1 atm/cm hidraulikus gradiens mellett. Más szóval 1 Darcy 

permeabilitás mellett 1 másodperc alatt 1cm2 felületen 1cm3 térfogatú folyadék áramlik át, 

vagyis az 1D permeabilitás esetén 10–2 m/s az áramlás sebessége 1 mD esetén pedig 10–5 

m/s áramlási sebességgel számolhatunk. 1D permeabilitású közeg szivárgási tényezője 10-

5 m/s. 

Míg a permeabilitás csak a kőzetre, addig a szivárgási tényező mind a kőzetre, mind 

az áramló közegre jellemző paraméter. 

Jelen vizsgálatsorozatban a pannóniai és negyedidőszaki összletek szivárgási tényező 

értékeinek definiálása analóg területek és szakirodalmi adatok révén történt (FREEZE & 

CHERRY 1979, és SZILIN–BEKCSURIN (1965), BOUWER (2002) IN MARTON 2009). Mint az 

alábbi irodalmi adatok táblázatából látszik (2. táblázat) a szivárgási tényező értékek nagyon 

tág határok között mozognak.  
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2. táblázat. Szivárgási tényező értékei kőzettípusonként irodalmi adatok alapján  

Kőzettípusok 

(főbb kategóriánként 
összevonva) 

Szivárgási tényező 

(FREEZE & CHERRY 1979) 

Szivárgási tényező 

(SZILIN–BEKCSURIN 1965 

IN MARTON 2009) 

Szivárgási tényező 

(BOUWER 2002 

in MARTON 2009) 

Kavics 1,0E–1,0E–03 m/s >1,2E–03 m/s – 

Homok 1,0E–02–1,0E–06 m/s 5,8E–04–5,8E–06 m/s 3,5E–06–1,2E–04 m/s 

Aleurolit, kőzetliszt, 
iszap,  

5,0E–05–5,0E–08 m/s 5,8E–06–1,2E–07 m/s 2,3E–06–3,5E–06 m/s 

Agyag <1,0E–09 <1,2E–08 m/s <1,2E–07 m/s 

 

Az MBFSZ és elődintézményeiben fejlesztett Pannon–XL modellben (TÓTH et al. 

2010) a pannóniai üledékes összletek szivárgási tényezőinek vertikális komponensét (Kv) 

három nagyságrenddel csökkentették a horizontálishoz (Kh) képest (TÓTH et al. 2013). 

Kivétel volt ez alól az Endrődi Márga Formáció – amely a termálvizes rendszer feküjeként 

kiemelt jelentőségű – ahol a horizontális szivárgási tényező értéke: Kh= 1,0E–09 m/s és az 

anizotrópia (Kh/Kv) mindössze egy nagyságrend. Ehhez képest, az említett robusztus 

modellben a vízadó rétegek medence léptékű horizontális szivárgási tényező értékei 

nagyságrendileg Kh=6,0E–06 – 10,0E–06 m/s közötti értékűek. 1D-s kinetikus 

modellvizsgálatban SZABÓ-KRAUSZ et al. (2017; 2018) üledékes termálvizes 

rezervoároknál az 1.33E–02 (káros migráció esetében, worst case scenario) – 6.67E–04 

m/s értékekre kalibrált. A medenceösszletek feküjében található repedezett vagy 

karsztosodott kőzetkifejlődések legjellemzőbb szivárgáshidraulikai vonása, hogy eltűnik a 

nagyfokú anizotrópia, azaz a vertikális és horizontális szivárgási tényezők nagyságrendje 

azonos, sőt esetenként a vertikális irányú repedések gyakorisága nő meg, amely a z-irányú 

szivárgási tényezőt növeli meg.  

TAKÁCS et al. (2002) in BALLA et al. 2004 Bátaapátira fókuszáló munkájában 

megállapította, hogy a mállott gránit szivárgási tényezője 2–3 nagyságrenddel múlja felül 

a mélyebben települő üde gránit vízvezető képességét. BALLA et al. (2004) Bátaapáti 

térségében, kalibrálást követően a dombtetőkre 1,5E–07, domboldalakra 2,5E–07 és 

völgyekre 1,0E–06 m/s horizontális szivárgási tényezőt kaptak (ez utóbbira ennél 

magasabb, pl. 1,0E–5 m/s érték is elfogadható volt). KUN et al. (2011) a Mezősas– Nyugat 

metamorf rezervoár példáján a különböző kifejlődésű, rezervoárnak tekinthető törésekkel 

átjárt térrészekben (”zsebekben”) 4,4E–07 – 8,41E–06 m/s közötti szivárgási tényezőkkel 

számolt. A mátrix szivárgási tényezője ettől több nagyságrenddel elmaradt. 
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2.1.2 Porozitás 

A kőzet keletkezésével egyidejűleg létrejött porozitás (például a szemcsékből álló 

üledékes kőzeteké vagy a korallzátonyoké, mikor a kőzet kialakulásakor a kőzetszemcsék 

nem töltik ki tökéletesen a rendelkezésükre álló teret) az elsődleges porozitás, utólagos 

tektonikai folyamatok miatt a kőzet megrepedezik, töredezik ez a másodlagos porozitás. 

Harmadlagos porozitás mikor a repedéseket átjáró felszín alatti vizek egyes repedéseket 

kitöltenek, cementálnak (pl.: agyagosodás, kalciteresedés), másokat üregekké, karszttá 

oldanak (GALSA, 2018). Más szerzőknél utóbbi két kategória egyformán a másodlagos 

porozitás fogalmába tartozik.  

Repedezett másodlagos porozitásúak azok a kőzetek, amelyek porozitásának egy 

része a kőzetté válást követően utólag mechanikai hatásra vagy a felszíni mállásból eredő 

hatásokra jött létre. A másodlagos porozitású kőzeteken belül megkülönböztethetünk 

elsődleges porozitással nem rendelkező kőzeteket, mint például a mélységi magmás 

kőzetek és elsődleges porozitással is rendelkező kőzeteket, amilyen a karbonátok egy része. 

A durva törmelékes és homokos üledékek egyszemcsés szerkezete (JUHÁSZ 1987) 

statikailag merev, nyomásra kevésbé tömörödik.  

A pórusok, függetlenül attól, hogy összeköttetésben állnak-e egymással együttesen 

jelentik a teljes vagy totál porozitást. Az egymással kapcsolatban lévő, tehát a 

folyadékáramlás számára nyitott pórusok a rendszer hatékony (effektív) porozitás értékét 

határozzák meg. A teljes és hatékony porozitás paraméterének a hidrodinamikai és a 

hőtranszport számításokban egyaránt jelentős szerepe van. A hatékony porozitás 

áramlástani szempontból egyfajta szűkítő funkcióként lényégben definiálja magát az 

áramlási teret, míg a teljes porozitás például a hőterjedés tekintetében – a víz és a kőzetek 

jelentősen eltérő fajhő és hővezető képességeik okán – a folyamatok időbeliségére hat 

számottevő mértékben.  

A 6. ábra a hővezető képesség porozitás függését szemlélteti (ČERMAK & RYBACH 

1982 és BALKAN et al. 2017 publikált értékei alapján) az egyes tiszta anyagi minőségű nagy 

kőzetkategóriák és tiszta víz esetén. 
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6. ábra. A hővezető képesség [λ] változása a porozitás függvényében kőzetkategóriánként /ČERMAK & 

RYBACH, 1982; * BALKAN et al. 2017 publikált értékei alapján/ 

A porozitás érték a megismerés munkamódszerétől függően más és más tartalommal 

bírhat. Míg a hidrodinamikában alapvetően a teljes és az effektív porozitás vagy 

hézagtérfogat használata az általános, a geofizikai karotázsvizsgálatok porozitáskövető 

mérései további ilyen típusú paramétert különböztetnek meg. Ilyen a neutron-porozitás, 

mely a hézagtérfogaton túl a kőzetmátrix OH- ionok formájában jelenlévő 

hidrogéntartalmát is érzékeli, tehát egyfajta túlbecslésnek lehetünk tanúi hidrodinamikai 

szempontból. A neutronporozitás-mérés a neutronok atommagokon való szóródásán alapul. 

Mivel a neutron tömege közel azonosnak tekinthető a protonéval, így a legerősebb 

energiaveszteség a hidrogéntartalmú anyagokon van. 

A látszólagos mészkőporozitás definíció szerint neutronfizikai szempontból 

ekvivalens egy adott 100%-ban vízzel telített porozitású mészkővel. Agyag jelenlétében, 

annak kötött víz tartalma miatt, a valóságos totálporozitásnál is nagyobb neutron-

porozitásokat (ekvivalens mészkőporozitás) mérhetünk, noha elenyésző az effektív 

porozitás. Repedezett kőzetek esetében a kőzetminőség változásából eredő látszólagos 

mészkőporozitás változása nagyobb mérvű lehet, mint a tényleges porozitás változásból 

adódó. A repedésrendszer többnyire csak kis porozitást képvisel (néhány %), így a 

látszólagos porozitás anomália az elváltozott szakaszon főleg az agyagásványos bontásra 

lesz jellemző.  
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További porozitást mérő módszer a sűrűségmérés és az akusztikus hullámkép 

regisztrálás. Ez utóbbi módszerrel meghatározott sebességek a szemcsés kőzetben 

alkalmasak a porozitás meghatározására, repedezett kőzetben a repedések, töredezett zónák 

kimutatására, mivel a terjedési idő erősen függ a kőzet repedezettségétől. A legerősebben 

fellazult zónákban a transzverzális hullám el is tűnhet, mivel ott a nyíróerőkkel szembeni 

ellenállás rendkívül erősen lecsökken. Az ellenállásméréseken kívül az akusztikus módszer 

a legérzékenyebb a repedezettségre (https://www.geo-log.hu/index.php/services/page/methods /.  

Az üledékekben első közelítésben az ásványok átlagos sűrűsége és a rájuk jellemző 

akusztikus terjedési sebesség nem függvénye a mélységnek (statisztikailag azonos), csak a 

totál porozitásnak.  

Az üledék tömörödése miatt mélységgel növekvő sűrűség és akusztikus sebesség (7. 

ábra, ZILAHI-SEBESS 2013) alapján számított totál porozitás a mélységgel csökken.  

A totál porozitás becslését 100 m mélységtől lefelé a Magyar Alföld esetében 

MÉSZÁROS & ZILAHI-SEBESS (2001) a 46,5×exp(–0,00068h) függvénnyel írta le. A 

tömörödési trendek csak a medence üledékre érvényesek az aljzatnál a fizikai paraméterek 

általában mélységgel a trendtől eltérően gyorsan változnak (ZILAHI-SEBESS et al. 2017, 8. 

ábra). Hidrogeológiai szempontból azonban csak az effektív porozitás a lényeges, amelyet 

a totál porozitás és az agyagosság ismeretében lehet kiszámítani. 

 

7. ábra. Sűrűség és sebesség mélységtömörödési trendek (ZILAHI-SEBESS 2013) 
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8. ábra. Porozitás és litológiai komponensek a mélység függvényében (ZILAHI-SEBESS et al. 2017). 
Litológiai komponensek: sárga szín: homok komponens, zöld szín: agyag komponens 

A porozitás komponensek az ábrán balról jobbra:  

o adszorpciósan kötött víz: amely általában az agyag térfogati mennyiségével, ha 

eltekintünk a hőmérsékletváltozás okozta hatásoktól a mélységtől független,  

o szubkapilláris kötött víz: ami lényegében az agyaghoz kapcsolódó kiszárítható 

rész, effektív porozitás, amely a mozgatható vizet tartalmazza  

Modellvizsgálati tapasztalatok alapján a repedezett, helyenként breccsásodott 

metamorfitok porozitása 5% körüli, de igen ritkán eléri a 15–22%-ot is. A mezozoos 

karbonátokból, főként dolomitból álló medencealjzat karsztosodott, repedezett, 

breccsásodott felső részének porozitása kb. 5–9%.  

A prepannóniai miocén tárolók porozitása 5% körüli, az „alsó-pannóniai” összleten 

belül a báziskonglomerátumok, bázishomokkövek porozitása általában 7–10%, de ritkán 

eléri a 20%-ot is, a repedezett mészmárgáké kb. 5–7%, a homokköveké többnyire 13 és 

22% között mozog. A ”felső-pannóniai” homokkövek porozitása 13–33%. 

A repedezett kristályos–metamorf rezervoárokban lokálisan igen magas porozitás 

értéket is tapasztalhatunk, de a repedések eloszlása és összeköttetése, azaz a tortuozitása 

5000
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okán a REV (reprezentatív elemi térfogat) méretének elérésekor már leggyakrabban csak 

pár százalék. A Mezősas–Furta modellvizsgálatban a mátrix 0,2, a rezervoárok (zsebek) 

2% porozitás értékkel voltak definiálva (KUN et al. 2011). 

Az alábbi 9. ábra a különböző porozitás értékek magyarázatául szolgál, feltüntetve a 

mátrix és a pórustér főbb részeit. A szabad víz tekinthető az effektív vagy hatékony 

hézagtérfogatnak. 

 

9. ábra. Kőzetmátrix és a pórustér szerkezete a porozitás típusok feltüntetésével (ZILAHI-SEBESS 2013 
alapján módosítva 

A porozitás mélységfüggése sok mérés és tanulmány alapján egyértelmű, azonban 

például a Battonyai régióban nagyobb mélységben is megjelennek kiugró porozitás 

értékekkel jellemezhető kőzettestek, ilyen pl. az idősebb miocén és karbonátok, törmelékes 

üledékek (preneogén aljzat) az Endrődi Márga alatt, illetve az Algyői Formáció feküjében 

a Szolnoki Formáció is jobb, tárolóképes porozitással rendelkezik.  

A modellvizsgálatokban, amennyiben releváns a fedő üledékek hidrodinamikája, 

célszerű egy-egy formáción belül több segédrétegre bontva alkalmazni mélységbeli 

függvény-eloszlást, viszont elképzelhető olyan robusztus modellváltozat pl. aljzatra 

koncentrált tárolómodell esetében, ahol elegendő egy összefüggéssel teljes medenceüledék 

porozitását leképezni. A következő ábrán (10. ábra) teljes porozitás–mélység függvénye 

kőzettípusonként, DÖVÉNYI (1994) nyomán. 
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10. ábra. Porozitás értékek mélységfüggése egyes kőzetfajták esetében (DÖVÉNYI, 1994) 

2.2 Hőterjedés törvényszerűségei, a geotermikus hasznosítás alapfogalmai 

Az energia egyik formája a hő. Ennek mélységbeli eloszlásával és mennyiségének 

vizsgálatával a geotermia (vagy más szóhasználattal geotermika) foglalkozik. Mivel a Föld 

hőmérsékleteloszlása nem homogén, ezért a különböző hőmérsékletű régiók között 

hőáramlás indukálódik. A hőátmenet a különböző hőmérsékletű testek közötti energia 

átmenet hőenergia formájában. A hő (hőmennyiség) egyik testről vagy helyről más testre 

vagy helyre lényegében háromféle módon juthat: hővezetés (kondukció); hőáramlás 

(hőkonvekció) és a hősugárzás (radiáció). A valóságban a hőátmenet egyes formái külön-

külön ritkán fordulnak elő, e folyamatok egyidejűleg vannak jelen (VÖLGYESI, 2002.) 

A hőkicserélődés hajtóereje a magasabb és az alacsonyabb hőmérsékletű test közötti 

hőmérsékletkülönbség, melynek hatására a magasabb hőmérsékletű test – a termodinamika 

második főtételének értelmében – átadja energiájának egy részét az alacsonyabb 

hőmérsékletű testnek. Általánosságban elmondható, hogy a hőtranszportmodellezés célja a 

mélységi hőmérsékleteloszlások térbeli és időbeli meghatározása, valamint a hőátmenet 

időbeni folyamatának a leírása.  

A földi hőáram által felmelegített kőzettérfogat igen jelentős energiát jelent, de a 

földkéregben, azaz a mélységi térrészben kicsi az energiasűrűsége.  
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A geotermikus energiaforrásokat kis (< 90 °C), közepes (90–150 °C) és nagy 

entalpiájú (> 150 °C) csoportba sorolják. (MUFFLER és CATALDI, 1978, in MÁDLNÉ SZŐNYI 

J., 2006). Nagy entalpiájú energiatermelésre alkalmas rezervoárnál mind a hőmérsékletnek, 

mind a fluidum hozamnak kellően magasnak kell lenni legalább 50 évig a 

gazdaságossághoz. A termikus feltételt a vulkanikus területek, a lemezszegélyek, valamint 

az elvékonyodó litoszféra által megnövekedett anomálisan magasabb hőáram-sűrűséggel 

jellemezhető térségek biztosítják. Ahhoz, hogy ez a ”híg”energia koncentráltan a 

rendelkezésre álljon, az áramló fluidum konvektív hőátadásához is szükség van, e nélkül 

ugyanis rövid időn belül kihűl a rendszer, azaz a kútkörnyezet.  

A szerkesztett hőáram-térképek a felszínközeli hőáram-eloszlásra (~1000 m) 

jellemzőek, tehát tükrözik a regionális kiterjedésű konvektív hőzavarokat és tartalmazzák 

mindazon konduktív eredetű hatást, amely a tényleges földtani felépítésnek egy 

horizontálisan rétegzett modelltől való eltéréséből származik (pl. topográfia, 

medencealjzat-morfológia). A fluidum hozamának elégséges volumene porozitás és 

permeabilitás és utánpótlás függő, azaz szükség van aktív áramlási rendszerre. 

Hőtranszport modellezés során a cél leképezni a felszín alatti közeg hőmérséklet-

eloszlását, térbeli és időbeli alakulásának változását. Ez matematikailag a hőátadás 

alapegyenletének megoldását jelenti, mely magában foglalja a konduktív, konvektív és 

radiációs hőátadást, akár stabil, akár átmeneti állapotban.  

2.2.1 Konduktív hőátadás 

A térben és időben változó hőmérsékletmező leírható a termodinamika első és 

második főtétele és a Fourier-törvény alapján. 

A Fourier-törvény kimondja, hogy egymástól dx távolságban lévő rétegek között a 

kondukcióval átadott hőmennyiség egyenesen arányos a hőmérsékleti gradienssel, a 

hővezetési tényezővel, és azzal a keresztmetszettel, amin a hőátadás megvalósul: 

� = −� ∙ � ∙ ���	 

 

Ez a törvény analógiát mutat a hidrogeológiában és a konvektív hőtranszport 

modellezés során szintén fontos szerepet játszó Darcy-törvénnyel, ahol egy porózus 
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közeggel kitöltött hengerben az egységnyi idő alatt átáramló vízmennyiség egyenesen 

arányos a szivárgási tényezővel, a henger keresztmetszetével, és a hidraulikus gradienssel. 

A hővezetési tényező (λ) skalármennyiség, a test hővezető-képességére jellemző 

szám. Számérték szerint megadja az izotermikus felületre merőleges 1 m vastagságú réteg, 

egységnyi felületén, 1 K hőmérséklet-különbség hatására az időegység alatt átáramlott 

hőmennyiséget. 

� = �� ⋅ � ⋅ �
��� 

Porózus kőzetek esetén, a hővezetési tényező két részből tevődik össze, egyrészt áll 

a szilárd kőzetváz hővezetési tényezőjéből (λs), másrészt pedig a pórust kitöltő folyadék 

hővezetési tényezőjéből (λw). A hővezetési tényező eredő értéke a porozitástól (n) függ. 

� = (1 − �) ⋅ �� + � ⋅ �� 

A termodinamika első főtétele kimondja, hogy a rendszerrel közölt energia egyenlő 

a belső energia növekedésével és a rendszer által végzett munka összegével; másképpen 

megfogalmazva a testtel közölt hő mennyisége egyenlő a test entalpiájának változásával. 

Vegyük az ábrán látható, dx, dy, dz oldalú, szilárd anyagban található elemi térfogati 

hasábot, és számoljuk ki a ki és beáramló hőmennyiségek összegét (11. ábra). 

 

11. ábra. Az elemi térrészen, x irányban átáramló hőmennyiség 

A Fourier törvény szerint az x tengely irányában, a dz·dy felületen, melynek 

hőmérséklete T, az elemi térrészbe beáramló hőmennyiség: 
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��′ = � ⋅ ���	 ⋅ �� ⋅ �� 

Mivel a hőmérsékleti gradiens a térelemben helyileg változik. A bekövetkezett 

változás (megváltozott hőmérséklet) dx út után: 

� + ���	 ⋅ �	 

Ugyanezen tengely mentén a térfogatelemből kiáramló hőmennyiség: 

���� = � ⋅ ��	 ⋅ �� + ���	 ⋅ �	� ⋅ �� ⋅ �� 

A térfogatelemben x irányban felhalmozódott hőmennyiség: 

��� = ��′ − ��′′ = −� ����	� ⋅ �	 ⋅ �� ⋅ �� 

Az elemi hasábban felhalmozódott hőmennyiség felírható a hőkapacitás (c) 

segítségével is. A hőkapacitás az anyagi minőségre jellemző fizikai mennyiség, ami 

megadja, az egységnyi tömegű anyag 1°C-kal való felmelegítéséhez szükséges 

hőmennyiséget.  

dt

dT
VcdQ  

 

Porózus kőzetek esetén, a hőkapacitás két részből tevődik össze, egyrészt áll a szilárd 

kőzetváz hőkapacitásából (cs), másrészt pedig a pórust kitöltő folyadék hőkapacitásából 

(cw). A hőkapacitás eredő értéke, a porozitástól (n) függ. 

� = (1 − �) ⋅ �� + � ⋅ �� 

A 
� �! → # #!  határátmenetet figyelembe véve térfogategységben x irányban 

felhalmozódott hőmennyiség a fajhő segítségével fölírva: 

� ⋅ $ ⋅ % ⋅ ����� �& = −� ⋅ ����	� �	 ⋅ �� ⋅ �� ⋅ �� 

Az egyenletet rendezve megkapjuk a hővezetés differenciálegyenletét egydimenziós 

esetre: 



25 

'# #!(& = − )*⋅+ ⋅ #, #&, = −- ⋅ #, #&, 

Ahol, κ a hődiffúzivitási tényező, ami jellemzi az egyenlőtlen hőmérséklet-eloszlású 

test hőmérséklet-kiegyenlítődésének sebességét. 

- = )*⋅+; 

Hasonlóképpen felírhatóak az y és z irányú hőmennyiségek: 

'# #!(. = - ⋅ #, #.,; '# #!(/ = - ⋅ #, #/,; 

A hővezetés differenciálegyenlete háromdimenziós esetre megadja az összefüggést a 

hőmérséklet időbeli és térbeli változásai között (MORAN et al., 2003). 

����� �/ = - ⋅ 0����	� + ������ + ������ 1 

2.2.2 Konvektív hőátadás 

Hőáramlás során a hő a fluidum makroszkopikus részeinek áramlása, helyváltoztató 

mozgása következtében terjed, vagyis ilyenkor anyagáramlással járó energiatranszportról 

beszélünk. A konvektív hőátadás differenciál egyenletének levezetéséhez vegyünk egy 

elemi hasábot, melyet porózus kőzet tölt ki. A pórustérfogatban áramló folyadék 

hőmérsékletének teljes változás egyenlő, a tér egyik pontból a másik pontba való 

elmozdulás következtében fellépő hőmérsékletváltozással.  

'# #!( = −2 ⋅ �
���, 

ahol 2 a folyadék sebesség vektora. Tehát anizotróp porózus telített közegben a 

permanens vízmozgást a következő differenciálegyenlet írja le: 

2& ���	 + 2. ���� + 2/ ���� = 0 

2.2.3 Hőátadás radiációval 

Radiáció, vagy hősugárzás útján hőenergia juthat egyik testről a másikra anélkül, 

hogy a testek közti teret anyag töltené ki, vagy, hogy az anyagi közeg észrevehetően 

felmelegedne. A hő a sugárzó test molekuláinak vagy atomjainak hőmozgása 
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következtében kibocsátott különböző hullámhosszú elektromágneses rezgések formájában 

terjed. 

Hőtermelés (H) esetén az elemi hasábban a hőmennyiség: 

�� = 4 ⋅ % ⋅ �5 

Ahol H az egységnyi térfogatban egységnyi idő alatt termelt hőmennyiség. A 

hőkapacitásra vonatkozó összefüggést felhasználva felírható a hőmérséklet változása 

hőtermelés esetén 

����5� = 4$ ⋅ � 

2.2.4 Hőátadás alapegyenlete 

A hőátadás differenciálegyenlet mely az adott elem teljes hőtartalmának 

megváltozása. Permanens esetben, a vizsgált térfogategység és környezet közötti 

hőforgalom nulla. Ilyenkor ugyan annyi hő áramlik ki a rendszerből amennyi be. Tehát a 

konvektív, konduktív és radiatív hőátadás összege egyenlő nulla. 

���� = �2& ���	 ⋅ 2. ���� ⋅ 2/ ����� − �$ ⋅ � 0����	� ⋅ ����	� ⋅ ����	�1 + 4$ ⋅ � = 0 

Tranziens esetben a térfogategység hőmennyiségének megváltozása �� idő alatt: 

���� ∙ $ ⋅ � = $ ⋅ � �2& ���	 ⋅ 2. ���� ⋅ 2/ ����� − � 0����	� ⋅ ����	� ⋅ ����	�1 + 4 

Ha tehát ismert a testben a hőmérséklet eloszlás τ =0 pillanatban (kezdeti feltétel), 

továbbá a test határfelületén a környezettel való hőkicserélődés mértéke (határfeltétel), 

akkor az egyenlet megoldása szolgáltatja a hőmérséklet eloszlást bármely későbbi 

időpillanatban (AL-KHOURY et al. 2005). 

2.3 A Föld hőjelenségei 

A felszín közeli rétegekben a hőátmenet radiációval történik a légkör irányába és 

kondukcióval a mélyebb rétegek felől. Mivel mennyiségileg a Napból sugárzással fölvett 

hőmennyiség sokszorosa a mélyebb rétegekből felvett hőmennyiségnek, ezért a legfelső 

rétegek hőmérséklete évszakos ingadozást mutat. Ez az ingás Magyarországon 1200 cm 
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mélységben egyenlítődik ki. A legfelső állandó hőmérsékletű zóna hőmérséklete 9–10 °C, 

ami a geotermikus gradiensnek megfelelően innentől kezdve nő (12. ábra). 

 

12. ábra. Vertikális hőmérséklet eloszlás az év folyamán a felső 15 m mélységben. (TARI & KUN 2010) 

A földkéreg hőmérséklete a mélységgel növekszik. (13. ábra) Ezt a növekedést a 

geotermikus gradienssel jellemezhetjük. A növekedés oka a földi hőáram, melynek értéke 

Magyarországon átlagosan 90 mW/m2. Ezen kívül léteznek olyan helyek a földkéregben, 

ahol a radioaktív elemek bomlása során keletkező sugárzás elnyelődése okoz hőtermelést 

(VÖLGYESI, 2002).  
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13. ábra. Sematikus ábra a Föld hőjelenségeiről (TARI & KUN 2010) 

2.4 A hidrodinamikai és hőtranszport modellezés módszertana 

2.4.1 Hidrodinamikai modellvizsgálat 

Hidrodinamikai és hőtranszport folyamatok vizsgálatánál mind a véges differencia 

mind a véges elem módszert alkalmazó numerikus szoftverek használata elterjedt. A 

Battonya–Pusztaföldvári-hát termelés nélküli és rezervoárszimulációs modellvizsgálata a 

véges elemes módszert alkalmazó FEFLOW® 7.x szoftverrel (Copyright© 1979–2009, 

DHI-WASY GmbH) készült, mely esetében a térbeli diszkretizációnak (hálógenerálásnak) 

hangsúlyos szerep jut.  

A véges elem módszer lehetővé teszi a modellezett tér tetszőleges csomópontú 

felosztását, ezáltal a fontos térrészeket nagy, míg a kevésbé lényeges területeket kis 

hálósűrűséggel fedhetjük le (14. ábra). 
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14. ábra. Vonalas elem (pl. töréshálózat) hatása a hálókiosztásra (erőteljes sűrítés esetében) 

 

Számítás során az egyes elemek mentén az adott attribútum értékét előre felvett 

paramétereket tartalmazó függvényekkel közelíti, majd ezt a szomszédos elemek határai 

mentén valamilyen hibaelv alapján illeszti (lokális approximáció elve) (KOVÁCS & SZANYI 

2004).  

A programmal felszínalatti folyadékszivárgás, oldott szennyeződések 

transzportfolyamata és vagy hőtranszport folyamatok modellezhetők (DIERSCH, 2005). A 

program rendelkezik elő- és utófeldolgozó képességekkel, valamint hatékony szimulációs 

kóddal. A FEFLOW képességei bővíthetők nyílt programozási interfész révén. 

A hőtranszport modellezést célszerű hidrodinamikai modellezéssel kezdeni. Az 

áramlási folyamatok minél pontosabb leképzése különösen a konvektív hőtranszport 

folyamatok szempontjából releváns. 

2.4.2 Hőtranszport modellezés 

Modellezés hőátadás alapegyenletének numerikus megoldásához szükséges kívánt 

térrész geometriai lehatárolása, és alegységekre bontása. Ez olyan elemek létrehozásával 

történik, melyekben a közegjellemzők értéke állandónak tekinthető, és az elemek közötti 

hőforgalom az oldalakon keresztül valósul meg (véges differencia módszer), vagy a 

hőforgalom az elemek csomópontjain keresztül történik (véges elem módszer).  
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A konvektív hőátadás releváns volta miatt, szükségszerű a pórusfolyadék áramlási 

sebességének minél precízebb leképzése, a kalibrált hidrodinamikai modell felépítése.  

Az alapegyenletben szereplő paraméterek lesznek azok a modell inputok, melyek a 

cellák közti végső hőforgalmat eredményezik. A telített kőzet hővezető képessége a 

kőzetmátrix hővezető képességétől és a porozitásától is függ (8.ábra). A víz hővezető 

képessége lényegesen kisebb, mint a kőzetmátrixé, ezért azonos anyagú vízzel telített kőzet 

esetén a nagyobb porozitású kőzet hővezető képessége alacsonyabb. A szerkezeti árkokban, 

mély medencékben a kompakció miatt az üledékek porozitása csökken, így a vízzel telített 

kőzet hővezető képessége a mélységgel nő. A porozitás csökkenéséből adódó hővezető 

képesség változása a mély árkokban akár számottevő is lehetne, de a konduktív hőáram 

”hatásossága” messze elmarad a konvektív, azaz a fluidum áramlásához köthető 

hőátviteltől, tehát az áramló fluidum felfűtheti vagy lehűtheti az adott összletet, a fluidum 

hőmérsékletétől függően.  

A hővezető képesség alakulásában a következő tendenciák figyelhetők meg: a pélites 

kőzetek hővezető képessége kisebb, mint a pszammitosoké. A felső-pannóniai összletekben 

ennek elsőszámú oka, hogy a pszammitos kőzeteknek jóval nagyobb a szivárgási tényezője, 

miközben a teljes porozitás alig különbözik. A hőmérséklet kezdőértékeinek 

meghatározása a korábbi hőtranszport modellezés tapasztalataira támaszkodva GONDÁRNÉ 

et al. 2004 egerszalóki példája, valamint a Mezősas–Furta (KUN et al. 2011) hőtranszport 

vizsgálata alapján történt, mivel a vizsgált területen erre vonatkozó adat nagyobb 

mélységekre nem állt rendelkezésre. A hővezetést alapvetően meghatározó paraméter, a 

kőzetre jellemző hődiffuzivitási tényező (κ), ami egyenesen arányos a szilárd anyag 

hővezetési tényezőjével (λ), és fordítottan arányos sűrűségének (ρ) és fajhőjének (c) 

szorzatával.  

A 3. táblázatban a leggyakoribb kőzetek hővezetést meghatározó paraméterei 

láthatók, melyek a hővezetési tényező és a fajhő hőmérsékletfüggő tulajdonsága miatt 

20°C-os referencia hőmérsékletre értendők (DOMENICO & SCHWARTZ, 1990 és 

HELLSTRÖM, 1991 IN CHIASSON 1999, ČERMAK & RYBACH 1982). 
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3. táblázat. A leggyakoribb kőzetek hővezetését meghatározó paraméterek (λ = hővezetési tényező, 
n = teljes hézagtérfogat, cm és cp = fajhő) értékei (*szárazon mért) 

kőzet λ [
6 8 9] 

HELLSTRÖM, 
1991* 

λ [
6 8 9] 

ČERMAK & 

RYBACH 1982 

n [– ] 

DOMENICO AND 

SCHWARTZ, 
1990 

cm [
9< 8= 9] 

HELLSTRÖM, 1991* 

cp [
9<>?9] 

ČERMAK & 

RYBACH 1982 

kavics 0,70–0,90 – 0,24–0,38 1,4E+03 1,97–3,18 

durva homok 0,70–0,90 
0,1–2,8 

0,31–0,46 1,4E+03 
1,97–3,18 

finomhomok 0,70–0,90 0,26–0,53 1,4E+03 

kőzetliszt, iszap 1,20–2,40 – 0,34–0,61 (2,4–3,30) E+03 – 

agyag 0,85–1,10 0,6–2,7 0,34–0,60 (3,00–3,60) E+03 0,89–3.56 

mészkő, dolomit 1,5–3,30 1,3–4,5 0–0,20 5,50E+03 – 
2,13E+04 

0,82–1,72 

karsztosodott 
mészkő 

2,50–4,30 – 0,05–0,50 5,50E+03 – 
2,13E+04 

– 

homokkő 2,30–6,50 1,3–5,5 0,05–0,30 (2,13–5,00) E+03 0,75–3,35 

agyagpala 1,50–3,50 1,7–3,4 0–0,10 (2,38–5,50) E+03 0,82–0,93 

repedezett magmás 
és metamof kőzetek 

2,50–6,60 
1,4–6,9 

 

0–0,10 2,2 E+03 

0,67–1,38 
tömör magmás és 
metamof kőzetek 

2,50–6,60 0–0,05 2,2 E+03 

 

A hővezetési tényező kapcsolatára a hőmérséklettel (CHIASSON, 1989) nyomán: 

T < 400°C esetén (robusztus, uniformizált, csak a hőmérséklettől függő hővezetési 

tényező, viszont kőzetfajtától függően bearányosítható): 

�ℎ(� ≤ 400°B) = 770350 + � + 0.07 

T > 400°C esetén: 

�ℎ(� ≥ 400°B) = � 770350 + � + 0.07� ⋅ HI �ℎ(20°B)770350 + 20K − I �ℎ(20°B)770350 + 20 − 1K ⋅ � � − 20400 − 20�L 
A hőkapacitás és hőmérséklet kapcsolatára kísérleti úton meghatározható, 

általánosságban elmondható, hogy a kőzetek hőkapacitása az alábbi másodfokú függvény 

alakjában írható fel (CLAUSER, 2003): 

��(�) = MN + MO ⋅ � + M� ⋅ �� 

A változók legvalószínűbb értékeit a 4. táblázat tartalmazza. 
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4. táblázat. A hőkapacitás és hőmérséklet leggyakoribb kapcsolata (Clauser, 2003) 

A hőkapacitás és hőmérséklet leggyakoribb kapcsolata  

Változó Leggyakoribb érték 

A0 700–800 

A1 1.4–2.2 

A2 –0.0033 – –0.0016 

 

A porózus kőzetek esetén az eredő hőkapacitás és fajhő a pórusokat kitöltő 

folyadékok és a kőzetváz értékeiből tevődik össze. Meghatározandó a pórusfolyadékra 

jellemző érték is, ami bár nem tisztavíz, a paraméter-értékek (5. táblázat) közelítőleg 

elfogadhatók. 

5. táblázat. A tiszta víz hővezetését meghatározó legfontosabb paraméterek értékei (CLAUSER, 2003) 

A tiszta víz hővezetését meghatározó legfontosabb paraméterek értékei 

anyag 
   

tiszta víz 0.61 998 4.179 

 

A víz hővezetésének, és fajhőjének változása a hőmérséklet és nyomás 

emelkedésével nem olyan jelentős, mint a kőzeteknél. (6. táblázat). 

6. táblázat. A tiszta víz paramétereinek hőmérséklet/nyomás függése (CLAUSER, 2003) 

A tiszta víz paramétereinek hőmérséklet/nyomás függése 

hőmérséklet/nyomás    

20 °C / 1,013MPa 0,001 0,6 4,187 

80 °C / 19 MPa 0,00036 0,67 4,154 

A modellben minden egyes csomópontra a kiindulási hőmérsékleteloszlást és 

referencia hőmérsékletet (T0) szükséges definiálni, amire például a hőmérsékletfüggő 

paraméterek (fajhő, viszkozitás stb.) értelmezve vannak (CLAUSER, 2003).  

Ahhoz, hogy modell hőeloszlása közelítsen a sematikusan ábrázolt földi szituációhoz 

(13. ábra), a földi hőáramot és a felszín közeli rétegek hőmérsékleti viszonyait definiálni 

kell, amit peremfeltételekként adhatunk meg. Ezen kívül peremfeltételre a modell szélein 

van szükség, mivel itt a vizsgált cellában (csomópontban) nem ismerjük a beáramló 

hőmennyiséget. A hőmennyiség definiálására több lehetőség van (DIERSCH, 2005). 
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 Állandó hőmérsékletű perem (DIRICHLET): adott cellába (csomópontba) mindig 

annyi hő áramlik be, vagy ki, hogy a hőmérséklet egy előre definiált értéket vegyen 

föl. Például a felszín közeli állandó hőmérsékletű zóna hőmérsékletét lehet így 

megadni. 

 Állandó hőfluxusú perem (NEUMANN): adott cellába (csomópontba) egy előre 

megadott fluxus áramlik be vagy ki. Például a hőfluxust esetében bevett eljárás. 

 ”Puha” perem, (CAUCHY) ahol a hőmérséklet átadódás egy kevésbé áteresztő réteg 

közbeiktatásával valósul meg (pl. falak, hőcserélők mentén).  

 Pontszerű perem, ahol általában egy kút vagy egy forrás által képviselt 

hőmennyiség be és ki áramlását modellezzük (DIERSCH, 2005). 

Ha konvektív és konduktív hőtranszport folyamatokat akarunk szimulálni, a 

következőket kell figyelembe vennünk: mivel konvektív hőtranszport során ki kell 

számolnunk, a pórusfolyadék sebességét, ezért először egy hidrodinamikai modellt kell 

készítenünk. A hidrodinamikai potenciálra számos hőmérsékletfüggő fizikai paraméter hat. 

Amennyiben a számítás során változik a modell hőmérséklete, az visszacsatolásként hat a 

hidrodinamikára. Lehetőség van e hőmérsékletfüggő fizikai paraméterek konstansra 

állítására. Amennyiben a paraméterek bármelyikét nem állítjuk konstansra, a hőtranszport 

és folyadékáramlás szimuláció minden számítási lépcsőben hat egymásra (CLAUSER, 2003).  

A Rayleigh-szám: a felhajtóerő (mely a nehézségi gyorsulástól, a sűrűségtől, a 

térfogati hőtágulási együtthatótól, a réteg felső és alsó határa közötti 

hőmérsékletkülönbségtől (∆T) és térfogattól (V) függ) és a konvekciót akadályozó erők 

(melyek együtt a hődiffuzivitás (k) és a dinamikai viszkozitás(η) szorzataként adhatók meg. 

A 15. ábra egy konvekciós cella áramképét szemlélteti, hőmérsékleti színezéssel (KUN et 

al. 2013) 
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15. ábra. Áramvonalkép hőmérsékleti skála színezéssel (KUN et al. 2013) 

2.4.3 Kiindulási és peremfeltételek definiálása 

A hőtranszport modul a hidrodinamikai modullal teljesen hasonló hármas 

felépítésben definiálható: 

 kezdeti hőmérsékleti értékek 

 hőmérsékleti peremfeltételek 

 hőtranszport paraméterek 

A referencia hőmérséklet, melyre a kiindulási szivárgási tényező értékek értelmezve 

vannak, és amelyre a  

P = PN ⋅ $N ⋅ �QN  

összefüggés segítségével a különböző hőmérséklet tartományokra átszámítja a 

szivárgási tényezőt. A hőmérsékleti peremfeltételek hasonló szabályszerűségeket 

követnek, mint az áramlási peremfeltételek. Időben állandó, ill. tranziens peremeket, ill. 

azok korlátozásai definiálhatók, ahogy a korlátozhatjuk is a peremeket. 
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2.4.4 Attribútumok specializálása (áramlási, anyag és transzport folyamatokhoz) 

A hőtranszport egyenleteinek numerikus megoldásához az alábbi paraméterek 

szükségesek, az egyes megoldó modellező szoftver esetében változhat az igényelt 

mértékegység: 

1. rétegvastagság, 

2. porozitás (n), 

3. fajlagos hőkapacitás (áramló folyadék és kőzet) [J m–3 K–1] 

4. hővezetési tényező (áramló folyadék és kőzet) [J m–1 s–1 K–1] 

5. hővezetési tényező anizotrópia faktora [–] 

6. longitudinális diszperzitás [m] 

7. transzverzális diszperzitás [m] 

8. források és nyelők (áramló folyadék, ill. kőzet) [J m–3 d–1] 

9. r rekesztő réteg hőáteresztő képessége [J m–2 d–1K–1] 

2.5 A geotermikus energiahasznosítás  

A geotermikus hasznosító rendszerek esetében meghatározó, hogy a hordozó 

közegként szolgáló fluidum rendelkezésre áll-e vagy sem. BREEDE et al. 2013 ezen az 

alapon a geotermikus rendszereket két részre osztja, hidrotermális (fluidum rendelkezésre 

áll), illetve petrotermális rendszerekre (itt a fluidum nem elégséges a hőkivételhez). Az 

utóbbiakat korábban HDR-rendszereknek nevezték (Hot Dry Rock). 

Az osztályozást tovább finomítva, azokat a rendszereket, ahol a hőforrás, a rezervoár 

és a munkaközeg is természetes, hagyományos vagy konvencionális geotermikus 

rendszernek, míg, amelyben a hőforrás természetes, de a rezervoár és vagy a munkaközeg 

mesterséges, vagy mesterségesen befolyásolt, növelt hatékonyságú (enhanced), nem 

konvencionális geotermikus rendszereknek nevezzük. Innen ered az EGS elnevezés 

(Enhanced Geothermal System). E szerint a termálvízadó kutak mesterséges 

hozamnövelése kémiai kezeléssel vagy repesztéses technológiával már a nem-

konvencionális termelési módok közé tartozik. (SZANYI 2019).  

Jelen tanulmány geotermikus vizsgálata a UNFC-2009 osztályozásán keresztül 

történik, így a következőkben ennek főbb fogalmait (UNECE, 2016) mutatom be. 
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2.5.1 Fenntarthatóság 

A fenntarthatóság alatt nagyon sokszor csak környezeti szempontokat értünk, pedig 

általában véve bármely tevékenység fenntarthatóságának három pillére van: környezeti, 

társadalmi, pénzügyi. Ha csak környezeti szempontokat veszünk figyelembe, az adott 

projekt léte már középtávon is veszélyeztetett. Tehát ha egy projekt környezetvédelmi 

szempontból fenntartható, de pénzügyileg finanszírozhatatlanul drága vagy vállalhatatlan 

társadalmi hatásokkal jár, akkor összességében nem fenntartható. Geotermikus energia 

esetében, ha csak a klímavédelemre koncentrálunk, és a gazdaságosság háttérbe szorul, (pl. 

túl hosszú távvezetéket kell építeni), vagy nincs meg a társadalmi elfogadottság, (pl. 

lakossági tiltakozás megakadályozza a fúrás befejezését), akkor a környezeti szempontból 

kedvező projekt is kudarcra van ítélve.  

Az EU Víz Keretirányelve, valamint az arra épülő hazai jogszabályok előírják, hogy 

azokon a víztesteken, ahol a jó állapot fennáll, azt továbbra is biztosítani és fenntartani 

szükséges, ahol pedig az állapot gyenge, ott intézkedésekkel javítani kell. Ezért a nagy 

mélységű geotermikus energia hasznosítás vagy a koncesszióköteles szénhidrogén-

bányászat során előírás (pl. a MÜT által), hogy a nyomásszintek és vízkémiai paraméterek 

kedvezőtlen változása a sekélyebb termálvíz- és ivóvíz hasznosításokat ne érintse. 

2.5.2 Geotermikus energiaforrás 

Geotermikus energiaforrás a kőzetben, üledékben és/vagy talajban található 

hőenergia, beleértve a benne levő fluidumokat is, amely kivonásra és energiatermékekké 

(hő- és villamos energia) történő átalakításra rendelkezésre áll. A geotermikus 

energiaforrás egyenértékű a kőolaj- és szilárd ásványi nyersanyagok esetében használt 

„telep” vagy „felhalmozódás” kifejezésekkel. A fő különbség a fosszilis tüzelőanyagokkal 

vagy a szilárd ásványi nyersanyagokkal szemben, hogy a projekt élettartama alatt a 

geotermikus energiaforrás meghatározható ütemben pótlódik. 

2.5.3 Geotermikus energiatermék 

A geotermikus energiatermék közvetlenül hasznosítható a meglévő energia 

rendszerben és eladható az energiapiacon. Az energiatermékekre példa a villamos- és 

hőenergia. A geotermikus energiaforrásból ugyanazon kitermelési eljárás során kinyerhető 

egyéb termékek (például szilícium-dioxid, lítium, mangán, cink, kén vagy a termelés során 

felszínre hozott víz és gáz) nem minősülnek megújuló energiatermékeknek, mindazonáltal 
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hozzájárulhatnak a projekt gazdasági életképességéhez, a befektetés gyorsabb 

megtérüléséhez. Így, ha ezeket értékesítik, a bevételi forrásokat be kell vonni a gazdasági 

értékelésbe. 

2.5.4 Geotermikus energiakészlet 

Geotermikus energia készlet a geotermikus energiaforrásból kinyerhető 

energiatermékek kumulált mennyiségei, melyet az értékelés hatálybalépésének 

időpontjától a projekt élettartama vagy határideje végéig számítanak a referenciaponton. A 

referenciapont egy meghatározott hely a termelési láncban, ahol a geotermikus 

energiatermék mennyiségét mérik vagy becsülik. Általában az a pont, ahol az energiát 

harmadik személyeknek értékesítik, vagy ahol átkerül a gazdálkodó egység hasznosító 

részlegébe. 

2.6 A UNFC-2009 módszer rövid ismertetése 

Az energiakészletek kategorizálásához és összemérhetőségéhez kidolgozott 

keretrendszer a UNFC-2009, melyet az Egyesült Nemzetek Európai Gazdasági Tanácsa 

(United Nations Economic Commission for Europe – UNECE, 2016) dolgozott ki, majd 

alkalmazása kiterjedt a megújuló fajtákra is. UNFC-2009 osztályozás alapja egy 

háromdimenziós rendszer, melynek tengelyei az adott projekt gazdasági-társadalmi 

életképességét, illetve a szabályozási környezetet és a környezeti aspektusokat (E tengely), 

a projekt állapotát és megvalósíthatóságát – a technológia rendelkezésre állását is beleértve 

– (F tengely), valamint a földtani ismeretesség megbízhatóságát (G tengely) jellemzik. 

E tényezők alapján a meghatározott (számszerűsített) nyersanyagmennyiség egy 

háromjegyű kóddal jellemezhető (E, F, G kategóriák), amely egzaktan használható bárhol 

a világon (NÁDOR & ZILAHI-SEBESS 2016). A G-kategóriába besorolt vagyonmennyiség az 

értékelés időpontjától a projekt befejezéséig rendelkezésre álló kitermelhető vagyonra 

vonatkozik, így az E, F, G kategóriák besorolása tehát az értékelés időpontjától függően 

értelemszerűen változik.  

A UNFC-2009 értékelés a készletbecslés bizonytalansága szerinti kategóriái:  

 P90=G1 (bizonyított) konzervatív/ magas valószínűségű becslés – P90: 90% a 

valószínűsége, hogy a kitermelhető vagyon elér egy megadott értéket, vagy ennél több. 

 P50=G1+G2 (bizonyított + valószínű) legjobb valószínűségű becslés – P50: 50% a 

valószínűsége, hogy a kitermelhető vagyon elér egy megadott értéket, vagy ennél több. 
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 P10=G1+G2+G3 (bizonyított + valószínű +lehetséges) legalacsonyabb valószínűségű 

becslés – P10: 10% a valószínűsége, hogy a kitermelhető vagyon elér egy megadott 

értéket, vagy ennél több. 

A hőmennyiség (készlet) becslésének bizonytalansága a bemeneti, illetve számítási 

paramétereinek becslési bizonytalanságaiból ered. Mind a szilárd ásványi nyersanyag, 

mind a fluidumok esetében a készletbecslés első lépése a térfogatszámítás. A kőzettérfogat 

számítását követő lépés a térfogaton belüli, a vagyonmennyiséget meghatározó valamilyen 

„minőségi” paraméter eloszlásának a meghatározása.  

A geotermikus energia esetében ilyen paraméter a tároló (rezervoár) effektív 

porozitása, valamint a kitermelhető hozam és hőmérséklet értéke, illetve a szivárgási 

tényező. Hőmennyiség, illetve készlet számításakor e paraméterek átlagértékeinek becslése 

a feladat. A geotermális hasznosítás esetében mivel elsődlegesen csak az effektív porozitás 

hő tartalmát termelik a vízzel együtt a statikus becslésnél a bizonytalanság forrása az 

effektív porozitás és a hőmérséklet becslésének bizonytalanságából adódik. Mivel a 

földtani és fizikai paraméterek helyről helyre változnak és a fúrásból származó adatok 

lényegében csak a vizsgált tér töredék részét képviselik minden egyes adat valószínűségi 

változónak tekinthető, beleértve a térfogatot is.  

A fúrások közti térben a mérésgörbék közti korreláció, az ősmaradvány-tartalom, 

felszíni geofizikai mérések és földtani észlelések stb. együttes értelmezése alapján 

azonosítható egy képződmény, vagy ami még fontosabb, megbecsülhető annak fizikai 

paramétere. Ennek megfelelően a bemenő adatokhoz hozzá kell rendelni valamilyen 

bizonytalansági sávot (szórást), amellyel a modell paraméterek reprezentativitása 

jellemezhető, azaz a kiértékelés során a szerzett információkat úgy kell kezelni, mint 

mintavételi eredményeket. Ezek reprezentativitása nagymértékben magától a földtani 

közegtől függ, emiatt kiterjesztéséhez valamilyen apriori információra van szükségünk.  

A modell (és a bemenő paraméterek) reprezentativitása az a priori információkon és 

az arra alapozott mintavételi stratégián múlik. A bizonytalanság meghatározását többféle 

módon lehetséges aszerint, hogy milyen és mennyi információ áll rendelkezésre. Ezeket 

ismeretességi vagy informatikai szint szerint osztályozhatjuk. Fúrások hiányában a modell 

paramétereinek bizonytalansági mértéke és átlaga csak a priori ismeretek alapján, vagy 

valamilyen elméleti megfontolás alapján állapítható meg. Ez az a priori információ lehet 

annyi, hogy tudjuk, milyen földtani közegben vagyunk, ami már önmagában eligazodást 
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adhat arra, hogy milyen korrelálhatóságra, mekkora paraméter átlagértékre és szórásra 

számíthatunk (KUN et al. 2022b). Ez nevezhető a becslés 0.-ik szintjének. Egyetlen fúrás 

esetében a megmért értékhez elméleti szórásérték rendelhető. Informatikai szempontból ez 

a becslés 1. szintje, mivel rendelkezésre áll mérési adat  

Ennél értékesebb az információ, ha több fúrásban korreláció alapján azonosítható egy 

képződmény, ekkor mért adatok alapján kapható információ a földtani közeg fizikai 

paramétereinek a szórásáról. Az erre alapozott statisztikai alapú készletbecslés a 2. szint, 

ahol már van a modellezés bemenő paramétereinek mérésre alapozott várható értéke és 

szórása. A szórást ekkor nem a mérésekre jellemző szórásból, hanem több fúrás alapján a 

földtani közeget jellemző változatosságból származtatjuk. Valószínűségi változónak a 

rétegvastagság is tekinthető, mert az is helyről helyre változik.  

A becsült átlag érték és szórás is a földtani közeget jellemzi, nem a mérési hibák 

szórásáról van szó. Ha a modell valóságos mérésadatokra épül, akkor az egységes 

hitelesítési rendszert (pl. akkreditált mérés) eleve feltételezhető. A modellezett réteg 

felületeit felszíni észlelések során vagy fúrásokban mért adatok (lyukgeofizika), illetve 

azok földtani szelvények mentén végzett korrelációja segítségével szerkesztjük meg. 

Jelentős segítséget ad a fúrásokból szerzett részletes információ térbeli kiterjesztéséhez a 

felszíni geofizika ezen belül is főleg a szeizmika.  

A reprezentativitás kérdését összefoglalva meghatározható három szint, mely a 

rendelkezésünkre áll egy készletbecslési folyamatban, szem előtt tartva azt a tényt, hogy a 

fúrásos adat lényegében 1 dimenziósnak tekinthető a kiterjedt 3D térrészek jellemzésére: 

 0. szint: a priori nincs fúrásos információnk, becslésekre, területi analógiák 

alkalmazására vagyunk kényszerítve 

 1. szint: kevés számú adatunk van, szintetikus adatokkal kibővítve vagyunk kénytelenek 

szórást meghatározni 

 2. szint: megfelelő számú fúrásos adat van a birtokunkban, ami által saját szórási adattal 

rendelkezünk 

A hidrogeológiai modellezés paraméterei a bemenő paraméterek valamilyen 

kombinációjából származnak. A bemenő paraméterek mindegyike valamilyen eloszlás 

meghatározott átlagértékkel és szórással. A bemenő paraméterek egy része, az effektív 

porozitás és a szivárgási tényező elvileg egy komplex területi feldolgozás esetében Monte-

Carlo modellezés végeredménye lehet. Egy adott geotermikus rezervoár esetén a bemenő 
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paraméterek többsége, pl. az effektív porozitás és a szivárgási tényező, rétegvastagság 

bizonytalanságának kezelésére a leggyakrabban alkalmazott módszer a Monte-Carlo 

szimuláció (VON NEUMANN, 1951, NÁDOR et al. 2019). 

Az ásványvagyon és készlet osztályozás során a különböző kategóriákba soroláshoz 

szükség van a bizonytalanság mértékének magadására. Egy megadott paraméterek szerint 

elvégzett determinisztikus készletbecslésből még nem tudjuk megmondani, hogy milyen 

valószínűséggel van egy bizonyos értéknél nagyobb vagy kisebb készletünk. A Monte-

Carlo módszer lényege, hogy mért adatok helyett azok szimulált (véletlenszámként 

generált) értékeit alkalmazzuk az adott paraméter megadására (egy konkrét értéket 

szórással látunk el), s az így kapott eredményeket értékeljük ki a mért hatás helyett (ZILAHI-

SEBESS 2016).  

A Monte-Carlo eljárás szerinti becslésnél véletlenszám generátorral végrehajtott 

számítást sokszor – legalább ezerszer – elvégezve és utána megoldásokat nagyságszerinti 

sorrendbe állítva egy jellemző eloszlás lesz az eredmény. A később bemutatott statikus 

hőmennyiség számítás esetében a bizonytalanság kezelésére Monte-Carlo módszer 

alkalmazható (16. ábra, KUN et al. 2022b).  

 

16. ábra. Egy adott térrész permeabilitásának függvényében Monte-Carlo szimulációval, 10000 
realizációból számolt különböző valószínűségi szintek szerint (P10, P50 és P90 értékek) 

kinyerhető hőmennyisége (NÁDOR & ZILAHI-SEBESS 2016 alapján) 
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Azonban modellezésénél az előbb említett 1000 eset, esetenként 5 változó paraméter 

hatalmas 10E+8 darab modell futtatását tenné szükségessé, ami jelen kapacitások mellett 

nem lehetséges. A paraméterek, fuzzy számokat alkotva lettek modell inputok. Ugyanis 

bármely konkrét paraméterhez, pl. szivárgási tényező, definiálható egy tartomány melynek 

két szélső értéke még 0 tagságértékű (valószínűtlen esemény), míg a legvalószínűbb érték 

tartomány 1 tagságértékű, ezeket összekötve kapjuk az adott tulajdonságot leíró fuzzy 

számot (ZADEH, 1965). Ezt a fuzzy számot derékszögű koordináta rendszerben ábrázolva 

háromszög vagy trapéz alakú fuzzy számot kapunk, ahol a vízszintes tengely a mért 

paramétert, a függőleges tengely a valószínűséget jelenti.  

A 17. ábra (a) rész jelölésével az a–d tartományt tartónak, míg a b–c tartományt 

magnak nevezzük. Ha b és c értékek egybeesnek, háromszög alakú fuzzy számról 

beszélünk (17. ábra (b) része). A fuzzy számokkal való műveletekre is igaz a kiterjesztési 

elv, azaz ugyanazok a műveletek végezhetők velük, mint a valós számokkal (FANG & 

CHEN, 1990, BÁRDOSSY et al. 2000). Ha trapéz alakú és háromszög alakú fuzzy számok 

között végzünk aritmetikai műveletet, akkor az adott operátor a trapéz szám b és c értékéhez 

is a háromszög szám q értékét rendeli hozzá (17. ábra, jelölése alapján). Konstans számmal 

(crisp szám) való művelet esetén a fuzzy szám alkotóihoz ugyanaz a konstans szám 

rendelődik hozzá. A fuzzy szám visszaalakítható „crisp számmá”, ezt nevezzük 

defuzzifikálásnak. Ennek legáltalánosabb módja a fuzzy szám súlypontjának x 

koordinátáját megadni a defuzzifikált értéknek (REZESSY et al. 2005). 

 

17. ábra. Trapéz alakú fuzzy számok (a); háromszög alakú fuzzy számok (b); 
(vízszintes tengely a mért paraméter; függőleges tengely tagságérték) 

(Rezessy et al. 2005) 

A később bemutatott modellvizsgálat-sorozat esetében a bemenő paraméterek P90, 

P50, P10 értékei és kombinációi. 
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3 A Battonyai–Pusztaföldvári-hát földtani, vízföldtani és 

geotermikus jellemzése, specifikumai 

A kutatási célterület, a Battonyai–Pusztaföldvári-hát az ország délkeleti részén 

helyezkedik el, legszembetűnőbb specifikuma a két mély prekainozoos árok közötti aljzati 

kiemelkedés. A vizsgálat fókuszában az aljzat és a felette helyezkedő üledékes összlet 

áramlási viszonyainak leképzése és numerikus szimulációval megoldott lehetséges 

geotermikus hasznosítás mechanizmusának szcenáriókon keresztüli vizsgálata.  

A magyarországi térrész földtani, szerkezetföldtani és vízföldtani-áramlástani 

sajátosságainak bemutatásán keresztül fog kirajzolódni a koncepcionális modellalkotás. Az 

alaphegységben tektonikai folyamatok következtében repedezett, mállott, tárolóként 

értelmezhető térrészek jöttek létre, mint a karbonátos, repedezett sziliciklasztos, vagy 

granitoid és metamorf képződmények melyek rendelkezhetnek lokálisan magasabb 

porozitás- és permeabilitás értékekkel, és válhattak ezáltal potenciális rezervoárokká (VASS 

et al. 2018). A vizsgált terület 7160 km2, melyből 59,4%-a Magyarországra, 40,6 %-a 

Románia területére esik. A teljes modellezési tér hidrodinamikai és hőtranszport vizsgálatát 

követően a rezervoár szimuláció fókusza Pitvaros szűkebb régiójához tartozik.  

3.1 Geológiai adottságok 

A vizsgált terület (18. ábra), a Battonya–Pusztaföldvári-hát medencealjzata (19. ábra) 

a Tiszai-Főegységhez (FÜLÖP 1994), Magyarország nagyszerkezeti pásztái közül a takarós 

felépítésű Békés–Kodrui nagyszerkezeti egységbe tartozik (HAAS ET AL. 2010). Az aljzati 

kiemelkedés DK felé enyhén emelkedő gerince az országhatár mentén –1000 m-es 

tengerszint feletti magasságba emelkedik.  

Az eltemetett rög ÉK-i és DNy-i szomszédságában Magyarország két legmélyebb, –

6500, illetve –7000 m-es mélységet is meghaladó neogén süllyedéke helyezkedik el, a 

Békési-medence és a Makói-árok. (FÜLÖP 1994). DANK & BÁN (1966) a metamorf 

képződményekből és gránitból álló alaphegységi maximum ÉNy–DK-i morfológiai 

csapásirányára hívták fel a figyelmet. 



43 

 

18. ábra. A tanulmányozott terület műholdfelvételen ábrázolva ([m] EOV-koordináta rendszerben) 

A prekainozoos aljzatot egymással ismeretlen genetikai kapcsolatban álló, közepes 

fokú metamorfitok és variszkuszi granitoid (Battonyai Komplexum) építik fel, melyet K-

ről és Ny-ról a Makói-árok, illetve a Békési-medence fog közre (20. ábra).  

Pusztaföldvár környékén az üledékes eredetű metamorfitok dominálnak 

(Pusztaföldvári Csillámpala F.). A formációt csillámpala, kvarccsillámpala, csillámos 

kvarcit kőzettársaság alkotja, uralkodó típusnak inkább a kvarccsillámpala nevezhető. A 

földpátok helyenkénti erősebb felszaporodásával, a csillámtartalom csökkenésével gneisz 

jellegű kőzetsávok, lencsék is előfordulnak (NUSSZER, 1985). Szerkezetileg határolódik el 

a Battonyai Komplexum tömege, melyre uralkodóan a migmatitok, granitoidok valamint a 

mikroklin – blasztézises kőzetek jellemzők. (NUSSZER, 1985) 
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19. ábra. A vizsgált terület magyarországi részének prekainozoos térképkivágata (HAAS et al. 2010) 

Jelkulcs: narancssárga vonal, modellhatár magyarországi képe; fekete: PGT–4 Pannon Geotraverz mélyreflexiós 
szelvény nyomvonala 

A Pitvaros–Mezőkovácsháza–Kunágota települések vonalától D-re, az országhatárig 

terjedő terület aljzatát a Battonyai Komplexum kőzetei alkotják (FÜLÖP 1994): a fúrások 

intruzív granitoidot tártak fel. A granitoidból szeparált monacit Th–Pb kora 306–336 millió 

év, cirkon U–Pb kora 356 M év (lényegében egyidős a Mórágyi röggel [340 M év]), azaz 

variszkuszi (STEGENA & KISS, 1967). A komplexum tömegében keskeny sávként 

megjelenő alsó-triász rétegsor (Jakabhegyi Homokkő F.) É-i vergenciájú takarók közé 

csípődött be.  

A Tótkomlós–Kaszaper–Nagybánhegyes–Medgyesbodzás–Medgyesegyháza 

települések mentén, 10–15 km széles vonulatban kora- és középső-triász, illetve jura korú 

kifejlődések (homokkő, mészkő, pelágikus mészkő, márgaképződmények és dolomit) 
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alkotják az aljzat felszínét, melyek felnyúlnak az alsó krétáig. Csanádapáca–Kardoskút–

Orosháza térségében újra a metamorf aljzatkomplexum (tektonikusan erősen igénybevett, 

gyüredezett, milonitosodott gneisz és csillámpala – magkomplexum, melyről a Pannon-

medence kialakulása során takarók csúsztak le), majd tovább ÉÉNy felé újra mezozoos 

képződmények alkotják az aljzatot.  

 

20. ábra. A prekainozoos aljzat tetőszint térképe a Battonya–Pusztaföldvári-hát térségében [mBf] 
Szanyi et. al. 2015 alapján  

A Szentes–Békés településektől északra már a Villány–Bihari-egység mezozoos 

képződményei az aljzat felszínalkotói.  

A vizsgált területen a permet elsősorban a Gyűrűfűi Lapillitufa (korábban Riolit) 

Formáció képviseli, amely sok helyen áttöri a gránitot kora ~ 260 M év (RAUCSIK et al. 

2019). Ennek kialakulása az alpi ciklus kezdetéhez, a Neotethys-óceán felnyílását 

megelőző kontinentális riftesedéshez kapcsolódik. SZEMERÉDI (2020) megállapította, hogy 

a variszkuszi battonyai gránit és a battonyai permi savanyú vulkanitok nem állhatnak 
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egymással plutoni–vulkáni kapcsolatban. A riolit repedezett, tetőzónája mállott; a területen 

általában a pannóniai bázisképződmények feküjében található.  

Az alsó-triász Jakabhegyi Homokkő Formáció folyóvízi és deltaüledékekből 

felépülő, sziliciklasztos összlete helyenként bizonyítottan diszkordánsan települ a gránitos 

aljzatkomplexumra. A medence további süllyedésének köszönhetően a középső-triász 

anisusi emeletét már a sekélytengeri lagúnakörnyezetben lerakódott Szegedi Dolomit 

Formáció képviseli (BÉRCZINÉ MAKK, 1993a; 1998). Általánosan elterjedt, sötétszürke 

vagy fekete, erősen breccsás. A ladin–karni emeletet a szintén lagúnakörnyezetben 

képződött Csanádapácai Dolomit Formáció képviseli BÉRCZINÉ MAKK, 1993b, alsó részén 

barnásszürke breccsás dolomit, efölött világosszürke dolomit. A Csanádalberti–

Tótkomlós–Pusztaszőlős-Kaszaper, Csanádapáca–Medgyesbodzás településeken keresztül 

húzott vonalban a Kodrui kifejlődésű mezozoikum minden tagja megtalálható. 

(SZEPESHÁZY 1978 in BÉRCZINÉ MAKK 1985).  

A jura kifejlődést a triász dolomit rétegsor fedőjében helyenként crinoideás 

„menyházai mészkő” (Moneasai F.) nagy vastagságú alsó-jura mészmárgaösszlet alkotja. 

Ismert a területen a felső-jura–alsó-kréta calpionellás, radioláriás Pusztaszőlősi Márga 

Formáció, valamint a Pusztaföldvári Márga Formáció is.  

A vizsgálatba vont terület északi részén a Villány–Bihari-egység mezozoos 

képződményei találhatók az aljzatban: a törmelékes alsótriász (Jakabhegyi Homokkő 

Formáció), a sekélytengeri sziliciklasztos és karbonátos középső-triász (Csanádapácai 

Dolomit Formáció) és az alsó–középső-jura pelágikus képződmények mellett alsó-kréta 

pelágikus márga és platform mészkő is megjelenik egy vékony pásztában. 

Az aljzathoz tartozó képződmények gyakran a felszínen is megtalálhatók (vagy 

földtani, hidrodinamikai analógiák alapján megismerhetők), tanulmányozásuk ezért nem 

csak mélyfúrásokban lehetséges. Az aljzat fő tömegét alkotó metamorfizálódott paleozoos 

kőzetek mellett helyenként mezozoos karbonátos képződmények is előfordulnak, melyek 

jó vízadók is lehetnek. Továbbá a bátaapáti kutatást is meg kell említenünk, ahol egy sekély 

mélységű eltemetett paleozoos rögnek a nagyon részletes és széles méretskálán végzett 

vizsgálatsorozata történt. 
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A prekainozoos aljzat eróziós felszínére jelentős üledékhézaggal települnek a miocén 

képződmények. Kifejlődési jellegüket, elterjedésüket és vastagságukat az aljzat miocén 

szerkezetalakulása, morfológiája határozta meg.  

A miocén végi szárazulattá válás következményeként lepusztulásukkal is számolni 

kell. A magmás és metamorf komplexumokból felépülő medencealjzat felszínén a 

szerkezeti zónákhoz kapcsolódóan felszíni egyenetlenségek alakultak ki. A kora-badeni 

szerkezeti mozgásokra utal a prebadeni diszkordancia és a badeniben újrainduló 

üledékképződés.  

A badeni rétegsor bázisképződményét durvatörmelékes konglomerátum képezi, 

amely a szétcsúszó aljzatblokkok közötti árkokban rakódott le. Települési helyzete 

változatos, többnyire alaphegységi kőzetek törmelékanyagát tartalmazza, kötőanyaga 

rendszerint vörösagyag. A badeni tengeri üledékképződés szigettengeri környezetben 

zajlott, amelyet változatos fáciesek képviselnek.  

A transzgressziós rétegsor bázisán konglomerátum, karbonátos homokkő, aleurit 

jelenik meg. Néhány fúrás feltárt biogén mészkövet is. A badeni képződmények 

szerkezetföldtani szempontból lényeges tulajdonsága a rendkívül változatos kifejlődési 

vastagság és települési mélység. A Battonya–Pusztaföldvári-háton a szinrift süllyedés 

során képződött üledékek közül a szarmata durvatörmelékes kőzetek kevés fúrásból 

ismertek, és mélységintervallumukat tekintve is rendkívül szórt az előfordulásuk.  

A pannóniai üledékképződés kezdetén a Battonya–Pusztaföldvári-hát szárazulat volt. 

(MAGYAR et al. 2004). A pannóniai üledékek vagy közvetlenül a paleozoos-mezozoos 

alaphegységre települtek vagy a foltokban előforduló alsó-középső miocén 

képződményekre transzgredáltak. 

Az alaphegységi kiemelkedések fölött általában, így a Battonya–Pusztaföldvári-

hátságon is, az első pannóniai képződmény a Békési Konglomerátum Formáció (JUHÁSZ et 

al. 2006). Távol a behordási területektől, a medence legbelső részén, éhező medence alakult 

ki kondenzált rétegsorokkal (mészmárga, márga, agyagmárga, az úgynevezett „bazális 

márgák”). A medencékben ezek alkotják a pannóniai bázisát képező Endrődi Márga 

Formációt (JUHÁSZ et al. 2006). A Tótkomlósi Mészmárga Tagozat mészmárga-, márga 

rétegeivel indul, majd fölfelé fokozatosan a mélyvízi agyagmárgába megy át (JUHÁSZ, 

1994). A mészmárga összletre egyedül a Magyarbánhegyes Mbh–1 fúrásban (2431–2443 
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m) települ vékony bazalt agglomerátum (Keceli Bazalt Formáció), amely a pliocén eleji 

vulkanizmus első jele a Battonya–Pusztaföldvári-háton (SZENTGYÖRGYI et al. 2010). A 

mélyvízi márgák fölött a finomszemcsés homokkő és agyagmárga váltakozásából álló 

Szolnoki Homokkő Formáció turbidit összlete települ. A formáció a kiemelt háton redukált 

vastagságban fejlődött ki (kb. 100 m), helyenként kiékelődik de a környező árkok területén 

igen jelentős, több mint 1000 m-es vastagságban is megjelenik. A turbiditekre a körülbelül 

5–20° lejtésű medencelejtőn, illetve selflejtőn lerakódott Algyői Formáció települ. 

Összességében a korábban ”alsó-pannóniainak”, jelenleg Alföldi (Peremartoni) 

Formáció-csoportnak nevezett képződmény együttes az alábbi formációkra tagolható: 

Békési Konglomerátum, Endrődi Márga, Szolnoki Homokkő és Algyői Formáció. Ezen 

összlet a Battonya–Pusztaföldvári-hát területén mintegy 600-800 méter vastag, míg a 

Makói-árok irányában az 2500–3500 métert, a Békési-medence felé pedig a 3000 méter 

vastagságot is eléri.  

A Pannon-tó fokozatos feltöltődésével a pannóniai üledékgyűjtő peremei mentén 

partközeli környezetben zajlott az üledékképződés. Ennek során uralkodóan deltaüledékek, 

majd ezt követően folyósíksági üledékek rakódtak le. Az Újfalui és Zagyvai, Formációk, 

mint a Dunántúli Formációcsoport tagjai együttesen a Battonya–Pusztaföldvári-hát 

területén mintegy 600-800 m vastagságúak, a medencék irányában azonban együttesen 

elérhetik a 2000 métert is.  

Ezen rétegek általánosságban jó vízvezető és víztároló képességgel jellemezhetők, 

nagy számú termelőkút szűrője itt található. A pliocénban és a negyedidőszakban a 

területen folytatódott a folyóvízi, tavi, mocsári üledékképződés. A mélymedencékben az 

üledékképződés folyamatos volt, a negyedidőszaki üledékek vastagsága a 600-800 métert 

is elérheti, míg a kiemelt hátságon a rétegsor a kitett helyzetének és a lepusztulásnak is 

köszönhetően sokkal vékonyabb (alig 150 méter). A késő-pleisztocén során a Maros épített 

hordalékkúpot a területen (SÜMEGHY et al. 2013). A würm folyamán lösz, löszös homok 

halmozódott fel (URBANCSEK, 1977).  

A holocénben a folyóvízi üledékképződés mellett a lösz áthalmozódása zajlik. Három 

külön oszlopba tagolva látható a Makói-árok – Battonya–Pusztaföldvári-hát – Békési-

medence összesített földtani felépítése (21. ábra). 
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21. ábra. A Makói-árok, a Battonya–Pusztaföldvári-hát és a Békési medence elvi rétegoszlopa (HAAS & 

BUDAI, 2014 módosítva SELMECZI, PIROS, KUN in RMAN et al. 2021) 

Jelmagyarázat: V V V – vulkáni tevékenység nyomai. A szelvényen szereplő képződmények: 1.a, b, Variszkuszi metamorfit 
és kristályos összlet (gneisz, csillámpala, amfibolit, gránit) [Battonyai Komplexum F.; ]; 2. Permi szárazföldi 
törmelékes összlet [Korpádi Homokkő F.]; 3. Permi riolit [Gyűrűfűi Lapillitufa F.]; 4. Alsó-triász folyóvízi és delta 
eredetű sziliciklasztos képződmények [Jakabhegyi Homokkő F.]; 5a, 5b. Középső-triász sekélytengeri, sziliciklasztos 
és karbonátos összlet [Csanádapácai Dolomit F. és Szegedi Dolomit F.]; 6. Jura sekélytengeri és kondenzált pelágikus 
mészkőösszlet; 7. Jura–alsó-kréta pelágikus mészkő, márga [Pusztaszőlősi Márga F.]; 8. Alsó-badeni breccsa-
konglomerátum [Lajtai Mészkő F., Abonyi T.]; 9. Badeni sekélytengeri biogén mészkő [Lajtai Mészkő Formáció]; 
10. Szarmata bázistörmelék [Tinnyei Mészkő Formáció Dombegyházai Tagozat]; 11. Szarmata sekélytengeri 
karbonátos és sziliciklasztos összlet [Tinnyei Mészkő Formáció és Kozárdi Formáció)]; 12. Pannóniai litorális 
konglomerátum, homokkő [Békési Konglomerátum F.]; 13. Pannóniai nyílttavi mészmárga, márga, agyagmárga 
[Endrődi Márga F., Tótkomlósi Mészmárga T.]; 14. Pannóniai mélyvízi turbidit eredetű összlet [Szolnoki F.]; 15. 
Pannóniai víz alatti lejtőkörnyezetben lerakódott üledékek [Algyői F.]; 16. Pannóniai delta eredetű sziliciklasztos 
összlet [Újfalui F.]; 17. Pannóniai folyóvízi és ártéri eredetű sziliciklasztos összlet [Zagyvai F.]; 18. Negyedidőszaki 
ártéri és meder üledékek 



50 

3.2 Szerkezetföldtan 

A kora miocén szinrift fázis nagymértékű tágulást eredményezett, minek 

következtében az alaphegység kőzettömegei laposszögű normál vetők mentén 

gravitációsan lecsúsztak egymásról (TARI et al. 1999).  

Az így képződött mély medencék (nyomvonalát a 19. ábra szemlélteti) a PGT-4 

mélyszeizmikus szelvény tanúsága szerint (POSGAY et al. 1996; HAJNAL et al. 1996), mint 

pl. a Makói-árok és a Békési-medence, félárok szerkezetek (BALÁZS et al. 2016), így a 

medencét az egyik oldalról határoló szerkezeti vonalak nagy elvetésű és kisszámú síkból, 

másik oldal szerkezeti vonalai több kisebb vetőből állnak (22. ábra).  

Ez a szerkezet hatással van a süllyedékek közötti hátak szerkezetére is, így a 

Battonyai hát DNy-i lejtői több kisebb vetővel szakadnak le a Makó-árok felé. Lehetnek 

azonban a szinrift tágulásra merőleges (ÉNy–DK) félárkok, árkok is, ezekben a szinrift 

üledékek akár nagyobb vastagságban is megőrződhettek. 

 

22. ábra. A PGT-4 kéregkutató szelvény tektonikai újraértelmezése; a szelvény nyomvonala a 19. ábrán 
látható (POSGAY 1996; TARI 1999) 
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A Battonya–Pusztaföldvári-hát aljzati kiemelkedésének morfológiáját a Pannon-

medence neogén riftesedésében is döntő szerepet játszó ÉNy–DK-i csapású, többségében 

normálvetőként működött szerkezeti elemek határozzák meg (23. ábra).  

 

 

23. ábra. A neogén szerkezetek csapásirányára merőleges, regionális földtani szelvényvázlat a Pannon-
medence DK-i részén, a PGT–4 mélyszeizmikus szelvény nyomvonalán (19. ábra) 

(TARI et al. 1999 alapján módosítva KISS et al. 2015) 

Jelmagyarázat: a Moho és a Conrad felület piros, kék vonal: KISS et al. 2015, fekete vonal: TARI et al. 1999, lila 
vonal: KILÉNYI & SEFARA, 1991 

 

A Bouguer anomália görbe (23. ábra; felül) és a gravitációs mélységinverzió 

eredménye (alul) is feltüntetésre került, amely a szeizmikus Conrad (reflektáló alsókéreg) 

és/vagy Moho felület menetével hozható összefüggésbe. Az átlagos hőáramgörbe 

maximumot jelez a Battonya–Pusztaföldvári-hát felett (KISS et al. 2015).  

KOROKNAI et al. 2018 alapján a preneogén aljzatmorfológiát kiterjedt, alapvetően 

eróziós eredetű völgyrendszer jellemzi (24. ábra). A bevágódása a középső-miocén előtti 

lepusztulás során (paleogén–kora-miocén) történt. 
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24. ábra. A pre-kainozoos aljzat új mélységtérképének 3D nézete (KOROKNAI et al. 2018) 

3.3 Vízföldtani és áramlási viszonyok 

A Pannon-medence termálvíz kitermeléssel érintett zónájában a felszínalatti vizek 

mozgását több hajtóerő határozza meg: a gravitáció és az áramló fluidum 

sűrűségkülönbsége, valamint a medence összepréselődését okozó kompresszió és 

kompakció. A gravitációs és a nyomás alatti két áramlási rendszer vertikálisan elkülönül, 

az alsó kompressziós tartomány torzítja a felső gravitációs rendszer geometriáját, mintegy 

alulról megtámasztva azt. 

A gravitáció által meghatározott áramlást leegyszerűsítve, a magaslatokon a víz 

beszivárog, a mély részeken a felszín felé áramlik. (ERDÉLYI, 1979; MARTON, 1982; TÓTH 

& ALMÁSI, 2001). A közbetelepülő agyagos rétegek lassítják a vízadó rétegek közötti 

szivárgást, de nem gátolják meg.  

Hidrogeológiai és hévíztermelési szempontból célszerű külön választani a medence 

aljzatát adó repedezett olykor karsztosodott kőzeteket a medencét kitöltő nagy áramlási 

rendszerrel jellemezhető üledékösszletektől (SZANYI & KOVÁCS, 2010; HORVÁTH et al. 

2015; VASS et al. 2018).  

A vizsgált terület K-i és Ny-i peremeit adó mély árkokban az alsó áramlási 

rendszerhez tartozó mélytengeri üledékekben extrém túlnyomás tapasztalható, mely érték 

elérheti a 40 MPa-t is, pl. a Makó–7 fúrásban 6054 m-ben 100 MPa nyomást mértek. 
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Ugyanakkor az alsó áramlási rendszerhez tartozó, magasabb helyzetű aljzati 

képződményekben is előfordulhat hidrosztatikushoz közeli nyomás, mint a Battonya–

Pusztaföldvári-hát esetében.  

A területen korábban végzett szénhidrogén-kutatások (BALÁZS et al. 1999, TÓTHNÉ 

MEDVEI et al. 1999, ALMÁSI 2001, SZENTGYÖRGYI K.-NÉ. et al. 2010) alapján az alsó 

mezozoos–paleozoos zóna képződményeiben a tárolóképességet leginkább a tektonika 

alakította ki, ahol az aljzat felső mállott zónája is tárolóvá válhatott. Karbonátos aljzat 

esetén a paleokarsztos, hipogén karsztos (GOLDSCHEIDER et al. 2010) folyamatok 

következtében kitágult repedéshálózat, üreg-járat rendszer mérete, állapota határozza meg 

a víztároló képességet.  

A lemélyült szénhidrogén kutató fúrások adatai alapján a rétegnyomás hidrosztatikus 

közeli, vagy a hidrosztatikusnál kisebb pl. Medgyesbodzás Med–4 jelű fúrás 2730 m-es 

mélységében az egyensúlyi telepnyomás Pwst=25,1 MPa volt, és a sótartalom meghaladta 

a 10 g/l értéket (ZILAHI-SEBESS & GYURICZA, 2013), ami az ülepedéssel közel egyidős 

eredetre utal. Az alsó áramlási rendszeren belül is vannak köztes (oldalirányban 1–10 km) 

és kis helyi áramlási rendszerek, melyek kapcsolatban lehetnek egymással, általában kis 

fluxussal. 

3.3.1 A régió vízadóinak rövid áttekintése 

A térségben talajvíztartó képződmények a területen a holocén és a felső pleisztocén 

korú folyóvízi képződmények homokos, illetve infúziós löszös rétegeiben alakultak ki. A 

talajvíztartó vastagságát néhány méterre, estenként néhány tíz-méterre tehetjük. A 

talajvízdomborzat alakulása követi a felszíni domborzatot, mélysége 3–4 m-rel a felszín 

alatt jellemző.  

A regionális elterjedésű hideg- és termális rétegvizeket tároló víztartó összleteket 

folyóvízi, ártéri üledék alkotja, melynek vastagsága a hát területétől a medencék felé 

fokozatosan növekszik. (25. ábra). A települések vízmű-kútjainak nagy része elsősorban a 

felső 100–200 m vastag homokosabb, relatíve sekély kutakkal könnyen elérhető, megfelelő 

vízminőségű rétegeire települ. Ez szoros kapcsolatban áll az alatta települő, a hátság 

kiemelt térszínén 600–800 m, míg a Makói-árok és a Békési-medence irányában 1200–

1500 m-es vastagságot is elérő felső pannóniai korú, alluviális síksági összlet egymásra 
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települő és egymásba fogazódó–kiékelődő homokos–agyagos rétegeinek víztartójával 

(Zagyvai és Újfalui Formációk).  

 

25. ábra. Az Alföld sematikus sztratigráfia szelvénye (ALMÁSI, 2001 alapján) 

A Zagyvai Formációban határolhatjuk el a medence porózus üledékeiben kialakult 

köztes, (intermedier) áramlási rendszert. Az összlet mintegy 400–500 méternél mélyebb 

részein lévő homoktestek már 30 °C-nál melegebb vizet, termálvizet szolgáltathatnak. 

Hévízbeszerzés szempontjából legjelentősebb regionális rétegvízadó az Újfalui Formáció, 

annak is a homokosabb deltaüledékei.  

A pannóniai rétegösszlet felső részén a vízkémiai jelleg főként NaHCO3-os, kivéve 

az üledékösszlet mélyebb (az aljzatkiemelkedés feletti) rétegeiből származó vizeket, 

melyek NaHCO3Cl-os, esetenként NaClHCO3-os jellegűek. Az Alföldi Formációcsoport 

tárolt vizeinek kémiai jellege jellemzően NaCl-os, kivéve a vastagabb homokkő és 

konglomerátum formációból származó vizeket, mely lokális vízadók NaHCO3-os, 

NaHCO3Cl-os, NaClHCO3-os jellegűek (ZILAHI-SEBESS & GYURICZA, 2013). E 

tanulmányban a vízgeokémiai jellemzőkre külön nem készült modellvizsgálati szempontú 

elemzés, de az összes oldott anyag és egyes alkotók (pl. klorid-tartalom) változása, 

izotópok pl. oxigén, deutérium, 3He (3He/4He) értékek jó indikátorai áramlástani 

útvonalak, mélységi keveredések tisztázására (SZŐCS et al. 2017). 
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Az aljzat mélysége erősen változó, a hátság területén a felszín alatt már akár 1000 m-

rel is nyomozható, míg a hátság peremei felé egyre nagyobb mélységbe, 3000 m, vagy akár 

6000 m-es mélységbe is lezökken.  

Rezervoárként egyrészt a karbonátos formációk jöhetnek számításba amennyiben 

hosszabb ideig felszíni hatásnak, tehát mállásnak és karsztosodásnak voltak kitéve. Az 

ilyen helyzetek esetében néhányszor tíz, esetleg száz méteres vastagságban is lehet 

megnövekedett pórus- és repedéstérrel, valamint permeabilitással számolni.  

Másrészt a tektonika következtében kialakult repedezett, mállással érintett 

sziliciklasztos, vagy granitoid és metamorf képződmények rendelkezhetnek magasabb 

porozitás és permeabilitás értékekkel, illetve válhatnak rezervoárokká.  

Az aljzati képződmények repedezettsége nemcsak a tárolt vizek áramlásában játszik 

szerepet, hanem a területen előforduló szénhidrogének migrációjában és csapdázódásában 

is (Czauner, 2012). A csekély szervesanyag-tartalommal rendelkező, mélyebb helyzetben 

található karbonátok megfelelő termikus körülmények esetén szén-dioxid gáz anyakőzetei 

lehetnek. Az itt keletkezett gáz migrációjában elsősorban a kőzet repedéshálózata, a 

tektonizáltsága (vertikális migráció), valamint az aljzat eróziós felszíne (horizontális 

migráció) játszanak szerepet, melynek következtében a gáz a sekélyebb, a karbonátos 

képződmények felső zónáiba, vagy a pannóniai fekü közelébe juthat. Az ebben a szintben 

kialakult telepek nyomása általában kisebb a hidrosztatikusnál. 

3.3.2 A térségi víztestek mennyiségi jellemzése 

Az EU Víz Keretirányelve (VKI)2, valamint az arra épülő hazai jogszabályok 

előírják, hogy azokon a víztesteken, ahol a jó állapot fennáll, azt biztosítani és fenntartani 

szükséges, ahol pedig gyenge az állapot, ott intézkedésekkel javítani kell. Szükséges, hogy 

például a mélységi geotermikus hasznosítás folytatása során a nyomásszintek kedvezőtlen 

változása a termálvíz-hasznosításokat ne érintse.  

 

2 A VKI előírásai jogi keretet adnak az Európai Unió tagállamainak a szárazföldi felszíni és felszín alatti vizek, az átmeneti vizek, a parti 
tengervizek védelméhez. A VKI végrehajtásának első lépéseként Magyarország első vízgyűjtő-gazdálkodási terve (VGT1) 2010 
áprilisában készült el. A VKI előírásai szerint a vízgyűjtő-gazdálkodási terveket 6 évente felül kell vizsgálni, ezért 2015. év 
végére elkészült a VGT1 első korszerűsített, felülvizsgált változata, a VGT2, amely a 2016–2021 közötti időszakra vonatkozó 
intézkedési programot határozta meg. A VKI szerinti VGT felülvizsgálati kötelezettségnek megfelelően 2021. december 22-ig 
kell elkészülnie Magyarország felülvizsgált, 2022–2027 időszakra vonatkozó, harmadik vízgyűjtő-gazdálkodási tervének (VGT3). 
A terv nem csak Magyarország területére, hanem a Duna folyam teljes, nemzetközi vízgyűjtőjére is elkészül. 



56 

Ennek a hatásnak a detektálására lenne szükséges a jól megválasztott monitoring, 

mely bányatelken túlmutat és a regionális és/vagy több lokalitás együttes hatását 

reprezentálja.  

A vizsgálatban vont területen nagyobbrészt két porózus (p.2.13.1 és p.2.13.2), és két 

termál porózus (pt. 2.1 és pt.2.3) víztest alkotja a sekély rétegek alatt. A VGT2 minősítése 

alapján mennyiségi szempontból mindkét porózus víztest jó minősítést kapott, míg a pt.2.1 

termál víztest jó, de fennáll a gyenge állapot kockázata besorolású, ugyanis a túltermelés 

jelei mutatkoztak a süllyedésteszt eredményeképp. (26. ábra, 27. ábra) 

 

26. ábra. A porózus víztestek térképi eloszlása Battonyai pilotterületen 
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27. ábra. A porózus termálvíztestek térképi eloszlása Battonyai pilotterület térségében 

A túltermelés jelei, még lokálisan is azt mutatja, hogy az utánpótlás sebessége 

tartósan elmarad a kitermelés ütemétől. Ugyanis hévízkút létesítésekor, lokálisan lecsökken 

a víznyomást, ennek következtében mind rétegirányból, mind vertikálisan a felső és alsó 

rétegekből a víz a kút irányába áramlik. Az áramlás sebessége annál nagyobb, minél 

nagyobb nyomáscsökkenést (depressziós teret) idézünk elő.  

Ennek következtében az egész víztest lefelé mozdul el, ugyanis a nyomáscsökkenés 

terjedése nagyságrendekkel gyorsabb, mint a víz szivárgási sebessége. Így emberi behatásra 

vízmérleg elemei megváltoznak, több víz szivárog a mélybe, mint a víztermelés előtt. A 

mélységi vízkivétel helyétől felfelé haladva, csillapítottan ugyan, vízszint csökkenést 

tapasztalható.  

A vízszintcsökkenés mértékét, a fenntarthatóság kérdéskörét járják körbe SZANYI és 

szerzőtársai (2013). A probléma nagyrészt elkerülhető vagy mérsékelhető takarékos, pl. 

kaszkádos hasznosítással, kontingens alapú elosztással, vagy ha a kitermelt és lefűtött 

termálvíz visszasajtolásra kerül.  

3.3.3 Termálvízadók jellemzése 

A korábbi szerkezetalakulási folyamatok szükségszerűen hatást gyakorolnak 

termálvíztartó összletek rétegeinek horizontális és vertikális szivárgáshidraulikai 
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jellemzőire. A földtani eredetű áramlási kényszerpályák alapvetően meghatározzák az 

utánpótlódási útvonalakat, a jelenlévő vizek összetételét, korát, sok esetben a mélyebb 

régiók sós vizének sekélyebb szintekbe jutását.  

A vizsgált területen megismert legfontosabb tárolókőzetek (28. ábra) a következők 

(TATÁR A.-NÉ et al. 1999, SZENTGYÖRGYI K.-NÉ et al. 2010) [frissítve a jelenlegi formáció 

és korjelző nevekkel; sorszámukkal megjelenítve az ábrán, a Magyar Rétegtani Bizottság 

jegyzőkönyvei alapján; https://foldtan.hu/mrb_munkabizottsagok]: 

 

28. ábra. A Battonya–Pusztaföldvári-hát releváns tárolókőzetei 

 

1. Alaphegységi paleozoos metamorfitok, gránit (Battonyai Komplexum F.), permi 
riolit, riolittufa (Gyűrűfűi Lapillitufa F.) felső, repedezett zónája és töredezett, 
mállott felszíne; 

2. Alsó-triász repedezett homokkő (Jakabhegyi Homokkő F.), középső-triász 
repedezett, breccsásodott dolomit (Szegedi és Csanádapácai Dolomit F.); 

3. Középső-miocén, badeni és szarmata konglomerátum, homokkő, biogén mészkő 
(Abonyi F., Lajtai Mészkő F., Tinnyei F, Kozárdi F.); 

4. Felső-miocén (pannóniai) báziskonglomerátum, bázishomokkő (Békési 
Konglomerátum F.); 
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5. Felső-miocén (pannóniai) aleuritos bazális mészmárga repedezett zónái 
(Endrődi Márga F, Tótkomlósi Mészmárga Tagozat); 

6. Felső-miocén (pannóniai) deltaelőtér kifejlődésű, turbidites homokkő-összlet 
homokos részei (Szolnoki F); 

7. Pannóniai deltasíkság kifejlődésű, különböző típusú zátony- és mederhomokkő 
testek, gyengén konszolidált (Újfalui F.) 

E felsorolás szénhidrogén kutatások alapján összegződött, termálvízkutak viszont 

ezekre a formációkra, illetve rétegekre zömmel nem települtek, kivételt jelent ez alól a 

mezozoos aljzat (pl. Tótkomlós) és a pannóniai rétegösszlet, az ok általában alacsony 

vízhozam és nagy sótartalom. Az alaphegységben tektonikai folyamatok következtében 

kialakulhat repedezett, mállással nem érintett „üde” karbonátos részek, repedezett 

sziliciklasztos, vagy granitoid és metamorf képződmények rendelkezhetnek magasabb 

porozitás- és permeabilitás értékekkel, illetve válhatnak rezervoárokká. 

3.3.4 A térség objektumai, geomanifesztációs térkép 

A GeoERA GeoConnect3d projekt (https://geoera.eu/projects/geoconnect3d6/) újítása a 

geomanifesztáció (BARROS et al. 2021) fogalma. Ez a fogalom a földtani, vízföldtani, 

geotermikus stb. okokra visszavezethető jelenségeket veszi számba. Ilyen módon egy 

intenzív feláramlási területen megjelenő szikes tavak, a pozitív hőanomália, a magas összes 

oldott anyag tartalom és a felszínközeli vízszint mind geomanifesztációnak minősülnek.  

A leáramlási térségekben a negatív hőanomális mélyebben fekvő talajvízszint a 

jellemző. A következő ábrán a modellezett terület magyarországi részén látható 

geomanifesztációk láthatók (29. ábra). 
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29. ábra. A Battonya–Pusztaföldvári-hát geomanifesztációs térképe a magyarországi térrészre (RMAN et 
al. 2021) 

Forrás: https://geoera.eu/wp-content/uploads/2021/07/GeoConnect3d_D4.2_Joint-report-on-geomanifestations-in-the-

Pannonian-Basin.pdf 

Mélységbeli geomanifesztációk a Battonya–Pusztaföldvári-hát területén: 

o Jelentős termálvíztározók, hőmérsékleti anomáliák 

o Szénhidrogén felhalmozódások (olaj- és gázmezők: több mint 700 fúrás 

készült el ezen a területen) 

o A gravitációs áramlási rendszer alatt a túlnyomásos áramlási rendszer 

helyezkedik el, mintegy megtámasztva azt 

o Az aljzati kiemelkedés áramkép módosító hatása 

A szénhidrogén mezők jelenléte hangsúlyos a területen (30. ábra) és az aljzati 

magaslat tetőzónájához, illetve annak gerincvonalához kötődik.  
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30. ábra. Szénhidrogén telepek a Battonya–Pusztaföldvári-háton (BABINSZKY & KOVÁCS, 2018) 

Jelkulcs: piros kitöltött: hagyományos szénhidrogénmező, sraffozott: nem hagyományos szénhidrogénmező 

A terület fő szénhidrogén-tároló szintje a paleo–mezozoos medencealjzat repedezett 

tetőzónája és a rá legtöbbször közvetlenül települő pannóniai báziskonglomerátum–

homokkő–mészmárga rétegsora, illetve kisebb mértékben a prepannóniai miocén és az 

„alsó-pannóniai” bázistörmelék üledéksora (az ismert szénhidrogénvagyon 60%-a, a kőolaj 

készlet 96,5%-a ehhez a szinthez kapcsolódik, BABINSZKY & KOVÁCS, 2018). 

A Földvár-alsó telepek kivételével kőolaj csak a Békési Konglomerátum 

Formációban és az Endrődi Formáció Tótkomlósi Mészmárga Tagozatában, valamint a 

velük hidrodinamikailag összefüggő preneogén fekü kőzeteiben van, halmaztelepek 

formájában. Regionálisan jellemző tárolókőzet a Tótkomlósi Mészmárga Formáció. Kisebb 

a jelentősége a miocén törmelékes és karbonátos, valamint a középső-triász 

tárolókőzeteknek. A csapdák a mészmárga áteresztőképességének változása miatt alakultak 

ki, illetve tektonikusak (PAP et al. 1998 in KOVÁCS, 2018). Az anyakőzetekből a 

szénhidrogének a medencealjzat töredezett, repedezett kőzetblokkjaiba, valamint a 

gyűrődés és kompakció nyomán kialakult antiklinálisok homokköveibe, és azok 
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sztratigráfiai és diszkordancia csapdáiba migráltak (DANK 1988, HORVÁTH & TARI, 1999). 

A mélyebbről elvándorolt szénhidrogének a tárolókőzetbe jutva az aktuális morfológiai 

viszonyoknak megfelelően jutottak el a végleges csapdázódási helyeikre. Az Alföldön 

elsősorban szerkezeti csapdákban akkumulálódtak a szénhidrogének (CLAYTON et al. 

1994). A területen a leggyakoribb csapdaszerkezet az esetenként litológiai zárással is 

kombinált kompakciós boltozat (JUHÁSZ et al. 1997 in KOVÁCS (2018). A területre jellemző 

csapdatípusok: települt boltozatú csapdák alatt kialakult rétegtelepek, tektonikailag és/vagy 

litológiailag zárt réteg- és halmaztelepek. 

3.4 Túlnyomásos zónák, abnormális rétegnyomások jelenléte 

Számos területen leírtak már olyan zónákat, ahol a felszín alatti nyomás a 

hidrosztatikus nyomás felett és alatt is rendellenes. A nyomás és a sótartalom nagyon 

hirtelen változása, valamint a magas nyomású zónák alultömörödött jellege arra utal, hogy 

ezek a zónák hatékonyan elszigeteltek a környezetüktől. Ha ez az elszigeteltség a 

jelenleginél kisebb mélységben történt, akkor az elszigetelt térfogat lefelé haladva növekvő 

hőmérsékletnek lett volna kitéve. A vízre vonatkozó P–T–sűrűség diagram azt mutatja, 

hogy minden olyan geotermikus gradiens esetén, amely nagyobb, mint kb. 15 °C/km, az 

izolált térfogatban a nyomás a hőmérséklet növekedésével gyorsabban nő, mint a környező 

folyadékokban. Ez a túlnyomást előidéző mechanizmus a legtöbb más javasolt folyamat 

mellett is működik, de a teljes hatás egy adott területen attól függ, hogy a rendszer mennyire 

marad elszigetelt. Ha egy normális nyomás alatt álló rendszer elszigetelődik, majd 

hőmérsékletcsökkenésnek van kitéve (például, ha az erózió jelentős mennyiségű 

fedőréteget távolít el), a rendszerben a nyomás a külső hidrosztatikai nyomás alá fog esni. 

Ez megtörténhetett néhány olyan területen, ahol most szokatlanul alacsony a nyomás. 

(BARKER, 1972).  

A Makói–árokban, illetve a Békési-medencében a túlnyomásos zónák jelenléte 

detektált. Általánosságban elmondható, hogy míg a felső-pannóniai rétegösszlet (Újfalui 

Formáció) aljáig tartó térrész hidrosztatikus állapotú egységes nyitott hidrodinamikai 

rendszert alkot, ahol a domináns hajtóerő a gravitáció, addig az alatt megjelennek a normál 

hidrosztatikus többszörösére ugró nyomásértékek változatos mintázatot alkotva. A 

legnagyobb nyomásnövekedés mintegy 30–35 MPa/km. (ALMÁSI, 2001).  

Az extrém nagy nyomású elzárt térrészek áramlástani szempontból holt terek. 

VARSÁNYI & Ó. KOVÁCS (2009) termálvizek eredetével foglalkozó tanulmányukban mély 
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árkok feletti a mélységi kemizmust mutató termálvíz komponensek hiányáért a rekesztő 

zónák, nagy vastagságú Endrődi Formáció alacsony permeabilitású összlete mellett az 

extrém túlnyomásos zónák is felelősök. Az aljzati kiemelkedések felett éppen ezért sokkal 

nagyobb volumetrikus arányban található mélységi eredetű vízkomponens. 

Az abnormális rétegnyomások kialakulásának szakirodalma sok lehetséges okot 

valószínűsít: a tektonikai feszültség, a gyors leülepedés mellett szükséges nagyon kis 

permeabilitású kőzettestek jelenléte szigetelő funkciójukkal egyetemben. (DEJU, 1973 in 

DOMENICO & SCWARTZ, 1990). A tapasztalatok azt mutatják, hogy a harmadidőszaki 

üledékes kőzetekben fordulnak elő anomálisan nagy rétegnyomások, az ettől idősebb 

kőzetekben már volt elég idő disszipálódni a túlnyomásnak (MARTON, 2009). A 

rétegnyomás kompakció miatti növekedése mellett egy másik nézet szerint a túlnyomás 

elsődleges oka a kőzetlemezek mozgása miatti kompresszió (TÓTH & ALMÁSI, 2001; 

ALMÁSI 2003). 

Külön kitérőt érdemel BARKER (1972) elmélete. Számítása szerint a sekélyebb térbeli 

helyzetben történő izolációt követően mélyebbre süllyedve már 25 °C/km geotermikus 

gradiens mellett, 50 °C hőmérsékletemelkedés egy elzárt kőzettestben 300 bar túlnyomást 

okoz, feltéve, hogy a kőzetmátrixot teljesen merev környezetűnek tekintjük.  

Részletezve BARKER (1972) számítását (meghagyva az eredeti mértékegységet, de 

átkonvertálva SI-re): 

Ha a D1 mélységnél és T1-hőmérsékletnél (A pont) az izoláció bekövetkezik, és a rendszer ezután a T2-nek 

megfelelő D2 mélységbe süllyed: 

o 50 °C-os hőmérséklet emelkedésekor, akkor a normál képződési folyadékokban a nyomás 6000 psi-re 

(414 bar) emelkedik.  

o Ugyanez a hőmérsékletemelkedés izolált térfogatban 10 400 psi-re (717 bar) emeli a nyomást.  

o Így a normál hidrosztatikus érték feletti 4 400 psi (303 bar) nyomású túlnyomásos zónát 50 °C 

hőmérsékleti emelkedés hozza létre. 

o Ez 3500 láb (1066,8 m) megnövekedett mélységnek felel meg, ha a geotermikus gradiens 25 °C/km. 

A világ számos részén leírtak abnormális nyomású zónákat, mind a hidrosztatikus 

felett és alatt is. A magas nyomású övezetek közül a Mexikói-öböl északi partvidéke 

különösen jól tanulmányozott, és ott a normál hidrosztatikus értékek feletti 5000 psi 

nyomás nem ritka. Ezeket a túlnyomásokat kifejezhetjük a geosztatikus arányban, amely a 

megfigyelt folyadéknyomás és az azonos mélységű litosztatikus nyomás aránya (31. ábra): 
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Pfolyadék/Pkőzetnyomás =0,47 normál hidrosztatikus nyomás; 

ahol a Pkőzetnyomás 1-hez közelít.  

Szakirodalomban magas nyomású zónák esetén 0,95-nél nagyobb litosztatikus 

arányokkal találkoztak. 

 

31. ábra. A hidrosztatikus és a kőzetnyomás változása a mélységgel BARKER 1972 

σLith= ρ.g.z 

Kőzetsűrűség = 2000–3000 kg/ m3 

σLith = 2500 kg/ m3 x 9.8 m/s2 x 1000 m ≈ 25 MPa/km ≈ 1 psi/ft 

Általában a nagynyomású zónákat az alultömörödés jellemzi a palákban, és olyan 

vizet is tartalmaznak, amely kevésbé sós, mint a zónán kívüli fluidum.  

Számos helyen hirtelen változhat normál nyomásról nagy nyomásra, ami azt jelzi, 

hogy a nyomás alatt álló térségek elszigetelődnek a környezetüktől. DICKINSON (1953) arra 

a következtetésre jutott, hogy „egy nagy nyomású rezervoár hatékonyan elkülönül minden 

egyéb porózus formációtól, amely normál hidrosztatikus nyomást tartalmaz, különben a 

nyomás eloszlik (disszipálódik)”. 

A vízkibocsátással járó ásványi átalakulások szintén növelhetik a nyomást, vagy 

alternatívaként megoldást adhatnak a szivárgás miatti veszteségek ellensúlyozására. A 

gipsz–anhidrit konverzió fontos lehet sekély mélységben, de a montmorillonit 
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dehidratációja valószínűleg a legfontosabb diagenetikus folyamat lesz a mélység 

növekedésével. A felszabaduló víz mennyisége jelentős, és az izolált üledék térfogatának 

akár 10% -át is elérheti (BURST, 1969).  

A dehidratációs folyamat endoterm, és 100 °C-ot meghaladó hőmérsékletet igényel. 

Káliumionok jelenlétében a montmorillonit illitté alakul, és ez a folyamat olyan 

vízmennyiséget szabadít fel, amely megegyezik a megváltozott montmorillonit 

térfogatának körülbelül felével (POWERS, 1967). Mivel az ásványi átalakulások által 

felszabaduló víz friss, csökkenti a bezárult folyadékok sótartalmát. A szerző által 

aquathermális nevezett nyomás egy lehetséges mechanizmus a rendellenes felszín alatti 

nyomások létrehozására, és a hatást fokozza a kissé magasabb hőmérsékletek a magas 

nyomású zónában és az ásványi átalakulások, amelyek a víz felszabadulásával járnak. Még 

ha egyes szerzők túlzónak is állítják ezt az értéket, tekintve a kőzetmátrix rugalmasságát, a 

Pannon-medence esetében, ahol a geotermikus gradiens jóval magasabb az átlagnál ez 

lehetséges forgatókönyve esetleg releváns komponense lehet a túlnyomás kialakulásának.  

A rétegnyomásokból származtatott túlnyomás térkép (32. ábra) szemlélteti azt a jól 

ismert tényt, hogy a túlnyomások jelenléte leginkább a mélyárkokhoz kapcsolódóan az 

alföldi területrészen maradt fenn. Gyakran a nagyobb mélységben kompaktálódott, 

hidraulikailag záró agyagrétegek alatt jó áteresztőképességű homokrétegek vagy repedezett 

karbonátos kőzetek települnek, megtartva porozitásukat és áteresztőképességüket. Egy 

ilyen nagy mélységű (3800 m), túlnyomásos tárolóból tört ki a gőz-víz keverék a 

fábiánsebestyéni Fáb-4 szénhidrogén-kutató fúrásból (Bobok&Tóth, 2010).  

A Kisalföldön neotektonikus mozgások révén a túlnyomásos zónák nagy része 

disszipálódott (TÓTH et al. 2003).  
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32. ábra. Rétegnyomásokból extrapolált túlnyomásos térkép (TÓTH et al. 2003) 

3.5 Geotermikus helyzetkép 

A Pannon-medence közismert jó geotermikus potenciáljáról (DÖVÉNYI & HORVÁTH, 

1988; LENKEY et al. 2002; SZANYI et al. 2009; HORVÁTH et al. 2015), amely kedvező 

geológiai adottságainak köszönhetően termálvizekben gazdag.  

A Pannon-medencét pozitív geotermikus anomália jellemzi, a hőáramlási sűrűség 50 

és 130 mW/m2 között mozog, átlagértéke 90–100 mW/m2 (HURTER & HAENEL, 2002; 

LENKEY et al. 2002; HORVÁTH et al. 2015) a geotermikus gradiens pedig 45 °C/km körüli 

(DÖVÉNYI & HORVÁTH, 1988).  
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33. ábra A Pannon-medence és környezete hőáramsűrűsége –részlet (HORVÁTH et al. 2005) 

A megfigyelt hőáramsűrűséget a gyors üledékképződés, erózió és talajvízáramlás 

zavarhatja (ALFÖLDI et al. 1985; POWELL et al. 1988; BÉKÉSI et al. 2018). A pozitív 

anomália a viszonylag sekélyen fekvő preneogén alapkőzetben lévő konvekciós zónáknak 

tulajdonítható, ami a prekainozoos magaslaton megközelítőleg 100–120 mW/m2 értéket 

eredményez konvekciós feláramlási ágának következményeként. Alacsonyabb értékek az 

árok feletti részen találhatóak és a hordalékkúp intenzív beszivárgási zónájában. 

A DARLINGe projekt keretében analitikus modellt készült a perspektivikus 

geotermikus területek kijelölésére (ROTÁR et al. 2018). A becsült hőmérséklet egy 

konduktív geotermikus modell eredménye, de a legtöbb esetben a konvekció az elsődleges 

folyamat az alaphegység képződményekben (különösen a karsztos képződményekben), és 

konvekció esetén a számított adatok jelentősen eltérhetnek a valós értékektől. A modell 

által számított értékek összehasonlítása az alaphegység-képződményben mért hőmérsékleti 

értékekkel geotermikus potenciál szempontjából nagyon fontos, mivel az anomáliák az 

intenzív termikus konvekcióra utaló területeket jelzik (34. ábra).  
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34. ábra Geotermikus potenciáltérkép. Az alaphegység tetején (konduktív modell által) becsült 
hőmérséklet és a mért hőmérsékleti értékek összehasonlítása, amelyet az alapkőzet tetejére 

extrapolált/a DARLINGe projekt eredménye: modellezett területre nagyítva, ROTÁR et al. 2018. 

Az elmúlt 30–40 évben számos hőmérsékletmérést történt a legkülönbözőbb 

mélységű fúrásokban. Egy grafikonon összefoglalva (35. ábra) a terület geotermikus 

gradiensének átlaga körülbelül 43,9 ºC/100 m. Látható, hogy nagyobb mélységben, az árok 

mélyebb részein gradiens csökken az értéke, míg egyes mélységintervallumokban 

konvektív komponens okoz pozitív hőanomáliát.  
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35. ábra A Battonya–Pusztaföldvári-hát fúrásainak hőmérséklet–mélységprofilja (24 objektum; 62 mérés) 

A földrengések jó indikátorai lehetnek annak, hogy vannak-e nyitott vetők a 

rendszerben, ebben a tekintetben a célterület alacsony szeizmikus aktivitást mutat (36. 

ábra). 

 

36. ábra. Földrengések helyszínei 2002-2018 Magyar Nemzeti Szeizmológiai Bulletin /HU ISSN 2063-
854X/ Kövesligethy Radó Szeizmológiai Obszervatórium adatai alapján 
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4 A Battonya–Pusztaföldvári-hát hidrodinamikai és hőtranszport 

modellvizsgálata 

4.1 A modellvizsgálat folyamata 

Jelen tanulmányban végigvezetett regionális hidrodinamikai és hőtranszportra 

alapozott kétkutas kitermelésű geotermikus hasznosítás szimuláció teljes folyamatát a 37. 

ábra szemlélteti. 

 

37. ábra. A modellvizsgálat főbb állomásai 
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4.2 Koncepcionális modell 

A Battonya–Pusztaföldvári-hát környezete magasabb geotermikus gradienssel 

jellemezhető, miután az aljzati kiemelkedés kiváltképp annak fellazult zónája közvetítő 

közegként működik. KISS et al. 2015 szerint medenceméretben általában igaz, hogy a 

vékonyabb litoszférához nagyobb hőáram társul – a köpeny relatív közelsége miatt – 

azonban, ha kisebb részmedencéket nézünk, akkor ez nem mindig teljesül. Például a 

Battonya–Pusztaföldvári-hát felett nagyobb hőáramok mérhetők, mint a mellette levő 

árkok felett. LENKEY et al. 2021 szerint a jelenség azzal magyarázható, hogy a medence 

üledékeknek még nem volt ideje átmelegedni. A jelenség kialakulásában további szerepe 

lehet annak is, hogy az árokban lévő üledék hőellenállása nagyobb, mint a hátat felépítő 

gránit hőellenállása, amihez még az áramló fluidum hatása is hozzátesz.  

Az Alföld DK-i részén, ÉNy –DK irányban, nagyjából egymással párhuzamosan 

húzódik két, nagymélységű üledékgyűjtő medence: a Makói-árok és a Békési-süllyedék. 

Ezekben az üledékes kőzettömeg vastagsága meghaladja a 6000 m-t. A rögvonulat és a két 

oldalán elhelyezkedő árok geometriai változatossága önmagában is különleges.  

Szénhidrogén termelési adatokból ismert (LEMBERKOVICS et al. 2020), hogy az 

árokban áramló nagy nyomású fluidum benyomulhat a paleo-mezozoos rög fellazult, 

mállott zónájába, majd onnan tovább szivároghat a rög alacsonyabb nyomású felső, apikális 

térsége felé. A mállott zóna (jelenléte és vastagsága bátaapáti példájára alapul), mint 

egyfajta szállítószalag, lehetővé teszi magasabb hőmérsékletű és nagyobb mélységre 

jellemző ásványos összetételű fluidumok sekélyebb mélységbe áramlását. Ezen áramlási 

pályán megvalósulhat mind a termálvíz áramlása, mind a szénhidrogén migrációja, a 

nyomásgradienstől és permeabilitástól függő sebességgel. Eszerint az önálló áramlási 

rendszerrel rendelkező üledékes összletek és repedezett-hasadozott aljzati képződmények, 

a hátság kémiailag és mechanikailag egyaránt bontott, mállott és valószínűsíthetően erősen 

repedezett zónáján keresztül hidraulikusan csatlakoznak egymáshoz (38. ábra). A rög 

tetőrésze fölött lévő üledékes átmeneti zónában, a vertikális szivárgás irányára, illetve 

sebességére csak becsléseink lehetnek. Repedésdús, átjárhatóbb (porózus, vetőzóna, 

virágszerkezet stb.) és kompakt zónákat egyaránt valószínűsíthetünk; így a rögben mozgó 

víz tovább szivároghat a felszín irányába (VASS et al. 2018). CZAUNER & MÁDLNÉ SZŐNYI 

(2013) ugyanerre a térségre végzett tanulmányukban az adatok alapján arra a 

megállapításra jutottak, hogy mind a folyadékáramlási mintázatokat, mind a szénhidrogén-
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becsapódás lehetőségét túlnyomórészt a túlnyomás disszipációs útjai irányítják. Az egyes 

törések hidraulikus szerepét csak néhány esetben tudták azonosítani, de a törésövezetek 

hidraulikai funkciója és regionális heterogenitásokban betöltött szerepe meghatározható 

volt. Jelen robusztus modellvizsgálatban a törésövezeteket a fellazult-mállott zóna és annak 

geometriája, a beágyazott lokális rezervoár vizsgálatban pedig a ”zseb” és ”köztes zóna” 

fogalommal jelzett szivárgáshidraulikai egységek (bővebben 5.2 fejezet) reprezentálja. 

 

38. ábra. A Battonya–Pusztaföldvári-hát és árokrendszerének elvi áramlási modellje a koncepcionális 
modellalkotás részeként 

Jelmagyarázat: I.: Makói-árok, II.: Battonya–Pusztaföldvári-hát, III.: Békési-medence; A: medencekitöltő üledéksorozat, B: 
Aljzati hátság fellazult zónája, C: Mezozoos, paleozoos aljzat, piros nyíl: a kristályos aljzatba belépő áramvonalak. 

4.3 A modelltér geometriája 

A Battonya–Pusztaföldvári-hát modell területének lehatárolásakor a szándék az volt, 

hogy a peremeken lehetőleg minimális legyen a vízforgalom és kellő távolság legyen a 

vizsgált területtől (perem-hatás minimalizálása = no flow boundary). A központi hátságot 

két oldalról körülvevő mély helyzetű árkok tengelyének vonala alkotja a K-i és Ny-i 

modellhatárt. Északon az ÉK-Dny-i nagyszerkezeti vonal mentén, míg a romániai 

területrészen a modellezett területtől kellően távol, némiképp önkényesen lett a határ 



73 

kijelölve (KUN et al, 2022a). A lehatárolt kb. 107×67 km-es viszonylag kiterjedt 

modellterület (39. ábra) (7 160.08 km2) a nagy mélységű áramlások szimulációja 

szempontjából is előnyös volt. (40. ábra). 

 

39. ábra. A Battonya–Pusztaföldvári-hát hidrodinamikai modelljének határa a prekainozoos 
aljzattérképen ábrázolva 

 

40. ábra A modellezett tér hálókiosztása D-i nézetből (feltüntetve a prekainozoos aljzat felületének 
csomópontjait [sárga] és az az x, y és z irányú kiterjedést [m]) 
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A modelldomén 277 326 térelemet (rétegenként 15 407) és 148 903 csomópontot 

(rétegenként 7 837) tartalmaz. 

A modell főbb hidrosztratigráfiai felületei (és egyben modell főbb rétegeit, az ún. 

mesterfelületeket) az MBFSZ és elődintézményeinek kapcsolódó hatósági és pályázati 

feladatainak végrehajtása során készült regionális térképekből és modellekből származnak 

(41. és 42. ábra).  

A modellben 19 felület határol 18 réteget, melyből a felső 9 réteg a porózus üledékes, 

illetve prepannóniai képződményeket, a következő 5 réteg a kristályos, karbonátos 

(prekainozoos) alaphegység mállott, repedezett zónáit, míg az alsó 4 réteg a kevésbé 

repedezett kifejlődését reprezentálja.  

Üledékes rétegek esetében a valós földtani rétegek voltak az irányadók (változatos 

vastagsággal esetenként több részre bontva, kiékelődés nélkül), míg az aljzat leképzésében 

segédrétegekre bontással lehetett a vertikális változatosságot visszaadni. 

 

41. ábra. Az első modellréteg (terep) felszíne [mBf] 
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42. ábra. A pannóniai rétegösszlet modellfelszíne [mBf] 

4.4 A modell adatrendszere, a kiindulási modell eredményei 

Az előző fejezetekben ismertetett korábbi tanulmányok és irodalmi hivatkozások 

alapján meghatározott kiindulási modell paraméterek a hidrodinamikai és hőtranszport 

futtatások során finomhangolásra és kalibrálásra kerültek.  

A hidrodinamikai peremfeltételeket mért értékeken alapulnak, bár ezek mérési 

körülményei sok esetben nem voltak ismertek. A kiugró értékek miatt sok esetben 

modellezési szempontból lekövethetetlen változatosságot kellett volna visszaadni. A 

vizsgált térrészt felépítő összletek szivárgási tényező értékei széles skálán, kb. 5 

nagyságrend tartományban mozognak. Míg az üledékes összletekben a kavicsos, durva 

törmelékes kifejlődések, addig az alaphegységi kőzetekben a nagy repedezettségű és/vagy 

karsztosodott térrészek alkotják a maximumot. (7. táblázat). 

7. táblázat. A modellben alkalmazott szivárgási tényező értékek tartományai 

Rétegek Kőzettani háttér Szivárgási tényező 

(tartomány, nagyságrend) 

1–10. modellréteg 
lefelé finomodó zömmel 
homok, homokos agyag, agyag 

Kxx = Kyy=1,0× E–4 – 1,0× E–9 m/s 
Kzz = 1,0× E–6 – 1,0× E–10 m/s 

11–18 modellréteg 

különböző repedezettségű 
kristályos, sziliciklasztos és 
karbonátos kőzetek 

Kxx = Kyy= Kzz = 1,6× E–7 – 1,0× E–10 m/s 
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A porózus üledékek szivárgási tényező minimumát a regionális vízzárónak tekinthető 

Endrődi Márga testesíti meg, míg a legjobb vízvezető képességgel a pleisztocén homokos 

(hidegvizes) rétegösszletek jellemezhetők, ezeket a pannóniai korú delta eredetű 

homokkövek követik.  

Az alaphegységi repedezett kőzetek esetében is van anizotrópia. Sokszor éppen a 

vertikális irányú repedések okán a ”z” irányú szivárgási tényező akár több nagyságrenddel 

is nagyobb lehet a horizontálisnál. Mivel az aljzati kifejlődés meglehetősen heterogén és a 

feszültségtér eltérő lehet, ezért tartva magunkat a robosztus megközelítéshez, az aljzat 

kőzeteire izotróp megközelítést alkalmaztunk. 

A modell alján (10 km-es mélységben) 3000 mBf vízszint (az árkok alján ez megfelel 

30 MPa túlnyomásnak), míg az első réteg esetében a terepszintből 3 m-t levonva lett a 

talajvízszint definiálva. Pitvaros településen keresztül húzott DNy-ÉK-i irányú szelvényen 

bemutatva a kalibrált vízszint-eloszlást látható, hogy a jobb vezetőképességű fellazult zóna 

a hátság tetején (mállási kéreg) némi ellapultságot okoz a vízszint. (43. ábra).  

 

43. ábra. Modellezett vízszinteloszlás (40 ezer év futtatási idő, termelés nélküli állapot) vertikális 
szelvényen [mBf] 

A hidrodinamikai kalibráció a területen fúrt termálkutak létesítéskori nyugalmi 

vízszintértékén alapult, összesen 66 db rekord alapján. (44. ábra) 
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44. ábra. Mért–modellezett vízszint értékekek kalibrációs diagramja (66 rekord; statisztikai eredmény: 
Ē=8,46; RMS=11,32; σ=11,41) 

A terepszinten alkalmazott hőmérsékleti peremfeltétel 11,5 °C, ami megfelel a térség 

éves középhőmérsékletének, míg a modell alján (–10 000 mBf), 100 mW/m2 (HORVÁTH et 

al. 2005) földi hőáram értékkel számolva, a hőmérséklet 420 °C-nak adódott, az első 

futtatások során. A végleges futtatási változatokban alsó peremfeltétel fluxus helyett kötött 

hőmérsékleti értékkel lett kiváltva  

A FEFLOW® szoftver, más modellező programoktól eltérően, külön inputként 

igényli a száraz kőzet és az áramló fluidum hőtranszport paramétereit, mert azokat a 

porozitás függvényében módosítja. A hővezető képesség értékek meghatározásakor 

nagyobbrészt irodalmi adatokra lehet támaszkodni, értéke szűk skálán mozog, így ez 

számottevően nem befolyásolta a szimuláció eredményét.  

A Battonya–Pusztaföldvár-hát térségéről az információink zömmel a fúrások és 

kutak adataira épülnek és battonyai, gádorosi koncessziós jelentésekben (HORVÁTH & 

MAROS, 2012; ZILAHI-SEBESS & GYURICZA, (2012; 2013) és kútkönyvekben lettek 

publikálva. Ismert tény a hátság hőanomáliája a peremi árkokhoz képest: átlag hőáram érték 

Tótkomlós T–I fúrásban 106±15% mW/m2, míg a Makói-árokban mélyített Hód–I fúrásban 

mintegy 30%-kal kisebb 82±10% mW/m2 (DÖVÉNYI & HORVÁTH 1988, LENKEY et al. 

2021). 
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A modellben alkalmazott kezdeti paraméterek értékeit, ill. értéktartományait a 8. 

táblázat mutatja be, míg a véglegesített modellváltozatban alkalmazott hővezetőképesség 

térbeli eloszlását a 45. ábra szemlélteti. 

8. táblázat. Hőtranszport modellezés bemeneti paraméterei 

Kezdeti hőmérséklet (rétegenként): 11,5–420 ºC 
Porozitás: 0,005–0,3 
Áramló folyadék térfogati fajhője: 4,2 MJ/m3K 
Kőzetmátrix térfogati fajhője: 2,52 MJ/m3K 
Áramló folyadék hővezető képessége: 0,65 J/m/s/K [W/mK] 
Kőzetmátrix hővezető képessége: 1,4 – 2,8 J/m/s/K [W/mK] 
Longitudinális diszperzitás: 5 m 
Transzverzális diszperzitás: 0,5 m 
Hőmérsékleti peremfeltétel: 
Hőmérséklet (1. típus) – terep felszín 
Hőmérséklet (1. típus) –  
modell alja: –10 000 mBf 

 
11,5 ºC 

 
420 ºC 

A hővezetőképesség esetében a mért értékekhez képest (DÖVÉNYI et al. 1983) a 

modellben 10–15%-kal alacsonyabb értékek az irányadók, kiküszöbölendő a mérés során 

hozzámért konvektív komponenst és figyelembe véve azt a körülményt, hogy nagy térségek 

esetében a modellezendő térrészt nem tiszta és homogén ásványtársulások és kőzetek 

alkotják. E megközelítés összhangban áll hasonló regionális léptékű hőtranszport 

modellvizsgálatokkal: VOLPI et al. (2018) 5 km mély Torre Alfina térségének 

modellvizsgálatában λ = 2,0 – 2,4 W/mK közötti értékeket alkalmazott. NOACK et al. (2010) 

É-Német medence nagyregionális kéreg-léptékű modelljében (terület: 52 500 km2, 

mélység: 9 km) az anomálisnak tekinthető sókőzetek kivételével (3,50 W/mK) a granitoid 

kőzetek alkotják a maximumot (2,55 W/mK); a minimumot a negyedidőszaki homok, 

kőzetliszt és agyag képviseli 1,50 W/mK értékkel. 
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45. ábra. A modellben alkalmazott hővezető képesség értékei 3D tömbszelvényen ábrázolva, 
a Makói-árok (DNy) felőli nézet 

A természetes hidrodinamikai és termikus állapot előállítása egy termelésmentes 

hosszúidejű futtatás eredménye, mely a modellezett referencia értékek (vízszint, 

hőmérséklet) változását figyelembe véve megközelítőleg 40 000 év futtatás időt igényelt. 

Ez idő alatt a kezdeti peremfeltételi anomáliák elsimultak, továbbá az áramló fluidum 

hőszállító hatása (konvektív hőtranszport) is érvényesülhetett a hőmérsékleteloszláson (46. 

ábra). Ezzel sikerült – a következő fejezetben bemutatott – szcenáriók alkalmazásánál a 

kezdeti peremfeltételek zavaró hatását kiküszöbölni. 
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46. ábra. Modellezett hőmérséklet(°C) eloszlása DNy-ÉK-i szelvény mentén / szürke vonal: réteghatár, 
illetve hálókiosztás, színes vonal: izoterma (magassági torzítás: 4×) 

A hőmérsékleti keresztszelvényen kivehető, hogy az aljzati hátság mállott, repedezett 

felső zónája az árkok mélyéről mintegy meghúzza a hátság tetejének irányába a 

felmelegedett fluidumot. Mindez diszkrét vetők alkalmazása nélkül jött létre, pusztán a 

geometriai és szivárgási tényezők kombinációjaként. A környezetéhez képest a pozitív 

anomália a Békési-süllyedék felé kifejezettebben jelentkezik, mint a Makói-árok felé, 

melynek valószínűsíthető oka a két oldal meredeksége közti különbség 

Ez a hőmérsékleteloszlás jó egyezést mutat a területen mélyült szénhidrogén termelő 

kutakban mért talphőmérséklet adatoknak (47. ábra) és a termálkutak létesítéskori 

vízszintjének. 
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47. ábra. Mért–modellezett hőmérsékleti értékek kalibrációs diagramja (29 talphőmérsékleti rekord; 
statisztikai eredmény: Ē= 15,66; RMS=18,82; σ=19,15) 

Az így kapott hőmérséklet és vízszint-eloszlás adja az input paramétereit a 

geotermikus kútpár különböző termelési forgatókönyvek szerinti vizsgálatának.  

5 Rezervoárhasznosítási szimulációk és készletszámítás 

Az előzőekben ismertetett kalibrált modellbe ágyazva egy lehetséges geotermikus 

hasznosítás kinyerhető energia mennyiségét számítom ki UNFC-2009 kód szerint egy 

termelő–visszasajtoló kútpáron (doublet) keresztül.  

A véges elemes modellezés nagy előnye, hogy lokálisan sűrítve egy szubregionális 

modellbe rezervoár léptékű vizsgálat történhet kihasználva mindkettő előnyeit pl. 

peremfeltételi problémák eliminálása, részletgazdag sebességtér, nagy felbontású 

kútkörnyezeti hőmérséklet és vízszint eredmény.  

5.1 A célrezervoár helyszínének kiválasztása 

A helyszín kiválasztásának előzetesen definiált feltétele volt, hogy a potenciális 

termelőkút talphőmérséklete meghaladja a 150 °C-os értéket. A másik fontos kitétel volt, 

hogy a hely alkalmas legyen egy hipotetikus EGS erőmű létesítésére, vagyis a Battonya–

Pusztaföldvári-hát feletti medence üledékek kizárásra kerültek. A kristályos aljzat belül 

kérdés volt, hogy belül, nagyobb mélységben vagy a felső, repedésekkel átjárt mállott 
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zónájában kerüljön a tervezett kútpárt, mérlegelve mind az előnyeit, illetve hátrányait 

például állékonyság tekintetében.  

Felmérve a mechanikus stimulációkban rejlő bizonytalanságokat (irányíthatóság, 

megfelelő méretű hőcserélő felület kialakítása) a kristályos aljzat felső, a természetes 

folyamatok által „megviselt” zónája került kijelölésre, amely esetenként hidraulikai 

kapcsolatban lehet a felette települő báziskonglomerátummal. Ilyen térrész, a meglévő 

fúrások dokumentációi alapján, több is akadt a szubregionális modelltérben.  

A kívánt mélységközt elért fúrások alapján Fábiánsebestyén, Medgyesbodzás, Békés 

és Pitvaros települések környezete tűnt potenciálisan megfelelőnek. De míg 

Fábiánsebestyén és Békés az alapmodell kiterjedésének szempontjából peremi helyzetű, 

Medgyesbodzás térségében pedig mezozoos karbonát alkotja az alaphegységet, Pitvaros 

térsége lett a rezervoárvizsgálat helyszíne, mélységköze: –2840 – –3143 mBf. 

5.2 A modellezett szcenáriók meghatározása 

A szimulált szcenáriók elsősorban szivárgási tényező variánsokon alapulnak, ahol a 

repedezettség fokát a szivárgási tényező nagyságrendje hordozza (ekvivalens porózus 

módszerként). Az adott réteg, nevezzük célrétegnek, az alaphegység kissé fellazult zónája 

egy tetszőleges szivárgási tényező eloszlással lett definiálva három fő kategória mentén. 

Az intakt, repedésmentes kifejlődés a mátrix, a repedezett tartományok a zsebek. A két 

övezet közötti térrész lett a köztes zóna (48. ábra). Ezek változatos elrendezésben 

helyezkednek el a térben, különböző kapcsolódási szituációkban, de fontos kiemelni, hogy 

véletlenszerűen és minden változatban ugyanaz a mintázat. A mátrix szivárgási tényezője 

változatlan maradt az összes szcenárióban; míg a zsebek és a köztes zónák minimum, 

medián és maximum értékei kombinálódtak az összes lehetséges esetben.   
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48. ábra. A célréteg szivárgási tényező kategória tartománya: ”A” a teljes modell rétegben, ”B” kinagyítva 
a rezervoár léptékben Pitvaros régiójában (lila: mátrix, piros: zseb, sárga: köztes zóna) 
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Mivel egy rezervoár által tartalmazott hőmennyiség számításához szükséges 

paraméterek, mint porozitás, szivárgási tényező, a kőzetmátrix, ill. a víz fajhője, sűrűsége, 

valamint hőmérséklete nem határozható meg egyértelműen (a bemenő adatok különböző 

mértékű bizonytalansággal terheltek). Ennek figyelembevételét viszont el lehet végezni 

valószínűség elméleti alapon.  

A Monte-Carlo paraméterbecslés értéksokaságára mennyiségi okokból nem lehet 

modellfuttatásokat végezni, viszont a fuzzy aritmetika segítségével a különböző 

paramétereket háromszög alakú fuzzy számokkal megadva azok kitüntetett értékeire 

futtatható modell. A szimuláció során a víz fajhője konstans (4200 J kg−1 K−1). Ebben az 

esetben a végeredményül kapott fuzzy háromszög kezdő nulla tagságértékéhez tartozó 

száma adja a magasan megbízható, egy tagságértékhez tartozó száma a legjobb, míg a záró 

nulla tagságértékéhez tartozó száma az alacsony megbízhatóságú becslést.  

A geometriai kialakítás (rétegszám, vastagság) az egyértelmű összehasonlíthatóság 

kedvéért változatlan maradt a vizsgálatsorozat folyamán. A mátrix porozitása 0,02; a zsebé 

0,04; ennek megfelelően a köztes zónát pedig 0,03 értéket kapott. A kilenc darab szivárgási 

tényező variánst (9. táblázat) három termelési változatban összesen 27 modellváltozatot 

eredményezett. Minden esetben 1 db termelő és 1 db visszasajtoló kút került kialakításra 

melyek hozamai: 

Q1= 2000 m3/nap; Q2=3000 m3/nap és Q3=5000 m3/nap. 

 

9. táblázat. Modellvariánsok szivárgási tényezői (Kxx = Kyy = Kzz) 

Sorszám Alapmodell elnevezése 
Szivárgási tényező értékek (Kxx = Kyy = Kzz) 

mátrix zseb (jobb rezervoár) köztes zóna (gyengébb rezervoár) 

1. 1_am_max_zseb_max_koztes.fem 2,0E–08 m/s P10 (max) = 3,0E–04 m/s P10 (max) = 7,92E–06 m/s 

2. 2_am_med_zseb_max_koztes.fem 2,0E–08 m/s P50 (med)= 7,9e–05 m/s P10 (max)=7,92E–06 m/s 

3. 3_am_min_zseb_max_koztes.fem 2,0E–08 m/s P90 (min) = 3,0E–06 m/s P10 (max) = 7,92E–06 m/s 

4. 4_am_max_zseb_med_koztes.fem 2,0E–08 m/s P10 (max) = 3,0E–04 m/s P50 (med)= 3,0E–06 m/s 

5. 5_am_med_zseb_med_koztes.fem 2,0E–08 m/s P50 (med)= 7,9E–05 m/s P50 (med)= 3,0E–06 m/s 

6. 6_am_min_zseb_med_koztes.fem 2,0E–08 m/s P90 (min) = 3,0E–06 m/s P50 (med)= 3,0E–06 m/s 

7. 7_am_max_zseb_min_koztes.fem 2,0E–08 m/s P10 (max) = 3,0E–04 m/s P90 (min)= 8,0E–7 m/s 

8. 8_am_med_zseb_min_koztes.fem 2,0E–08 m/s P50 (med)= 7,9E–05 m/s P90 (min)= 8,0E–7 m/s 

9. 9_am_min_zseb_min_koztes.fem 2,0E–08 m/s P90 (min) = 3,0E–06 m/s P90 (min)= 8,0E–7 m/s 
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A visszasajtolás minden esetben 50 °C-ra lehűlt fluidummal valósult meg, tehát a 

termelt víz modellezett hőmérsékletéből 50 °C-ot levonva majd ezt a ΔT értéket a 

tömegárammal és a víz fajhőjével szorozva kapjuk meg a hőhasznosítás volumenét.  

A különböző forgatókönyveket bemutató táblázatban (9. táblázat) látható két 

„kakukktojás” eset is: a 3. esetben a zsebnek kisebb a szivárgási tényezője, mint a köztes 

zónának, tehát itt egy olyan esetet tanulmányozhatunk, amikor a fúrás nem találja el a 

legjobb szivárgási tényezőjű összletet (vagy felfoghatjuk úgy is, hogy az esetleges 

mechanikai stimuláció nem volt sikeres). Míg a 6-os számú esetben a zseb és a köztes zóna 

értéke megegyező, tehát a jó áteresztőképességű tartomány mérete nagyobb. 

A termelt és a visszasajtolt víz mennyisége mindegyik modellezett esetben azonos 

volt. A modellt tranziens módban futott úgy, hogy éves szinten 300 nap termelést 65 nap 

leállás követte végig a teljes 50 éves üzemelési időtartam alatt. Ez a termelési metodika 

82%-os éves kihasználtságot jelent, ami megfelel a jelenleg alkalmazott üzemelési 

technológiának (REN21 2019). Természetesen sok féle termelési menetrend létezik a 

gyakorlatban, ezekben tervezett és eseti karbantartási időszakok rendszeresen előfordulnak. 

A futtatás hosszának meghatározásakor a jelenlegi szabályozásból kiindulva, 

miszerint a koncesszió időtartamán belül a tervezett ásványi nyersanyag, illetve a 

geotermikus energia esetében a kutatási időszak 4 évnél hosszabb nem lehet. Ez a 

geotermikus energia és nem hagyományos eredetű szénhidrogén esetében, két alkalommal, 

az eredeti kutatási időszak felével meghosszabbítható. Az elnyert szénhidrogén koncesszió 

20 évre, a geotermikus koncesszió 35 évre szól, ez az időtartam újabb pályázat kiírása 

nélkül egy alkalommal, a koncessziós szerződés eredeti időtartamának felével 

meghosszabbítható. Tehát egy pályázati eljárásban a maximális üzemeltetési időtartam 

hozzávetőleg 50 év geotermikus hasznosítás esetén, de – ahogy később látható – a 

futtatások során pl. a termelőkutak hőmérséklet–idő diagramja már korábbi időpontban és 

egyértelműen mutatja a továbbtermelés esetén várható hűlési trendet, azaz a gyengülő 

üzemelési kilátásokat. 

5.3 A modellezett szcenáriók eredményei 

Ahogy az előző fejezetben ismertettem: összesen 27 db modellvariánst futtattam. 

Ezek eredményeinek kiértékelése egyrészt a visszasajtoló kút nyomásemelkedésének, 

másrészt a termelőkút depressziójának és hűlésének a mértékén alapult. Kiindulásként a 
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maximum 200 méteres (20 bar) vízszintváltozás (mind a termelő, mind a visszasajtoló 

kútban), illetve a termelőkútban a még ideálisnak tekinthető 25 °C hőmérséklet csökkenés 

volt az üzemelési és termikus végállapot kritérium. Ennél nagyobb mértékű 

nyomásváltozás már gazdaságtalanná tenné a geotermikus projektet, míg a hőmérséklet 

még elfogadható csökkenése a tömegfluxus függvénye. Azaz a 25 ºC hőmérséklet 

csökkenést jelzés értékűnek tartjuk, de a projekt még ennél nagyobb hőmérséklet csökkenés 

esetén is termelhet profitot.  

A vízszintváltozást, jelen esetben a termelőkút 300 nap termelését és az azt követő 

65 nap leállását jelentő időbeli ciklus hidraulikai hatását egy modellbeli észlelőpontban 

(200 m-re a termelőkúttól) a 49. ábra szemlélteti.  

Ha a burkolóját nézzük, az első kb. 800 napban látunk egy enyhe felfutást a 

visszasajtolás hatásaként, összességében egy enyhén csökkenő vízszinttartományt kapunk 

stagnáló trenddel a végén. 

 

49. ábra Modellezett hidraulikus emelkedési magasság [mBf] a termelőkúttól 200 m-re található csomó-
pontban /1. forgatókönyv; x-tengely: szimulációs idő [nap], y-tengely: modellezett vízszint [mBf]/ 

A 10. táblázat alapján látható, hogy a futtatott verziók közül a termelőkút 

szempontjából 9 db, a visszasajtoló kút szempontjából pedig 13 db verzió nem teljesítette 

az előzetes hidrodinamikai feltételt – figyelembe véve az átfedéseket – ez összesítve 17 

verzió.  
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Elemezve a számításokat, a szivárgási tényezők esetében, ha legalább a zseb vagy a 

köztes réteg minimum értékkel szerepel, akkor a rendszer üzemeltetése vízszintváltozás 

szempontjából az optimális értéken kívül esik. A visszasajtolás szempontjából a nagy 

hozam (legalább 5000 m3) is kockázatos lehet, ha a köztes zóna közepes vagy annál kisebb 

szivárgási tényezővel jellemezhető. 

10. táblázat. A modellvariánsok hidrodinamikai eredményei /A piros háttérszín a termelőkút, a kék 
háttérszín a visszasajtoló kút 20 bárnál nagyobb nyomásváltozását szemlélteti, ezek a hidraulikus 

kritériumnak nem megfelelő modellváltozatok/ 

Sorszám 
Szivárgási tényező variánsok  

zseb_köztes zóna 
Változatok 

Termelőkút maximális 
depressziója [m] 

Visszasajtoló kút maximális 
vízszint-növekedése 

1 max_max sc1_2000 –6,9 37,7 
2 max_max sc1_3000 –10,6 55,2 
3 max_max sc1_5000 –17,4 90,4 
4 med_max sc2_2000 –20,1 38,3 
5 med_max sc2_3000 –30,2 56,2 
6 med_max sc2_5000 –50,3 92,2 
7 min_max sc3_2000 –460,3 51,1 
8 min_max sc3_3000 –690,8 69,4 
9 min_max sc3_5000 –1152,3 106,0 

10 max_med sc4_2000 –10,6 94,5 
11 max_med sc4_3000 –15,2 140,7 
12 max_med sc4_5000 –24,7 233,2 
13 med_med sc5_2000 –23,3 95,4 
14 med_med sc5_3000 –34,7 141,8 
15 med_med sc5_5000 –57,9 234,8 
16 min_med sc6_2000 –463,7 113,6 
17 min_med sc6_3000 –696,2 168,1 
18 min_med sc6_5000 –1161,3 277,1 
19 max_min sc7_2000 –22,7 340,7 
20 max_min sc7_3000 –32,2 509,8 
21 max_min sc7_5000 –53,8 848,5 
22 med_min sc8_2000 –35,9 341,4 
23 med_min sc8_3000 –52,6 510,6 
24 med_min sc8_5000 –87,1 849,6 
25 min_min sc9_2000 –476,0 360,4 
26 min_min sc9_3000 –714,5 538,3 
27 min_min sc9_5000 –1191,3 894,2 

A termelőkútban modellezett hőmérsékleti eredmények szerint az előzetes maximum 

25 °C-os hőmérséklet csökkenési kritérium csak a 35 éves időintervallumban teljesült, de 

ott is csak 2000 m3/nap hozam esetén (11. táblázat).  

Az 50 éves ciklus esetében a hőmérsékletváltozás átlaga 64 °C, a legkisebb (2000 

m3/nap) hozamráták esetén 55 °C az átlag, a minimum érték is 49 °C, ami egy műszaki 

tervezésnél már nehezen fogadható el. A 35 éves üzemelés esetén lényegesen kedvezőbb a 

helyzet, bár az átlag meghaladja az 50 °C-t, a minimum hozamvariációk átlaga 22 °C, 

legkisebb hőmérséklet különbség 15 °C.  
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11. táblázat. A modellverziók hőtranszport eredményei a szcenáriónként a termelőkutak szempontjából 
(Piros színnel a hőmérsékleti kritériumnak nem megfelelő verziók vannak feltüntetve ΔT> 25 °C) 

Termelési variánsok 
Termelési 

variáns 
[m3/nap] 

Kezdeti T 
[°C] 

T35 év múlva 

[°C] 
ΔT_0_35 év 

[°C] 
T50 év múlva 

[°C] 
ΔT_0_50 év 

[°C] 

1. szcenárió 
2000 158 135 23 102 56 
3000 158 92 66 86 72 
5000 158 82 76 91 67 

2. szcenárió 
2000 158 136 22 102 56 
3000 158 92 65 86 72 
5000 158 82 75 91 66 

3. szcenárió 
2000 154 139 15 105 48 
3000 154 95 58 84 70 
5000 154 80 74 88 65 

4. szcenárió 
2000 158 136 22 102 56 
3000 158 111 47 89 69 
5000 158 82 76 91 67 

5. szcenárió 
2000 158 136 21 102 55 
3000 158 93 65 86 72 
5000 158 82 75 91 67 

6. szcenárió 
2000 154 139 15 105 49 
3000 154 95 59 84 70 
5000 154 78 76 88 66 

7. szcenárió 
2000 158 138 20 105 54 
3000 158 95 63 87 71 
5000 158 82 76 90 68 

8. szcenárió 
2000 158 138 19 104 53 
3000 158 94 64 87 71 
5000 158 82 76 89 68 

9. szcenárió 
2000 154 139 15 105 49 
3000 154 95 59 84 70 
5000 154 78 76 85 69 

A termelőkútban számított hőmérsékletváltozás időbeli lefutása látható (50. ábra) 

az 1. szcenáriónak megfelelő hidrodinamikai feltételek mindhárom hozamváltozata 

esetén. 

 

50. ábra. Az 1. szcenárió hőmérséklet–üzemelési idő diagramja mindhárom hozamvariáns feltüntetésével 
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A kisebb termelési ráták esetén a "hődepressziós front" helyett egy monoton 

függvény szerinti átmenet jön csak létre; a zseb egyenletesen hűl az egyensúlyi 

hőmérsékletig.  

Elgondolkodtató jelenség, hogy az 5000 m3/nap termelések esetében 32 év (11 680 

nap) után a lehűlt kútkörnyezet újból melegedni kezd. Valószínűsíthetően az első 

időszakaszban túlhűlés történik, mert a rezervoárt megtestesítő zseb túl gyorsan lehűl, így 

az hidegebbé válik, mint a végső statikus hőmérséklet lenne. Az utánpótlás nagy része 

ekkor a visszasajtolásból oldalról (alárendelten felülről és alulról) érkezik, azaz a nagyobb 

szivárgási tényezőjű és hidegebb környezetből. Az időtengelyen leghidegebb 

minimumpont után (kb. 32 év) az utánpótlást oldalirányból, a termelési depressziós front 

által még nem érintett melegebb környezetből kapja.  

Feltételezhető, hogy hosszabb termelés szimulációja esetén, a maximum után újra 

hűlési trend következne be, majd egy kisebb mértékű újabb melegedést megint egy hűlési 

szakasz követné. Megközelítőleg egy lecsengő amplitúdójú függvény szerinti változás 

várható és idővel valószínűleg a periódusok hossza is növekszik. A tároló időbeli 

hőmérsékleti regenerálódását az alábbi 51. ábra szemlélteti. 

 

51. ábra. Az 1. szcenárió hőmérséklet–üzemelési idő diagramja (50 év szakaszos termelés és az azt követő 
50 év felhagyás) a: termelőkút, b: visszasajtoló kút 

Mint az látható a rezervoár visszamelegedése csak kb. 50%-ban történik meg, erre 

viszont, gyakorlati tapasztalatok híján, nem történt kalibráció. 
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Az utánpótlódási irányok a felülnézeti áramvonalképen szemrevételezhetők (52. 

ábra), melynek kirajzoltatása a termelőkútból (mélységbeli pontjából) visszafelé indított 

részecskék (100 db) alkalmazásával történt. 

 

52. ábra. Az 1. szcenárió 5000 m3/nap hozamrátával kialakított modellváltozat visszafelé indított 
áramvonalképe [nap] 

A kirajzolt áramvonalkép a termelőkút környezetéből viszonylag nagy rádiusszal (45 

m) 100 csomópontból lett indítva. Az okkersárga szín a 2000 napnál kisebb idejű pályákat 

mutatja be és látható, hogy a rosszabb szivárgási tényezőjű háttérterület felől is érkezik 

utánpótlás jelentős időbeni késleltetéssel. 

Összehasonlításképpen és szemléltetésül a 9. szcenárió 2000 m3/nap termelési 

verziójú áramképét is kirajzoltattam (53. ábra). Ez a verzió a hidrodinamikai 

kritériumoknak nem felelt meg (irreálisan nagy vízszintváltozás miatt), de jól demonstrálja, 

hogy a rezervoár alacsony szivárgási tényezőjének okán a háttér mennyivel jobban 

bekapcsolódik az utánpótlásba. 
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53. ábra A 9. szcenárió 2000 m3/nap hozamrátával kialakított modellváltozat visszafelé indított 
áramvonalképe [nap] 

A Peclet szám, a konvektív és a konduktív hővezetés viszonyszáma. A vártnak 

megfelelően a legnagyobb közvetlenül a termelőkút környezetében, mert ott a legnagyobb 

a hézagtérben a folyadékáramlási sebesség, attól távolodva a kondukciós hővezetés aránya 

egyre nő, mivel az áramlási sebesség úgy lecsökken, hogy a kőzetvázon keresztül szállított 

hő lokálisan nagyobb lesz. A modell két állapotában a célréteg Peclet-szám eloszlását 

mutatja be az 54. ábra. 

a, b, 

54. ábra. A célrezervoárban a doublet környezetében Peclet-szám értéke termeléses (a) és leállási 
időszakban (b) 
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A leállási szakaszban, miután nincs folyadékmozgás szinte csak a kondukciós 

hővezetés dominál. Mint látható, önmagában a Peclet-szám eloszlása, az áramvonalképhez 

hasonlóan kijelöli azt a hasznos térfogatot, a hőátadás konvektív része végbemegy. A Peclet 

szám értéke tartalmazza egyrészt a porózus geológiai környezet szemcséinek termális 

tulajdonságait, másrészt pórusfolyadék áramlási sebességét, tehát egyszerre jellemzi a 

környezet geotermális és hidrogeológiai tulajdonságait is. (TARI 2011)  

A vizsgálatsorozat eredeti célja a megvalósítható hőtermelés szimulációja, ezért 

kihasználva a FEFLOW® szoftver numerikus kiértékelési funkcióját a termelő kút által 

kitermelt hőmennyiséget is kiszámítottam 35 és 50 évre (12. táblázat és 55. ábra). A 

szimuláció a fluidum teljeskörű visszasajtolással történt 50 °C-on. A kivett hőmennyiség 

meghatározásakor elhanyagoltam a feláramló fluidum kútban történő, hozamfüggő 

lehűlését, ami akár 10–15 °C-ot is elérhet a talpi hőmérséklethez képest. Továbbá 

meghatároztam, hogy 35 év alatt mekkora része vehető ki a hőmennyiségnek 50 évhez 

képest. Ha ez az érték 0,7-nél nagyobb, akkor a rezervoár elkezdett lehűlni, azaz 

bekövetkezett a termális áttörés.  

12. táblázat. Szcenáriónként számított hőmennyiség értékek 35 és 50 évre [Joule] 

Szcenáriók Q_Termelő 35 év [J] Q_Termelő 50 év [J] 
Hőmennyiség arány  

[35 év/50 év] 

sc1_2000 5,9796E+15 8,3608E+15 0,72 

sc1_3000 7,2291E+15 8,5174E+15 0,85 

sc1_5000 1,1260E+16 1,2653E+16 0,89 

sc2_2000 5,7275E+15 7,2223E+15 0,79 

sc2_3000 7,2317E+15 8,5180E+15 0,85 

sc2_5000 8,7428E+15 1,0845E+16 0,81 

sc3_2000 5,5749E+15 7,1620E+15 0,78 

sc3_3000 7,2222E+15 8,4715E+15 0,85 

sc3_5000 8,6479E+15 1,0593E+16 0,82 

sc4_2000 5,7502E+15 7,2507E+15 0,79 

sc4_3000 7,2638E+15 8,5671E+15 0,85 

sc4_5000 8,7773E+15 1,0875E+16 0,81 

sc5_2000 5,7383E+15 7,2421E+15 0,79 

sc5_3000 7,2544E+15 8,5517E+15 0,85 

sc5_5000 8,7683E+15 1,0871E+16 0,81 

sc6_2000 5,5774E+15 7,1579E+15 0,78 

sc6_3000 7,2170E+15 8,4603E+15 0,85 

sc6_5000 8,5987E+15 1,0484E+16 0,82 

sc7_2000 5,7697E+15 7,3279E+15 0,79 

sc7_3000 7,3541E+15 8,6944E+15 0,85 

sc7_5000 8,8999E+15 1,0960E+16 0,81 

sc8_2000 5,7591E+15 7,3162E+15 0,79 

sc8_3000 7,3396E+15 8,6719E+15 0,85 

sc8_5000 8,8966E+15 1,0961E+16 0,81 

sc9_2000 5,5805E+15 7,1618E+15 0,78 

sc9_3000 7,2079E+15 8,4562E+15 0,85 

sc9_5000 8,5905E+15 1,0388E+16 0,83 
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55. ábra. Az egyes modellverziókban kétkutas rendszerrel kinyerhető hőmennyiség [Joule] 
35 év és 50 után 

5.4 A kivehető hőmennyiség fuzzy becslése 

Jelen számításokban sem a mátrix és a köztes zóna szivárgási tényezője, sem a kút 

vízhozama nem változott. Továbbá a vizsgált térfogat, és annak hatékony porozitása is 

változatlan maradt. Így 9 különböző szivárgási tényező kombinációt kapva, 

kombinációnként 3–3 hozamadattal, azaz 27 modell esetben adható meg a kivehető 

hőmennyiség.  

Az adott változatokat fuzzy háromszögben megadva, a két szélsőérték (0 

tagságértékű pont) a legnagyobb kitermelhető hőmennyiség és a legkisebb kitermelhető 

hőmennyiséghez tartozó érték. A legnagyobb értéket akkor kapjuk, ha a szivárgási tényező 

értékek a legnagyobbak és a hozam is a legnagyobb, ez az első forgatókönyv 5000 m3/napos 

hozamához tartozik (12. táblázat 3. sor).  

A legkisebb érték meghatározása nehézséget okoz, mert a legrosszabb forgatókönyv 

mellett legkisebbnek vett 2000 m3/napos hozam esetén a még elfogadhatónak választott 

200 m-es depresszió több mint duplája adódik (10. táblázat 25. sor). Ezért további 

futtatások eredményezték azt a hozamértéket, mely esetben a termelőkút depressziója nem 
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haladja meg a 200 m-t. A kívánt hozam próbálgatással (trial and error) 850 m3/napnak 

adódott.  

Ezekkel a paraméterekkel futtatott modellben a 35 év alatt kivehető hőmennyiség: 

2,40E+15 J, míg 50 év esetén: 3,43E+15 J.  

A legvalószínűbb érték (1 tagságértékű pont) az 5. forgatókönyv 3000 m3/nap-os 

hozamához tartozik (12. táblázat 14. sor). Ez alapján megrajzolható a 35 év, illetve 50 év 

alatt kivehető hőmennyiség fuzzy háromszögei. Ha egy konkrét értéket (crisp value) 

akarunk a kivehető hőmennyiségre meghatározni (defuzzification), akkor azt a háromszög 

súlypontjának x koordinátájával adhatjuk meg (56. ábra, REZESSY et al. (2005), KUN et al. 

2022b). 

 

 

56. ábra. A 35 év illetve 50 év alatt kivehető hőmennyiség fuzzy háromszögei, a defuzzyfikált értékek (S) 
feltüntetésével 

Mindezek alapján a fuzzy háromszög csúcsait tekintve a kitermelhető hőmennyiség 

P90, P50, P10 valószínűségű szintű értékének, 35 évre elvégzett modellből számolva az 

alábbiak:  

 P90: 2,40E+15 
 P50: 7,25E+15 
 P10: 1,126E+16 

 

A célkitűzés érdekében – miszerint a dinamikus készletbecslés előnyét szeretném 

bizonyítani a statikus eljárással szemben – a kivehető energia mennyiségének 

meghatározását a UNFC-2009 módszerhez készült segédanyagban lefektetett statikus 

készletszámítási metódussal végeztem. Az alábbi módszer a kutatás első szakaszában 
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alkalmazható, általában annak eldöntése érdekében, hogy érdemes-e elkötelezni magunkat 

a tervezett projekt megvalósítására.  

A kivehető hőmennyiséget (Q) a kitermelési tényezővel (recovery factor = R) vesszük 

figyelembe az alábbi összefüggés szerint:  

�=R ∫[(1−R)$
c
Δ�+R$TcwΔ�]�% 

 
o �%: terület x vastagság: (158391,65 m2 x 200 m) 

o R: porozitás: 0,04 (r: kőzet; w: víz) 

o $: sűrűség, w(víz): 1000 kg/m3; r(kőzet): 2700 kg/m3 

o c: fajhő, w(víz): 4,2E+3 kJ/m3*K, r(kőzet): 0,8E+3 kJ/m3*K 
o ΔT: ~ 160 °C – 50 °C = 110°C 
o R = 0,2 (kitermelési tényező / recovery factor) 

A fenti adatokat alapul véve Monte-Carlo szimulációt futtatás történt az alábbi paraméterekkel: 

 Terület: eredeti terület (m2): 158 391,65+–5% (egyenletes eloszlás), 
 Vastagság (m): 100–300 (egyenletes eloszlás), 
 Hézagtérfogat (%): 0,01–0,07 (egyenletes eloszlás), 
 Delta T (oC): 100–120 (egyenletes eloszlás), 
 Kitermelési tényező /Recovery factor/: 0,1–0,3 (egyenletes eloszlás) 

A számolás alapján a teljes kőzettérfogatból kitermelhető hőmennyiség (55. ábra)  

 P90: 7,82E+14 J 
 P50: 1,45E+15 J 
 P10: 2,55E+15 J 
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57. ábra. A teljes kőzettérfogatból kitermelhető hőmennyiség Monte-Carlo szimulációjának 
diagramja 

Ez a teljes kőzettérfogatból kitermelhető hőmennyiség, és mint korábban látható volt 

a modellezés során ennél hozzávetőleg fél nagyságrenddel nagyobb értékek jöttek ki.  

Ennek magyarázata, 2000 m3/nap termelésnél kb. 80 km2 terület hőáramával egyenlő 

hőmennyiséget veszünk ki, azaz a zseb területén bejövőnek majdnem az 500 szorosát ezért 

a hőáram első közelítésben elhanyagolható, lényegében a tárolt hőt aknázzuk ki.  

Statikus számítás szerint:  

– a 158 391.65 m2 × 200 m térfogat teljes hőmennyisége  

– 0,2 kitermelési hatásfok esetén  

– 22 év alatt  

– 50 °C-ra  

kellene hűlnie, ha nem lenne a térfogaton kívülről utánpótlás.  

De mivel van kívülről is vízutánpótlódás, ez a vízmennyiség viszont a mélységnek 

megfelelő hőmérsékletű, ami jelentősen lassítja is a rezervoár lehűlését. A vizsgált 

térfogaton kívüli utánpótlódást igazolja, igaz alárendelt mértékben az 1. szcenárió 

áramvonalképe is (52. ábra) 
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5.5 UNFC-2009 kód szerinti készletszámítás  

A módszertani fejezetben leírtak alapján a UNFC-2009 kód definíciója szerint egy 

adott geotermikus projekt háromjegyű kóddal jellemezhető (E, F, G kategóriák). 

Olyan projektek esetén melyek előkészítési fázisban vannak és az adott rezervoárban 

még egyetlen projekt sem valósult meg csak E3 kategóriájú lehet. Mivel a Battonya–

Pusztaföldvári-hát térségében a geotermikus energiatermelés gazdasági életképessége még 

nem állapítható meg, bár a geotermikus energiatermelésre már készült tanulmány, az 

elégtelen információk miatt az E3.2 kategóriába sorolandó (Kun et al. 2022b). A vizsgált 

térségében a kitermelés megvalósíthatósága a korlátozott műszaki adatok miatt nem 

értékelhető, mivel az adott célképződményt még nem próbálták feltárni, ezért az F 

tengelyen a 3. kategóriába tartozik. A kutatási területen regionális geológiai vizsgálatok 

kedvező geotermikus adottságokat mutatnak, de nincs konkrét helyre vonatkozó vizsgálat, 

így a végső besorolás az F3.3 kategóriát adja. A G tengely meghatározása során figyelembe 

kell venni, hogy csak néhány fúrás érte el a gránitos aljzatot, és azok is csak néhány 10 m-

es vastagságban (pl. Tótkomlós–I fúrás), de termelés azokból sem történt. A projekt 

helyszínén a célképződmény pontos mélysége nem ismert, tehát elsősorban közvetett 

bizonyítékon alapul a kitermelhető geotermikus energia mennyiségének meghatározása, 

így a számított készletek csak G4 kategóriájúak lehetnek. 

A G4.1, G4.2, G4.3 szerinti hőmennyiségeket a megadott fuzzy háromszögszám 

adatai alapján kerül megadásra. Mivel az 50 éves üzemidő alatt a modellszámítások a 

tárolótér jelentős lehűlését valószínűsítik, így a 35 év üzemidőre számított értékek a 

mérvadók, melyek a következők: 

G4.1=2,4E+15 

G4.2=4,85E+15 

G4.3=4,01 E+15 

Mindezek alapján a vizsgált projekt UNFC-2009 osztályozás szerinti besorolása: 3.2, 

3.3, 4, ami a kutatási (reménybeli) projekt kategóriát jelenti. 

6 A modellvizsgálat-sorozat eredményei, konklúziók 

A hozamvariációkat hőmérséklet diagramokon bemutatva látható (55. ábra), – és ez 

ennek a vizsgálatsorozatnak a fő tanulsága – hogy a vizsgált aljzati kiemelkedés még 
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kedvező és kvázi optimális feltételek mellett is csak korlátozott időtartományban (ideális 

konfigurációban kb. 30–35 év) alkalmas geotermikus hasznosításra. Bár a 35 év időtartam 

az 50 évnek 70%-a, mégis az esetek döntő többségében 80% fölé emelkedik a 35 év alatt 

kitermelhető hőmennyiségek aránya az 50 év alatt kitermelhető hőmennyiségekhez képest 

(12. táblázat). Tehát kijelenthető, hogy az ilyen típusú geotermikus rendszerek optimális 

üzemelési ideje nem éri el az 50 évet.  

Jelen vizsgálathoz a battonyai gránitból sem magvizsgálat sem szivattyú teszt nem 

állt rendelkezésre, analógiaként a Mórágyi rög kutatása vehető alapul, ahol a Bátaapáti 

kutatás keretében a legszélesebb méretskálán történtek vizsgálatok (ZILAHI-SEBESS et al. 

2007). A mórágyi gránit esetében a mechanikai paraméterek a repedéssűrűséggel 

korrelálnak azonban ez nem feltétlenül jelent nagyobb permeabilitást is. Bátaapáti 

kőzetminták és karotázs mérések összevetése alapján megállapítást nyert (ZILAHI-SEBESS 

et al. 2007), hogy a kőzetek mechanikai jellemzői in situ állapotban jóval szilárdabbnak 

mutatkoznak, mint a magméréseknél.  

Ennek legfőbb oka, hogy azok a repedések, amelyek magon áteresztőképesnek 

bizonyultak in situ körülmények közt nagyobb nyomáson összezáródnak. Ebből 

következik, hogy mindazok a paraméterek, amelyek mechanikai bontottsághoz 

kapcsolódnak hasonlóan viselkednek. A nagyobb nyomás jobban összezáródó repedéseket 

és ezzel nagyobb tortuozitást és emiatt kisebb permeabilitást és emiatt rosszabb konvektív 

hővezető képességet jelent. Ezt semmiképpen nem ellensúlyozza a konduktív 

hővezetőképesség rendkívül kismértékű javulása. A mállási zóna alatti ép gránit bár 

törészónákkal tagolt hidrogeológiai szempontból ezeknek a zónáknak a túlnyomó része 

mégis impermeábilisnak bizonyult. A törészónák általában elagyagosodottak a kevésszámú 

vizet adó repedés a törészónák széle felé a szinte teljesen ép kőzetben található  

Bátaapáti analógia alapján a mállási zónán túli alaphegységi kőzet repedéseinek nagy 

része zárt, impermeábilis. A Battonya–Pusztaföldvári-hát granitoid kőzetei 1000 m-nél 

nagyobb mélységben jóval nagyobb nyomásnak vannak kitéve, ezért mikrorepedések még 

inkább zártabbaknak kell lenniük, mint a Mórágyi gránité. Az alaphegységi kőzetből való 

hőtermelés sikeressége attól függ, mekkora felületen történik a hőcsere és fontos, hogy 

mekkora az a térfogat, amelyet az összefüggő repedések feltárnak.  

Jelen tanulmányban egy hozzávetőleg 400×400×200 m-es, azaz 0,032 km3 repedezett 

térfogat kétkutas hasznosításának a szimulációs modellfuttatása történt meg (ami megfelel 



99 

1000×1000×32 m kiterjedésű rezervoárnak) 27 változatban. A lefuttatott modellverziókból 

eredményadataiból megállapíthatjuk, ha a termelt zóna szivárgási tényezője nem éri el 

legalább az E–05 (m/s) nagyságrendet, akkor a minimum 2000 m3/napos (23 l/s) termelés 

mellett is irreálisan magas depresszió értékeket adódnak (6. és 7. táblázat), azaz a kútpár 

üzemeltetése nem fenntartható.  

A számítási eredményekből következik, hogy egy lehatárolt térfogattal leírható mező 

még egy pár termelő–visszasajtoló kúttal is hamar kimerülhet, ha nem tud rácsatlakozni 

egy nagyobb, folyamatos hőszállítást biztosító rendszerre (nagyobb rezervoár, 

vetőrendszer), mint amilyenek neotektonikai mozgásokkal fel-fel nyíló mélységi 

vetőrendszerek vagy az ezekkel kapcsolatos vulkanikus övezetek. A legismertebb 

áramtermelő geotermikus hőhasznosítások vulkanikus területeken, illetve lemezszegélyek 

mentén találhatók, vagy kiterjedt repedésrendszer.  

Ennek szemléltetésére újabb futtatást készítettem. A legkedvezőbb hidrodinamikai 

eset (sc1 – 5000 m3/nap, 50 év termelés – 50 év regenerálódás) mintáján demonstrálható a 

megnövelt (négyszeres) térrész és a csökkentett izoláció pozitív hatása. Változatlan 

rétegvastagság mellett a rezervoár felületi oldalai a kétszeresére (négyszeres térfogat), a két 

kút távolsága pedig √4=  szeresére nőtt ebben az esetben.  

Összehasonlítva a megnövelt rezervoár termelőkútjának hőmérsékleti diagramját a 

korábban vizsgált kisebb és izoláltabb típusúval (58. ábra), szemrevételezhető a lényegesen 

jobb hőmérsékleti kondíció és ennek kedvezőbb időbeli lefutása. Az 58. ábra ”B” részében 

az illesztett függvénnyel továbbszámolva meghatároztam, hogy a leállás után mennyi 

időnek kell eltelnie ahhoz hogy a rezervoár az eredeti állapot 95 %-ra, 152 °C-ra 

visszamelegedjen. 
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58. ábra. ”A”: Az 1. szcenárió hőmérséklet–üzemelési idő diagramja közelítő függvény illesztéssel; ”B”: 
Az 1. szcenárió hőmérséklet – log idő visszamelegedési diagramja a leállás időpontjától (Q = 5000 

m3/nap; 50 év termelés és 50 év leállás; eredeti zsebméret, narancssárga vonal: megnövelt 
négyszeres zsebméret) 

Függvényillesztési eredmény: 

Régi zseb: T=160-pow(10,exp(-0.22*log10(320+(X-18500)*0.10))*3.21) 

Új zseb: T=160-pow(10,exp(-0.44*log10(280+(X-18500)*0.08))*4.87) 

X: a termelés kezdetétől számított idő. 

A regenerálódást a teljes leállástól alakjában az a×(1-e-bx)+c jellegű korlátos függvénnyel 

írható le. 

o A régi zsebnél a leállást követően 15913 év 14 nap után éri el 152 °C-t. 

o Az új, megnövelt méretű zsebnél a termelés kezdetétől eltelt 272 év 86 nap, azaz a 

leállást követően mintegy 222 év (ez az üzemelési idő [50 év] 4,5-szerese) után történik 

meg a visszamelegedés /az értékeknél figyelembe kell venni, hogy a függvényillesztésnek 

és az extrapolálásnak is van hibasávja/. 

Tehát megközelítőleg azonos hidraulikai helyzetben, de negyedakkora 

rezervoártérfogat esetében 68-szorosára nő a regenerálódáshoz szükséges időtartam. Az 

eredmény leginkább a viszonylag jó permeabilitással rendelkező rezervoár és a szinte csak 

konduktív hővezetésű környezet viszonyát fejezi ki. A kisebb zseb esetében valójában a 

környezet is nagy mértékben lehűl, míg az új zseb (nagyobb rezervoár) önmagában is csak 

kevésbé lett lehűtve, tehát a környezetéből sokkal kevesebb az a hőmennyiség, amit pótolni 

kell.  
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Konklúzióként megállapítható, hogy magyarországi alaphegységi kőzetekből való 

hőbányászattal kapcsolatos beruházások nagy gazdasági kockázatot hordoznak, ha nincs 

közvetett ismeretünk egy természetes permeabilitással rendelkező repedésrendszerről, 

melyre a tervezett rendszer rácsatlakozhat.  

Ugyanakkor, ha a kezdeti hőmérsékleti érték kellően magas, és az itt bemutatott 0,03 

km3-nél legalább egy nagyságrenddel nagyobb térfogatot tudunk hatékonyan stimulálni, 

akkor petrotermális esetben is (jelentős fluidum pótlással üzemelő rendszer) lehet esély 

fenntartható geotermikus energiahasznosításra (RYBACH, 2021).  

A modell eredménye, a bemutatott paraméter tartományok esetén, nem kecsegtet 

potenciálisan megtérülő geotermikus hasznosítással. Egy magyarországi kísérleti 

geotermikus mező pl. a Battonya–Pusztaföldvári-hátság térségében elhelyezve 

hasonlóképpen, mint európai példaként a Soultz-sous-Forêts geotermikus projekt, nagy 

lökést adhatna a geotermikus kutatásnak, verifikálhatná a paramétereket; a földtani 

kockázatok pontosabb meghatározását, az optimális megoldások keresését.  
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Összefoglalás 

Tanulmányomban egy természetes repedésrendszerrel rendelkező, hidrotermális 

(a hőtermeléshez elegendő fluidummal rendelkező), viszont meglehetősen izolált 

rendszer modellvizsgálatát végeztem el 27 szcenárió változatban. Célkitűzés volt a 

releváns áramlási és hőtranszport folyamatok leképzése a DK-Alföld térségében, 

figyelembe véve a medenceüledékek nagy regionális áramláshoz kötött hidrodinamikai 

tulajdonságait, az aljzati képződmények sajátosságait, valamint a potenciális 

hőhasznosítások lehetőségeit. A modellezett terület magába foglalja a Battonya–

Pusztaföldvári-hátat és a két oldalán lévő Makói-árok és Békési süllyedék tengelyéig 

tartó résztérségeket mind a magyarországi, mind a romániai oldalon.  

A regionális léptékű hőtranszporttal kiegészített numerikus modell 

paraméterezését elsősorban szakirodalmi adatokra és saját, a vízbázisvédelmi program 

feladatainak megoldása kapcsán szerzett gyakorlati tapasztalatokra alapoztam. A 

célkitűzés megvalósításához regionális léptékű hidrodinamikai és hőtranszport 

modellvizsgálatot végeztem a véges elemes módszert alkalmazó FEFLOW® modellező 

szoftverrel. Az általam alkalmazott modellvizsgálatban a nagy bizonytalanságot 

hordozó konkrét repedésrendszert ekvivalens porózus közegként közelítettem. A 

modellfuttatások során a kalibráció szimulált vízszint és hőmérséklet értékekre történt, 

mely a területen mélyült termálkutak létesítéskori vízszintjeinek és a 

szénhidrogénfúrások talphőmérsékleti adatainak segítségével végeztem. 

Leképeztem az anomálisan felfűtött aljzati kiemelkedés, a Battonya–

Pusztaföldvári-hát és környezetének hidrogeológiai és hőmérsékleti viszonyát. Ezt 

követően nagy rácssűrűségű beágyazott rezervoár modell segítségével egy fiktív, nagy 

entalpiájú hőhasznosítás (doublet – kétkutas rendszer) esetét szimuláltam Pitvaros 

térségében. Bemutattam szivárgási tényező és hozam változatokon keresztül a kivehető 

hőmennyiség értékek eloszlását, majd összevetettem a UNFC-2009 metódusú 

volumetrikus készletszámítással.  

A pórustérhasznosítás meglévő és jövőbeni hasznosítások egymásra gyakorolt 

negatív hatások előrejelzéséhez, védendő termelésekhez hasznos eszköz a geotermikus 

védőidom kijelölése. A szimulációs vizsgálatok során outputként megkapott Peclet 

szám jó támpontot nyújt az utánpótlásba bevont térrészről, így a geotermikus védőidom 

meghatározást is jól kiegészítheti. 
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Ahogy a modellszimuláció-sorozat is illusztrálta, a magyarországi alaphegységi 

kőzetek hőbányászatával kapcsolatos beruházások nagy gazdasági kockázatot 

hordoznak, ha nincs közvetett ismeretünk egy természetes permeabilitással rendelkező 

repedésrendszerről, melyre a tervezett rendszer rácsatlakozhat. Ha az ilyen izolált 

zsebeket mesterségesen össze lehet kötni (pl. mechanikai stimulációval), azaz a 

rezervoárt megnövelni, vagy az aljzat felületéhez közel, a báziskonglomerátummal, 

esetleg jól vezető karbonátos képződménnyel hidraulikai kapcsolatba hozni, akkor a 

kivehető hőmennyiségre a számítottnál lényegesen jobb értéket kaphatunk, ahogy azt a 

megnövelt (négyszeres) térfogatú rezervoár példája is szemlélteti.  

A modell eredménye, a bemutatott paraméter tartományok esetén, nem kecsegtet 

potenciálisan megtérülő geotermikus hasznosítással, a UNFC-2009 kód szerint, a 

modellezett projekt nagy kockázatú kísérleti projektnek minősül. A modellezési 

vizsgálatsorozattal bizonyított, hogy a statikus készletbecsléshez képest a numerikus 

szimuláción alapuló hőmennyiség számítás jelentősen segíti, illetve kiegészíti a korai 

tervezési szakaszt, valamint időbeli lefutást, azaz dinamikai faktort is hozzáad. 

A geológiai adottságokon túl a megtérülést, társadalmi elfogadottságot 

(szocioökonómiai tényezők) és műszaki lehetőségek összességét együtt kell számba 

venni, azaz a UNFC-2009 osztályozás mindhárom pillérét.  

Egy magyarországi kísérleti helyszín pl. a Battonya–Pusztaföldvári-hátság 

térségében elhelyezve, hasonlóképpen, mint európai példaként említhető a  

Soult-Sous-Forêts geotermikus projekt, nagy lökést adhatna a hazai geotermikus 

kutatásnak, verifikálhatná a paramétereket; a földtani kockázatok pontosabb 

meghatározását és az optimális megoldások keresését. 
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Summary 

In this study, I carried out a model analysis of a hydrothermal (with sufficient fluid 

for heat production) but rather isolated system with a natural fractured system in 27 

scenarios. The objective was to model the relevant flow and heat transport processes in 

the SE-Alföld region, taking into account the hydrodynamic properties of the basin 

sediments linked to high regional flow, the specificities of the basin formations and the 

potential heat recovery potential. The modelled area includes the Battonya-

Pusztaföldvár High and the sub-areas up to the axis of the Makói Trough and the Békés 

Basin on both sides, both in Hungary and Romania.  

The parameterisation of the numerical model, supplemented with a regional scale 

heat transport, was based mainly on literature data and my own practical experience in 

solving the tasks of the aquifer protection programme. In order to achieve this objective, 

regional scale hydrodynamic and heat transport modelling was carried out using the 

finite element method in FEFLOW® modelling software. In my model study, I 

approximated the concrete fractured system with high uncertainty as an equivalent 

porous medium. The model runs were calibrated to simulated water level and 

temperature values using water levels at the time of establishment of the deepened 

thermal wells in the area and bottom temperature data from hydrocarbon wells. 

I have described the hydrogeological and thermal conditions of the anomalously 

heated sub-basement elevation, such as the Battonya-Pusztaföldvár High and its 

surroundings. Subsequently, I simulated a fictitious high enthalpy heat recovery 

(doublet) case in the Pitvaros area using a high grid density embedded reservoir model. 

I have presented the distribution of the extracted heat values through variations of 

hydraulic conductivity and value of water production and compared them with the 

volumetric reserve calculation using the UNFC-2009 method. 

To predict the negative effects of pore space utilization on each other of existing 

and future utilizations, a useful tool for the production to be protected is the geothermal 

protection zone delineation. The Peclet number obtained as an output from simulation 

studies provides a good indication of the area involved in the recharge and can thus 

complement the geothermal protective boundary definition. 
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As illustrated by the model simulation series, investments in thermal mining of 

basement rocks in Hungary carry a high economic risk if there is no indirect knowledge 

of a fracture system with natural permeability that the planned system can connect to. 

If such isolated pockets can be artificially connected (e.g. by mechanical stimulation), 

i.e. the reservoir can be enlarged, or hydraulically connected to the base conglomerate, 

possibly with a well-conducting carbonate formation, close to the bedrock surface, then 

the heat extraction rate can be significantly better than calculated, as illustrated by the 

example of an enlarged (four times) reservoir volume.  

The model results, for the parameter ranges presented, do not promise a 

potentially profitable geothermal recovery, and the modelled project is classified as a 

high-risk pilot project according to the UNFC-2009 code. The modelling test series 

demonstrates that, compared to static volumetric estimation, the heat quantity 

calculation based on numerical simulation significantly aids and complements the early 

design phase, and adds a time-horizon, i.e. a dynamic factor. 

In addition to the geological conditions, the return on investment, social 

acceptance (socio-economic factors) and technical potential should be taken into 

account, i.e. all three pillars of the UNFC-2009 classification.  

For example, a pilot site in Hungary, located in the Battonya-Pusztaföldvár-High 

area, could be considered as a European example of Soult-Sous- Forêts geothermal 

project, could give a big boost to geothermal research in Hungary, verifying the 

parameters, defining the geological risks more precisely and finding optimal solutions. 
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Témavezetői nyilatkozat 
 

 

 

Tanúsítom, hogy Kun Éva, A BATTONYA–PUSZTAFÖLDVÁRI-HÁT 
HIDRODINAMIKAI ÉS HŐTRANSZPORT MODELLVIZSGÁLATA AZ ENERGIA- ÉS 
PÓRUSTÉRHASZNOSÍTÁS TÜKRÉBEN című doktori értekezésben foglaltak a doktorjelölt 
önálló munkáján alapulnak, az eredményekhez önálló alkotó tevékenységével meghatározóan 
hozzájárult. Az értekezés anyagát szakmai szempontból támogathatónak ítélem meg, 
elfogadását javaslom. 
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