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„Non scholae, sed vitae discimus." 

(latin közmondás) 

BEVEZETÉS 

 

A kogníció kutatásával az évszázadok során többen és többféle megközelítésből foglalkoztak. 

Az 1950-es években létrejövő kognitív pszichológia az emberi megismerési folyamatokat, az 

ember által kialakított reprezentációkat állítja a fókuszba (Pléh, 2010). Egyes képviselői szerint 

az emberek mindennapi döntéseik során nem a logikai és statisztikai törvényszerűségek alapján 

hozzák meg döntéseiket, hanem ún. heurisztikákat alkalmaznak, miközben emiatt számos hibát 

ejtenek (Tversky & Kahneman, 1974). Kísérletei során Piaget (Inhelder & Piaget, 1955) is 

fontosnak tartotta a gyermekek helytelen logikai következtetései, köztük az arányossági 

gondolkodás terén létrejött hibás következtetések okainak vizsgálatát. A helytelen matematikai 

gondolkodás racionális, ésszerű hibákat eredményez (Ben-Zeev, 1998a, 1998b). A 

gondolkodási hibák kutatása elősegítheti a matematikai gondolkodásfejlődésének 

megismerését. 

Dolgozatunk témájául a számolási képesség, ezen belül a fejben végzett szorzás és az 

arányossági gondolkodás, a matematikatanulás iránti attitűd életkori jellemzőinek, valamint 

összefüggésrendszerének vizsgálatát választottuk. Gyakorló pedagógusként, szülőként számos 

esetben megfigyelhetjük, hogy a tanulók anélkül kezdik használni a számológépet, hogy 

biztosak lennének az aritmetikai műveletek végzésében. Számológép nélkül egy-egy 

alapművelet végeredményének becslésekor gyakran nagyságrendi hibákat ejtenek. Még 

érettségi előtt álló diákok is nehezen birkóznak meg szöveges feladatokkal, azon belül 

arányossági következtetéssel megoldható feladatokkal. A nemzetközi PISA matematika 

méréseken tapasztalható egyre romló magyar eredmények is felhívják a figyelmet a 

matematikatanításra, azon belül a számolási készség, arányossági gondolkodás fejlesztésének 

szükségességére. A PISA 2015 Összefoglaló jelentés szerint a 2015-ös PISA felmérés során a 

15 éves magyar diákok által elért átlag 477 pont, a tanulók mintegy 30%-a a 2-es 

teljesítményszint alatt van (Ostorics, Szalay, Szepesi & Vadász, 2016). A 2018-as PISA 

felmérés matematika tartalmi kerete megegyezett a 2015-ös mérésével (Oktatási Hivatal, 2019). 

A magyar tanulók teljesítménye nem növekedett szignifikánsan, a matematika és 

természettudomány átlagpontszáma 481 pont, a szövegértésé 476 pont, így a legújabb 

eredmények szerint Magyarország a 31-37. helyen szerepel a mérésben részt vevő 79 ország 

között (OECD, 2019). A vizsgált téma létjogosultságát nemcsak a magyar tanulók nemzetközi 

felmérésekben tapasztalható egyre romló eredményei indokolják. Fontosnak tartjuk ezt a témát 

azért is, mert a jó számolási készséget, az arányossági gondolkodást több más 

tudományterületen (pl. fizika, kémia, földrajz, történelem) és a mindennapokban is 

hasznosíthatják a tanulók (pl. pénzváltáskor, kamatszámításkor, vásárláskor).  

Kutatásunk során szerettünk volna választ kapni arra, mi lehet a magyar tanulók romló 

eredményének és a tanulók közötti teljesítménykülönbségek oka. Kíváncsiak voltunk, milyen 

különbségek vannak az egyes tanulók tudásszintje között, és tapasztalhatóak-e tudásszintbeli, 

stratégia-használatbeli eltérések a fiúk és a lányok között a fejben végzett szorzásra vonatkozó 

feladatok megoldása során. Szeretnénk választ kapni néhány olyan kérdésre, mint: Milyen 
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stratégiákat használnak a 10-18 éves tanulók a fejben végzett szorzások során? Melyek azok a 

feladattípusok, amelyek a legnagyobb kihívás elé állítják a tanulókat? Milyen összefüggések 

találhatók az egyes háttérváltozók és a Szorzási Stratégiák Teszten elért eredmények között? 

Megvizsgáljuk, milyen teljesítményt mutatnak az összehasonlító mérések alkalmával a tanulók 

a fejben végzett szorzás és a szöveges feladatok megoldása során, valamint milyen 

következtetésekre jutottak e téren végzett vizsgálataik során a magyar és külföldi kutatók. 

Megnézzük, hogyan illeszkednek a számolási stratégiák a matematikai műveltségbe, az 

arányossági gondolkodás tanítása a magyar kerettantervbe, hogyan történik vizsgálata a 

nemzetközi mérések során.  

 Arányossági gondolkodást kívánó feladatokkal a tanulók már az alsó tagozaton is 

találkoznak (OFI, 2012a). Az arányosság fogalmának meghatározása és absztrakció az 5-6. 

évfolyamon követelmény a kerettanterv szerint (OFI, 2012b), és későbbi évfolyamokon is 

követelményként jelenik meg, ez indokolja, hogy 10-18 éves tanulókat választottunk mintának. 

A vizsgálatainkba önként bekapcsolódott tanulók száma összesen több, mint 1400 fő. A papír- 

ceruza alapú mérésekre 2013 és 2019 között került sor.  

Hipotéziseink szerint a gyenge számolási készségek és a szöveges (azon belül 

arányossági) feladatok megoldásakor nyújtott teljesítmények összefüggenek. Mérőeszköznek 

ezért is választottunk a szorzási stratégiákat vizsgáló teszt mellett arányossági feladatokat is 

tartalmazó Matematika Tudásszintmérő Tesztet. A vizsgálatok során háttérkérdőívet is 

felvettünk, a szakirodalom áttanulmányozása alapján ugyanis azt gondoljuk, a 

matematikateszteken elért eredmények számos háttérváltozóval korrelálhatnak. Reméljük, 

kutatásunk eredményét a gyakorló pedagógusok hasznosítani tudják a tanítás során. 

Értekezésünk hármas célja: (1) a vizsgált témához kapcsolódó tudományterületek 

fogalomrendszerének rövid bemutatása; (2) a saját kutatásunk előzményeinek tekinthető 

külföldi és hazai vizsgálatok eredményeinek, következtetéseinek vázlatos ismertetése; (3) a 

fejben számolás során alkalmazott szorzási stratégiák vizsgálatával, fejlesztésével kapcsolatos 

eredményeink bemutatása. Az általunk végzett munka alapkutatásnak tekinthető, mivel ilyen 

jellegű vizsgálatok még nem folytak hazánkban. Ugyanakkor hozzátesszük, hogy 

eredményeink további kérdéseket vetnek fel, és a vizsgálatokat érdemes folytatni más mintán, 

más eszközökkel, módszerekkel. A vizsgálatok során papír-ceruza alapú mérőeszközöket 

alkalmaztunk, az eredményeket SPSS szoftver segítségével elemeztük, ennek során leíró és 

matematikai statisztikai számításokat és többváltozós összefüggés-vizsgálatokat is végeztünk.  

Az első és a második fejezet a kutatáshoz fűződő legfontosabb fogalmak értelmezését, 

elméleti modelljeit tartalmazza. Az elméleti részben kitérünk a kognitív készségek és stratégiák, 

a matematikai műveltség értelmezésére. Rámutatunk arra, mik a matematikai szakértelem 

összetevői, és hogy milyen szerepet töltenek be a stratégiák a matematikai műveltség 

kialakulásában. Összefoglaljuk a stratégiahasználattal kapcsolatosan használt fogalmakat. 

Megvizsgáljuk, melyek a stratégiakutatás során alkalmazott legfontosabb modellek, így szót 

ejtünk Siegler és Shipley (1995) ASCM modelljéről, Shrager és Siegler (1998) SCADS 

számítógépes szimulációs modelljéről, valamint Siegler és Lin (2010) „egymást átfedő 

hullámok” fejlődési modelljéről. 

Röviden összefoglaljuk az eddigi nemzetközi és hazai, stratégiakutatással kapcsolatos 

eredményeket, bemutatjuk a vizsgálatok főbb jellemzőit. A szakirodalom alapján felvázoljuk a 

matematikai készségek rendszerét, fejlődési szakaszait. Hangsúlyozzuk a magyar közoktatásra 
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jellemző matematikatanítási problémákat, hiányosságokat. Rámutatunk arra, hogy a problémák 

megoldásában segíthetne a számolási stratégiák tudatosabb, rendszerezettebb tanítása. 

Megnézzük, milyen szerepet tölt be a matematika az adaptív stratégiahasználat kialakításában, 

hogyan fejleszthető a stratégiahasználat rugalmassága, hogyan segíthet a metakogníció az 

adaptív stratégiahasználat fejlesztésében; és szót ejtünk a stratégiahasználat vizsgálatának 

lehetőségeiről, így a szemmozgás-követés segítségével történő vizsgálatáról.  

 Az első két fejezetet a módszertan rész követi. A harmadik fejezetben megfogalmazzuk 

az empirikus kutatás célját, kutatási kérdéseinket. Ismertetjük a kiindulási hipotéziseinket, a 

vizsgálatok során alkalmazott módszereket. Kutatásunk tárgya a 10-18 éves tanulók szorzási 

stratégiáinak használata fejben végzett szorzás során. A számolási készségek megalapozása az 

alsó tagozaton történik, ugyanakkor számkörbővítés (egész számok, tizedes törtek, racionális 

számok, valós számok) és a magasabb szintű matematikatananyag miatt szükség van, lenne a 

számolási készség további fejlesztésére a felső tagozaton és a középiskolában is. A 

stratégiahasználat tanítása a pontos és gyors fejben számolási készség a többi tantárgy és a 

mindennapi életben hasznosíthatósága miatt is célszerű lenne. A korai és kizárólagos 

számológéphasználat ugyanis azt eredményezheti, hogy a tanulók egy része nagyságrendi 

hibákat ejt fejben számolás, becslés során, és a hasonló számolási hibákat a szöveges feladatok 

megoldása során sem veszi észre. Kutatásunk során célul tűztük ki, hogy feltérképezzük a 

vizsgált korosztály stratégiahasználatának jellegzetességeit, hibázási mintázatait, hogy azután 

a gyakorló pedagógusok számára hasznosítható következtetéseket, ajánlásokat 

fogalmazhassunk meg. A vizsgálatok az etikai normák figyelembevételével folytak. 

Vizsgálataink során saját fejlesztésű papír-ceruza alapú mérőeszközöket alkalmaztunk. 

Szorzási Stratégiák Tesztet, Matematika Tudásszintmérő Tesztet és a tanulók tanulási 

eredményeivel, tanulási szokásival, tantárgyak iránti attitűdjeivel kapcsolatos kérdéseket 

tartalmazó háttérkérdőíveket vettünk fel, illetve szóbeli interjút készítettünk a vizsgált 

tanulókkal. Úgy gondoltuk, hogy összefüggés mutatható ki a matematika teszten elért eredmény 

és az alkalmazott szorzási stratégiák eredményessége között, továbbá a szorzási stratégiák 

eredményessége számos háttértényezővel korrelál. 

 A célok ismertetését a hipotézisek megfogalmazása követi. Feltételeztük, hogy az 

általunk kifejlesztett mérőeszközök megbízhatóan mérik a vizsgált korosztály 

stratégiahasználatát, és a kapott eredmények, levont következtetések alkalmasak lesznek a 

gyakorló pedagógusok munkáját segítő ajánlások megfogalmazására. Hipotéziseink között 

szerepelt, hogy a tanulók között különbség van a stratégiahasználat eredményessége terén. 

Feltételezésünk szerint a fejben végzett számolás során az egyes évfolyamokon a szorzási 

stratégiák száma csökken, majd állandósul. Feltevéseink között szerepelt, hogy a Matematika 

Tudásszintmérő Teszten jobb teljesítményt elérő tanulók a Szorzási Stratégiák Teszten is jobb 

eredményt érnek el. 

A hipotézisek ismertetését következő részben az empirikus vizsgálatok eredményeit 

mutatjuk be. Az első vizsgálatban  negyedik évfolyamos tanulók vettek részt, az általuk 

használt szorzási stratégiákat Tobii eye-tracker szoftver segítségével elemeztük. A második 

vizsgálatban 8-12. évfolyamos diákok körében vizsgáltuk a stratégiahasználatot. A harmadik 

vizsgálatban hetedik évfolyamos tanulók, a negyedik és ötödik vizsgálatban hatodik 

évfolyamos tanulók vettek részt, statégiahasználatuk fejlesztéséről ejtünk szót az ötödik 

vizsgálattal kapcsolatban.  
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A központi vizsgálatban  (harmadik fejezet) a pilotmérésekben kifejlesztett mérőeszközök 

segítségével vizsgáltuk a 4-6. évfolyamos kisdiákok által alkalmazott szorzási stratégiákat 

fejben való számolás során. Úgy reméltük, hogy a mérőeszközök segítségével mélyebb 

összefüggéseket mutathatunk ki, láttathatunk meg a szorzási stratégiák használatára 

vonatkozóan.  

A negyedik és ötödik fejezetben összefoglaljuk, értelmezzük a kutatásaink eredményeit és 

bemutatjuk azok felhasználásának lehetőségeit. Eredményeink alapján az alkalmazott tesztek, 

háttérkérdőívek alkalmasak a 10-12 éves tanulók körében folytatott, a fejben számolás során 

alkalmazott szorzási stratégiákkal kapcsolatos mérések lefolytatására. Az általunk alkalmazott 

tesztek segíthetnek a tanároknak és a tanulóknak az állapotfelmérésben, ami egyúttal a 

metakognícióra alapozott fejlesztésben kiindulópontként szolgálhat, a stratégia-repertoár 

bővítését segítheti. Alkalmazhatóak a mérőeszközök azokban a kutatásokban, amikor a kutatók 

a matematikai tudásszint, a szorzási stratégiák és a matematikatanulással kapcsolatos 

meggyőződések modelljében keresik a válaszokat a stratégiahasználat eredményessége és a 

matematikai tudásszint, valamint a háttértényezők közötti kapcsolat összefüggéseire. 

A hatodik fejezetben (Diszkusszió és következtetések) összegezzük kutatásunk eredményeit, 

újdonságértékét, ismertetjük kutatásunk korlátait, eredményének felhasználási lehetőségeit, és 

szót ejtünk a további kutatási lehetőségekről.  

Az egyes fejezetek megírásakor a tárgyban megjelent korábbi publikációkat, valamint a 

matematika területén mérés és értékelés szakértő szakvizsgára felkészítő tanfolyam zárásaként 

írt szakdolgozat eredményeit is felhasználtuk. A szakirodalom áttekintésével kapcsolatos 

publikáció az Aszklépiosz tanulmányok kötetben (Vígh-Kiss, 2019), az Új Kép folyóiratban 

(Vígh-Kiss, 2015a), a IX. Kiss Árpád Konferencia által kiadott Interdiszciplináris pedagógia és 

az oktatási rendszer újraformálása című kötetben (Vígh-Kiss, 2016b), a Practice and Theory 

in Systems of Education (Vígh-Kiss, 2014c), és a Questions and perspectives in education című 

kötetekben (Vígh-Kiss, 2013a) jelentek meg, illetve többek között a Health − Economy − Art 

Konferencián (Vígh-Kiss, 2017d), a HUCER Konferencián (Vígh-Kiss, 2017c), a Pedagógiai 

Értékelési Konferencián (Vígh-Kiss, 2013b), a 3rd International Methodological Konferencie 

(Vígh-Kiss, 2014a) tartott előadásokban számoltunk be róla. A negyedikes tanulók körében 

végzett, szemmozgás-követéses vizsgálatról szóló eredményeinket az Országos 

Neveléstudományi Konferencián (Vígh-Kiss, Csíkos és Steklács, 2013) és a Nemzetközi 

Szemmozgáskutatás Konferencián (Vígh-Kiss, 2015c) publikáltuk, a vizsgálatról továbbá 

tanulmányunk jelent meg a Szemkamerás vizsgálatok a pedagógiai kutatásban című 

tanulmánykötetben (Vígh-Kiss, Csíkos és Steklács, 2019). A 8-12. évfolyamosok körében 

végzett felmérés tapasztalatairól a Pedagógiai Értékelési Konferencián (Vígh-Kiss, 2014d), az 

EARLI Special Interest Group 16 által szervezett Metacognition konferencián számoltunk be 

(Vígh-Kiss, 2014e). A hatodik évfolyamos tanulók vizsgálatának eredményeit a Matematikát 

és Fizikát Oktatók 41. Országos Konferenciáján (Vígh-Kiss, 2017a), az Országos 

Neveléstudományi Konferencián (2016c, 2017e) mutattuk be, valamint a MAFIÓK által 

megjelentetett tanulmánykötetben (Vígh-Kiss, 2017b) publikáltuk. A hatodik évfolyamos 

tanulók körében folytatott fejlesztés eredményeiről a 40. PME konferencián (Vígh-Kiss, 2016a) 

és az ONK konferenciákon (Vígh-Kiss, 2015d, 2016c) számoltunk be.  
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1. A FEJBEN SZÁMOLÁSI KÉSZSÉG  

 

A fejezet első részében áttekintjük a számolási készség vizsgálatát érintő fogalmakat, kiindulva 

a kognitív készségek és stratégiák szerepéből. Ezt követően megvizsgáljuk a matematikai 

műveltség, a stratégiahasználat mindennapokban betöltött szerepét; majd a stratégiahasználat, 

az adaptív stratégiahasználat szakirodalomban leggyakrabban hivatkozott definícióit, elméleti 

modelljeit mutatjuk be. Ezután szót ejtünk a stratégiahasználat vizsgálatának lehetőségeiről, a 

stratégiahasználat rugalmasságának fejlesztéséről, és a metakogníció szerepéről a 

stratégiafejlesztésben.  

1.1 Kognitív készségek és stratégiák 

 

Az emberi gondolkodás fejlődésének vizsgálata során több nézőpont jött létre. Piaget szerint a 

műveleti szinten működő emberi értelem fejlődése 16 éves korra lezárul, azonban felnőtt 

korban is további fejlődési szintek jelennek meg (Pléh, 2003). Karmiloff-Smith (1992a, 1992b) 

úgy véli, hogy a már meglévő tudásunkra újabb, metatudásnak nevezhető tudás rakódik rá, 

miközben az előző szint is működik, a tudásról való tudásunk pedig segítheti a 

gondolkodásunkat. „Ugyanaz a tudás az újabb és újabb reprezentációs szintnek köszönhetően 

egyre adaptívabb, kreatívabb, hatékonyabb lesz” (Nagy, 2000. 82.o.).  

Nagy József (2000) a „kognitív forradalom” legfőbb vívmányának tekinti, hogy az 

ember képessé vált számítógépen modellezni a saját értelme működését. A klasszikus 

kognitivizmus tárgykörébe eső makroszintű komponenseket kognitív készségeknek, a modern 

kognitivizmus által feltárt mikroszintű komponenseket pedig kognitív rutinoknak nevezzük. A 

McClelland, Rummelhart és a PDP Kutatócsoport (1986) által leírt PDP (Parallel Distributed 

Processing), azaz párhuzamos megosztottsággal működő modell szerint agyunkban 

valószínűleg több tízezer lokális párhuzamos megosztott hálózat működik, egymással is 

párhuzamos hálózatokat alkotva, vagyis az agyunkba érkező információk egyidejűleg 

aktiválják a megfelelő elemeket, s ez a folyamat elménk által kontrollálhatatlan. 

A kognitív rutinok párhuzamos megosztott hálózatba szerveződött pszichikus 

komponensek, legfőbb szerepük az információfeldolgozás, ezen rutinok „működése a hálózat 

tagjainak serkentésével, gátlásával, önmódosulása (tanulása) pedig új kapcsolatok létrejöttével, 

a meglevő kapcsolatok erejének (súlyainak) változásával valósul meg” (Nagy, 2000. 82.o). 

Megkülönböztethetünk egységfelismerő, ill. viszonyító rutinokat. A kognitív rutinok 

elsajátítása rendkívül fontos. Ha pl. valaki nem rendelkezik elég szófelismerő rutinnal — a 

szakirodalom szerint ezek száma elemi szinten 1500, az irodalmi szövegek olvasásához pedig 

5000 szónak kell egységfelismerő rutinná fejlődnie —, az funkcionálisan analfabéta (Nagy, 

2000). A matematikatanításban a viszonyító rutinok is szerepet kapnak, így pl. a szóbeli 

viszonyító rutinok számát több százra tehetjük. Sajnos, az iskolába lépő gyermekek 5%-a ennek 

a készletnek csupán a felét képes használni, öt évvel elmaradva fejlettebb kortársaitól, s ezzel 

hatalmas feladatot róva a pedagógusokra.  

A pedagógia egyik központi feladata a gyermek kognitív készségeinek, azaz 

információ-feldolgozó készségeinek fejlesztése. Nagy (2000) szerint a kognitív rutinokból álló 

kognitív készségek, mint pl. egy memoriter, az íráskészség, írásbeli szorzás, osztás készsége 

stb., fontos szerepet töltenek be az egyén aktivitásában, viselkedése során. Matematikai 
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példákkal szemléltetve az alábbi négyféle kognítív készségről beszélhetünk: (1) Merev kognitív 

készség, pl.: egy megtanult szorzás a szorzótáblában, (2) Ciklikus kognitív készségek, pl.: a 

számlálás készsége, (3) Rugalmas kognitív készségek, pl.: az írásbeli szorzás készsége, (4) 

Komplex kognitív készség, plí: számolási készség (Nagy, 2000).  

A kognitív készségek működésére a szerialitás jellemző (Nagy, 2000), azaz az egyes kognitív 

rutinok egymást követően, s nem egyszerre aktiválódnak. Nagy szerint, mivel a működésbe 

lépés ideje több, mint egy másodperc, elvileg hozzáférhető az explicit működtetés számára, a 

valóságban azonban egy optimálisan begyakorolt egyszerű készség implicit módon, azaz a 

tudatunk kontrollja nélkül működik. A pedagógusok feladata és célja, hogy egyrészt 

bekövetkezzen a kognitív készségek optimalizációja, begyakorlása, azaz az antropológiai 

optimum eléréséhez vezető fejlődés, másrészt pedig, hogy ezek a készségek egységes 

rendszerbe szerveződjenek.  

A merev kognitív készségek a kognitív rutinokhoz hasonlóan az összetett képességek 

és kompetenciák építőkövei, számuk több százezerre tehető. Nagy (2000) szerint valószínűleg 

van a merev kognítív készségeknek egy olyan kritikus pontja, optimális mennyisége, amely 

nélkülözhetetlen a mindennapi életben. Iskoláztatása során egy gyermek rengeteg ilyen 

készséggel találkozik, azonban éppen ezek magas száma miatt a merev kognitív készségek 

megszilárdulása, állandósult kognitív készséggé válása esetleges (Nagy, 2000). Fontos volna 

tudni, hogy melyek azok a merev kognitív készségek, amelyek pl. a gyakorlati életben is 

hasznosítható, fejben végzett szorzás során nélkülözhetetlenek. 

Nagy (2000) szerint a ciklikus kognitív készségek a merev kognitív készségekhez 

hasonlóan feltételfüggetlenek, viszont szemben azokkal nyitottak, mert a ciklusok végtelen 

sokszor ismétlődhetnek. A ciklikus készségek optimális elsajátítása, mint pl. a számlálás, 2-10 

éves kor között történik, azaz több évig tartó folyamat, sajnos, szembeszökően nagyok a 

kialakult egyéni különbségek is (Nagy, 2000). 

A rugalmas kognitív készségekre a feltételfüggőség és zártság jellemző, és kognitív 

rutinokból tevődnek össze, melyek között ciklikusakat is találhatunk. „A feltételfüggés azt 

jelenti, hogy a külső/belső feltételektől, az előző komponens eredményétől függően leállhat, 

majd innen újra indulhat a folyamat, megváltozhat a sorrend, kimaradhatnak lépések vagy új 

rutinok, készségek léphetnek be” (Nagy, 2000. 102.o.). A rugalmas készség zártságának oka, 

hogy komponenseinek száma véges sok. A rugalmasságot a fejünkben levő referenciakép teszi 

lehetővé. Nagy (2000) szerint előfordulhat azonban, mint pl. az írásbeli osztás vagy fejbéli 

szorzás esetén, hogy referenciaképpel nem, csupán a készség begyakorlásához szükséges 

begyakorlottsággal rendelkezünk, s becslések sorozata révén, az adott számítási feladat 

elvégzése során kell azt megalkotnunk. 

A komplex kognitív készségek két fontos jellemzője: (1) a nyitottság (korlátlan ideig 

működtethetőség) és (2) a feltételfüggőség, ez utóbbi azt jelenti, hogy az elvégzendő 

tevékenység határozza meg, hogy mely készségeink aktiválódnak (Nagy, 2000). Nagy 

hangsúlyozza, hogy a komplex készségek nevükhöz híven véges sok, hasonló funkciót betöltő, 

egyszerű kognitív készség halmaza, melyek mindegyike valamely átfogó tevékenység (pl.: a 

kommunikáció komplex készségei, helyesírás, olvasás, számolás) elvégzésére alkalmas. Még 

nem ismerjük a kognitív készségek teljes rendszerét. A kognitív készségek elsajátítási 

folyamatai feltárhatók és feltárandók (Nagy, 2000). 
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A kognitív stratégiák fogalmának kialakulása Bruner, Goodnow és Austin (1956) 

nevéhez köthető. Értelmezésük szerint a kognitív stratégia mindazokat a kognitív eljárásokat 

jelenti, amelyekkel a kognitív működésünket, gondolkodásunkat és viselkedésünket 

ellenőrizzük és irányítjuk, mint pl.: jegyzetelési technika, számolási feladatok végrehajtása, 

olvasási stratégiák. Young (1978) hangsúlyozza, idézi Tóth (2006), hogy a legtöbb feladatot, 

problémát többféle módon is meg lehet oldani, és az egyén számára rendelkezésre álló 

stratégiák a számítógép programozásban használatos szubrutinokhoz hasonlíthatók. 

A kognitív stratégiák vizsgálata azért is fontos, mert a stratégiahasználat rugalmassága 

fejleszthető. A stratégiák elsajátítása formális és informális úton is történhet. Baron (1978) 

szerint az intelligenciával és az emlékezettel szemben a stratégiák érzékenyebben reagálnak a 

fejlesztésre. Belmont és Butterfield (1975) mentálisan retardált tanulókkal végzett fejlesztő 

kísérleteinek eredményei optimizmusra adnak okot. 

A kognitív stratégiákat többféleképpen csoportosíthatjuk. Hatásuk szerint Baron (1978) 

megkülönböztet rövid távú és hosszú távú kognitív stratégiákat, a tudatosság szerint pedig 

tudatosan és automatikusan működő stratégiákat. Baron (1978) javaslata alapján a kognitív 

stratégiák három fő csoportját különböztetjük meg: (1) központi stratégiák: a további stratégiák 

kialakítását segítik; (2) általános stratégiák: többféle helyzetben alkalmazhatók; (3) speciális 

stratégiák: a stratégiák egy sajátos területen történő alkalmazása. 

Mérő László (2001) rendszerezte az egyes szakmai szintek, a kezdők, haladók, 

mesterjelöltek és nagymesterek szintjén levő emberek néhány jellemzőjét. Vizsgálta az 

emberek gondolkodását a kognitív sémák mennyisége és minősége, a problémamegoldás 

módja, a szakmai kommunikáció minősége, szakmai nyelve, a gondolkodási stílus, a tudatosság 

szintje, érés ideje és fejleszthetősége szempontjából. Úgy véli, hogy míg a kezdők 

rendelkezésére álló, meglehetősen bonyolult kognitív sémák száma néhány tucat, és a 

tudatosság szintje inkább metakognitív tudatlanságnak nevezhető (hiszen még azt sem tudja, 

hogy mit nem tud), addig a nagymester már kognitív sémák alapján, néhány tízezer kognitív 

séma közül válogathat, tudja, mit hogyan kell tenni, de nem tudja, honnan tudja ezt. 

A következőkben megnézzük, mik a matematikai műveltség összetevői. Milyen 

szerepet töltenek be a számolási stratégiák, azon belül a szorzási stratégiák a matematikai 

műveltségben, és mi jellemző a tanulók stratégia-használatára? Vajon mennyire tudatosan 

alkalmazzák a 10-18 éves diákok a szorzási stratégiákat a fejszámolás során? Milyen hibázási 

mintázatok figyelhetők meg?  

 

1.2. A matematikai műveltség  
 

2012-ben, 2015-ben és 2018-ban a PISA vizsgálat az alkalmazott matematikai műveltség 

mérését célozta, a 2012-ben leírt definíciót alkalmazták mindhárom mérés során (OECD, 2019).  

„A matematikai műveltség az egyénnek az a képessége, hogy különböző kontextusokban 

megjelenő problémákat matematikailag megfogalmaz, matematikai ismereteit alkalmazva 

megold, és matematikailag értelmez. Idetartozik a matematikai gondolkodás, valamint a 

matematikai fogalmak, eljárások, tények és eszközök használata jelenségek leírásához, 

magyarázatához, előrevetítéséhez. Segítségével az egyén felismeri a matematika szerepét a 

világban, és konstruktív, elkötelezett, megfontolt állampolgárként megalapozott ítéleteket és 
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döntéseket hoz.” (Balázsi, Ostorics, Szalay, Szepesi & Vadász, 2013, 15.). A mindennapi 

életben nélkülözhetetlen matematikai műveltség fogalma napjainkra kibővült: a döntéshozó 

képesség, adatok elemzésének képessége, numerikus, térbeli, grafikus, statisztikai és algebrai 

készségek, matematikai gondolkodás, stratégiák, általános gondolkodási képesség is 

beletartoznak (Numeracy = Everyone’s Business, The Report of the Numeracy Education 

Strategy Development Conference, 1997).  

 

1.2.1. A matematikatanítás szerepe a versenyképesség növelésében  

 

Napjaink gazdaságának fő jellemzője, hogy egy termék, szolgáltatás létrejöttében a szellemi 

hozzáadott érték a meghatározó (Vaszari, 2013). Egyre nagyobb szerepet kap a folyamat- és 

üzletfejlesztés, piaci helyzet elemzése, kapcsolatépítés, minőségbiztosítás, 

tehetségmenedzsment. A tudás mint termelési tényező a fenntartható fejlődés, a 

versenyképesség elérésének egyik kulcseleme. Az oktatási rendszer és a népesség egészségi 

állapota meghatározzák egy adott ország termelékenységének szintjét. A World Economic 

Forum (WEF) globális versenyképességi ragsorában Magyarország évek óta rosszul szerepel, 

2017-ben a 60. helyen állt, számos mutató szerint nem vagyunk eléggé versenyképesek. A 

tudásalapú társadalomban a közoktatás legfőbb tartalékait a tanulás hatékonyságának javítása, 

a mélyebb megértésen alapuló, szélesebb körben alkalmazható tudás képezheti (Csapó, 2008b), 

ezen múlik a nemzet, a gazdaság, az egyén versenyképessége is. A nagyobb versenyképesség 

ugyanakkor többletjövedelmet, gazdagságot, és még több tudást eredményezhet.  

Míg a magyar alsó tagozatos tanulók teljesítménye a nemzetközi TIMSS mérések 

szerint kiemelkedően magasabb, mint a nemzetközi átlag, addig a felső tagozaton folyamatosan 

csökkenő tendencia után a 8. évfolyamosok teszteredményei jóval a nemzetközi átlag alatti 

teljesítményt tükröznek. Ennek okát több kutató (Csapó, 2000; Dobi, 2002; Mátrai, 1997) az 

egyes országok eltérő tudáskoncepciójából eredezteti. A nyugati országokban a gyerekek 

iskolai tanulmányaik során gyakrabban találkoznak a realisztikus, más szóval életszerű, 

valóságközeli egyszerű és összetettebb problémákkal, míg a magyar tanulókkal szembeni 

elvárások közül még mindig a feladat matematikai szempontból korrekt módon történő 

megoldása a legfontosabb. Csapó (1998a) szerint az egyébként jól teljesítő diákok is 

leblokkolnak, ha a megszokottól eltérő megfogalmazású feladattal találják szembe magukat. 

A matematikaoktatást módszerei miatt régen és ma is számos szemrehányás éri, egyesek 

a fontosságát is megkérdőjelezik, ezért fontos, hogy elejét vegyük ezeknek a kritikáknak.  A 

XX. században többen is a matematikaoktatás reformja mellett törtek lándzsát, hazánkban ezt 

a mozgalmat az általános iskolában Varga Tamás, a középiskolában Surányi János neve 

fémjelzi. Kutatócsoportjaik és későbbi követőik, mint pl. Szendrei Julianna (2005) legfőbb 

törekvései összhangban állnak a gyermekközpontú pedagógia törekvéseivel, Pólya probléma-

megoldással, matematika-tanítással kapcsolatos elveivel. Csapó is azt vallja, hogy az iskolai 

matematikaoktatásnak a gondolkodás fejlesztésére, az értelem kiművelésére kell koncentrálnia, 

kiemelten fontos, hogy az életben hasznosítható tudást közvetítsen (Csapó, 2003). 

A gondolkodás fejlesztése, a gyakorlatban hasznosítható tudás kialakítása érdekében 

célszerű lenne minél több visszajelzést adni a tanulóknak arról, hogy gondolkodásuk mennyire 

megfelelő, mennyire rugalmas az adott feladat szempontjából. Az alaposabb elemzés 

feltételezi, hogy a gyerekek így megismerik a feladat különféle megoldási módjait, ill. 
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felismerik a megoldási utat jelentő stratégiák használhatóságát. Majoros már 1997-ben 

rámutatott arra (Orosz & Majoros, 1997), hogy létezik olyan hazai tanítási irányzat, amely a 

tanulók ismeretszerzési folyamatának pszichológiai sajátosságait jobban figyelembe veszi. 

Majoros (Orosz & Majoros, 1997) kiemeli, hogy a megszokottól eltérő, frappáns megoldások 

megbeszélése magas szakmai relevanciával bír. Ugyanis a szellemes megoldások mind a 

tanuló, mind a pedagógus számára nagy élményt jelentenek, munkájukat motiválják, továbbá 

jelentős mértékben segítik az egyes anyagrészek közötti mélyebb összefüggések megértését.  

Oktatáspolitikai szempontból is fontos annak tisztázása, mit is tekintünk adaptív 

stratégiahasználatnak. A hazai oktatásirányítás − a magyar lakosok által felvett hitelek 

bedőlése, az ország eladósodása, a világgazdasági válság miatt és arra reagálva − kiemelt 

fontosságúnak tekinti a jövő generációjának pénzügyi tudatosságra nevelését. A sikeres 

pénzügyi döntések rugalmas stratégiahasználatot kívánnak. A 2012-es Nemzeti Alaptanterv és 

Kerettanterv (OFI, OFI 2012b) előírásai szerint a felső tagozaton matematika és történelem órán 

is szólni kell a hitel, a kamat, tőke fogalmakról. A 2012-ben megalkotott Nemzeti 

Alaptantervben (NAT, 2012) a kulcskompetenciáknak megfelelően a matematikai 

műveltségben kiemelten fontos: az 5-6. évfolyamon a biztos számolási készség kialakítása, 

kommunikáció fejlesztése (szövegértés). Fontos feladat a tanítás során a differenciálás. A 

fejlesztés különleges területei az egyéni különbségek figyelembevételével: a tehetséggondozás 

és a sajátos nevelés igényű gyermekekkel való foglalkozás. A matematikai műveltség 

fejlesztésében kiemelt szerep jut a vitakészség, a kreativitás fejlesztésének is. Az új NAT (2020) 

elvárja a tanulóktól a feladathoz illő matematikai modell kiválasztását és alkalmazásának 

képességét, tehát különféle gondolkodásmódok (analógiás, heurisztikus, becslésen alapuló, 

matematikai logikai, valószínűségi, konstruktív stb.) és módszerek (aritmetikai, algebrai, 

geometriai, függvénytani, statisztikai stb.) elsajátítását. Hasonlóan elsajátítandó képesség 

alapszinten is a matematikai modellek alkotása, a modellek közötti váltás. Ezek a készségek 

mind segítik a tanulókban a stratégiahasználat rugalmasságát. 

Csapó (2008a) kiemeli, hogy a megértés lehetősége nélküli mechanikus tanulás 

elidegeníti a tanulókat az egyes tantárgyaktól és a tanulástól. A különféle attitűdvizsgálatokból 

kiderül, hogy minél hosszabb ideig tanulnak egy tantárgyat, annál kevésbé szeretik azt 

(Csapó,1998a, 2002a), egyre kevésbé motiváltak (Józsa, 2002, 2007). Csapó szerint (2008a) az 

ördögi körből a kiút a tanulók tudásának minőségi javítása, a tanulási-tanítási folyamatok 

megváltoztatása lehet. Azonban ez nem a tanárokra szabott részletes utasításokat jelenti. Ami a 

matematikát illeti, sokféle, a gyakorlati életben hasznosítható számítás végzése segíthet, de az 

absztrakt levezetések inkább kerülendők (Csapó, 2008a). Lényegében minden tudáselem 

elhelyezhető a Csapó-féle háromdimenziós kocka modellben (OFI, 2015), melynek fő 

tengelyei: szakértelem, matematikai műveltség (mathematical literacy) és készségek. Csapó 

(2006) felhívja a figyelmet arra, hogy a tanulóknak nem kis hányada félanalfabétaként lép ki az 

oktatásból, és az előzetesen el nem sajátított fogalmakat nem képes használni a magasabb 

gondolkodási készséget igénylő, komplex feladatok megoldása során. Így van ez az elemi 

számolási készségekkel is, ha ezek fejletlenek, a szöveges feladatok megoldása nehézkes.  

 

1.2.2. A matematikai szakértelem összetevői 
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A matematikai gondolkodást többféle megközelítésből vizsgálhatjuk (Vincze, 2006). A 

matematikai szakértelem (mathematical profiency) kifejlődésében kulcsfontosságú szerepet tölt 

be öt tényező, melyet Kilpatrick, Swafford és Findell (2001) öt egybefonódó szálként képzelnek 

el. Ezek a tényezők: (1) A fogalmi megértés, ez alatt a fogalmak, műveletek és relációk 

tulajdonságainak megértését értik. (2) A procedurális könnyedség kifejezés sokféle művelet 

ismeretére és azok alkalmazására vonatkozik, a műveletek végzéséhez szükséges gondolkodás 

rugalmasságát, pontosságát és hatékonyságát és használatát takarja. A (3) stratégiai 

kompetenciák alatt azt értjük, hogy a tanuló képes matematikai problémákat megfogalmazni, 

modellezni, megoldani. Ez a problémamegoldáshoz hasonló fogalom. A stratégiai 

kompetenciák, a fogalmi megértés és a procedurális könnyedség egymást kölcsönösen 

támogató jelenségek. (4) Az adaptív gondolkodás a fogalmakról és a fogalmak közötti 

összefüggésekről, viszonyokról való logikus gondolkodás képességet jelenti. Ahhoz, hogy egy 

problémát megfogalmazzunk, majd sikeresen megoldjunk, többféle fogalom, tény, eljárás 

között kell eligazodnunk. (5) Az eredményre irányultság „elsősorban affektív és kevésbé 

kognitív és metakognitív interakciókra utal” (Andrews, Diego-Mantecon, Vankuš, Op ’t Eynde, 

& Conway, 2008, 142.o.), és többek között matematikai meggyőződéseket, az önhatékonyságra 

vonatkozó elképzeléseket, tanulási motivációt, attitűdöket foglal magában, (mint pl. a 

matematika hasznos és megtanulható). 

 

1.2.3. A matematikai kompetencia készség-, képességkomponensei és azok fejlesztése  

Nagy (2000) kognitív kompetencia felfogása szerint a kognitív kompetencia meghatározó 

részei a kommunikáció, a tanulás, a tudásalkotás és a gondolkodás. Ezek alkotóelemei a 

képességek, készségek, motívumok és rutinok. Ahhoz, hogy a tanulókban elérjük, kifejlesszük 

az alkalmazni képes tudást, meg kell keresnünk az adott kompetencia építőköveit: előbb 

szükséges fejlesztenünk a kompetenciát alkotó motívumokat, képességeket, készségeket és 

ismereteket, majd ezt követheti a valós élethez hasonlatos feladat kitűzése (Vidákovich, 2013). 

A munkapiaci elvárásoknak megfelelő, alkalmazni képes tudáshoz szükséges a diákok 

matematikai kompetenciáinak fejlesztése, hiszen a matematikai kompetencia a kognitív 

kompetencia részrendszereként kiemelkedő szerepet játszik a kognitív fejlődésben. Erre 

számos bizonyítékot találhatunk a Szegedi Műhely kutatóinak, köztük Nagy, Csapó, 

Vidákovich és Józsa mintegy 40 év során végzett vizsgálataiban. A matematikai kompetencia 

tág fogalma magában foglalja a matematikai ismereteket, az alkalmazásokhoz kapcsolódó 

tartalmakat (Vidákovich, 2013) legfontosabb összetevői a matematika-specifikus és nem 

matematika-specifikus készségek és képességek. Ezen komponensek működését, fejlődését 

tantárgy-specifikus és nem tantárgy-specifikus motívumok befolyásolják. 

A matematikai műveltség rendszerét az OECD PISA 2003 vizsgálatban három klaszterre 

bontva ábrázolják (Vidákovich, 2013). Az első és a második klaszter tartalmazza a kutatásunk 

szempontjából fontos sztenderd komponenseket. Az első, reproduktív klaszterben találjuk a 

sztenderd reprezentációkat, definíciókat, rutin számításokat, rutin eljárásokat és rutin 

feladatmegoldást. A második, klaszterkonnektív klaszter részei: modellezés, sztenderd 

problémamegoldás, transzláció és értelmezés, összetett, de jól definiált módszerek. Míg a 

harmadik, reflektív klaszterbe sorolható: komplex problémamegoldás és problémafelvetés, 
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reflexió és belátás, eredeti matematikai megközelítés, összetett, bonyolult módszerek, 

általánosítás. Vidákovich (2013) hangsúlyozza, hogy a különböző típusú PISA-feladatok 

gyakoroltatása helyett, előtt, a feladatokban tetten érhető alapkészségeket, elemeket célszerű 

gyakorolni. 

A gondolkodási képességeket pszichológiai szemszögből vizsgálva Carroll (1993) 

elkészítette az intelligencia faktoranalízisét, ezt láthatjuk az 1. táblázatban.  

1. táblázat. Az intelligencia faktoranalízise (forrás: Carroll, 1993) 

Gondolkodási  

képességek 

Kommunikációs képességek Tudásszerző képességek Tanulási 

képességek 

 nyelvi vizuális feladat-

megoldás 

probléma- 

megoldás 

 

rendszerezés 

 

nyelvi fejlettség térlátás reakcióidő probléma- 

érzékenység 

memória- 

terjedelem 

kombinativitás  

 

szövegértés térbeli 

viszonyok 

számolási 

képesség 

eredetiség, 

kreativitás 

asszociatív 

memória 

deduktív 

következtetés 

 

olvasási sebesség hosszúság- 

becslés 

művelet-

végzési 

sebesség 

 értelmes 

memória 

induktív 

következtetés  

 rész-egész 

észlelés 

  tanulási 

sebesség 

mennyiségi 

következtetés  

 észlelési 

sebesség 

   

gondolkodási 

sebesség 

     

Amint megfigyelhetjük, Carroll szerepelteti az intelligencián belül azokat a képességeket, 

amelyek szerepet játszhatnak a matematikai gondolkodásban. Empirikus eredményekkel 

igazolta, hogy az ún. általános faktor, a g faktor, egész életünkben meghatározhatja a 

matematikai feladatok megoldására és a megoldás megtanulására való képességünket. A 

tudásszerző képességeket kiemelhetjük, mint a matematikatanulás szempontjából fontos 

képességet. Ezek fontos alkotóelemei a feladatmegoldás, számolási képesség, műveletvégzési 

képesség, kapcsolatba hozhatók kutatásunkkal, ahogy a gondolkodási képességek között 

szerepeltetett mennyiségi következtetés, és a kommunikációs képességek sorában levő nyelvi 

fejlettség, szövegértés is. 

A következő fejezetekben szót ejtünk a matematikai tudás mérésének hagyományairól, 

lehetőségeiről, összegezzük a legismertebb nemzetközi és hazai mérések tapasztalatait. Ezt 

követően bemutatjuk a tanulók közötti teljesítménykülönbségek néhány aspektusát. 

 

1.3. Nemzetközi és hazai matematikai tudásszintmérések  
 

A nemzetközi és hazai matematikai tudásszintmérések több évtizedes hagyományra nyúlnak 

vissza. A mérések négy főbb területet vesznek górcső alá: (1) „matematikai tudásszintmérések”, 

(2) „a matematikai kompetencia vizsgálatára irányuló mérések”, (3) „a matematikai feladat-és 

problémamegoldást vizsgáló szöveges feladatok” és (4) „a matematikai alapképességek 

vizsgálata” (Vidákovich & Csíkos, 2009, 150.o.). 
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A hazai mérések megindulásáért elsősorban Kiss Árpádnak lehetünk hálásak. Az általa 

végzett tudásszintmérések eredményei azt mutatták, hogy az 1950-es évek tantervi 

követelményei és a tanulók teljesítményei nem csengenek össze (Kiss, 1961). Kiss Árpád 

kezdeményezésére az 1967-ben megalakult nemzetközi szervezethez, az IAE-hez 1968-ban 

hazánk is csatlakozott. Az International Association for the Evaluation of Achievement (IEA) 

második, ún. SIMS vizsgálata során a magyar 13 évesek az ötödik legjobb eredményt érték el 

a mérésben részt vevő 14 ország között (Vidákovich & Csíkos, 2009). 

 Az IEA mérései az iskolában elsajátított lexikális tudást vizsgálták, közelebb állnak a 

magyar matematika tantervek elvárásaihoz, mint a PISA mérések. 1995-ben végezte az IEA a 

TIMSS mérést (Third International Mathematic and Science Survey), a harmadik mérés során 

a részt vevő országok negyedik és nyolcadik osztályos tanulói matematikai és 

természettudományi tesztet töltöttek ki. Ekkor még elégedettek lehettünk a magyar tanulók 

teljesítményével, hiszen a 14 éves tanulóink átlagpontszáma 537 pont (Vári & Krolopp, 1997). 

1999-ben kisebb teljesítménynövekedésnek örülhettünk (552 pont), majd zuhanórepülésbe 

kezdtünk. A négyévenkénti mérések egyre gyengülő eredményei után végül 2011-ben már csak 

505 pontot értünk el (Balázsi, Ostorics & Szalay, 2007). 2015-ben az 500 pontos átlag fölötti 

527 pontot értük el.  

 Az OECD (Gazdasági Együttműködési és Fejlesztési Szervezet) országok 2000-ben 

indítottak egy vizsgálatot, melynek fő célja az volt, hogy összehasonlítsák az egyes országok 

15 éves tanulóinak gyakorlatban is alkalmazható, a munkavállaláshoz szükséges 

kompetenciáinak szintjét. A PISA (Program for International Student Assessment) mérés során 

normaorientált tesztek segítségével szereznek adatokat a diákok matematikai, szövegértési és 

természettudományi kompetenciáiról. A normát az OECD-országok adataihoz igazítják. „A 

matematika-képességskálát 2003-ban úgy alakították ki, hogy az OECD átlag 500 pontnál 

legyen, a szórás pedig 100 pont legyen” (Ostorics, Szalay, Szepesi & Vadász, 2016, 43.) 

 A 2000. évi mérésekbe hazánk is bekapcsolódott. A magyar társadalmat sokkolták az 

500 pontos OECD átlag alatti magyar teljesítmények (488 pont). 2003-ban a PISA-

vizsgálatokban a fő mérési terület a matematika volt, erre a tartalomterületre három évente 

fókuszálnak a kutatók. A magyar teljesítmények több mérés során is a 490 pont körül 

ingadoztak, 2009-ben még a 26. helyen álltunk. Míg 2012-ben egy újabb csökkenő 

tendenciának lehettünk tanúi, a magyar tanulók által elért 477 pont a 44 résztvevő ország között 

32. helyre volt elegendő. A 2015-ös PISA-méréseken a magyar 15 éves tanulók átlageredménye 

477 pont volt, ami szignifikánsan alacsonyabb a 490 pontos OECD-átlagnál, ami az OECD 

országok között a 28-30. helyet jelenti (Ostorics, Szalay, Szepesi & Vadász, 2016). Azóta ez a 

helyezés nem javult (Radó, 2019). 

 A PISA-mérésben részt vevőket megkérik egy háttérkérdőív kitöltésére is, az így kapott 

információkat összevetik az országok teszteken elért teljesítményével (Balázsi, Ostorics & 

Szalay, 2007). A magyar diákok mintegy ötöde található a 2. képességszint alatt, ami a 

funkcionális analfabetizmust jelenti (Csapó, 2017). A 2012-es PISA-mérés arra is ráirányította 

a kutatók figyelmét, hogy a tanulók gyenge teljesítménye korrelál a családi háttérrel. Az ESCS-

index (Index of Economic Social and Cultural Status) a család gazdasági, társadalmi és 

kulturális státuszát szimbolizálja. 2012-es PISA-mérések szerint a családi háttérindex a 

matematika teljesítmény varianciájának csaknem harmadát, 31,2%-át magyarázza, ami 

szignifikánsan magasabb, mint az OECD átlag (20,7%) (Csapó, Fejes, Kinyó & Tóth, 2014). 
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Hasonlóan elszomorító eredményeket kapunk a TIMSS vizsgálatokból is, a magyar tanulók 

teljesítményére átlagon felüli hatással van a családi háttér, gazdasági, társadalmi és kulturális 

státusz. Mindkét fajta nemzetközi vizsgálatból leszűrhető tanulságként, hogy a magyar oktatási 

rendszer nem képes a társadalmi rétegek között meglévő egyenlőtlenségek kiegyenlítésére, 

hanem rögzíti azokat (Csapó, 2017).  

 A PISA-vizsgálatok hatására 2001-ben Országos Kompetenciamérés indult, az ötödik 

és kilencedik évfolyamosok körében matematika és szövegértési kompetenciákat vizsgáltak. A 

2004-es OKM jelentés meghatározása szerint:  

„A matematikai műveltség mérésének célja annak megállapítása, hogy a tanulók 

mennyire képesek bizonyos fogalmakat elemezni, összefüggésbe helyezni és kifejteni, 

miközben különböző területeken és helyzetekben jelentkező matematikai feladatokat, 

problémákat értelmeznek, formalizálnak, megoldanak, jól megalapozott döntéseket hoznak, és 

ezáltal a társadalom aktív és konstruktív tagjává váljanak.” (Balázsi, Szabó, Szabó, Szalay & 

Szepesi, 2004, 14.o.). 2004-ben a negyedikes tanulókat vonták be a vizsgálatokba, de a 

2012/13-as tanévtől részvételük a mérésben opcionálissá vált (Balázsi, Ostorics & Szalay, 

2007). 

 Az OKM eredményeket az egyszerűbb összehasonlítás miatt a PISA mérések során 

alkalmazott elvek szerint értékelik. A képességpontokat sztenderdizálták, így az első 

mérésekkor az átlag 500 pont, a szórás 100 pontnyi volt. Majd 2008-tól kezdve bevezették az 

új, évfolyamfüggetlen egységes képességskálát 1500 pontos átlaggal, míg a szórás 200 

képességpont lett (Balázsi, Lak & Szabó, 2011). Ugyan az egyes években az évfolyamok 

átlageredménye között különbségek értéke minden esetben szignifikáns, 2008 óta nem 

mutatható ki statisztikai változás (Belinszki, Szepesi, Takácsné Kárász & Vadász, 2020), az 

egyes évfolyamokon vizsgált tanulók teljesítménye csekély mértékben ingadozik, ezt 

figyelhetjük meg az 1. ábrán.  

 

1. ábra A 2019-es és a korábbi kompetenciamérések átlageredményei 

(forrás: Lak, Szepesi, Takácsné Kárász & Vadász, 2019.  10.o.) 

A matematikai alapképességek vizsgálata során Varga Tamás felhívta a figyelmet arra, hogy a 

negyedikes tanulók matematika tudásának fejlettsége között több évnyi különbség is lehet 

(Varga, 1971). Hasonló következtetésekre jutott Nagy József: a számlálás esetében is több 
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évben kifejezhető fejlődési különbség az óvodás, kisiskolás gyerekek között (Nagy, 1980). A 

matematikai kompetencia készségeinek és képességeinek (pl. számlálás, mennyiségi 

következtetés) fejlettsége már az óvodáskorban előre jósolhatja a későbbi iskolai teljesítményt. 

A Diagnosztikus Fejlődésvizsgáló Rendszer kidolgozásával a Szegedi Műhely kutatói célul 

tűzték ki a gyermekek képességszintjének diagnosztikus felmérését. Ez a későbbi óvodai, 

iskolai fejlesztés kiindulópontjául szolgálhat. Az egyes komponensek fejlődésében mutatkozó 

jellegzetes különbségeket az iskola lassan, vagy nem képes kompenzálni, amiről az évenkénti 

megrendezett országos kompetenciamérések, és a háromévenként szervezett PISA mérések 

beszámolóiban meggyőződhetünk. 

Célszerű lenne a tanulók közötti tudásszintkülönbségnek utána járni és felszámolni. A 

Szegedi Műhely kutatói több tanulmányt írtak a témában. A számlálás és az értelmi fejlettség 

kapcsolatát vizsgálta Vidákovich (Vidákovich, 1989), Józsa pedig a számlálási készség 

kritériumorientált fejlesztésével foglalkozott (Józsa, 2000, 2003), Nagy és munkatársai elemi 

alapkészségek fejlettségét kutatták 4−8 éves korú gyerekeknél (Nagy, Józsa, Vidákovich & 

Fazekasné Fenyvesi Margit, 2004). A matematikai kompetencia fejlesztésének nagy 

hagyománya van hazánkban (ld. pl. Vidákovich, 2008). Az utóbbi években irányult a kutatók 

figyelme a stratégiakutatásokra, főleg Csíkos összeadással kapcsolatos kutatásai nyomán 

(Csíkos, 2003a, 2003b, 2012, 2013). 

 

1.4. Az oktatási rendszeren belül mért különbségek mértéke, természete, okai 

 

Az oktatási rendszeren belül mért különbségeket 2009 óta évről évre tanulmányozhatjuk az 

országos kompetenciamérésekről kiadott összefoglaló jelentésekben. „A 2018. évi Országos 

kompetenciamérésben a tanulók matematikai eszköztudás átlageredménye a 6. évfolyamon 

1499, a 8. évfolyamon 1614, a 10. évfolyamon 1647, a szövegértés átlageredménye a 6. 

évfolyamon 1492, a 8. évfolyamon 1602, a 10. évfolyamon 1636 pont volt” (Lak, Szepesi, 

Takácsné Kárász & Vadász, 2019, 7.o.). 

 

1.4.1. Területi különbségek  

 

A hazai oktatáskutatókat régóta foglalkoztatja, mik lehetnek a magyar oktatási rendszerre 

jellemző jelentős területi egyenlőtlenségek okai. Az évente közölt megyékre, régiókra, 

járásokra lebontott adatok megerősítik, hogy kompetenciamérésben a legmagasabb 

átlageredményeket Nyugat-Dunántúl és a Közép-Magyarország régió hozza, és szembetűnő 

módú, 83–90 pontnyi a lemaradása matematikából az országos átlagtól Észak-Magyarország és 

az Észak-Alföld régióknak. A szövegértési teljesítményre hasonló megállapítások tehetők. Az 

eddigi mérések alapján a legjobb teljesítményt mindhárom vizsgált évfolyamon a fővárosi 

tanulók nyújtják. A megyék közötti különbségek matematikából kisebbek, 98–122 pont közé 

esnek, míg szövegértésből elérhetik a 130 pontot.  Az egyes évfolyamok között a régiókban 

mért különbség egyre nő, legmagasabb teljesítménykülönbség a 8. évfolyamosok körében 

figyelhető meg mind matematikából, mind szövegértésből. A járásokra lebontott eredmények 

még nagyobb különbségekről számolnak be az egyes évfolyamokon, ez matematikából 288, 

386, illetve 662 képességpontot jelent.  
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Településtípus, képzési forma, feladatellátási helyek szerinti különbségek  

 

A 6. és a 8. évfolyamon tanulók általában a lakóhelyükön járnak iskolába, így ezeken az 

évfolyamokon megfigyelhető jelenségek élesen mutatják a lakóhely szerinti 

teljesítménykülönbségeket is. A 2018-as országos kompetenciamérésben a 6. és a 8. 

évfolyamon matematikából 115, illetve 145, szövegértésből 130, illetve 148 pontnyi különbség 

látható a községi és a fővárosi iskolák tanulói között (Lak, Szepesi, Takácsné Kárász & Vadász, 

2019). A jelentős különbségeket általában a településtípusok gazdasági fejlettsége közti 

különbségek és a szociális jellemzők magyarázzák. A 10. évfolyamon a községi és a budapesti 

tanulók átlageredményei között még nagyobb különbségeket figyelhetünk meg, ez 

matematikából 171 képességpont.  

A különböző képzésben részt vevő tanulók teljesítményszintje még inkább eltér 

egymástól. A 6. és a 8. évfolyamon tanulók mintegy 4%-a nyolc évfolyamos gimnáziumokban 

tanul, a 8. évfolyamosok 5%-a pedig hat évfolyamos gimnáziumban. E két iskolatípusba járók 

a 6. és a 8. évfolyamon mindkét mérési területen szembetűnően (161–183 ponttal) magasabb 

átlagteljesítményt értek el általános iskolás kortársaikhoz képest (Lak, Szepesi, Takácsné 

Kárász & Vadász, 2019). A legmagasabb teljesítményt a nyolcévfolyamos gimnáziumokban 

érik el, őket követik a négy évfolyamos gimnáziumok 98-cal kevesebb ponttal, majd 386-tal 

kevesebb ponttal a szakgimnáziumok. A szakközépiskolások átlagpontszáma csaknem egy 

szórásnyival marad az országos átlag alatt, még az általános iskola 6. évfolyamos tanulóinál is 

kisebb.  

A PISA felmérések során az egyes országokon belül a tanulók közötti 

teljesítménykülönbségeket vizsgálva kimutatták, hogy Magyarországon a tanulók közötti 

különbségeket az iskolák közötti különbségek jobban befolyásolják, mint az iskolán belüli 

különbségek. Megfigyelhető, hogy a 6. és 8. évfolyamos kompetenciamérésben a feladatellátási 

helyeken belüli különbségek a tanulók közötti különbségek 67-72%-át magyarázzák, 

telephelyek közötti különbségek pedig a variancia 28-33%-át teszik ki, míg a 10. évfolyamon 

ez az arány nagyjából 50-50% (Lak, Szepesi, Takácsné Kárász & Vadász, 2019).  Ennek okai 

közé sorolhatjuk az általános iskolákban megfigyelhető heterogén tanulói összetételt, a korai 

szelekciót és a jelentős, intézmények közötti különbséget.  

A tanulók átlageredményeit összehasonlítva nem találunk jelentős különbséget a 

különböző településtípusok iskolái között. A különböző képzési formák/ településtípusok 

tanulóira illesztett regressziós egyenesek azt mutatják, hogy a 8. évfolyamon nem mutathatók 

ki számottevő különbségek a képzési forma és a településtípus szerint. Ebből következik, hogy 

a településtípusok szerint mért tanulói teljesítménykülönbségeket kevésbé magyarázza az 

iskolákban végzett oktatómunka színvonala, sokkal inkább a különböző településtípusok eltérő 

gazdasági és szociális jellemzői, továbbá a 6. évfolyamos tanulók eltérő fejlettségi szintje, 

melyből adódó különbség számottevően nem csökken a későbbiekben sem (Lak, Szepesi, 

Takácsné Kárász & Vadász, 2019). A korai szelekció hat és nyolc évfolyamos gimnáziumokat 

hozza előnyös helyzetbe. A hat és nyolc évfolyamos gimnáziumokban a tanulók jobban 

fejlődnek két év alatt, ennek oka részben az osztályok magasabb átlagos képességszintje lehet. 

A 8. és 10. évfolyamok között nagyobb képességpontkülönbséget tapasztalhatunk a különböző 

képzési formák esetén. A 8. osztályos hat-, és nyolcévfolyamos tanulók képességszintje 

matematikából átlagosan 72–78 ponttal emelkedik a 10. évfolyam végére, a négy évfolyamos 
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gimnáziumokban továbbtanulóké 55 ponttal, a szakgimnáziumokban tanulóké ez a növekedés 

37 pontnyi, a szakközépiskolások esetén pedig nem kimutatható, matematikai eszköztudásuk 

megreked a hatodik évfolyamos szint közelében (Lak, Szepesi, Takácsné Kárász & Vadász, 

2019). Négy évnyi tanulás a nyolcosztályos gimnáziumokban eredményezi a leglátványosabb 

fejlődést (203 pont), ellenpólusa ennek a szakközépiskolás tanulók 61 pontos 

teljesítménynövekedése. 

 

1.4.2. A családi háttér hatása a teljesítményre  

 

A kompetenciamérés során a tanulók háttérkérdőívet töltenek ki.  A kérdések a következőkre 

vonatkoznak: az otthon található könyvek száma; a szülők iskolai végzettsége; a család anyagi 

helyzete; a család birtokában lévő anyagi javak;  a szülők munkaerő-piaci státusa;  tanulást 

segítő eszközök;  családi programok jellege;  kulturális tevékenységek (Lak, Szepesi, Takácsné 

Kárász & Vadász, 2019). A kérdőívtételek segítségével ún. családiháttérindexet (CSH) 

számítanak ki, ez a tanulók családi jellemzőinek együttes befolyását összesíti. A családiháttér-

index és a tanulók teszten elért eredménye közötti kapcsolatot lineáris regresszióval becsülik. 

A családiháttér-index standardizált értékeit telephelyek szerinti jelentések tartalmazzák. „Az 

index értéke 2018-ban a résztvevő diákok 80%-ára kiszámítható, korrelációja a 

képességpontokkal 0,51 és 0,56 között változik, az index értéke a tanulók képességében 

mutatkozó különbségek 26-31%-át magyarázza meg (Lak, Szepesi, Takácsné Kárász & 

Vadász, 2019, 34.o.)” 

Az országos kompetenciamérés eredményeiből kitűnik, hogy már hatodik évfolyamon 

is a magasabb családi háttérindex magasabb pontszámot eredményez mindkét mért területen. 

6. és a 8. évfolyamon a település függetlenül az azonos CSH indexszel rendelkező tanulók 

matematikai eszköztudása nem tér el egymástól lényegesen, viszont a különböző képzési 

formákban tanulók esetén jelentős eltérés okoz az eltérő családi háttér (Lak, Szepesi, Takácsné 

Kárász & Vadász, 2019).  

 

A tervezett végzettség és a teljesítmény kapcsolata  

 

A családi háttér jelentősen befolyásolja tanuló továbbtanulási céljait. A mérési eredmények és 

a továbbtanulási célok között szoros összefüggés mutatható ki: minél magasabb végzettséget 

tűznek ki célként maguk elé a tanulók, annál jobb az átlagpontszámuk. Az országos átlagnál 

magasabb pontszámot a felsőfokú végzettség megszerzését tervezők érték el, matematikából 

tőlük egy szórásnyira (100–162 pont) lemaradva találjuk a szakmunkásképző iskola elvégzését 

célul kitűző tanulókat (Lak, Szepesi, Takácsné Kárász és Vadász, 2019). A főiskolai 

tanulmányokat célul kitűző diákok a csak érettségizni kívánó tanulókhoz képest matematikából 

114–187 ponttal értek el többet átlagosan, ez a különbség minden vizsgált évfolyamon 

megfigyelhető. „A különböző végzettségek elérését tervező tanulók teljesítményei közötti 

különbségek valamelyest növekednek a magasabb évfolyamok felé haladva, ahogy a tanulók 

egyre közelebb kerülnek a továbbtanulásra vonatkozó döntésükhöz. (Lak, Szepesi, Takácsné 

Kárász & Vadász, 2019, 41.o.).” 
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1.5. A nemek közötti különbségek a matematikai teljesítményben  
 

Az utóbbi néhány évtizedben több kutatás zajlott annak kimutatására, miért alulreprezentáltak 

a nők a matematikai, műszaki, agrár- és természettudományi területeken, és mik lehet ennek 

okai. Baron-Cohen (2003) úgy véli, a nemi különbségek már születéstől kezdve 

megfigyelhetők: a lányok az érzelmek, személyes kapcsolatok iránt, a fiúk pedig a tárgyak iránt 

érdeklődnek inkább, és ez utóbbi segíti a matematikai készség későbbi fejlődését. Spelke (2005) 

úgy gondolja, a lányok és fiúk között a matematikai megismerés területén és az érdeklődésben 

csecsemőkorban nincsen kimutatható különbség, az a serdülőkorhoz köthető, ekkor viszont más 

faktorok hatása is jelentkezik (pl. biológiai, szociális). Öt, a koragyermekkorban kibontakozó 

mechanizmust azonosítottak, melyek együtt a matematikai gondolkodás alapját képezik: (1) 

kis, de pontos mennyiségeket reprezentáló rendszer, (2) nagy, de pontatlan mennyiségeket 

reprezentáló rendszer, (3) verbális rendszer, (4) téri memória, (5) geometriai tudást reprezentáló 

rendszer (Spelke, 2005). Az ezek fejlődésével és együttműködésével kapcsolatos vizsgálatok 

sem mutattak eltérést a két nem esetén (Gelman, 1991). Kamaszkorban már kimutatható néhány 

különbség a kognitív profilban (de nem a teljesítményben), így a fiúk inkább a térbeli, a lányok 

a verbális feladatokban, aritmetikai számításokban jobbak, más stratégiát alkalmaznak a 

megoldások során (Spelke, 2005; Penner & Paret, 2008). 

 

1.5.1. Nemek közötti különbségek a matematika tanításában és tanulásában  

 

A matematika teljesítménnyel kapcsolatos kutatások egy része a fiúk fölényét mutatja ki 

(Aunola, Leskinen, Lerkkanen & Nurmi, 2004; Githua & Mwangi, 2003; Marsh, Martin, & 

Cheng, 2008; Mullis, Martin, Gonzales & Chrostowski, 2004), míg Lindberg, Hyde, Petersen 

& Linn (2010) jelentéktelennek találja a nemek közötti teljesítmény-különbséget. Brown és 

Kanyongo (2010), valamint Robinson és Lubienski (2011) pedig kimutatták, hogy a mérések 

során a lányok a fiúktól valamivel magasabb pontszámot értek el matematikában az elmúlt négy 

évtizedben. A lányok alacsonyabb matematikai teljesítményét több tényező magyarázza. A 

tanárok és a társak támogatása pozitívan hat a tantárgyi attitűdökre (Eccles, 2011), szoros 

kapcsolatban áll az teszteredményekkel, motivációval és az önhatékonysággal (Danielsen, 

Wiium, Wilhelmsen & Wold, 2010; Eccles & Roeser, 2011).  

Samuelsson & Samuelsson (2016) fiúk és a lányok közötti nemi különbségeket a 

tanulással, önszabályozott tanulással kapcsolatos vélekedésekkel kapcsolatban vizsgálta. A 120 

iskolában 6758 svéd általános iskola tanuló körében folytatott vizsgálat során megfigyelték, 

hogy a fiúk a matematikát fontosabbnak tekintik, mint a lányok. A teljes kérdőív mintegy száz 

állítást tartalmazott, minden tényezőre elvégezve reliabilitás-vizsgálatot, a legtöbb tényezőre a 

Cronbach α értéke megfelelő volt: „A matematika fontos” cím alatt (α = 0,83), „Támogató 

osztálytermi környezet” (α = 0,84), „Részvétel”, azaz a munkakörülmények befolyásolása a 

tanulók által (α = 0,87), „A célok és elvárások egyértelmű közlése ” (α = 0,75), „Csoport-és 

projektmunka alkalmazása” (α = 0,63), „Zajos osztály” (amikor nem tanulásról van szó, α = 

0,76), „Tanárközpontú tanterem” (α = 072), „A tanár magas elvárásai, követelményei”  (α = 

0,54). 
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A fiúk úgy érezték, hogy jobban tudják befolyásolni a tanulás közbeni 

munkakörülményeiket, és többször végeznek csoportmunkát, a lányok ezt másképpen 

gondolták magukról.  Az eredmények szignifikáns különbséget mutattak a fiúk és a lányok 

vélekedése között a matematika fontosságát és nehézségét tekintve. Regressziós analízis 

segítségével egyenleteket állítottak fel a fiúk és a lányok mintájára. kimutatták, hogy a magas 

tanári elvárások negatívan befolyásolták a tanulók matematikai eredményeit, erre a fiúk 

érzékenyebbek voltak. Úgy tűnt, hogy a „Támogató osztálytermi környezet”, a „Részvétel” és 

„A célok és elvárások egyértelmű közlése” tényezőkhöz hasonlóan a lányok magasabb 

pontszámát eredményezi, míg a fiúk tanulását, magasabb eredményeit a csoport- és 

projektmunka segítette jobban. A „Támogató környezet”, a „Részvétel”, az „Egyértelműen 

megfogalmazott célok”, a „Csoportmunka” és a „Tanárközpontú tanterem” tényezők pozitív 

hatást gyakoroltak a diákok teljesítményére. A regressziós egyenletben a matematika 

teljesítményt legjobban a támogató környezet jósolta meg (0,25), a részvétel (0,10), az 

egyértelműen megfogalmazott célok (0,14) és a csoportmunka (0,12) kevésbé. A svéd 

kutatópáros (Samuelsson & Samuelsson, 2016) azt találta, hogy a fiúk a matematikát 

fontosabbnak tekintik, mint a lányok. Korábban már Nyström (2012) is rámutatott arra, hogy a 

fiúk is értékelik a tudást és a jó osztályzatokat (Samuelsson & Samuelsson, 2016). A hatékony 

matematikai oktatás úgy tűnik, hogy azonos mind a fiúk, mind a lányok esetében: a „Támogató 

osztálytermi környezet”, a „Célok és elvárások egyértelmű közlése”, a „Részvétel” pozitívan 

befolyásolják a tanulók matematika teljesítményét (Samuelson &Samuelson, 2016). 

 

1.5.2. Átlageredmények és a fejlődés mértéke  

 

A PISA-mérések során a nemek szerint szignifikáns tesztpontszám-különbségeket figyeltek 

meg az országok között (Marks, 2008). Szövegértésből 2015-ben az európai lányoknak 

átlagosan 0,35 szórásegységgel, hazánkban 0,27 SD-vel, azaz szignifikánsan jobb a 

teljesítményük, mint a fiúknak; míg matematikából átlagosan 0,07 szórásegységgel jobbak a 

fiúk a legtöbb országban (Hermann, 2018). A tesztpontszám-különbség szórása matematikából 

Európában átlagosan 0,10 SD, Magyarországon ez közepes szinten van, a fiúk értek el átlagosan 

kicsit jobb eredményt (0,09 SD). Csupán Finnországban és Albániában teljesítenek jobban a 

lányok a fiúknál. A természettudományos méréseken változatos a kép: az országok 

egyharmadrészében a fiúk, a másik harmadában a lányok teljesítménye jobb (Hermann, 2018). 

Marks (2008) hangsúlyozza, hogy a 2015-ös PISA mérésben a három tudásterületen 

mért tesztpontszám-különbségek közötti korreláció értéke magas, 0,8 körüli. Megfigyelhető, 

hogy egyes oktatási rendszerekben (finn, lett) a lányoknak viszonylagosan magasabb 

teljesítménye, illetve a (pl. osztrák, olasz) fiúk magasabb teljesítménye. Marks (2008) szerint 

az országok közötti különbségek oka nem a nemi szerepek szerinti eltérő mértékű specializáció 

áll, és azt a tantárgyspecifikus oktatáspolitika (például matematikatanítási módszerek, 

tananyag) sem magyarázza.  Guiso és munkatársai (2008), Else-Questés és munkatársai (2010) 

társadalmi és kulturális tényezőkkel magyarázzák a különbségeket, míg Fryer–Lewitt (2010), 

Stoet–Geary (2015) szerint nem mutatható ki szignifikáns összefüggés. Van Langen és 

szerzőtársai (2006) az oktatási rendszerek integráltságát vizsgálva (iskolatípusok, szegregáció, 

iskolák közötti különbségek) megállapították, hogy az egységesebb iskolarendszerek a lányok 

magasabb teljesítményét segítik.  
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Az OECD (2013) által kialakított kompozit index az úgynevezett diákorientált tanítási 

gyakorlatot méri a projektmunka, csoportmunka gyakoriságán keresztül. Hermann–Kopasz 

(2018) az iskolarendszerek három jellemzőjét vizsgálva arra a következtetésre jutottak, hogy 

a hagyományosabb oktatási rendszerek (gyakori évismétlés, korai szelekció, és a modern 

pedagógiai módszerek ritkább alkalmazása) általában a fiúk eredményére hat pozitívan, 

másrészt a korai szelekció javítja a lányok relatív eredményeit is. 

Az Országos Kompetenciamérés eredményei alapján Hermann (2018) úgy találta, hogy 

a nemek szerinti markáns különbségek rajzolódnak ki az egyes képességszinteken. 

Matematikából szembetűnő, hogy a fiúk a magasabb képességszinteken több pontot érnek el, 

mint a lányok, míg az alacsonyabb képességszinteken nincsen számottevő pontszámkülönbség.  

Matematikából a tesztpontszám-különbség 10. évfolyamon a legnagyobb, a fiúk előnye 

vitathatatlan. A gyengébb képességszinteken a lányok a többi országgal összevetve jól 

teljesítenek a fiúkhoz mérten mindhárom PISA-vizsgálati területen, míg a magasabb 

képességszinteken átlagos a tesztpontszám-különbség, ez Hermann (2018) szerint valószínűleg 

az iskolatípusok közötti különbségekből származik. Az európai országokban 

a természettudományok terén a legjobb teljesítményt elérő fiúk eredménye legalább akkora, 

mint a legjobban teljesítő lányoké, míg az alacsonyabb képességszinteken a lányok pontszáma 

magasabb.   Baye–Monseur (2016) szerint ezek fényében nem meglepő, hogy a fiúk vesznek 

részt magasabb arányban a STEM-képzésekben (science, technology, engineering, 

mathematics). A fiúk esetén a teljesítmények szóródása nagyobb, mint a lányoknál (Baye–

Monseur, 2016). A PISA-vizsgálatok mindhárom területén fiúk esetében átlagosan 15 

százalékkal magasabb varianciát figyeltek meg, Magyarországon ez az érték jóval alacsonyabb 

(Hermann, 2019).  

Míg A PIRLS és a tantervi tartalmakhoz igazodó TIMSS nemzetközi mérések 

eredményei szerint alig kimutatható a teljesítménybeli különbség nemek szerint, addig az 

országos kompetenciamérések során hasonló mintázatot mutatnak, mint a PISA méréseken 

láttunk.  A fiúk és a lányok teszteredményei között számottevő különbségek rajzolódnak ki. A 

fiúk és a lányok országos kompetenciamérésen elért átlageredményeit összevetve 

településtípusonként, illetve képzési formák szerint úgy látjuk, hogy más mérésekkel 

összhangban, itt is megfigyelhető mindhárom évfolyamon a lányok jobb (40–66 ponttal 

magasabb) szövegértési teljesítménye és a fiúk 21-31 ponttal magasabb matematika 

átlagpontszáma.  

A fiúk és a lányok átlageredményei közötti hasonló különbség figyelhető meg 

mindhárom évfolyamon a különböző képzési formák és településtípusok szerint is. A 6. és a 8. 

évfolyamon a hat- és nyolc évfolyamos gimnáziumokban tanuló fiúk matematikából jóval 

eredményesebbek a lányoknál, mint az általános iskolás társaik, szövegértési teljesítményük is 

kevésbé marad el a lányokétól. A 10. évfolyamon a lányok szövegértés átlagpontszáma 66 

ponttal jobb a fiúk átlagpontszámától, míg matematikából a fiúk vezetnek 31 pontkülönbséggel. 

 A képzési formák szerinti bontást figyelve a tizedik évfolyamos fiútanulók (a szakközépiskola 

kivételével) minden képzési formában matematikából 62–81 ponttal magasabb eredménnyel 

dicsekedhetnek, és hátrányuk szövegértésből csekély (21-37 pontos) szóródást mutat (Lak, 

Szepesi, Takácsné Kárász & Vadász, 2019). A különböző képzési formákban tanulók 

átlagteljesítménye közötti jelentős eltérések hátterében a fiúk és lányok iskolaválasztása állhat. 
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A lányok szívesebben tanulnak tovább gimnáziumban, míg a fiúk gyakrabban választják a 

szakképzést (is) adó középiskolákat. 

„Látható, hogy a két mérési területen a fiúk és a lányok átlageredményei közötti 

különbség jellemzően összefügg egymással. Ahol nagyobb a lányok előnye a szövegértés 

területén, ott kisebb a lemaradásuk matematikából, és fordítva, ahol a fiúk átlaga jobban 

megközelíti a lányokét szövegértésből, ott a matematikában nagyobb előnnyel rendelkeznek. A 

nemek közötti különbségek iránya azonban mindvégig megmarad.” (Lak, Szepesi, Takácsné 

Kárász & Vadász, 2019, 31. o.). Lak, Szepesi, Takácsné Kárász és Vadász (2019) rámutattak 

arra, hogy a két mért területen a 6. és a 8. évfolyam, illetve a 8. és a 10. évfolyam között a két 

nem képviselői hasonló mértékű fejlődést mutatnak, csak 8. és 10. évfolyam között figyelhető 

meg a fiúk 18 ponttal nagyobb fejlődése matematikából. Ugyanazon tanulói populáció 

fejlődését a 2014-es és a 2018-as mérések közötti időszakban vizsgálva Lak, Szepesi, Takácsné 

Kárász és Vadász (2019) arra jutottak, hogy a 6. és 8. évfolyam között matematikából a fiúk és 

a lányok hasonló ütemben fejlődtek, míg szövegértésből a lányok fejlődtek gyorsabban. A 8. és 

a 10. évfolyam között a fiúk matematikából átlagosan 52 ponttal értek el többet, míg a lányok 

30 ponttal; és a szövegértésben is a fiúk (az átlagosan 65 ponttal nagyobb fejlődéssel) majdnem 

utolérték a lányokat.  

 

1.6. A stratégiahasználat 
 

A múlt században változott a kutatók (Thompson, 1999; McIntosh, 1990; Northcote & 

McIntosh, 1999; McIntosch, Rey & Reys, 1997; Wandt & Brown, 1957) véleménye a 

fejszámolást illetően, fontosnak tartják, hogy nagyobb figyelmet kapjon a tanítása. Széles körű 

szociológiai kutatásokat végezve Wandt és Brown (1957) arra a következtetésre jutottak, hogy 

a felnőttek a számolások háromnegyed részét fejben végzik el. Northcote és McIntosh (1999) 

úgy találta, hogy a 24 órás periódus alatt a számítások 84,6%-át fejben, 11%-át írásban, 6,8%-

át pedig számológépen végezték. A számítások 60%-a becslés, 40%-a pontos számítás volt. A 

tanulók sok hibát ejtenek a hosszabb írásbeli számítások (pl. szorzás, osztás) során. Ennek oka, 

hogy elfelejtik, rosszul sajátítják el a számolási algoritmusokat. Ugyanezt a jelenséget 

figyelhetjük meg a fejszámolások során.  

A külföldi oktatáskutatók már közel 40 éve foglalkoznak stratégiakutatással. Az 

emberek a kognitív feladatok, az aritmetikai feladatok megoldásakor többféle stratégiát 

használnak (Siegler, 2007). A stratégiafajták számossága, változatossága felvetődik a kérdés, 

milyen jellemzői vannak a rugalmas stratégiahasználatnak, hogyan választjuk ki a számítás 

során az optimális stratégiát (Baroody, 2003; Hatano, 2003; McMullen, 

Brezovszky, Rodríguez-Aflecht, Pongsakdi, Hannula-Sormunen & Lehtinen, 2016; Threlfall, 

2009; Verschaffel, Luwel, Torbeyns & VanDooren, 2009). Az adaptív stratégiahasználó afféle 

szakértői rutinnal rendelkezik, rugalmasan alkalmazza a szokásos számítási eljárásokat 

(Kilpatrick, Swafford & Findell, 2001). Az adaptív szakértelem összefügg a matematikai 

problémák megértésének képességével, tanulmányozása kulcsfontosságú a matematikai 

kompetencia fejlesztésének szempontjából (Kieran, 1992; Newton, Pollack, Kokka, Rittle-

Johnson & Durkin, 2015; Xu, Liu, Star, Wang, Liu & Zhen, 2017). Éppen ezért a 

stratégiahasználat vizsgálata szerte a világon a matematikatanítás fontos céljává vált, az 
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oktatáskutatók figyelmének fókuszába került (Sievert, van den Ham, Niedermeyer & Heinze, 

2019) 

Több nyugati országban már beépítették a tantervbe a fejben végzett számolási, köztük 

a szorzási stratégiák tanítását. Az új külföldi, pl. amerikai tantervek a szabályok tanítása helyett 

a számolási algoritmusok megértésére helyezik a hangsúlyt. Lemaire és Siegler (1995) alkotta 

modell óta számos tanulmányban olvashatunk a stratégiatanításról, a fejlesztő kísérletekről 

(Jakob & Mulligan, 2014). Az egyes iskolák, osztályok teljesítményei között nagy 

különbségeket láthatunk (Csapó, 2002, 2003, 2004a). A tanulók aritmetikai képességei között 

egyéni különbségek vannak (Dowker, 2005). A PISA matematikai vizsgálatok eredményei is 

ráirányítják a figyelmet a számolási készségek fejlesztésére.  Fontos lenne az oktatási 

rendszerben megfigyelhető teljesítménykülönbségek csökkentése, felszámolása. 

Az utóbbi évtizedekben a kutatók figyelme a tanulók gondolkodásának kutatására, azon 

belül a metakognitív stratégiák kutatására irányult. Stratégiának nevezzük a valamilyen 

magasabb cél elérésére alkalmazott műveletet, műveletsort (Lemaire & Reder, 1999). A 

stratégiahasználat az élet minden területén megfigyelhető: az emberi megismerés, a 

tudományos érvelés (Kuhn, Schäuble & Garcia-Milla, 1992), a döntéshozatal (Payne, Bettman 

& Johnson, 1988), az idő megmondása (Siegler & McGilly, 1989), pénzváltás (Lemaire & 

Lecacheur, 2001); az oktatás, a tanulás számos területén megjelenik: matematika, olvasás, 

nyelvtanulás, szótanulás, szeriális emlékezet (Siegler & Jenkins, 1989), helyesírás (Rittle-

Johnson, Siegler & Alibali, 2001), kottaolvasás (Buzás, 2016). A stratégiahasználat s a 

metakogníció szorosan összekapcsolódó fogalmak.  

 

1.6.1. Az adaptív stratégiahasználat fogalma és modelljei 

 

Az adaptív stratégiahasználat fogalmát Hatano (1982) alkotta meg abacus mesterekkel 

kapcsolatban. Szerinte a stratégiahasználat tudatosságot jelent a problémamegoldás minden 

fontosabb lépésénél (tervezés, nyomon követés és ellenőrzés). Ezt a fogalmat a 

problémamegoldás folyamatával kapcsolatos tevékenységek leírására a nemzetközi  

szakirodalom egyre gyakrabban használja. Egy adott feladat megoldására – akár valamilyen 

döntési problémáról, akár szövegértési feladatról, akár valamilyen matematikafeladatról van 

szó – számos mód kínálkozik, az optimális megoldás megtalálása sokféleképp történhet, és a 

megoldás során többféle, egymással egyenértékű stratégia alkalmazása is eredményes lehet. 

 A stratégia rugalmasságát vagy adaptivitását többféleképp definiálhatjuk. Pl. az 

összeadás és kivonás elvégzésekor több stratégiát különböztethetünk meg. Egyes kutatók (Van 

der Heijden, 1993; Thompson, 1999; Blöte, Van der Burg & Klein, 2001) kognitív 

pszichológiai megközelítésükből adódóan két szempontot tartanak vizsgálandónak: a 

stratégiákból és a feladattípusokból álló párokat, kombinációkat attól függően tekintik 

rugalmasnak vagy rugalmatlannak, hogy mennyire jól illeszkednek egymáshoz. Van der 

Heijden (1993) számára a stratégiahasználat rugalmassága az egyén által a feladat megoldása 

során alkalmazott feladat jellemzőihez való rugalmas adaptációt, alkalmazkodást jelenti; hozzá 

hasonlóan vélekednek Blöte, Van der Burg & Klein (2001). Thompson (1999) a feladatban 

szereplő számokhoz illeszkedő számolásos stratégiaválasztást tekinti rugalmas 

stratégiahasználatnak, és ennek fejlesztését tűzi ki célul a kisiskolásoknál. Heirdsfield és 
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Cooper (2002) a stratégia rugalmasságát, adaptivitását több különböző stratégia 

alkalmazásának tekintik, és szerintük az egyes stratégiák közötti váltás képessége magasabb 

szintű gondolkodást takar. Míg Verschaffel, Torbeyns, Luwel, Van Dooren és De Smedt (2007) 

véleménye szerint a különböző stratégiák közötti választás hatékonysága is fontos kérdés. A 

többi kutatóval szemben azt hangsúlyozzák, hogy az egyes stratégiák közötti váltás 

könnyedsége és a hatékonyság nem feltétlenül járnak együtt, esetenként az egyén képes lehet 

könnyedén váltani egyik stratégiáról a másikra, miközben egyes feladatok megoldása során egy 

adott stratégia alkalmazása adaptívabbnak bizonyul a többinél.  

 A stratégiarugalmasság, adaptivitás előbbi definíciói finomításra szorulnak. A stratégiák 

véletlenszerű használatát, és a feladat jellemzőihez illeszkedő stratégiát sem tekintjük 

adaptívnak, hiszen az egyénenként és feladatonként is változhat. Ezért hozta létre Siegler 

munkatársaival az ASCM, majd SCADS modelljét, mely az adaptív stratégiahasználatot a 

feladatmegoldó szemszögéből vizsgálja. Siegler és Shipley adaptív stratégiaválasztási 

modelljét (Siegler & Shipley, 1995) alapvetően matematikai feladatok megoldására alkotta 

meg, majd azt általánosították a problémamegoldásra. A modell bemutatja, hogyan választjuk 

ki az adott probléma megoldására a leginkább megfelelő stratégiát, illetve az idők és tanulás 

folyamán hogyan változik, fejlődik a stratégiaválasztásunk. A szerzők hangsúlyozzák, hogy a 

gyermekekben a fejlődés során egyes stratégiák alkalmazása automatikussá válik, abban az 

értelemben, hogy gyorsabban és kevesebb odafigyeléssel oldanak meg bizonyos problémákat.  

 Siegler, Shipley és Lemaire a stratégiahasználat vizsgálata kapcsán létrehoztak egy 

számítógépes szimulációs modellt. Az ASCM – Adaptive Strategy Choice Model neve 

magyarra adaptív stratégiaválasztás modellként fordítható. A modell fő részei a következők: 

(1) Stratégiák, (2) Problémák, (3) Gyors és pontos válaszok. A modellt Sieglerék később 

finomították, a modell részei közötti kapcsolatot a 2. ábra mutatja: 

 
2. ábra Az ASCM 

(forrás: Siegler & Lemaire, 1997, Journal of Experimental Psychology: General, 126(1),  

73. o. ábrája alapján) 
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Siegler és Shipley, (1995) szerint a modell működésének lényege a következő: a problémák 

(Problems) megoldása során gyors és pontos válaszok (Speeds Accuracies Answers) adására 

törekszünk. Amennyiben válaszunk helyes és elég gyors, nem változtatunk stratégiát. A 

helytelen és/vagy lassú válasz következménye kétféle lehet: (1) módosítjuk információinkat 

(Modifies Information About) a stratégiáról, újragondoljuk és megoldjuk a problémát, (2) 

módosítjuk a problémára vonatkozó információinkat, és újra választ keresünk a problémára. 

 Lemaire és Siegler (Lemaire & Siegler, 1995) számítógépes szimulációs-modelljét 3 

adatbázis alkotja: probléma, stratégiák és válaszok.  Ezek rendszere meghatározza, hogy egy 

adott stratégia, adott probléma és az arra adott válasz hogyan függ össze. A modell az előző 

modelltől abban tér el, hogy az egyén különböző információkat használ ahhoz, hogy 

megváltoztassa az adatbázist a stratégia, a probléma, illetve a kettő interakciója segítségével. 

A probléma megoldásával kapcsolatban a modell négy fogalmat használ. (1) Globális 

adat: arra válaszol, hogy általános szinten milyen hatékony egy stratégia, (2) Tulajdonság adat: 

a stratégiára jellemző gyorsaság és pontosság, (3) Probléma-specifikus adat: egy adott 

feladattípus esetén mennyire hatékony egy adott stratégia, (4) Újdonságérték: az egyén a 

múltban milyen gyakran használta az adott stratégiát hasonló probléma megoldása során. Ha 

már hatékony egy stratégia, akkor nehéz új stratégia elsajátítása, elsajátíttatása. A modell 

alkotói úgy vélik, ha például egy gyerek az összeadás tanulásánál eredményesen és 

következetesen tudja már használni az összeadás stratégiát, nem tartja helyesnek, hogy áttérjen 

a minimum stratégiára. 

 Lemaire és Siegler (1995) adaptív stratégiahasználat modellje, az ASCM modell 

újdonságértéket rendel az újonnan felfedezett, bevezetett stratégiákhoz. Szerintük ezek az 

értékek ideiglenesen hozzáadódnak az új stratégia erejéhez, és arra késztetik a diákokat, hogy 

ezt használja még akkor is, ha addig sikertelenül vagy kevés sikerrel alkalmazta. Az új stratégia 

minden egyes alkalommal veszít újdonságértékéből, ellenben információt nyerünk annak 

gyorsaságáról és pontosságáról. Ennek következtében az új stratégiát nagyobb valószínűséggel 

alkalmazzuk, mivel minden egyes használat gazdagítja az adatbázisunkat a stratégia 

hatékonyságáról, tartja Lemaire és Siegler (1995). Egy probléma megoldása során az ASCM a 

stratégiák gyorsaságát, a pontosságát és újdonságértékét használja annak megállapítására, hogy 

egy adott stratégia használata mennyire adaptív a probléma megoldásakor. Egy adott probléma 

megoldásakor egy még ismeretlen stratégia alkalmazása során az ASCM-modell szerint a 

stratégia globális és tulajdonság adataira támaszkodhatunk.  

 Lemaire és Siegler (Lemaire & Siegler, 1995) 2. osztályos francia tanulók szorzással 

kapcsolatos stratégiát vizsgálta, egy év során három alkalommal. A vizsgálatok tapasztalatai 

szerint a gyorsaság és a pontosság javulása négy tényezőnek köszönhető: (1) új stratégiák 

elsajátítása, (2) a leghatékonyabb stratégia használatának gyakorisága, (3) javulás mindegyik 

stratégia használata során, (4) adaptívabb választás a stratégiák között. Az emberek 

stratégiahasználatának változásait szemlélteti a 3. ábra. 
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3. ábra Az „egymást átfedő hullámok” fejlődési modell 

 (forrás: Csíkos, 2013. 35.o.; Siegler & Lin, 2010. 87. o. ábrája alapján) 

  

A Lemaire és Siegler (1995) által alkotott modell a stratégiák fejlődését vizsgálja úgy, hogy a 

teljesítményt a használt stratégia függő változójának tekintik. Véleményük szerint az alábbi 

fogalmakkal kapcsolatos kérdéseket érdemes vizsgálnunk: 

− Stratégiák repertoárja: az adott helyzetben a rendelkezésünkre álló stratégiák közül 

választhatjuk ki a megfelelőt. Általában feltételezzük, hogy a fejlődés során a stratégiák 

száma, köre lineárisan bővül, de egyes stratégiák el is tűnhetnek (pl.: a „Nem tudom” 

stratégia). 

− A stratégiák eloszlása: az adott stratégia alkalmazását leírhatjuk annak gyakoriságával, s 

erre vonatkozóan az egyén fejlődése során érdekes megállapításokat tehetünk. Előfordulhat 

egy stratégia megjelenése viszonylag korán, de lehet, hogy eleinte csak bizonyos 

feladatokban alkalmazzuk. 

− A stratégia kivitelezésének hatékonysága: a választott/ előírt stratégia segítségével egyre 

gyorsabban, egyre kevesebb hibával tudjuk megoldani a feladatot.  

− Stratégiaszelekció: arra vonatkozik, hogy a vizsgált személy hogyan, mi alapján választja 

ki az adott feladatban alkalmazott stratégiáját. Az ember fejlődése során a választott 

stratégia egyre jobban illeszkedik a feladat sajátosságaihoz, ez a rugalmas stratégiaváltás. 

Siegler SCADS számítógépes szimulációs modellje látható a 4. ábrán. 
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4. ábra A SCADS modell 

 (forrás: Shrager & Siegler, 1998, Psychological Science, 9(5), 408.o. ábrája alapján) 

Az adaptív stratégiahasználat jelenségének vizsgálatában alapvető kérdés, hogy adott 

feladat vagy probléma megoldásához az egyén hányféle stratégiát képes alkalmazni. 

Feltételezhető, hogy az egyéni életút során változik, növekszik egy adott problémához 

használható stratégiák száma, bővül a stratégiarepertoár. Lemaire és Siegler (1995) eredményei 

szerint egy bizonyos feladat megoldása során a megfigyelhető stratégiák száma bővül, ám az 

egyéni fejlődés adott pontján a stratégiák számának növekedése megáll. Ezen a fejlődési ponton 

várható, hogy az egyén a meglévő repertoárból ki tudja választani a feladathoz legjobban 

illeszkedő stratégiát, és azután előnyben fogja részesíteni ezt a kiválasztott stratégiát a többivel 

szemben. 

Siegler (2000) a SCADS modellt, azaz a Strategy Choice and Discovery Simulation 

(stratégiaválasztás-, és felfedezés szimuláció) az ASCM modell finomítása során kapta. Úgy 

véli, hogy az adott stratégiát egy adott egyén a konkrét feladathoz attól függően választja, hogy 

annak segítségével mennyire pontosan és gyorsan tudja megoldani a feladatot (a repertoárjában 
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meglevő többi stratégiával összehasonlítva), tehát az optimális sebesség, pontosság elérése a 

célja. A problémamegoldó a döntését a korábbi tapasztalatai függvényében hozza meg. Siegler 

modellje az adaptivitás finomabb definíciójára illeszkedik, s emiatt bonyolultabb is. 

Mindazonáltal az eddig ismert egyik legfontosabb szimulációs modellnek tekinthető, jól 

szemlélteti azt, hogyan választanak az alsó tagozatos gyerekek a feladatmegoldás során a már 

rendelkezésükre álló stratégiák közül, ill. hogyan fedeznek fel, fejlesztenek ki újabb 

stratégiákat. Siegler definícióját dualitás jellemzi: mind az egyén sajátosságait, mind a feladat 

jellemzőit figyelembe veszi. 

 A stratégiahasználat vizsgálata során számos érdekes jelenségre fény derült. Thomas 

(2002) szerint különbségek tapasztalhatók az egyének stratégiahasználatában. A gyermek 

stratégiáinak repertoárja folyamatosan bővül. A stratégiahasználat függ a szituációtól, a feladat 

és az egyén jellemzőitől (Siegler, 2000, 2003, 2005, 2007), az ember felnőtt korában jobban 

tudja illeszteni saját stratégiáit a feladat sajátosságaihoz (Tronsky, 2005). Életünk folyamán 

egyes stratégiák eltűnnek, az ismert stratégiák alapján újakat fejlesztünk ki (Torbeyns, de 

Smedt, Ghesquiére & Verschaffel, 2009). 

 A stratégiahasználat vizsgálata során a kutatók figyelték az osztálytermi kultúrát is. Ellis 

(1997) munkáiban a rugalmasság/ adaptivitás vizsgálata során a feladat és feladatmegoldó 

jellemzői mellett egy harmadik dimenzió is megjelenik. Szerinte az egyén stratégiaválasztását 

a szocio-kulturális kontextus is jelentősen meghatározza. Kimutatta továbbá, hogy a gyermekek 

életkorának előrehaladtával a tapasztalatuk is növekszik, és implicit tudásként használják fel az 

adott kultúra (akár osztálytermi kultúra), a tanár elvárásait. Az Ellis által használt definíció 

szerint egy stratégiaválasztás adaptív, ha mind az egyén, mind a feladat jellemzőihez, mind az 

adott társadalmi kulturális kontextushoz legjobban illeszkedik. Az optimális stratégia tehát nem 

feltétlenül a leggyorsabban a helyes választ eredményező stratégiát jelenti. Brousseau (1997) 

szerint az osztálytermekben létezik egyfajta „didaktikai egyezmény”, Greer (1997) 

megfogalmazásában „kísérleti egyezmény”, ami jelentős befolyással bír egy adott 

feladatmegoldó szituációban. Több kutató (Rogoff, 1990; Lave & Wenger, 1991; Ellis, 1997) 

úgy véli, hogy a sebesség és a pontosság mellett más tényezők is fontosak lehetnek egy 

osztályteremben, így a megoldás eleganciája, eredetisége, a megoldási stratégia egyszerűsége, 

a megoldás formalizáltsága, általánosíthatósága, stb. Selter (2009) a két fogalmat, rugalmasság 

és adaptivitás, elkülöníti egymástól. Szerinte a stratégiarugalmasság a már rendelkezésünkre 

álló különböző stratégiák közötti váltás képességét jelenti, míg az adaptivitás a régi és a kreatív 

módon felfedezett stratégiák közötti választás képessége.  

A kutatókban joggal merül fel a kérdés ennyiféle definíció ismeretében, hogy mérhető-e a 

stratégiahasználat adaptivitása, és ha igen, akkor mi módon? Ezekre a kérdésekre több külföldi 

kísérlet alapján igenlő választ adhatunk. Az általunk használt definíciót követően 

összefoglaljuk a legfontosabb és legújabb eredményeket. A továbbiakban Csíkos és Steklács 

(2011) definícióját fogadjuk el, miszerint egy feladatmegoldó stratégiát akkor tekinthetünk 

adaptívnak, ha az adott stratégia választása mind a feladat tulajdonságaival, mind a 

feladatmegoldó jellemzőivel összhangban van. Csíkos és Steklács (2011) azt mondják, hogy 

ebben a kétváltozós rendszerben (1) a feladat jellemzői bizonyos stratégia választását 

indukálhatják, (2) adott egyén számára bizonyos stratégia használata általában valamilyen 

előnnyel bírhat. A két dimenzió együttes jelenléte azonban Csíkos és Steklács (2011) szerint 

egy újabb szempontot is felvet: érdemes azt vizsgálnunk, hogy egy adott probléma esetén egy 
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adott ember milyen stratégia kiválasztásával képes a problémamegoldás során legnagyobb 

hatékonyságra. Úgy vélik, egy stratégia eredményessége a feladatmegoldás hibátlansága vagy 

a felhasznált idő alapján, esetleg e két változó együttes mérése alapján határozható meg.  

Vizsgálatunk során a stratégia eredményességét a feladatmegoldás hibátlansága alapján ítéljük 

meg. 

Mit fejleszt a fejszámolás? Vetődik fel a kérdés. „A számológépek és a számítógépek 

világában például minek a gyerekeket fejszámolással gyötörni? (...) Válaszolhatnám viccesen 

erre, hogy az sem baj, ha meg tudjuk becsülni, hogy van-e annyi pénzünk, mint amennyit a 

kosarunkba tett áruért fizetni kell. Fordítsuk azonban a szót komolyabbra! A fejszámolás 

hatásos tanulásának csupán az egyik eredménye az, hogy jól tudunk számolni és becsülni. Ennél 

azonban sokkal fontosabb, hogy milyen nagy szerepe van az emlékezetünk fejlesztésében. Az 

emlékezet szervezett működtetésének edzéséről van itt szó.”  (Szendrei, 2005, 17-18.o.)  

A matematikafeladatok nagy része többféleképpen is megoldható. Az egyedüli 

üdvözítőnek kikiáltott módszer drillezése károsan hat a gyermekek gondolkodására, pszichikus 

fejlődésére, önértékelésére, önbizalmára (Holt, 1991). Szükséges, hogy tanítványainknak minél 

több megoldási utat, stratégiát megmutassunk egy-egy feladat, probléma megoldásakor, hogy 

azután saját maguk választhassák ki az adott pillanatban az adott feladat megoldása során a 

számukra legoptimálisabb, leggyorsabb és legeredményesebb stratégiát, amit tulajdonképpen 

az adaptív stratégiahasználat fogalma takar.  

 Magyarországon a stratégiahasználat vizsgálata rövid múltra tekint vissza. Az első 

hazai tanulmányok Csíkos, Kelemen és Steklács nevéhez köthetők, fejben végzett összeadási, 

olvasási stratégiákról számolnak be az alábbi munkáikban (pl. Csíkos 2003a, 2003b, 2012; 

Kelemen, 2004; Kelemen és Csíkos, 2008; Steklács, 2009; Csíkos és Steklács, 2011; Csíkos, 

2012, 2013). Fejben végzett szorzással, szöveges feladatokkal és adaptív stratégiahasználattal 

kapcsolatosan az első vizsgálat negyedikes tanulók (N = 13) körében zajlott a szemmozgás-

elemzés módszerével, erről Vígh-Kiss, Csíkos és Steklács (2013, 2019) beszámolóiban 

olvashatunk. Kutatásainkat a fejben való szorzás során alkalmazott stratégiákra szeretnénk 

koncentrálni, az itt fellelhető problémákat megvilágítani, azokra megoldást találni, illetve 

javasolni. 

 Több éven át végeztek méréseket a matematika területén az alsó tagozatos tanulók 

körében is, és míg a magyar negyedik osztályosok teljesítményét a nemzetközi mérések szerint 

kiemelkedően magasabbnak találták a nemzetközi átlagnál, addig a felső tagozatos tanulók 

teljesítménye csökkenő tendenciát mutat. Az MTA A PISA vizsgálatok eredményeinek 

értelmezése az oktatás fejlesztését szolgáló kutatómunka kontextusában c. előadóülésén is 

elhangzott, hogy a magasabb évfolyamokon tanuló diákok teljesítménye messze alulmúlja a 

nemzetközi átlagot mind szövegértésből, mind matematikából; a természettudományos és 

szövegértési kompetenciák még a 2012-es PISA-mérések eredményeitől is gyengébbek (Csapó, 

2017; Csíkos, 2017; Korom, 2017; Steklács, 2017).  

 

1.6.2. A matematika szerepe az adaptív stratégiahasználat kialakításában 
 

A tudásalapú társadalom a tanárok szerepének és a tanítási anyag körüli kérdések tucatját 

indikálta. Mi a tanárok feladata a XXI. század iskolájában?  Milyen kulcskompetenciákat, 



31 
 

ismereteket vár el a tudásalapú társadalom az iskolából a munka világába kilépő fiataloktól? 

Hogyan, milyen tanítási-tanulási és értékelési módszerek alkalmazásával készítsük fel a 

felnövekvő generációkat arra, hogy az egyelőre még ismeretlen kihívásokkal sikeresen 

szembenézhessenek? − szembesülnek a pedagógusok a kérdésekkel. Napjainkban szinte 

lehetetlen körül határolni azon ismeretek körét, amelyekre a következő nemzedékeknek 

szükségük lehet (Csapó, 1992). A SCANS csoport (The Secretary’s Commission Achiering 

Necessary Skills, U.S. Department of Labor) −, írja Albert (2008), az USA Munkaügyi 

Minisztériumának megrendelésére 1994-ben „Amerika 2000” címmel kidolgozott egy 

oktatásfejlesztési stratégiát (Goals of 2000). A pedagógusok, vállalkozók, 

kormányhivatalnokok és szakszervezeti dolgozók alkotta csoport a következőket tartotta 

elengedhetetlenek  a sikeres munkavállaláshoz:  

− Alapvető készségek: olvasás, írás, matematika, megértés, elbeszélés 

− Gondolkodási készségek: kreatív gondolkodás, döntések végrehajtása, 

problémamegoldás, tehetség, a tanulás művészete, indoklás 

− Személyes kvalitások: felelősségtudat, önértékelés, társas készségek, önirányítás, 

becsületesség. 

A SCANS csoport véleménye az adaptív stratégiahasználat kérdésének szempontjából 

azért érdekes, mert a matematikával kapcsolatosan nemcsak az alapműveletek elvégzésének 

képességét feltételezi, hanem gyakorlati problémák megoldását, a megfelelő matematikai 

technikák kiválasztását. A döntések végrehajtásához szükséges gondolkodásbeli rugalmasság, 

hiszen az alternatív megoldások kidolgozása, a kockázatok figyelembevétele, értékelése után 

kell kiválasztani a legoptimálisabb megoldást. Sőt még a társas kapcsolatokban is szükségünk 

van alkalmazkodó-képességre, egyfajta rugalmasságra. Az adaptív stratégiahasználat és annak 

tanítása, fejlesztése tehát nem csak a matematikatanításban (lenne) fontos. 

 Egy 2001-ben Szlovákiában végzett kutatás eredményei szerint a munkáltatók leendő 

alkalmazottjuktól az idegen nyelv, a személyi számítógép ismerete és egyebek mellett a 

flexibilitást is elvárják (a hirdetések 14,83%-a), írja Albert (2008). „Tehát pontosan azt keresik, 

amit a mai iskolában, amely főleg az átvett tananyag ismétléssel történő elsajátítására épül, 

egyáltalán nem tanítanak” −, hangsúlyozza Albert (2008, 82.o.). A Microsoft támogatásával hét 

ország részvételével zajlott vizsgálat során a kutatók arra a kérdésre keresték a választ, melyek 

azok a képességek, amelyek a 21. században elvárnak a munkaadók a leendő munkavállalóktól 

(ITL Research, 2011). A kutatás során hat képességet azonosítottak: az együttműködés, a 

tudásépítés, az IKT használat, valós problémák megoldása és innováció, hatékony 

kommunikáció, valamint önszabályozás. A munkavállalótól a munkaadók rugalmasságot és a 

21. századi képességek magas szintű használatát várják el, ez igen nagy felelősséget ró a 

tanárokra (Prievara, 2015). Mivel egyre kevésbé definiálható a későbbi munkahelyen, az 

életben való boldoguláshoz szükséges ismeretek, készségek és képességek köre, előtérbe kerül 

a kognitív és metakognitív stratégiák, önszabályozott tanulás szerepe; az adaptív 

stratégiahasználat az élet minden területén korparanccsá válik. Az adaptív stratégiahasználatot 

és iskolai fejleszthetőségének, fejlesztésének kérdését tehát nem önmagában és önmagáért 

tekintjük fontosnak, hanem a társadalom részéről megfogalmazott elvárások miatt.  

Rocard, Csermely, Jorde, Lenzen, Walberg-Heriksson és Hemmo (2010) 

hangsúlyozzák, hogy az Európai Unióban aggasztó módon visszaesett az ifjúság érdeklődése a 
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természettudományok és a matematika iránt. Pedig napjainkban egyre inkább előtérbe kerül a 

természettudományos gondolkodás, a társadalomban a matematikatudás változatlanul fontos, s 

ezért ezeken a területeken a tanításnak hatékonyabbá, vonzóbbá kell(ene) válnia. Ezért is 

kiemelt feladat a tanítás során az egyéni különbségekre alapozott differenciálás, a fejlesztés 

különleges területei az egyéni különbségek figyelembevételével: a tehetséggondozás és a 

sajátos nevelés igényű gyermekekkel való foglalkozás.  

 Az adaptív stratégiahasználat kérdését külföldön már az 1980-as években is vizsgálták, 

(pl. Payne, Bettman & Johnson, 1988; Dehaene, Bossini & Giraux, (1993). A stratégia 

megállapításának vizsgálata alapvetően többféleképpen történhet. Lemaire és Siegler (1995) 

szerint: (1) A retrospektív módszer alkalmazása során a feladat megoldása után rákérdezünk, 

hogy a vizsgált személy hogyan oldotta meg a feladatot. (2) Minden emberre jellemző, hogy 

egy feladat megoldása során milyen hibákat ejt. A hibázási mintázatok, illetve a reakcióidő 

alapján vonhatunk le következtetéseket. (3) A kétféle módszer együttesen is alkalmazható.  

Számos kutató (Kilpatrik, Swafford & Findell, 2001; Baroody, Wilkins &Tiilikainen, 

2003; Verschaffel, Greer & De Corte, 2007; Verschaffel, Greer & Torbeyns, 2006) az adaptív 

stratégiahasználat fejlesztését − kiskortól és matematikában gyenge teljesítményt nyújtó 

tanulók esetén is − feladatnak tekintik, ám e tárgykörben még kevés empirikus kutatás zajlott. 

A múlt század végén több nyugat-európai ország (pl. Hollandia, az Egyesült Királyság) és az 

Amerikai Egyesült Államok reformtantervében már megjelenik a stratégiarugalmasság 

fejlesztése (Verschaffel, Torbeyns, Luwel, van Dooren & De Smedt, 2007a).  

A magyar közoktatásban is időszerű kérdés és égető probléma tanítványaink rugalmas 

gondolkodásának fejlesztése. Lépéshátrányban vagyunk. Míg a fejlettebb nyugaton már 

reformtanterveket írnak és használnak, mindössze néhány éve zajlottak az első hazai pilot 

vizsgálatok, fejlesztő kísérletek. Így azokra a kérdésekre is keresnünk kell a választ, hogy 

milyen tanítási-tanulási stratégiák és módszerek alkalmazása jellemzi, és mi segíti a tanulók 

fejlődését.  

 

1.6.3. Adaptív stratégiahasználat vizsgálata összeadásos feladatok során 

 

Már az óvodáskorúak is több számolási stratégiát megtanulnak (pl. egyszerűbb összeadást 

végeznek el az ujjaikon), majd az iskolában pl. a szorzótábla tanulásakor több szorzási stratégia 

elsajátítására kerül sor. A gyermek eleinte valamilyen külső tárgy segítségével végzi a 

számlálást. Az összeadási stratégia több fejlődési folyamaton megy végbe (Cooney, Swanson 

& Ladd, 1988), ezek a fejlődési lépések szerintük a következő 4 fontosabb állomást jelentik: 

(1) Counting All stratégia (vagyis rekurzív módszer): 3-4 évesek stratégiája, melyre az jellemző, 

hogy a kisgyermek egyesével megfelelteti egymásnak a tárgyakat és a számneveket, majd az 

egész halmazt újra leszámolja. (2) Counting On stratégia: A gyermek ujjai segítségével 

számolja ki az összeget. Ha az a feladat, hogy mennyi 2 + 3 = ?, akkor kinyitja két ujját, majd 

azok visszacsukása nélkül, továbbszámolva hozzáad hármat. Eközben azt is számolja, hogy 

mennyit számolt tovább. Ennek a stratégiának az alkalmazása nehéz, és gyakran sikertelen. (3) 

Counting on from the large (vagyis minimum stratégia): rendszerint 5-6 éves korban jelenik 

meg. Jellemzője, hogy a gyermek a nagyobb számtól indul, tehát a 3 + 5 = ? művelet elvégzése 

során a számokat felcseréli, és a nagyobb számtól kezdi a számolást: 5 + 6… 7…8. A minimum 
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stratégia elsajátítását követően a gyermek már nem érzi szükségét annak, hogy az ujjain 

számoljon. Ugyanezt a stratégiát már szóban is el tudják végezni a gyerekek. (4) Verbális 

asszociációs tanulás: a stratégiahasználat adaptivitása során ez minőségi ugrást jelent, ilyenkor 

az összeadás végeredményét, az összeget emlékezetből idézi fel a gyerek.  

Több kutatás vonatkozik arra, hogy már az alsó tagozatos gyermekek is alkalmaznak 

stratégiákat, és azok fejleszthetők, ahogy pl. Csíkos (2007) kutatásaiban olvashatjuk. Az iskola 

alsó tagozatán a gyermekek gondolkodása nem fejlődik kellőképpen (De Corte, 2001). A 

problémamegoldás során a tanítók, tanárok egy része gyakran csupán néhány gondolkodási 

stratégia használatát ösztönzi és tanítja. Egyre több kutatás fókuszál a stratégiai gondolkodás 

fejlesztésére. A metakognícióra alapozott iskolai fejlesztés sikeresen zajlott már le hazánkban 

is. A negyedikes tanulók körében végrehajtott matematikai és olvasásfejlesztő program 

egyidejű alkalmazásáról Csíkos és Steklács (2006) számoltak be. Az egyhónapos fejlesztés 

hatása egy évvel a fejlesztés után is szignifikánsan kimutatható volt. A fejszámolással 

kapcsolatos stratégiákról szóló tanulmányok általában az általános iskolai tanulókkal végzett 

vizsgálatokról szólnak, a középiskolások gondolkodása még kevéssé kutatott terület. A 

fejszámolást rendszerint a természetes számok körében vizsgálják, alsó tagozaton két- illetve 

háromjegyű számok körében végzett összeadás és kivonást kérnek a gyerekektől.  

Az adaptív stratégiahasználat kutatásával kapcsolatosan Siegler (1989) kétjegyű számok 

összeadása vizsgálatakor különböző stratégiák használatáról számol be. Ezek: stepwise, split, 

compensation, simplifying stratégia és indirect addition stratégia.  

 Az egyes stratégiák közötti különbséget példák segítségével érzékeltethetjük.  

− stepwise stratégia (lépésenkénti): 35 + 13 = 48 kiszámításakor először 10-et adunk a 

35-höz, majd ezután még hármat és így kapjuk meg az összeget. (35 + 10) + 3 = 48 

− split stratégia (helyiérték szerinti, azaz tízeseket a tízesekhez, egyeseket az egyesekhez):  

35 + 13 = 48 kiszámításakor először a tízesek helyén levő számokat adjuk össze, majd 

az egyesek helyén levő számokat, végül a két részösszeget adjuk össze (30 + 10) + (5 + 

3) = 48 

− compensation stratégia (indirekt összeadás, azaz kompenzáló): pl. 35 + 19 = 54 

kiszámításakor 35 + 20 = 55, de mivel eggyel többet adtunk hozzá, mint kellett volna, 

így a részösszegből egyet le kell vonni, s így kapjuk a végeredményt: 54. 

− simplifying stratégia (egyszerűsítő): akkor alkalmazható hatékonyan, ha olyan 

számokat adunk össze, amelyek tízestől való eltérése ugyanannyi, csak ellentétes 

irányban. Pl.: 69 + 21 = 70 + 20 = 90. 

− indirect addition stratégia (indirekt összeadás vagy kivonásos):Pl. 43 - 39 = 4. A 

gondolkodás menete: Mennyit adjunk 39-hez, hogy 43-at kapjunk? 

De Smedt, Torbeyns, Stassens, Ghesquiére és Verschaffel (2010) az indirekt összeadást 

(indirect addition) mint a többjegyű számok kivonására alkalmas stratégiát és annak 

használatával kapcsolatos kutatásokat mutatja be 35 belga harmadikos vizsgálata során. Rezat 

(2009) a racionális számok körében az összeadás és kivonás során alkalmazott stratégiákat 

vizsgálja, tanulmányában nyolc 8. osztályos tanulót említ. A vizsgálat során nem találtak 

különbséget a természetes számok körében és a racionális számok körében alkalmazott 

stratégiák között. A tanulók a használt stratégiát a feladat igényeihez igazították. Azonban 

megfigyelhető volt a stepwise (lépésenkénti) és a split (helyiérték szerinti) stratégia gyakoribb 

alkalmazása. 



34 
 

 Csíkos (2012, 2013) 78 negyedikes stratégiahasználatáról számol be nyolc darab, 

háromjegyű számokkal végzett fejszámolós összeadási feladat megoldása során. A teljesítmény 

és stratégiák összefüggéseinek vizsgálata során Csíkos a következőket találta: A kódolás során 

a megoldások 1,3-13,3%-a bizonytalan besorolású volt, a gyerekek hangfájlokban rögzített 

válaszaiból a két független szakértő nem tudta egyértelműen megállapítani, hogy milyen 

stratégiát használtak. A tanulók leggyakrabban két stratégiát használtak: a lépésenkénti, ill. a 

helyiérték szerinti stratégiákat választották. A helyiérték szerinti stratégiát használták 

leggyakrabban a gyerekek, attól függetlenül, hogy az mennyire bizonyult hatékonynak. Vagyis 

pl. a 45 + 12 = 57 összeadás során a tízeseket, majd az egyeseket adják össze a gyerekek. 

Háromjegyű számok esetén a százasok, tízesek, egyesek a sorrend. Pl.: 143 + 456 = (100 + 400) 

+ (40 + 50) + (3 + 6). A tanulók 47%-a mind a nyolc feladat esetén ugyanazt a stratégiát 

használta. Az egyszerűsítő stratégiát használták a gyerekek közül a legkevesebben, és csak a 6. 

feladat megoldása során. Az indirekt összeadást az utolsó két feladat kiszámításakor használta 

a gyerekek kevesebb, mint tizede. Az első hat feladat esetében azonos stratégiát választók 

aránya 72%-ra növekszik. Megfigyelték, hogy a megoldási idő függ a választott stratégiától, 

viszont az elkövetett hiba független a választott stratégiától (Csíkos, 2012, 2013). 

A stratégiahasználat vizsgálata szemmozgás-követés segítségével   

Számos vizsgálat tanulsága szerint a tanulók metakognitív készségei és az iskolai teljesítménye 

között szoros összefüggés mutatható ki.  A kogníció kutatásának egyik fontos módszere a 

szemmozgás-követéses vizsgálat. A vizsgálatot ún. eye-tracker segítségével végzik, és 

műszerhez tartozó szoftver segít az eredmények elemzésében. A vizsgálat során figyelik a 

vizsgált személy szemmozgását, melyet idegen szóval szakkádnak nevezünk. Ezt a rendkívül 

gyors, rángatózásszerű mozgást fixáció követi. A szem 2 századmásodperc alatt ér egyik 

fixációs pontról a másikra, ez a leggyorsabb mozgás, melyre tudomásunk szerint az emberi 

szervezet képes (Steklács, 2013). Az olvasás során mért fixációs idő egyénenként változó, 

hossza függ az olvasott szöveg típusától, az olvasó gyakorlottságától. A fixációs idő átlagosan 

250 ezredmásodperc, melynek során mintegy 6-9 karakternyi szöveget fixálunk. Olvasás 

közben időnként visszaugrik a szemünk a már olvasott szövegrészekre, ezt a jelenséget 

regressziónak nevezzük. A regresszió száma is több tényezőtől függ: az olvasó olvasási 

képességétől, pillanatnyi állapotától, motiváltságától, illetve a szöveg nehézségi szintjétől 

(Steklács, 2013).  

Az ún. online fixációs elmélet szerint a fixált információk dekódolása a fixációs idő alatt 

történik. Ennek teljesen ellentmond a másik, ún. posztfixációs elmélet, mely szerint a dekódolást 

a fixációt követően végzi az agyunk. Gyakorlatlan olvasó szeme szeriálisan, azaz betűről 

betűről kódolja a szöveget, míg az ismerős szavakat globálisan kódoljuk (Cs. Czachesz, 1998) 

A szemmozgás műszeres vizsgálata nemcsak a reklámiparban, közvéleménykutatásban 

hasznos, egyre elterjedtebbé válik a pedagógiai kutatásokban is. Segítségével az emberi 

gondolkodás és a metakognitív gondolkodás könnyebben megfigyelhető.  

A metakognitív gondolkodás egész életünket beszövi, így a zenetanulás egyik fontos 

része. A szolfézs és az ének-zene területén Buzás (2016) vizsgálta zeneművészeti képzésben 

résztvevő 12-18 éves tanulók kottaolvasási stratégiáit kérdőíves és szemmozgás-követéses 

módszerrel. A szemmozgás követéses módszert sikeresen alkalmazták más kutatási területeken 

is, beleértve a már említett olvasást (Paulson & Jenry, 2002, Rayner, Chace, Slattery & Ashby, 
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2006); számos kutatás vizsgálta az információfeldolgozást (Rayner, 1998; Radach & Kennedy, 

2004; Jacob & Karn, 2003), aritmetikai problémamegoldást (Hegarty, Mayer & Greer, 1992; 

Verschaffel, De Corte & Pauwels, 1992). Ezek a tanulmányok azt vizsgálják, hogyan 

gondolkodnak a diákok problémamegoldás közben. 

A matematikai gondolkodással kapcsolatos korábbi szemmozgás-követéses vizsgálatok 

a problémamegoldásra fókuszáltak. Hegarty, Meyer és Greer szemmozgás-követéses 

vizsgálatot végeztek a megértési folyamatra és a matematikai szöveges feladatok megoldásának 

stratégiáira vonatkozóan (Hegarty Mayer & Greer, 1992; Hegarty, Mayer & Monk, 1995). A 

feladatok megoldása során a kulcsfontosságú információkra, mint például a számnevek, a 

vizsgált személyek hosszabban fókuszáltak.  Megfigyelték továbbá, hogy a kevésbé sikeres 

feladatmegoldókhoz képest a sikeresebb tanulók több időt szántak a nehezebb problémákra a 

problémamegoldás integrációs és tervezési fázisaiban.  

 A mérőeszközök elkészítésekor érdemes arra is figyelnünk, hogy a tanulók 

feladatmegoldására hogyan hat a feladat modalitása.  Wiley és Rayner (2000) három, amerikai 

egyetemi hallgatókkal folytatott kísérletről számolnak be. Vizsgálataik eredményei szerint a 

címek megléte esetén sikeresebbek a vizsgált személyek a szövegértési és szöveg memorizálási 

feladatokban. A korábbi kutatásokkal (Bransford & Johnson, 1972; Dooling & Lachman, 1971; 

Smith & Swinney, 1992) összhangban Wiley és Rayner azt találták, hogy a kísérleti személyek 

jobban emlékeztek a címmel ellátott szövegekre. Az 1. kísérletben (N = 32) a címek jelenléte 

kevesebb regresszív szemmozgást eredményezett, a mondatvégi szavakra rövidebb fixációs idő 

esett, és a fontosabb főnevekre kisebb ideig fixáltak. A 2. és 3. kísérletben (N = 12 és N = 24) 

többjelentésű szavakat alkalmaztak, úgy látták, hogy a címek nagy hatással vannak a 

többjelentésű szavak értelmezésére. A címek jelenléte a szövegfeldolgozást megkönnyíti 

mikro-, és makrostrukturális szinten is (Kintsch, 1988; Thorndyke, 1977), egyértelművé teszik 

a szavak közötti kapcsolatokat (Smith & Swinney, 1992, St. George, Mannes & Hoffman, 

1994). A korábbi kutatásokban az olvasási sebességet mérve nem sikerült világosan kimutatni, 

hogyan segítik az olvasási folyamatot. Wiley és Rayner (2000) szerint a címmel nem rendelkező 

szövegek esetén a hosszabb olvasási idő oka: több regresszív fixáció a szavak azonosítása miatt, 

a teljes szöveg megértése nehezebb, különösen a nehezen értelmezhető mondatok esetén, 

hiszem az olvasónak újra kell teremtenie a szöveget. A két kutató a többjelentésű szavakon 

hosszabb fixációs időt és gyakoribb regresszív szemmozgást mért, szerkezetileg nem 

összefüggő szöveg esetén még nagyobb értékeket kapott. Azt tapasztalták, hogy a cím nélküli 

szöveg olvasásakor a vizsgált személyek mondat végén tovább fixálnak, mint a mondat 

belsejében, tehát a címet mintegy beintegrálják a szövegbe. A három kísérlet eredményei arra 

utalnak, hogy a címek érintik a szövegfeldolgozást az olvasás integratív és lexikai szakaszában 

is, tehát vizsgálatunkban célszerű a mérőeszközökben címmel ellátott feladatokat kitűzni.  

 A szemmozgásos vizsgálatok más tanulsággal is szolgálnak. A sikeresebb 

feladatmegoldó diákok jobban használják a problémamodell-stratégiát (pl. nagyobb hangsúlyt 

fektetnek a változók nevére), és a kevésbé sikeres feladatmegoldók ügyesebben használják a 

közvetlen fordítási stratégiát (pl. relációs szavak, mint például többé-kevésbé). Verschaffel, De 

Corte és Pauwels (1992) szintén használták a szemmozgás-követéses módszert a diákok 

gondolkodásának vizsgálatára szöveges feladatok megoldása közben.  A fenti tanulmányok 

szerint a releváns információk felismerése, kiválasztása és feldolgozása elengedhetetlen a 

matematikai szöveges feladatok sikeres megoldásához. 
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A stratégiahasználat rugalmasságának fejlesztése   

  

Az alsó tagozatos órákon elterjedt a szorzótábla játékos gyakoroltatása, ennek már régóta van 

szakirodalma, pl. Esztergályos: Oktatójátékok kisiskolásoknak c. könyve (1987). A gyakorló 

tanítók ma is szívesen alkalmaznak játékokat, azonban ezeknek a játékoknak nagy része 

versenyhelyzetet teremt, ami egy diszkalkuliás gyerek számára további stressz és kudarcélmény 

forrása lehet. 

 Külföldön egyre több reformtanterv és fejlesztő tananyag készül az eddigi kutatások 

alapján. Több ország, így az Egyesült Királyság (DfEE,1999), Kanada, Hollandia (Treffers, De 

Moor & Feijs, 1990) és az Amerikai Egyesült Államok (NTCM, 1989) reformtantervében már 

megjelenik a stratégiarugalmasság, a belgiumi flandriai (Ministerie van de Vlaamse 

Gemeenschap, 1998), a flamand (Menne, 2001), a nagy-britanniai (QCA, 2008; QCDA, 2009) 

és az ausztrál (Australian Education Council, 1991) tantervnek is része. A külföldön beiktatott 

tantervi reformok egyik fő célja, hogy segítse a tanulókat abban, hogy megértsék a matematikai 

struktúrákat (Lambdin & Walcott, 2007). A tantervi dokumentumok alapján a tanárok nagyobb 

hangsúlyt fektetnek a különféle megoldási stratégiák tanítására, a tanulók additív és 

multiplikatív gondolkodásának fejlesztésére. A tanítás során a pedagógusok megbeszélik a 

tanulókkal az egyes számolási stratégiák tulajdonságait, felhasználhatóságát. 

     A nyugat-európai oktatásirányítók előtt nem kétséges, hogy az adaptív stratégiahasználat 

fejleszthető és fejlesztendő. Ugyanakkor még mindig kevés kutatás (pl.: Carr, Alexander & 

Folds-Bennett, 1994; Geary, 2003; Verschaffel, Greer & De Corte, 2007c,) számol be ezeknek 

a fejlesztő kísérleteknek a hatásairól. Felvetődik tehát a kérdés: melyik életkorban célszerű 

elkezdeni a gyerekek fejlesztését, és kik profitálhatnak belőle, a matematikában tehetséges, a 

többségi gyerekek vagy a diszkalkuliások segítségére is lehet? Több kutató végez szívesen 

vizsgálatot egyetemistákkal kapcsolatosan. Ugyanakkor számos kutató érvel amellett, hogy a 

fejlesztés kezdetekor az optimális életkor a kisiskoláskor. Minél korábban kezdődik az adaptív 

stratégiahasználat fejlesztése, annál jobb eredményeket érhetünk el (Wittmann & Müller, 1990-

1992; Gravemejer, 1994; Selter, 1998; Bransford, 2001; Baroody, 2003). 

Az utóbbi évtizedekben az oktatáskutatók intenzíven foglalkoznak azzal a problémával, 

hogyan lehetne fejleszteni a tanulók szöveges feladatmegoldó-képességét, különös tekintettel a 

szorzással megoldható feladatokra (Mulligan & Mitchelmore, 1997, 2009; Mulligan, 

Mitchelmore & Presscott, 2005; Nunes, Bryant & Watson, 2009; Shrager & Siegler, 1998; 

Siegler & Araya, 2005). Több kutató figyelme a tanulók multiplikatív gondolkodására irányul 

(Siemon, Beswick, Brady, Clark, Faragher, & Warren, 2011; Booker, Bond, Sparow & Swan, 

2010). Az óvodáskorú és alsó tagozatos gyermekek körében végzett külföldi fejlesztő 

programok tapasztalatai (pl. Count Me In Too fejlesztő program, 2002; Pattern and Structure 

Mathematics Awareness Program (PASMAP, Mitchelmore & Mulligan, 2016; Mulligan, 

Mitchelmore, Kemp, Martson & Highfield, 2008) a hazai kutatók érdeklődésére is számot 

tarthatnak. A szintén óvodásokkal és kisiskolásokkal végzett flamand, spanyol és ausztrál 

kísérletek közül kiemelendők az ausztrál kutatók eredményei. Mulligan és Mitchelmore (2009), 

Mulligan, Mitchelmore és Presscott (2005) szerint már az óvodások is képesek szorozni, 

második és harmadik osztályosoknál a CO (számlálás) és a BF (tényeken alapuló) stratégia 

használata a gyakoribb. A 2005-ben kezdett kétéves longitudinális vizsgálat során 103 elsős 
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vett részt a fejlesztő kísérletben. A kutatás során összefüggést találtak a matematikai stratégia 

percepció és a gyermek fejlesztése között. Siegler kísérleteinek tapasztalatai szerint az új 

stratégiák létrejötte metakognitív és asszociációs tanulási folyamatok eredménye, az új stratégia 

gyakoribb használata gyorsabb és pontosabb választ eredményez, a tanulás szimultán megy 

végbe, és a választás probléma- és szituációfüggő (Siegler, 2000). Célszerű egyszerre több 

stratégiát tanítani a gyerekeknek (Shrager & Siegler, 1998; Siegler & Araya, 2005; Wong & 

Evans, 2007), a stratégiák előnyeinek és hátrányainak bemutatásával (Siegler, 1989).  

Az adaptív stratégiahasználat fejlesztése Hill és Ball (2004) szerint a tanároktól is más 

attitűdöt kíván: A leendő matematikatanároknak ki kell fejleszteniük és igazolniuk is kell saját 

stratégiáikat. Szerintük a matematikatanároknak kétféle tudásra van szükségük: (1) common 

knowledge, azaz mindennapi matematikatudás, pl. hogyan kell megoldani egy adott 

matematikai problémát, (2) ún. specializált matematikatudásra, hogy miért működik az adott 

módszer és általánosítható-e más problémákra is.  

Lo, Grant és Flowers (2008) a Midwestern University első és másodéves egyetemista 

hallgatóinak gondolkodási stratégiáit vizsgálták. A 15 hetes fejlesztő kísérlet számos 

tanulsággal szolgált. A foglalkozások az egyes csoportokban hetente kétszer, 100-100 percig 

tartottak. A 38 kísérleti személy kiscsoportokban dolgozott, kétjegyű egész számok szorzásával 

foglalkoztak. A fejlesztés során pl. a 18 ∙ 26 kiszámítására a 25 ∙ 36 és 50 ∙ 18, azaz az egyik 

szorzótényező duplázásán alapuló stratégiát is tanították. A kísérletek során a foglalkozásokról 

videófelvételeket készítettek, és a hallgatók írásbeli munkáit is elemezték. A kísérlet során azt 

tapasztalták, hogy a leendő általános iskolai tanárokban nem kifejlődött ki a szorzás fogalma és 

a szorzási struktúra (multiplicative structure). Pl. típushiba volt a 18 ∙ 26 szorzás során a 18 ∙ 

26 = 10 ∙ 20 + 8 ∙ 6 válasz, mert az összeadás (stepwise, lépésenkénti stratégia) hibás analógiája 

alapján számoltak. A 36∙17 kiszámításakor a hallgatók egy része a következőképpen számolt: 

40 ∙ 20 = 800, 4 ∙ 17 = 68, 3 ∙ 40 = 120, 800 - 120 = 692 -t kaptak számolási eredményként, 

szemben a helyes válasszal, a 612-vel. 

A metakogníció és az adaptív stratégiahasználat 

 

A kognitív stratégiák közül az egyik leginkább kutatott terület a metakogníció. Az adaptív 

stratégiahasználat vizsgálatában ez az egyik kulcsfogalom. A metakognícióról Csíkos tollából 

több cikk és egy monográfia is megjelent (Csíkos, 2004a, 2004b, 2007). A metakogníció 

definícióját Flavellnek köszönhetik az oktatás szereplői, szerinte a metakogníció fogalma a 

tudásra vonatkozó tudást jelenti (cognition about cognition). Ha metakognícióra gondolunk, 

akkor az emberi gondolkodás két, hierarchikusan egymásra épülő szintjét képzeljük el: az alsó 

tárgyi szintet és a felső metaszintet (Nelson, 1996).  

 A metakogníció vizsgálatával kapcsolatosan két további fogalmat kell kialakítanunk, ez 

a deklaratív és a procedurális metakogníció fogalma (Csíkos, 2007). A metakogníció azon 

részeit, melyek a tudásra vonatkozó ismereteket tartalmazzák, deklaratív metakogníciónak 

nevezzük (Csíkos, 2007). A deklaratív metatudás legfőbb jellemzői: csak funkcionálisan 

kötődik a metakognícióhoz, ismeret alapú: egy speciális objektumra, a tudásra vonatkozó 

ismereteket takar (Csíkos, 2007). A deklaratív metatudás az egyénre jellemző ismeretegyüttes, 

pl. hasznos, ha valaki tudja magáról, hogy gyorsan és pontosan tud fejben ötre végződő 
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számokat négyzetre emelni, míg mások számára hatékonyabb lehet, ha a hasonló jellegű 

hatványozási feladatot írásban vagy számológép segítségével oldja meg (Csíkos, 2007). 

 A metakogníció másik fajtája a procedurális metakogníció szintje, melyen a tudás 

alkalmazásának kontrollját értjük (Csíkos, 2007). A procedurális metatudás lakmuszpapírként 

jelzi gondolkodásunk jellemzőit, irányítja problémamegoldásunkat, három fő összetevője: a 

tervezés (planning), a nyomon követés (monitoring) és az ellenőrzés (evaluation) (Csíkos, 

2007). A tervezés, monitorozás, ellenőrzés gondolkodásunk része (Steklács, 2014). A kutatók 

egyre többet foglalkoznak a procedurális metatudás vizsgálatával (Csíkos, 2004a, 2004b).  A 

metakogníció fejlődése és fejleszthetősége több tudományterülettel is összefügg, a széles 

körben kutatott kérdésekhez tartozik. A deklaratív metatudás vizsgálatát különböző, „a tanulás 

tanulásával” kapcsolatos kutatások, fejlesztések tűzik ki célul. 

Hazánkban egyre több kutató foglalkozik a metakognitív stratégiák vizsgálatával, 

fejlesztésével. A kutatások közül kiemelkednek Csíkos és Steklács (2011, 2016) 

szöveganticipációs, számítási és olvasási stratégiák fejlesztésére vonatkozó kísérletei; Csíkos, 

Kelemen és Steklács (2008) olvasási és matematikai, metakognitív stratégiákra alapozott 

kéttényezős fejlesztő kísérlete; Molitorisz (2012a, 2012b, 2011a, 2011b) az olvasási 

stratégiákról alkotott tanulói meggyőződésekre vonatkozó vizsgálatai. Jelentős eredményeket 

ért el Csíkos, Szitányi és Kelemen (2010, 2012) a 3. osztályosok körében végzett kísérletében, 

melynek során a tanulói és tanári rajzok szöveges feladatok megoldásában segítő szerepét 

vizsgálták. A fejben számolás során alkalmazható összeadási stratégiák fejlesztése után Csíkos 

(2016) kis kísérleti hatásról számol be 4. osztályosok körében végzett kutatásáról írva.  

Desoete, Roeyers és De Clercq (2003) megállapították, hogy a 227 harmadik osztályos 

tanuló közül a metakognitív fejlesztési programban részt vevő diákok jobb teljesítményt 

mutattak matematikából, mint a kontrollcsoport. Fontos, hogy mind a tanár, mind a diák ismerje 

a metakognitív folyamatokat és módszereket, ugyanis a tudatosság pozitívan befolyásolja a 

diákok matematikai teljesítményét (Carrier, 2010).    

 Egy adott készség fejlődése során a készség működésében egyre csökken a 

metakogníció szerepe. Viszont ennek következtében előfordulhat, hogy egyjegyű számok 

szorzását már a metaszint használata nélkül végző tanuló egy szöveges feladatban pl. két számot 

és a „kétszer nagyobb” kifejezést megpillantva azok feladatbeli kontextusának végiggondolása 

nélkül automatikusan a két szám szorzatát adja eredményül (Csíkos, 2007). Reusser és Stebler 

(1997) leír néhány, a stratégiahasználattal kapcsolatos tévhitet. Ezek egyike: hogy minden 

matematikai szöveges feladatnak van megoldása. Ezt a problémát azóta többen is vizsgálták, 

többek között Verschaffel, Torbeyns, De Smedt és Van Dooren (2007), hazánkban Csíkos 

(2003b) és Kelemen (2004). 

 Sok diák küszködik számolási nehézségekkel, a gondolkodásuk és a diszkalkulia 

jellemzőit Márkus (2003) foglalja össze. A diszkalkulia számolási zavart jelent, mely lehet 

fejlődési vagy szerzett. A diszkalkuliás gyermekek nehezen tudnak számokat összehasonlítani, 

gyakran számolnak az ujjukon, rossz az időérzékük, iránytévesztők, egyik napról a másik napra 

elfelejtik a szabályokat (Márkus, 2003). Az adaptív stratégiahasználat oktatása a diszkalkuliás 

gyerekeknek is segíthet. A tanítás során a megszokottól eltérő tanítási stílust érdemes 

alkalmazni. Reusser (2000) úgy véli, hogy az adaptív tanítás során a tanárnak célszerű 

beépítenie a diákok hibáit (errors) a tanulás folyamatába, egyfajta „pozitív hibakultúra” 
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kialakítását tartja kívánatosnak. Így a tanulók hibás gondolkodási stratégiáikból sokat 

tanulhatnak. Reusser ebben a tanulási folyamatban hasznosnak tekinti a számítógép használatát. 

 A tanulók számolási stratégiáinak kutatása az önszabályozott tanulás elmélete felől is 

megközelíthető. Ebben a komplex rendszerben a tanulók a tanulás irányítóiként szerepelnek, 

képesek szabályozni viselkedésüket, kitűzni újabb tanulási célokat (D. Molnár, 2013). A 

kognitív és metakognitív stratégiák segítségével megtanulnak tanulni. Ezáltal képessé válnak 

az egyre változó világ kihívásaihoz való alkalmazkodásra.  

1.7. Az arányossági gondolkodás kialakulása és főbb jellemzői 

Piaget és Inhelder (1958) szerint az arányossági gondolkodás formális műveletekből áll. Úgy 

vélik, ezek a formális műveletek elvont gondolkodáson és elméleti következtetések levonásán 

alapulnak, és a középiskolai évek végére fejlődnek ki teljesen. Piaget kísérleteiben kimutatta, 

hogy 9 éves kortól a gyerekek képesek egyenes arányosság felismerésére (térfogat és tömeg, 

távolság és sebesség kapcsolatában), továbbá 14 éves kortól fordított arányosság felismerésére 

és megmagyarázására. A Piaget által végzett kísérletek azt támasztják alá, hogy az arányossági 

gondolkodási folyamatok az additív és a multiplikatív stratégiákon alapulnak. Karplus és több 

más kutató (Karplus, Pulos, & Stage, 1983a; 1983b) arra figyelt fel, hogy a főiskolai hallgatók 

jelentős részénél nem alakult ki arányossági gondolkodás.   

Alatorre és Figueras (2005) 9-65 éves emberek arányossági gondolkodását vizsgálta. 23 fős 

mintájuk iskolázatlan embereket és PhD fokozattal rendelkező embereket is tartalmazott. A 60-

90 perces interjúk során a vizsgált személyek tízféle problémát oldottak meg. A feladatok közül 

négy arányosságra vonatkozott, kettő vegyes, kettő valószínűségi, kettő eloszlással kapcsolatos 

probléma volt, melyek egyike törtrész-számítással, a másik pedig részekre osztással volt 

könnyen megoldható.  A vizsgált alanyoknak 15 kérdést tettek fel az interjú során három 

nehézségi szintre vonatkozóan. A vizsgált személyek a nem arányossági összefüggéseket 

tartalmazó szöveges feladatokat nagyobb arányban oldották meg, mint az arányossági 

feladatokat. 

Az arányossági gondolkodást az élet számos területén használjuk: algebra, geometria, 

mértékegység-átváltás, statisztikai számítások, valószínűség-számítás, társadalom- és 

természettudomány. (Pl. mérkőzések eredményei, kördiagram készítése, térképészeti 

számítások, szerencsejáték tipp, festékkeverés.) Kasten szerint gyakran megtörténik, hogy a 

tanárok nem mutatnak rá a stratégiák közötti kapcsolatokra (Kasten, 2002). Úgy véli, ha a 

feladat megoldásakor egyetlen stratégiát ismer a diák, sok helyzetben nem lesz tudatában annak, 

hogy a feladat megoldásához arányossági gondolkodás szükséges, és annak sem, hogy még 

számos további stratégia közül választhat. Középiskolában már komplex feladat részeként kell 

tudniuk használni az arányossági gondolkodást (Kasten, 2002). Az arányossági feladatok 

megoldásának vizsgálata során sokféle gondolkodási folyamat térképezhető fel.  

 

1.8. A szöveges feladatok szerepe az adaptív stratégiahasználat mérése során 

 

Az adaptív stratégiahasználat vizsgálata során a kutatók leggyakrabban fejben végezhető 

alapműveletek, illetve egyszerű szöveges feladatok megoldását kérik a gyerekektől, mert ezek 

segítségével jól mérhető a konstruktum. A konstruktum mérése során így számos információt 
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gyűjthetünk a tanulók matematikai képességeiről. A szöveges feladatok közül erre a szerepre 

többek között azok a feladatok a legalkalmasabbak, amelyek szorzást igényelnek, arányossági 

következtetésre, mértékegységátváltásra, százalékszámításra, kerület-, terület-, felszín- és 

térfogatszámításra vonatkoznak.  

Szöveges feladat sikeres megoldása elképzelhetetlen a megfelelő matematikai 

alapkészségek (pl. számolási készség) optimális begyakorlottsága nélkül (Nagy, 2007). De 

Corte, Op’t Eynde, Verschaffel (2001), valamint Mayer és Hegarty (1998) szerint hasonlóképp 

elengedhetetlen a megfelelő problémaprezentáció, továbbá a szóolvasás, szövegértés megfelelő 

fejlettségi szintje (Józsa, 2000). Az első nagymintás hazai vizsgálatok ezen a területen Nagy 

(1973) nevéhez fűződnek, aki egy szöveges feladatbankot is létrehozott. 15 év múlva egy 3300 

fős, település és iskolatípus szerinti országos reprezentatív mérés során a szöveges feladat 

megoldásához szükséges részképességek között a Szegedi Neveléstudományi Műhely kutatói 

ezeket sorolják fel: (1) tartalommegértés, (2) mértékváltás, rejtett vagy felesleges adat, (3) 

műveletkijelölés, (4) műveletsorrendiség (Vidákovich & Csapó, 1998). Az egyszerű, egy vagy 

több alapművelettel megoldható szöveges feladatokkal kapcsolatos vizsgálatokkal hazánkban 

újabban Csíkos és Kelemen foglalkozik (Csíkos, 2004b). Kelemen szerint (2010) az olvasási 

képesség és a feladatmegoldó képesség összefüggenek. 

A matematika tanulásának kiemelt céljai közé tartozik a tanulók számolási, modellezési, 

problémamegoldó és döntési képességének fejlesztése; logikus, pontos, kreatív, mérlegelő, 

stratégiai és rendszerező gondolkodás kialakítása (Nemzeti alaptanterv, 2020). Az általános 

iskola első négy évfolyamán folyik a matematika műveléséhez szükséges ismeretek, 

alapkészségek kialakítása. Az 5-8 évfolyamon zajlik ezen készségek további fejlesztése, a 

felfedeztetés, a konkrét tevékenység, játék, hétköznapi szituációk segítségével. Elvárásként 

fogalmazódik meg, hogy a tanulók adott feladatok megoldására képi és szimbolikus modelleket 

hozzanak létre, stratégiákat alkalmazzanak, alkossanak. A NAT (2012) és a módosított NAT 

(2020) matematikából átfogó eredménycélként írta le, hogy a diákok a 4. évfolyam végére 

jártasak legyenek az alapműveletek elvégzésére fejben, írásban; alkalmazzák a számolást 

könnyítő eljárásokat; pontosan számoljanak fejben a 10000-es számkörben a 100-as 

számkörben végzett műveletekkel analóg esetekben. Az alsó tagozat végére elvárható, hogy a 

tanulók értsék a helyiértékes számrendszert, a számolás során alkalmazzák a legfontosabb 

műveleti tulajdonságokat; emlékezetből ismerjék a kis szorzótáblát. Szintén elvárás a 10-zel, 

100-zal, 1000-rel való szorzás, osztás kapcsolata a helyiérték-táblázatban való jobbra, illetve 

balra tolódással; a fejben pontosan számolás képessége a 10 000-es számkörben a számok  

10-zel, 100-zal, 1000-rel történő szorzásakor; a tanuló teljes kétjegyűek két- és egyjegyűvel 

való szorzatát megbecsüli, mérlegeli a becslés során kapott eredményt.  

A számolási képesség a tudásszerző képességek részeként fontos szerepet tölt be a 

megismerési folyamatban. A szorzási stratégiák, a fejben számolás, fejben szorzás a 

matematikai műveltség, tudás részét képezik. A mértékegységátváltás, kerület-, terület-, 

felszín- és térfogatszámítás, arány- és törtbővítés és a szöveges feladatok megoldása során 

gyakran végzünk szorzást, alkalmazunk fejben szorzási stratégiát. Fontos, hogy többet 

megtudjuk erről a konstruktumról és tanítványaink gondolkodási képességéról, 

stratégiahasználatáról.  

Összegezve, a jelen kutatás az általában vett neveléstudomány számára azért fontos, 

mert az egyik alapkészség, a számolási készség, azon belül a fejben szorzási stratégiák 
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vizsgálatával foglalkozik. A mindennapi életben gyakran kényszerülünk arra, hogy 

kiszámítsuk, mennyit fogunk fizetni a vásárolt áruért. Gyors döntéshozatalunkat segíti, ha jól 

tudunk fejben számolni, szorozni. A számolási készséget a természettudományi tantárgyakon 

kívül az ének-zene, a technika, a testnevelés, a történelem és a földrajz is igényli (pl. a térképek 

léptéke, statisztikai számítások). A társadalom számára is hasznos, ha tagjai funkcionális 

írástudók (Gray, 1956; Toffler, 1970); a mai munkavállalókkal szembeni elvárás, hogy képesek 

legyenek saját tudásukra vonatkozó ismeretekre szert tenni, a munkaadók flexibilitást várnak 

tőlük a gondolkodásban (Albert, 2008). Egyre kevésbé definiálható az életben való 

boldoguláshoz szükséges ismeretek, készségek és képességek köre, így előtérbe kerül a 

kognitív és metakognitív stratégiák, önszabályozott tanulás, az adaptív stratégiahasználat 

szerepe.  

Az adaptív stratégiahasználat és iskolai fejleszthetőségének, fejlesztésének kérdését 

tehát nem önmagában és önmagáért tekintjük fontosnak, hanem a társadalom részéről 

megfogalmazott elvárások okán. A számolási stratégiák vizsgálata közben feltárt hibák 

feltérképezése, rendszerezése segíthet majd abban, hogy olyan tanítási módszereket, 

stratégiákat alakítsunk ki, amelyek segítségével diákjaink eredményesebbek lesznek az 

aritmetikai feladatok, s ezáltal a szöveges feladatok megoldása során, a többi tantárgyi órán, a 

nemzetközi mérések alkalmával, valamint a gyakorlati életben.  
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2. KUTATÁSI EREDMÉNYEK  

 

2.1. A tanulói hibák  

 

Az iskolai matematikatanításban az 1890-es években több nyugat-európai országban 

reformmozgalom indult, melynek Felix Klein volt az egyik kulcsfigurája. Hazánkban Beke 

Manó foglalkozott a matematikatanítás megújításával. Beke Manó pedagógiai írásai ma is 

korszerűek, azon kevés szakember közé tartozott, aki felhívta a figyelmet a tanulói hibák 

jelentőségére a matematikatanulási folyamatban. Beke Manó (1900) kiemelte, hogy nagyon sok 

tanulónál és sok matematikai területen megfigyelhetőek bizonyos hibák, ezeket tipikus 

hibáknak nevezte. Beke a hibák három forrását különbözteti meg: (1) Hamis vagy 

elhamarkodott analógia, amikor a feltételekkel történő részleges egyezés alapján vonunk 

hasonlóságot, (2) Következtetési hiba és a tételek pontatlan megfordításából származó hiba, (3) 

A szemlélet hiányosságából származó hiba. Ezzel feltárta az alapvető gondolkodási hibákat 

(Majoros, é.n.). Korát megelőzve, kiváló szakemberként felismerte, hogy az értelem nélküli 

mechanikus gyakorlás is hibák kialakulását eredményezheti; vizsgálta, hogyan lehetne ezek 

számát csökkenteni.  

A pedagógus eredményesebb oktatómunkát képes végezni, ha ismeri a tanulók által 

elkövetett hibák jellegét, eredetét, fajtáit. Ebből a szempontból példamutatóak Beke Manó 

(1900, 530.o.) a Magyar Pedagógiai Társaság székfoglaló beszédében megfogalmazott 

gondolatai: „A hibák elkerülésének vagy azok minimumra való szállításának legfontosabb 

kelléke az, hogy a tanár a hibákat 'ismerje, felismerje, és azok okait türelmesen keresse. E 

keresésnél én mindig azt az elvet követtem, hogy először a magam eljárásában, aztán a tárgy 

természetében és csak harmadsorban kerestem a növendékben a hibát. Azt hiszem ez a legjobb 

eljárás nemcsak a gondolkodásbeli, hanem egyéb hibák felismerésére és orvoslására is." 

Beke Manó mellett a tanulói hibák csökkentéséért több tanár tevékenykedett. 

Kiemelkedő munkát végzett e téren Pólya György és Dienes Zoltán Pál. Az 1950-as években 

Cser Andor (Cser, 1952), Lénárd Ferenc (Lénárd, 1963) és Faragó László (1958, 1959, 1961) 

hangsúlyozták a formalizmusnak a hibák keletkezésében betöltött negatív hatását. Beke Manó 

javasolta, hogy az analógiákra alapozó tanításkor a feladat megoldás során a tanárok hívják fel 

a tanulók figyelmét a különböző feltételek közötti különbségekre. Pólya egyik alapgondolata 

az analógián alapuló tanulás (Pólya, 1945/1969). Hozzá hasonlóan Faragó úgy véli, 

matematikatanítás során támaszkodnunk kell az analógiákra.  

Fettweiss (1929) felhívta a figyelmet arra, hogy a pszichológia a tanulók dolgozataiban 

előforduló tipikus hibák rendszerezésével segíthet a matematikaoktatásban. Szenes Adolf Beke 

Manóhoz hasonlóan a matematikai hibák évről évre történő megjelenését hangsúlyozza 

(Szenes, 1934). Szeliánszky (1938) részletesen foglalkozott azokkal a pszichológiai és lelki 

tényezőkkel, tanítási körülményekkel, amelyek a tanuló munkájában hibát eredményezhetnek.  

Mosonyi az általános iskolai matematikaórákon megfigyelt gondolkodási hibákat a 

hibákat hat típusba osztotta (Mosonyi, 1972): (1) Helytelenül feltételezett analógián alapuló 

hibák, (2) Formalizmuson alapuló hibák, (3) Megszokáson alapuló hibák, (4) A fogalmak, 

jelölések tisztázatlan voltából eredő hibák, (5) Hiányos előismereteken alapuló hibák, (6) 

Matematikai műszavakból, szakkifejezésekből eredő hibák. 
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A helytelenül feltételezett vagy hamis analógián alapuló hibák akkor jönnek létre, 

amikor a tanuló az analógiát olyan helyzetre alkalmazza, amikor az analógia nem áll fenn 

(Szendrei, 2005), pl. ilyen a nagyobb számok szóbeli szorzása során megfigyelhető hibák egy 

része. A formalizmuson alapuló hibák forrása a tanár munkája, a fogalomalkotási folyamat 

siettetése, a jelölésekre, formalizmusra való korai, gyors áttérés által. Erre példa a nulla 

kihagyása többjegyű számok osztásának leírásánál, így a tanuló a 145656 : 357 = 408 helyett 

48-at kap hányadosként. Megszokáson alapuló hibák egyike pl. „a szorzás növel, osztás 

csökkent”, ez az alsó tagozaton tapasztalt igazság megdől, amikor egynél kisebb számmal 

szorzunk vagy osztunk. A fogalmak, jelölések tisztázatlan voltából eredő hibákra példák: a tört 

szorzása helyett annak bővítése vagy a „3x-x értéke egyenlő 3-mal” típusú hibák algebrai 

kifejezések összevonása, egyenletmegoldás során. Bár ezek a hibák a tanuló hiányos ismeretén 

alapulnak, a hibázás gyökere mégis a fogalom meg nem értése. Hiányos előismereteken alapuló 

hibákra példák: a többjegyű számmal történő szorzás során az algoritmus hibás sorrendben 

történő végrehajtása (Szendrei, 2005), vagy ilyen hiba az összeadás és szorzás hibás sorrendben 

történő elvégzése. A matematikai műszavakból, szakkifejezésekből eredő hibák esetén is 

felvetődik a tanár felelőssége. Ugyanakkor a hibák forrása gyakran a tanuló figyelmetlensége, 

a köznyelv és a szaknyelv eltérő szóhasználata (Szendrei, 2005). A szakszavak szokatlansága 

(pl. hányados, különbség, arányosság, szinusz, logaritmus) megzavarhatja a tanulót, másrészt a 

hibák oka lehet a köznyelvi és szaktudományi használatbeli különbség (pl. a „hasonló” szó 

esetén). 

 

2.2.1. Tévhitek, tévképzetek 

 

Tudásunk részét képezik a különböző tévhitek, amik tudományosan hamis ismeretek. A 

mindennapi megismerés során számos tényező segítheti egy tévhit létrejöttét, pl. 

túláltalánosítás, szelektív észlelés, pontatlan megfigyelés, kódolási hibák. A 

természettudományos tárgyakat tanító tanárok gyakran szembesülhetnek tévhitekkel, 

finomabban fogalmazva tévképzetekkel, ez a kutatók egyik kedvelt területe az 1970-es évek 

óta. „A tévképzetek (misconceptions) a gyerekek vagy akár felnőttek tudásába tartósan beépülő 

hibás elképzelések, a jelenleg elfogadott tudományos nézetekkel össze nem egyeztethető 

fogalmak, fogalomrendszerek, a környezet egyes jelenségeiről alkotott modellek, amelyek 

mélyen gyökereznek, és a tanításnak is ellenállnak” (Korom, 1998, 149. o.). Napjainkra 

többszáz publikáció jelent már meg e témában; a mérések lefedik a természettudományok főbb 

témaköreit (Korom, 1997., 22.o.)”  

A tévhitek tanulmányozása önmagában véve is érdekes, ugyanakkor vizsgálatunk 

szempontjából kiemelném, hogy a matematikában is gyakran megfigyelhetők olyan hibák, 

amelyek a megismerés során keletkeznek túláltalánosítás, szelektív észlelés, pontatlan 

megfigyelés révén. Ezek a hibák fogalmakhoz is köthetők (pl. számfogalom). Harmadrészt 

szükségesnek tartjuk, hogy a matematikatanárok ezeket a hibákat feltérképezzék, hogy azután 

kijavíthassák. Ily módon a tanulók által a fejben végzett szorzás során ejtett hibák bizonyos 

szempontból a tévképzetek fogalmával is párhuzamba állíthatók.  
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2.2.2. Racionális hibák a matematikai gondolkodásban 

 

Amikor ismeretlen problémával találkozunk, akkor megpróbálunk szabályokat, 

stratégiákat alkotni (Ashlock, 1976; Brown & VanLehn, 1980; Buswell, 1926; Cox, 1975; 

Lankford, 1972; VanLehn, 1983). Ezek a stratégiák nem véletlenszerűen jönnek létre, 

létrehozójuk számára világos a logikájuk, ugyanakkor mégis félreértésen alapulnak, és gyakran 

tévútra vezetnek. Ezeket Ben-Zeev (1996) szabály alapú vagy „racionális hibáknak” nevezi. 

Ismert a Van Lehn (1986) által közölt, kivonás során elkövetett hiba: 23 – 7 = 24, mikor a diák 

azt jegyezte meg, hogy a nagyobb számból vonjuk ki a kisebbet, a szám helyére viszont nem 

figyelt. Ez a stratégia egy racionális hiba, és a tanuló számára logikusnak, jól működőnek tűnik. 

 

A matematikai racionális hibák csoportosítása, taxonómiája 

A matematikai hibák vizsgálata lehetőséget teremt a matematikával kapcsolatos mentális 

reprezentációk vizsgálatára. Nyilvánvalónak tűnik azzal a kérdéssel foglalkozni, hogy a hibák 

kategorizálhatók-e, mert ha igen, akkor a megoldások során ejtett hibák néhány elv segítségével 

megmagyarázhatóvá válnak (Ben-Zeev, 1998).  Ben-Zeev úgy véli, számtalan különböző hiba 

hátterében alapvető mentális folyamatokat találunk. A matematikai racionális hibák 

csoportosítása a matematika ágaihoz kapcsolódik, ugyanakkor fontos következtetések vonhatók 

le a kogníciókutatás számára is.  A gyermek a számolás elsajátítása közben gyorsan 

megtanulhatja, hogyan lehet egyesével növelni a számokat, ugyanakkor, ha 29-hez kell adni 

egyet, sokszor a 25-öt mondják válaszul, ami racionális hiba.  A matematikai megismerés során 

elkövetett hibák közül több, mint 140 leírása köthető VanLehn (1990) nevéhez. Bár munkái 

óriási segítséget jelentenek a racionális hibák keletkezésének feltérképezésében, csupán azok 

egy részét, és egy szegmensén (az összeadás és kivonás során előforduló hibákat) magyarázzák.  

A racionális hibák létrejöhetnek indukció útján, de végrehajtás, kódolás, eljárás 

elsajátítása során is (lásd Sleeman, 1984). Így a problémamegoldók megalkotnak valamilyen 

szabályt, majd végrehajtják ez alapján a számítást. Jól megfigyelhető az 5. ábrán, 

hányféleképpen jöhet létre racionális hiba a matematika tanulása során. Az ismeretlen probléma 

megoldásakor alkotott szabályok erősségét elsősorban a korábbi problémamegoldások során 

történt alkalmazások tapasztalatai, sikerei befolyásolják (Anderson, 1993; Holland, Holyoak, 

Nisbett & Thagard, 1986). Az új szabály megfelelő kialakulását akadályozza valamilyen 

részleges tudás, melyet ugyan megfelelően alkalmaznak, ám ésszerű hibát eredményez a 

megfigyelési mechanizmus hiányosságai miatt (Ben-Zeev, 1998). Ben-Zeev kifejti, hogy az 

ismeretlen probléma megoldásakor megeshet, hogy a problémamegoldóban ugyan felmerül az 

előzetes tudása alapján valamilyen (belső) kritika, ám a régi tudás hatása erősebb. Szerinte az 

is előfordulhat, hogy a problémamegoldó észre sem veszi az ütközést, fel sem merül benne a 

kritika, vagy úgy átfogalmazza a feladatot, hogy ezáltal mintegy tagadja a probléma meglétét. 

Előfordulhat, hogy egy kritika verseng egy másik tudásterületről származó szabállyal. A 

szabályalkotás induktív következtetések során történő létrejötte akadályokba ütközhet. Az 

analógiás gondolkodás eredményezhet racionális hibát, a szintaktikus indukció gazdag 

hibaforrás (Ben-Zeev, 1996). Az indukció eredményezhet hamis korrelációkat, pl. egy 

probléma irreleváns tulajdonságai és egy ehhez kapcsolódó szabály révén a tanuló hibás 

következtetést vonhat le. 
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5. ábra A racionális hibák taxonómiája 

 (forrás: Ben-Zeev, 1998, 371.o. alapján) 

A szintaktikai indukció során az ember túlságosan általánosítja vagy túl specializálja az 

algoritmusokat: részleges illeszkedés, téves specifikáció vagy rosszul értelmezett korreláció 

alapján is születhetnek racionális hibák (Ben-Zeev, 1998). VanLehn (1986) rájött, hogy a 

racionális hibáknak csak 33% -a az ilyen szintaktikával magyarázható indukció. Ugyanakkor a 

való életből vett analógiák alapján is levonhatunk helytelen következtetéseket, amelyek azután 

szintén racionális hibákat eredményeznek.  

Anderson (1989) szerint a racionális hibák oka kétféle lehet: (1) származhatnak a 

deklaratív struktúrában rögzült hibás kategóriából (pl. a 2 szerepeltetése egész szám helyett), 

(2) a hibák forrása lehet maga a leképezési folyamat (pl. bármilyen szám helytelen leképezése 

egy egész számra). Úgy tűnik, hogy az emberek rendelkeznek matematikai intuícióval, amely 

hasonlóan a fizikai intuícióhoz, a tanulókban téves analógiával tévképzetek sorát hozzák létre 

(Chi & Slotta, 1993; diSessa, 1982, 1993; McCloskey, Caramazza & Green, 1980).  

 

Néhány hasznos recept a hibák kiküszöbölésére 

 

Ben-Zeev (1998) összefoglalt néhány jó tanácsot a tanárok számára a tanulói hibák 

kiküszöbölésére. A racionális hibák csökkentésére jó ötlet lehet a tanulók számára minta, 

algoritmus mutatása (Shaughnessy, 1985), ugyanakkor a túl speciális példák megkönnyíthetik 

a racionális hibák létrejöttét. A matematikai problémamegoldás során célszerű pozitív 

hangulatú osztálytermi környezetet kialakítani, ahol a tanulók párbeszédet folytatnak a 

tanárral (Schoenfeld, 1991). Ben-Zeev (1998) említi Brown és Walter (1993) what-if-not 

(WIN) technikáját. A WIN úgy közelíti meg a probléma megoldását, hogy átalakítja egy 

másikká, hasonlóvá, pl. térbeli problémát síkbelivé fogalmaz át, a síkban ezt megoldja a 

tanulókkal, majd visszatérnek a háromdimenziós térbe. Ben-Zeev (1998) fontosnak tartja 

annak tisztázását adott racionális hiba esetén, hogy az kódolásból származik-e vagy pedig a 
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végrehajtási szakasz során keletkezett. Fuson (1992) rámutatott arra, hogy Taiwantól, 

Koreától kezdve a Szovjetunión és Japánon át az Egyesült Államokig számos országban 

különféle hibákat ejtettek a tanulók. Stigler, Fernandez és Yoshida (1996) említi, hogy a japán 

tanárok az oktatás során felhasználják a tanulók hibáit.  

A kutatók véleménye megoszlik abban a kérdésben, mi igényel a problémamegoldótól 

nagyobb kreativitást. Sternberg és Ben-Zeev (1998) szerint a problémamegoldás során a 

legnagyobb kreativitást a megoldási terv megalkotása jelenti. Mayer és Hegarty (1998) ezt 

vitatva kijelenti, hogy a megértés igényli a megoldótól a legnagyobb kreativitást, a megoldás 

ez alapján már gyerekjáték. Mayer és Hegarty két megértési stratégiát vázoltak fel: (1) A 

közvetlen transzlációs stratégia szerint gondolkodó kulcsszavakat keres a szövegben és azt 

fordítja le az elvégzendő matematikai műveletekre, (2) A problémamodellező stratégiát 

alkalmazó megpróbálja értelmezni a feladatot. Mayer és Hegarty három hibaforrást különített 

el: (1) Szövegértelmezési nehézség, erre tipikus példa a hajó méretének megadása és az alapján 

annak kiderítése, hány éves a kapitány, (2) Túláltalánosítás (racionális hibák), (3) Különböző 

kultúrák ─ különböző hibák: a nyelvi nehézségek, pl. a 80 franciául négyszer húsz segíti a 

tájékozódást, de az angol tizenegy nem.  

A modern pszichológiai kutatások fókuszában áll az egyes agyi területekhez kapcsolódó 

funkciók (disszociációk) elkülönülésének vizsgálata. A kutatások alapján háromféle 

hibacsoport különíthető el: (1) A műveleti jelek értelmezésének zavara: a leggyakoribb a 

szorzás és az összeadás felcserélése, vagy hibás műveleti jellel rögzítés, de helyesen végzett 

számítás, (2) Lexikai és szemantikai hiba: arab számjegyek felcserélése, ill. a helyiérték hibás 

használata, (3) Műveletek közötti disszociáció: az összeadás és szorzás műveleteket nem képes 

elvégezni a tanuló, csupán a ténybeli ismeretei helyesek (Márkus, 2007). 

Összegezve: a racionális hibákra a matematikatanulás során nem akadályozó 

tényezőkként, hanem a tanulássegítőként kellene tekintenünk (Ben-Zeev, 1998; Smith, diSessa 

& Roschelle, 1993). A hibakeresés, a tanulói hibák eredetének vizsgálata, azok tanulókkal való 

megbeszélése a matematika mélyebb megértéséhez járulhat hozzá. Ehhez másféle tanári 

attitűdre van szükség. A diákok tanulási kedve „és tudásuk minősége is javulhatna, ha 

tudományos igényű, de a gyakorlathoz kissé közelibb, hétköznapokhoz könnyebben 

kapcsolható lenne a természettudományos tananyag” (Korom, 1998., 173. o.). Hanczár (2007) 

megjegyzi, ha a tanárok nem lezárt, minden kétség és kérdés nélküli tudományként deklarálnák 

a természettudományokat, az változtatna a tanulók világképén. Úgy véljük, a racionális hibák 

közös megbeszélése segítheti a tanulókat saját gondolkodásuk megismerésében, és 

megélhetnék a gondolkodás, a matematika megalkotásának örömét. A hibák tanulmányozása a 

tanárok számára is tanulsággal szolgálhat, segíti őket abban, hogy megismerjék tanítványaik 

gondolkodásfejlődését, ami egyúttal a tanítási módszertan, osztálytermi kultúra megújulását is 

katalizálhatja. Bár vizsgálatunk matematikai tartalmakra vonatkozott, úgy véljük, a 

gondolkodási folyamatok vizsgálatában leszűrhető következtetések nemcsak a 

matematikatanárok számára lesznek hasznosak. 

 

2.2.2. A fejben szorzás során ejtett hibák, a kezdők és a szakértők stratégiái 
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A kezdő fejszámolók stratégihasználatára vonatkozó megállapításokat olvashatunk Dowker, 

Lemaire és Siegler tanulmányaiban. A tanulás korai fázisaiban az emlékezeti előhívás stratégia 

használatával kapott számítási eredmények inkább becslésnek, találgatásnak tűnnek, ugyanis a 

tanulók fogalmi, műveletek és ténybeli ismereteinek hálója a kis számokkal végzett 

számláláson alapul, s éppen ezért pontatlan, rugalmatlan (Dowker, 2005). Lemaire és Siegler 

(1995) és Siegler (1988) számítógépes szimulációk segítségével megfigyelték, hogy néhány 

kivételtől eltekintve a gyerekek a tanulás korai fázisában megfigyelhető fejszámolási hibáit az 

összeadásra vonatkozó ismeretek hibás visszakeresése okozza. A kivonás során a kutatásokban 

a különféle fejlettségű tanulók különböző (helyes eredményre vezető és helytelen eredményre 

vezető) stratégiákat használtak (Siegler, 1987).   

A fejszámolásra vonatkozó vizsgálatok során a kutatók arra jutottak, hogy jól 

megkülönböztethető egymástól a kezdők és a szakértők stratégiahasználata. Az adatok alapján 

kimutatható, hogy fejszámolás során a kezdők (vagyis a számlálás alapú stratégiát használók) 

általában kevés fajta válaszból álló, de jól körülhatárolható válaszkészletet alkalmaznak 

(Baroody, 1999a, 1999b). Ez a válaszkészlet az írásbeli számításokhoz hasonlóan tartalmaz 

hibákat (Brown & Burton, 1978). VanLehn (1983) úgy véli, könnyű azonosítani a hibázási 

mintázatokat, mert a hibákat a tanulók következetesen ejtik a viszonylag rugalmatlan becslési 

stratégiáik miatt. VanLehn által megfigyelt hibás stratégiák: Kétjegyű számok szorzata a két 

számjegyből álló kétjegyű szám, így 3 · 5 = 35; összeadáshoz hasonló stratégia, az egyik 

tényezőt szorozza egy ott nem szereplő számmal, így 5 · 3 = 12; 4  ·  6 = 20 ; illetve ezen 

stratégiák valamilyen kombinációja, így 8  ·  3 = 25. Baroody (1993, 1999b) megfigyelései 

szerint előfordul, hogy a szorzat a helyes eredményhez közeli valamilyen szomszédos szám, 

így 3 · 5 = 13, vagy az egyik szorzandó szám valamelyik másik számmal vett szorzata, így 4 · 

7 = 14, vagy a végeredményben az egyik számjegy egyenlő az egyik szorzótényezővel, így 7 · 

3 = 13; 9 ·  4 = 14, vagy az egyik tényezőnek a tízszerese 3 · 5 = 30; 4 · 7 = 70, vagy a két szám  

szorzata a helyes végeredményhez álló legközelebbi kerek tízes, így 7 · 3 = 20.  

Kezdő fejszámolók esetén megfigyelték, hogy a meglévő tudás időnként blokkoló hatást 

fejt ki a tanulás során. AZ ASCM modellhez (Siegler, 1988) végzett kísérletekben úgy találták, 

hogy a már meglévő megfelelő asszociációkkal nem tudnak összekapcsolódni az új 

asszociációk. Mivel a szorzás az összeadáshoz kapcsolható, az addíció itt kétféle típushibát 

eredményezhet: (1) művelethez fűződő hibák (related-operation errors), pl. 8 · 3 = 11, a két 

szám összege az eredmény, (2) összeadásszerű, paritással kapcsolatos hibák (addition-like odd-

even errors), pl. 5 · 3 = 12, 4 · 6 = 20, 8 · 3 = 25. A DOAM model (distributions of association 

model) alapfeltételezése, hogy a tanuló a saját maga által adott választ (legyen az helyes vagy 

helytelen) társítja annak indoklásával (Siegler, 1988). Minden válasz nyomot hagy a hosszú 

távú memóriában (Siegler & Jenkins, 1989). Ha a szám beépül a hosszú távú memóriába, akkor 

az asszociáció kiépül a válasz és a feladat megoldási útja között. A hibák általi tanulás (error-

learning) hipotézis logikus következménye: minden számolási hiba a gyakorlás idejére 

tárolódik a memóriában és befolyással bír a későbbi számolási hibák gyakoriságára (Siegler & 

Jenkins, 1989). Siegler (1988) megfigyelte, hogy a gyerekek kétféle típusú számolási hibát 

ejtenek, mikor a biztonsági mentés (backup) stratégiát alkalmazzák (1) számlálási hibák átugrás 

(skip-cunting errors), pl. 8 · 3 az 3, 6, 9, 12, 15, tehát 21, (2) kisebb hozzáadási hiba (monor 

addition errors), pl. 3 · 7 = 7 + 7 + 7 = 14 + 7 = 20.  E két számolási hiba magas előfordulási 
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aránya összefügg a tényezővel kapcsolatos (factor-related) és a közeli számok hibával (close-

miss errors), és mind a gyerekeknél, mind a felnőttek körében megfigyelhető (Siegler, 1988).  

A tanulás során a gyerekek egyre komplexebb tudáshálót építenek ki a műveletekről, 

egyre pontosabban és rugalmasabban alkalmaznak számolási stratégiákat. A kutatások szerint 

valószínűleg számos feltérképezetlen stratégiát is alkalmaznak (LeFevre, Smith-Chant, 

Hischock, Daley & Morris, 2013). A szakértővé válás kétféle módjáról írnak Baroody és 

munkatársai (Baroody, 1985; Baroody & Ginsburg, 1986, 1991): (1) A séma-alapú nézőpont 

szerint a verbális megértés által a két adat és a köztük levő reláció analógia segítségével 

összekapcsolódik a memóriahálóban; (2) A szorzás kommutativitásának (a tényezők 

felcserélhetősége) felfedezésével a tudásháló azonnal átrendeződik; ez utóbbit mások is 

megfigyelték (Butterworth, Marschesini & Girelli, 2013). Amint a reláció alapú szabályok 

(relation-based rules) begyakorlódnak, használatuk automatikussá válik, a memorizálási 

folyamatba a tényezőkre és a relációkra vonatkozó ismeretek is bekapcsolódnak. Néhány felnőtt 

számára azonban a relációkra vonatkozó ismeretek nem válnak automatikussá, viszonylag 

gyorsan számolnak a kutatók megfigyelései szerint, valószínűleg a memóriájuknak 

köszönhetően (Baroody, 2013).  

Molnár (2006, 17.o.) szerint a különböző tudástranszfer „definíciókban közös, hogy az 

egyik feladattal, vagy szituációval kapcsolatban megtanultak befolyásolják a későbbi feladatok 

megoldását, a későbbi szituációkban való tanulást. Ez utóbbi meghatározás alapján minden 

tanulásban jelen van a transzfer, mert ahogyan „nem léphetünk bele kétszer ugyanabba a 

folyóba”, nem is találkozhatunk kétszer ugyanazzal a helyzettel, csak hasonlóval. Ha ebben a 

hasonló szituációban azonosítjuk és alkalmazzuk a korábban tanultakat, akkor voltaképpen 

„transzferáljuk” ismereteinket.” 

A relációkra vonatkozó ismeretek elsajátítása és tudástranszfere alapvetően 

kétféleképpen történik (Baroody, 2013). (1) A gyerekek megfigyelik a 0-val történő szorzás 

szabályát (Ha nullával szorzunk, a szorzat értéke 0), és az 1-gyel való szorzás szabályát (Ha 

egy adott számot eggyel szorzunk, a végeredmény maga az adott szám). Ezek a szabályok 

általános szabályként rögzülnek a hosszú távú memóriában, használatuk egyre inkább 

automatikussá válik egyjegyű számmal, illetve többjegyű számmal való szorzás esetén is 

(Baroody, 2013). Ezen szabályok használatát felnőttek körében is megfigyelték (pl. Lemaire & 

Siegler, 1995; Aschraft, 1992). Baroody (1994) ismertet egy lehetséges sémát, amely alapján 

szerinte a szakértő szinten levő ember számolhat fejben szorzás során. 

1. Ha az egyik szorzótényező 10, akkor a tényezők sorrendje nem fontos, figyeld a 

helyiértéküket (kommutativitás). 

2. Ha nullával szorzunk, akkor a szorzat értéke 0 (0 · n vagy n · 0 = 0 szabály). 

3. Ha egy adott számot eggyel szorzunk, akkor a szorzat értéke maga az adott szám (1 · n vagy 

n · 1 = n szabály). 

4. Ha egy számot kettővel szorzunk, akkor a szorzatot úgy kapjuk, hogy a számhoz önmagát 

még egyszer hozzáadjuk (2 · n vagy n · 2 = n + n szabály). 

5. Ha egy nagyobb számot önmagával szorzunk, akkor a szorzótábla mintájára gondolunk, a 

számítást az asszociatív háló segítségével oldjuk meg. 

6. Ha egy nagyobb számot egy kisebb számmal szorzunk, akkor is az asszociatív háló segít. 

7. Ha egy nagyobb számot egy kisebb számmal szorzunk, akkor alakítsuk át az egyik tényezőt, 

majd az asszociatív háló segít. 
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Baroody (2013) szerint a relációkra vonatkozó ismeretek elsajátításának és 

tudástranszferének másik módja (2): A gyerekek az aritmetikai relációkat összevetik a már 

meglévő ismereteikkel. A memorizálandó szorzások számát jelentősen tudják csökkenteni 

(Trivett, 1980). A szorzás kommutativitását felismerve a 3 · 8 kiszámítása helyett a 8 · 3-at 

számítják ki (Baroody, 1985, 1994). A szorzótábla alapján felismerhető összefüggések újabb 

szabályok felfedezését segítik. 

A stratégia-választó modell jelentősen különbözik a séma-alapú nézettől, Baroody 

(2013) szerint:  

1) A gyermek informális stratégiái használata során aritmetikai mintázatokat, relációkat vesz 

észre, és a szabályokból stratégiákat épít magának. 

2) Kezdetben a kommutativitás épül ki, relatíve lassan, majd gyakorlással automatizálódik 

(Jerman, 1970). A felnőttek már jóval több stratégiát használnak (LeFevre, 2013). A 

stratégiaválasztás modellben a szakértői tudás egy stratégia használatát, az emlékezeti előhívás 

stratégiát jelenti. 

3) Bár a gyakorlás fontos szerepet játszik az adatok hosszú távú memóriában történő 

raktározásában, egyrészt új stratégiák felfedezéshez vezethet, másrészt segítheti a sémák 

használatának automatizálását (Baroody, 2013). 

4) A szorzótábla (alapvető számkombinációk és mentális reprezentációik) memorizálása 

bonyolult agyi folyamat (Campbell, 1995). Egy autonóm egységet képezve az agyban az adatok 

hálójában, a tudáshálóbeli adatok és a köztük levő relációk segítségével bővülhet a tudásháló 

(Baroody, 2013). 

5) A számok közötti kapcsolatok mentális reprezentációinak kiépülése dinamikus tanulási 

folyamat, amely hasonló lehet matematikai és nem matematikai tudás esetén. A szabályok 

összegzése, feldolgozása, egymáshoz kapcsolása lehetővé teszi, hogy a komplex tudáshálóban 

bekövetkező kvantitatív változások kvalitatív változásokat eredményezzenek egy vagy több 

sémában. Butterworth és munkatársai szerint (2013) ezek a változások ezek a változások 

okozhatják egy vagy több séma változását, vagy a közöttük levő kapcsolat változását; lehetnek 

kis, helyi hatásúak, de akár széleskörű változásokat is eredményezhetnek (ahogy pl. a szorzás 

kommutativitása a számok kapcsolatára vonatkozó tudásban is változást eredményez).  

A mindennapok során ritkán találkozunk olyan teljesítményű fejszámolóművészekkel, 

mint amilyen Pataki Ferenc volt. Gyakorlás és „számolási trükkök” segítségével a mai gyerekek 

is kiváló teljesítményre képesek. 2019-ben a szegedi Szin Jázmin ötödik helyezett lett a 

Mentális matematika junior Európa-bajnokságon, ahol két óra alatt 3000 darab számolási 

feladatot végeznek el, pl. 12-jegyű számból kell hatodik gyököt vonniuk a versenyzőknek 

(Szalma, 2019). Szenes Adolf Gyakorlati gyorsszámolója (1904) még ismertetett olyan 

számolási stratégiákat, amelyek pl. 11-gyel, 111-gyel 25-tel szorzást segíthetik. Fejben 

számolást kér ugyan több jelenleg használatos matematika tankönyv (pl. természetes számok 

összeadása vagy szorzása 10-zel, 100-zal, 1000-rel, 2-vel stb.), de a számolási stratégiák 

bemutatására ritkán vagy nem vállalkozik. A hazai matematikakönyvekben napjainkban 

elvétve szerepelnek olyan feladatok, amelyek a felső tagozatos vagy középiskolás tanulók 

fejben számolási stratégiáit fejlesztené, ez alól néhány kivétel az algebrai azonosságok 

tanításához kapcsolódva: Halmos és Pósa (1990); Pósa, (1990); Kosztolányi, Kovács, Pintér, 

Urbán, Vincze (2015, 2019) munkái. Napjainkban egyre több olyan ismeretterjesztő könyv 

jelenik meg, itthon és külföldön is, amely segítheti a tanárokat abban, hogy a tanítványaik 
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fejszámoló készségét fejleszthessék (pl. Benjamin & Shermer, 2006; Fábosné Zách, 1999; 

Lange, 2014; Mittring, 2013), ugyanakkor e kiadványok hiátusául róható fel, hogy a bemutatott 

számolási eljárásokat leírják, de nem magyarázzák. Úgy gondoljuk, hasznos lehet olyan tanítási 

segédanyag létrehozása, amelynek segítségével a tanulók fejben számolás során használható 

számolási stratégiákat ismerhetnének meg, gyakorolhatnának. Ha nem is lesz minden 

gyermekből fejszámolóművész, a számolási hibáik száma vélhetően csökkenne. 

Gondolkodásuk, metakognitív stratégiáik fejlődnének, memóriájuk szintén edződne, s ezeket a 

képességeket, készségeket a transzferhatás miatt a természettudományos és 

társadalomtudományi tantárgyakban, de a mindennapokban is hasznosíthatnák. 

 

2.3. A szóbeli szorzási stratégiák vizsgálata 

A fejben végzett szorzás során alkalmazott stratégiákra vonatkozó kutatások nagy része alsó 

tagozatos tanulókkal végzett vizsgálatokról számol be; kutatásunk szempontjából ezek 

marginális vizsgálatok, mert főleg egyjegyű számok szorzására vonatkoznak (pl. Mulligan & 

Mitchelmore, 1997) 70 második és harmadik osztályos lánnyal készített interjúról számolt be 

szöveges feladatok megoldása kapcsán. A vizsgálat tartalmi keretét egy háromdimenziós, 

intuitív modell alkotta, melyben a a direkt számlálás, az ismételt összeadás és a multiplikatív 

operációk szerepeltek. Kuoba (1989) első, második és harmadik osztályosokat vizsgált. 

Anghileri (1989) 4-12 éves korú gyermekek körében végzett vizsgálata során 6 feladatot 

oldottak meg, a  szerző szorzási sémákat ír le a számlálási stratégiákkal kapcsolatos cikkében. 

Lemaire és Siegler (1995) 2. osztályos francia kisdiákokkal folytatott longitudinális vizsgálatról 

számolt be. Vizsgálódásának fókuszában a tanulók stratégiaváltása állt.  Siegler (1988) 

harmadik osztályos tanulókat kért m x n típusú feladatok megoldására, ezzel az asszociáció 

disztribúciója modellt akarta tesztelni. Cooney, Swanson és Ladd (1988) tíz harmadikos és 

negyedikes tanulót kértek arra, hogy számoljon ki 100 darab m x n típusú szorzást. A mérés 

során interjút is készítettek a tanulókkal, miközben a tanulók papírt, ceruzát nem használhattak 

a fejben végzett szorzások során. Felnőttek körében folyt több kutatás, pl. Le Fevre, Bisanz, 

Daley, Buffone, Greenham & Sadesky (1996) 18-45 éves főiskolásokat kért arra, hogy oldjanak 

meg fejben m x n típusú feladatokat, egyenként 5-10 másodperc alatt.   

A fejben végzett szorzást kérő feladatokat többnyire ún. emlékezeti előhívás 

segítségével oldjuk meg (Lemaire, & Siegler, 1995). Úgy vélik, ilyenkor a megtanult 

szorzótáblára emlékszünk vissza, ez egy adaptív stratégia. De a gyerekek nem így szoroznak, 

megtanulják a szorzótáblát mint egy verset, és a számra vonatkozó összes szorzást 

végigmondják. Azonban léteznek az emlékezeti előhívás stratégiáját megelőző, tipikusan 

kisgyermekekre jellemző, elsősorban egyjegyű számok esetében működő stratégiák is (pl. az 

összeadás mint stratégia, 3 ∙ 4 = 4 + 4 + 4) (Lemaire & Siegler, 1995).  

 A szorzások között sokaknak legnehezebb pl. a hetes és a kilences szorzótábla. A 7 ∙ 8 

vagy 8 ∙ 9 kiszámítása akár több mint két másodpercbe is telhet, és a hibázás valószínűsége 

magas, 25%. (Lemaire & Siegler, 1995). A szorzás kommutatív művelet, azaz a szorzótényezők 

a szorzás során felcserélhetőek, így elegendő lenne 45 összeadást és 36 szorzást előhívnunk. 

Lemaire és Siegler (1995) szerint ezek fejben tartása azért nehéz, mert összefüggenek. Úgy 

vélik, a szorzótábla tanulásakor esetlegesen rögzült rosszul felismert szabályosságok, és 

ugyanazon elemek ismétlődése miatt nehézséget jelenthet a szorzási feladat. Egy újabb 
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hibaforrást jelent, hogy a szorzás során aktiválódnak az egymást részben átfedő 

neuronhálózatok is, vagyis az, hogy a különböző műveletek milyen eredményre vezetnek. 

Ennek magyarázata az emberi emlékezet asszociatív voltában rejlik: az emberi agy a különböző 

adatok között többszörös kapcsolatot épít ki, így információtöredékek alapján is történik az 

előhívás, véli Lemaire és Siegler (1995). Így fals eredményeket kapunk, de azok ugyanakkor 

benne vannak a szorzótáblában.  Az agy eme általában hasznos működési elve a szorzótáblánál 

olyan tipikus hibákhoz vezethet, mint pl.: összekeverjük a 7 ∙ 6 eredményét a 7 + 6-éval, vagy 

helyette az asszociáció miatt szintén aktiválódott 7 ∙ 5 számítást végezzük el. Pl.: 7 ∙ 8-ra a 

gyerekek jellemző hibás válasza nem az 56-tól 1 egységre levő 55, hanem a 7-es vagy 8-as 

szorzótáblában szereplő számok. Pl. a 48 vagy a 63 rossz válaszként előfordulhat, hiszen a 

lehetséges hibák általában ugyanabból a sorból vagy oszlopból származnak, amelyben a 

kérdéses szorzás is van (Lemaire & Siegler, 1995).  

A szorzás során alkalmazott kisiskolásokra jellemző szorzási stratégiákat látjuk a 3. 

táblázatban. Amint a táblázatból látható, a fejben végzett szorzások vizsgálata során Cooper, 

Heirdsfield, Mulligan és Irons (1999) ötféle stratégiát figyeltek meg a gyermekeknél. Az 

elnevezéseknek magyar megfelelője, mivel vizsgálat még nem folyt hazánkban, nincsen. Az 

általam javasolt magyar elnevezések: Counting (CO) vagy számlálás stratégia, Basic fact (BF) 

vagyis tényeken alapuló stratégia, RL separated (RLS), azaz helyiérték szerinti jobbról balra 

stratégia, LR separated (LRS) helyiérték szerinti balról jobbra stratégia, Wholistic (WH) 

holisztikus stratégia. A táblázatban mindegyik stratégia alkalmazására találunk egy példát. 

Heirdsfield és munkatársai hasonló stratégiaelnevezéseket alkalmaztak az osztás vizsgálata 

során, ahogy az 1.sz mellékletben található táblázatban láthatjuk. 

 

2. táblázat.  A fejben végzett szorzás során alkalmazott stratégiák 

 (forrás: Heirdsfield, Cooper, Mulligan & Irons, 1999. 91.o.) 

Kategóriák A stratégia leírása Példák 

Counting (CO) 

Számlálás 

A számlálás formái, előre, hátra, 

összeadás, kivonás, felezés, 

duplázás 

7 ∙ 8: 7, 14, 21, … 

7 ∙ 8: 7 duplája, 14 duplája, …+ 8 

Basic fact (BF) 

Tényeken alapuló 

Szorzótábla ismeretén alapuló 7 ∙ 8: 5 ∙ 8 = 40, 2 ∙ 8 = 16, 

és 7 ∙ 8 = 56 

RL separated (RLS) 

Jobbról balra 

Helyiérték szerint elválasztva, 

jobbról balra 

5 ∙ 17: 5 ∙ 7 = 35 = 30 + 5, 

5 ∙ 10 = 50, 30 + 50 = 80, 85 

LR separated (LRS) 

Balról jobbra 

Helyiérték szerint elválasztva, 

balról jobbra 

5 ∙ 17: 5 ∙ 10 = 50, 5 ∙ 7 = 35, 

50 + 35 = 85 

Wholistic (WH) 

Holisztikus 

Kerek egészként értelmezi a 

számot 

7 ∙ 19: 7 ∙ 20 - 7 = 140 - 7 = 133 

Hope és Sherill (1987) 11. és 12. évfolyamos diákok (N = 286) körében folytatott 

kutatásokat. A szorzási stratégiák használatát vizsgálva négy megoldási módszert és 12 
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stratégiát különítettek el. Ez a négy megoldási módszer (1) „Elképzelem fejben leírva” (pencil- 

and- paper mental analogue), (2) Elosztás (distribution), (3) Tényezőkre bontás (factoring): 

felezés, hatványozás, pl.: 5 · 48 = 5 · 40 + 5 · 8, (4) Előhívás (retrieval of a numerical 

equivalent). Az első három módszeren belül ír le négy-négy stratégiát, ezeket a 3. táblázatban 

részletesen bemutatjuk. A szakirodalom a fejben szorzási stratégiák leírása során még nem 

egységes. Ez adódhat abból, hogy a különböző életkorú tanulókat vizsgáló kutatók más 

jelenségeket figyelnek meg, pl. 11. évfolyamos diákok már ritkán használják a számlálás 

stratégiát, főleg többjegyű számok szorzásakor.  

A múlt század vége óta számos tanulmány jelent meg a fejben végzett szorzás során 

alkalmazott stratégiákra vonatkozóan. A matematika feladatok többféleképpen oldhatók meg, 

ahogy a fejben végzett szorzások kiszámítására is többféle stratégia áll rendelkezésünkre. A 

következő fejezetekben megvizsgáljuk, hogyan szoroznak fejben a 10-18 éves magyar tanulók. 

 

2.3. A stratégiahasználat mérésére alkalmazott mérőeszközök főbb jellemzői 

 

A tesztek viselkedését három jóságmutatóval szokás jellemezni. Ezek a kulcsfontosságú 

tesztjellemzők: az objektivitás (tárgyszerűség), reliabilitás (megbízhatóság) és validitás 

(érvényesség) (Nagy, 1975; Csapó, 2004). Papír-ceruza alapú mérések esetén az adatfelvételi 

objektivitás biztosítása érdekében a kutatók adatfelvételi útmutatót készítenek, és küldenek el 

a felmérésben részt vevő iskolába. Ebben leírják a mérőbiztosok számára azokat az 

információkat, amelyek szükségesek a méréshez: az adatfelvétel módját, körülményeit, a 

tesztíráskor használható segédeszközöket. Az értékelési objektivitást pontos megoldó-és 

javítókulcs összeállítása biztosítja. Az értelmezési objektivitás céljából útmutatót készíthetünk, 

ha az a célunk, hogy a teszt eredményeinek érdemjegyekre váltása a célunk.  

A teszten elért eredmények általánosíthatóságát, a mérés pontosságát a reliabilitás 

hivatott biztosítani. A teszt reliabilitását leggyakrabban a Cronbach-α segítségével becsülik az 

oktatáskutatók. A Cronbach-alfa értéke általában 0 és 1 közötti szám, és a 0,8 fölötti értéket 

tekintjük elég magasnak s elfogadottnak mérőeszközök esetén (Csapó, 2004). A teszt 

megbízhatóságára több tényezőtől függ, így (1) az itemek számától, minőségétől, és (2) a 

csoport összetételétől. A nagyobb itemszám növeli a teszt reliabilitását, egy jól mérő teszt 

általában 25-30 itemből áll. A tesztek megbízhatóságát növeli az itemek függetlensége.  A 

heterogén csoportokban figyelhető meg magasabb reliabilitás. Homogén csoportokban a teszt 

kevésbé képes pontosan kimutatni a tanulók közötti teljesítménybeli különbségeket. Ilyenkor a 

teszt túlságosan könnyűnek vagy túl nehéznek mutatkozik a tanulók számára.  

A tesztek harmadik fontos jóságmutatója a validitás, amelyet a teszt készítésekor 

biztosíthatunk a mérési célok, követelmények és mérendő tartalom meghatározásával. Ezek 

alapján és a célokkal összhangban történik a tesztfeladatok megalkotása, az értékelési eljárások 

kidolgozása. Validitásnak nevezzük a teszt azon tulajdonságát, amely arra világít rá, valóban 

azt méri-e, amit mérni akartunk vele (Nagy, 1975). A validitás biztosítása érdekében törekszünk 

arra, hogy a feladatok utasítása, szövege ne legyen túlhosszú és bonyolult, és igyekszünk a 

gyerekek életkori sajátosságaihoz, érdeklődési köréhez igazítani. A tartalmi validitás biztosítása 

érdekében a mérőeszköz készítésekor áttanulmányozzuk az aktuális kerettantervet, a 

használatban lévő matematika tankönyvcsaládokat, a mérésmódszertani könyveket, írásokat. 
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Így a tesztfeladatok összhangban vannak a tudomány eredményeivel (szakmai validitás). Az 

elkészült feladatokból azután azokat választjuk ki, amelyek az adott konstruktum mérésére 

legalkalmasabbaknak találtunk (mintavételi validitás). Úgy véljük, a kiválasztott feladatok 

segítségével képesek leszünk a mérendő konstruktum (jelen esetben szorzási stratégiák 

vizsgálata, illetve matematikai tudás, azon belül az arányossági gondolkodás) mérésére 

(funkcionális validitás). A megoldó-és javítókulcs elkészítésekor törekszünk arra, hogy a 

feladatokat nehézségi szintjüknek megfelelően pontozzuk, a tovább már nem bontható 

feladatrészeket, itemeket egy ponttal értékeljük (skálázási validitás).   

A tesztek jóságmutatói mellett fontosak a tesztet alkotó itemcsoportok, szubtesztek és 

az itemek jellemzői. Az item nehézsége azt mutatja meg, hogy egy tetszőleges vizsgált személy 

milyen valószínűséggel oldja meg az adott itemet. Az item nehézségi indexe a jó megoldások 

számának és a feladatot megoldó tanulók számának aránya (Csapó, 1987). Minél kisebb ez a 0 

és 1 közé eső szám, annál nehezebb az item. Az item differenciáló ereje azt mutatja meg, hogy 

az item mennyire élesen különíti el egymástól a különböző tudásszintű tanulókat (Csapó, 2004). 

Minél közelebb van az itemnehézség-mutató értéke az egyhez, annál többen oldották meg jól, 

vagyis annál könnyeb az item. Bár az 50 %-os megoldottságú (vagyis 0,5-es nehézségű) itemek 

mérnek a legjobban, a tartalmi validitás megőrzése érdekében megszokott, hogy a tesztbe nem 

csak kb. 50%-os nehézségű itemeket teszünk, mert a különféle nehézségű itemek pontosabban 

tudnak differenciálni a gyengébb és jobb képességű tanulók között. 

A Szegedi Műhely általános gyakorlatától eltérően a stratégiahasználatra vonatkozó 

külföldi kutatásokban ritkán találunk a tesztek jóságmutatóira vonatkozó megállapításokat, 

leginkább a tesztek megbízhatóságára vonatkozó adatokat közölnek. A külföldi mérésekben 

használt mérőeszközök itemszáma 8 és többszáz között mozog. Liu, R.-D. & Ding, Y. & Gao, 

B.-C. & Zhang, D. (2014) 18 feladatot tartalmazó tesztjének reliabilitása (Cronbach-α) 0,84. 

Liu és munkatársai néhány item reliabilitását is publikálták, az itemek reliabilitása 0,62-0,84 

közötti értékek (pl. 14 · 35 item reliabilitása 0,78, a 13 · 4 · 8 itemé 0,62, a 25 · 12 itemé pedig 

0,84).  

A következő fejezetben az általunk végzett kutatást mutatjuk be. 
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3. A KUTATÁS CÉLJA, KÉRDÉSEI ÉS HIPOTÉZISEI 

 

3.1. A kutatás célja és relevanciája 

A szakirodalmat áttanulmányozva felmerül bennünk a kérdés, hogy vajon vannak-e egyéni 

különbségek a magyar tanulók stratégiahasználatában fejben szorzás során. Ha vannak, akkor 

milyenek; hogyan fejlődik ez a számolási készség; mikorra érhető el az optimális fejlettségi 

szint; és melyik a legérzékenyebb időszak, amikor egy intenzív fejlesztéssel segíteni tudunk a 

tanulók közötti különbségek csökkentésében. Kutatásunk célja, hogy megvizsgáljuk, mennyire 

eredményesek a magyar diákok egy- és kétjegyű számok fejben szorzásában, az egyes feladatok 

kiszámításakor milyen stratégiát alkalmaznak, és a fejben számolás eredményessége 

mennyiben az alkalmazott stratégia függvénye. 

Az értekezésben bemutatott vizsgálatok során egy saját papír-ceruza alapú mérőeszköz 

létrehozását céloztuk meg, melynek segítségével feltérképezhető a 10-12 éves tanulók 

számolási készségének fejlettsége fejben végezhető szorzást igénylő feladatok megoldása 

során. Értekezésünkben ismertetjük a tesztfejlesztés menetét. Elemzéseink során részletesen 

bemutatjuk a teszt működését, jóságmutatóit, megvizsgáljuk a teszteredményeket. Kutatásunk 

eredményeképpen a matematikát tanítók által széles körben alkalmazható tesztet szeretnénk 

létrehozni, melynek segítségével kiszűrhetőek a tanulók számolási hibái fejben szorzás során, 

és a hibázási mintázatokra alapozva tervezhető a tanulók számolási készségének további 

fejlesztése. 

A kutatás során hat vizsgálatot folytattunk: három pilotmérést, két keresztmetszeti 

mérést és az 5. vizsgálat során egy egyhónapos fejlesztést végeztünk. Az első vizsgálat során 

adatokat gyűjtöttünk egy kecskeméti általános iskola negyedik évfolyamos tanulóinak 

stratégiahasználatáról egyszerű, fejben elvégezhető szorzásra vonatkozó szöveges megoldása 

kapcsán (Vígh-Kiss, Csíkos és Steklács, 2013). Kutatásunk célja volt, hogy megvizsgáljuk, 

mennyire eredményesek a magyar diákok egy- és kétjegyű számok fejben szorzásában, az egyes 

feladatok kiszámításakor milyen stratégiát alkalmaznak, és a fejben számolás eredményessége 

mennyiben az alkalmazott stratégia függvénye. Vizsgálatainkat 10-18 éves tanulók körében 

végeztük, budapesti és vidéki 4.-12. évfolyamos tanulók képezték az egyes vizsgálatokban a 

mintánkat. A legtöbb információt 4., 5. és 6. évfolyamos tanulókról gyűjtöttük, a többi 

évfolyamon a kis elemszám miatt korlátozott érvényességű megállapításokat tehetünk. 

A kutatás során elvégzett vizsgálatok legfőbb jellemzői: 

vizsgálatunk során 2013 áprilisában 4. osztályos tanulókat vizsgáltunk (N=13). A 2. vizsgálat 

során keresztmetszeti vizsgálatot folytattunk, melyre 2014 tavaszán került sor. A vizsgálatba 

két iskola 5 osztálya (egy általános iskola és egy szakközépiskola) kapcsolódott be (N=120). A 

3. vizsgálatban 2015 szeptemberében egy általános iskola 61 hetedikes tanulója vett részt. A 4. 

vizsgálatra 2015 áprilisában került sor, ebbe 6. évfolyamos általános iskolai és 

nyolvévfolyamos gimnazista tanulók kapcsolódtak be: 3 iskola 6 osztálya (N=154). Az 5. 

vizsgálatra 2015 tavaszán került sor, 5 iskola 10 osztálya vett részt benne (N=270). A központi, 

kerezstmetszeti vizsgálatot 2019 tavaszán bonyolítottuk le. 11 iskola 4., 5. és 6. évfolyamos 

tanulói kapcsolódtak be (N=850). 
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A mérések során alkalmazott mérőeszközök fontosabb jellemzőit a 3. táblázatban foglaltuk 

össze. 

3. táblázat. A vizsgálatok során alkalmazott mérőeszközök fajtája, itemszáma 

Alkalmazott 

mérőeszközök  

1.  

 

2.  

 

4. 

 

5. 

 

6.  

 

Központi 

 

Szorzási Str. Teszt 

itemszám 

8 10 60 40 35 és 40 40 

Matematika 

Tudásszintmérő 

Teszt 

 x  x x x 

Matematikai 

Meggyőződések 

Kérdőív 

x x x x   

Háttérkérdőív x x x          x x x 

Az első próbamérést 2013. április végén egy vidéki városi iskolában, 4. osztályos tanulókkal 

végeztük el, egy n = 13 fős mintán (7 fiú, 6 lány). A szemmozgásos vizsgálat céljaira nyolc 

feladatból álló, egy lépésben megoldható szöveges feladatsort alkalmaztunk. Erről 

videofelvétel is készült, majd hangosan gondolkodtatás által számoltak be a gyerekek az 

alkalmazott szorzási stratégiáról. A vizsgálat során egy háttérkérdőívet, továbbá Kelecsényi és 

Csíkos (2013) által adaptált Matematikai Meggyőződések Kérdőívet vettük fel. A Matematikai 

Meggyőződések Kérdőív főbb jellemzői: 34 darab, ötfokozatú Likert-skálás kérdőívtételt 

tartalmaz. A kérdőívtételek négy főbb csoportba sorolhatók: Matematikafeladat megoldása (6 

item), A matematikatanár, matematikaóra (13 item), Matematikai szöveges feladatok 

megoldása (4 item), Matematika, más tantárgyak, szülői elvárások (11 item). A mérőeszközt 

2012-ben egy 476 fős Csongrád megyei hetedikes tanulókból álló mintán bemérték, s azt 

tanulással kapcsolatos meggyőződések vizsgálatára alkalmasnak találták, mivel reliabilitása 

0,75 volt, a Kaiser-Meyer-Olkin mutató értéke pedig 0,83. A kérdőívben 9 faktor sajátértéke 1 

fölötti volt. 

A második vizsgálat során egy budapesti általános iskola 8.-os és egy humán 

szakközépiskola 9-12. évfolyamos tanulóinak szorzási stratégiahasználatát vizsgáltuk, ezt a 

keresztmetszeti vizsgálatot egy pilotmérés követte, hetedik osztályos tanulók kisebb mintája 

segítségével fejlesztettük ki a későbbi vizsgálatok során alkalmazott teszteket. Ezt követően két 

vizsgálatot végeztünk hatodik évfolyamosok körében, az ötödik vizsgálat folyamán 

egyhónapos fejlesztő kísérletet végeztünk. Végül 850 fős negyedik, ötödik és hatodik 

évfolyamos tanulókból álló mintán vizsgáltuk a szorzási stratégiák fejlettségét.  

3.2. Kutatási kérdések 

Az eddig áttanulmányozott szakirodalom és több, mint 25 éves tanítási tapasztalat alapján a 

következő kérdések fogalmazódtak meg bennünk:  

1. Hogyan, milyen eszközökkel célszerű – pedagógiai szempontból releváns módon – mérni a 

stratégiahasználat rugalmasságát fejben végzett szorzás kapcsán? Hogyan mérhető az 

elméleti áttekintésben említett stratégiahasználati rugalmasság, vagyis az, hogy az egyén 

akkor és azt a stratégiát tudja-e alkalmazni, amikor és amelyikre szükség van? 



56 
 

2. Milyen stratégiát használnak a 10-18 éves tanulók az egyes szorzási feladatok megoldásakor 

a fejben számolás során?  

3. Milyen háttérváltozókkal hozható összefüggésbe a fejben végzett szorzáskor alkalmazott 

stratégia? 

4. A fejben végzett szorzás során melyek a leggyakrabban alkalmazott stratégiák az egyes 

évfolyamokon? 

5. Az egyes évfolyamokon hogyan változik a tanulók által alkalmazott szorzási stratégiák 

száma?  

6. Mi jellemzi a Matematika Tudásszintmérő Teszten jobb eredményt elérő gyerekek 

stratégiahasználatát? Adaptív-e a stratégiahasználatuk minden esetben? Hányféle stratégiát 

használnak? 

7. Mi jellemzi a tanulási nehézségekkel küzdő ill. a sajátos nevelési igényű gyerekek 

stratégiahasználatát? Hogyan segíthetnénk rugalmasságuk fejlődését a stratégiahasználat terén? 

Létezik-e az egyes gyermekcsoportok – matematikában tehetséges gyermek, többségi, tanulási 

nehézségekkel küzdő, SNI-s tanulók – számára egységesen jó stratégia?   

8. A gyermekek matematikai tudásszintje mennyire függ össze az adaptív stratégiahasználattal?  

9. Milyen matematikai feladatok segíthetik az adaptív stratégiahasználat fejlesztését?   

 

 Összegezve: Kutatásunk tehát arra irányul, hogy milyen kölcsönhatás figyelhető meg a 

matematika mint iskolai tantárgy és a fejben végzett szorzás során alkalmazott stratégiák között; 

ezen belül milyen fejben megoldható arányossági, százalékszámítási feladatok, milyen tanítási 

stílusok és módszerek segítik az adaptív stratégiahasználat fejlődését, és az elsajátított 

stratégiák rugalmas használatát. 
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3.3. Hipotézisek 

 

Az áttanulmányozott szakirodalom és tanári tapasztalataink alapján a következő hipotézisek 

fogalmazhatók meg: 

H1a: A Szorzási Stratégiák Teszt megbízhatóan méri az egyes évfolyamokon tanuló diákok 

stratégiahasználatát a fejben végzett szorzási feladatok megoldása során. 

H1b: A Matematika Tudásszintmérő Stratégiák Teszt megbízhatóan méri a diákok matematika 

tudásszintjét.  

H2a: A fejszámolással megoldható szorzási feladatokban 10-18 évesek legalább ötféle 

különböző stratégiát alkalmaznak (vö. Hope & Sherrill, 1987; Heirdsfield, Cooper, Mulligan  

& Irons, 1999). 

H2b: A gyerekek fejlettségi szintje a stratégiahasználat rugalmassága terén eltérő, az egyes 

gyermekek – matematikában tehetséges gyermek, többségi, SNI-s tanulók – stratégiahasználata 

között szignifikáns a különbség. (vö. Hope & Sherrill, 1987; Heirdsfield, Cooper, Mulligan & 

Irons, 1999) 

H2c: Szignifikáns a különbség a stratégia használat során a különböző iskolák között. 

H2d: Szignifikáns a különbség a stratégia használat során a különböző osztályok között. 

H2e: A vizsgált tanulók körében megfigyelhetők racionális hibák (vö. Ben-Zeev, 1998). 

H3: Az alábbi háttérváltozókkal hozható összefüggésbe a megoldáskor alkalmazott szorzási 

stratégia és annak adaptivitása (vö. B. Németh, 2002, 2003; Csapó, 2002a, 2002b): 

a) az anya iskolai végzettsége,  

b) a tanuló neme,  

c) a tanuló tanulási eredménye, 

d)  tanulási nehézségek és zavarok. 

H4: A szorzási feladatok megoldása során a tanulók leggyakrabban a következő stratégiákat 

alkalmazzák: számlálás,  tényeken alapuló, helyiértéken alapuló (balról jobbra, illetve jobbról 

balra) és a holisztikus stratégiát alkalmazzák (vö. Hope & Sherrill, 1987). 

H5a: A szorzási feladatok megoldása során a 4. évfolyamos tanulók gyengébb eredményt érnek 

el, mint a magasabb évfolyamok tanulói.   

H5b: A szorzási feladatok megoldása során az alacsonyabb évfolyamos tanulók gyengébb 

eredményt érnek el, mint a magasabb évfolyamok tanulói. 

H5c: A magasabb évfolyamokon a tanulók által használt stratégiák száma csökkenő tendenciát 

mutat (vö. Siegler & Lin (2010) „egymást átfedő hullámok” modellje). 

H6: A Matematika Tudásszintmérő Teszten jobb teljesítményt elérő gyerekek 

stratégiahasználatát kettősség jellemzi: egyrészt rugalmasabb, és többféle stratégiát 

alkalmaznak, mint a Matematika Tudásszintmérő Teszten gyengébb teljesítményt nyújtó 

diákok másrészt stratégiahasználatuk nem minden esetben adaptív (vö. de Smedt, Torbeyns, 

Stassens, Ghesquiére & Verchaffel, 2010). 

H7: A sajátos nevelési igényű gyerekek stratégiahasználatát nagyfokú rugalmatlanság jellemzi. 

Ugyanakkor azzal az egy-két ismert stratégiával – szorgalmuk, precizitásra törekvésük miatt – 
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sokszor jobban boldogulnak, mint a Matematika Tudásszintmérő Teszten jobb teljesítményt 

elérő tanulótársaik.  

H8a: A Matematika Tudásszintmérő Teszten elért teljesítmény közepes korrelációt mutat a 

Szorzási Stratégiák Teszten elért eredménnyel.  

H8b: A Matematika Tudásszintmérő Teszten elért eredmény szerint szignifikáns a különbség  

(vö. Hermann, 2019) 

1) a mérésben részt vevő iskolák, 

2) a mérésben részt vevő osztályok, 

3) a fiúk és a lányok között. 

H8c: A Matematika Tudásszintmérő Teszten elért teljesítmény közepes korrelációt mutat (vö. 

Hermann, 2019) 

1) a szülők iskolai végzettségével, 

2) az iskolai teljesítménnyel való elégedettséggel, 

3) a gyermek továbbtanulási terveivel, 

4) a gyermek félévi matematika osztályzatával. 

H9a: A szorzási stratégiák explicit tanításában részt vevő tanulók jobb eredményeket érnek el 

a Szorzási Stratégiák utóteszten, mint a fejlesztésben részt nem vett társaik (vö. Mulligan & 

Mitchelmore, 2009). 

H9b: A fejlesztésben részt vett tanulók jobb eredményeket érnek el a Matematika 

Tudásszintmérő utóteszten, mint a fejlesztésben részt nem vett társaik (vö. Csíkos, 2007). 

H9c: A fejlesztés hatása a késleltetett utóteszt során is kimutatható (vö. Csíkos, 2007). 
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4. MÓDSZEREK 

 

A vizsgálatunk keretében lezajlott hat vizsgálat során főleg papír-ceruza alapú mérőeszközöket 

alkalmaztunk. A Szorzási Stratégiák Teszt egyes változatai mellett Matematika Tudásszintmérő 

Tesztet és háttérkérdőíveket vettünk fel a tanulókkal. Az adatfelvételi objektivitás biztosítása 

érdekében adatfelvételi útmutatót készítettünk, és küldtünk el a felmérésben részt vevő 

iskolába, melyhez hasonlót a központi vizsgálat során is alkalmaztunk. A Szorzási Stratégiák 

Tesztet és a Matematika Tudásszintmérő Tesztet A és B változatban készítettük el. A kétféle 

változat elkészítésének részben pragmatikai okai voltak, szerettük volna, ha a padszomszédok 

nem figyelik a másik munkáját. Másrészt szerettük volna elkerülni, hogy a lassabb diákok miatt 

kevesebb információt kapjunk a teszt végén található itemekről. Arra is kíváncsiak voltunk, 

vajon az itemek sorrendje mennyiben befolyásolja a teszten elért eredményt. Az értékelési 

objektivitás biztosítására megoldó-és javítókulcsot állítottunk össze, a javítást ez alapján 

végeztük. Szintén ezt a célt szolgálta a teszt kipróbálása az előmérések során. Az értelmezési 

objektivitás céljából útmutatót készíthetünk, de mivel a teszt eredményeinek átváltása 

érdemjegyekre nem volt célunk, ezért ezzel a vizsgálat során nem foglalkoztunk.  

 A következőkben az egyes vizsgálatok során alkalmazott módszerek részletes ismertetése 

következik. 

 

4.1. Első vizsgálat 

A szemkamerás vizsgálat lehetőséget nyújt arra, hogy megtudjuk, mit figyelnek a tanulók a 

szöveges feladatok olvasása, értelmezése során, hogyan gondolkodnak, hogyan választják ki az 

alkalmazott szorzási stratégiát. Erre vonatkozó kutatás eddig nem folyt hazánkban. 

A vizsgálat során a következő kutatási kérdésekre kerestük a választ: Mérőeszközónk alkalmas-

e a szorzási stratégiák mérésére fejben végzett szorzás során? Milyen szorzási stratégiákat 

használnak a negyedikes tanulók az egyszerű szöveges feladatok megoldásakor? Mely 

háttérváltozók függenek össze a számolási stratégiával?  

Vizsgálatunk a következő hipotézisek alátámasztására szolgált: 

H1a: A Szorzási Stratégiák Teszt megbízhatóan méri az egyes évfolyamokon tanuló diákok 

stratégiahasználatát a fejben végzett szorzási feladatok megoldása során. 

H2a: A negyedikesek legalább ötféle stratégiát alkalmaznak a fejben végzett szorzások során. 

H2e: A vizsgált tanulók körében megfigyelhetők racionális hibák (vö.: Ben-Zeev, 1998). 

H4: A szorzási feladatok megoldása során a tanulók leggyakrabban a következő stratégiákat 

alkalmazzák: számlálás,  tényeken alapuló, helyiértéken alapuló (balról jobbra, illetve jobbról 

balra) és a holisztikus stratégiát alkalmazzák (vö. Hope & Sherrill, 1987). 

 

4.1.1. Minta  

A vizsgálatra 2013 áprilisában került sor, mintánkat 13 kisvárosi negyedik osztályos tanuló (8 

fiú, 5 lány) alkotta, akik a mérésben önként vettek részt. A szemmozgásos vizsgálathoz 

kapcsolódva a gyerekekkel felvettünk egy háttérkérdőívet, és egy matematikai 
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meggyőződéseket vizsgáló kérdőívet is. Ez után került sor a szemmozgásos vizsgálatokra. A 

szorzási stratégia mérésére szolgáló feladatok szövegét 26-os betűmérettel olvashatták a 

tanulók. A vizsgálat során Tobii T120 eye-trackert használtunk, a vizsgálat során video, 

hangfájl is készült. Az eredményeket TobiiStudio 2.2.7. szoftver és SPSS szoftverek 

segítségével elemeztük. A válaszadásuk közben rögzítettük, majd 20 perces interjút 

készítettünk velük a feladatok megoldás során alkalmazott stratégiáról.  

A szemmozgásos vizsgálat során a tanulókat egyesével vizsgáltuk, egy eye-trackerrel 

felszerelt helyiségben. A helyiségben a vizsgált gyermek és a három mérőbiztos tartózkodott. 

A szöveges feladatokat word formátumban tártuk a gyermekek elé, a feladatok szövegét nem 

olvassuk fel nekik. Az egyes cím nélküli feladatok előtt a következő szöveg áll: Oldd meg a 

következő feladatot! 

Az egyes feladatokat követő interjúkérdések a következők voltak: 

Mondd el, hogyan gondolkodtál! 

Hogyan számítottad ki az eredményt?  

Milyen számítást végeztél? 

Meséld el, hogyan számoltál! 

A feladatok megoldása során a mérőbiztosok a gyermeknek nem segíthettek.  

Mielőtt a gyermek kiment a helyiségből, megkérdeztük, hogy szerinte hány feladatra adott 

helyes választ. A vizsgálat után megköszöntük a gyermekeknek a közreműködést. 

 

4.1.2. Mérőeszközök 

A vizsgálat során nyolc szöveges feladatot alkalmaztunk, melyek mélystruktúrájukban 

szorzásra vonatkozó egyszerű szöveges feladatok voltak. Ezen kívül felvettük a Kérdőívet a 

matematikatanulásról (Kelecsényi & Csíkos, 2013). A vizsgálat során egy Háttérkérdőívet is 

felvettünk (többek között a tantárgyi jegyekre, tantárgyak iránti attitűdre, tervekre, szabad idő 

eltöltésre, tanulási időre, olvasásra vonatkozó kérdésekkel).  

A 4. táblázat az 1. vizsgálatban szereplő feladatokra vonatkozó adatokat tartalmaz. A 

feladatok közül az első kettő egyjegyű számok szorzására, kettő feladat egyjegyű szám kétjegyű 

számmal való szorzására, a többi négy pedig kétjegyű számok szorzására vonatkozik.  Mivel 

egyszerű szöveges feladatokról van szó és az ezres számkörben vagyunk, a feladatok megoldása 

fejben is elvégezhető. A feladatok szövege közel van a gyerekek mindennapi életéhez, közös 

bennük, hogy a szabadidő eltöltésével kapcsolatosak: locsolkodás, számítógépes játékok, 

farsangi bál, filmélmény, vásárlás, sportverseny, osztálykirándulás, barátok. 

 

 

 

 

 

 

 

 

4. táblázat. Az első vizsgálatban alkalmazott feladatok kontextusa, elvégzendő művelet és 

modalitás 
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A feladat 

sorszáma 

A feladat kontextusa Elvégzendő 

művelet 

Megjegyzés 

1.  Locsolkodás 5 ∙ 7 Egyjegyű szorzása egyjegyűvel 

A számjegy kiírása betűvel történt 

2.  Diáknap 7 ∙ 8 Egyjegyű szorzása egyjegyűvel  

A számjegy kiírása arab számjegyekkel 

történt 

3.  Számítógépes játékok 6 ∙ 19 Egyjegyű szorzása kétjegyűvel  

A számjegy kiírása arab számjegyekkel 

történt 

4.  Sportverseny 5 ∙ 15 Egyjegyű szorzása kétjegyűvel  

A számjegy kiírása betűvel történt 

5.  Farsangi bál 10 ∙ 19 Kétegyű szorzása kétjegyűvel  

A számjegy kiírása betűvel történt 

6.  Vásárlás 10 ∙ 42 Kétjegyű szorzása kétjegyűvel  

A számjegy kiírása arab számjegyekkel 

történt 

7.  Táborozás 

 

12 ∙ 11 Kétjegyű szorzása kétjegyűvel 

A számjegy kiírása betűvel történt 

8.  Barátság 11 ∙ 13 Kétjegyű szorzása kétjegyűvel 

A számjegy kiírása arab számjegyekkel 

történt 

 

A feladatok szövege 

 

1. Péter húsvétkor öt lány osztálytársához kopogott be. A megöntözésért minden lány 

családja hét-hét festett tojást adott a fiúnak. Összesen hány hímes tojást vihetett haza 

Péter? 

 

2. A júniusi Diáknapon a felső tagozat minden osztályát 7-7 fős csapat képviselte az 

ügyességi versenyen. Hány tanuló vett részt a versenyen, ha 8 osztály működik a felső 

tagozaton? 

 

3. Gabi a számítógépén 6 játékot játszik. Ezek mindegyike 19 megabájt helyet foglal el a 

gép memóriájából. Összesen hány megabájtnyi helyet foglalnak el Gabi kedvenc 

játékai? 

 

4. Az idei megyei sportversenyben ötfős csapatok versenyeztek egymással, melyek tizenöt 

iskolából érkeztek. Hány gyerekről gondoskodtak a szervezők, ha minden diák kapott 

frissítőt? 

 

5. A farsangi jelmezversenybe a tizenkét osztályból átlagosan tizenkilenc gyerek nevezett 

be. Hány ajándékot osztott szét a zsűri a jelmezesek között, ha mindenki kapott valami 

apróságot? 
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6. Húsvét előtt az üzletben a tojásokat tízesével csomagolják, és tojástartó dobozokban 

árulják. Mennyibe kerül 10 darab tojás, ha egy darab ára 42 Ft? 

 

7. A nyári szünetben az iskola mind a tizenkét osztályából tizenegy-tizenegy gyerek vesz 

részt a balatoni táborozáson. Az iskola hány tanulója vesz részt a nyári balatoni 

táborozáson? 

 

8. Az egyik nemzetközi projektbe 11 ország kapcsolódott be. Egyik nap angolul 

szkájpoltak egymással, és iskolánként 13 gyerek vett részt ebben a beszélgetésben. 

Hány gyerek szkájpolt összesen? 

 

Az 5. táblázat a mérőeszközben szereplő szavak és karakterek számát tartalmazza. 

5. táblázat. Az első vizsgálatban alkalmazott szöveges feladatokban szereplő szavak száma 

feladatonként. 

Feladatpárok A számnév 

betűvel írva 

A számnév 

arab számokkal írva 

Összesen 

 szavak 

száma 

karakterek 

száma  

szavak 

száma 

karakterek 

száma  

szavak 

száma  

karakterek 

száma  

1.pár 25 152 28 151 53 303 

2.pár 22 157 25 154 47 311 

3.pár 23 154 27 151 50 305 

4.pár 26 155 24 155 50 310 

Összesen 96 618 104 611 200 1229 

A mérőeszköz készítéskor törekedtünk arra, hogy az egyes feladatpárokban szereplő feladatok 

szövege ne legyen szignifikánsan hosszabb. Egy-egy feladatban átlagosan 25 szó szerepelt, az 

egyes feladatok átlagosan 153,63 karaktert tartalmaztak.  

4.2. Második vizsgálat A szorzási stratégiák vizsgálata 14-18 éves tanulók körében 

A 8-12. évfolyamos tanulók körében végzett keresztmetszeti vizsgálat során a következő 

kérdésekre kerestük a választ: 

1) Hogyan mérhető a fejben számolás során a szorzási stratégiák használata? Milyen 

stratégiákat használnak a 10-18 éves tanulók?  

2) Milyen háttérváltozókkal hozható összefüggésbe a fejben végzett szorzás során 

alkalmazott stratégia.  

Hipotéziseink közül a következőket vizsgáltuk: 

 

H1a: A Szorzási Stratégiák Teszt megbízhatóan méri az egyes évfolyamokon tanuló diákok 

stratégiahasználatát a fejben végzett szorzási feladatok megoldása során. 
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H2a: A fejszámolással megoldható szorzási feladatokban 10-18 évesek legalább ötféle 

különböző stratégiát alkalmaznak (vö. Hope & Sherrill, 1987; Heirdsfield, Cooper, Mulligan  

& Irons, 1999). 

H2d: Szignifikáns a különbség a stratégia használat során a különböző osztályok között. 

H2e: A vizsgált tanulók körében megfigyelhetők racionális hibák (vö. Ben-Zeev, 1998). 

H3: Az alábbi háttérváltozókkal hozható összefüggésbe a megoldáskor alkalmazott szorzási 

stratégia és annak adaptivitása (vö. B. Németh, 2002, 2003; Csapó, 2002a, 2002b): 

a) az anya iskolai végzettsége,  

b) a tanuló neme,  

c) a tanuló tanulási eredménye, 

d)  tanulási nehézségek és zavarok. 

H4: A szorzási feladatok megoldása során a tanulók leggyakrabban a következő stratégiákat 

alkalmazzák: számlálás,  tényeken alapuló, helyiértéken alapuló (balról jobbra, illetve jobbról 

balra) és a holisztikus stratégiát alkalmazzák (vö. Hope & Sherrill, 1987). 

H5b: A szorzási feladatok megoldása során az alacsonyabb évfolyamos tanulók gyengébb 

eredményt érnek el, mint a magasabb évfolyamok tanulói. 

 

4.2.1. Minta 

A vizsgálat mintáját 120 fő budapesti diák alkotta, ebből 23 fő nyolcadik évfolyamos, 97 fő 

pedig humán középiskolai tanuló volt. A vizsgálatban a tanulók önként vettek részt. 

4.2.2. Mérőeszközök 

A szorzási stratégiák mérésére alkalmazott teszt itemeit a 6. táblázat tartalmazza. 

6. táblázat. A második vizsgálat során a szorzási stratégiák mérésére használt mérőeszköz 

Sorszám Elvégzendő szorzás Megjegyzés 

1. item  5 ∙ 8  

2. item  6 ∙ 9  

3. item    8 ∙ 10  

4. item 11∙ 12 Az első vizsgálatban szerepelt 

5. item 13 ∙ 11  

6. item 15 ∙ 12  

7. item 25 ∙ 17  

8. item 40 ∙ 13  

9. item   8 ∙ 29  

10. item   6 ∙ 19 Az első vizsgálatban szerepelt 

 

A szorzási stratégiák vizsgálata során felvettünk a tanulókkal egy Matematika Tudásszintmérő 

Tesztet, mely 11 feladatot tartalmazott, fejben megoldható feladatokkal. Ezen kívül a 
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Kelecsényi és Csíkos (2013) által adaptált Matematikai Meggyőződések Kérdőívet vettük fel a 

vizsgált tanulókkal, illetve egy háttérkérdőívet, mely a tanulók nemére, egyes tantárgyak iránti 

attitűdjére, a szabad idő eltöltésére, tanulási szokásaikra vonatkoztak.  

4.3. Harmadik vizsgálat Pilotmérés 7. évfolyamos tanulók körében 

 

A vizsgálat során a következő kérdésekre kerestük a választ: 

1) Hogyan mérhető a fejben számolás során a szorzási stratégiák használata? 

2) Milyen stratégiákat használnak a vizsgált tanulók?  

3) Milyen háttérváltozókkal hozható összefüggésbe a fejben végzett szorzás során 

alkalmazott stratégia? 

Hipotéziseink közül a következőket vizsgáltuk: 

H1a: A Szorzási Stratégiák Teszt megbízhatóan méri az egyes évfolyamokon tanuló diákok 

stratégiahasználatát a fejben végzett szorzási feladatok megoldása során. 

H1b: A Matematika Tudásszintmérő Stratégiák Teszt megbízhatóan méri a diákok matematika 

tudásszintjét.  

 

A harmadik vizsgálat során célunk a további, nagymintás vizsgálatokhoz szükséges 

mérőeszközök kifejlesztése volt. Ahhoz, hogy jó tudásszintmérő tesztet készítsünk, több 

feltételnek eleget kell tennünk. Ezek a kulcsfontosságú tesztjellemzők az objektivitás 

(tárgyszerűség), reliabilitás (megbízhatóság) és validitás (érvényesség) (Nagy, 1975; Csapó, 

2004b).  

 

4.3.1. Minta 

 

2015 szeptember elején egy kismintás előmérés során próbáltuk ki a Szorzási Stratégiák Tesztet 

és a Matematika Tudásszintmérő Tesztet egy budapesti általános iskola két hetedik osztályában 

(N = 61 fő). A tanulók részvétele a vizsgélatban önkéntes volt, és előzőleg nem ismételték át a 

témakört. A tanulók 30 perc tiszta időt kaptak a Szorzási Stratégiák Tesztfeladatsor 

megoldására. 

 

4.3.2. Mérőeszközök 

 

A Szorzási Stratégiák Teszt fejlesztése 

 

A Szorzási Stratégiák Teszt esetén az volt célunk, hogy egy jól használható mérőeszközt 

fejlesszünk ki. A szorzásteszt két változata ugyanazokat a szorzásokat tartalmazta, más 

sorrendben.  Mindkét tesztváltozat 60 itemet tartalmazott. A teszt részben a hasonló 

kutatásokban már használt és saját készítésű szorzásokat is tartalmazott, méghozzá a 

következőképpen: egyjegyű szám kétjegyű számmal való szorzása (9 item), egyjegyű szám 

szorzása háromjegyű számmal (5 item), egyjegyű szám szorzása négyjegyű számmal (1 item), 
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kétjegyű szám szorzása kétjegyű számmal (34 item), kétjegyű szám szorzása háromjegyű 

számmal (10 item), háromjegyű szám szorzása háromjegyű számmal (1 item). 

Matematika tudásszintmérő teszt fejlesztése 

Vizsgálatunk célja szintén az volt, hogy megvizsgáljuk a tudásszintmérő tesztváltozatok 

reliabilitását, és itemkihagyásos reliabilitás vizsgálatával, az elkülönítésmutatók segítségével 

összeállítsunk egy jól működő mérőeszközt.  

 

4.4. Negyedik vizsgálat A szorzási stratégiák vizsgálata 6. évfolyamos tanulók 

körében 

 

A vizsgálat során azt szerettük volna megtudni, milyen stratégiát használnak a hatodikos 

tanulók az fejben végzett szorzás során? Milyen háttérváltozókkal hozható összefüggésbe ez 

stratégia?  

A következő hipotéziseket vizsgáltuk:  

H1a: A Szorzási Stratégiák Teszt megbízhatóan méri az egyes évfolyamokon tanuló diákok 

stratégiahasználatát a fejben végzett szorzási feladatok megoldása során. 

H1b: A Matematika Tudásszintmérő Stratégiák Teszt megbízhatóan méri a diákok matematika 

tudásszintjét.  

H2a: A fejszámolással megoldható szorzási feladatokban 10-18 évesek legalább ötféle 

különböző stratégiát alkalmaznak (vö. Hope & Sherrill, 1987; Heirdsfield, Cooper, Mulligan  

& Irons, 1999). 

H2c: Szignifikáns a különbség a stratégia használat során a különböző iskolák között. 

H2d: Szignifikáns a különbség a stratégia használat során a különböző osztályok között. 

H2e: A vizsgált tanulók körében megfigyelhetők racionális hibák (vö.: Ben-Zeev, 1998). 

H3: Az alábbi háttérváltozókkal hozható összefüggésbe a megoldáskor alkalmazott szorzási 

stratégia és annak adaptivitása (vö. B. Németh, 2002, 2003; Csapó, 2002a, 2002b): 

a) az anya iskolai végzettsége,  

b) a tanuló neme,  

c) a tanuló tanulási eredménye, 

d)  tanulási nehézségek és zavarok. 

H4: A szorzási feladatok megoldása során a tanulók leggyakrabban a következő stratégiákat 

alkalmazzák: számlálás,  tényeken alapuló, helyiértéken alapuló (balról jobbra, illetve jobbról 

balra) és a holisztikus stratégiát alkalmazzák (vö: Hope & Sherrill, 1987). 

H8a: A Matematika Tudásszintmérő Teszten elért teljesítmény közepes korrelációt mutat a 

Szorzási Stratégiák Teszten elért eredménnyel.  

H8b: A Matematika Tudásszintmérő Teszten elért eredmény szerint szignifikáns a különbség  

(vö. Hermann, 2019) 

1) a mérésben részt vevő iskolák, 

2) a mérésben részt vevő osztályok, 
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3) a fiúk és a lányok között. 

H8c: A Matematika Tudásszintmérő Teszten elért teljesítmény közepes korrelációt mutat (vö. 

Hermann, 2019) 

1) a szülők iskolai végzettségével, 

2) az iskolai teljesítménnyel való elégedettséggel, 

3) a gyermek továbbtanulási terveivel, 

4) a gyermek félévi matematika osztályzatával. 

 

4.4.1. Minta  

A vizsgált személyek Budapest két különböző kerületének három iskolájából kerülnek ki.  Az 

utóbbi években végzett Országos Kompetenciamérések eredményei szerint a mintában szereplő 

tanulók két iskolában magasan az országos átlag felett teljesítenek mind matematikából, mind 

szövegértésből, közöttük nincsen szignifikáns különbség, míg a 3. iskola átlagos teljesítményű. 

Az egyik iskola tanulói között ritka (1-2%) a hátrányos helyzetű, tanulászavarral rendelkező 

tanuló, míg a másik két iskolában a tanulók mintegy 10 %-a hátrányos helyzetű és szintén kb. 

10%-uk rendelkezik valamilyen zavarral (pl. diszlexia, diszgráfia, diszkalkulia). 

  

A minta összetételének jellemzése 

A vizsgálatban részt vevő iskolákat személyesen megkerestük, és szívesen részt vettek a 

vizsgálatban. A minta elemszámának választásakor figyelembe vettük, hogy a pedagógiai 

empirikus kutatások esetén a mintanagyságot érdemes legalább 100-200 fő közöttinek 

választani (Csíkos, 2009), mert ez lehetővé teszi a kutatásunkhoz szükséges vizsgálatok és a 

megfelelő általánosítások elvégzését. Így a 154 fős minta ezen kívánalmaknak megfelel. A 

minta iskolánkénti és osztályonkénti összetételét a 7. táblázat mutatja.  

7. táblázat. A negyedik vizsgálatban részt vett tanulók száma, iskolánkénti, osztályonkénti 

összetétele 

Iskola Osztály Létszám Fiú Lány A résztvevők között a lányok aránya (%) 

1. 

 

6.b 29 16 13 44,8 

6.c 32 17 15 46,9 

 

2. 

 

6.a 17 8 9 52,9 

6.b 24 12 12 50,0 

6.c 27 15 12 46,9 

3. 6.b 25 5 20 80,0 

Összesen  154 73 81 52,6 

Az 1. iskolából két osztály (61 fő), a második iskolából három osztály (68 fő), a harmadik 

iskolából egy osztály (25 fő) vett részt a vizsgálatban. 154 fős mintában közel egyforma 

arányban vannak fiúk és lányok. Az 1. iskola b és c osztályában a fiúk vannak többen. Míg a 

második iskolában a nemek aránya még inkább kiegyenlített, a lányok a c osztályban 

kisebbségben vannak. A 3. iskolában az osztály négy ötöd része lány. 
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4.4.2. Mérőeszközök 

 

A vizsgálat során háromféle saját készítésű mérőeszközt használtunk: egy az előző pilotmérés 

során kifejlesztett Szorzási Stratégiák Tesztet, egy Matematika Tudásszintmérő Tesztet és 

Háttérkérdőívet. A kiválasztott mérőeszközrendszer alkalmazásától azt reméljük, hogy hiteles 

képet kaphatunk a tanulók matematika tudásáról, azon belül megismerhetjük a hatodikos 

tanulók szorzási stratégiát, arányossági gondolkodását, és a feladatok megoldása során vétett 

hibák rámutatnak a további fejlesztési lehetőségekre. Azt reméljük, hogy a mérőeszközök által 

kapott adatokból levonható következtetések útmutatásul szolgálhatnak a matematikatanároknak 

abban, hogy a számolási stratégiákat, az arányossági gondolkodást még hatékonyabban 

taníthassák. Úgy gondoltuk, hogy ezek a mérőeszközök alkalmasak lesznek arra, hogy 

segítségükkel a vizsgált kérdésekre választ kapjunk, és hipotéziseinket igazolni tudjuk. Ugyanis 

a Matematika Tudásszintmérő Teszt olyan arányossági feladatokat is tartalmaz, amelyek a 

hatodikos matematika tananyagara épülnek, így a tudásszintmérő segítségével megtudhatjuk, 

mennyire képesek a hatodikos tanulók az ilyen jellegű feladatokat megoldani. A Szorzási 

Stratégiák Teszt tételei fejben végezhető szorzási feladatokat tartalmaznak. A háttérkérdőívek 

a matematikai attitűdre, matematikaórával, matematikatanulással kapcsolatos vélekedésre 

kérdeznek rá, míg a másik Háttérkérdőív segítségével megismerhetünk néhány adatot, amelyek 

összefüggésbe hozhatók a matematika teszten elért eredménnyel.  

A vizsgált személyek három tanítási órán át vettek részt a vizsgálatban. A vizsgálatban részt 

vevő alanyok azt az utasítást kapták, hogy minden kérdőívet, tesztet önállóan oldjanak meg, 

semmilyen segítséget ne kérjenek, ne fogadjanak el senkitől, még a kérdés, feladat esetleges 

értelmezésére sem. A matematika teszt írása alatt tollon, ceruzán kívül egyéb segédeszközt (pl. 

számológépet) nem használhattak. A vizsgálatban részt vevő tanulók nem kaptak jutalmat a 

részvételért, ebből semmilyen előnyük nem származott. Az eredményeket az SPSS 16.0 

program segítségével értékeltük.  

Szorzási Stratégiák Teszt  

 

A tesztfejlesztés során létrehozott képességmérő teszt 40 itemet tartalmaz, mindegyik item nyílt 

végű, teljes, rövid választ igényel. A tesztben találhatók a hasonló kutatásokban (Hope és 

Sherrill, 1987) már használt és saját készítésű szorzások is. A teszt itemei a következőképpen 

csoportosíthatók: egyjegyű szám kétjegyű számmal való szorzása (2 item), egyjegyű szám 

szorzása háromjegyű számmal (3 item), egyjegyű szám szorzása négyjegyű számmal (1 item), 

kétjegyű szám szorzása kétjegyű számmal (28 item), kétjegyű szám szorzása háromjegyű 

számmal (3 item), háromjegyű szám szorzása háromjegyű számmal (1 item).  

A Szorzási Stratégiák Teszt feladatai közül 13 item már szerepelt Hope és Sherrill 

vizsgálataiban (1987), ezeket ismerteti a 8. táblázat. A Szorzási Stratégiák Teszt megoldókulcsa 

a 2.sz. mellékletben található.  
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 8. táblázat. A Szorzási Stratégiák Teszt feladatai a 4. vizsgálat során 

Item Feladat Külföldi vizsgálatok 

1. 25 · 48 Hope, & Sherrill, 1987 

2. 25 · 120 Hope, & Sherrill, 1987 

3. 31 · 32  

4. 8 · 99 Hope, & Sherrill, 1987 

5. 49 · 51 Hope, & Sherrill, 1987 

6. 12 · 250 Hope, & Sherrill, 1987 

7. 8 · 4211 Hope, & Sherrill, 1987 

8. 15 · 48 Hope, & Sherrill, 1987 

9. 12 · 16 Hope, & Sherrill, 1987 

10. 32 · 32 Hope, & Sherrill, 1987 

11. 25 · 25  

12. 17 · 99  

13. 12 · 15  

14. 20 · 30 Hope, & Sherrill, 1987 

15. 8 · 999 Hope, & Sherrill, 1987 

16. 23 · 27  

17. 25 · 32 Hope, & Sherrill, 1987 

18. 25 · 65  

19. 13 · 13  

20. 15 · 15  

21. 16 · 16  

22. 24 · 24 Hope, & Sherrill, 1987 

23. 9 · 742  

24. 15 · 16  

25. 25 · 50  

26. 18 · 16  

27. 25 · 35  

28. 9 · 888  

29. 150 · 6  

30. 50 · 50  

31. 19 · 19  

32. 77 · 8  

33. 9 · 652  

34. 12 · 11  

35. 11 · 11  

36. 19 · 21  

37. 45 · 45  

38. 77 · 99  

39. 10 · 690  

40. 500 · 500  

 

Matematika Tudásszintmérő Teszt  

 

A tesztfejlesztés során létrehozott Matematika Tudásszintmérő Teszt 69 itemet tartalmaz. A 

teszt lefedi a hatodikos tananyagot, különös tekintettel az arány, arányosság témakörére, viszont 
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a legegyszerűbb követelményeket mellőzi. A teszt alkotásakor törekedtünk arra, hogy a 

tesztfeladatok többféle feladattípust tartalmazzanak, és a tantervi követelményeknek 

megfelelően a nyitott végű feladatok aránya magasabb legyen. A teszt főleg alacsonyabb szintű 

alkalmazási feladatokat tartalmaz, mivel a mérni kívánt minta többnyire átlagos képességű 

gyerekekből áll. Két feladat zárt végű a tesztben: ez az első feladatban 5 item, alternatív 

választást igényel (az összes item 5,8 %-a), és a 4. feladat, mely igaz, hamis állításokat tartalmaz 

(ez a feleletválasztásos 4 item az összes item 7,2 %-a). A többi feladat nyíltvégű (az összes item 

87 %-a), három közülük (5. feladat első 4 iteme, 3. feladat 3 iteme és a 12. feladat 3 iteme, 

vagyis az összes item 14,5 %-a) kéri a számítás levezetését is. A teszt illeszkedik a tananyag 

struktúrájához. 

 Az első feladatban (5 item) szögek többszörösének kiszámítását kérjük a tanulóktól, 

kétjegyű számokat kell szorozniuk egy- vagy kétjegyű számokkal, ezek akár fejben is 

elvégezhetők. Majd a kapott nagyságú szögről kell eldönteniük, hogy a felsoroltak közül milyen 

fajta szög. Ez az első feladatban 5 item, illesztést igényel. A második feladat 10 itemes, törtek 

(6 item), illetve arányok (4 item) bővítését kéri kétjegyű számokkal. Azt vizsgáljuk, tudják-e, 

mi a különbség a tört szorzása és bővítése között. Előfordulnak-e a tanulóknál hibás analógiák, 

mint pl. úgy bővít törteket, hogy csak a számlálót szorozza, vagy mind a számlálóhoz, mind a 

nevezőhöz hozzáadja a bővítendő számot. Kialakult-e az arány fogalma, tudja-e, hogy 

ugyanolyan analógia szerint történik az arány bővítése, mint a törteké.  A harmadik feladat (6 

item) a mennyiség törtrészével, az egész rész kiszámításával kapcsolatos. Előfordul-e a tanulók 

gondolkodásában hibás analógia, mint pl. mennyiség tört részét úgy akarja kiszámolni, hogy 

osztja a mennyiséget a törttel. Le tudja-e írni a megfelelő egyenletet, amelynek segítségével ezt 

kiszámolhatná. A negyedik feladat kétjegyű egész számok szorzására vonatkozó igaz, hamis 

állításokat tartalmaz (4 item). Ezzel is mérni tudjuk a számolási képességet, illetve azt is, jól 

tudja-e alkalmazni az előjelszabályokat. Az ötödik feladat egyenes arányosságra vonatkozik, az 

első 4 iteme indoklást is kér. Mértékegységátváltást (1 item) is igényel a feladat. További 8 

iteme kétjegyű szám két- vagy háromjegyű számmal való szorzását kéri, és két iteme pedig 

négy darab legfeljebb négyjegyű szám összeadására vonatkozik. A hatodik feladat 4 itemes, 

fordított arányosság alkalmazását igényli. Azt vizsgáljuk, felismeri-e, milyen arányosságról van 

szó és helyesen alkalmazza-e a szokásos következtetési módszereket. A hetedik feladatban 

egyenes arányosság (1 item), törtrész kiszámítása (2 item), természetes számok kivonása (1 

item) szerepel. Azt is vizsgáljuk, helyesen értelmezi-e a feladat szövegét. A 8. feladat 

összetettebb, egyenes arányosságra (1 item), törtrész kiszámítására vonatkozó (1 item), 

százalékérték számításra vonatkozó (1 item) részei vannak. A 9. feladatban egyenes 

arányosságra vonatkozik 3 item, a százalékláb kiszámítására (A, csoport) illetve a százalékalap 

kiszámítása (B csoport) 1 item. Azt vizsgáljuk, felismeri-e, melyik az ismeretlen adat a három 

közül (százalékalap, százalékláb, százalékérték). A 10. feladat egyenes arányosság 

alkalmazását igényli (4 item), két- és háromjegyű számok szorzását kell végezniük a 

tanulóknak. A 11. feladat egyenes arányosságra vonatkozik, kétjegyű számok szorzását igényli 

(3 item). A 12. feladat kockákból álló test térfogatának kiszámítását kéri. A tanulótól a számítás 

indoklását is várjuk. Azt vizsgáljuk, tud-e mértékegységet váltani (1 item), ismeri a kocka 

térfogatának képletét (1 item), s az jól tudja-e alkalmazni (1 item). 

Háttérkérdőívek 
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A vizsgálatban részt vevő tanulók a tesztek mellett háttérkérdőíveket is kitöltöttek. Az így nyert 

információk segíthetnek abban, hogy összefüggéseket találhassunk a háttértényezők és a 

teszteken elért teljesítmények között. Régóta tudjuk, hogy az iskolai teljesítményre, a tudás 

létrejöttére számos tényező hatással bír, így pl. az iskolához való viszony, a tantárgyak iránti 

attitűd, a szociális körülmények, az anya és az apa iskolai végzettsége (B. Németh, 2002, 2003; 

Csapó, 2002a, 2002b). Kutatásunk egyik célja, hogy összefüggést találjunk a Matematika 

Tudásszintmérő Teszten, Szorzási Stratégiák Teszten elért tanulói eredmények és az egyes 

háttérváltozók között, feltárjuk, mi magyarázhatja az esetleges gyengébb tesztteljesítményt. 

A vizsgálat során felhasználtuk a „Matematikatanulásra vonatkozó meggyőződések” 

(Kelecsényi & Csíkos, 2013) című kérdőívet.  

 A vizsgálathoz egy saját szerkesztésű háttérkérdőívet is felvettünk, ezt tartalmazza az 

3.sz. melléklet. A 95 itemes kérdőív a szülők iskolai végzettségére, a tanuló tantárgyi 

eredményeire, tantárgyakhoz való attitűdjeire, saját teljesítményével való elégedettségre, 

tanulási, azon belül matematika tanulási szokásaira kérdez rá. Ezen kívül tartalmaz még néhány 

kérdést a szabad idő eltöltésére vonatkozóan. Vizsgáljuk, hogyan viszonyulnak a matematika 

egyes ágaihoz, azokat mennyire tartják fontosnak további életükre vonatkozóan. A 

háttérkérdőív a kiegészítendő kérdőívtételek mellett 81 darab ötfokozatú és 6 darab hatfokozatú 

Likert-skálás kérdőívtételt is tartalmaz. A háttérkérdőív matematikatanulásra vonatkozó 

kérdőívtételei három főbb csoportba sorolhatók: Matematika szeretete, tervek (24 item), A 

matematikatanulás fontossága (8 item), Matematika tanulási szokások (15 item). 

 A vizsgálatban a vizsgált tanulók önkéntesen vettek részt. Az adatfelvételre 2016. április 

utolsó hetében került sor mindhárom iskolában. A vizsgálatban felhasznált mérőeszközök 

papír-ceruza alapúak voltak. A háttérkérdőíveket a tanulók osztályfőnöki órán töltötték ki, a 

matematika teszteket pedig matematikaórán, a szakos tanár felügyeletével. Az egyes kérdőívek 

kitöltéséhez szükséges időt mutatja a 9. táblázat.   

9. táblázat. A negyedik vizsgálat során alkalmazott mérőeszközök  

Sorszám A kérdőív neve Készítette Itemszám Kitöltési idő 

1. „Matematikatanulásra vonatkozó 

meggyőződések” 

Kelecsényi és 

Csíkos, 2012 

34 10 perc 

2. Háttérkérdőív  

 

saját fejlesztésű 95 35 perc 

3. Matematika Tudásszintmérő Teszt  saját fejlesztésű 69 45 perc 

4. Szorzási Stratégiák Teszt  

 

saját fejlesztésű 40 20 perc 

 Összesen   105 perc 

 

4.5. Ötödik vizsgálat A szorzási stratégiák vizsgálata és fejlesztése 6. évfolyamos tanulók 

körében 

A kutatás során célunk volt annak vizsgálata, mennyire sikeresek a hatodik osztályos tanulók 

két- és háromjegyű számokkal fejben végzett szorzás során és a szorzással megoldható 

szöveges feladatok megoldásában. A következő kutatási kérdéseinkre kerestük a választ:  

1. Milyen stratégiát használnak a 10-18 éves tanulók az egyes szorzási feladatok megoldásakor 

a fejben számolás során?  
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2. Milyen háttérváltozókkal hozható összefüggésbe a fejben végzett szorzáskor alkalmazott 

stratégia? 

3. Mi jellemzi a Matematika Tudásszintmérő Teszten jobb eredményt elérő gyerekek 

stratégiahasználatát? Adaptív-e a stratégiahasználatuk minden esetben? Hányféle stratégiát 

használnak? 

4. Mi jellemzi a tanulási nehézségekkel küzdő ill. a sajátos nevelési igényű gyerekek 

stratégiahasználatát? Hogyan segíthetnénk rugalmasságuk fejlődését a stratégiahasználat terén? 

Létezik-e az egyes gyermekcsoportok – matematikában tehetséges gyermek, többségi, tanulási 

nehézségekkel küzdő, SNI-s tanulók – számára egységesen jó stratégia?   

5. A gyermekek matematikai tudásszintje mennyire függ össze az adaptív stratégiahasználattal?  

6. Milyen matematikai feladatok segíthetik az adaptív stratégiahasználat fejlesztését?   

Hipotéziseink a következők voltak: 

 

H1a: A Szorzási Stratégiák Teszt megbízhatóan méri az egyes évfolyamokon tanuló diákok 

stratégiahasználatát a fejben végzett szorzási feladatok megoldása során. 

H1b: A Matematika Tudásszintmérő Stratégiák Teszt megbízhatóan méri a diákok matematika 

tudásszintjét.  

H2a: A fejszámolással megoldható szorzási feladatokban 10-18 évesek legalább ötféle 

különböző stratégiát alkalmaznak (vö. Hope & Sherrill, 1987; Heirdsfield, Cooper, Mulligan  

& Irons, 1999). 

H2b: A gyerekek fejlettségi szintje a stratégiahasználat rugalmassága terén eltérő, az egyes 

gyermekek – matematikában tehetséges gyermek, többségi, SNI-s tanulók – stratégiahasználata 

között szignifikáns a különbség. (vö. Hope & Sherrill, 1987; Heirdsfield, Cooper, Mulligan & 

Irons, 1999) 

H2c: Szignifikáns a különbség a stratégia használat során a különböző iskolák között. 

H2d: Szignifikáns a különbség a stratégia használat során a különböző osztályok között. 

H2e: A vizsgált tanulók körében megfigyelhetők racionális hibák (vö. Ben-Zeev, 1998). 

H3: Az alábbi háttérváltozókkal hozható összefüggésbe a megoldáskor alkalmazott szorzási 

stratégia és annak adaptivitása (vö. B. Németh, 2002, 2003; Csapó, 2002a, 2002b): 

H3a) az anya iskolai végzettsége,  

H3b) a tanuló neme,  

H3c) a tanuló tanulási eredménye, 

H3d) tanulási nehézségek és zavarok. 

H4: A szorzási feladatok megoldása során a tanulók leggyakrabban a következő stratégiákat 

alkalmazzák: számlálás,  tényeken alapuló, helyiértéken alapuló (balról jobbra, illetve jobbról 

balra) és a holisztikus stratégiát alkalmazzák (vö. Hope & Sherrill, 1987). 

H8a: A Matematika Tudásszintmérő Teszten elért teljesítmény közepes korrelációt mutat a 

Szorzási Stratégiák Teszten elért eredménnyel.  

H8b: A Matematika Tudásszintmérő Teszten elért eredmény szerint szignifikáns a különbség  

(vö. Hermann, 2019) 
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a) a mérésben részt vevő iskolák, 

b) a mérésben részt vevő osztályok, 

c) a fiúk és a lányok között. 

H8c: A Matematika Tudásszintmérő Teszten elért teljesítmény közepes korrelációt mutat (vö.: 

Hermann, 2019) 

1) a szülők iskolai végzettségével, 

2) az iskolai teljesítménnyel való elégedettséggel, 

3) a gyermek továbbtanulási terveivel, 

4) a gyermek félévi matematika osztályzatával. 

H9a: A szorzási stratégiák explicit tanításában részt vevő tanulók jobb eredményeket érnek el 

a Szorzási Stratégiák utóteszten, mint a fejlesztésben részt nem vett társaik (vö. Mulligan & 

Mitchelmore, 2009). 

H9b: A fejlesztésben részt vett tanulók jobb eredményeket érnek el a Matematika 

Tudásszintmérő utóteszten, mint a fejlesztésben részt nem vett társaik (vö. Csíkos, 2007). 

H9c: A fejlesztés hatása a késleltetett utóteszt során is kimutatható (vö. Csíkos, 2007). 

 

4.5.1. Minta 

 

A 2016 tavaszán végzett, egy hónapig tartó fejlesztő kísérletbe budapesti hatodikos tanulók (N 

= 270) közül két osztályt vontunk be. A mintát 5 budapesti iskola 10 osztálya alkotta. A 

fejlesztésben egy osztály vett részt, egy nyolcévfolyamos gimnáziumban, a kontrollcsoportot 

egy másik nyolcévfolyamos gimnázium hatodik évfolyamos osztálya képezte. Matematikából 

a heti óraszám 4 (legfeljebb 5) óra volt. A tartalomba ágyazott fejlesztés egy 32 fős osztályban 

történt, 20 alkalommal, a matematikaóra második felében (Vígh-Kiss, 2016a). A kísérlet 

szempontjából „ideális mintanagyságként 50-100 közötti létszámot jelöl meg a statisztikai 

szempontú megközelítés” (Csíkos, 2007, 136.), több szorzási stratégia fejlesztő kísérlet is 

hasonló mintanagyságról számolt be. A metakogníció, a hangosan gondolkodtatás 

vizsgálatunkban fontos szerepet töltött be az egyes szorzási stratégiák előnyeinek, hátrányainak 

megbeszélésekor. 

 

4.5.2. Kísérleti elrendezés és mérőeszközök 

A vizsgálat során Csíkos 2004 tavaszán (Csíkos, 2007) folytatott kísérletének tapasztalatait 

szem előtt tartva igyekeztünk a vizsgálatot lefolytatni. Fejlesztő kísérletünk céljául a 6. 

évfolyamos tanulók matematika területén használható metakognitív stratégiáinak tanítását, 

fejlesztését tűztük ki magunk elé. A nemzetközi szakirodalomban leírt fejlesztő kísérletek több 

évfolyamon zajlanak. Az ott leírtak alapján felttelezhető, hogy egy hatodikos már képes 

szavakba önteni a saját gondolkodásáról kialakított véleményét, könnyebben megérti az egyes 

stratégiák alkalmazhatóságának előnyeit, hátrányait, és tudatosan alkalmazza majd a kísérlet 

során a tanulási stratégiákat. Csíkos (2007) szerint felső tagozatos tanulók és idősebbek számára 

is érdemes, lehetséges fejlesztő tréningek szervezése. 
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Csíkos (2007) kísérletéhez hasonló elvek alapján dizájn kísérleti elrendezést 

alkalmaztunk, kvázikísérletet végeztünk. A tartalomba ágyazott, osztálytermi kísérlet a 

kvantitatív elemzés szempontjából egytényezős kísérlet volt. Független változóként szerepelt a 

szorzási stratégiák tanítása, metakognícióra alapozott fejlesztés. Függő változók voltak: a 

szorzás utóteszten megoldott feladatok száma, a számítások helyességének, pontosságának 

jóslása. Tanítási módszerünknek a hangosan gondolkodtatást választottuk, beszélgettünk a 

tanulókkal a különféle szorzási stratégiák előnyeiről és hátrányairól.  

A feladatok ütemezését tartalmazza a 10. táblázat. 

 

10. táblázat. A feladatok ütemezése az ötödik vizsgálatban 

Feladat Időpont 

Fejlesztő kísérlethez előteszt felvétele 2015. március 

A kísérletben részt vevő tanárok felkészítése 2015. március 

Fejlesztő kísérlet végzése 2015. április-május 

Utóteszt felvétele 2015. június 

Késleltetett utóteszt felvétele 2015. szeptember 

Az adatok feldolgozása 2015. május- szeptember 

 

A kísérleti program megkezdése előtt a tanulók ugyanazon a héten írták meg az előteszteket. A 

tanárok visszajelzései alapján apróbb módosítások történtek a felvett utótesztben. A tesztek 

kidolgozásakor az érvényben levő Nemzeti alaptanterv (NAT, 2012) útmutatásaiból indultunk 

ki. Az adatfelvételi objektivitást a csupán egyes számadatokban eltérő A és B tesztvariánsokkal 

biztosítottuk. Az utótesztben nem szerepeltek olyan feladatok, amelyeket a fejlesztés során 

használtunk. 

Az előmérés során 2016 tavaszán a következő mérőeszközöket alkalmaztuk:  

1. Szorzási stratégiák előteszt  

2 feladat: egyjegyű számok szorzása 

3 feladat egyjegyű szám szorzása kétjegyű számmal 

15 feladat kétjegyű szám szorzása kétjegyű számmal 

2. Matematikatanulásra vonatkozó tanulói nézetek kérdőív (Kelecsényi és Csíkos, 2013), 

Likert skálás 

3. Tudásszintmérő (lefedő diagnosztikus teszt, A és B változat, 40 itemes feladatsor) 

4. Háttérkérdőív (családi háttér, tantárgyi jegyek, tantárgyak iránti attitűd, tervek, szabad 

idő, tanulási idő, olvasás) 

Az utómérés során pedig Matematikai Tudásszintmérő Tesztet (70 item), és Szorzási Stratégiák 

Tesztet vettünk fel (40 item). Az utómérésre 2016 május-júniusban került sor.  

A késleltetett utóteszt (retention test) során használt mérőeszközök: 

5. Szorzási stratégiák utóteszt (Choice-no-choice módszer), kérdőív és interjú (hangosan 

gondolkodtatás-think aloud) 
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6. Tanulási szokások kérdőív (B. Németh, Csíkos, Habók és Korom, 2005, idézi B. 

Németh és Habók, 2006, 49 item, Likert-skálás) 

 

4.5.3. A fejlesztő program szerkezete 

 

A program indítása előtt összegyűjtöttük a fejlesztendő metakognitív stratégiákat. Ebben 

útmutatásul szolgált Csíkos (2007) monográfiája és az ott leírt flamand fejlesztő kísérlet. A 

matematikában szétválasztható a procedurális és a deklaratív metatudás fejlesztése (Csíkos, 

2007). A tervezés, nyomon követés, ellenőrzés metakognitív fázis, valamint a szorzási 

stratégiák fejlesztését tűztük ki célként. 

A fejlesztő program szerkezetére vonatkozó részleteket tartalmaz a 11. táblázat. 

 

11. táblázat. A fejlesztő program szerkezete 

Óra Metakognitív stratégia A fejlesztés rövid tartalmi leírása 

1-5. A megoldás megtervezése Szorzási és osztásai stratégiák tanítása,  

óránként egy-egy stratégia előnyeinek, hátrányainak 

megbeszélése 

6-11. A megoldás menetének 

nyomon követése 

Szorzási és osztási stratégiák alkalmazása a különféle, a 

gyakorlati életből vett szöveges feladatokban (vásárlás, 

bankolás), realisztikus szöveges feladatokban 

12-15. Ellenőrzés Hibakeresés 

Az újraszámolás szükségességének megítélése 

A becslés szerepe 

Realisztikus feladatok megoldása 

16-20. Integrálás A különböző szorzási és osztási stratégiák használhatósága az 

egyes számítások során, rendszerezés 

Fontosnak tartottuk, hogy a tanulókat megismertessük a következő metakognitív stratégiákkal: 

A megoldás megtervezése, a megoldás menetének nyomon követése, ellenőrzés, integrálás. A 

fejlesztés során többféle szorzási és osztási stratégiát mutattunk be a tanulóknak, megbeszéltük 

az egyes stratégiák előnyeit, hátrányait. 

Az integrálás során összefoglalást adtunk a tanulóknak a tanult szorzási stratégiákról: 

1. MINTA: Helyiérték szerint jobbról balra haladva  

7 · 19 kiszámítása 7 · 9 = 63 = 60 + 3, 7 · 10 = 70, 60 + 70 = 130, 130 + 3 = 133 

2. MINTA: Helyiérték szerint balról jobbra haladva 

7 · 19 kiszámítása 7 · 10 = 70, 7 · 9 = 63, 70 + 63 = 133 

3. MINTA: holisztikus stratégia, a számot kiegészítjük olyan egészekre, amellyel 

könnyebb számolni, majd korrigálunk 

7 · 19 kiszámítása 7 · 20 – 7 = 140 – 7 = 133  



75 
 

25 · 17 kiszámítása 4 · 25 = 100, 100 · 17 = 1700, így (1700 : 2) : 2 = 425 

4. MINTA: számolási trükk: 5-re végződő számok négyzetre emelése 

3,5 · 3,5 kiszámítása  

  A 3 < 3,5 < 4  

                 3·4    5·5 

3,5 · 3,5 = 12,25  

5. MINTA: (x + y) · (x - y) =  x · x – y · y 

21 · 19 kiszámítása: mindkét szám a 20-hoz van közel, egyik eggyel nagyobb, a másik eggyel 

kisebb, így (20 + 1) · (20 - 1) = 20 · 20 - 1 · 1 =  400 – 1 = 399 

32·28 kiszámítása (30 + 2) · (30 - 2) = 30 · 30 – 2 · 2 = 900 – 4 = 896 

Az adatok elemzése SPSS 17 program segítségével történt. A kísérlet része volt a 2016 

szeptemberében végzendő késleltetett utómérés, melynek során interjú módszerrel vizsgáltuk a 

legjobb teljesítményt nyújtó 10 és a leggyengébben teljesítő 10 gyerek stratégiahasználatát 

fejben végzett szorzás igényló feladatok megoldása során. 

  

 

4.6. Központi vizsgálat A szorzási stratégiák vizsgálata 4., 5. és 6. évfolyamos tanulók 

körében 

A kutatás során célunk volt, hogy képet kapjunk arról, milyen szorzási stratégiát használnak a 

10-12 éves tanulók a fejben végzett számolás során. A központi vizsgálat során az elméleti 

részben már leírt hipotéziseket tettük. A vizsgálat során három, saját fejlesztésű papír-ceruza 

alapú mérőeszközt alkalmaztunk. 

4.6.1. Minta 

A központi vizsgálatban való részvételre 20 iskolát kértünk fel, a mérésben való részvételt végül 

11 iskola vállalta el. A részt vevő iskolák Magyarország öt megyéje iskolái közül kerülnek ki: 

Bács-Kiskun, Borsod-Abaúj- Zemplén, Hajdú-Bihar, Veszprém, Pest megye (ld. 6. ábra). A 

település típusa szerint a mintában szerepel község, kisváros, város, megyei jogú város és 

főváros. A vizsgálatban részt vevő iskolák Kecskemét, Mezőcsát, Tiszakeszi, Felsőzsolca, 

Tiszacsege, Monostorapáti, Tapolca és Budapest településeken találhatók. Mintánkban Közép-

Dunántúlt két iskola, Észak-Magyarországot négy iskola, Észak-Alföldet és Dél-Alföldet egy-

egy iskola, a fővárost három iskola reprezentálja. Az iskolák a fenntartók szerint 

csoportosításban: hat állami és öt egyházi fenntartású (ebből egy katolikus és négy református) 

iskola. Az iskolák típusuk szerint egy budapesti nyolcévfolyamos gimnázium kivételével 

általános iskolák. A Szorzási Stratégiák Tesztet Magyarország nyolc vidéki és három budapesti 

iskola 46 osztályában vettük fel. Az empirikus kutatások során célszerű legalább 100-200 főt 

bevonni a vizsgálatba (Csíkos, 2009). 
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6.. ábra A központi vizsgálatban részt vevő települések Magyarország térképén 

(forrás: https://www.groomania.nl/magyarorszag-terkep-megyek-megyeszekhelyek.html 

ábrája alapján) 

A vizsgálatban részt vevő iskolák tanulóinak száma a 4. évfolyamon 331 fő, az 5. évfolyamon 

393 fő és 6. évfolyamon 423 fő, a kutatásban való részvételre felkért iskolákban a vizsgált 

három évfolyamon tanulók száma összesen 1147 fő. A mérésben való részvétel önkéntes volt. 

A mérési eredmények közül azon tanulók adatait, akik legalább az egyik matematikai tesztet 

kitöltötték, egy SPSS adatbázisba vittük fel. Az így kapott 850 fős minta lehetővé teszi, hogy a 

kutatásunkhoz szükséges vizsgálatokat elvégezzük, és abból megfelelő általánosításokat 

vonhassunk le.  

 

A központi vizsgálat mintaösszetételének jellemzése 

A vizsgálatban részt vevő iskolákat személyesen, illetve e-mailben kerestük meg, önként 

vállalták a részvételt. A vizsgált tanulók 32,2%-a a 4. évfolyamba, 31,1 %-a az 5. évfolyamba, 

36,7%-a a 6. évfolyamba jár, így évfolyamonként közel azonos arányban szerepelnek tanulók 

a mintában. A 850 fős mintában 415 fő lány, ami 48,8%-ot tesz ki, tehát a vizsgált mintában 

majdnem egyforma arányban szerepelnek tanulók mindkét nemből. 

 A vizsgálatban részt vevő iskolák tanulóinak létszámadatait tartalmazza a 12. táblázat.  

 

 

 

 

 

https://www.groomania.nl/magyarorszag-terkep-megyek-megyeszekhelyek.html
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12. táblázat. A központi vizsgálatban részt vevő iskolák tanulóinak létszámadatai 

évfolyamonként  

Iskola Évfolyam Összesen 

 4. 5. 6.  

1.  79 82 99 260 

2. 32 23 20   75 

3. 25 42 38 105 

4. 34 19 16   69 

5. 9 12 14   35 

6. 43 56 48 147 

7. 18 18 26   62 

8. 44 45 43 132 

9. 0 32 32   64 

10. 23 16 31   70 

11. 24 48 56 128 

Összesen 331 393 423 1147 

 

A minta nemek szerinti megoszlását mutatja évfolyamonkénti bontásban a 13. táblázat. 

13. táblázat. A központi vizsgálat mintája nemek szerinti megoszlása évfolyamonként 

Nem Évfolyam Összesen 

 4 5 6  

Fiú 147 136 152 435 

Lány 127 128 160 415 

Összesen 274 264 312 850 

 

A 850 fős mintában 274 negyedik évfolyamos, 264 ötödik évfolyamos és 312 hatodik 

évfolyamos tanuló szerepel. Összesen 435 fiú vett részt a vizsgálatban, a fiúk a negyedik és 

ötödik évfolyamon nagyobb arányban képviseltetik magukat, míg a hatodik évfolyamos tanulók 

között a lányok vannak többen.  

Mintánkat 11 iskola tanulói alkotják. 601 tanuló vidéki, 249 tanuló budapesti iskolába 

jár (a tanulók 70,6%-a, illetve 29,3%-a). Egyházi iskolába jár 513 fő, a tanulók 60,4%-a (ebből 

65 fő katolikus, 448 fő református iskolába), állami fenntartású iskolába jár 337 tanuló (a 

tanulók 39,6%-a).  

A minta nemek szerinti összetételét iskolánként a 14. táblázat mutatja. 

A fiúk 72,6%-a vidéki (316 fő), 27,4%-a budapesti (119 fő), a lányok 68,7%-a vidéki (285 fő), 

31,3%-a budapesti iskolás (130 fő). A minta legtöbb iskolájában a fiúk és a lányok aránya 

kiegyenlített. Az 5., 6., 7., 8. és a 9. iskolában a tanulók kevesebb, mint a fele lány, a 6. iskolában 

a tanulók alig több, mint negyede.  
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14. táblázat. A központi vizsgálatban a minta nemek szerinti összetétele iskolánként  

Iskola Létszám  Fiú Lány A részvevők között a lányok aránya (%) 

1. 218  109 109 50,0 

2. 65  30 35 53,8 

3. 98  49 49 50,0 

4. 66  32 34 51,5 

5. 29  16 13 44,8 

6. 43  32 11 26,6 

7. 57  33 24 42,1 

8. 25  15 10 40,0 

9. 63  35 28 44,4 

10. 66  32 34 51,5 

11. 120  52 68 56,7 

Összesen 850  435 415 48,8 

 

A minta nemek szerinti összetételét iskolánként és évfolyamonként a 15. táblázat mutatja. 

15. táblázat. A minta nemek szerinti összetétele iskolánként és évfolyamonként  

Iskola Évfolyam Létszám Fiú Lány A részvevők között a 

lányok aránya (%) 

 

1. 

4. 76 36 40 52,6 

5. 59 32 27 45,8 

6. 83 41 42 50,6 

 

2. 

4. 29 15 14 48,3 

5. 18 8 10 55,6 

6. 18 7 11 61,1 

 

3. 

4. 25 16 9 36,0 

5. 38 17 21 55,3 

6. 35 16 19 54,3 

 

4. 

4. 34 14 20 58,8 

5. 16 10 6 37,5 

 6. 16 8 8 50,0 

 

5. 

4. 7 4 3 42,9 

5. 10 3 7 70,0 

6. 12 9 3 25,0 

6. 4. 43 32 11 26,6 

 

7. 

4. 16 10 6 37,5 

5. 16 9 7 43,8 

6. 25 14 11 44,0 

8. 
5. 15 10 5 33,3 

6. 10 5 5 50,0 

9. 

5. 31 18 13 41,9 

6. 32 17 15 46,9 

10. 

4. 20 7 13 65,0 

5. 17 9 8 47,0 

6. 29 16 13 44,8 
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15. táblázat. A minta nemek szerinti összetétele iskolánként és évfolyamonként  

(folytatás) 

 

11. 

4. 24 13 11 45,8 

5. 44 20 24 54,5 

6. 52 19 33 63,5 

Összesen  850 435 415 48,8 

A 6. iskolából a 4. évfolyamon tanuló diákok töltötték ki legalább az egyik matematika tesztet. 

A 8. és a 9. iskolából 5. és 6. évfolyamos tanulók szerepelnek a mintában. A 2. iskola 5. és 6. 

évfolyamán a lányok vannak többen, a 3. iskola 4. évfolyamán a tanulók kb. harmada lány. A 

4. iskola 4. évfolyamán a lányok, 5. évfolyamán a fiúk vannak többen. Az 5. iskola 5. 

évfolyamán a tanulók 70 %-a lány. A 8. iskola 5. évfolyamán a lányok a tanulók harmadát 

teszik ki. 

A minta nemek szerinti összetételét iskolánként és osztályonként az 5. sz mellékletben 

található táblázat mutatja. Látható, hogy a mintát 11 iskola 46 osztálya képezi, 15 negyedik, 14 

ötödik, 16 hatodik osztály. Mivel az 1. iskolában a négy hatodikos osztály tanulói 5 különböző 

csoportban tanulják a matematikát, így őket külön osztályként szerepeltetjük. Az egyes 

osztályokban a fiúk és a lányok aránya ritkán egyezik meg, kiugrónak tekinthető a 27.-es és 

45.-ös osztály, ahol az osztály 70 %-a illetve 81,5%-a lány, illetve a 12. és a 28. osztály, ahol 

éppen fordított a helyzet, ott a lányok aránya jóval kisebb az osztályban, minden negyedik vagy 

ötödik gyermek lány. 

 A vizsgálatban részt vevő iskolákat felkértük, hogy adjanak meg néhány információt a 

tanulói összetételre vonatkozóan. A 6. sz. mellékletben található táblázatból kiolvashatjuk, 

hogy az egyes osztályokba, évfolyamokra hány hátrányos helyzetű (HH-s) tanuló jár. A 

megkérdezett 850 tanuló közül 40 fő hátrányos helyzetű, 79   fő halmozottan hátrányos 

helyzetű, 36 fő sajátos nevelési igényű tanuló és 71 fő beilleszkedési, tanulás és magatartási 

zavarokkal rendelkezik.  

Az 1. iskola tanulói között hét fő sajátos nevelési igényű, nyolc BTMS-s tanuló. A 2. 

iskola negyedikes tanulóinak 82,8%-a halmozottan hátrányos helyzetű a szülők alacsony 

iskolai végzettsége, munkanélkülisége és a lakáskörülmények miatt. Az ötödik évfolyamra 17, 

a hatodik évfolyamra 19 halmozottan hátrányos helyzetű gyermek jár. A 3. iskola 4. és 5. 

évfolyamán tanul egy-egy tanulási nehézséggel küzdő tanuló. Az 5. iskola tanulói között 19 fő 

hátrányos helyzetű a szülők alacsony iskolai végzettsége miatt. Itt általában egy-egy sajátos 

nevelési igényű tanuló akad évfolyamonként. A 6. iskolában 17 hátrányos helyzetű, 14 

gyermek halmozottan hátrányos helyzetű. A 7. iskolában évfolyamonkét egy-két gyermek 

rendelkezik tanulási zavarral.  A 8. iskolában  hátrányos helyzetű fiú, és SNI tanuló is akad. A 

9. iskola mindkét évfolyamán találunk egy-egy BTM tanulót. A 10. iskolában SNI vagy 

BTM-es tanuló évfolyamonként 3-9 fő. A 11. iskola vizsgált tanulói között tíz BTM tanuló.   

Az iskolák kompetenciaméréseken elért eredményei matematikából és szövegértésből a 6. 

évfolyamon 

Az egyes iskolák kompetenciaeredményeinek vizsgálata hasznos információkkal szolgálhat az 

iskolák tanulói összetételéről, az intézmények tanulóinak teljesítményéről, akkor is, ha a 
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legújabb kompetenciamérések adatai még az előző évfolyam diákjaira vonatkoznak, ezt 

figyelhetjük meg a 16. táblázatban.  

 

16. táblázat. Az egyes iskolákra vonatkozó létszámadatok az országos kompetenciaméréseken 

matematikából 2014 és 2018 között 

(forrás: Országos kompetenciamérés 2018, FIT-jelentés. Intézményi jelentés 6. évfolyam 

alapján) 

Iskola Tanulók 

száma a 

hatodik 

évfolyamon 

SNI 

tanuló 

Mentesült 

tanuló 

BTM 

tanuló 

HHH 

tanulók 

A jelentésben szereplő 

tanulók hatodikos tanulók 

száma 

1. 95 1 0 5 0 90 

2. 59 1 4 3 34 50 

3. 34 0 0 3 1 34 

4. 22 1 0 1 1 21 

5. 11 2 2 2 1 9 

6. 42 4 1 0 18 37 

7. 14 3 1 1 0 10 

8. 43 7 1 2 1 35 

9. 64 0 0 0 1 64 

10. 29 3 1 3 3 26 

11. 75 2 0 6 2 70 

 

Érdemes megnézni az egyes iskolák eredményességét az Oktatási Hivatal által szervezett 

országos kompetenciaméréseken matematikából 6. évfolyamon, ezt láthatjuk 2014 és 2018 

között a 21. táblázatban. Az országos tendenciákhoz hasonlóan a vizsgált iskolák esetében is az 

elmúlt öt évben a vizsgált iskolák eredményeinek kismértékű ingadozását követhetjük nyomon. 

Az adatok alapján egyik iskola esetében sem tapasztalhatunk számottevő változást a kiindulási 

2014-es évben elért eredményekhez képest. A 2018-as felmérésben a mintában szereplő 11 

iskola közül három iskola eredménye szignifikánsan magasabb, három iskola eredménye 

szignifikánsan alacsonyabb, mint az országos átlag, öt iskola eredménye nem különbözik 

szignifikánsan az országos átlagtól. Hasonló adatokat figyelhetünk meg a 6. évfolyamos 

tanulók szövegértési eredményeire vonatkozóan. 

 

Területi különbségek  

 

Az iskolák átlageredményit a telephelyük földrajzi elhelyezkedése alapján is csoportosíthatjuk 

(Lak, Szepesi, Takácsné Kárász, Vadász, 2019). Jelentős területi egyenlőtlenségek figyelhetők 

meg a vizsgált megyék eredményeit tekintve. Szemmel láthatóan a Közép-Dunántúlt képviselő 

7. és 8. iskola teljesítménye a 6. évfolyamos matematika kompetenciamérésben legalább olyan 

jó vagy jobb, mint az észak-magyarországi 2., 3., 4., 5. iskolák és az észak-alföldi 6. iskola 

teljesítménye. Két Borsod-Abaúj-Zemplén megyei és a Hajdú-Bihar megyei iskola eredménye 

szignifikánsan alacsonyabb, mint az országos átlag. Az országos átlagnál szignifikánsan 

magasabb teljesítményt a Dél-Alföldön található kecskeméti, valamint két közép-
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magyarországi (budapesti) iskolában láthatunk. A legjobban teljesítő budapesti iskola és a 

leggyengébb eredményű borsodi iskola matematika felmérésben elért átlagpontszáma között 

563 pont eltérés van, az egyes megyék iskolái közötti eltérések is 136 és 248 pont között 

váltakoznak.  

 

A településtípus, képzési forma és nemek szerinti különbségek  

 

Mivel a 6. évfolyamos tanulók nagy része még a lakóhelyén tanul, célszerű az eredmények 

összevetése településtípusok szerint is (Országos jelentés, 2019). Mintánkban a községeket a 

4., 5. és 7. iskola képviseli, a 2. és a 3. iskola kisvárosban található, városi iskola a 6. és a 8. 

Megyei jogú városban található az 1. iskola, míg a 9., 10., és 11. iskola fővárosi.  Az egyes 

településtípusok közti különbség matematikából 17,5 és 245,6 pont közötti, míg szövegértésből 

43,5 és 315 pont között van. Az országosan megfigyelhető jelenség a minta kis száma miatt 

nem követhető le egy az egyben, mert nem községi iskolákhoz köthetők a leggyengébb 

eredmények, de a megyei jogú város és a főváros előnye vitathatatlan mindkét mérési területen.  

A tanulók átlageredményei közötti különbségek az iskolatípus szerinti 

összehasonlításban is megfigyelhetők: a legjobb eredményt elérő nyolcévfolyamos 9. iskolával 

szemben az általános iskolák hátránya szemmel látható, ennek oka a 4. évfolyamban történő 

erős szelekció lehet, ahogy a kompetenciamérésről készült országos jelentésben is láthattuk.  

Az országos kompetenciamérés a nemek szerinti különbségeket is vizsgálja, azonban az 

iskolák erre vonatkozó összesített adatot saját tanulóikra nem kapnak. Így ebből a szempontból 

az országos trendet írhatjuk le. A PISA és a TIMSS nemzetközi mérésekhez hasonlóan 

megfigyelhetünk teljesítménybeli különbségeket a hatodikos fiúk és a lányok között. A lányok 

jobb szövegértési képességgel rendelkeznek, míg matematikából a fiúk vannak előnyben (Lak, 

Szepesi, Takácsné Kárász & Vadász, 2019).  

 

Az alapszint és a minimumszint alatti tanulók aránya 

 

A kompetenciamérésen elért eredmények értelmezéséhez kidolgozott tartalmi keretben 

(Balázsi, Balkányi, Ostorics, Palincsár, Rábainé Szabó, Szepesi, Szipőcsné Krolopp és Vadász, 

2014) a szerzők részletesen leírják mind a hét képességszinthez tartozó elvárásokat, 

jellemzőket. Az országos kompetenciamérések során az alapszint a 3. képességszintet jelenti. 

Matematikából „A tanulók meg tudnak oldani ismerős kontextusban megjelenő egy-két lépéses 

problémákat. Végre tudnak hajtani egyértelműen leírt matematikai eljárásokat, amelyek 

szekvenciális döntési pontokat is magukba foglalhatnak. Képesek egyszerű problémamegoldási 

stratégiák kiválasztására és alkalmazására. Értelmezni és alkalmazni tudnak különböző 

információforrásokon alapuló adatmegjelenítéseket, majd ezek alapján érveket tudnak 

megfogalmazni.” (Balázsi, Balkányi, Ostorics, Palincsár, Rábainé Szabó, Szepesi, Szipőcsné 

Krolopp & Vadász, 2014, 44. old.)   

A minimumszintet a 2. képességszint jelenti, az itt található tanulókra jellemző: „ismerik 

a legalapvetőbb, közismert matematikai fogalmakat és eljárásokat. Értelmezni tudnak a 

kontextus alapján közvetlenül megérthető problémaszituációkat. Képesek egyetlen 

információforrásból megszerezni a szükséges információkat. Meg tudnak oldani egyszerű vagy 

szimplán matematikai kontextusban megjelenő, jól körülírt, egylépéses problémákat. 
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Alkalmazni tudnak egyszerű, jól begyakorolt algoritmusokat, képleteket, eljárásokat és 

megoldási technikákat. Tudnak egyszerűen érvelni és értelmezni az eredményeket.” (Balázsi, 

Balkányi, Ostorics, Palincsár, Rábainé Szabó, Szepesi, Szipőcsné Krolopp & Vadász, 2014, 44. 

old.)   

Az 1. szinten „a tanulók képesek arra, hogy ismerős, főként matematikai szituációkban, 

gyakran, kontextus nélküli helyzetben feltett matematikai kérdésekre válaszoljanak. Meg 

tudnak oldani egyértelmű, jól körülírt és minden szükséges információt tartalmazó feladatokat. 

Képesek közvetlen utasításokat közvetve rutinszerű eljárásokat végrehajtani. El tudják végezni 

a feladat kontextusából nyilvánvalóan következő lépéseket.” (Balázsi, Balkányi, Ostorics, 

Palincsár, Rábainé Szabó, Szepesi, Szipőcsné Krolopp & Vadász, 2014, 45. old.)   

A 17. táblázat a mérésben részt vett iskolák az alapszint, illetve minimumszint alatt teljesítő 

tanulóinak arányát mutatja a matematika kompetenciamérés eredményei alapján.  

 

17. táblázat. Az alapszint és a minimumszint alatt teljesítők aránya az egyes iskolákban az 

országos kompetenciaméréseken matematikából 2018-ban. (forrás: Országos 

kompetenciamérés 2018, FIT-jelentés. Intézményi összefoglaló jelentések 6. évfolyam 

alapján, https://www.kir.hu/okmfit/kereso.aspx?t=i) 

Iskola Alapszint alatt teljesítők 

aránya a telephelyen 

Minimumszint alatt teljesítők 

aránya a telephelyen 

1. 17,7 3,3 

2. 100,0 96,0 

3. 26,4  2,9 

4. 42,8 23,8 

5. 88,9 33,3 

6. 91,8 51,0 

7. 50,0 0,0 

8. 42,8 11,1 

9.  0,0 0,0 

10. 50,0 7,7 

11. 14,3 4,3 

Országosan 37,6 13,2 

 

A táblázat alapján látható, hogy a képességeloszlást illetően jelentős különbségek vannak a 

mintában. Míg a 9. iskolában sem a minimumszint, sem az alapszint alatt nincsenek tanulók, 

addig a többi iskolában vannak, minden hetedik tanuló az alapszint alatt teljesített a mérésben 

a 11. iskolában. Hét iskolában több, mint a tanulók 40%-a az alapszint alatt található. Különösen 

magas ez az arány a 2., 5., 6. iskolában, ahol az arány rendre 100%, 88% és 91 %. A 

minimumszint alatt teljesítők aránya is ez utóbbi három iskolában magas, a 2. iskolában a 

tanulók 96 %-a. Az iskolákra vonatkozó 2018-as és a korábbi kompetenciamérések, 2012-ig 

visszamenőleg, intézményi összefoglaló jelentései is (https://www.kir.hu/okmfit/kereso.aspx?t=i)  

azt mutatják, hogy az 1. és a 4. iskolában a tanulók általában az 1.-től a 7. szintig szóródnak, a 

3. és a 11. iskolában az 1. és a 6. szint között, a 7. iskola tanuló a 2-5. szint között, a 8. iskola 

diákjai az 1-5. szint között, a 10. iskola tanulói az 1-4. szint között. A leggyengébb eredményt 

elérő tanulók: 5. iskola 1-3. szint, 6. iskola 0-4. szint, a legrosszabb a helyzet a 2. iskolában, itt 

https://www.kir.hu/okmfit/kereso.aspx?t=i
https://www.kir.hu/okmfit/kereso.aspx?t=i
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a tanulók a 0-2. szinten találhatók. A legjobb eredményt mutató 9. iskolában a leggyengébb 

eredmény a 3. szintet jelenti, a legjobb pedig a 7. szintet. (Intézményi összefoglalók, 2018) 

Hasonló következtetések vonhatók le a tanulók szövegértési képességének 

képességszintek szerinti besorolása alapján. Szövegértésben a 3. képességszinten teljesítő 

tanulók többek között képesek explicit módon megfogalmazott, több feltételnek megfelelő 

információk visszakeresésére, egyszerű következtetések levonására (Balázsi, Balkányi, 

Ostorics, Palincsár, Rábainé Szabó, Szepesi, Szipőcsné Krolopp & Vadász, 2014). A 2. 

képességszinten levő tanulók képesek felismerni a szöveg elemei közötti különbséget, a szöveg 

és a mindennapi élet közötti kapcsolatot, illetve egy szövegrész témáját. Az 1. képességszinten 

levő diákok képesek a szövegben kiemelten vagy többször előforduló információk 

megtalálására, mikor, hol kérdésre választ adni a szöveg alapján, egyszerű kapcsolatok, 

szókapcsolatok felismerésére. 

A táblázat alapján megfigyelhető, hogy képességeloszlást illetően jelentős különbségek vannak 

a tanulók között a szövegértésben. Három iskola kivételével mindegyikben találunk a 

szövegértésben minimumszint alatt teljesítő hatodikos gyermeket. A 9. iskolában sem a 

minimumszint, sem az alapszint alatt nincsenek tanulók. A budapesti iskolák szövegértésben 

elért teljesítménye jobb, mint a többi iskoláé. Ezen kívül még 10 % vagy az alatt van az alapszint 

alatt teljesítők aránya a vizsgált Bács-Kiskun megyei iskolában, az egyik Borsod-Abaúj-

Zemplén megyei és az egyik Veszprém megyei iskolában. A 8. iskolában a tanulók mintegy 

ötöde, a 3. iskolában a tanulók közel 30%-a az alapszint alatt teljesít. Az 5. és 6. iskolában a 

tanulók több, mint fele található az alapszint alatt. Három iskolában a tanulók kb. tizede a 

minimumszint alatt teljesít. A legrosszabb a helyzet a 2. iskolában, ahol minden tanuló az 

alapszint alatt teljesített, és a tanulók több, mint három negyede a minimumszintet sem érte el. 

A két utóbbi táblázat adatai is alátámasztják, hogy a tanulók szövegértési teljesítménye 

országosan és iskolánként is, általában jobb, mint a matematika felmérésben elért eredménye. 

Kivétel ez alól a 3. iskola, ahol a tanulók nagyobb arányban találhatók szövegértésből az 

alapszint vagy a minimumszint alatt, mint matematikából. 

 

4.6.2. Mérőeszközök 

A felmérésben a vizsgált személyek önkéntesen vettek részt. Az adatfelvételre 2019. áprilisa-

júniusa között került sor mindegyik iskolában. A vizsgálatban felhasznált mérőeszközök papír-

ceruza alapúak voltak. A háttérkérdőíveket a tanulók osztályfőnöki órán töltötték ki, a 

matematika teszteket pedig matematikaórán, a szakos tanár felügyeletével. Az egyes kérdőívek 

kitöltéséhez szükséges időt mutatja a 18. táblázat.  A vizsgálatban mindhárom évfolyam tanulói 

számára ugyanazokat az itemeket tartalmazó szorzási stratégiákat mérő tesztfeladatsort adtuk.   

 

18. táblázat. A központi vizsgálatban alkalmazott mérőeszközök 

Sorszám A kérdőív neve Készítette Itemszám Kitöltési idő 

1. Szorzási Stratégiák Teszt saját fejlesztésű 40 45 perc 

2. Matematika Tudásszintmérő Teszt  saját fejlesztésű 38/ 57/ 71 45 perc 

3. Háttérkérdőív  saját fejlesztésű 95 45 perc 

 Összesen   135 perc 
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A Matematika Tudásszintmérő Tesztek feladatat itemjei között több horgonyitem is található, 

a 4. évfolyamosok minden feladata szerepel a magasabb évfolyamok feladatai között, 

hasonlóképpen az ötödikesek minden feladatát tartalmazzák a 6. évfolyamosok által oldott 

tesztek. A 4. évfolyamosok Matematika Tudásszintmérő Tesztje 38 itemet, az 5. évfolyamosoké 

57 itemet, a 6. évfolyamosoké pedig 71 itemet tartalmazott. Mivel az előző vizsgálatok során 

azt láttuk, hogy a lassabban olvasó tanulók számára túl sok időt igényel kétféle háttérkérdőív 

kitöltése, ezért a központi vizsgálatban saját fejlesztésű háttérkérdőívet vettük fel a tanulókkal. 

Az általunk alkalmazott mérőeszközrendszertől azt várjuk, hogy segít feltérképezni a  

4-6. évfolyamos tanulók matematika tudását, és a tesztfeladatok megoldásakor elkövetett hibák 

a gyakorlati tanítás során is alkalmazható hasznos következtetéseket eredményeznek. 

Reméljük, hogy ezek a mérőeszközök segítenek megválaszolni kutatási kérdéseinket, 

segítségükkel igazolhatjuk feltevéseinket.  

A tanulóktól a tesztek kitöltése három tanítási órát igényelt. A vizsgálatban részt vevő 

szakos tanárok véleményére is alapozva a gyengébb képességű tanulók miatt célszerűnek 

tartottuk a Szorzási Stratégiák Teszt kitöltési idejét 45 percre emelni, így várhatóan alkalmas 

lesz a különböző képességű gyerekek tudásszintjének mérésére. Ugyanakkor a többletidő 

használására jogosult SNI, BTM tanulóknak lehetőséget adtunk, hogy azt kihasználják. A 

vizsgálatban részt vevő gyermekektől az kértük, hogy minden kérdőív, teszt kitöltése során 

önállóan dolgozzanak. A matematika teszt írása alatt tollon, ceruzán kívül egyéb segédeszközt 

(pl. számológépet) nem használhattak. A vizsgálatban részt vevő tanulók nem kaptak jutalmat 

a részvételért, ebből semmilyen előnyük nem származott. Az eredményeket, összefüggéseket 

az SPSS 16.0 program segítségével értékeltük.  

 

Szorzási Stratégiák Teszt 

 

A központi vizsgálatban már az 5. vizsgálatban használt tesztet alkalmaztuk mindhárom 

évfolyamon. A teszt a már ismertetett 40 itemet tartalmazza. A tesztváltozatok a feladatok 

sorrendjében különböznek.  

 

Matematika Tudásszintmérő Teszt 

 

Az 5. vizsgálatban használt tudásszintmérő tesztet továbbfejlesztettük. Egyes feladatait a mérés 

előkészítésében részt vevő szakos kollégákkal egyeztetve kissé átfogalmaztuk, hogy a gyerekek 

számára kevesebb szokatlan szó szerepeljen benne. A mérési és értékelési útmutatót 

korrigáltuk, így a 6. évfolyamosok tesztjén az elérhető maximális pontszám 71-re nőtt. A 6. 

évfolyamosok esetén a teszt A és B változata között a fő különbség, hogy a B változatban 

megadtuk a d) itemben szereplő Süsü dédszüleinek számát (8). A 12 feladatból álló teszt A és 

B változatát a 7. és 8. melléklet tartalmazza. 

 Az 5. évfolyam mindkét tesztváltozata 57 itemes, 11 feladatot találunk benne. A 6. 

évfolyam feladatai közül kihagytuk a Törtek feladat aránybővítésre vonatkozó 4 itemét, a 

Tömeg és a Nyaralás című feladatokat. A teszt feladatait a 9. és 10. mellékletben találjuk. 

 A 4. évfolyamos tanulók mérésére egy szintén A és B változatot tartalmazó, 8 feladatból 

álló, 38 itemes tesztet alkalmaztunk. Az 5. évfolyamos teszthez képest ez a teszt nem 

tartalmazza a Sport című feladat c) itemét. A kockás feladat d) itemét is kihagytuk, illetve a 
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feladat itt 12 kockából álló építmény magasságának kiszámítására vonatkozik. Az Állítások 

feladatban természetes számok szerepelnek, negatív számok nem. Továbbá a negyedikesek 

feladatai között nem szerepel a Szögek és a Törtek feladat.  

 A 4. évfolyamon alkalmazott kétféle tesztváltozat főként a Locsolkodás feladat 

szövegezésében tér el. A B tesztváltozatban hiányos szöveges feladat szerepel: a feladat 

szövege nem tartalmazza, hogy egy zacskóban hány darab csokitojás található. Az a tanuló, aki 

ezt a hiányt észreveszi és jelzi, maximális pontszámot kap a feladatra. Aki az a) itemre 7-tel 

osztható számmal válaszol, az kap érte pontot, ha pedig a továbbiakban ezzel a számmal jól 

dolgozik tovább, megkapja a további itemekért járó pontot. Mivel a tanulóktól ezen az 

évfolyamon még nem várható el, hogy tizedes törtekkel számoljanak, az országos központi 

matematika felvételi vizsga javítási útmutatásaihoz hasonlóan elfogadjuk az értelemszerűen 

kerekített természetes számokat is. A teszt feladatait a 11. és 12. mellékletben láthatjuk. 

 

Háttérkérdőív 

 

A központi vizsgálatban az 5. mérésben használt kérdőívet alkalmaztuk az 5-6. évfolyamon. A 

4. évfolyamosok számára a kérdőív egyes tételeit átalakítottuk aszerint, milyen tantárgyakat 

tanulnak. A 4. évfolyamosok mérésekor alkalmazott kérdőívet a 13. mellékletben, az 5-6. 

évfolyamosok számára készítettet a 14. sz. mellékletben találjuk. 
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5. EREDMÉNYEK  
 

Ebben a fejezetben az egyes vizsgálatok során kapott eredményekről számolunk be.  

5.1. Az első vizsgálat eredményei 

 

Az első vizsgálat mintáját alkotó 13 negyedik osztályos tanuló a legjobb tanulmányi eredményt 

testnevelésből érte el (4,77), matematikából pedig a leggyengébb tanulmányi átlagot (4,00). A 

többi tantárgyból tanulmányi eredményük a következő volt: olvasás 4,46, nyelvtan 4,15, 

környezetismeret 4,62, idegen nyelv 4,54, ének-zene 4,54, rajz 4,62.  A vizsgált tanulók közül 

öt közepes, három jó és öt jeles eredményt ért el matematikából az előző félévben.  

 A Szöveges feladatok mérőeszköz reliabilitása elfogadható volt (Cronbach-α = 0,68). A 

tanulók által sikeresen megoldott feladatok átlagpontszáma 3,46 (szórás 1,76), átlagos 

teljesítményük 43,25%pont (szórás 22%pont). 

A tanulók által alkalmazott stratégiák gyakoriságát mutatja a 19. táblázat.  

 

19. táblázat. A szemmozgás-követéses vizsgálatban a tanulók által alkalmazott stratégiák 

gyakorisága 

Stratégia Alkalmazott stratégiák Helyes stratégiák 

 száma relatív 

gyakorisága 

(%) 

száma relatív 

gyakorisága 

(%) 

Számlálás 7   6,73 3   6,67 

Tények 29 27,88 25 55,56 

Helyiérték szerint jobbról 

balra 

7 6,73 3 6,67 

Helyiérték szerint balról 

jobbra 

25 24,04 11 24,44 

Holisztikus 5   4,81 3 6,67 

Elképzelem fejben leírva 2   1,92   

Racionális hiba 24 23,08   

Félreérti a feladatot 2  1,92   

Nem emlékszik 2  1,92   

Nem oldja meg 2  1,92   

Összesen 104  45  

 

Megfigyelhetjük, hogy a 104 számítás során a negyedikes tanulók az esetek 27,9 %-ában a 

tényeken alapuló stratégiát, mintegy 24%-ában a helyiérték szerinti balról jobbra stratégiát 

alkalmazták a fejben végzett szorzások során (pl. 6 · 19 = 6 · 10 + 6 · 9), a helyiérték szerinti 

jobbról balra stratégia alkalmazása ritkábban volt megfigyelhető (Vígh-Kiss, Csíkos és 

Steklács, 2013). A gyengébb matematika osztályzatú tanulók alkalmazták a számlálás, illetve 

az elképzelem fejben leírva stratégiát. A matematikában jobb teljesítményt elérő tanulók között 

megfigyelhettük a holisztikus stratégia alkalmazását is. Ugyanakkor elmondhatjuk, hogy az 

alkalmazott stratégiák eredményessége a következőképpen alakult: számlálás 42,9%, tények 
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86,2%, helyiérték szerint jobbról balra stratégia 42,9 %, helyiérték szerint jobbról balra stratégia 

44%, holisztikus stratégia 60%. A tanulók magas arányban (23%) ejtettek valamilyen racionális 

hibát. Erre tipikus példa a 12 · 19 kiszámításakor, hogy először a tízeseket összeszorozták a 

tízesekkel, majd az egyeseket az egyesekkel, végül a két részletszorzatot összeadták, mintha 

összeadást végeztek volna. Ez azt mutatja, hogy sem az összeadás, sem a kétjegyű számok 

szorzásának tulajdonságaival nem voltak teljesen tisztában.  

Előfordult a feladatok félreértelmezése is, pl. az első és a második feladat során azt, 

hogy „A megöntözésért minden lány családja hét-hét festett tojást adott a fiúnak” úgy 

értelmezték, hogy mindegyik fiúk kétszer hét tojást kapott, így 7 · 8 kiszámítását így oldották 

meg: (7 + 7) · 8. Illetve annak ellenére, hogy az interjú rögtön a feladat megoldását követően 

zajlott, két esetben nem emlékeztek, hogyan oldották meg a feladatot. Az egyjegyű számok 

szorzására vonatkozó feladatokat a jól oldotta meg a tanulók 69%-a, illetve 76,9 %-a, nagyrészt 

a tényeken alapuló stratégiát alkalmazva, vagyis a szorzótáblát elég magabiztosan tudták. 

Emellett még az a feladat ment jól, amelyben az egyik szorzótényező a 10 volt. A 5∙15 

kiszámítása kevesebb, mint a tanulók felének (46,1%-ának) sikerült. A többi feladat már 

nehézséget okozott a tanulók számára. Az utolsó három feladatot már csupán egy-egy tanuló 

tudta helyesen kiszámolni. Ennél a három feladatnál volt leginkább megfigyelhető 8 tanuló (a 

minta 61,5 %-a) esetében a már említett racionális hiba elkövetése. A 20. táblázat a vizsgálat 

során megfigyelt stratégiákat mutatja. 

20. táblázat. A Szemmozgás-követéses vizsgálat során megfigyelt stratégiák.  

 Alkalmazott stratégia  

Fela-dat Szám-

lálás 

Té-

nyek 

Jobb-

ról 

Bal-

ról 

Holisz-

tikus 

Elkép-

zelem 

TT + 

EE 

Hibás 

értel-

mezés 

Nem 

tudom 

Nem 

ad 

vá-

laszt 

Ösz-

sze-

sen 

7∙8 

jól  

2 

1 

10 

8 

     1    

9 fő 

5∙7 

jól  

1 

1 

11 

9 

     1    

10 

6∙19 

jól  

  2 

1 

7 

4 

3 

3 

 1     

8 

5∙15 

jól 

3 

1 

 2 

1 

8 

4 

       

6 

10∙49 

jól 

 1 8 

8 

1 

1 

1 

1 

 1     

10 

12∙19 

jól 

  1 1 

1 

1  7  1 2  

1 

11∙13 

jól 

   5 

1 

 1 7  1   

1 

12∙11 

jól 

  1 3 

1 

 1 8     

1 

Össze-sen  

Ebből jól 

7 

 

3 

29 

 

25 

7 

 

3 

25 

 

11 

5 

 

3 

2 

 

24 2 2 2 45 

 

A szöveges feladat modalitása is szerepet játszott a megoldás sikerességében. Ha a számot 

számnévvel (betűkkel leírva) látták, akkor átlagosan 1,3 feladatot, szórás: 1,76 (16,25%pont, 
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szórás 22%pont) oldottak meg jól a vizsgált negyedikes tanulók. Arab számokkal írva pedig 

átlagosan 2,15 feladatot oldottak meg, szórás: 1,76 (26,89%pont, szórás 22%pont).  

Kimutatható összefüggés, közepesen magas korreláció van a feladat modalitása és a 

megoldottsága között (r = 0,67, t = -3,81, p < 0,05). Ezt más kutatók is kimutatták már szöveges 

feladatok vizsgálata során. 

Az összes vizsgált tanuló szemmozgási adatait összegző ún. hőtérképek a feladat 

megoldása közben mért fixációk idejét ábrázolja, ahogy a 7. ábrán láthatjuk. Amint láthatjuk, a 

tanulók a legtovább a fontos adatokra fixáltak, a feladat szövegében szereplő számokat 

figyelték leginkább. Minden feladat megoldása során a feladatban szereplő adatokat figyelték 

a legtovább a tanulók, ide esett a legtöbb fixáció, a feladat modalitását függetlenül. 

 

7. ábra A 2. feladat megoldása során mért fixációs idő alapján készült hőtérkép 

A szöveges feladatok olvasása, értelmezése során megfigyelhető volt a nemek közötti eltérés. 

Erre tipikus példa a második feladat, mely a locsolkodásra vonatkozik. 2. feladat szövege így 

hangzott: „Péter húsvétkor öt lány osztálytársához kopogott be. A megöntözésért minden lány 

családja hét-hét festett tojást adott a fiúnak. Összesen hány hímes tojást vihetett haza Péter?”  

A feladat szövegét olvasva a fiúk főleg csak a fontos információkra, a számokra figyeltek, 

figyelhetjük meg a 10. ábrán. Ezzel szemben a lányok tüzetesen átolvasták a feladat szövegét.  

A fiúk és a lányok fixációját hasonlítja össze ugyanezen a feladaton a 8. ábra.  
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8. ábra A fiúk és a lányok fixációjának összehasonlítása a 2. feladat szövege esetén 

Ennek éppen fordítottja volt érvényes a sportversennyel kapcsolatos 4. feladatra, itt a fiúk 

fixáltak tovább, mint a lányok. Összességében úgy láttuk, hogy a 3-as, 4-es matematika 

osztályzattal rendelkező tanulók hőtérképe színesebb volt, míg az 5-ös osztályzatúak 

hőtérképén kevesebb fixáció látható.  

A 8. feladat megoldásáról készült animált videó pillanatfelvételei segítségével két tanuló 

szemmozgását követhetjük nyomon a 12., a 13., és a 14. ábrákon. Mindkét tanuló közepes 

osztályzatot kapott félévkor matematikából és jó osztályzatot olvasásból. A lila színnel jelölt 

gyermek lány, az olvasás szeretetére 5-öst jelölt be a kérdőíven, a kék színnel jelölt fiú pedig 

4-est. A lány tervei között egyetem szerepel a továbbtanulásban, a fiút ez még egyáltalán nem 

foglalkoztatja, az iskolába járás szeretetében is különbözőek, a lány szeret iskolába járni (5), a 

fiú nem (1).  

Látható, hogy a gyorsabban olvasó gyermek gyakran feleannyi ideig fixál egy-egy 

szóra, köztük a lényeges információt hordozó, betűvel kiírt számnévre is. A gyorsabban olvasó 

tanuló először azt is megnézi, milyen kérdésre kell majd válaszolnia, ezt látjuk a 9. ábrán. A 

gyorsabban olvasó tanulót lila, a lassabban olvasót pedig kék színnel jelöltük.  
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9. ábra A 8. feladat megoldása, egy fiú és egy lány szemmozgásának összehasonlítása 

A gyorsabban olvasó gyermek szemmozgását mutató lila és a lassabban olvasó gyermek 

szemmozgását jelentő kék vonalak mutatják, hogy a vizsgált tanulók vissza-visszaugranak egy-

egy szóra olvasás közben, ezt mutatja a 10. ábra.  

 

10. ábra A fixációs idők a 8. feladat megoldása közben 

A tanulók olvasási folyamatának tipikus esetét láthatjuk a videófelvételeket végignézve. 

Megfigyelhetjük, hogy a lila színnel jelölt tanuló először végigolvassa a szöveget, de olvasás 

közben rövidebb és hosszabb időre visszaugrik a már elolvasott szövegre, ún. regressziós 

szakkádokat alkalmazva. A hány és a tizenkét, valamint a tizenegy-tizenegy szavakra ismételten 

visszatér. A tanuló rövidebb szakkádokat alkalmaz, mintha nehéz szöveget olvasna, 

ugyanakkor a gyakoribb és hosszabb a fixációk alapján feltételezhetjük, hogy az átlagosnál 
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lassabban olvas (az olvasás osztályzata alapján ez valószínűleg igaz is). Hasonló megállapítás 

igaz a kék színnel jelölt gyermek olvasására.  

A gyorsabban olvasó gyermek 20 másodperc alatt elolvasta a 8. feladat szövegét, majd 

újra kezdte, a feladat elejére mutató lila vonalak jelzik ezt. A lassabban olvasó tanulónak 35 

másodpercébe telt a szöveg elolvasása, ő ugyanis az első két sor után újra kezdte olvasni a 

feladat szövegét. Ez a gyermek még kevésbé gyakorlott olvasó, a hangos olvasás jellemzőivel 

olvas, mintha magában szótagolná, vagy hangoztatná az olvasottakat a mélyebb megértés 

érdekében. A feladat szövegének második olvasásakor ez a hangoshoz hasonlatos olvasási mód 

eltűnik, helyét gyorsabb szemmozgások veszik át. A tanuló végig pásztázza a feladat szövegét, 

többször visszatérve a kulcsszavakra.  

A kék színnel jelölt tanuló tovább keresi a szövegben az első olvasás során hiányzó, fontos 

információkat. Többször elkezdi újraolvasni a szöveget, majd végül többször hosszasan fixál 

a számnevekre. Mindkét tanuló esetén tapasztalhatjuk azt a jelenséget, amit felnőttek 

vizsgálatakor. A megoldás megadása előtti pillanatokban megfigyelt, az átlagoshoz képest jóval 

hosszabb fixáció Steklács (2014) szerint arra utal, hogy ekkor a gondolkodási folyamat mellett 

nem folyik információfelvétel. Ez az óriásfixáció mindkét tanulónál már azt jelzi, hogy a 

gondolkodási folyamatokban az információfelvétel lezárult, helyét átvette az 

információfeldolgozás.  

50 másodperc eltelte után a gyorsabb tanuló megoldotta a feladatot, és a lap alján látható 

lila vonal mutatja, hogy már kinézett a szövegből, ezt figyelhetjük meg a 11. ábrán. A lassabban 

olvasónak a feladat megoldása 1 perc 38 másodpercébe került.  

 

 

11. ábra A gyorsabb olvasó befejezte a feladat megoldását 

A feladatok szövegére hosszabban fixáltak a tanulók, ha az kétjegyű számot tartalmazott. Az 

egyjegyű és kétjegyű számokat tartalmazó feladatokra vonatkozó statisztikát tartalmaz a 21. 

táblázat. Megfigyelhetjük, hogy a kétjegyű számokat tartalmazó feladatok esetén a fixációs idő 
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átlagosan négyszer-hatszor nagyobb, mint egyjegyű számok esetén. A fixációk száma átlagosan 

négyszer több kétjegyű számokat tartalmazó feladatok esetén, a szakkádok száma pedig 

háromszorosa.  

 

21. táblázat. Az átlagos fixációs idő, fixációszám, a szakkádok átlagos száma 

Statisztika Feladatra 

összesen 

Egyjegyű számot 

tartalmazó 

Kétjegyű számot 

tartalmazó 

Fixációs  

idő  

Átlag 313,99 63,63 250,36 

Szórás 132,99 20,02 119,00 

Minimum 135,15 52,50 98,43 

Maximum 587,24 105,56 481,68 

Fixációk száma  

Átlag 650,46 130,54 519,92 

Szórás 201,13 20,86 195,26 

Minimum 434 100 318 

Maximum 968 164 916 

Szakkádok száma  

Átlag   21,38 5,54 15,85 

Szórás     7,72 2,26 6,43 

Minimum   15 3 9 

Maximum   41 10 31 

 

Nagyon érdekes eredményeket kapunk, ha a különböző modalitású feladatok esetén a fixációs 

időket hasonlítjuk össze, ezt mutatja a 22. táblázat.  

 

22. táblázat. A fixációs idők összehasonlítása 

Statisztika   Modalitás Részminták 

  Matematika osztályzat   Olvasás 

  3-as vagy 4-es 5-ös Fiúk Lányok 4-es 5-ös 

Átlag  Arab  

számmal 

40,68 44,09 37,15 49,74 41,89 42,1 

Betűvel 59,50 77 53,75 86,2 59,57 74 

Maximum  Arab  

számmal 

 

99,17 

 

81,26 

 

99,17 

 

81,26 

 

99,17 

 

81,26 

Betűvel 77 129 77 129 77 129 

Minimum  Arab  

számmal 

 

18,72 

 

13,06 

 

13,06 

 

22 

 

18,72 

 

13,06 

Betűvel 44 45 45 44 44 45 

Összes  Arab  

számmal 

 

325,43 

 

220,44 

 

297,16 

 

248,7 

 

293,26 

 

252,61 

Betűvel 476 385 430 431 417 444 

Szórás Arab  

számmal 

 

26,58 

 

33,97 

 

28,64 

 

29,02 

 

28,47 

 

30,77 

Betűvel 13,49 39,87 10,51 33,77 14,57 36,41 

A feladat szövegében arab számmal írt szám mind a matematikából és olvasásból gyengébb és 

a jobb osztályzatú diákoknak is egyaránt könnyebbséget jelentett, a fiúk és lányok esetében is 

ezt tapasztalhattuk. A betűvel való leírás gyakran másfélszerannyi fixációs időt jelentett. Ha a 

szám arab számmal volt írva, akkor a matematikából, illetve olvasásból 5-ös osztályzattal 

rendelkező tanulók átlagosan kevesebb ideig fixáltak a számokra, mint gyengébb osztályzattal 
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bíró társaik. Megfigyelhettük azt is, hogy ez esetben a lányok kevesebb ideig fixáltak egy-egy 

számra, mint a fiúk. Ugyanakkor, ha betűvel volt írva a szám, akkor az a matematikából és 

olvasásból 5-ös osztályzatúaknak, továbbá a lányok számára jelentett nagyobb kihívást, 

eredményezett hosszabb fixációs időt. A fixációs idők összehasonlítását tartalmazza a 27. 

táblázat. A fixációk időkkel kapcsolatosan megfigyelhető volt az, is, hogy az 5-ös matematika 

és olvasás osztályzattal bíró tanulók, illetve a lányok esetén a fixációs idejére vonatkozóan a 

szórás nagyobb volt mind az arab számmal írt számok, mind a betűvel írt számok esetén (Vígh 

-Kiss, Csíkos és Steklács, 2019). 

Vizsgálatunk során számos szignifikáns korrelációt találtunk a háttérkérdőívvel 

kapcsolatosan. Amit kiemelnénk, a félévi matematika osztályzat és a 4. feladat megoldása 0,70 

(p < 0,01), illetve az 5. feladat megoldása szorosabb kapcsolatot mutattak 0,62 (p < 0,05).  

 

Összefoglalás 

A H1a hipotézisünk igazolódott. Az alkalmazott mérőeszköz reliabilitása megfelelő volt.  

Az alkalmazott stratégiák számára vonatkozó H2a hipotézis igazolódott, a negyedik 

osztályosok legalább ötféle stratégiát alkalmaztak a fejben végzett szorzások során. A 

számlálás, a tények, a jobbról balra és a balról jobbra, valamint a holisztikus stratégia mellett 

megfigyelhető volt az elképzelem fejben leírva stratégia alkalmazása.  

Az alkalmazott stratégiákra vonatkozó H4 hipotézisünk igazolódott. Az egyjegyű számok 

szorzására vonatkozó feladatokat a negyedikes tanulók emlékezeti előhívás segítségével oldják 

meg (ld. Lemaire, & Siegler, 1995), a szorzótáblából ismert tényként elevenítik fel; ugyanakkor 

a számlálás stratégiát is alkalmazták a gyengébb matematika osztályzattal bíró tanulók. A 3-8. 

feladat megoldása során a helyiérték szerinti balról jobbra stratégia használata volt a 

leggyakoribb. Emellett különbségeket tapasztaltunk a matematikában tehetséges és többségi 

gyerekek stratégiahasználatában (ld. Thomas, 2002). A kétjegyű számok szorzásakor általában 

a helyiérték szerinti balról jobbra, ritkábban a jobbról balra stratégiát alkalmazták a negyedikes 

tanulók, míg a matematikában tehetséges gyerekek (a felnőttekhez hasonlóan) a holisztikus 

stratégiát. A gyengébb tanulók alkalmazták az elképzelem fejben leírva stratégiát (ld. Csíkos, 

2013). Ugyanakkor az alkalmazott stratégiák sikeressége csak a tények stratégia esetében érte 

el a 80 %-ot, a holisztikus stratégia esetén 60% volt, de a többi stratégia kevesebb, mint az 

esetek felében volt sikeres (Vígh-Kiss, Csíkos & Steklács, 2019).  

H2e hipotézisünk igazolódott. Megfigyelhető volt néhány hibás stratégia alkalmazása 

(v.ö.: De Smedt, Torbeyns, Stassens, Ghesquiére, & Verschaffel, 2010 definíciója). „A 

gyermekek által alkalmazott stratégiák sok esetben nem tudatosak, többször is tapasztaltuk a 

felmérések közben, hogy a tanulók beszámoltak olyan stratégiákról, amelyeket nem 

alkalmaztak, és ennek ellentétjét is láttuk: alkalmaztak bizonyos adaptív stratégiákat, de nem 

voltak tudatában ennek” (Steklács, 2014). A tanítás sikeressége érdekében érdemes lenne 

jobban megismerni ezeket a gondolkodási struktúrákat, ezzel együtt fejleszteni a gyermekek 

metakognitív tudását is (Csíkos 2007).  

A 

Az oktatási rendszer hatékonyságát növelheti, ha információkat szerzünk a tanulók 

gondolkodási, tanulási, olvasási, információfeldolgozási, feladatmegoldási stratégiáiról. A 

szemkamerás vizsgálatok segíthetik a tanulók stratégiahasználatának megismerését. A kutatási 
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eljárás kvalitatív és kvantitatív vizsgálatok foglal magában, így segítségével könnyebben 

diagnosztizálhatók az adott számolási képességek közötti különbségek.  

Ez a kutatás hasznos és érdekes eredményeket hozott, mivel hazánkban szorzási 

stratégiák használatára vonatkozó szemmozgás követésen alapuló kutatások még nem folytak. 

A vizsgálat tapasztalatait az eDia feladatbankba írt matematikafeladatok írása során, és a 

későbbi vizsgálatok előkészítésekor a mérőeszközök kialakítása során is figyelembe vettük. A 

jövőre nézve kutatási feladatként fogalmaztuk meg további keresztmetszeti és longitudinális 

vizsgálatok végzését, mérőeszközök kidolgozását, majd fejlesztő kísérlet végzését.  

 

5.2. A második vizsgálat eredményei  

 

 A szorzási stratégiák vizsgálata 14-18 éves tanulók körében 

Keresztmetszeti vizsgálat során 23 nyolcadikos és 97 szakközépiskolás szorzási stratégiáit 

vizsgáltuk. A mintában szereplő diákokra vonatkozó statisztikai adatokat a 23. táblázat 

tartalmazza. 

23. táblázat. A második vizsgálat mintájára vonatkozó statisztika 

Évfo-

lyam 

Átlag-

életkor 

 

Össze-

sen 

Fiú 

 

Lány 

 

Évfolyam-

ismétlő 

Matematika 

Átlag Felmen-

tett 

Tárgyis-

métlő 

 (év) (fő) (fő) (fő) (fő) (fő) (fő) (fő) 

8. 14,26 23 9 14 0 4,61 0 0 

9. 14,50 45 8 37 13 2,24 3 8 

10. 17,04 27 12 15 10 2,61 4 3 

12. 18,21 25 15 10 5 3,45 4 0 

Összesen 16,00 120 44 76 18 3,23 11 11 

Szorzástesztet kitöltő diákok (N = 120) átlagéletkora 16 év volt.  A vizsgált tanulók 36,70%-a 

fiú volt. A középiskolás diákok 18,56%-a évfolyamismétlő volt, matematikából felmentett 

11,30%-uk, illetve 11,30%-uk felmentett matematikából, ők mindannyian a 9-10. évfolyamra 

jártak. 

A Szorzási Stratégiák Teszt reliabilitása a teljes mintán megfelelő volt (Cronbach-α = 0,877). 

A teszt megoldottságára vonatkozó adatokat a 24. táblázatban találjuk. 

24. táblázat. A Szorzási Stratégiák Teszt megoldottsága a második vizsgálat során 

Évfolyam Összesen 

(%pont) 

A osztály 

(%pont) 

B osztály 

(%pont) 

C osztály 

(%pont) 

8. 93,00 92,00 95,00  

9. 66,30 89,40 52,90 55,00 

10. 75,40 66,30 84,50  

12. 85,80  93,60 78,00 

Átlag 80,10    

A 120 fős mintán a teszten az évfolyamok által elért átlagteljesítmény 80,1%pont volt, 

összességében 55%pont és 95%pont között mozgott. A legjobb teljesítményt a 8. évfolyamos 

tanulók, illetve az egyik végzős osztály hozta, míg a 9. évfolyamon két osztály tanulói alig több, 

mint 50%pontot értek el a tesztben, ez a matematika osztályzatukkal függ össze. 
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A 12. ábra a 14-18 évesek által elért eredményeket mutatja fejben szorzás során. Mind a 10 

feladatot 42 fő oldotta meg jól, a fiúk 48,9%-a (20 fő), a lányok 28,94%-a (22 fő). 

 

12. ábra A 14-18 évesek eredménye fejben szorzás során 

Az itemek átlagpontszámát, szórását és egyéb statisztikai mutatóit foglalja össze a 25. táblázat. 

25. táblázat. A második vizsgálatban elért eredmény itemenként 

 Item Átlag Szórás Cron- 

bach-alfa 

Fiúk 

helyesen 

(%) 

Lányok 

helyesen 

(%) 

Szórás 

Szign. 

Megoldottság  

szign. 

5 ∙ 8 0,97      0,18 0,88 97,80 96,00 n.s. n.s. 

6 ∙ 9 0,89 0,31 0,89 84,40 92,00 p < 0 ,02 n.s. 

8 ∙ 10 0,97 0,18 0,88 97,80 96,00 n.s. n.s. 

11∙ 12 0,71 0,46 0,86 75,60 68,00 n.s. n.s. 

13 ∙ 11 0,71 0,46 0,86 80,00 65,30 p < 0,001 n.s. 

15 ∙ 12 0,71 0,46 0,85 77,80 66,70 n.s. n.s. 

25 ∙ 17 0,61 0,49 0,86 73,30 53,30 p < 0,001 p < 0 ,05 

40 ∙ 13 0,70 0,46 0,85 71,10 69,30 n.s. n.s. 

8 ∙ 29 0,60 0,49 0,86 73,30 52,00 p < 0,001 p < 0,03 

6 ∙ 19 0,63      0,48 0,86 71,10 58,70 p = 0,005 n.s. 

Fiúk  8,02 2,72 0,88 
    

Lányok 7,17 2,91 0,88 
    

Összesen 7,49 2,86 0,88 48,90 26,70 n.s. n.s. 

A tanulók átlagosan 7,49 feladatot oldottak meg a tízből. A 45 fő fiú átlagosan 8,02 feladatot, 

a 75 fő lány átlagosan 7,17 feladat. Az első három itemet a jobb matematika eredményt elérő 

tanulók a tények, illetve a holisztikus stratégia segítségével, a számolásban gyenge tanulók a 
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számlálás, a többségi tanulók pedig a tények stratégia segítségével oldották meg. A többi 

itemnél a jobb képességű tanulók a helyiérték szerinti, illetve a holisztikus stratégiákat 

alkalmazták. A többségi tanulók a helyiérték szerinti stratégiákat, a számolásban gyenge 

tanulók között pedig inkább a helyiérték szerinti balról jobbra és az elképzelem fejben leírva 

stratégiák használata volt gyakoribb. 

A tanulóknak tíz szorzást kellett elvégezniük fejben. Eredményeink szerint több helyes 

és hibás stratégia is megfigyelhető volt a gyereknél (Vígh-Kiss, 2014e). Néhány példát mutat a 

tanulók által használt stratégiákra a 26. táblázat.   

26. táblázat. A fejben szorzás során alkalmazott stratégiák, második vizsgálat 

Feladat Helyes eredményre vezető 

stratégiák 

Hibás eredményre vezető  

stratégiák 

5 ∙ 8 Tények, 10 ∙ 5 – 5 – 5, 10 ∙ 8 : 2, 

Számlálás 

 

6 ∙ 9 Tények, 10 ∙ 6 – 6, 10 ∙ 9 : 2 + 9 
 

8 ∙ 10 Tények, 5 ∙ 10 + 3 ∙ 10 
 

11 ∙ 12 12 ∙ 10 + 12 ∙ 1, 10 ∙ 12 + 12, 

11 ∙ 10 + 11 ∙ 2, 12 ∙ 12 - 12, 

11 ∙ 2 + 11 ∙ 10 

Számlálás, Fejben elképzelem 

leírva 

TT + EE = 10 ∙ 10 + 1 ∙ 2, 11 ∙ 10 + 1 ∙ 

12, 

11 ∙10 ∙ 2 

10 ∙ 10 + 2 ∙ 10 

13 ∙ 11 13 ∙ 10 + 13 ∙ 1 

10 ∙ 13 + 13, 12 ∙ 11 + 11, 

13 ∙ 1+13 ∙10, Számlálás, 

Fejben elképzelem leírva 

TT + EE, 13 ∙ 10 +1 ∙ 11, 13 ∙ 10 + 10 ∙ 

10, 

10 ∙ 10 ∙ 3 

15 ∙ 12 15 ∙ 10 + 15 ∙ 2, 10 ∙ 12 : 2 ∙ 3, 

15 ∙ 2 + 15 ∙10, 10 ∙ 12 ∙ 1,5, 

Számlálás, Fejben elképzelem 

leírva  

TT + EE, 15 ∙ 10 + 1 ∙ 12, 15 ∙ 10 ∙ 12, 

10 ∙ 10 ∙ 2 ∙ 5 

25 ∙ 17 25 ∙ 10 + 25 ∙ 7, 

10 ∙ 25 + 5 ∙ 25 +2 ∙ 25 

10 ∙ 17 + 10 ∙ 17 + 5 ∙ 17 

25 ∙ 10 + 25 ∙ 4 + 25 ∙ 3 

100 ∙ 17 : 4 + 100 : 4 ∙ 7 

25 ∙ 20 – 3 ∙ 25 

10 ∙ 17 : 2 ∙ 5 

25 ∙ 10 + 20 ∙ 7 + 5 ∙ 7 

25 ∙ 7 + 25 ∙ 10 

Számlálás, Fejben elképzelem 

leírva 

 

10 ∙ 25 + 10 ∙ 17 

10 ∙ 17 ∙ 2 ∙ 5, 

20 ∙ 10 ∙ 35, 

25 ∙ 10 ∙ 5 ∙ 2, 

25 ∙ 10 ∙ 7 
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26. táblázat. A fejben szorzás során alkalmazott stratégiák, második vizsgálat (folytatás) 

Feladat Helyes eredményre vezető 

stratégiák 

Hibás eredményre vezető stratégiák 

40 ∙ 13 40 ∙ 10 + 40 ∙ 3, 10 ∙ 40 + 3 ∙ 40 

(4 ∙ 10 + 4 ∙ 13) ∙ 10 

13 ∙ 10 ∙2 ∙ 2, 10 ∙ 13 ∙ 4, 

10 ∙ 4 ∙ 13 

10 ∙ 13 + 10 ∙ 13 + 10 ∙ 13 + 10 ∙ 

13 

Számlálás, Fejben elképzelem 

leírva 

40 ∙ 10 +12, 

40 ∙ 10 + 3 

40 ∙ 10 + 10 ∙ 13 

40 ∙ 10 + 1 ∙ 13 

40 ∙ 10 ∙ 3 

8 ∙ 29 8 ∙ 20 + 8 ∙ 9, 

20 ∙ 8 + 9 ∙ 8 

8 ∙ 30 – 8, 

8 ∙ 10 ∙ 2 + 8 ∙ 9, 

2 ∙ 13 ∙ 2 ∙ 10, 

80 ∙ 2 + 8 ∙ 9, 

8 ∙ 9 + 8 ∙20 

29 ∙ 5 + 29 ∙ 3, 

Számlálás, Fejben elképzelem 

leírva 

8 ∙ 9 + 8 ∙ 2, 

8 ∙ 2 + 8 ∙ 9, 

20 + 8 ∙ 9, 

8 ∙ 20 ∙ 2 ∙ 2 ∙ 2 ∙ 3 

6 ∙ 19 6 ∙ 10 + 6 ∙ 9, 

10 ∙ 6 + 9 ∙ 6, 

6 ∙ 9 + 6 ∙ 10, 

6 ∙ 20 – 6, 

6 ∙ 10 ∙ 2 – 6, 

19 ∙ 2 ∙ 3, 19 ∙ 5+19, 

Számlálás, Tények, 

Fejben elképzelem leírva 

6 ∙ 9 + 6, 

6 ∙1 + 6 ∙ 9 

6 ∙ 9 + 10, 

6 ∙ 10 + 9 

6 ∙ 9 ∙ 10 

 

A hibás eredményre vezető stratégiák közül némelyik az összeadási stratégiák között fellelhető 

stepwise (lépésenkénti) stratégia hibás analógiájára jöhetett létre, ezt jelöli a táblázat TT + EE 

rövidítéssel. Itt a tanuló a tízeseket a tízesekkel szorozza, az egyeseket pedig az egyesekkel, 

majd a kétszorzatot összeadja, ami hibás stratégia. Megfigyelhető, hogy néhány tanuló a 

második szorzótényező tízesek helyiértékén álló számmal szorozza a szorzandót, majd a 

szorzandó egyesek helyiértékén álló számmal a szorzót, vagy a szorzandót szorozza a 

szorzóban levő számjegyek valódi értékeinek szorzatával. 

A táblázatból látható, hogy a magyar tanulók egy része számos szorzási stratégiát ismer 

és helyesen használ. Kutatásunk szerint a matematikából gyengébb tanulók gyakrabban 

folyamodnak felsőbb évfolyamokon is a (CO) számlálás stratégiához, a stratégia használatáról 

a megkérdezett tanulók 5%-a (6 fő középiskolás) számolt be az egyjegyű számok szorzásával 

kapcsolatosan. A matematikából jeles eredményű tanulók közül többek számára akár kétjegyű 

szám kétjegyű számmal történő szorzása is ismert tényként jelent meg (BF), mintha már 
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megtanulta volna, mint a szorzótáblát. Ennek a stratégiának a használatáról a tanulók 10%-a 

számolt be, ők mind nyolcadikos tanulók voltak. A tanulók túlnyomórészt (az esetek 47,5%-

ában) a helyiérték szerinti balról jobba (LR) stratégiát használták a kétjegyű számok szorzására. 

A helyiérték szerinti jobbról balra (RL) stratégiát a tanulók 2,5%-a alkalmazta. A gyengébb 

képességű magyar tanulók is alkalmazzák Hope és Sherrill (1987) által megfigyelt „fejben 

elképzelem leírva” startégiát, ennek a stratégiának az alkalmazásáról a tanulók 3%-a számolt 

be. A tanulók egy kis része (5%-a) a számokat mint egy egészet fogja fel (WH, holisztikus 

stratégia), és azzal számol, a megfelelő mértékben csökkenti vagy növeli a szorzatot. Ezeken 

kívül még egyéni stratégiák alkalmazása is megfigyelhető volt. A többi tanuló hibás 

eredményre vezető stratégiát alkalmazott. Ugyanakkor a helyes eredményre vezető stratégiák 

alkalmazása során is sok számolási hibát ejtettek a diákok.  

A Szorzási Stratégiák Teszt itemeinek egymással vett korrelációját vizsgálva többnyire 

közepesen erős, szignifikáns korrelációt figyeltünk meg. A legerősebb korrelációt az 1. és 3. 

item, 4. és 6. item, 6. és 8. item között figyeltük meg, a korrelációk rendre 0,74; 0,76; 0,70 (p 

< 0,01).  

Összegzés 

H1a hipotézisünk igazolódott, a Szorzási Stratégiák Teszt megbízhatóan méri az egyes 

évfolyamokon tanuló diákok stratégiahasználatát a fejben végzett szorzási feladatok megoldása 

során.  

H2a: A fejszámolással megoldható szorzási feladatokban 10-18 évesek legalább ötféle 

különböző stratégiát alkalmaznak (vö.: Hope & Sherrill, 1987; Heirdsfield, Cooper, Mulligan  

& Irons, 1999). Ez a hipotézisünk igazolódott.  

H2d: Szignifikáns a különbség a stratégia használat során a különböző osztályok között. Ez a 

hipotézisünk igazolódott.  

H2e: A vizsgált tanulók körében megfigyelhetők racionális hibák (vö.: Ben-Zeev, 1998). Ez a 

hipotézisünk igazolódott, számos esetben találkoztunk racionális hibákkal a vizsgálat során.  

H3 hipotézisünk részben igazolódott, a megoldáskor alkalmazott szorzási stratégia és annak 

adaptivitása összefüggésbe hozható a tanuló nemével, tanulmányi eredményével, valamint a 

tanulási nehézségekkel és zavarokkal. 

H4 hipotézisünk igazolódott. A szorzási feladatok megoldása során a tanulók leggyakrabban a 

következő stratégiákat alkalmazták: számlálás,  tényeken alapuló, helyiértéken alapuló (balról 

jobbra, illetve jobbról balra) és a holisztikus stratégiát alkalmazzák (vö: Hope & Sherrill, 1987).  

H5b: A szorzási feladatok megoldása során az alacsonyabb évfolyamos tanulók gyengébb 

eredményt érnek el, mint a magasabb évfolyamok tanulói. Ez a hipotézisünk nem igazolódott, 

a nyolcadikos diákok teljesítménye magasabb volt a fejben végzett szorzási feladatok 

megoldása során, mint a 9. és 10. évfolyamosoké.  

A Szorzási Stratégiák Teszten tapasztalt igen gyenge eredmények alapján úgy gondoljuk, 

szükséges lenne a középiskolában is folytatni a fejben számolást, a számolási stratégiák 

tanítását. A minta elemszáma miatt célszerűnek találtuk további kutatások végzését, és a 

további vizsgálatokban alkalmazható Szorzási Stratégiák Teszt és Matematika Tudásszintmérő 

Teszt fejlesztését.  
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5.3. A harmadik vizsgálat eredményei  

 

Pilotmérés 7. évfolyamos tanulók körében 

2015 szeptember elején egy kismintás előmérés során próbáltuk ki a Szorzási Stratégiák 

Tesztet és a Matematika Tudásszintmérő Tesztet egy budapesti általános iskola két hetedik 

osztályában (N = 61 fő). 

5.3.1. A Szorzási Stratégiák Teszt fejlesztése 

 

A Szorzási Stratégiák Teszt esetén az volt célunk, hogy egy jól használható mérőeszközt 

fejlesszünk ki. A szorzásteszt két változata ugyanazokat a szorzásokat tartalmazta, más 

sorrendben.  Mindkét tesztváltozat 60 itemet tartalmazott. A teszt részben a hasonló 

kutatásokban már használt és saját készítésű szorzásokat is tartalmazott, méghozzá a 

következőképpen: egyjegyű szám kétjegyű számmal való szorzása (9 item), egyjegyű szám 

szorzása háromjegyű számmal (5 item), egyjegyű szám szorzása négyjegyű számmal (1 item), 

kétjegyű szám szorzása kétjegyű számmal (34 item), kétjegyű szám szorzása háromjegyű 

számmal (10 item), háromjegyű szám szorzása háromjegyű számmal (1 item). 

A tanulók 30 perc tiszta időt kaptak a feladatsor megoldására. A Cronbach-α 0,90 lett, 

ami számolási képességmérő teszt esetén elfogadható érték. A teszt itemeinek 

elkülönítésmutatóit az 1., 2.  és 3.sz. függelék tartalmazza. A 60 itemes teszt 9 iteme zéró 

variánciájú volt, (vagy túl könnyűek voltak, és szinte mindenki helyesen megoldotta, vagy 

valószínűleg idő híján senki sem oldotta meg,) így ezeket a további teszt összeállításakor 

kihagytuk, és a maradék 51 itemet vizsgáltuk hasonlóképpen, ahogy a tudásszintmérő tesztet. 

A Szorzási Stratégiák Teszt itemeit is lépésenkénti lineáris regressziószámításnak vetettük alá. 

Mindkét tesztváltozat esetében itt is 8-8 item bírt a legnagyobb magyarázó erővel, 95,4%, 28 

item adta a megmagyarázott variancia 99,5 %-át. Mivel nyolc itemet kevésnek tartottuk a teszt 

itemszámára, ezért itt is az elkülönítésmutatókat használtuk fel a további vizsgálathoz  

szükséges nagyobb reliabilitású teszt elkészítésére. A szakirodalom (Falus & Ollé, 2008) szerint 

a 61 fős minta esetén az elkülönítésmutatónak legalább 0,2500-nak kell lennie 95%-os 

szignifikancia esetén. Az itemmutatók nagyság szerinti csökkenő sorrendbe állítása után a 

negatív és 0,15 alatti értékűeket a tesztfejlesztés során elhagytuk. Mivel a hasonló, szorzásra 

vonatkozó nemzetközi felmérésekben is szerepeltek nagyobb mintás vizsgálatokban olyan 

itemek, amelyek a mi mérésünknél 0,15 és 0,25 itemmutatóval rendelkeztek, ezért ezeket az 

itemeket végül mégis benne hagytuk a tesztben, remélve, hogy a nagyobb mintás vizsgálat 

során már nem fogják rontani a reliabilitást. Így az első 10 item és utolsó 10 item kikerült a 

tesztből, a későbbi nagymintás vizsgálat során egy 40 itemes tesztet alkalmaztunk.  

 

5.3.2. Matematika Tudásszintmérő Teszt fejlesztése 

 

A vizsgálat előtt a tanulók előzőleg nem ismételték át a témakört. Kutatásunk célja az volt, hogy 

megvizsgáljuk a tudásszintmérő tesztváltozatok reliabilitását, és itemkihagyásos reliabilitás 

vizsgálatával, az elkülönítésmutatók segítségével összeállítsunk az arányosság témaköréből egy 

jól működő mérőeszközt, hiszen az arányossági feladatok megoldása során gyakran végzünk 



100 
 

szorzást. Az A tesztváltozatot 31 fő, a B változatot 30 fő oldotta meg. Tesztünk 

megbízhatóságának jellemzésére a Cronbach-α-t választottuk. Mindkét tesztváltozat esetén a 

Cronbach- α 0,93 volt.  

Az elkülönítésmutató vizsgálata azért fontos, mert megmutatja az item viselkedését, az 

item és a teszt összpontszáma közötti korreláció (Hajtman, 1968). Az elkülönítésmutató 

megmutatja azt, hogy egy-egy item ugyanazt méri-e, mint a teszt egésze, elkülöníti a jól 

működő itemeket a rosszul mérőktől. Tehát azt mutatja meg, hogy a teszttel azonos módon 

különíti-e el egymástól a különböző tudásszintű tanulókat, mennyire hasonlóan differenciál, 

mint a teszt. A plusz egyhez közeli korrelációs együttható igen szoros kapcsolatot jelez, a 0-

hoz közeli érték pedig nem kimutatható kapcsolatot jelent az item és a teszt között (bár lehet, 

hogy van összefüggés az adatsorok között). Negatív elkülönítésmutatójú item ellentétesen 

differenciál, mint maga a teszt, ezért ezeket és az alacsony (0,3 alatti) korrelációjú itemeket a 

tesztfejlesztés során érdemes elhagyni (Kontra, 2011).  

Az itemmutatókat nagyság szerint csökkenő sorrendbe állítottuk, és a negatív és 0 közeli 

értékűeket a tesztfejlesztés során elhagytuk. Így a későbbi nagymintás vizsgálat során az A 

tesztváltozat első és utolsó két feladatát, a B változat utolsó három feladatát már nem 

alkalmaztuk. Azért, hogy a tartalmi validitást ne sértsük, a tesztben hagytunk olyan itemeket is, 

amelyek mutatója alacsonyabb volt. A nagymintás vizsgálat elemzésekor érdemes visszatérni 

arra a kérdésre, hogy szükséges-e mindegyik item, nem lehet-e még tovább rövidíteni a tesztet.  

 Az itemnehézség egy másik itemmutató, értéke minél közelebb van az egyhez, annál 

többen oldották meg jól, vagyis annál könnyeb az item. Ezzel szemben a 0-hoz közeli érték azt 

jelzi, hogy nehéz az item, a tanulók többsége nem tudta megoldani. A normaorientált értékelés 

szempontjából a 0 és az 1 itemnehézségű itemek nem differenciálnak kellőképpen a tanulók 

között, csak a helyet foglalják a tesztben. Bár az 50 %-os megoldottságú (vagyis 0,5-es 

nehézségű) itemek mérnek a legjobban, a tartalmi validitás megőrzése érdekében a tesztbe nem 

csak kb. 50%-os nehézségű itemeket teszünk, mert a különféle nehézségű itemek pontosabban 

tudnak differenciálni a gyengébb és jobb képességű tanulók között. 

Validitásnak nevezzük a teszt azon tulajdonságát, amely arra világít rá, valóban azt 

méri-e, amit mérni akartunk vele (Nagy, 1975). A validitás biztosítása érdekében törekedtünk 

arra, hogy a feladatok utasítása, szövege ne legyen túlhosszú és bonyolult, és igyekeztünk a 

gyerekek életkori sajátosságaihoz, érdeklődési köréhez igazítani. A tartalmi validitás biztosítása 

érdekében áttanulmányoztuk az aktuális kerettantervet, a használatban lévő felső tagozatos 

matematika tankönyvcsaládokat, a mérésmódszertani könyveket, írásokat. Így a tesztfeladatok 

összhangban vannak a tudomány eredményeivel (szakmai validitás). Az elkészült feladatokból 

azután azokat választottuk ki, amelyek az arányossági gondolkodás mérésére 

legalkalmasabbaknak találtunk (mintavételi validitás). Úgy véljük, a kiválasztott feladatok 

segítségével képesek leszünk az arányossági gondolkodás mérésére (funkcionális validitás). A 

megoldó-és javítókulcs elkészítésekor törekedtünk arra, hogy a feladatokat nehézségi 

szintjüknek megfelelően pontozzuk, a tovább már nem bontható feladatrészeket, itemeket egy 

ponttal értékeljük (skálázási validitás).   

Az összes tartalmi terület lefedéséhez szükséges feladatmennyiség nem fért bele egy 

tesztbe, illetve a tanulók egymás munkájának felhasználásának kizárására egy A és egy B 

tesztváltozatot készítettünk. A két változat kisebb része kiegészítette egymást, nagyobb része 

pedig izomorf volt. Mindkét tesztváltozat 80 itemet tartalmazott. A tanulók 60 perc tiszta időt 
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kaptak a feladatsor megoldására. Mivel az itemek nemcsak az algebra témaköréből valók, 

hanem szerepel bennünk geometriai ismeretekre kérdező is, előfordulhat, hogy egy adott 

feladatot azért nem tudja teljes sikerrel megoldani a tanuló, mert hiányosak a geometriai 

ismeretei. Ugyanakkor a gyermek teljes matematikatudásáról sem kaphatunk átfogó képet. 

Azonban mégis azt reméljük, hogy ez a teszt árnyaltabb képet adhat, mint egy csak algebrai 

ismereteket mérő teszt. 

 A teszt itemeit lépésenkénti lineáris regressziószámításnak vetettük alá, hogy 

megtudjuk, mely itemek magyarázzák legnagyobb mértékben a teszten kapott összpontszámot. 

Mindkét tesztváltozat esetében 8-8 item bír a legnagyobb magyarázó erővel, 94,9%, 22 item 

adja a megmagyarázott variancia 99,3%-át. 8 item kevés egy teszthez, ahogy 22 is. Mivel 

ennyire nem akartuk lerövidíteni a tesztet, ezért az elkülönítésmutatókat használtuk fel a 

további vizsgálatok elvégzéséhez szükséges nagyobb reliabilitású teszt elkészítésére.  

 

Összefoglalás 

H1a és H1b hipotézisünk igazolódott. A pilotmérés során sikerült kifejlesztenünk további 

vizsgálatainkhoz két mérőeszközt. Mind a Szorzási Stratégiák Teszt, mind a Matematika 

Tudásszintmérő Teszt megfelelő reliabilitású volt. 

 

5.4. A negyedik vizsgálat eredményei  

 

 A szorzási stratégiák vizsgálata 6. évfolyamos tanulók körében 

A negyedik vizsgálat során szerettünk volna megismerni az általunk kifejlesztett tesztek 

viselkedését, ezért azt statisztikai módszerekkel vizsgáltuk. További célunk volt a fejszámolás 

során alkalmazott szorzási stratégiák vizsgálata, a részminták közötti különbségek 

megelétének vizsgálat és a szorzási stratégiák használatának összefüggései néhány 

háttérváltozóval.  

A Szorzási Stratégiák Teszt jóságmutatói 

 

A harmadik vizsgálat során kifejlesztett, szorzási stratégiák alkalmazását mérő papír-ceruza 

alapú teszt mindkét változata 40 itemet tartalmazott. Ugyanazokat az itemeket tartalmazta 

mindkét változat, más sorrendben. A tesztet három budapesti iskola hat osztályában használtuk 

fel. A tesztet 154 tanuló töltötte ki. Mivel a minta nem reprezentatív, így a mérési eredmények 

csak a mintára érvényesek. A teszt megbízhatóan mér (Cronbach-α = 0,95, átlag 26,16, szórás: 

11,11).  

A nemek szerint részmintákon is megfelelő a teszt reliabilitása (81 lány esetén Cronbach-α = 

0,95, a 73 fiúk esetén pedig Cronbach-α = 0,96). A lányok átlaga 24,8 (szórás 11,00), a fiúk 

átlaga 27,66 (szórás 11,13). A reliabilitás értéke iskolánként más, de legalább 0,91, mindhárom 

iskola tanulóinak teljesítményét jól méri a teszt, a H1a hipotézisünk igazolódott.  

 

A Szorzási Stratégiák Teszt elemzése  
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A Szorzási Stratégiák Teszt főbb jellemzőit foglaljuk most össze. Egyik item törlésével 

sem változna pár századnál többet a teszt reliabilitása. A legkönnyebb itemnek a 14. item 

bizonyult, megoldottsága 86%-os. Könnyű itemek voltak a vizsgált hatodikosok számára a 4., 

29. és a 30. item. A legnehezebb itemnek a 3. item bizonyult, a vizsgált tanulók mintegy fele 

oldotta meg, ez az item jól differenciálja a hatodikosokat. Kevésbé sikerült még megoldani a 

16., 31., 36. és 38. itemeket. A leggyengébb teljesítményt a teszten a 38. itemen tapasztaltuk, 

megoldottsága 50,1%. Egyik itemet sem oldotta meg mindenki hibátlanul, de olyan sem volt, 

amelyiket senki sem tudta volna kiszámolni.  

Az egyes tesztrészek közötti korreláció mindenütt pozitív, szignifikáns kapcsolatot 

mutatott. Kétjegyű szám háromjegyű számmal és a kétjegyű szám kétjegyű számmal való 

szorzásakor láttuk a legmagasabb, de még közepesen erős korrelációt (r=0,65). Szintén közepes 

korrelációt találtunk egyjegyű szám kétjegyű számmal és kétjegyű szám háromjegyű számmal 

való szorzásánál (r=0,51), valamint egyjegyű szám kétjegyű számmal és egyjegyű szám 

háromjegyű számmal való szorzása esetén (r=0,57). A kétjegyű szám szorzása kétjegyű 

számmal szorzástípus, a háromjegyű szám szorzása háromjegyű számmal gyenge kapcsolatot 

(r=0,20), és mindegyik másik szorzástípussal közepesen erős kapcsolatot mutatott (p < 0,02).  

A 27. táblázat az egyes szorzástípusok során elért átlagpontszámot, a megoldottság 

mértékét és a szórást mutatja.  

27. táblázat. Az egyes szorzástípusok során elért átlagpontszám, a megoldottság mértéke és a 

szórás, Szorzási Stratégiák Teszt, negyedik vizsgálat 

Feladattípus Átlagpontszám Megoldottság Szórás 

Egyjegyű kétjegyűvel 1,49 74,50% 0,70 

Egyjegyű háromjegyűvel  2,73 68,25% 1,36 

Egyjegyű négyjegyűvel 1,53 76,50% 0,69 

Kétjegyű kétjegyűvel 17,37 62,04% 8,78 

Kétjegyű háromjegyűvel 2,23 74,33% 0,91 

Háromjegyű háromjegyűvel  0,68 68,00% 0,47 

Szorzási Stratégiák Teszt 26,02 65,05% 11,08 

Láthatjuk, hogy mindegyik típus megoldottsága 60% fölötti, ami egy képességtesztnél jó 

eredmény. A legkönnyebb a tanulók számára az egyjegyű szám szorzása négyjegyű számmal, 

illetve kétjegyű számmal volt (75% körüli megoldottság). A legnehezebben a kétjegyű szám 

szorzása volt kétjegyű számmal, itt a megoldottság alig több, mint 62% és nagy a szórás. 

A Szorzási Stratégiák Teszt szerkezetének vizsgálata 

Szerettünk volna választ kapni arra, hogy milyen szerepe van az egyes tesztrészeknek a Szorzási 

Stratégiák Teszten elért eredményekre. Kíváncsiak voltunk arra, hogyan kapcsolódnak 

egymáshoz az egyes szorzástípusok. A szorzástípusokra végzett klaszteranalízissel (a csoportok 

közötti távolság távolságszámítási elv és az euklideszi számítási eljárás alapján) kapott 

koefficiensek (7,4; 13,1; 19,0; 33,1; 221,7) alapján az egyjegyű szám szorzása négyjegyű 

számmal és a háromjegyű szám szorzása háromjegyű számmal feladattípus szorosan 
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összekapcsolható. Az egyjegyű szám szorzása kétjegyű számmal ezután kapcsolódik hozzájuk 

egy kisebb hasonlósági csoportot alkotva, majd a következő lépésben kapcsolódik be a 

fürtalkotásba a kétjegyű szám szorzása háromjegyű számmal, ezt követően hozzájuk 

kapcsolódik az egyjegyű szám szorzása háromjegyű számmal feladattípus. Végül a kétjegyű 

szám szorzása kétjegyű számmal szorzására vonatkozó feladattípus egészíti ki a klasztert.  

A teszt szerkezetének feltárására lépésenkénti regresszióanalízist végeztünk. A vizsgálat 

eredményeképp megtudtuk, mely itemek bírnak az egész teszten elért teljesítménynél a 

legnagyobb magyarázó erővel. A Szorzási Stratégiák Teszt szerkezetének lépésenkénti 

regresszióanalízissel történő vizsgálata során a függő változó a teszt pontszáma, a független 

változók pedig az egyes itemek lesznek. A vizsgálat eredményei szerint a 40 itemes teszt 26. 

iteme adja a megmagyarázott variancia 58,7%-át, a 13. és 37. itemmel együtt három item már 

a megmagyarázott variancia 79,5%-át adják. A teszt 10 iteme adja a megmagyarázott variancia 

95%-át, egy további vizsgálatban ezeket az itemeket mindenképpen felhasználnánk a vizsgálat 

során. Egy további item már nem sokkal (0,7%-kal) növeli a variancia magyarázó erejét. 25 

item már a variancia 99%-át megmagyarázza. Ha a teszt rövidítését tűznénk ki célul, akkor ezt 

a 25 itemet választanánk. 

Megvizsgáljuk, hogy a teszt megmagyarázott varianciájának 95,7%-át eredményező 

itemek milyen szorzástípusú feladatokat jelentenek. Megfigyelhetjük, hogy a 25 item között 

szerepel egyjegyű szám szorzása kétjegyűvel (2 item), egyjegyű szorzása háromjegyűvel (3 

item), egyjegyű szorzása négyjegyűvel (1 item), kétjegyű szorzása háromjegyű számmal (3 

item), a többi 16 item kétjegyű szám kétjegyű számmal való szorzását kéri. Egy másik 

lehetséges tesztrövidítés egy másik lineáris regressziószámítás eredményeképp kapható. Ennél 

a lépésenkénti regresszióanalízisszámításnál a függő változó a teszt pontszáma, a független 

változók pedig az egyes szorzástípusok lesznek. A lineáris regresszió eredménye szerint a 

kétjegyű szám szorzása kétjegyű számmal típusú 24 item a megmagyarázott variancia 95,2%-

át adja. Ha rövidíteni szeretnénk a tesztet, akkor csak ezeket az itemeket használnánk fel. 

 

A Szorzási Stratégiák Teszt megoldottsága 

A 154 fős mintában a tanulók átlageredménye 26,02 pont volt (65,50 %), módusz 35 pont, 

medián: 29,29 pont. A teljesítmények átlagpontszáma kisebb a mediánnál és a módusznál, ezért 

az eloszlás jobbra tolódó eloszlás. A teljesítmények szórása 11,08 pont. A Szorzási Stratégiák 

Teszt megoldottságának relatív gyakoriságát ábrázoló diagram a 13. ábrán látható. A diákok 

teszten elért pontszámainak eloszlását tekintve megállapíthatjuk, hogy az egymóduszú. A 

leggyakrabban elért pontszám a 35 pont volt, ezt 11 tanuló érte el. 20% alatt teljesített 14 tanuló, 

a teljes minta 9,1%-a, 90% fölött pedig 37 tanuló, a minta 24%-a. A tanulók 54,5%-a ért el a 

65,5%-os átlagteljesítménynél jobb eredményt. 
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13. ábra A teljes minta Szorzási Stratégiák Teszten elért eredményének eloszlása, harmadik 

vizsgálat 

A lányok által elért átlagpontszám (81 fő) 24,8 (szórás 11,00), a fiúk (74 fő) átlaga 27,66 pont 

(szórás 11,13). A lányoknál a legkisebb pontszám 1, a fiúknál 0 pont volt, a 

maximumpontszámot mindkét nemből elérték. A fiúk átlagosan jobb eredményt értek el a 

szorzásteszt során, de ez nem szignifikáns. A fiúk és a lányok Szorzási Stratégiák Teszten elért 

teljesítményének összehasonlítását mutatja a 14. ábra. Az ábrán látható, hogy a fiúk 9,6%-a és 

a lányok 8,6%-a ért el 20%-osnál gyengébb teljesítményt a Szorzási Stratégiák Teszten. A fiúk 

átlagteljesítménye 68,97% volt, a lányoké pedig ettől 7,46%-kal kevesebb, 61,51%. A fiúk 

27,4%-a, míg a lányok 21%-a ért el legalább 90%-os teljesítményt.  

 

14. ábra A Szorzási Stratégiák Teszten elért eredmények nemek szerinti összehasonlítása, 

negyedik vizsgálat 
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Iskolák és osztályok közötti különbségek 

A H2c hipotézisünk szerint: A vizsgált iskolák tanulóinak Szorzási Stratégiák Teszten nyújtott 

teljesítménye szignifikánsan különbözik. Ez a hipotézis beigazolódott. A 154 fős mintában a 

tanulók átlageredménye 26,02 pont volt (65,50 %), módusz 35 pont, medián: 29,29 pont. Az 

egyes iskolák között nagy teljesítményszintbeli eltéréseket figyelhetünk meg. A 15. ábrán 

látható, hogy az első és a harmadik iskola tanulói között senki sem teljesített 10 % alatt, míg a 

2. iskolában az iskola tanulóinak 2,9%-a ez alatt teljesített. Az első iskolában az iskola 

tanulóinak 13,1%-a, a második iskolában az iskola tanulóinak 41,2%-a, a harmadik iskolában 

pedig az iskola tanulóinak 4%-a nyújtott legalább 90%-os teljesítményt. Az első iskolában az 

átlagteljesítmény 69,4% volt, a második iskolában 71,7%, míg a harmadik iskolában 36,1%. Ez 

a különbség az ábrán is látható, az első és a második iskola eloszlása jobbra szimmetrikus, míg 

a harmadik iskoláé balra tolódó eloszlású. Ugyanakkor a három iskola közül a második 

átlagteljesítménye volt magasabb, mint a teljes minta átlaga. 

 

15. ábra A negyedik vizsgálatban részt vevő iskolák teljesítménye a Szorzási Stratégiák 

Teszten 

A 28. táblázatban az iskolák Szorzási stratégiák teszten elért eredményét látjuk. 

28. táblázat. Az iskolák Szorzási stratégiák teszten elért eredménye a negyedik vizsgálat során 

Iskola  1. 2. 3. Összesen 

Átlag  27,77 28,71 

11,35 

14,44 26,02 

Szórás  8,62 8,26 11,08 

Az iskolák közötti különbségeket a homogenitásvizsgálat és a varianciaanalízis segítségével 

állapíthatjuk meg. A Levene-féle próba esetén F = 2,87, p = 0,06-t kaptuk, amire p > 0,05 
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teljesül, vagyis a a részminták által reprezentált populációkban a szórások megegyeznek. Az 

ANOVA Fischer-féle F értéke 20,65, p < 0,001, tehát különbség figyelhető meg az egyes 

iskolák átlagai között. Mivel a a részminták által reprezentált populációkban a szórások között 

nincsen szignifikáns különbség, így a post-hoc elemzések közül ismét a Tukey’b –teszt mutatja, 

hogy az egyes iskolák közötti különbség szignifikáns. Az iskolák két csoportra oszthatók, a 3. 

iskola teljesítménye szignifikánsan gyengébb, mint a másik csoportot alkotó 1. és 2. iskoláké.  

Az egyes osztályokban mért pontértékek eltérnek az egész minta átlagától, ahogy a 29. 

táblázatban láthatjuk. A teszten elért eredmény iskolánként és osztályonként változó. A 

szignifikánsan leggyengébb 35,9%-os eredményt a szorzástesztben a 3. iskola tanulói érték el 

(6. osztály). A legjobban a 2. iskola 5. osztálya és az első iskola 2. osztálya teljesített, 75,55%-

os, illetve 75,08%-os teljesítményt értek el. Az első iskolában (61 fő) az elért pontszám átlaga 

27,77 (szórás 8,62), a második iskolában (68 fő) az elért pontszám átlaga 28,71 (szórás 11,35) 

a harmadik iskolában pedig (25 fő) 14,36 (szórás 8,32). 

 

29. táblázat. A szorzásteszt-eredmények osztályonként, negyedik vizsgálat 

Iskola 1. 2. 3. Összesen 

Osztály 1. 2. 3. 4. 5. 6.  

Átlag 25,55 30,03 23,35 29,17 30,22 14,36 26,02 

Szórás 9,12 7,71 13,79 11,84 7,56 8,32 11,08 

Módusz 26 35 37 39 36 5 35 

Medián 26 32 25 33 35 11 29,29 

Minimum 6 8 0 1 5 0 0 

Maximum 40 40 40 40 36 40 40 

Az első és a 3. iskolában a fiúk teljesítettek jobban (29,18 átlagpont a 26,11 átlagponttal 

szemben, illetve 15,8 átlagpont a 14,10 átlagponttal szemben, míg a 2. iskolában a lányok 

eredményei voltak jobbak (29,70 átlagpont a fiúk 27,77 átlagpontjával szemben), a 

szignifikanciaszint p < 0,001. 

Az osztályok közötti különbségeket a homogenitásvizsgálat és a varianciaanalízis 

segítségével állapítottuk meg. A Levene-féle próba esetén F = 4,47, p = 0,001-t kaptuk, amire 

p < 0,05 teljesül, vagyis a részminták által reprezentált populációkban a szórások között 

szignifikáns különbség van. Az ANOVA Fischer-féle F értéke 11,098, p < 0,001, azaz 

különbség figyelhető meg az egyes osztályok átlagai között. Mivel a részminták által 

reprezentált populációkban a szórások között szignifikáns a különbség, így a post-hoc 

elemzések közül a Dunnett T3–teszt eredményei mutatják, hogy szignifikáns különbség van az 

egyes osztályok teszten elért eredményei között. Az osztályokat két csoportra oszthatjuk, a 3. 

és 6. osztály tartoznak egy csoportba. Egy másik csoportot alkot a többi négy osztály (az 1., 2., 

4. és 5. ).  

A Szorzási Stratégiák Teszten 20%-nál gyengébb teljesítményt ért el az 1. osztály 

tanulóinak 3,4 %-a, a 2. osztály tanulóinak 3,1 %-a, a 3. osztály tanulóinak 23,5 %-a, a negyedik 

osztály tanulóinak 8,3 %-a, az ötödik osztály tanulóinak 3,7 %-a és a hatodik osztály tanulóinak 

ötöde. A 90 %-ot elért tanulók a legnagyobb arányban a második iskola tanulói közül kerültek 
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ki, a harmadik osztályból 29,4 %, a negyedik osztályból 41,7 %, az ötödik osztályból 48,1%. A 

legkisebb arányban a harmadik iskolából kerültek ki ezt a teljesítményszintet elért tanulók (a 

hatodik osztály tanulóinak a 4 %-a). Míg az első iskola első és második osztályában ez az arány 

10,3 % és 15,6 %. A H2d hipotézisünk beigazolódott. 

 

5.4.1. A hatodikos tanulók által alkalmazott szorzási stratégiák 

A vizsgálat során további két hipotézisünk a hatodikos tanulók által alkalmazott szorzási 

stratégiákra vonatkozott.  

H4 hipotézisünk szerint  a vizsgált tanulók körében megfigyelhető racionális hibák elkövetése. 

Ez a hipotézisünk beigazolódott, számos hibás stratégia használatát megfigyeltük (vö. De 

Smedt, Torbeyns, Stassens, Ghesquiére & Verschaffel, 2010), ezt mutatja a 30. táblázat.   

30. táblázat. A fejben szorzás során alkalmazott stratégiák, negyedik vizsgálat 

Feladat Helyes eredményre vezető 

stratégiák 

Hibás eredményre vezető 

stratégiák 

13 ∙ 13 13 ∙ 10 + 13 ∙ 3,  

10 ∙ 13 + 3 ∙ 13,  

13 ∙ 10 + 3 ∙ 13,  

15 ∙ 13 – 2 ∙ 13,  

Számlálás,  

Tények, 

Fejben elképzelem leírva 

TT + EE = 10 ∙ 10 + 3 ∙ 3,  

13 ∙ 10 + 1 ∙ 13,  

13 ∙10 ∙ 3  

10 ∙ 10 + 3 ∙ 10 

25 ∙ 32 25 ∙ 30 + 25 ∙ 2,  

10 ∙ 25 ∙ 3 + 2 ∙ 25 

20 ∙ 32 + 5 ∙ 32 

20 ∙ 32 + 10 ∙ 32 :2 

100 ∙ 32 : 4  

Számlálás,  

Tények, 

Fejben elképzelem leírva 

10 ∙ 25 + 10 ∙ 17 

10 ∙ 32 ∙ 2 ∙ 5,  

20 ∙ 30 ∙ 5 ∙ 2, 

25 ∙ 10 ∙ 5 ∙ 2, 

25 ∙ 10 ∙ 7 

A táblázatból látható, hogy a vizsgált hatodikos tanulók egy része számos szorzási stratégiát 

ismer és helyesen használ. Kutatásunk szerint a matematikából gyengébb tanulók gyakrabban 

alkalmazták a (CO) számlálás stratégiát. Míg az ügyesebb tanulók számára akár kétjegyű szám 

kétjegyű számmal történő szorzásának eredményét tudják a szorzótáblából (BF), a 15 ∙ 15, 16 ∙ 

16, 24 ∙ 24, 20 ∙ 30 típusú szorzások kapcsán. Néhányan úgy nyilatkoztak a 20 ∙ 30 szorzat 

kiszámításakor: 2 ∙ 3 = 6 és mögé írunk két nullát, tehár tkp. egy ismert szabályt alkalmaztak 

(ez is BF stratégia). A tanulók számos esetben alkalmazták a helyiérték szerinti balról jobbra 

(LR) és a jobbról balra (RL) stratégiát, és annak számos, a szakirodalomban nem részletezett 

és emiatt nehezen tipizálható változatát. A gyengébb képességű magyar tanulók is alkalmazzák 

Hope és Sherrill (1987) által megfigyelt „fejben elképzelem leírva” stratégiát. A 2. iskola 

tanulói szemmel láthatóan is szignifikánsan többen alkalmazták ezt a stratégiát, volt, aki 

valóban le is írta a részletszámításokat, kvázi nem is fejben végezte a szorzásokat. Ezt 

figyelembe véve már nem mondhatjuk, hogy ebben az iskolában voltak legeredményesebbek a 

hatodikos tanulók a fejszámolásban. 
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 A tanulók egy kis része a kerek tízesekhez, százasokhoz közeli számokat mint egy 

egészet fogja fel (WH, holisztikus stratégia), és azzal számol, a megfelelő mértékben csökkenti 

vagy növeli a szorzatot. Így a 8 ∙ 99 kiszámítása történhet úgy, hogy először kiszámítja a 8 ∙ 

100 szorzatot, majd ebből kivon 1 ∙ 8-at. A 17 ∙ 99, 8 ∙ 999 szorzások számításakor többen is 

alkalmazták ezt a stratégiát. Ezeken kívül még egyéni stratégiák alkalmazása is megfigyelhető. 

A szorzáskor a gyenge matematikai osztályzattal rendelkező tanulók szignifikánsan 

többször hibáztak. A tanulók többsége mereven ragaszkodott egyetlen stratégia 

alkalmazásához, akkor is, ha az nem volt hatékony, azaz adaptív De Smedt és munkatársai 

(2010) definíciója szerint.  

H2a hipotézisünk szerint a vizsgált diákok a fejben végzett szorzási feladatok 

megoldásakor legalább ötféle stratégiát alkalmaznak. Ez a hipotézisünk beigazolódott. A 

vizsgált tanulók sz egyjegyű számok fejben szorzására leggyakrabban az emlékezeti  

visszahívás stratégiát, a kétjegyű számokkal való szorzáskor pedig a helyi érték szerinti 

stratégiákat alkalmazták. Az egyjegyű számok szorzása: emlékezeti előhívás segítségével 

oldják meg (ld. Lemaire, & Siegler, 1995). A kétjegyű számok szorzásakor általában a 

helyiérték szerinti balról jobbra, vagy jobbról balra stratégiát alkalmazták, míg a jobb 

matematikaosztályzattal bíró gyerekek gyakrabban alkalmazták a holisztikus stratégiát. Úgy 

tűnik, magyar tanulókra is jellemző a „fejben elképzelem leírva” stratégia használata (v.ö.: 

Hope, & Sherill, 1987; Csíkos, 2013; Vígh-Kiss, Csíkos és Steklács, 2013). A gyengébb tanulók 

pedig a fejszámolás során is leírták a részeredményeket, ezt különösen a 2. iskola tanulói 

alkalmazták, őket a további vizsgálatból kivettük.  

A pilotmérések során először Heirdsfield, Cooper, Mulligan és Irons (1999) által leírt 

stratégiák alapján kódoltuk a tanulók által használt stratégiákat. Ám a vizsgálatok során egyre 

nyilvánvalóbbá vált, hogy az általunk mért tanulók ezeken kívül is többféle stratégiát 

alkalmaznak a fejben szorzás során. Így a központi vizsgálat előtt a Hope és Sherrill (1987) 

tanulmányában leírt 12 stratégiát tartalmazó rendszert finomítottuk, és a Heirdsfield, Cooper, 

Mulligan és Irons által leírt ötféle stratégiával ötvözve, a tanulók által használt stratégiákat 

pilotméréseink tapasztalatai alapján 35 különböző stratégiába soroltuk be. A kódolás során az 

elkülönített stratégiákat mutatja be a 31. táblázat. Heirdsfield, Cooper, Mulligan és Irons 

(1999), illetve Hope és Sherrill (1987) által használt elnevezéseket a 3. táblázatban angolul 

feltüntettük. Vizsgálataink során Hope és Sherill 1987-ben publikált tanulmányában említett 

kutatásai során használt szorzásokat is vizsgáltunk.  

 

31. táblázat. A vizsgálat során elkülönített szorzási stratégiák 

Kód Stratégia Példa 

0 Üresen hagyja  

99 Írásban számol Szemmel láthatóak az erre utaló 

mellékszámítások 

19 Számológéppel számol A tanuló vagy tanára ezt jelzi 

1  „Fejben történő írásbeli szorzás” „Elképzelem fejben leírva” 
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31. táblázat. A vizsgálat  során elkülönített szorzási stratégiák (folytatás) 

Stratégia Példa  

10 Minden részletszorzatot számjegyenként szoroz össze 

(P&P0, Hope és Sherrill) 

480 ⋅ 25 kiszámítása: 

480 ⋅ 5 az 5 ⋅ 0, 5 ⋅ 8 = 40, leírom a 0-t, 

marad a 4, 5 ⋅ 4 + 4 = 24 

2 ⋅ 480 az 2 ⋅ 0 = 0, 2 ⋅ 8 = 16, leírom a 

6-ot, marad az 1, 2 ⋅ 4 + 1 = 9, azaz 

9600.  9600 + 2400 = 12000 

11 Egy részletszorzatot számjegyenként szoroz össze, 

egyet emlékezeti előhívással számol ki (P&P1, Hope 

és Sherrill) 

25 ⋅ 48 kiszámítása: 

5 ⋅ 48 az 5 ⋅ 8 = 40, leírom a 0-t, marad 

a 4, 5 ⋅ 4 + 4 = 24, 240, 

2 ⋅ 48 az 96, ezt már tudom fejből, 240 

+ 960 = 1200 

12 Két részletszorzatot emlékezeti előhívással számol ki 

(P&P2, Hope és Sherrill) 

12 ⋅ 250 kiszámítása: 

2⋅250 az 500, 1⋅250 az 250, azaz 500 + 

2500 = 3000 

13 Felhalmozás, egyjegyű szám többjegyű számmal 

történő szorzása során, a maradékot nem veszi 

figyelembe (stacking, Hope, & Sherrill) 

8 ⋅ 999 kiszámítása: 

8 ⋅ 9 = 72, 72, 72, az eredmény 

727272. 

   

2 Additív disztribúció (additive distribution, Hope, & 

Sherrill) 

4211 ⋅ 8 = 8 ⋅ 4000 + 8 ⋅ 200 + 8 ⋅ 10 + 

8 ⋅ 1 

   

21 Kétjegyű számmal való szorzás során az egyesekkel 

kezd (right to left separated strategy, Heirdsfield és 

mtársai) 

5 ⋅ 17 = 5 ⋅ 7 + 5 ⋅ 10 

12 ⋅ 15 = 2 ⋅ 15 + 10 ⋅ 15  

12 ⋅ 15 = 12 ⋅ 5 + 12 ⋅ 10 

22 Kétjegyű számmal való szorzás során a tízesekkel 

kezd (left to right separated strategy, Heirdsfield és 

mtársai) 

5 ⋅ 17 = 5 ⋅ 10 + 5 ⋅ 7 

12 ⋅ 15 = 10 ⋅ 15 + 2 ⋅ 15  

12 ⋅ 15 = 12⋅10 + 12⋅5 

25 Összeadandókra tagolja az egyik tényezőt 25 ⋅ 120 = 25 ⋅ 100 + 25 ⋅ 20 

26 Mindkét tényezőt összeadandókra tagolja  25 ⋅ 35 = 20 ⋅ 30 + 5 ⋅ 30 + 5 ⋅ 20 + 5 ⋅
 5 

(bármilyen sorrendben) 

3 Frakcionális disztribúció (fractional distribution, 

Hope, & Sherrill) 

15 ⋅ 48 kiszámítása 10 ⋅ 48, ennek fele 

az 5 ⋅ 48, a két részeredményt 

összeadjuk 

33 Számlálás (Counting strategy, Heirdsfield és mtársai) 19 ⋅ 5 = 19 + 19 + 19 + 19 + 19 + 19 

4 Szubsztraktív disztribúció (subtractive distribution, 

Hope, & Sherrill; wholistic strategy, Heirdsfield és 

mtársai) 

8 ⋅ 999 = 8 ⋅ (1000 - 1) = 8000 – 8 = 

7992 

5 Kvadratikus disztribúció (quadratic distribution, 

Hope, & Sherrill) 

49 ⋅ 51 = 502 - 12 

6 Általános faktorizálás, egyik vagy mindkét tényező 

szorzattá bontása (general factoring, Hope, & 

Sherrill) 

25 ⋅ 48 = 5 ⋅ 5 ⋅ 48 = 5 ⋅ 240 = 1200 

25 ⋅ 48 = 5 ⋅5 ⋅ 2 ⋅ 24 

7 Felezés-duplázás: az egyik tényezőt felezi, a másikat 

duplázza (half-and-double, Hope, & Sherrill) 

12 ⋅ 16 = 6 ⋅ 32 = 6 ⋅  30 + 6 ⋅ 2 

74 Felezés-duplázás, szubsztrakcióval 12 ⋅ 16 = 6 ⋅ 32 = 6 ⋅ (40 − 8) = 6 ⋅
40 − 6 ⋅ 8 

8 Maradék nélkül osztható részekre bontás (aliquot 

parts, Hope, & Sherrill) 
25 ⋅ 48 =

100

4
⋅ 48 = 100 ⋅

48

4
= 1200  

81 Maradék nélkül osztható részekre bontás, az egyik 

tényező átalakítása 

12 ⋅ 250 = 12 ⋅ 500 : 2 

150  ⋅ 6 = 150 : 10 : 2 + 150 
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31. táblázat. A vizsgálat  során elkülönített szorzási stratégiák (folytatás) 
Stratégia Példa  

50 „Ismert szabály” alkalmazása „Ha egész számot tízzel szorzunk, a 

szám mögé írunk egy nullát” 

51 „Algebrai azonosság” alkalmazása, összeg négyzete 11 ⋅ 11 = (10 + 1) ⋅ (10 + 1) = 102  + 2 ⋅
 10 ⋅ 1 + 12 

52 „Algebrai átalakítás” 12 ⋅ 250 = 10 ⋅ 200 + 20 ⋅ 50, mert 2 ⋅
 200 = 8 ⋅ 50, ehhez a 12 ⋅ 50-et 

hozzáadjuk, az 20 ⋅ 50 

55 Emlékezeti előhívás (retrieval of a numerical 

equivalent, Hope, & Sherrill, Basic fact strategy 

Heirdsfield és mtársai)) 

„Ezt már fejből tudom”, „Erre 

emlékszem” 

9 Exponenciális faktorizálás (exponetial factoring, 

Hope. & Sherrill) 

32 ⋅ 32 = 25 ⋅ 25 = 210  = 1024 

91 „Tízeseket a tízesekkel és egyeseket az egyesekkel” 

szoroz az összeadás mintájára 

15 ⋅ 16 = 10 ⋅ 10 + 5 ⋅ 6 

92 „Tízeseket a tízesekkel és egyeseket az egyesekkel” 

szoroz, majd hozzáadja még egyszer az egyik 

tényezőt 

15 ⋅ 16 = 10 ⋅ 10 + 5 ⋅ 5 + 15 

93 Kétjegyű számmal való szorzás során a tízesekkel 

kezd, majd hozzáadja még egyszer az egyik tényezőt 

19 ⋅ 21 = 19 ⋅ 2 ⋅ 10 + 21 

94 Kétjegyű számmal való szorzás során a tízesekkel 

kezd, majd ehhez hozzáadja az egyik tényező 

helyiérték szerinti felbontással kapott tagjainak 

szorzatát 

12 ⋅ 15 = 12 ⋅ 10 + 10 ⋅ 5 

95 „Tízeseket a tízesekkel és egyeseket az egyesekkel” 

szoroz 

24 ⋅ 24 = 25 ⋅ 24 + 5 ⋅ 25 

96 Szubsztraktív disztribúció 2. változat 15 ⋅ 48 = 15 ⋅ 50 - 48 ⋅ 2 

97 Az egyik tényező egyeseivel való részletszorzatok 

hiányoznak 

32 ⋅ 32 = 32 ⋅ 30 + 2 ⋅ 30 

98 Helyiérték figyelembevétele nélkül számol 52 ⋅ 120 = 5  ⋅ 120 + 2 ⋅ 120 

100 Egyéb, az előzőektől különböző, helytelen 

eredményre vezető stratégia 

12 ⋅ 16 = 12 + 16 

19 ⋅ 21 = 20 ⋅ 20 

8 ⋅ 999 = 8 ⋅ 99 + 8 ⋅ 9 

8 ⋅ 999 = 8 ⋅ 900 + 9 ⋅ 3 

8 ⋅ 99 = 8 ⋅ 90 + 9 ⋅ 1 

8 ⋅ 4211 = 8 ⋅ 4000 + 200 ⋅ 11 

Az egyéb, az előzőektől különböző, helytelen eredményre vezető stratégiák közé sorolt összes 

esetet nem soroltuk fel a táblázatban, ide tartozott pl. a 25 ⋅ 48 = 2 ⋅ 5 + 4 ⋅ 8 számítási stratégia 

is.  

 

A Matematika Tudásszintmérő Teszt jóságmutatói 

A kulcsfontosságú tesztjellemzők biztosításáról a tesztfejlesztés részben már beszéltünk. Úgy 

véljük, a tesztre teljesül az objektivitás és validitása is megfelelő. A matematika tudásszintet 

mérő papír-ceruza alapú teszt mindkét változata 12 feladatot, 69 itemet tartalmazott. A 

tesztfejlesztést követően kapott tesztet 3 budapesti iskola hat osztályában használtuk fel. A 

mintából hatan hiányoztak a tudásszintmérő íratásakor, így a vizsgálat 148 tanuló eredményeit 

tükrözi. Az A változatot 73 fő oldotta meg, Cronbach-α = 0,94, átlag 34,14, szórás: 15,03. A B 

változatot 75 fő oldotta meg, Cronbach-α = 0,96, átlag 32,67, szórás: 17,16. A reliabilitás értéke 

mindkét tesztváltozat esetén magasabb, mint 0,90, vagyis a teszt megbízhatóan mér (Nagy, 

1975). Lányok (77 fő) esetén a teszt reliabilitása Cronbach-α = 0,95, fiúk (71 fő) esetén pedig 

Cronbach-α = 0,96. A reliabilitás értéke minden osztályban jó volt (Cronbach-α értéke 0,87 és 
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0,97 közötti). Tehát a vizsgált iskolák tanulóinak teljesítményét jól méri a teszt, a H1b 

hipotézisünk beigazolódott.  

A Matematika Tudásszintmérő Teszt elemzése  

Megvizsgáltuk a Matematika Tudásszintmérő Teszt feladatait a mért tartalmak közötti 

korrelációk szerint. Majd klaszteranalízis segítségével azt figyeltük meg, hogyan kapcsolódnak 

egymáshoz az egyes mért tartalmak, ill. az egyes feladatok. A teszt feladatait a mért tartalom 

szerint 11 csoportra oszthatjuk. Minden csoport között pozitív korreláció van, ezek szinte 

mindegyike szignifikáns kapcsolatot fejez ki (p < 0,05). Magas korrelációt figyelhetünk meg a 

törtbővítés és az aránybővítés között (r = 0,846), az egyenes arányosság és a 

mértékegységátváltás között (r = 0,743).  Közepes (0,4-0,7 közötti) korrelációt találunk a 

számok szorzása és az egyenes arányosság, a mértékegységátváltás, a szögfajták között. Szintén 

közepes a korreláció mértéke az aránybővítés és egyenes arányosság között, ugyanígy a 

törtrészszámítás és egyenes arányosság, mértékegységátváltás, fordított arányosság, 

százalékszámítás, szögfajták között, valamint az egyenes arányosság és az összeadás, 

százalékszámítás, kockatérfogat, szögfajták között, továbbá a mértékegységátváltás és az 

összeadás, a százalékszámítás, kockatérfogat, szögfajták között, a százalékszámítás és 

kockatérfogat, szögfajták között. Tehát a számok szorzása és az egyenes arányossági feladatok 

megoldása összefüggenek. 

A feladattípusokra és a feladatokra is klaszteranalízist végeztünk, a legközelebbi 

szomszéd távolságszámítási elv és a négyzetes euklideszi távolság számítási eljárás alapján 

kapott eredmények szerint öt feladattípus kapcsolódik egybe szorosan: a százalékszámítás és a 

kockatérfogat számítása, majd a mértékegységátváltás, ezután a természetes számok 

összeadása, ezt követi a fordított arányosság. A kapott koefficiensek (118; 171; 220; 292; 418; 

605; 1066; 1498; 2251; 6693) alapján az előbbi hasonlósági csoporthoz először az aránybővítés 

társul, majd a következő lépésben a törtbővítés az aránybővítéses fürthöz szorosan 

összekapcsolódik. Hozzájuk csatlakozik a szögfajták, majd a törtrész számítás feladattípus. Az 

egész számok szorzása az utolsó előtti lépésben kapcsolódik be a fürtalkotásba. Végül az 

egyenes arányossággal lesz teljes a klaszter.  

A koefficiensek alapján (212; 218; 218; 249; 289; 427; 622; 1228; 2947; 3496; 4108) 

látható, a 8. és 9., illetve a 10. és 11. feladatok szorosan összekapcsolódnak egy-egy kisebb 

klaszterbe, majd a 8. feladathoz csatlakozik a 12. feladat, majd a 6. feladat. A 10. és 11. feladatot 

tartalmazó kis fürt összekapcsolódik a 6. feladat hasonlósági csoportjával. Majd ehhez a 

nagyobb hasonlósági csoporthoz kapcsolódik a 7. feladat. Majd az ezt követő lépésekben a 

következő feladatok kapcsolódnak be rendre a fürtalkotásba: a 4., 3., 2. feladat, majd végül az 

egész fürthöz társul a az 1. és 5. feladatból álló kis fürt. Lépésenkénti analízist is végeztünk a 

feladatokra. Az itemkihagyásos reliabilitás vizsgálata során azt tapasztaltuk, ha törlünk 

itemeket a tesztből, annak reliabilitása nem javulna, hanem romlana 0,003-0,005-del. 

 

A matematika feladatok megoldottsága 

A Matematika Tudásszintmérő Teszten a teljes mintán az átlag 32,15 pont volt (az 

átlagteljesítmény 46,59 %), módusz 27, medián 30. A teljesítmények mediánja nagyobb, mint 
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a módusz, és kisebb, mint az átlag, ezért a 16. ábrán látható eloszlást figyelhetjük meg. A 

teljesítmények szórása 16,43. A 154 fős mintán elért pontszám relatív gyakoriságát vizsgálva 

megállapítható, hogy az eloszlás egymóduszú, azaz a mért tudást tekintve a minta homogénnek 

tekinthető. A leggyakoribb elért pontszám 27 pont, illetve az ehhez közeli 29 pont volt, ezeket 

hét-hét tanuló érte el. 20% alatt 23 tanuló, a teljes minta 14,9 százaléka, 90% fölött 8 tanuló 

teljesített.  

 

 

16. ábra A teljes minta Matematika Tudásszintmérő Teszten elért eredményének eloszlása, 

negyedik vizsgálat 

A 17. ábrán a Matematika Tudásszintmérő Teszten elért eredmények összehasonlítását 

láthatjuk nemek szerint bontásban. Az ábrán látható, hogy a fiúk 19,20 százaléka és a lányok 

11,20 százaléka ért el 20%-osnál gyengébb teljesítményt a teszten. A fiúk átlagteljesítménye 

47,09% volt, a lányoké pedig 46,14%. A fiúk 4,10 százaléka, míg a lányok 6,20 százaléka ért 
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el legalább 90%-os teljesítményt. 

 

17. ábra A Matematika Tudásszintmérő Teszten elért eredmények összehasonlítása nemek 

szerint, negyedik vizsgálat 

Iskolák és osztályok közötti különbségek 

A H8b 1)  hipotézis szerint a vizsgált iskolák tanulóinak a Matematika Tudásszintmérő Teszten 

nyújtott teljesítménye szignifikánsan egymástól. Ez a hipotézisünk beigazolódott. 

Az egyes iskolákra jellemző adatok olvashatók ki a 32. táblázat adataiból.  

 

32. táblázat. Az iskolák Matematika Tudásszintmérő Teszten nyújtott teljesítménye a negyedik 

vizsgálat során 

 Iskolák 1. 2. 3. Összesen 

átlag 44,08 22,91 28,16 32,15 

szórás 13,39 13,79 11,18 16,43 

minimum 12   0   0   0 

maximum 67 52 53 67 

Az iskolák közötti különbségekmegálapítására homogenitásvizsgálatot és a varianciaanalízist 

végeztünk. A Levene-féle próba esetén F = 1,89, p = 0,16-t kaptuk, amire p > 0,05 teljesül, 

vagyis a részminták által reprezentált populációkban a szórások megegyeznek. Az ANOVA 

Fischer-féle F értéke 42,59, p < 0,001, vagyis különbség figyelhető meg az egyes iskolák átlagai 

között. Mivel a részminták által reprezentált populációkban a szórások között nincsen 

szignifikáns különbség. Így a post-hoc elemzések során kapott Tukey’b –teszt eredményei 

szerint szignifikáns különbség van az iskolák tanulóinak teszten elért eredményei között. Az 

iskolák két csoportra oszthatók, a 2-es és a 3-as iskola teszteredménye szignifikánsan nem tér 

el egymástól, míg az első iskola eredménye ettől szignifikánsan magasabb. 

A 18. ábrán látható, hogy az első iskola tanulói között senki sem teljesített 10% alatt, 

míg a 2. iskolában az iskola tanulóinak 16,2%-a, a harmadik iskola tanulóinak pedig 4%-a ez 

alatt teljesített. Az első iskolában az iskola tanulóinak 13,1%-a, a másik két iskolában egyetlen 
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tanuló sem nyújtott legalább 90%-os teljesítményt. Az első iskolában volt a legmagasabb az 

átlagteljesítmény, ott 63,9% volt, a másik két iskolában pedig szemmel láthatóan is 

szignifikánsan alacsonyabb, a második iskolában 33,2 %, míg a harmadik iskolában 40,8%. Ez 

a különbség az ábrán is látható, az első és a második iskola eloszlása jobbra szimmetrikus, míg 

a harmadik iskoláé balra tolódó eloszlású. Ugyanakkor a három iskola közül az első iskola 

átlagteljesítménye volt magasabb, mint a teljes minta átlaga.  

 

 

18. ábra A Matematika Tudásszintmérő Teszten elért teljesítmények összehasonlítása iskolánként, 

negyedik vizsgálat 

Az egyes osztályok által elért eredmények terén megfigyelhető különbségeket mutatja a 33. 

táblázat. Az osztályok közötti különbségek végzett homogenitásvizsgálat és a varianciaanalízis 

során a Levene-féle próba esetén F = 1,69, p = 0,14-t kaptunk, amire p > 0,05 teljesül, vagyis a 

a részminták által reprezentált populációkban szórások megegyeznek.  

 

33. táblázat. Matematika Tudásszintmérő Teszt, negyedikvizsgálat, osztályok közötti 

különbségek 

Osztályok 1. 2 3 4 5 6 Összes 

Átlag 39,55 48,19 22,47 29,33 17,48 28,16 32,15 

Szórás 13,30 12,14 16,16 10,42 12,81 11,18 16,43 

Módusz 29 52 13 23 17 20 27 

Medián 37 50,50 16 29,50 17 27 30,25 

Minimum 12 24 0 7 0 4 0 

Maximum 63 67 52 48 45 53 67 

 

0

5

10

15

20

25

30

35

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

R
e
la

ít
v
 g

y
a

k
o

ri
s
á

g
 (

%
)

Teljesítmény (%pont)

1. iskola 2. iskola 3. iskola



115 
 

Az ANOVA Fischer-féle F értéke 22,46, p < 0,001, vagyis különbség figyelhető meg az egyes 

osztályok átlagai között. A részminták által reprezentált populációkban a szórások között 

nincsen szignifikáns különbség, így a post-hoc elemzések közül ismét a Tukey’b –teszt mutatja, 

hogy szignifikáns különbség van az egyes osztályok teszten elért eredményei között. Az 

osztályokat három csoportra oszthatjuk, a 3. és a 5., a 4. és 6. osztály, valamint az 1. és 2. osztály 

tartoznak egy csoportba. Egy másik felosztás szerint az egyik csoportot a 3. osztály, a másik 

csoportot a 4., 5. és 6. osztály, míg a harmadik csoportot a legjobb teljesítményű 1. és 2. osztály 

alkothatja. 20 százaléknál gyengébb teljesítményt ért el az 1. osztály tanulóinak 3,4 százaléka, 

a 2. osztály tanulóinak 0 százaléka, a 3. osztály tanulóinak 47,1 százaléka, a negyedik osztály 

tanulóinak 8,3 százaléka, az ötödik osztály tanulóinak 37 százaléka és a hatodik osztály 

tanulóinak 8 százaléka. A 90 százalékot elért tanulók a legnagyobb arányban az első iskola 

tanulói közül kerültek ki, az első osztályból 10,3%, a második osztályból 15,6 %, a többi 

iskolából senki sem érte el ezt a teljesítményszintet, de még a 80 %-os szintet sem.  

 

5.4.2.  Az egyes tesztek összefüggései egymással és a háttérváltozókkal 

 

A Matematika Tudásszintmérő Teszt és a Szorzási Stratégiák Teszt összefüggései  

A H8a hipotézis szerint a vizsgált tanulók két teszten nyújtott teljesítménye közepesen korrelál 

egymással. Ez a hipotézis nem igazolódott be. A Matematika Tudásszintmérő Teszten elért 

eredmények és a Szorzási Stratégiák Teszten elért eredmények között gyenge (r = 0,39) 

korreláció áll fenn (p < 0,001). A Szorzási Stratégiák Teszt és a Matematika Tudásszintmérő 

Teszten minden feladattípusa között pozitív és legalább 0,05-os szinten szignifikáns a 

korreláció. A Szorzási Stratégiák Teszt eredménye a törtrészszámítással (r = 0,33) és az egyenes 

arányossággal (r =  0,37) korrelál a leginkább, de ezek is gyenge kapcsolatnak tekinthetők.  

 

A Szorzási Stratégiák Teszt összefüggései a háttérváltozókkal 

 

A háttérkérdőív egyik tétele a tanulók előző félévi matematika osztályzatára kérdezett rá, 

hogy összevethessük a tesztek eredményeivel.  

A 34. táblázatban a matematika osztályzatok százalékos megoszlását láthatjuk iskolánként. 

 

34. táblázat. A matematika osztályzatok százalékos megoszlása iskolánként, negyedik 

vizsgálat 

Iskolák  Matematika félévi osztályzatok  

 Felmentett 1 2 3 4 5 Átlaga (szórás) 

1.      0 fő 

     0 % 

0 fő 

0 % 

   1 fő 

1,6 % 

   5 fő 

8,2 % 

30 fő 

49,2 % 

25 fő 

41 % 

4,3 

(0,69) 

2.      3 fő 

4,4 % 

0 fő 

  0% 

   2 fő 

2,9 % 

22 fő 

32,4% 

27 fő 

39,7 % 

14 fő                      

20,6% 

3,65 

(1,12) 

3.      0 fő 

     0 % 

0 fő 

0 % 

   1 fő 

   4 % 

  0 fő 

  0 % 

13 fő 

52 % 

11 fő 

44 % 

4,36 

(0,96) 

Összesen      3 fő 

1,9 % 

0 fő 

0 % 

   4 fő 

2,6 % 

37 fő 

17,5 % 

70 fő 

45,5 % 

50 fő 

   32,5 % 

4,02 

(0,96) 
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Az iskolák közötti különbségek a varianciaanalízis segítségével állapítottuk meg (Levene-

próba). A részletes vizsgálat, a Tukey’b –teszt eredményei szerint szignifikáns különbség van 

az iskolák tanulóinak osztályzatai között. A matematika átlag alapján végzett 

homogenitásvizsgálat itt azt mutatta, hogy az iskolák két csoportra oszthatók, a 2-es a 

matematikából kicsit gyengébb (3,65) átlagot elérő iskola (p < 0,017), míg a másik kettő átlaga 

szignifikánsan nem különbözik egymástól (4,30 és 4,36). A matematika jegyek szórása 

mindhárom iskolában egyhez közeli. Bukás egyik iskolában sem volt, és az elégséges 

osztályzatot is elenyésző számban szereztek matematikából a tanulók. A jobb eredmények 

magyarázhatók azzal is, hogy a hatodikos tananyag még nem szórja szét nagyon a gyerekeket 

tudásszint szerint. Hasonló adatokat kapunk a tanulmányi átlagokra is. A leggyengébb átlagot 

a 2. iskolában érték el a vizsgált osztályok (3,72) (p < 0,001), a másik két iskola nem különbözik 

egymástól szignifikánsan, a 3. iskolában 4,63, míg az 1. iskolában a tanulmányi átlag 4,70. A 

matematika osztályzatok eloszlása nem hasonló a normáleloszláshoz. A teljes minta átlaga 

matematikából 4,02, a teljes minta tanulmányi átlaga pedig 4,26.   

Az 1. iskolában senki sem volt felmentett, elégtelen osztályzata sincs a vizsgált 

tanulóknak matematikából, 1 fő elégséges, 5 fő közepes osztályzatot szerzett. A matematika 

átlag 4,3, ez a 30 fő jó és 25 jeles osztályzatnak köszönhető. A 2. iskolában 3 fő volt felmentett, 

elégtelen osztályzata itt sincs a vizsgált tanulóknak matematikából, 2 fő elégséges, 22 fő 

közepes (a tanulók 8,2 százaléka) osztályzatot szerzett. A matematika átlag jóval kisebb, mint 

a másik két iskolában (3,65), mert arányaiban kevesebb jó (27 fő, ami a tanulók 39,2 százaléka) 

és jeles (14 fő, a tanulók mintegy ötöde) osztályzat született. A 3. iskolában senki sem volt 

felmentett, elégtelen osztályzata sincs a vizsgált tanulóknak matematikából, 1 fő elégséges, 0 

fő közepes osztályzatot szerzett. A matematika átlag 4,36, ez a 13 fő jó (52%) és 11 fő (44%) 

jeles osztályzatot szerzett.  

A H8b 3) hipotézis vizsgálatára kiszámítottuk a tanulók tanulmányi átlagát. A fiúk 

tanulmányi átlaga 4,21, a lányoké 4,30. A kétmintás t-próbával végzett vizsgálat azt mutatta, 

hogy (F = 0,06, p =  0,808, t = -0,61, p = 0,544) a fiúk és a lányok tanulmányi átlaga között 

nincsen szignifikáns különbség. A matematika osztályzatuk átlaga között sem találtunk 

szignifikáns különbséget (a fiúké 4,00, a lányoké 4,04, F = 0,97, p = 0,326, t = -2,38, p = 0,812). 

A fiúk átlagteljesítménye a Matematika Tudásszintmérő Teszten 32,49 (szórás 17,81), a lányok 

átlagteljesítménye pedig 31,84 (szórás 15,18). A Levene-féle teszt szerint a a részminták által 

reprezentált populációkban a szórások szignifikánsan különböznek (F = 3,98, p = 0,048), de a 

kétmintás t-próba szerint a fiúk és a lányok átlagteljesítménye között nincs szignifikáns 

különbség (t = 0,25, p = 0,806), ez a hipotézisünk nem igazolódott be. 

A H3b hipotézis szerint a tanuló neme összefüggésbe hozható a szorzási stratégia 

használatával. A fiúk átlagteljesítménye a Szorzási Stratégiák Teszten 27,59 (szórás 11,07), a 

lányok átlagteljesítménye pedig 24,60 (szórás 10,95). A Levene-féle teszt szerint a a részminták 

által reprezentált populációkban a szórások szignifikánsan nem különbözőek (F = 0,07, p = 

0,79), és a kétmintás t-próba szerint a fiúk és a lányok átlagteljesítménye között nincs 

szignifikáns különbség (t = 1,68, p = 0,095). Ez a hipotézisünk nem igazolódott be. 

A 19. ábra a fiúk és a lányok által a teszteken elért eredményeket hasonlítja össze. (A 

Szorzási a Szorzási Stratégiák Tesztet, az Arányossági a Matematika Tudásszintmérő Tesztet 

jelöli.) 
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19. ábra A teszteken elért eredmények nemek szerinti összehasonlítása, negyedik vizsgálat 

A 19. ábra alapján leolvasható, hogy a szöveges feladatok megoldásában a fiúk közül többen 

teljesítettek 20 % alatt, mégpedig a fiúk csaknem ötöde (19,8%), míg a lányoknál ez az arány 

kevesebb, mint feleannyi, 9,6%. Azt is láthatjuk, hogy ugyanakkor a Szorzási Stratégiák 

Teszten a 20% alatt teljesítők között is több a fiú, mint a lány, de itt a különbség csupán 2,5 %, 

mivel a fiúk 11,1 %-a és a lányok 8,6%-a ért el 20-%nál kisebb teljesítményt. A Matematika 

Tudásszintmérő Teszten a fiúk közül értek el többen legalább 80 %-os teljesítményt, 11 %-uk 

a lányok 7,4 %-ával szemben. A Szorzási Stratégiák Teszt során kapott adatok alapján a 80% 

fölött teljesítők között is több a fiú, mint a lány, de itt a különbség jóval több. A fiúk mintegy 

fele, 43,8%-a, míg a lányoknak kevesebb, mint a harmada, 30,9 %-a ért el legalább 80 %-os 

teljesítményt. Összességében a fiúk mindkét teszt során magasabb teljesítményt mutattak. 

A Matematika Tudásszintmérő Teszt összefüggései a háttérváltozókkal 

H8c 4) hipotézis szerint: A Matematika Tudásszintmérő Teszten elért eredmény közepes 

korrelációt mutat a félévi matematika osztályzattal. Ez a hipotézisünk beigazolódott, a 

korreláció mértéke közepes.  

A Szorzási Stratégiák Teszt eredménye gyenge, pozitív korrelációban van az iskolába járás 

szeretetével (r = 0,17, p < 0,04) és az „Azért tanulom a matematikát, mert érdekes” vélekedéssel 

(r = 0,21, p < 0,01). Gyenge, negatív korrelációt figyelhetünk meg a Kérdőív a 

matematikatanulásról c. kérdőív néhány tételével, (szignifikanciaszint p < 0,05), ezek: „Ha 

nagyon könnyűnek tűnik egy matematika feladat, erős a gyanú, hogy elrontottam.” (r = -0,22), 

„Matematikaórán gyakran szorongok.” (r = -0,16), „A tanárom úgy gondolja, hogy mindent ő 

tud a legjobban.” (r = -0,26), „Szöveges feladat megoldásához elsőként a számokat kell 

0

5

10

15

20

25

30

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

R
e
la

tí
v
 g

y
a

k
o

ri
s
á

g
 (

%
)

Teljesítmény (%pont)

Arányossági fiúk Arányossági lányok

Szorzási fiúk Szorzási lányok



118 
 

megtalálni a feladat szövegében.” (r = -0,24), „A megoldáshoz a szöveges feladatban szereplő 

összes számot fel kell használni.” (r = -0,16), „Az okos tanuló jó matematikából.” (r = -0,19). 

A H3c) hipotézisünk szerint: A Szorzási Stratégiák Teszten elért eredmény korrelál a 

félévi matematika osztályzattal. Ez a hipotézisünk nem igazolódott be, a kettő között nem volt 

szignifikáns korreláció. 

A H8c 1-3) hipotézisünk vizsgálatára felvett kérdőív kiértékelése során közepesen erős 

korrelációt találunk a Matematika Tudásszintmérő Teszt eredménye és a matematikaversenyen 

való részvétel gyakorisága, a napi otthoni tanulási idő, a matematika órára való készülés ideje, 

a matematikajegy, a saját matematika teljesítménnyel való elégedettség, a továbbtanulási 

tervek, valamint a szülők iskolai végzettsége között. A korrelációk rendre 0,63; 0,50; 0,45; 0,42; 

0,51; apa esetén 0,49 és anya esetén 0,46  (p < 0,001). A többi háttérváltozóval gyenge kapcsolat 

mutatható ki.  

H8c 4) hipotézis szerint: A Matematika Tudásszintmérő Teszten elért eredmény 

korrelációt mutat a félévi matematika osztályzattal. Ez a hipotézisünk beigazolódott, a 

korreláció mértéke közepes. 

 

5.4.4. A vizsgálat eredményeinek összegzése 

A vizsgálat eredményeit összegezve arra a következtetésre jutottunk, hogy az általunk 

fejlesztett mérőeszközök alkalmasak a szorzási stratégiák feltérképezésére, háttérváltozókkal 

kapcsolatos összefüggések kimondására. A Szorzási Stratégiák Teszt jóságmutatója megfelelő, 

Cronbach-α = 0,95, átlag 26,16, szórás: 11,11. A Szorzási Stratégiák Teszt mindegyik 

feladattípusának megoldottsága 60% fölötti. A legkönnyebb a tanulók számára az egyjegyű 

szám szorzása négyjegyű számmal, illetve kétjegyű számmal volt (75% körüli megoldottság). 

A legnehezebben a kétjegyű szám szorzása volt kétjegyű számmal, itt a megoldottság alig 

haladja meg a 62%-ot. A tanulók teljesítménye között szignifikáns különbségeket 

tapasztaltunk. Regresszióanalízissel megállapítottuk, hogy 25 item már a variancia 99%-át 

megmagyarázza. Mivel azonban kutatásunk során szeretnénk minél több információt megtudni 

a tanulók stratégiahasználatáról, ezért a további vizsgálatok során a mérőeszközrövidítést 

elvetettük. 

A Szorzási Stratégiák tesztet kitöltő 154 fős budapesti mintában a tanulók 

átlageredménye 65,50 %, módusz 35 pont, medián: 29,29 pont volt. Jobbra tolódó eloszlást 

figyelhettünk meg. A teljesítmények szórása 11,08 pont. 20 % alatt teljesített a minta 9,1 %-a, 

90 % fölött pedig a minta 24 %-a. A tanulók 54,5 %-a ért el a 65,5 %-os átlagteljesítménynél 

jobb eredményt. A nemek között eltérést tapasztaltunk a teljesítményben. A fiúk 9,6%-a és a 

lányok 8,6%-a ért el 20%-osnál gyengébb teljesítményt a Szorzási Stratégiák Teszten. A fiúk 

átlagteljesítménye 68,97% volt, a lányoké pedig ettől 7,46%-kal kevesebb, 61,51%. A fiúk 

27,4%-a, míg a lányok 21%-a ért el legalább 90%-os teljesítményt.  

Az egyes iskolák között viszont nagy teljesítményszintbeli eltéréseket figyelhettünk 

meg. Az első és a harmadik iskola tanulói között senki sem teljesített 10 % alatt, míg a 2. 

iskolában az iskola tanulóinak 2,9%-a ez alatt teljesített. Az első iskolában az iskola tanulóinak 

13,1%-a, a második iskolában az iskola tanulóinak 41,2%-a, a harmadik iskolában pedig az 

iskola tanulóinak 4%-a nyújtott legalább 90%-os teljesítményt. Az első iskolában az 

átlagteljesítmény 69,4% volt, a második iskolában 71,7%, míg a harmadik iskolában 36,1%. 
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Az iskolák közötti különbségeket a varianciaanalízis segítségével vizsgáltuk. 

Megállapítottuk, hogy  szignifikáns különbség van az iskolák tanulóinak osztályzatai között. A 

matematika átlag alapján végzett homogenitásvizsgálat itt azt mutatta, hogy a 2-es a 

matematikából kicsit gyengébb (3,65) átlagot elérő iskola (p < 0,017), míg a másik kettő átlaga 

szignifikánsan nem különbözik egymástól (4,30 és 4,36). A matematika jegyek szórása 

mindhárom iskolában egyhez közeli volt. Hasonló adatokat kaptunk a tanulmányi átlagokra is. 

A leggyengébb átlagot a 2. iskolában érték el a vizsgált osztályok (3,72) (p < 0,001), a másik 

két iskola nem különbözik egymástól szignifikánsan, a 3 iskolában 4,63, míg az 1. iskolában a 

tanulmányi átlag 4,70. A matematika osztályzatok eloszlása nem hasonló a normáleloszláshoz. 

A teljes minta átlaga matematikából 4,02, a teljes minta tanulmányi átlaga pedig 4,26.   

A vizsgált tanulók szorzási teszten nyújtott teljesítménye közepesen korrelál az 

Matematika Tudásszintmérő Teszten elért eredménnyel. Ez a hipotézis nem igazolódott be. A 

Matematika Tudásszintmérő Teszten elért eredmények és a Szorzási Stratégiák Teszten elért 

eredmények között gyenge (r = 0,39) korrelációt találtunk (p < 0,001). 

A fiúk átlagteljesítménye a Matematika Tudásszintmérő Teszten 32,49 (szórás 17,81), 

a lányok átlagteljesítménye pedig 31,84 (szórás 15,18). A fiúk és a lányok átlagteljesítménye 

között nincs szignifikáns különbség (t = 0,25, p = 0,806). A szöveges feladatok megoldásában 

a fiúk közül többen teljesítettek 20 % alatt, mégpedig a fiúk csaknem ötöde, míg a lányoknál 

ez az arány 9,6%. Ugyanakkor a Szorzási Stratégiák Teszten a 20% alatt teljesítők között is 

több a fiú, mint a lány, de itt a különbség csupán 2,5 %, mivel a fiúk 11,1 %-a és a lányok 8,6%-

a ért el 20-%nál kisebb teljesítményt. A szöveges feladatok megoldásában is a fiúk közül értek 

el többen legalább 80 %-os teljesítményt, 11 %-uk a lányok 7,4 %-ával szemben. A Szorzási 

Stratégiák Teszt során kapott adatok alapján a 80% fölött teljesítők között is több a fiú, mint a 

lány, de itt a különbség jóval több. A fiúk csaknem fele, 43,8%-a, míg a lányoknak kevesebb, 

mint a harmada, csak 30,9 %-a ért el legalább 80 %-os teljesítményt. Összességében a fiúk 

mindkét teszt során magasabb teljesítményt mutattak. 

A Szorzási stratégiák teszten elért eredmény korrelál a félévi matematika osztályzattal. 

Ez a hipotézisünk nem igazolódott be, a kettő között nem volt szignifikáns korreláció. 

Közepesen erős korrelációt találtunk a Matematika Tudásszintmérő Teszten elért eredmény és 

a matematikaversenyen való részvétel gyakorisága között. Közepesen korrelált ez a teszt még 

a napi otthoni tanulási idővel, a matematika órára való készülés idejével, a matematikajeggyel, 

a saját matematika teljesítménnyel való elégedettséggel, valamint a szülők iskolai 

végzettségével. A többi háttérváltozóval gyenge kapcsolat mutatható ki. Számos gyenge vagy 

közepesen erős korrelációt találhatunk a Kérdőív a matematikatanulásról c. kérdőív több 

háttérváltozója között. 

A H6 c) hipotézis szerint: A Matematika Tudásszintmérő Teszten elért eredmény 

korrelációt mutat a félévi matematika osztályzattal. Ez a hipotézisünk beigazolódott, a 

korreláció mértéke közepes. 

A vizsgálat során további két hipotézisünk a hatodikos tanulók által alkalmazott szorzási 

stratégiákra vonatkozott. A vizsgálat során azt szerettük volna megtudni, milyen stratégiákat 

használnak sikerrel a hatodikos tanulók a fejben végzett szorzásra vonatkozó feladatok 

megoldása során.  
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A H4 hipotézisünk így szólt: A szakirodalomban feltárt racionális hibákat elköveti a budapesti 

hatodikos tanulók egy része. Ez a hipotézisünk beigazolódott, számos hibás stratégia 

használatát megfigyeltük (vö. De Smedt, Torbeyns, Stassens, Ghesquiére & Verschaffel, 2010).  

Hipotézisünk szerint a vizsgált hatodikos diákok a fejben végzett szorzási feladatok 

megoldásakor legalább ötféle stratégiát alkalmaznak. Ez a hipotézisünk beigazolódott. A 

mintában szereplő hatodikos tanulók egy része számos szorzási stratégiát ismer és helyesen 

használ. Kutatásunk szerint a matematikából gyengébb tanulók gyakrabban alkalmazták a (CO) 

számlálás stratégiát. Míg az ügyesebb tanulók számára akár kétjegyű szám kétjegyű számmal 

történő szorzásának eredményét tudják a szorzótáblából. A 20 ∙ 30 szorzat kiszámításakor 

megfigyelhettük egy ismert szabályt alkalmazását. A tanulók számos esetben alkalmazták a 

helyiérték szerinti balról jobba és a jobbról balra stratégiát, és annak számos, a szakirodalomban 

nem részletezett és emiatt nehezen tipizálható változatát. A gyengébb képességű magyar 

tanulók is alkalmazzák Hope és Sherrill (1987) által megfigyelt „fejben elképzelem leírva” 

startégiát. A 2. iskola tanulói szemmel láthatóan is szignifikánsan többen alkalmazták ezt a 

stratégiát, volt, aki valóban le is írta a részletszámításokat. Ezt figyelembe véve már nem 

mondhatjuk, hogy ebben az iskolában voltak legeredményesebbek a hatodikos tanulók a 

fejszámolásban. Az így számolókat a vizsgálat során kivettük a mintából. 

 A tanulók egy kis része a kerek tízesekhez, százasokhoz közeli számokat mint egy 

egészet fogja fel, és azzal számol, a megfelelő mértékben csökkenti vagy növeli a szorzatot. Így 

a 8 ∙ 99 kiszámítása történhet úgy, hogy először kiszámítja a 8 ∙ 100 szorzatot, majd ebből kivon 

1 ∙ 8-at. A 17 ∙ 99, 8 ∙ 999 szorzások számításakor többen is alkalmazták ezt a stratégiát. Ezeken 

kívül még egyéni stratégiák alkalmazása is megfigyelhető. 

A szorzáskor a gyenge matematikai osztályzattal rendelkező tanulók szignifikánsan 

többször hibáztak. A tanulók többsége mereven ragaszkodott egyetlen stratégia 

alkalmazásához, akkor is, ha az nem volt hatékony, azaz adaptív De Smedt, Torbeyns, Stassens, 

Ghesquiére és Verschaffel (2010) definíciója szerint.  
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5.5. Az ötödik vizsgálat eredményei 

 

A szorzási stratégiák vizsgálata és fejlesztése 6. évfolyamos tanulók körében 

 

A kutatás során célunk volt annak vizsgálata, mennyire sikeresek a hatodik osztályos tanulók 

két- és háromjegyű számokkal fejben végzett szorzás során és a szorzással megoldható 

szöveges feladatok megoldásában. A következő kérdésekre kerestük a választ: Milyen 

különbségek vannak az egyes tanulók gondolkodása között? Milyen típushibákat ejtenek a 

hatodikos tanulók fejben szorzás közben? Hogyan lehetne csökkenteni a tanulók eredménye 

közötti különbséget csökkenteni? Melyek a legeredményesebb szorzási stratégiák az egyes 

feladatok megoldása során?  A fejlesztés során hogyan változik a fejben számolás és a szorzásra 

vonatkozó szöveges feladatok eredményessége? A különböző matematikai képességszinten 

levő tanulókra egyformán hat-e a fejlesztő program? A 2016 tavaszán végzett, egy hónapig 

tartó fejlesztő kísérletbe budapesti hatodikos tanulók (N = 270) közül két osztályt vontunk be, 

egyikben történt fejlesztés. Egy másik nyolcévfolyamos gimnázium egyik hatodikos osztálya 

jelentette a kontrollcsoportot. A tartalomba ágyazott fejlesztés osztálykeretek között, 

matematikaórákon történt, 20 alkalommal, a matematikaóra második felében (Vígh-Kiss, 

2016c).  

 

5.5.1. Az adatelemzés módszerei 

 

Az adatok elemzése SPSS 17 program segítségével történt. A vizsgálat eredményeit statisztikai 

számításokkal támasztottuk alá. A mintában a fiúk és a lányok arányát a 35. táblázatban 

jegyeztük le.  

 

35. táblázat. Az ötödik vizgálat mintájának összetétele 

Iskola Osztály Összesen (fő) Fiúk Lányok Fiúk aránya % 

 1. 17 8 8 40,05 

I. 2. 24 12 12 50,00 

 3. 27 15 12 55,56 

 4. 25 5 20 20,00 

II. 5. 32 17 15 53,13 

 6. 29 16 13 55,17 

III. 

7. 28 16 12 57,14 

8. 28 16 12 57,14 

IV. 9. 30 19 11 63,33 

V. 10. 30 17 13 56,67 

Összesen (fő)  270 141 129 52,22 
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A 270 fős mintában 141 fő fiú volt, így a fiúk aránya 52,22%, a minta nemek szerinti eloszlása 

így majdnem kiegyenlített. Ez alól kivétel: a 4. osztályban a mérés felvételekor többen 

hiányoztak, így a fiúk ott 20%-ban képviseltették magukat.  

A mintában szereplő tanulók életkorára, félévi matematika osztályzatára vonatkozó 

statisztikát tartalmaz a 36. táblázat. 

 

36. táblázat. Az ötödik vizsgálatban részt vevő tanulók átlagéletkora, félévi matematika 

osztályzata 

Osztály Életkor Matematika osztályzat 

 Átlag Szórás Átlag Szórás 

1. 12,85 0,56 3,71 0,99 

2. 12,66 0,43 3,75 0,94 

3. 12,39 0,53 3,52 1,34 

4. 12,61 0,34 4,36 0,70 

5. 12,30 0,41 4,06 0,79 

6. 12,31 0,40 4,11 0,79 

7. 12,73 0,55 3,61 0,92 

8. 12,83 0,58 3,60 0,97 

9. 12,77 0,56 3,57 0,63 

10. 12,70 0,55 3,87 0,90 

Összesen 12,60 0,53 3,84 0,90 

 

A mintában szereplő tanulók átlagéletkora 12,60 év (szórás 0,53), a félévi matematika 

osztályzat átlaga 3,84 (szórás 0,90). A legjobb matematika átlagot elért osztályok a 4., 5. és a 

6. osztály, míg a 3. és 9. osztály a leggyengébb. 

Az előmérés során alkalmazott mérőeszközök reliabilitása megfelelő (Cronbach-α 

értéke 0,87 és 0,96 közötti) volt, H1a hipotézisünk beigazolódott, ahogy ezt a 37. táblázatban 

láthatjuk.  

 

37. táblázat. Az előmérés során alkalmazott mérőeszközök reliabilitása 

Mérőeszköz Itemszám Kísérleti csoport Kontrollcsoport 

Szorzási stratégiák 

előteszt 

20 0,92 0,92 

Matematikatanulásra 

vonatkozó tanulói nézetek 

kérdőív 

34 0,87 0,87 

Tudásszintmérő Teszt 49 0,89 0,89 

Háttérkérdőív 56 0,96 0,95 

 

A mérőeszköz itemszáma befolyásolja a reliabilitást (Horváth, 1990), és ahogy a táblázatból 

láthatjuk, kisebb itemszám itt is általában alacsonyabb értékkel jár együtt. Ugyanakkor 

számottevő különbséget nem tapasztalunk az értékek között egyik vizsgált csoportban sem, 

azaz mérőeszközünk alkalmas a vizsgálandó konstruktum mérésére. 
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Az előteszten külön vizsgáltuk a fiúk és a lányok által elért eredményeket, ezt foglaltuk össze 

a 38. táblázatban. 

 

38. táblázat. A Szorzási Stratégiák előteszten elért eredmények 

Osztály  Fiúk Lányok Összesen 

Mutatók Átlag 

(%pont) 

Szórás Átlag 

(%pont) 

Szórás Átlag 

(%pont) 

Szórás 

1. 15,24   7,00 15,36  5,82 15,29   6,33 

2. 13,33   4,13 13,57  6,11 13,45   5,11 

3. 32,14 43,82 42,48 40,00 37,88 42,53 

4. 36,14 20,06 38,29 22,27 36,80 20,11 

5. 37,14 34,02 31,43    22,78 34,11 28,84 

6. 41,76 46,20 35,00 18,62 38,03    34,02 

7. 49,52 22,71 47,50 26,62 48,37 24,67 

8. 45,24 29,95 45,00 24,80 45,10 26,58 

9. 48,05 20,24 44,81 24,42 46,00 22,88 

10. 34,51   4,82 35,16   4,89 34,86   4,82 

Összesen 35,86 36,20 36,43 33,22 36,16 34,11 

 

Az 1. és a 2. osztály tanulói közül néhányan a szorzásokat írásban számolták a teljes teszt során, 

így ezt a 11 tanulót kivettük a további vizsgálatokból. Ezáltal ebben a két osztályban kaptuk e 

leggyengébb eredményeket a szorzási stratégiákat vizsgáló előteszten. A teszt nehéznek 

bizonyult a mintában szereplő tanulók számára, mert az elért teljesítmény kevesebb volt, mint 

40 %pont. A legjobban a 7., 8. és 9. osztály teljesített, de ők sem érték el az 50%-os 

teljesítményt. H2c és H2d hipotéziseink beigazolódtak, szignifikáns különbséget találtunk az 

egyes iskolák, osztályok Szorzási Stratégtiák Teszten mért teljesítménye között. 

A fejlesztő kísérletben való részvételre két tanárt kértünk fel, az 5. osztályban tanító vállalta el 

a fejlesztést, és a 10. osztály lett a kontrollcsoport. 

A vizsgált tanulók a fejben végzett szorzási feladatok megoldásakor legalább ötféle, 

helyes eredményre vezető stratégiát alkalmaznak, erre vonatkozó H2a hipotézisünk 

beigazolódott.  

A H4 hipotézisünk beigazolódott. A tanulók sikeresen alkalmazták a következő 

stratégiákat: az egyjegyű számok fejben szorzására leggyakrabban az emlékezeti előhívás 

(tények) stratégiát, a kétjegyű számokkal való szorzáskor pedig a helyi érték szerinti 

stratégiákat (ld. Lemaire & Siegler, 1995). A kétjegyű számok szorzásakor a 4-es és 5-ös 

matematikaosztályzattal bíró gyerekek alkalmazták a holisztikus stratégiát. A tanulók körében 

megfigyeltük a „fejben elképzelem leírva” stratégia használatát (vö. Hope & Sherill, 1987; 

Csíkos, 2013; Vígh-Kiss, Csíkos & Steklács, 2013). A gyengébb tanulók pedig a fejszámolás 

során is leírták a részeredményeket, őket a további vizsgálatból kizártuk. 
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Kutatásunk során vizsgáltuk a tesztek egymással vett korrelációját, valamint a 

háttérváltozókkal való kapcsolatának szorosságát. A Matematika Tudásszintmérő Teszten elért 

eredmények és a Szorzási Stratégiák Teszten elért eredmények között gyenge (r = 0,33) 

korreláció áll fenn (p < 0,001), H8a hipotézisünk beigazolódott.  

A Szorzási Stratégiák Teszten elért eredmény és a félévi matematika osztályzat között 

nem volt szignifikáns korreláció, a H3c hipotézisünk nem igazolódott be.  

A Matematika Tudásszintmérő Teszten elért eredmény közepesen erős (0,41) 

korrelációt mutat a félévi matematika osztályzattal, H8c 4) hipotézisünk beigazolódott.  

Az utómérés során kétféle tesztet vettünk fel, a késleltetett utóteszt során pedig egy 

kérdőívet és egy háttérkérdőívet. A mérőeszközökre vonatkozó reliabilitás-mutató értékek 

megfelelők voltak, a Cronbach-α értékeket a 39. táblázatban találjuk. 

 

39. táblázat. Az utótesztek és késleltetett utótesztek reliabilitás-mutatói 

Mérőeszköz Itemszám Kísérleti csoport Kontrollcsoport 

Szorzási stratégiák utóteszt      40 0,94 0,94 

Matematika Tudásszintmérő Teszt 69 0,95 0,94 

Szorzási stratégiák késleltetett utóteszt 20 0,85 0,84 

Tanulási szokások kérdőív 49 0,91 0,90 

 

Amint a táblázatból kiolvasható, a nagyobb itemszámú mérőeszközeink reliabilitása magasabb, 

de mindegyik megfelelő jóságmutatóval rendelkezik. A Cronbach-α értéke 0,84 és 0,95 közötti 

a kísérleti és a kontrollcsoport esetében is.  

A következők két táblázatban (40. táblázat és 41. táblázat) a két mérési pontban az egyes tesztek 

legfontosabb statisztikai mutatóit mutatjuk be. 

40. táblázat. Az előtesztek fontosabb statisztikai mutatói 

Mérőeszköz Kísérleti csoport Kontrollcsoport 

 Átlag (%pont) Szórás 

(%pont) 

Átlag (%pont) Szórás 

(%pont) 

Szorzási stratégiák előteszt 34,11 28,84 34,86 16,82 

Tudásszintmérő Teszt 52,01 15,18 54,03 17,85 

Az előteszt kétféle tesztváltozatán elért teljesítmény közötti különbség inszignifikáns volt, ezért 

a két tesztváltozatot egy mutató alatt szerepeltetjük. A Szorzási stratégiák előteszt 34,11%-

pontos és 34,86%pontos átlagos megoldottsága azt jelzi, hogy a minta számára a teszt túl 

nehéznek tűnt, a szórások is viszonylag nagyok. Az 57. táblázatban az utóteszt fontosabb leíró 

statisztikai mutatóit találhatjuk. A tesztek megoldottsága 50%-nál nagyobb, ami a nagymintás 

vizsgálatoknál megszokott átlagokhoz hasonló (ld. pl. Csapó, 1998a). A szórásértékek 

viszonylag magasak. A kontrollcsoportban nagyobb a relatív szórások értéke: a szorzási 

stratégiák teszten 73,11 szemben a kísérleti csoport 57,38-os relatív szórásával. A matematika 

teszten a kísérleti csoport szórása 44,57, míg a kontrollcsoporté 76,55. 
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41. táblázat. Az utótesztek fontosabb statisztikai mutatói 

Mérőeszköz Kísérleti csoport Kontrollcsoport 

 Átlag 

(%pont) 

Szórás 

(%pont) 

Átlag 

(%pont) 

Szórás 

(%pont) 

Szorzási stratégiák utóteszt 50,33 28,88 45,45 33,23 

Matematika Tudásszintmérő Teszt 72,65 32,38 51,89   39,71 

 

A kísérleti és a kontrollcsoport eredményeit hasonlítjuk össze a 42. táblázat alapján.  

42. táblázat. A kísérleti és a kontrollcsoport összehasonlítása az előtesztek alapján 

Mérőeszköz Levene-próba Kétmintás t-próba 

 F p < |𝑡| p < 

Szorzási stratégiák előteszt 1,18 0,28 0,84 0,20 

Tudásszintmérő Teszt 2,96 0,09 0,93 0,18 

A kontrollcsoportot Csíkos (2007) által tanácsoltak szerint úgy választottuk ki, hogy a kísérleti 

csoport átlagától ne térjen el szignifikánsan. A szórásokat Levene-próba segítségével 

hasonlítottuk össze. Amint láthatjuk, a Levene-féle F -próba és a hozzá tartozó kétmintás t-

próba eredményei arra utalnak, hogy a két csoport között nincs szignifikáns különbség. A 

kísérlet utáni adatokat találjuk a 43. táblázatban. 

43. táblázat. A kísérleti és a kontrollcsoport összehasonlítása az utótesztek alapján 

Mérőeszköz Levene-próba Kétmintás t-próba 

 F p < |𝑡| p < 

Szorzási stratégiák utóteszt 6,39 0,02 25,09 0,001 

Matematika Tudásszintmérő Teszt 4,01 0,05 27,35 0,001 

Az egyhónapos tartalomba illesztett fejlesztésnek köszönhetően szignifikáns különbség alakult 

ki a két csoport teljesítménye között. Ezt támasztják alá a táblázatból kiolvasható Levene-féle 

F -próba és a kétmintás próba értékei.  

Szerettük volna megtudni, hogy a kísérlet melyik képességszinten található tanulókra hogyan 

hatott, ezért a tanulókat öt csoportra osztottuk (vö. Csíkos, 2007). A 20. ábrán a tanulók 

képességszintjének változását mutatjuk. (A leggyengébb teljesítményű jele 1-es, a legjobb 

teljesítményűé 5-ös.). Tapasztalataink alapján a fejlesztés minden tanulóra hatott, viszont az 

eleve jobb eredményű tanulókra hatott jobban, a tanulók teljesítményei közötti szóráskülönbség 

megmaradt. Az előteszt és az utóteszt megoldása során a tanulók az előző vizsgálatok során 

már feltárt hibás eredményre vezető stratégiákat követték el.  A helyes eredményre vezető 

stratégiák fajtája és száma is a korábbi vizsgálatok során tapasztalt jellegzetességeket mutatta.  
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20. ábra A kísérleti csoport teljesítményének változása a Szorzási Stratégiák Teszten 

A 21. ábra a kísérleti csoport matematikateszten megfigyelt teljesítményváltozását mutatja. A 

kísérleti hatás kiszámítására a Keppel (1991) által leírt képletet alkalmazzuk (Csíkos, 2007). 

𝜔2 =
(𝑎 − 1) ⋅ (𝐹 − 1)

(𝑎 − 1) ⋅ (𝐹 − 1) + 𝑎 ⋅ 𝑛
 , ahol F a Fischer-féle F hányados, a a kísérletben részt vevő 

csoportok száma, n pedig az egy-egy kísérleti csoportban található személyek száma. A képlet 

feltételezi a kísérleti és a kontrollcsoport azonos számát, ez esetünkben teljesül. Az utótesztekre 

megállapított különbségek alapján a kísérleti hatás a szorzási stratégiák teszt esetén 10,73, azaz 

a kísérlet végén tapasztalt teljesítménykülönbségek 10,73%-át magyarázza a kísérlet. A 

matematikateszt esetén a számított 𝜔2 = 12,03, amely értékek szintén közepes hatásméretet 

jelez. A fejlesztés végén mért tanulói teljesítménykülönbség 12,03%-át magyarázza a végzett 

kísérlet.  

 

 

21. ábra A kísérleti csoport teljesítményének változása a Matematikateszten 
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A kísérlet része volt a 2016 szeptemberében végzett késleltetett utómérés, melynek során interjú 

módszerrel vizsgáltuk a legjobb teljesítményt nyújtó 5-5 és a leggyengébben teljesítő 5-5 

gyerek stratégiahasználatát fejben végzett szorzás igényló feladatok megoldása során. Az 

interjúk időigénye miatt választottuk ezt a módszert. A másik ok pedig az volt, hogy ősszel a 

kísérleti csoport két csoportra bomlott, és az emelt és alapcsoport tanulói két különböző 

tanárnál, más-más órai fejlesztésben vettek részt szeptembertől.  

A késleltetett utómérés során a tanulóknak a Csíkos (2007) által leírt „Étlapok” szöveges 

feladatot adtunk, melynek során fejben végzendő szorzás volt a feladat mélystruktúrája. A 

feladat szövegét számítógépképernyőn tártuk a gyerekek elé. A kísérletvezető azt kérte a 

tanulóktól, hogy hangosan gondolkodva mondják el, hogyan oldanák meg a feladatot. 

Schoenfeld (1987) módszerét alkalmaztuk a tanulót jellemző viselkedésmintázat 

meghatározására. Az interjúk hanganyagát kielemezve azt találtuk, hogy a kísérleti csoport 

hatékonyabban használta ki a rendelkezésére álló 10 percet, nagyobb sikerrel oldották meg a 

feladatot. Emellett a felhasznált időkeret nagyobb hányadában figyelhettük meg metakognitív 

stratégiák alkalmazását. A kísérleti csoport esetében 54 : 46 arányt figyeltünk meg a 

metakognitív stratégiák javára, míg a kontrollcsoportban ez az arány 40 : 60 volt. A p = 0,05 

szignifikancia szerint, feltételezve, hogy a két csoportot megfelelő módon reprezentálják az 

interjúvolt tanulók, 95% a valószínűsége, hogy a fejlesztő kísérlet után 3 hónappal jelentős a 

különbség a tanulók teljesítménye között.  
 

Összegzés 

Öt budapesti iskola hatodik évfolyamos tanulói között végeztünk vizsgálatot a fejben szorzás 

feladatok megoldottságával és az ezeket befolyásoló tényezőkkel kapcsolatosan. Vizsgálatunk 

célja az volt, hogy összefüggéseket keresünk a Szorzási Stratégiák Teszten és a Matematika 

Tudásszintmérő Teszten elért teljesítmény, valamint a tanulók háttérváltozói között.  A tesztek, 

kérdőívek megbízhatóan mértek. A Szorzási Stratégiák Teszt és a Matematika Tudásszintmérő 

Teszt megbízhatóságára vonatkozó H1a és H2b hipotézis beigazolódott.  Az alkalmazott 

szorzási stratégiák számára vonatkozó H2a hipotézis beigazolódott: a fejszámolással 

megoldható szorzási feladatokban a hatodikos tanulók legalább ötféle különböző stratégiát 

alkalmaztak (vö. Hope & Sherrill, 1987; Heirdsfield, Cooper, Mulligan  & Irons, 1999).  

A leggyakrabban alkalmazott szorzási stratégiákra vonatkozó H4 hipotézisünk 

beigazolódott. A szorzási feladatok megoldása során a vizsgált tanulók leggyakrabban a 

következő stratégiákat alkalmazták: számlálás,  tényeken alapuló, helyiértéken alapuló (balról 

jobbra, illetve jobbról balra) és a holisztikus stratégiát (vö. Hope & Sherrill, 1987). Az egyjegyű 

számok szorzására a tények stratégiát alkalmazták a vizsgált tanulók. A kétjegyű számok 

szorzása során a helyiérték szerint balról jobbra szorzás használata volt a leggyakoribb. Ezt 

mindegyik osztályban megfigyeltük. 

A fiúk és a lányok átlagteljesítménye között nem mutatható ki szignifikáns különbség, 

a H3b hipotézisünk nem igazolódott be. A vizsgált iskolák, osztályok teszteken elért 

eredménye, szorzási stratégiahasználata között szignifikáns különbséget figyeltünk meg, H2c 

és H2d hipotéziseink beigazolódtak. 
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H8a: hipotézisünk beigazolódott A Matematika Tudásszintmérő Teszten elért eredmények és a 

Szorzási Stratégiák Teszten elért eredmények között gyenge (r = 0,33) korreláció áll fenn (p < 

0,001).  

2016 tavaszán végzett tartalomba ágyazott fejlesztést végeztünk egy 32 fős osztályban, 

20 alkalommal, a matematikaóra második felében. A tanulók metakognítív stratégiáját 

szöveges feladatok, hangosan gondolkodtatás segítségével fejlesztettük. Az órákon hangsúlyt 

fektettünk az egyes szorzási stratégiák előnyeinek, hátrányainak megbeszélésére.  

A fejlesztésre vonatkozó hipotéziseink beigazolódtak. H9a: A szorzási stratégiák 

explicit tanításában részt vevő tanulók jobb eredményeket értek el a Szorzási Stratégiák 

utóteszten, mint a fejlesztésben részt nem vett társaik (v.ö. Mulligan & Mitchelmore, 2009). 

H9b: A fejlesztésben részt vett tanulók jobb eredményeket értek el a Matematika 

Tudásszintmérő utóteszten, mint a fejlesztésben részt nem vett társaik (vö. Csíkos, 2007). 

H9c: A fejlesztés hatása a késleltetett utóteszt során is kimutatható (vö. Csíkos, 2007). 

A fejlesztés utótesztjein a kísérleti csoport nem minden tagja használt több stratégiát, mint a 

kontrollcsoport. Ugyanakkor a kísérleti csoport mind a szorzási feladatok, mind a szöveges 

feladatok megoldása során jobban teljesített az utótesztelés során.  

Bár a kísérletben részt vevő csoportok száma, elemszáma nem engedi messzemenő 

következtetések levonását, a külföldi kutatók beszámolói alapján mégis úgy gondoljuk, hogy 

érdemes hasonló fejlesztéseket végezni. Szeretnénk ráirányítani a figyelmet a szorzási 

stratégiák, a metakognitív stratégiák tanításának fontosságára. Úgy véljük, változtatásokra lehet 

szükség a tankönyvekben is. A külföldi kísérletek eredményei (pl. Baroody, 2003) alapján 

célszerű lehet a fejlesztés időpontját korábbra tenni, mielőtt a tanulók a kétjegyű számok 

írásbeli szorzásával megismerkednének. korai fejlesztés hatékonyabb lehet.  Ugyanakkor a 

fejlesztést célszerű lenne a felsőtagozaton és a középiskolában is folytani. Ezáltal a matematika 

még jobban segíthetné a természettudományos tantárgyak elsajátítását.  Célszerűnek véljük 

további kutatások, fejlesztő kísérletek végzését. Ezért egy nagymintás vizsgálatot szerveztünk, 

melyről a következő részben számolunk be. 
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5.6. A központi vizsgálat eredményei 

 

A szorzási stratégiák vizsgálata 4., 5. és 6. évfolyamos tanulók körében 

A központi empirikus vizsgálatunk lefolytatásához a három saját fejlesztésű mérőeszközt 

alkalmaztuk. A vizsgálat az etikai normák figyelembevételével folyt. A tanulók a mérésben 

önkéntesen vettek részt, a szülők tájékoztatása és beleegyezésük megszerzése után. Az 

eredmények ismertetését a vizsgálatban részt vevő tanulókra vonatkozó statisztikai adatokkal 

kezdjük. Az adatok feldolgozásához SPSS 16 szoftvert alkalmaztunk, a leíró és matematikai 

statisztikai számítások elemzését a következőkben ismertetjük.   

Az egyes mérőeszközök kitöltésére vonatkozó létszámokról kaphatunk adatokat a 44. 

táblázatból. A 800 fős mintaelemszám lehetővé teszi, hogy következtetéseket vonhassunk le a 

teljes populációra nézve. 

 

44. táblázat. Az egyes mérőeszközöket kitöltött tanulók száma a központi vizsgálatban 

Mérőeszköz A változat 

(fő) 

B változat 

(fő) 

Hiányzó 

(fő) 

Összesen 

(fő) 

Szorzási Stratégiák Teszt 416 384 50 800 

Matematika Tudásszintmérő Teszt 436 392 22 828 

Háttérkérdőív    17 833 

A Szorzási Stratégiák Tesztet kitöltő 800 fős mintából a tanulók 52 százaléka a teszt A 

változatát írta meg. A Matematika Tudásszintmérő Tesztet 828-an oldották meg, 52,66 

százalékuk az A változatot írta. A Háttérkérdőívet pedig 17 fő nem töltötte ki. Mindhárom 

mérőeszközt 777 fő (399 fiú, 378 lány) töltötte ki.  

 

5.6.1. A Szorzási Stratégiák Teszt elemzése  

 

A teszt reliabilitása megfelelő, Cronbach-α = 0,96, az átlagpontszám 17,40 (szórás 12,42). Egy 

egészhez közeli, vagyis nagyon könnyű itemek nem voltak a tesztben, egyik item esetén sem 

találunk 100 %-os megoldottságot. Hasonlóan nem láthatunk 0 %-os megoldottságú itemet, 

azaz nem volt olyan item, amit a tanulók nagy része nem tudott megoldani. Nehéznek 

tekinthetjük a 20%-nál kisebb, könnyűnek a 80%- nál nagyobb megoldottságú itemeket, 

azonban ilyeneket sem találunk a tesztben. A legkönnyebb itemnek a 14. item bizonyult, 

megoldottsága 66%-os. Ezt a szorzást egy ismert szabály alapján is könnyen kiszámolhatjuk a 

kis szorzótáblabeli szorzás eredményeit ismerve. Könnyebb itemek voltak a vizsgált tanulók 

számára a 4., 29., 30. és a 39. itemek, megoldottságuk legalább 60%-os. Egyjegyű szám 

szorzása kétjegyű számmal, illetve háromjegyű számmal, egyszerűbb feladatot jelent a 

gyermekek számára, illetve az is, ha ismert szabályok alkalmazása segíthet a szorzás 

elvégzésében. A legnehezebbnek a 38. item bizonyult, a diákok 30%-a oldotta meg. Ennek oka 

a szorzásban szereplő kétjegyű számok nagysága lehet. Kevésbé sikerült még megoldani az 5., 

10., 12., 16., 18., 22., 31., 36. és 37. itemeket, ezek a szorzások valószínűleg szokatlanok a 

tanulók számára. A leggyengébb teljesítményt a teszten a 38. itemen tapasztaltuk, 

megoldottsága 30 %. A 0,5-es nehézségű (50 % megoldottságú) itemek mérnek a legjobban. 
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Ehhez közeli értéket nyolc item esetén látunk, ezek az itemek differenciálják a különböző 

képességű tanulókat a leginkább. 

 A teszt és itemei viselkedésének vizsgálatához az elkülönítésmutatókat is kiszámítottuk.  

Mindegyik item elkülönítésmutatója 0,4 feletti, így egyik itemet sem célszerű elhagyni a 

tesztből a további vizsgálatok során. 

 

5.6.2. Nemenkénti különbségek 
 

A Szorzási Stratégiák Teszt reliabilitás értéke a teljes mintán magasabb, mint 0,9, vagyis a teszt 

megbízhatóan mér. A részmintákon mért reiabilitás is magas. Lányok (390 fő) és a fiúk esetén 

a teszt reliabilitása Cronbach-α = 0,96. A lányok által elért pontszám átlaga 17,73 (szórás 

12,34), a fiúk átlaga 17,21 (szórás 12,50).  

Az itemek nehézségéről elmondhatjuk, hogy sem 0 egész, sem 1 egész közeli értéket 

nem látunk, tehát a fiúk számára nagyon könnyű, illetve nehéz itemek nem voltak a tesztben. 

A fiúk esetén is a 14. item bizonyult legkönnyebb itemnek, 66%-uk jól kiszámolta a 20 ∙ 30 

szorzás eredményét. A teljes mintához hasonlóan a 4., 29., 29. itemeket a fiúk legalább 60%-a 

oldotta meg helyesen, 64%-os megoldottságú még a 30. item is. Egyjegyű számmal történő 

szorzás, illetve 50 ∙ 50 kiszámítása könnyebben megy a fiúknak. Jól differenciálja a tanulók 

képességeit a 15., 25., 28., 32. és 40 item, ezen öt item megoldottsága 50%-hoz közeli érték.  A 

fiúk számára is a 38. item bizonyult legnehezebbnek, 30 %-uk oldotta meg. A fiúk esetében is 

30 %- közeli megoldottsága van a 10., 22., 31. és 37., továbbá az 5., 8., 12., 16. és 18. itemeknek.  

 A tesztitemek viselkedésének vizsgálatához az elkülönítésmutatókat a fiúk mintájára is 

kiszámítottuk. Hét item elkülönítésmutatója 0,7 fölötti, ezek a 17., 19., 11., 13., 9., 8. és 18. 

item. Nincs 0,3 alatti elkülönítésmutatójú item, vagyis minden item jól illeszkedik a tesztbe, a 

legkisebb érték 0,454 (40. item).  

A lányok számára sem voltak nagyon könnyű, illetve nehéz itemek a tesztben. A lányok 

esetén is a 14. item bizonyult legkönnyebb itemnek, 67%-uk számolt jól. A teljes mintához és 

a fiúkhoz hasonlóan a 4. és 29. itemeket a lányok legalább 60%-a oldotta meg helyesen; 62%-

os megoldottságú még a 39. item. Jól differenciálja a lányok képességeit a 28. és a 40. item, 

megoldottsága 50%, ez utóbbi egyezik a fiúknál felsorolt itemekkel. A lányok számára is a 38. 

item bizonyult az egyik legnehezebbnek, 29 %-uk oldotta meg, és problémát okozott a 31. és a 

37. item kiszámítása is, a lányok 29%-a, illetve 31 %-a oldotta meg.  

 A lányok mintáján kiszámított elkülönítésmutatókat, az item törlése esetén kapható 

skálaátlagot, skálavarianciát, valamint az itemek elkülönítésmutatóit és az item elhagyása 

esetén kapott reliabilitás-mutatót megvizsgáltuk. A nagyság szerint csökkenő sorrendbe rakott 

elkülönítésmutatók között négy itemet találunk legalább 0,7-es értékkel, ezek a 17., 13., 36., 

11. és 9. item. Mindkét nemű tanulók esetén a 9., 11., 13. és 17. item mér igen jól. A legkisebb 

értéket a fiúk mintájához hasonlóan a 30. item esetén látunk, de mivel ez is 0,3 feletti (0,44), 

így nem lóg ki a tesztből.   

 A tesztváltozatok nemenkénti reliabilitását külön is vizsgáltuk. A reliabilitás magas, 

0,95 fölötti mindkét tesztváltozat esetén, hasonlóan magas megbízhatósági értékeket látunk, ha 

az egyes tesztváltozatokat író mintát nemek szerint bontjuk ketté.  A 800 fős minta 52%-a az A 

tesztet írta meg, 48%-a pedig a B tesztet. Az A változatot író 416 tanuló 51,4%-a fiú és 48,6%-

a lány.  A B tesztváltozatot 384 fő írta meg, ennek 51%-a fiú, 49 %-a lány. A fiúk átlaga az A 
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teszten 17,19 (szórás 12,55), a lányoké 17,71 (szórás 12,05), a minta átéaga 17,44 (szórás 

12,30). A B teszten a fiúk átlaga 17,23 (szórás 12,479, a lányoké 17,74 (szórás 12,68), a minta 

átlaga 17,48 (szórás 12,56). Mindkét tesztváltozat írói között volt 0 pontos fiú és lány is. Az A 

tesztváltozat esetén mind a fiúk, mind a lányok között volt 40 pontos is. A B változat írásakor 

a fiúknál 40 pont, a lányoknál 39 pont volt a maximális pontszám. 

 

Évfolyamonkénti, iskolánkénti, osztályonkénti különbségek 

 

A reliabilitás mintafüggőségét bizonyítja az is, hogy az egyes évfolyamokon, iskolákban vagy 

osztályokban mért reliabilitás értékek eltérhetnek az egész minta reliabilitásától.  A teszt 

reliabilitása évfolyamonként, iskolánként és osztályonként különböző értéket mutat 

vizsgálatunk során is. Ez az érték a mért csoportonként változó, a kisebb reliabilitás esetén a 

csoport valószínűleg homogénebb volt a mért teljesítmény szempontjából. 

A reliabilitás-mutatók értéke évfolyamonként: a 4. évfolyamon (260 fő) 0,95, az ötödik 

évfolyamon (243fő) 0,96, a hatodik évfolyamon (297 fő) 0,97. Tehát a teszt mindhárom 

évfolyamon jól méri a tanulók teljesítményét. Negyedikesek esetén a legnagyobb 

elkülönítésmutatójú itemek: 8., 17., 21., 9., 11., 13. és 12. (mutatóik rendre 0,70; 0,70; 0,68; 

0,68; 0,67; 0,67 és 0,67). A legnehezebb itemeken elért tanulói teljesítmények az itemsorrendet 

nézve 17% (38. item), 18% (37. item) és 20% (31. item). A legkönnyebb itemeken elért 

teljesítmények 60% (29. item), 56% (4., 14. és 39. item) A 32. item megoldottsága 0,5, ez jól 

differenciálja a különböző képességű negyedikes tanulókat. A legjobb elkülönítésmutatóval a 

17. item rendelkezik (0,77), ezt követik a 36., 13. és 11. itemek, elkülönítésmutatóik rendre 

0,71; 0,71 és 0,68. A legkisebb elkülönítésmutatója a 30. itemnek van, 0,37, de ezzel nem lóg 

ki a tesztből. A legnehezebb itemek a 10., 31. és 38., megoldottságuk 34%-os. A legkönnyebb 

itemnek a 14. bizonyult, a tanulók 73%-a oldotta meg, 65%-os megoldottságú a 30. item, 63%-

os a 29. és a 39. item. Az ötödikes tanulók számára a legnehezebb itemeknek a 37., 38. és 

10.itemek bizonyultak, megoldottságuk 34%. A tanulók fele oldotta meg a 24. itemet, 49 %-uk 

a 6., 7., 20., 34. itemet, 51 %-uk pedig a 28. itemet. A hatodik évfolyamon a legjobb 

elkülönítésmutatóval (0,78) a 17. item rendelkezik. Ezen kívül még 12 item rendelkezik 0,7 

fölötti elkülönítésmutatóval, ezek a 8., 9., 11., 12., 13., 18., 19., 20., 21., 22., 26. és 36. itemek. 

A leggyengébben itt a 0,459 elkülönítésmutatójú 40. item mér. A tanulók 69%-a ki tudta 

számítani a 14. és 39. szorzást. 50%-os megoldottságú a 28. item, 49 %-os a 20.  item, ezek az 

itemek jól differenciálják képesség szerint a tanulókat. A leggyengébb megoldottságú item a 

37. (36 %).  

A Szorzási Stratégiák Teszt megbízhatóságára vonatkozó vizsgálatot iskolánként és 

osztályonként is elvégeztük. A teszt reliabilitása minden iskolában elfogadható értékű, 0,83 és 

0,97 közötti. A legalacsonyabb a 9. iskolában (0,83), ennek oka a részminta homogenitása lehet. 

Az osztályokra bontott mintán végzett reliabilitás-vizsgálat rámutat arra, hogy a teljes minta 

reliabilitást mely csoportok rontják el leginkább. A legkisebb reliabilitást találjuk a 9. iskola 37. 

osztályában (Cronbach-α = 0,65), a 2. iskola 14. osztályában (Cronbach-α = 0,88), a 8. iskola 

34. és 36. osztályában (Cronbach-α = 0,87), alacsonyabb még a 10. iskola 39. osztályában 

(Cronbach-α = 0,73). Ezekben az osztályokban a tanulók teljesítményszintje közötti különbség 

kisebb lehet, mint a többi osztályban, ahol a teszt magasabb reliabilitást ért el, a tanulók 
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nagyobb része ezekben a csoportokban vagy közel azonosan gyenge vagy hasonló mértékben 

jó teljesítményt nyújtott. A legnagyobb reliabilitást a 4. iskola 23. és 25. osztályában, a 9. iskola 

35. osztályában és a 11. iskola 45. osztályában tapasztaltuk, a mutató értéke rendre 0,97; 0,98; 

0,97; 0,97. 

5.6.3. A Szorzási Stratégiák Teszt itemei közötti kapcsolat  
 

A Szorzási Stratégiák Tesztben levő itemek egymás közötti korrelációit is vizsgáltuk. 

Az itemek közötti korreláció átlaga 0,38 (minimum 0,13, maximum 0,72). A teszt itemeire 

végzett Pearson korrelációs elemzés alapján minden item között szignifikáns (p < 0,001), 

pozitív összefüggés található. A legerősebb kapcsolat a 13. és a 9. item között van (0,72), 

továbbá a 17. item és 3. item között (0,71). Számos esetben erős, 0,6 feletti az itemek közötti 

kapcsolat, pl. a 9. és a 8. item, 11. item és a 8., 9., 10. itemek között, a 13. és a 8., 9. itemek 

között, a 17. és a 8., 9., 10. itemek között, hogy néhány példát említsünk. gyenge kapcsolat 

mutatható ki az 1. és a 29., 30., 33., 39. és 40. item között.  

 

A Szorzási Stratégiák Teszt altesztjei közötti kapcsolat  

A Szorzási Stratégiák Teszt egyes itemeit tulajdonságaik szerint többféleképpen 

rendszerezhetjük. A csoportosítások alapján a teszt részeire a következő elnevezéseket vezetjük 

be:  

Kétjegyű szorzása háromjegyű számmal: a 25 ∙ 120; 12 ∙ 250 és a 10 ∙ 690 itemekre; 

Egyjegyű szorzása négyjegyűvel: a 8 ∙ 4211 és a 8 ∙ 999 itemekre; 

Egyjegyű szorzása háromjegyűvel: a 9 ∙ 742; 9 ∙ 888; 150 ∙ 6 és a 9 ∙ 652 itemekre; 

Egyjegyű számok szorzása kétjegyűvel elnevezést kapják együtt a 8 ∙ 99 és a 77 ∙ 8 itemek. 

Kétjegyű számok négyzete elnevezés fogja össze a 32 ∙ 32; 25 ∙ 25; 13 ∙ 13; 15 ∙ 15; 16 ∙ 16; 24 

∙ 24; 50 ∙ 50; 19 ∙ 19; 11 ∙ 11; 45 ∙ 45 itemeket; 

Kétjegyűek szorzása, van benne 25 elnevezést alkalmazunk a következő szorzásokat tartalmazó 

itemek esetén: 25 ∙ 48; 25 ∙ 32; 25 ∙ 65; 25 ∙ 50; 25 ∙ 35;   

Valamilyen szabály alapján számolható elnevezést alkalmazzuk a 49 ∙ 51; 19 ∙ 21; 20 ∙ 30;         

17 ∙ 99; 77 ∙ 99 itemekre; 

Többi kétjegyű szám szorzása a közös neve együtt a 31∙ 32; 15∙ 48; 12 ∙ 16; 12 ∙ 15; 23 ∙ 27; 15 

∙ 16; 18 ∙ 16; 12 ∙ 11 itemek csoportjának; 

A 45. táblázatból a Szorzási Stratégiák Tesztben az egyes tesztrészek közötti korrelációt 

olvashatjuk le. A szorzásteszt összpontszámával mindegyik tesztrész közepes vagy erős 

korrelációban áll. A legszorosabb kapcsolat a teszt összpontszáma és azon tesztrészek között 

van, amelyek kétjegyű szám szorzására vonatkoznak. A kétjegyű szám kétjegyű számmal való 

szorzása korrelációja erős, 0,8 fölötti a következő tesztrészekkel: kétjegyű szám, van benne 25; 

szabály alapján; többi szorzás. A kétjegyű, van benne 25 és a többi szorzás, valamit a szabály 

alapján itemcsoportok szintén 0,8 közeli korrelációs kapcsolattal írhatók le, hasonlóan erős a 

kapcsolat a szabály alapján elvégezhető és a többi szorzás itemcsoportok között. 
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45. táblázat. A Szorzási Stratégiák Teszt részeinek korrelációja, központi vizsgálat  
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0,45 
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0,33 

 

0,60   
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0,58 0,63  

 

  

  

Egyjegyű 

két-

jegyűvel 

 

0,36 

 

0,58 0.60 0,67 

 

  

  

Kétjegyű 

számok 

négyzete 

 

0,41 

 

0,67 0,51 0,57 0,55   

  

Kétjegyű,  

van benne  

25  

 

0,35 

 

0,67 0,52 0,55 0,53 0,83  

  

Szabály 
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0,41 

 

0,68 

 

0,60 

 

0,57 

 

0,57 

 

0,82 

 

0,81 
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0,92 

Megjegyzés: a korrelációs mátrixban szereplő együtthatók mindegyike p = 0,001 szinten szignifikáns.  

A 46. táblázat az egyes szorzástípusok során elért átlagpontszámot, a megoldottság mértékét és 

a szórást mutatja. Láthatjuk, hogy a legtöbb szorzástípus megoldottsága 40 % és 60% közötti. 

Képességtesztnél legalább 60% számítana jó eredménynek. A legkönnyebb a tanulók számára 

az egyjegyű szám szorzása kétjegyű számmal volt (56 % -os megoldottság). Az 500∙500 item 

megoldottsága 52%-os, a háromjegyű szám szorzása egyjegyű számmal 49,25%-os 

megoldottságú, háromjegyű szám szorzása kétjegyű számmal 49%-os megoldottságú. A 

legnehezebben a kétjegyű számok négyzetének, valamint valamilyen szabály alapján 

számolható feladattípus megoldása ment, itt a megoldottság kevesebb, mint 40% (39,8%). 
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46. táblázat.  Az egyes szorzástípusok során elért átlagpontszám, a megoldottság mértéke és a 

szórás, központi vizsgálat 

Feladattípus Itemszám Átlagpontszám Megoldottság Szórás 

500∙500 1 0,52 52,00% 0,50 

Kétjegyű háromjegyűvel 3 
1,47 

49,00% 
1,13 

Egyjegyű négyjegyűvel 2 0,93 46,50% 0,86 

Egyjegyű háromjegyűvel 4 1,97 49,25% 1,55 

Egyjegyű kétjegyűvel 2 1,12 56,00% 0,83 

Kétjegyű számok négyzete 10 3,98 39,80% 3,40 

Kétjegyű, van benne 25  5 2,07 41,40% 1,82 

Szabály alapján számolható 5 2,04 40,80% 1,68 

Többi szorzás 8 3,36 42,00% 2,94 

Összesen 40 17,46 43,65% 12,42 

 

 A Szorzási Stratégiák Teszt szerkezetének vizsgálata 

Szerettük volna megtudni, hogy milyen hatása van az egyes tesztrészeknek a Szorzási 

Stratégiák Teszten elért eredményekre. Az egyes szorzástípusok egymáshoz kapcsolódását 

klaszteranalízissel vizsgáltuk. A klaszteranalízissel (a legközelebbi szomszéd módszere, 

négyzetes euklideszi távolság) kapott összefüggéseket mutatja a 22. ábra. Az ábra a kapott 

koefficiensek (494; 696; 800; 961; 1473; 1505; 2491; 3721) nélkül is könnyen értelmezhető. 

Amint látható, az egyjegyű szám szorzása négyjegyű számmal, illetve egyjegyű szám szorzása 

kétjegyű számmal feladattípus szorosan összekapcsolható. Ezekhez kapcsolódva az 500 ∙ 500 

item egy kisebb hasonlósági csoportot alkot, hozzájuk kapcsolódik később a kétjegyű szám 

szorzása háromjegyű számmal feladattípus. A szabály alapján összeszorozható kétjegyű 

számok szorzása és a 25-öt mint szorzótényezőt tartalmazó kétjegyű számok szorzása itemek 

tartoznak szorosan együvé; ezekkel az egyjegyű számok szorzású négyjegyű számmal itemeket 

tartalmazó hasonlósági csoport és az egyjegyű számok szorzása háromjegyű számmal 

itemcsoport egy nagyobb klaszterré kapcsolódik össze. A kétjegyű számok négyzete itemei és 

a többi kétjegyű szám szorzása itemek egy kisebb fürtöt alkotnak, végül ezzel a kis fürttel 

egészül ki a klaszter.  
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22. ábra A Szorzási Stratégiák Teszt altesztjeit ábrázoló dendrogram, központi vizsgálat  

A teszt szerkezetének további vizsgálata segíthet annak megállapításában, mely itemeknek 

hatása a legnagyobb a teszt összpontszámára. Lépésenkénti regresszióanalízis segítségével 

kerestük azokat az itemeket, amelyek a legnagyobb magyarázó erejű itemek a teszteredmény 

értelmezésekor. A regresszióanalízis vizsgálat eredményét mutatja a 47. táblázat.  

 

47. táblázat. A Szorzási Stratégiák Teszt itemeire végzett lépésenkénti regresszióanalízis 

eredménye, központi vizsgálat 

Lépés sorszáma Belépő item R2 

1. A szorzásteszt 17. iteme   25∙ 32   0,60 

2. A szorzásteszt 34. iteme   12 ∙ 11   0,75 

3. A szorzásteszt 32. iteme   77 ∙ 8 0,82 

4. A szorzásteszt   9. iteme   12 ∙ 16 0,86 

5. A szorzásteszt   2. iteme   25 ∙ 120 0,88 

6. A szorzásteszt 28. iteme     9 ∙ 888 0,90 

7. A szorzásteszt 18. iteme    25 ∙ 65 0,92 

8. A szorzásteszt 37. iteme    45 ∙ 45  0,93 

9. A szorzásteszt 39. iteme    10 ∙ 690 0,94 

10. A szorzásteszt 12. iteme    17 ∙ 99 0,95 

11. A szorzásteszt 21. iteme    16 ∙ 16 0,95 

 Összes megmagyarázott variancia 95,1% 
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A 40 itemes teszt lépésenkénti regresszióanalízissel történő vizsgálata során a függő változó 

szerepét a teszt összpontszáma töltötte be, a független változók pedig az egyes itemek voltak. 

Vizsgálatunk eredményei szerint a 17. iteme adja a megmagyarázott variancia 60,2%-át; a 34. 

és 32. itemmel együtt már a megmagyarázott variancia 81,9%-át adják. A teszt 11 iteme adja a 

megmagyarázott variancia 95,2%-át, így a további vizsgálatok során ezeket az itemeket 

célszerű beletenni a tesztbe. A következő lépésben a regresszióba lépő 25. szorzásitem csekély 

mértékben (0,4%-kal) növeli a variancia magyarázó erejét. A lineáris regresszióba lépett első 

11 item a szorzásteszt a később bekerülő további 15 itemmel (11., 23., 31., 20., 5., 30., 4., 24., 

7., 35., 16., 40., 3. és 27. item) együtt már a variancia 99%-át megmagyarázza. Ha tesztünket 

rövidíteni szeretnénk, akkor a későbbi vizsgálat során ezt a 26 itemet választanánk. A teszt 

megmagyarázott varianciájának 99%-át eredményező itemek az általunk már említett 

szorzástípusú feladatokkal leírhatók. A 26 item között szerepel egyjegyű szám szorzása 

kétjegyűvel (2 item), egyjegyű szorzása háromjegyűvel (2 item), egyjegyű szorzása 

négyjegyűvel (1 item), kétjegyű szorzása háromjegyű számmal (2 item), kétjegyű szám 

négyzete (6 item), 25-öt tartalmazó szorzás (3 item), valamilyen szabály alapján számítható 

szorzás (5 item), további 5 item egyéb kétjegyű szám kétjegyű számmal való szorzását kéri. 

Egy újabb lineáris regressziószámítás eredményeképp szintén rövidíthetnénk a tesztet, az első 

5 lépésben szereplő 30 itemre, ezt látjuk a 48. táblázatban.  

 

48. táblázat. A szorzástípusokra végzett lineáris regressziószámítás eredménye, központi 

vizsgálat 

Lépés sorszáma Belépő szorzástípus R2 

1. kétjegyű szám négyzete 0,88 

2. szabály alapján számolható 0,93 

3. egyjegyű háromjegyűvel 0,96 

4. többi kétjegyű szám szorzása kétjegyű számmal 0,98 

5. kétjegyű szám szorzása háromjegyűvel 0,99 

6. 25-öt tartalmazó szorzás, kétjegyű kétjegyűvel 0,99 

7. egyjegyű négyjegyűvel 1,00 

8. egyjegyű kétjegyűvel 1,00 

9. 500·500 1,00 

Összes megmagyarázott variancia 100% 

 

5.6.4. A Szorzási Stratégiák Teszt megoldottsága 
 

A Szorzási Stratégiák Tesztet kitöltő személyekből álló minta jellemző létszámadatait láthatjuk 

a 15. sz. mellékletbeli táblázatban. A 850 fős mintában szereplő 5. iskola két osztályának tanulói 

ezt a tesztet egyáltalán nem töltötték ki, továbbá néhány osztályban hiányzók is voltak, ezért a 

minta lecsökkent 800 főre. Ugyanakkor a fiúk és a lányok aránya a teljes mintára nézve 

változatlan, a lányok aránya a mintában 48,7 % maradt (412 fiú, 391 lány). Az egyes osztályok 
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összetételében 5%-osnál nagyobb eltérést a 4.-es számmal jelzett osztályban találtunk, itt a 

tesztet kitöltőknek közel a ¾ része lány. 

 

A Szorzási Stratégiák Teszten elért eredmények  

A Szorzási Stratégiák Teszt megoldottságának relatív gyakoriságát ábrázoló diagram a 23. 

ábrán látható. A diákok teszten elért pontszámainak eloszla egymóduszú. A leggyakrabban elért 

pontszám, így a módus 0 pont (39 tanuló), 38 tanuló pedig 1 pontot szerzett. A tanulók 25,38%-

a legfeljebb 6 pontot (15%-os teljesítményt), 51,75%-a legfeljebb 15 pontot (ez 37,5%-os 

teljesítmény), 75,6%-a legfeljebb 29 pontot (72,5%-os teljesítményt) ért el. A tesztet író 800 

gyermek tized része nyújtott legalább 90%-os teljesítményt, közülük négyen értek el maximális 

pontszámot.  

 

23. ábra A Szorzási Stratégiák Teszten elért pontszám, központi vizsgálat 

A normalitásvizsgálathoz végzett Kolmogorov-Szmirnov teszt eredményei szerint D(800) = 

0,11, p < 0,001 az adatok eloszlása szignifikánsan eltér a normál eloszlástól. Az 

eloszlásjellemzőket megnézve a ferdeségi mutató (skewness) 0,24 (Std Error 0,09), zskewness = 

2,76, a ferdeség szignifikánsan eltér a normálistól, a sűrűségfüggvény aszimmetrikus, s mivel 

ez pozitív, a csúcsot elől láthatjuk. A lapultság (kurtosis) értéke viszont -1,33 (Std Error 0,17), 

zkurtosis = -7,66, vagyis a sokaság eloszlásának sűrűségfüggvénye csúcsossága szignifikánsan 

eltér a normálistól, laposabb, mint a normális haranggörbéé. A minta tehát nem a szokásos 

normális eloszlást mutatja, ennek oka a részminták eltérő összetételéből eredhet. 

 10% pontonként csoportosítva az eredményeket, észrevehetjük, hogy a minta közel ötöd 

része kevesebb, mint 10%-os teljesítményt ért el. A tanulók 10,7 %-a 11-20%-os eredményt ért 

el, 13,9%-a pedig 21-30% közöttit. A gyermekek 60,2%-a legfeljebb a pontok 50%-át szerezte 

meg. Ezt láthatjuk a 24. ábrán.   
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24. ábra A teljes minta Szorzási Stratégiák Teszten elért eredményének eloszlása, központi 

vizsgálat 

Iskolák közötti különbségek 

A Szorzási Stratégiák Tesztet kitöltő 800 fő eredményeit olvashatjuk ki a 49. táblázatból.  

49. táblázat. A Szorzási Stratégiák Teszten elért eredmények iskolánként, központi vizsgálat 

Iskola Tesztkitöltők száma Átlagpont-szám Szórás Minimum Maximum Medián 

1. 209 17,71 11,01 1 40 15 

2. 64 9,16 9,57 0 35 5,5 

3. 88 17,58 11,97 0 39 16 

4. 66 13,17 11,95 0 40 9 

5. 11 15,64 13,48 0 39 14 

6. 43 16,28 12,51 0 39 15 

7. 56 24,68 12,47 0 40 30,5 

8. 25 21,20 13,19 0 38 24 

9. 63 31,84 5,68 10 39 33 

10. 57 9,88 8,80 0 37 7 

11. 118 16,22 12,25 0 40 13 

Összesen  800 17,46 12,42 0 40 15 

 

A tesztet 11 (8 vidéki és 3 budapesti) iskolában töltötték ki a tanulók. A vizsgálatban részt vett 

tanulók közül a következő létszámú csoportok írták meg a tesztet: Az 1. iskola 218 tanulójából 

209, a 2. iskola 65 tanulójából 64, a 3. iskola 98 tanulójából 88, a 4. iskolából mind a 66, az 5. 

iskola 29 tanulójából 11, a 6. iskola mind a 43 tanulója. A 7. iskola 57 tanulója közül 1 

hiányzott, a 8. iskola mind a 25 tanulója megírta a tesztet, a 9. iskola 63 tanulója szintén megírta 

a tesztet, végül a 11. iskola 120 tanulója közül 2 fő hiányzott. A 800 fős mintában a Szorzási 

Stratégiák Teszten elért pontszám átlaga 17,46 (szórás 12,42), medián 15 pont. Öt iskolában a 
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tanulók magasabb átlagpontszámot értek el, mint a 11 iskola átlagpontszáma: ezek az 1., 3., 7., 

8., és 9. iskola. A leggyengébb átlagteljesítményt a 2. iskolában mértünk, emlékszünk rá, hogy 

ebben a borsodi iskolában volt a legmagasabb a HH-s tanulók aránya. Szintén gyenge 

eredményt mutat a 10. iskola. A legkisebb szórást a budapesti nyolcévfolyamos gimnázium 

esetében látunk, míg a legnagyobbat egy borsodi községi iskolában, ahová szintén sok 

hátrányos helyzetű tanuló jár. Az 1. és a 9. iskola tanulóinak legkisebb elért pontszáma 1, illetve 

10 volt, négy iskolában értek el a tanulók maximális pontszámot, de minden iskolában akadt 

olyan diák, akinek a teljesítménye legalább 87% volt. A legkisebb mediánt, ami 7, a 10. 

iskolában, a legnagyobbat (30,5) a 7. iskolában láthatjuk.  

A Szorzási Stratégiák Teszten elért teljesítményt látjuk a 25. ábrán. Szemmel látható, 

mekkora teljesítménybeli különbség van a vizsgálatban részt vevő iskolák között. Míg két 

iskolában (2. és 10.) a tanulók teljesítményének átlaga a teszten 25% alatti (22,9% és 24,7%), 

a 7. és a 9. iskolában a tanulók teljesítménye nagyobb, mint 60% (61,7% és 79,6%). A többi 

iskola a két szélső érték között foglal helyet. Az iskolák közötti különbségeket a 

homogenitásvizsgálat és a varianciaanalízis segítségével állapítottuk meg. A Levene -féle próba 

esetén F = 9,06, p = 0,000 kaptunk, amire p < 0,001, vagyis a részminták által reprezentált 

populációkban a szórások szignifikánsan különböznek. A Welch-próba értéke 47,167 (df1 = 

10, df2 = 161,67, p < 0,001, vagyis szignifikáns különbség figyelhető meg az egyes iskolák 

átlagai között. A részminták által reprezentált populációk szignifikáns szóráskülönbségei miatt 

a post-hoc elemzések közül a a Dunnett T3 teszt mutatja meg, hogy az iskolák különbségei 

kimutathatóan eltérnek a többi iskoláétól.  

          

25. ábra Az iskolák Szorzási Stratégiák Teszten elért átlagteljesítménye %-ban, központi 

vizsgálat 
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 9. iskola teljesítménye szignifikánsan magasabb, mint a többi iskoláé. Teljesítményük alapján 

a 7. és a 9. iskola magasabb teljesítményt mutat, mint a többi iskola, ugyanakkor a páros t-próba 

alapján a két iskola teljesítménye közötti különbség szignifikáns a 9. iskola javára (t = 4,11, df 

= 117, p < 0,001, sig: 1-tailed). A 7. és 8. iskola teljesítménye közötti különbség inszignifikáns 

(t = 1,14, df = 79, p < 0,129 1-tailed), egy másik hasonlósági csoportot alkothatnak. A 2. és 10. 

iskola egy harmadik hasonlósági csoportba kerülhet (t = -0,43, df = 119, p < 0,33, 1-tailed), 

ezektől szignifikánsan magasabb teljesítményt nyújt a 4. iskola (t = -2,11, df = 128, p < 0,019 

1-tailed), vele egy negyedik hasonlósági csoportba sorolható az 1., 3., 4., 5., 6. és 11. iskola. 

 

A nemek szerinti különbségek 

A lányok átlagosan jobb eredményt értek el a szorzásteszt során, de ez nem szignifikáns. A 391 

lány által elért átlagpontszám 17,73 (szórás 12,34), a fiúk (412 fő) átlaga 17,21 pont (szórás 

12,50). A fiúk és lányok mintájára kiszámított relatív szórások: RSDfiúk = 72,60%, RSDlányok = 

69,62%, vagyis a fiúk mintájának nagyobb a szórása. Mind a fiúk, mind a lányok között volt 0 

pontos, a maximum pontszámot is mindkét nemből elérték. A medián értéke a fiúk esetén 14 

pont, a lányoknál 15,5 pont, a minta mediánja 15 pont. A fiúk és a lányok Szorzási Stratégiák 

Teszten elért teljesítményének összehasonlítása látható a 26. ábrán. Az ábrán látható, hogy a 

fiúk 31,7 %-a és a lányok 27,9 %-a ért el 20 %-osnál gyengébb teljesítményt a Szorzási 

Stratégiák Teszten. A fiúk átlagteljesítménye 43,03% volt, a lányoké ettől 1,3 %-kal több, 44,33 

%. A fiúk 7,1 %-a, míg a lányok 6,2 %-a ért el legalább 90%-os teljesítményt. A Kolmogorov-

Szmirnov tesztre fiúk esetén D(410) = 0,111 értéket kaptunk, lányok esetén D(390) = 0,107, a 

szignifikanciaszint p < 0,001. A fiúk esetén a szorzásteszt ferdeségi mutatója 0,28 (Std Error 

0,12), lapultság -1,31 (Std Error 0,24), zskewness = 0,23; zkurtosis = -5,45, míg a lányok esetén a 

ferdeségi mutató 0,19 (Std Error 0,12), a lapultság -1,34 (Std Error 0,25), zskewness = 0,76; zkurtosis 

= -5,42. A ferdeségi mutató pozitív volta mindkét nem esetén az eloszlásfüggvény 

asszimmetriájára utal, a csúcsot elől láthatjuk. A lapultság a fiúk és a lányok esetén negatív, 

vagyis a sokaság eloszlásának sűrűségfüggvénye laposabb, mint a normális haranggörbéé.  

 



141 
 

 

26. ábra A Szorzási Stratégiák Teszten elért teljesítmény nemek szerinti összehasonlítása, 

központi vizsgálat 

Az egyes itemcsoportokat a fiúk és a lányok eltérő sikerrel oldották meg. Az egész teszten a 

lányok valamivel jobb teljesítményt mutattak. Hasonlóan kicsit ügyesebbek voltak az egyjegyű 

szám háromjegyű számmal való szorzásakor. A fiúk átlagpontszáma 1,9 volt (szórás 1,52, 

medián 2 pont). A lányok átlagpontszáma 2,04 pont (szórás 1,58, medián 2 pont), több lány ért 

el maximális pontot, mint fiú. A kétjegyű számok háromjegyű számmal történő szorzása viszont 

a fiúknak ment kicsit könnyebben. A fiúk által elért átlagpontszám 1,48 (szórás 1,13), a lányok 

átlagpontszáma 1,46 (szórás 1,14), a maximális pontszámot mindkét nembeli tanulók közül 

elérték. A többi szorzástípus szorzásakor mindkét nembeli tanulók közel azonos sikert értek el. 

A teszt 40. itemén a fiúk által elért átlagpontszám 0,52 (szórás 0,50, medián 1), a lányok által 

elért átlagpontszám 0,53 (szórás 0,50, medián 1). A fiúk közül 212 fő, a lányok közül 205 fő 

válaszolt helyesen, a fiúk és a lányok teljesítménye közötti különbség ezen az itemen minimális. 

 

Az egyes itemek megoldottsága a fiúk és a lányok mintáján 

19,3

12,4 12,9

10,8

5,8
6,4 5,8

7,8

11,7

7,1

19,2

8,7

14,9

9,8

6,6
5,9

7,2

10,8 10,7

6,2

0

5

10

15

20

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

R
e
la

tí
v
 g

y
a

k
o

ri
s
á

g
 (

%
)

Teljesítmény (%pont)

fiúk lányok



142 
 

Az egyes itemek megoldottságára vonatkozóan érdekes következtetésekre juthatunk. A 

megoldottságra vonatkozó adatokat az 50. és az 51. táblázatban foglaltuk össze. A Szorzási 

Stratégiák Teszt itemeinek megoldottsága nemek szerint.  

 

50. táblázat. A Szorzási Stratégiák Teszt itemeinek megoldottsága nemek szerint, központi 

vizsgálat, a lányok jobbak 

Item Megoldottság 

(%) 

Elkülönítésmutató 

 Fiúk Lányok Fiúk Lányok 

 N = 412 N = 391 N = 412 N = 391 

1.         25·48 42 46 0,62 0,55 

3.         31·32 40 41 0,66 0,64 

4.           8·99 59 61 0,57 0,53 

5.         49·51 32 37 0,60 0,66 

8.         15·48 34 39 0,70 0,66 

9.         12·16 42 43 0,72 0,69 

10.       32·32 29 34 0,62 0,67 

11.       25· 25 37 40 0,73 0,70 

12.       17·99 34 35 0,67 0,64 

13.       12·15 44 47 0,73 0,73 

14.       20·30 66 67 0,54 0,45 

15.        8·999 48 51 0,60 0,58 

16.       23·27 34 36 0,67 0,64 

17.       25·32 39 42 0,77 0,75 

18.       25·65 34 37 0,70 0,67 

23.       9·742 43 46 0,57 0,53 

24.       15·16 45 49 0,64 0,56 

26.       18·16 43 44 0,66 0,63 

28.         9·888 46 50 0,58 0,53 

32.        77· 8 50 56 0,57 0,55 

33.         9·652 39 46 0,52 0,49 

36.         19·21 38 41 0,69 0,72 

40.         500·500 52 53 0,45 0,46 

 

A Szorzási Stratégiák Tesztben szereplő 40 item közül nyolcnak egyforma a megoldottsága 

mindkét nem esetén. Így a 2. item megoldottsága 43%, ez az item 25-nek egy kerek tízesre 

végződő háromjegyű számmal való szorzását igényelte a tanulóktól. Szintén ennyi a 

megoldottsága a 7. itemnek (egyjegyű szám szorzása háromjegyű számmal). Közepesen nehéz 

itemek közé tartozott még a 19. és a 34. item (13 négyzete, illetve kisebb kétjegyű számok 

szorzata), megoldottságuk 46%-os.  41 %-os megoldottságot találunk a 6. item esetén ez pl. egy 

szabály alkalmazásával könnyebben kiszámolható. 38%-os megoldottságot látunk a 21. 

itemnél, 34%-os a megoldottság a 22. itemnél, 31%-os a 37. item megoldottsága, ezek az itemek 

kétjegyű számok négyzeteinek kiszámítását kérik, illetve szabály alkalmazásával is 

számíthatók. Az egyes itemek megoldottsága közötti különbség 7% a lányok javára a 33. item 

esetén, ez az item szabály alkalmazásával is kiszámolható.  

A táblázat azon itemeket tartalmazza, amelyekben a fiúk értek el jobb eredményt. 
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51. táblázat. A Szorzási Stratégiák Teszt itemeinek megoldottsága nemek szerint, központi 

vizsgálat, a fiúk jobbak 

Item Megoldottság (%) Elkülönítésmutató 

 Fiúk Lányok Fiúk Lányok 

 N = 412 N = 391 N = 412 N = 391 

20.       15·15 44 43 0,68 0,68 

25.       25·50 52 47 0,61 0,58 

27.       25· 35 39 38 0,62 0,62 

29.       150·6 63 62 0,55 0,54 

30.       50·50 64 59 0,50 0,43 

31.       19·19 33 29 0,60 0,64 

35        11·11 44 42 0,63 0,58 

38.       77·99 30 29 0,65 0,59 

39.       10·690      64 62 0,55 0,50 

 

7 item (a 20., 27., 29., 31., 35., 38. és a 39.) esetén a fiúk voltak sikeresebbek, az összes többi 

esetben pedig a lányok. A két nem közötti megoldottság-különbség 6% a lányok javára a 32. 

item esetén. A lányok számára a legkönnyebb itemnek a 14. mutatkozott, a fiúknak pedig a 30 

(megoldottságaik rendre 67% és 64%). A stratégiafajtákkal kapcsolatos eredményelemzésben 

a megoldottság kérdésére még kitérünk. Fiúk és lányok esetén is hasonló értékű 

elkülönítésmutatókat találunk. Megfigyelhetjük, hogy a magasabb elkülönítésmutatóhoz 

általában alacsonyabb item-megoldottság tartozik. Minél magasabb arányban oldanak meg egy 

itemet a tanulók, az annál kevésbé képes különbséget tenni a képességszintjük között.  

 

Évfolyamonkénti különbségek a Szorzási Stratégiák Teszten 

A Szorzási Stratégiák Tesztet a mindhárom vizsgált évfolyamból több, mint 240 tanuló 

oldotta meg, így évfolyamonként is érdemes összehasonlítani a kapott eredményeket. Az 52. 

táblázatban a mintára vonatkozó adatokat találjuk.  

 

52. táblázat. A Szorzási Stratégiák Tesztet kitöltő tanulók adatai, központi vizsgálat 

Évfolyam N Átlag Szórás Minimum Maximum 

4. 260 13,40 10,79 0 40 

5. 243 18,84 11,94 0 38 

6. 297 19,89 13,25 0 40 

Teljes minta 800 17,46 12,42 0 40 

Az egyes évfolyamok átlagpontszáma között a különbség szignifikáns (p < 0,001). A szórások 

mindhárom évfolyamon szignifikánsan különböznek, a Levene-féle F = 0,03 (p < 0,001). A 4. 

évfolyamosok a teszten 33,50%-os eredményt értek el, ez szignifikánsan alacsonyabb, mint a 

magasabb évfolyamokon elért eredmény. Az évfolyamok t-próbával történő összehasonlítása 

után a 4. és 5. évfolyam esetén a Levene féle F értékére 12,53 (p < 0,001), t = -5,36 (df = 487,17) 

adódik, az 5. és a 6. évfolyam esetén a Levene-féle  F= 6,93 (p < 0,01), t = 0,97 (df = 532,973), 

(p < 0,17, sig 1-tailed). Az ötödik évfolyamosok 47,10 %-os eredményt értek el, hatodikosok 
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49,73%-os eredményt, de a két évfolyam között a különbség inszignifikáns. A teljes minta által 

elért teljesítmény 43,65%. A teljesítmények szórása minden évfolyamon több, mint 10. A 

relatív szórás a 4. évfolyamon a legnagyobb (0,81), az 5. évfolyamon a legkisebb (0,63), a 6. 

évfolyamon pedig 0,67. Mindhárom évfolyam tanulói között volt olyan, aki egy pontot sem ért 

el a teszten. Maximális pontszámot elérő diákok a 4. és 6. évfolyamos tanulók között voltak.  

 A 410 fiú és a 390 lány teszten elért évfolyamonkénti átlagát olvashatjuk ki az 53. 

táblázatból. A Szorzási Stratégiák Tesztet 138 negyedik évfolyamos fiú és 122 negyedikes lány 

írta meg. Az ötödik évfolyamon a fiúk száma 126 fő, a lányoké 117 fő. A legtöbb tanuló a 6. 

évfolyamra jár, 146 fiú és 151 lány. A fiúk mintáján végzett számításaink szerint a Levene-féle 

F értéke 13,49, a lányok mintáján ez az érték F = 8,31 (p < 0,001). A post hoc elemzések közül 

a Dunnett-próba mutatja meg, hogy a három évfolyamon szignifikáns a különbség a fiúk 

teljesítménye között (p < 0,001), a negyedikesek alacsonyabb teljesítményt nyújtottak, mint a 

két másik évfolyam. A lányok esetén is ugyanezt a megállapítást tehetjük, a két magasabb 

évfolyam teljesítménye szignifikánsan magasabb (p < 0,001), mint a negyedikes lányoké. 

53. táblázat. A Szorzási Stratégiák Tesztet kitöltő tanulók adatai évfolyamonként, nemenként, 

központi vizsgálat  

Nem Évfolyam Minta 

elemszám 

(fő) 

Minta 

elemszám 

összesen 

Átlag      

              

Szórás 

Évf. A teljes 

mintán 

Évf. A teljes 

mintán 

 4. 138  12,56  10,49  

Fiú 5.  126 410 19,46 17,21 12,31 12,50 

 6.  146  19,67  13,22  

 4. 122  14,34  11,09  

Lány 5. 117 390 18,18 17,73 11,55 12,34 

 6. 151  20,11  13,32  

Összesen   800  17,46  12,42 

 

Az évfolyamok növekedésével a szórások is emelkednek. A fiúk között mindegyik évfolyamon 

volt 0 pontos eredményű, 4. évfolyamon a legnagyobb elért pontszám 39; 5. évfolyamon 38 

pont; 6. évfolyamon 40 pont volt. A lányok között 5. évfolyamon a legkisebb pontszám 1 volt, 

a másik két évfolyamon 0 pont. A legmagasabb elért pontszám 5. évfolyamon 38 pont volt, a 

másik két évfolyamon volt maximális pontszámú lány. 

A három évfolyam Szorzásteszten elért teljesítményét nemek szerinti összehasonlítva a 

27. ábrához jutunk. A negyedik évfolyamos lányok teljesítménye a teszten 35,85 %pont volt, 

ami 4,45%-kal magasabb, mint a fiúké (31,40%). 5. évfolyamon a fiúk teljesítménye 48, 65%, 

magasabb a lányokénál (45,45%). A 6. évfolyamon ismét a lányok teljesítménye nagyobb, 

50,28 %, míg a fiúké 49,18%. A nemek közti teljesítménykülönbségek nem jelentősek.  
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27. ábra A Szorzási Stratégiák Teszten elért teljesítmény évfolyamonként és nemek szerint, 

központi vizsgálat 

Összehasonlításva az adatokat elmondható, hogy minden item megoldottsága a 4. 

évfolyamon a legkisebb, majd a következő évfolyamokon a tanulók jobb átlagot érnek el. A 19. 

és a 20. item megoldottsága az 5. és a 6. évfolyamon azonos (0,53, illetve 0,49). Néhány item 

esetén szembetűnik, hogy az 5. évfolyamos tanulók nagyobb sikerrel oldották meg, mint a 6. 

évfolyamos tanulók: ezek a 6., 7., 14.,15., 23., 27., 28., 36. és 37. itemek. 

Az 54. táblázat a Szorzási Stratégiák Tesztre vonatkozó statisztikai mutatókat tartalmaz. 

A kétféle tesztváltozatot közel azonos számú tanuló oldotta meg. Az A tesztet író 4. és 6. 

osztályos tanulók, illetve a B változatot író 6. osztályosok között volt maximum pontot elérő 

diák. A B változatot író ötödikeseknél a minimumpontszám az 1 volt, minden más esetben 0 

volt a minimumpontszám. Amint a táblázatból láthatjuk, a kétféle tesztváltozaton eltér a tanulók 

átlagpontszáma. A 4. és 5. évfolyamosok számára kicsit könnyebb volt az A tesztváltozat, míg 

a 6. évfolyamos tanulók a B tesztváltozaton szereztek magasabb pontszámot. A 

tesztváltozatokra kiszámított relatív szórások 0,71 és 0,72, vagyis a B teszt jobban szórja a 

tanulókat képességeik szerint. 
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54. táblázat. A Szorzási Stratégiák Teszt elemzése tesztváltozatonként, évfolyamonként, 

központi vizsgálat 

Teszt-

változat 

Évfolyam Minta 

elemszám 

(fő) 

Minta 

elemszám 

összesen 

Átlag      

              

Szórás 

 Évfo-

lyam 

A teljes 

mintán 

Évfo-

lyam 

A teljes 

mintán 

 4. 128  14,23  10,92  

A 5.  133 416 18,99 17,44 11,95 12,30 

 6.  155  18,76  13,21  

 4. 132  12,58  10,64  

B 5. 110 384 18,66 17,48 12,00 12,56 

 6. 142  21,13  13,23  

Összesen   800  17,46  12,42 

 

Az egyes évfolyamok átlagpontszáma között a különbség szignifikáns (p < 0,001). A szórások 

mindhárom évfolyamon szignifikánsan különböznek, a Levene-féle F = 7,77 (p < 0,001). A 

Welch-próba szerinti F = 7,28 (p < 0,001) az A teszt esetén és F = 11,18 (p < 0,001) a B teszt 

esetén. A szóráskülönbség miatt mindkét esetben a Welch-próba segít (FA teszt  = 7,28, p < 0,002; 

FB tesz t = 19,23, p < 0,001), a 4. évfolyamosok a teszt mindkét változatán elért átlagpontszáma 

szignifikánsan alacsonyabb, mint a másik két évfolyam teljesítménye. Az 5. és 6. évfolyamosok 

teljesítménye nem különbözik szignifikánsan egymástól. A 4. évfolyamosok teljesítménye 

35,58%, illetve 31,45%; az 5. évfolyamosok teljesítménye 47,48%, illetve 46,65%; míg a 6. 

évfolyamosok teljesítménye 46,90%, illetve 52,83%.  

Az 55. táblázatban foglaltuk össze a Szorzási Stratégiák Teszt statisztikáit tesztváltozatonként, 

nemek szerinti bontásban. 

 

55. táblázat. A Szorzási Stratégiák Teszt elemzése tesztváltozatonként, nemek szerint, központi 

vizsgálat  

Teszt-

változat 

Nem Minta 

elemszám 

(fő) 

Minta 

elemszám 

összesen 

Átlag 

Évfo-          A 

lyam         teljes 

Szórás 

Évfo-          A 

lyam         teljes 

  mintán  mintán 

 fiú 214 
416 

17,19  

17,44 

12,55 
12,30 

A lány 202 17,71 12,05 

 fiú 196 
384 

17,23  

17,48 

12,47 
12,56 

B lány 188 17,74 12,68 

Összesen   800  17,46       12,42 
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A kétféle tesztváltozatot megírók száma közel egyforma. Mindkét nembeli diákok a B teszten 

értek el magasabb átlagpontszámot. Az A tesztre a Levene-féle F = 1,04 (df1 = 1, df2 = 414, p 

> 0,05), a B tesztre a Levene-féle F = 0,50, (df1 = 1, df2 = 382, p > 0,05). Így a 

szóráshomogenitás miatt az ANOVA teszt eredményét figyelve (FA tesz t= 0,18, p > 0,05, illetve 

FB teszt = 0,69, p > 0,05) kijelenthetjük, hogy bár mindkét tesztváltozatot a lányok írták meg 

jobban, de ez a pár tizednyi különbség nem szignifikáns. 

 

Iskolák és osztályok közötti különbségek               

A H2c hipotézisünk szerint: A vizsgált iskolák tanulóinak szorzási stratégiákat mérő teszten 

nyújtott teljesítménye szignifikánsan különbözik. Ez a hipotézis beigazolódott. A 800 fős 

mintában a tanulók átlageredménye 17,46 pont volt, 43,65%pont. Az egyes iskolák között nagy 

teljesítményszintbeli eltéréseket figyelhetünk meg. Az 56. táblázat az egyes iskolák 

teljesítményeloszlására vonatkozó adatokat tartalmazza 10%pontos intervallumonként.  

56. táblázat. Az iskolák teljesítményeloszlása a Szorzási Stratégiák Teszten a központi 

vizsgálat során 

Telje-

sít-

mény 

 

Iskola 

(%) 1. 2.     3. 4. 5. 6. 7. 8. 9. 10. 11. 

0-10 11,0 46,9 14,8 31,8 27,3 27,9   7,1 16   0,0 33,3 21,2 

11-20 12,0  9,3 11,3 13,7   9,1   2,3   7,2 12   0,0 19,3 12,7 

21-30 19,1 12,6 20,5 9,0   0,0 16,3 12,5 4,0   1,6 12,3 13,6 

31-40 11,5  9,3  3,4 16,7 27,2   7,0   5,3 4,0   3,2 21,1 11,7 

41-50  8,6  4,7 11,4  1,5   9,1 13,9   1,8 4,0   0,0   0,0  7,6 

51-60  9,1  9,4  5,6  6,1   0,0   2,4   1,8 12,0     3,1   3,5  5,1 

61-70  6,7  1,6  9,1  1,5   0,0   6,9  12,5 2,0 11,1   7,0  3,4 

71-80  8,1  2,6  4,6 10,6   9,1   7,0  14,3 8,0 27,0   0,0 11,1 

81-90  8,6  1,6 14,8  7,6   9,1 11,6  19,6 16,0 38,1   1,7  5,9 

91-100  5,3  0,0  4,5  1,5   9,1   4,7  17,9 14,0 15,9   1,8  8,5 

Átlag 42,5 22,9  44,0 32,9 39,1  40,7   61,7 53,0 79,6  24,7 40,6 

A táblázatból kitűnik, hogy a 2. iskola tanulóinak 46,9%-a legfeljebb 10%pontot ért el, szintén 

sok gyengébben teljesítő tanulót találunk a 4., 5., 6., 10. és 11. iskolában.  Míg az 1., 3., 5., 6., 

7., 8., 9., 11. iskolában a legfelső ötöd részben helyezkedik el több, mint a tanulók 20%-a, addig 

a 2. és a 10. iskolában alig akad olyan tanuló, aki ebbe a teljesítménysávba tartozna. Az 5. 

iskolában nincs olyan tanuló, aki 21-30, 51-60, 61-70%-nyi teljesítményt nyújtott volna. 

Hiányoznak a 41-50 és 71-80%-nyi teljesítményt nyújtók a 10. iskolából. A 9. iskolában tanulók 

esetén senkit sem találunk 20%-os teljesítményszint alatt. Az adatokból látható, hogy a 3., 7. 8. 

9. és 10. iskola tanulóinak átlagteljesítménye magasabb volt, mint a teljes minta 

átlagteljesítménye. Az első iskolában az átlagteljesítmény 42,5% volt, a hatodik iskolában 

40,7%, a többi iskola átlagteljesítménye pedig 40%-nál kevesebb. Balra tolódó eloszlást 

figyelhetünk meg az 1., 2., 3., 4. iskola esetén, a 9. iskola eloszlása pedig jobbra tolódó. 

 A 16. sz. mellékletbeli táblázat a Szorzási Stratégiák Teszt néhány adatát tartalmazza 

osztályonként. A 46 vizsgált osztályból 19 osztály a mintaátlagtól magasabb eredményt ért el. 

Az 1. iskola osztályainak felében, a 2., 6. és a 8. iskola egy-egy osztályában, a 7. és a 9. iskola 
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két-két osztályában, a 3. és a 11. iskola három-három osztályában értek el a tanulók magasabb 

átlagpontszámot, mint a teljes minta átlaga. A teljes minta relatív szórása 0,71. Egy egésznél 

nagyobb relatív szórásokat találunk a 13., 14., 16., 25., 30., 35. és a 41. osztályokban, ezek 

heterogénebb összetételűek a többi osztályhoz képest. Míg a legkisebb relatív szórásokat a 34., 

36. és 37. osztályokban találjuk (értékük rendre 0,24; 0,23 és 0,11), ezekben az osztályokban 

hasonló pontszámot értek el a tanulók. A legnagyobb minimumértékeket a 4., 12., 32., 34. és a 

37. osztályokban érték el, a legalacsonyabb maximumpontszámot pedig a 14. és a 39. 

osztályban. Négy osztályban akadtak olyan tanulók, akik a maximális 40 pontot elérték. A 

módusz és medián értékekre pillantva is megállapíthatjuk, hogy akár egy iskola azonos 

évfolyamán levő osztályai között milyen nagy eltérések lehetnek. Érdemes vizsgálni ennek 

okait.  

Az osztályok közötti különbségeket a homogenitásvizsgálat és a varianciaanalízis 

segítségével állapíthatjuk meg. A Levene-féle próba esetén F = 3,00 (df1 = 43, df2 = 756), p < 

0,001-t kaptuk, vagyis a részminták által reprezentált populációkban a szórások különböznek. 

A Welch-próba értéke F = 27,66, p < 0,001, vagyis különbség figyelhető meg az egyes 

osztályok átlagai között. Mivel a részminták által reprezentált populációkban a szórások között 

szignifikáns a különbség, így a post-hoc elemzések közül a Hochberg’s GT2–teszt eredményei 

mutatják, hogy az egyes osztályok közötti különbség szignifikáns. A 46 osztály 11 homogén 

csoportra bontható.  

 

5.6.5. A fejben szorzás eredményessége és a tanulók által elkövetett tipikus hibák 
 

A hipotéziseink igazolására végzett felmérés adatainak feldolgozása során a tanulók 

által használt számolási stratégiák kódolására két független szakértőt kértünk fel. A kódolást a 

szakértők egy kódolási útmutató alapján végezték. Hope és Sherrill (1987) tanulmányában leírt 

12 stratégiát tartalmazó rendszert finomítottuk, a tanulók által használt stratégiákat 

vizsgálataink tapasztalatai alapján 35 különböző stratégiába soroltuk be. Dolgozatunkat a a 

hibás stratégiák bemutatásával folytatjuk. 

71 fő, a 800 fős minta 8,9%-a számolta egy vagy több itemet írásban: 0-11 item esetén 

31 fő, 11-20 item esetén 7 fő, 21-30 item esetén 7 fő, 31-40 item esetén 26 fő, ebből 19 fő mind 

a 40 itemet ezzel a stratégiával számolt. Őket a további elemzésből kivettük.  

 298 fő (a minta 37,25%-a) alkalmazta a 91-es kóddal jelölt stratégiát, ami az összeadás 

helytelen analógiájára elkövetett racionális hiba. 10 item esetén a minta 15,1%-a, 11-20 item 

esetén a 6,2%.-a, 21-30 item esetén a minta 15,5%-a, 31-40 item esetén a minta 0,4%.a, azaz 3 

fő alkalmazta. A stratégia alkalmazására látunk példát egy Hajdú-Bihar megyei 4. osztályos 

lány tesztjében a 28. ábrán. E stratégia egy-egy válfajának tekinthető 92-98-as kódú stratégiákat 

kevesen (2-3 fő) és ritkán, 1-2 item esetén alkalmazták. 
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28. ábra A „Tízeseket a tízesekkel, az egyeseket az egyesekkel” szorzási stratégia alkalmazása 

Példát látunk a 29. ábrán egy 6. osztályos budapesti fiú tesztjéből a 92-es és 93-as stratégia 

használatára. Egyéb, az előzőektől különböző, helytelen eredményre vezető stratégia a tanulók 

49,2%-át érintette: 1-10 item esetén a 100-as kódú stratégiával számolt a minta 40,2%-a (ebből 

1 itemnél 116 fő, 2 itemnél 80 fő), 11-20 item esetén a minta 4,8%-a, 21-30 item esetén a minta 

20,2%-a, 3140 item esetén pedig a minta 2 %-a. Ezekről később még részletesebben írunk.  

 

 

 
29. ábra  92-es és 93-as stratégia alkalmazása 

 

A helyes eredményre vezető stratégiák közül 15 fő alkalmazta az „elképzelem fejben leírva” 

stratégiát, 0-10 itemre 6 fő, 11-20 itemre 2 fő, 31-40 itemre 7 fő, ebből 2 fő mind a 40 item 

esetén. Legtöbben a 8 · 99 itemet számították így (11 fő). Az „elképzelem fejben leírva”  

stratégia alkalmazását látjuk egy kecskeméti 6-osztályos fiú tesztében (30. ábra). 

 

 

30. ábra Elképzelem fejben leírva (kecskeméti 6. osztályos fiú) 

127 fő minden részletszorzatot számjegyenként szorzott össze, 0-10 item esetén 118 fő, 11-20 

item esetén 7 fő, 21-30 item esetén 4 fő, 31-35 itemnél 5 fő. 39 fő alkalmazta a 77 · 8, 28 fő a 

9 · 888 és a 9 · 652 itemek kiszámítására. E stratégia hibás alkalmazására mutat példát egy 

Hajdú-Bihar megyei 4. osztályos lány munkájában a 31. ábra.  

 

 
31. ábra „Minden részletszorzatot számjegyenként szoroz össze” stratégia 
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Az egyik tényező tagolásával 468 fő (58,5%) kezdte a számításokat, a legtöbben (254 fő) a     

150 · 6 kiszámítására alkalmazták. 237 fő számította ezzel a stratégiával a 25 · 120-at, 153 fő 

használta a 10 · 690 és 69 fő a 8 · 4211 kiszámításakor. Egyik budapesti 6. osztályos lány 

munkájából adunk részletet az 32. ábrán. 

 

 

 

 
32. ábra Példa az „Összeadandókra tagolja az egyik tényezőt” stratégia használatára 

Mindkét tényezőt összeadandókra bontotta a minta 12,2%-a (98 fő), 1-10 item kiszámítására 

61 fő, 11-20 item esetén 19 fő, 21-30 item esetén 17 fő, 31-40 item esetén 1 fő alkalmazta. 47-

en számolták így a 25 · 48-at, 44-en a 15 · 16-ot, 38-an a 18 · 16-ot, 37-en a 31 · 32-t. A stratégia 

helyes és hibás alkalmazására ugyanazon a teszten belüli példát láthatunk a 33. ábrán. 

 

 

33. ábra „Mindkét tényezőt összeadandókra tagolja” stratégia (kecskeméti 6. osztályos lány) 

Az additív disztribúció stratégiát 483 fő alkalmazta, közülük 300 fő a 9 · 652, 297 fő a 8 · 4211, 

284 fő a 9 · 742, 266 fő a 8 · 999 item kiszámítására. A stratégia néhány alkalmazását mutatja 

egy budapesti 6. évfolyamos lány esetén az 34. ábra.  

 

 

 

34. ábra Példák az additív disztribúció alkalmazására ugyanannál a tanulónál 

 A szorzást 50 fő kezdte az egyesekkel, a legtöbben (13 fő) a 77 · 8, a 8 · 99 és a 15 · 16 itemek 

kiszámítására, míg 1 fő 35 itemen át így számolt. A szorzás során a tízesekkel 599 fő kezdett 
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(a minta 74,9%-a), 1-10 itemre 278 fő, 11-20 itemre121 fő, 21-30 itemre 189 fő és 31-40 itemre 

23 fő. A stratégia használatát látjuk az 35. ábrán. 

 

35. ábra A 22-es stratégia alkalmazása (Hajdú-Bihar megye, 4. osztályos fiú) 

 A frakcionális disztribúciót kevesen és ritkán alkalmazták (4 fő 1-2 item esetén), ketten-ketten 

a 20 · 30 és az 50 · 50, 1 fő a 150 · 6 kiszámítására.  A kvadratikus disztribúció szintén a ritkán 

és kevesek (5 fő) által alkalmazott stratégiák közül való: ketten a 24 négyzetét, egy-egy fő pedig 

a 9 · 652, a 19 és a 11 négyzetének kiszámítására használta.  

A szubtraktív disztribúciót alkalmazók száma 136 fő (a minta 17%-a), 1-10 itemet 122 

fő, 11-14 itemet 14 fő számolt így. 96 fő számolta így a 8 · 999, 83 fő a 8·99 és a 17 · 99, 82 fő 

a 77 · 99 szorzásokat. A stratégia néhány alkalmazására látható példa az 36. ábrán. 

 

 

 

36. ábra A szubtraktív disztribúció alkalmazása (budapesti 6. osztályos fiú) 

Ehhez képest elvétve (8 főnél) fordult elő a felezés-duplázás stratégia: két-két fő számolta így 

a 12 · 250, a 25 · 65 és a 25 · 50. itemeket, egy-egy fő pedig a 25 · 32-t és az 50 négyzetét. Erre 

látható példa az 37. ábrán.  

 

37. ábra Felezés-duplázás stratégia (budapesti 6. osztályos fiú) 

E stratégia egy változatát (74-es stratégia) ketten alkalmazták a 18·16 kiszámítására. Az egyik 

számot maradék nélküli részekre bontja (8-as) stratégiát öten alkalmazták, 3 fő a 12 · 15, egy-

egy fő a 25 · 48 és a 45 négyzetének kiszámítására. A 8-as és a 74-es stratégiát egy teszten belül 

alkalmazta pl. egy budapesti fiú, ahogy az 38. ábrán látjuk.  
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38. ábra A 8-as és a 74-es stratégiára példa (budapesti 6. osztályos fiú) 

A 81-es stratégiát egy főnél figyeltük meg a 150·6 szorzásakor (150 · 6 = 150 · 10 : 2 + 150). 

A tanulók közül 168-an (a minta 31%-a) hivatkoztak ismert szabály alkalmazására, közülük 

166 fő a 10 · 690 estén írt olyat, hogy „ha 10-zel szorzok egész számot, akkor mögé írok egy 

nullát”, ahogy egy budapesti 6.-os fiú munkáján láthatjuk (39. ábra és 40. ábra).  

 

39. ábra Ismert szabály alkalmazása 1. (budapesti 6. évfolyamos fiú) 

 

40. ábra Ismert szabály alkalmazása 2. (budapesti 6. évfolyamos fiú) 

A következő, 41. ábra arra példa, hogy a tesztet kitöltő fiú észrevette, hogy az előző item 

eredményt felhasználhatja a számítása során.  

 

 

41. ábra Ismert szabály alkalmazása 3. (budapesti 6. évfolyamos fiú) 

Hatan számították szabály alkalmazásával az 500 · 500, ketten a 25 négyzete, hárman a 20 · 30, 

egy-egy fő az 50 és a 45 négyzete, valamint a 12 · 11 itemek számításakor. Egy-egy fő 

részletszámításaiból látjuk, hogy algebrai azonosságot (összeg négyzete) alkalmazott a 11 és a 

16 négyzetének meghatározására. Egy szokatlan algebrai átalakítás (52-es stratégia) is csak egy 

fő esetén fordult elő, így számolta ki a 12 · 250-et: 10 · 200 + 20 · 50. „Erre emlékszem” vagy 

„ezt már tudom fejből” jegyzetek utalnak az emlékezeti előhívás (55-ös) stratégia használatára 

69 fő (a minta 8,6%-a) esetén, ahogy egy budapesti 6.-os fiú tesztjében látjuk (42. ábra és 43. 

ábra).  

 

42. ábra Az emlékezeti előhívás alkalmazására 1. példa (budapesti 6. osztályos fiú) 

 

43. ábra Az emlékezeti előhívás alkalmazására 2. példa (budapesti 6. osztályos fiú) 
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A legtöbben két-, háromjegyű jegyű számok négyzetét határozták meg így: 43 fő a 11 négyzetét, 

17 fő az 500 négyzetét, 13 fő a 13 négyzetét számolta így; 20 fő pedig a 12 · 11 kiszámítására 

alkalmazta. Exponenciális faktorizáció alkalmazását egy-két itemnél és 7 főnél láttuk: egy fő a 

18 · 16-ot és a 11, illetve az 50 négyzetét, két fő pedig a 15 · 48, a 12 · 16. a 32 itemeket és a 

16 négyzetét számította így, ez utóbbira látunk példát a 44. ábrán. 

 

 

 

44. ábra Exponenciális faktorizáció (budapesti 6. osztályos fiú) 

Az általános faktorizációt 641 fő alkalmazta, 223 fő három, 138 fő 4 item esetén. A legtöbben, 

514-en az 500 · 500 kiszámítását végezték a segítségével, 492-en az 50 négyzetét, 477-en a 20 

· 30-at számolták így. 131 fő a 10 · 690, 145 fő a 150·6 és 166 fő a 25 · 50 kiszámítására 

alkalmazta. Az általános faktorizációra látható példa a 45. ábrán. 

 

 

 

45. ábra Általános faktorizáció (kecskeméti 6. osztályos fiú) 

Az itemek 14,2%-át a tanulók a 91-es kóddal jelölt stratégiával számolták, azaz „Tízeseket a 

tízesekkel és egyeseket az egyesekkel” szorozták össze az összeadás mintájára, majd ezt a két 

részletszorzatot összeadták, ez racionális hiba. Az itemek 8%-a esetén egyéb, helytelen 

eredményre vezető stratégiát alkalmaztak a tanulók a számolás során. A tanulók az itemek 

4,6%-át írásban számolták, az esetek 5,3%-ában nem indokolták a számításukat, 17,5% az 

üresen hagyott itemek relatív gyakorisága. A 14. item (20.30) kivételével egy gyermek (a 800 

fős minta 0,1%-a) mindent géppel számolt, őt nem számítottuk bele egyik adatba sem ebben a 

táblázatban. Amint láthatjuk, a tanulók az itemek 50,1%-át helyes eredményre vezető 

stratégiával számolták. Ugyanakkor, ha ezt a táblázatot összevetjük az egyes itemek 

megoldottságát tartalmazó, a reliabilitás tárgyalásánál már közölt táblázattal, szembetűnik, 

hogy a helyes eredményre vezető stratégiákat sem tudták minden egyes számításnál hibátlanul 

alkalmazni. A tanulók vagy elírtak egy számjegyet, vagy a részletszámítások során hibáztak.  
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5.6.6. Az eredményesség összefüggései a stratégiahasználattal 

 

A tanulók 50,1%-a az 1. itemet helyes eredményre vezető stratégiával oldotta meg. Az 

itemet 352 fő oldotta meg jól, 79,2%-uk helyes eredményre vezető stratégiával számolt. A hibás 

eredményt kapott 448 tanuló közül 136 fő szintén helyes eredményre vezető stratégiát 

alkalmazott. Elmondhatjuk, hogy a helyes stratégiát alkalmazók 32,8%-a számolási hibát vétett 

a számolás során. A tanulók 51,5%-a (412 fő) a 2. itemet helyes eredményre vezető stratégiával 

oldotta meg. Az itemet 345 fő oldotta meg jól, 78,84%-uk helyes eredményre vezető 

stratégiával számolt. A rossz eredményt kapott 455 tanuló 30,1%-a (137 fő) szintén helyes 

eredményre vezető stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 33,5%-a hibázott 

a számolás során. A tanulók 46,1%-át képező 369 fő a 3. itemet helyes eredményre vezető 

stratégiával válaszolta meg. Az itemet 323 fő oldotta meg jól, 77,7%-uk helyes eredményre 

vezető stratégiával számolt. A rossz eredményt kapott 477 tanuló 31,9%-a (133 fő) szintén 

helyes eredményre vezető stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 34,6%-a 

hibázott a számolás során. 

518 fő, a tanulók 64,8%-a 4. itemet helyes eredményre vezető stratégiával oldotta meg. 

Az itemre 447 fő felelt jól, 84,5%-uk helyes eredményre vezető stratégiával számolva. A 

helytelen eredményt kapott 323 tanuló 35,6%-a (115 fő) szintén helyes eredményre vezető 

stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 22,2%-a hibásan számolt. 364 tanuló, 

a tesztet oldók 45,4%-a válaszolta meg az 5. itemet helyes eredményre vezető stratégiával. Az 

itemre 275 adott jó megoldást, 77%-uk helyes eredményre vezető stratégiával számolt. A rossz 

eredményt kapott 525 tanuló 29%-a (152 fő) szintén helyes eredményre vezető stratégiát 

alkalmazott. Így a helyes stratégiát alkalmazók 41,8%-a rosszul számolt. A tanulók 49,7%-át 

alkotó 398 fő a 6. itemet helyes eredményre vezető stratégiával válaszolta meg. A szorzást 327 

végezte el jól, 82,6%-uk helyes eredményre vezető stratégiával számolt. A rossz eredményt 

kapott 473 tanuló 27,1%-a (128 fő) szintén helyes eredményre vezető stratégiát alkalmazott. 

Így a hibázás aránya a helyes stratégiát alkalmazók körében 32,2%-os volt. 

A tanulók 47,3%-a az 7. itemet helyes eredményre vezető stratégiával oldotta meg. Az 

itemet 345 fő oldotta meg jól, 82,3%-uk helyes eredményre vezető stratégiával számolt. A hibás 

eredményt kapott 455 tanuló közül 175 fő szintén helyes eredményre vezető stratégiát 

alkalmazott, tehát a helyes stratégiát alkalmazók 38,4%-a számolási hibát vétett. A tanulók 

44,6%-a (356 fő) a 8. itemet helyes eredményre vezető stratégiával oldotta meg. Az itemet 293 

fő oldotta meg jól, 79,5%-uk helyes eredményre vezető stratégiával számolt. A rossz eredményt 

kapott 507 tanuló 24,3%-a (123 fő) szintén helyes eredményre vezető stratégiát alkalmazott. 

Így a helyes stratégiát alkalmazók 34,6%-a hibázott a számolás során. A tanulók 44,3%-át 

képező 354 fő a 9. itemet helyes eredményre vezető stratégiával válaszolta meg. Az itemet 340 

fő oldotta meg jól, 79,7%-uk helyes eredményre vezető stratégiával számolt. A rossz eredményt 

kapott 460 tanuló 18,1%-a (83 fő) szintén helyes eredményre vezető stratégiát alkalmazott. Így 

a helyes stratégiát alkalmazók 23,4%-a hibázott a számolás során. 

339 fő, a tanulók 42,6%-a 10. itemet helyes eredményre vezető stratégiával oldotta meg. 

Az itemre 253 fő jó választ adott, 75,6%-uk helyes eredményre vezető stratégiával számolva. 

A helytelen eredményt kapott 547 tanuló 27,1%-a (148 fő) szintén helyes eredményre vezető 

stratégiát alkalmazott, így a helyes stratégiát alkalmazók 43,7%-a hibásan számolt. 357 tanuló, 

a tesztet oldók 44,9%-a válaszolta meg a 11. itemet helyes eredményre vezető stratégiával. Az 
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itemre 307 fő adott jó megoldást, 80,1%-uk helyes eredményre vezető stratégiával számolt. A 

rossz eredményt kapott 493 tanuló 22,5%-a (111 fő) szintén helyes eredményre vezető stratégiát 

alkalmazott. Így a helyes stratégiát alkalmazók 31,1%-a rosszul számolt. A tanulók 44,2%-át 

alkotó 354 fő a 12. itemet helyes eredményre vezető stratégiával válaszolta meg. A szorzást 

277 diák végezte el jól, 78,0%-uk helyes eredményre vezető stratégiával számolt. A rossz 

eredményt kapott 523 tanuló 26,3%-a (138 fő) szintén helyes eredményre vezető stratégiát 

alkalmazott. Így a hibázás aránya a helyes stratégiát alkalmazók körében 39,0%-os volt. 

A tanulók 45,0%-a a 13. itemet helyes eredményre vezető stratégiával oldotta meg. Az 

itemet 359 fő oldotta meg jól, 81,9%-uk helyes eredményre vezető stratégiával számolt. A hibás 

eredményt kapott 441 tanuló közül 66 fő szintén helyes eredményre vezető stratégiát 

alkalmazott. Elmondhatjuk, hogy a helyes stratégiát alkalmazók 18,3%-a számolási hibát vétett 

a számolás során. A tanulók 67,0%-a (536 fő) a 14. itemet helyes eredményre vezető 

stratégiával oldotta meg. Az itemet 520 fő oldotta meg jól, 88,1%-uk helyes eredményre vezető 

stratégiával számolt. A rossz választ adó 280 tanuló 27,9%-a (78 fő) szintén helyes eredményre 

vezető stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 14,6%-a hibázott a számolás 

során. A tanulók 58,3%-át képező 466 fő a 15. itemet helyes eredményre vezető stratégiával 

válaszolta meg. Az itemet 395 fő oldotta meg jól, 84,8%-uk helyes eredményre vezető 

stratégiával számolt. A rossz eredményt kapott 405 tanuló közül 122 fő szintén helyes 

eredményre vezető stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 26,7%-a hibázott 

a számolás során. 

339 fő, a tanulók 42,4%-a 16. itemet helyes eredményre vezető stratégiával oldotta meg. 

Az itemre 281 fő felelt jól, 76,4%-uk helyes eredményre vezető stratégiával számolva. A 

helytelen eredményt kapott 519 tanulóból 115 fő (22,2%) szintén helyes eredményre vezető 

stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 34,8%-a hibásan számolt. 446 tanuló, 

a tesztet oldók 43,2%-a válaszolta meg a 17. itemet helyes eredményre vezető stratégiával. Az 

itemre 325 fő adott jó megoldást, 82,2%-uk helyes eredményre vezető stratégiával számolt. A 

rossz eredményt kapott 475 tanuló 16,6%-a (79 fő) szintén helyes eredményre vezető stratégiát 

alkalmazott. Így a helyes stratégiát alkalmazók 22,8%-a rosszul számolt. A tanulók 43,6%-át 

alkotó 348 fő a 18. itemet helyes eredményre vezető stratégiával válaszolta meg. A szorzást 

281 fő végezte el jól, 78,9%-uk helyes eredményre vezető stratégiával számolt. A rossz 

eredményt kapott 519 tanuló 24,3%-a (126 fő) szintén helyes eredményre vezető stratégiát 

alkalmazott. Így a hibázás aránya a helyes stratégiát alkalmazók körében 36,2%-os volt. 

A tanulók 48,5%-a a 19. itemet helyes eredményre vezető stratégiával oldotta meg. Az 

itemet 366 fő oldotta meg jól, 84,6%-uk helyes eredményre vezető stratégiával számolt. A hibás 

eredményt kapott 519 tanuló közül 126 fő (24,3%) szintén helyes eredményre vezető stratégiát 

alkalmazott. Elmondhatjuk, hogy a helyes stratégiát alkalmazók 28,9%-a számolási hibát vétett 

a számolás során. A tanulók 48,7%-a (390 fő) a 20. itemet helyes eredményre vezető 

stratégiával oldotta meg. Az itemet 348 fő oldotta meg jól, 84,8%-uk helyes eredményre vezető 

stratégiával számolt. A rossz eredményt kapott 452 tanuló 19,7%-a (89 fő) szintén helyes 

eredményre vezető stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 30,2%-a hibázott 

a számolás során. A tanulók 46,0%-át képező 368 fő a 21. itemet helyes eredményre vezető 

stratégiával válaszolta meg. Az itemet 306 fő oldotta meg jól, 80,8%-uk helyes eredményre 

vezető stratégiával számolt. A rossz eredményt kapott 494 tanuló 24,5%-a (121 fő) szintén 
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helyes eredményre vezető stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 32,9%-a 

hibázott a számolás során. 

347 fő, a tanulók 43,4%-a 22. itemet helyes eredményre vezető stratégiával oldotta meg. 

Az itemre 272 fő felelt jól, 77,9%-uk helyes eredményre vezető stratégiával számolva. A 

helytelen eredményt kapott 528 tanuló 23,8%-a (126 fő) szintén helyes eredményre vezető 

stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 37,3%-a hibásan számolt. 382 tanuló, 

a tesztet oldók 47,8%-a válaszolta meg a 23. itemet helyes eredményre vezető stratégiával. Az 

itemre 355 fő adott jó megoldást, 84,5%-uk helyes eredményre vezető stratégiával számolt. A 

rossz eredményt kapott 445 tanuló 36,7%-a (163 fő) szintén helyes eredményre vezető stratégiát 

alkalmazott. Így a helyes stratégiát alkalmazók 35,2%-a rosszul számolt. A tanulók 51,9%-át 

alkotó 413 fő a 24. itemet helyes eredményre vezető stratégiával válaszolta meg. A szorzást 

376 végezte el jól, 83,7%-uk helyes eredményre vezető stratégiával számolt. A rossz eredményt 

kapott 424 tanuló 23,3%-a (98 fő) szintén helyes eredményre vezető stratégiát alkalmazott. Így 

a hibázás aránya a helyes stratégiát alkalmazók körében 23,7%-os volt. 

A tanulók 54,0%-a a 25. itemet helyes eredményre vezető stratégiával oldotta meg. Az 

itemet 394 fő oldotta meg jól, 79,4%-uk helyes eredményre vezető stratégiával számolt. A hibás 

eredményt kapott 406 tanuló közül 114 fő (28,1%) szintén helyes eredményre vezető stratégiát 

alkalmazott. Elmondhatjuk, hogy a helyes stratégiát alkalmazók 26,4%-a számolási hibát vétett 

a számolás során. A tanulók 47,9%-a (383 fő) a 26. itemet helyes eredményre vezető 

stratégiával oldotta meg. Az itemet 346 fő oldotta meg jól, 82,9%-uk helyes eredményre vezető 

stratégiával számolt. A rossz eredményt kapott 454 tanuló 12,3%-a (56 fő) szintén helyes 

eredményre vezető stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 14,6%-a hibázott 

a számolás során. A tanulók 46,6%-át képező 373 fő a 27. itemet helyes eredményre vezető 

stratégiával válaszolta meg. Az itemet 306 fő oldotta meg jól, 78,2%-uk helyes eredményre 

vezető stratégiával számolt. A rossz eredményt kapott 494 tanuló 27,1%-a (134 fő) szintén 

helyes eredményre vezető stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 35,9%-a 

hibázott a számolás során. 

492 fő, a tanulók 61,5%-a 28. itemet helyes eredményre vezető stratégiával oldotta meg. 

Az itemre 382 fő felelt jól, 87,4%-uk helyes eredményre vezető stratégiával számolva. A 

helytelen eredményt kapott 412 tanuló 37,8%-a (156 fő) szintén helyes eredményre vezető 

stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 31,7%-a hibásan számolt. 502 tanuló, 

a tesztet oldók 62,8%-a válaszolta meg a 29. itemet helyes eredményre vezető stratégiával. Az 

itemre 497 adott jó megoldást, 85,5%-uk helyes eredményre vezető stratégiával számolt. A 

rossz eredményt kapott 303 tanuló 24,8%-a (75 fő) szintén helyes eredményre vezető stratégiát 

alkalmazott. Így a helyes stratégiát alkalmazók 13,4%-a rosszul számolt. A tanulók 70,1%-át 

alkotó 561 fő a 30. itemet helyes eredményre vezető stratégiával válaszolta meg. A szorzást 

495 végezte el jól, 88,7%-uk helyes eredményre vezető stratégiával számolt. A rossz eredményt 

kapott 305 tanuló 41,6%-a (127 fő) szintén helyes eredményre vezető stratégiát alkalmazott. 

Így a hibázás aránya a helyes stratégiát alkalmazók körében 22,6%-os volt. 

345 tanuló, a tesztet oldók 43,1%-a válaszolta meg a 31. itemet helyes eredményre 

vezető stratégiával. Az itemre 251 fő adott jó megoldást, 77,7%-uk helyes eredményre vezető 

stratégiával számolt. A rossz eredményt kapott 549 tanuló 28,4%-a (156 fő) szintén helyes 

eredményre vezető stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 45,2%-a rosszul 

számolt. A tanulók 62,6%-át alkotó 501 fő a 32. itemet helyes eredményre vezető stratégiával 
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válaszolta meg. A szorzást 423 végezte el jól, 86,3%-uk helyes eredményre vezető stratégiával 

számolt. A rossz eredményt kapott 377 tanuló 36,0%-a (136 fő) szintén helyes eredményre 

vezető stratégiát alkalmazott. Így a hibázás aránya a helyes stratégiát alkalmazók körében 

27,1%-os volt. 

A tanulók 58,2%-a (466 fő) a 33. itemet helyes eredményre vezető stratégiával oldotta 

meg. Az itemet 339 fő oldotta meg jól, 85,2%-uk helyes eredményre vezető stratégiával 

számolt. A hibás eredményt kapott 461 tanuló közül 177 fő (38,4%) szintén helyes eredményre 

vezető stratégiát alkalmazott, tehát a helyes stratégiát alkalmazók 38,0%-a számolási hibát 

vétett a számolás során. A tanulók 45,9%-a (367 fő) a 34. itemet helyes eredményre vezető 

stratégiával oldotta meg. Az itemet 370 fő oldotta meg jól, 78,9%-uk helyes eredményre vezető 

stratégiával számolt. A rossz eredményt kapott 430 tanuló 16,0%-a (69 fő) szintén helyes 

eredményre vezető stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 18,8%-a hibázott 

a számolás során. A tanulók 46,3%-át képező 370 fő a 35. itemet helyes eredményre vezető 

stratégiával válaszolta meg. Az itemet 343 fő oldotta meg jól, 82,5%-uk helyes eredményre 

vezető stratégiával számolt. A rossz eredményt kapott 457 tanuló 17,7%-a (81 fő) szintén helyes 

eredményre vezető stratégiát alkalmazott, vagyis a helyes stratégiát alkalmazók 21,9%-a 

hibázott a számolás során. 

347 fő, a tanulók 43,4%-a 36. itemet helyes eredményre vezető stratégiával oldotta meg. 

Az itemre 313 fő felelt jól, 80,5%-uk helyes eredményre vezető stratégiával számolva. A 

helytelen eredményt kapott 487 tanuló 19,3%-a (94 fő) szintén helyes eredményre vezető 

stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 27,1%-a hibásan számolt. 329 tanuló, 

a tesztet oldók 41,1%-a válaszolta meg a 37. itemet helyes eredményre vezető stratégiával. Az 

itemre 245 fő adott jó megoldást, 79,6%-uk helyes eredményre vezető stratégiával számolt. A 

rossz eredményt kapott 555 tanuló 24,3%-a (135 fő) szintén helyes eredményre vezető stratégiát 

alkalmazott. Így a helyes stratégiát alkalmazók 41,0%-a rosszul számolt. A tanulók 43,7%-át 

alkotó 350 fő a 38. itemet helyes eredményre vezető stratégiával válaszolta meg. A szorzást 

237 végezte el jól, 78,9%-uk helyes eredményre vezető stratégiával számolt. A rossz eredményt 

kapott 563 tanuló 29,0%-a (163 fő) szintén helyes eredményre vezető stratégiát alkalmazott. 

Így a hibázás aránya a helyes stratégiát alkalmazók körében 46,6%-os volt. 

A tanulók 65,0%-a (520 fő) a 39. itemet helyes eredményre vezető stratégiával oldotta 

meg. Az itemet 394 fő oldotta meg jól, 89,1%-uk helyes eredményre vezető stratégiával 

számolt. A hibás eredményt kapott 296 tanuló közül 68 fő (22,9%) szintén helyes eredményre 

vezető stratégiát alkalmazott, tehát a helyes stratégiát alkalmazók 13,1%-a számolási hibát 

vétett a számolás során. A tanulók 69,4%-a (555 fő) a 40. itemet helyes eredményre vezető 

stratégiával oldotta meg. Az itemet 418 fő oldotta meg jól, 89,9%-uk helyes eredményre vezető 

stratégiával számolt. A rossz eredményt kapott 382 tanuló 46,8%-a (179 fő) szintén helyes 

eredményre vezető stratégiát alkalmazott. Így a helyes stratégiát alkalmazók 32,3%-a hibázott 

a számolás során. 

A helyes eredményre vezető stratégiák közül a 22-es stratégia (kétjegyű számok esetén 

először az egyik számot megszorzom a másik kétjegyű szám tízesek helyi értékén álló 

számával, majd utána az egyesek helyén álló számmal) 27 item esetén a leggyakoribb, három 

esetben a második leggyakrabban alkalmazott stratégia. Használatának relatív gyakorisága 

5,9% és 49,4% között váltakozik, 23 esetben több, mint 30%. A többi stratégia jóval kisebb 

arányban és esetben használatos. A 26-os stratégiát, mikor mindkét szorzandót részekre bontja, 
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22 item esetén a tanulók legalább 3%-a alkalmazta, a legnagyobb arányban az 1. item esetén 

(5,9%). A 25-ös stratégia (egyik tényezőt részekre bontja és így szoroz) négy item esetén a 

leggyakrabban használt stratégia; relatív gyakorisága öt item esetén 20% körüli: a 2. item esetén 

29,6%, a 6. item esetén 21,6%, a 13. item esetén 35,4%, a 29. item esetén 31,8%, a 39. item 

esetén 19,1%; négy esetben pedig 5-9% közötti (7. item 8,6%, 23. item 5,5%, 28.item 5,1% és 

33. item 6%). A 4-es stratégia, a szubsztraktív disztribúció kilenc esetben a három 

leggyakrabban alkalmazott stratégia között szerepel 3,4-14,4%-os előfordulási aránnyal. A 10-

es stratégia négy esetben (4., 28., 32. és 33. item) található a leggyakrabban használt három 

stratégia között, relatív gyakorisága 5-10,3%. A 2-es stratégia, az additív disztribúció öt esetben 

a leggyakoribb használt stratégia, a 7., 15., 23., 28. és 33. item megoldásakor használatának 

relatív gyakorisága eléri a 40% körüli értéket (rendre 41,7%, 37,1%, 41,4%, 44,3% és 42,3%). 

A 6-os stratégia, az általános faktorizálás, három esetben a leggyakrabban használt helyes 

eredményre vezető stratégia, használatának relatív gyakorisága a 14. itemnél 59,6%, a 30. 

itemnél 61,5%, a 40. itemnél 64,3%. A 2., 6., 25. 29. és 39. item esetén használatának relatív 

gyakorisága rendre 3,6%, 3,9%, 20,6%, 18,1% és 16,5%. Az 50-es stratégiát, ismert szabály 

alkalmazása, a 39. itemnél a tanulók által leggyakrabban használt helyes eredményre veztő 

stratégia. Az 55-ös stratégia, az emlékezeti előhívás használatának relatív gyakorisága a 35. 

itemnél 5,4%.  

 A helyes eredményre vezető stratégiák számának változását is érdemes megfigyelnünk 

az egyes évfolyamokon. Az erre vonatkozó adatokat az 57. és 58. táblázatban gyűjtöttük össze. 

A negyedik évfolyamos tanulók általában legalább négyféle helyes eredményre vezető 

stratégiát használnak (pl. háromjegyű szám háromjegyű számmal való szorzásakor). Négy item 

esetén 10-féle stratégiát különböztettünk meg, a többi esetben hatot vagy hetet. Az egyjegyű 

szám kétjegyű számmal történő szorzása esetén 9, az egyjegyű szám háromjegyű számmal 

történő szorzása esetén 8-10-féle stratégiát, az egyjegyű szám négyjegyűvel való szorzása 

esetén hétféle stratégiát figyelhettünk meg. A kétjegyű szám háromjegyű számmal történő 

szorzásakor 7-10-féle stratégia volt megkülönböztethető. A kétjegyű számok kétjegyű számmal 

történő szorzása során 6-10-féle stratégiát használtak a vizsgált negyedikesek.  

 

57. táblázat. A helyes eredményre vezető szorzási stratégiák száma növekszik, központi 

vizsgálat 

Feladat A helyes eredményre vezető stratégiák 

száma 

Változás 

Sor-

szám 

Item 4. 

évfolyam 

5. 

évfolyam 

6.  

évfolyam 

 

1. 25 · 48 8 7 10 nőtt 

2. 25 · 120 7 8 9 nőtt 

3. 31 · 32 6 8 9 nőtt 

6. 12 · 250 8 10 11 nőtt 

7. 8 · 4211 7 9 9 nőtt, majd stagnált 

8. 15 · 48 8 9 11 nőtt 

9. 12 · 16 7 9 10 nőtt 

10. 32 · 32 7 7 10 stagnált, majd nőtt 

11. 25· 25 8 9 11 nőtt 
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57. táblázat. A helyes eredményre vezető szorzási stratégiák száma növekszik, központi 

vizsgálat (folytatás) 
 

14. 20 · 30 7 7 11 stagnált, majd nőtt 

16. 23 · 27 7 8 8 nőtt, majd stagnált 

19. 13 · 13 7 7 7 stagnált 

20. 15 · 15 7 7 9 stagnált, majd nőtt 

21. 16 · 16 7 9 12 nőtt 

23. 9 · 742 8 8 9 stagnált, majd nőtt 

25. 25 · 50 9 11 13 nőtt 

26. 18 · 16 9 10 12 nőtt 

27. 25 · 35 8 10 11 nőtt 

29. 150 · 6 8 10 12 nőtt 

30. 50 · 50 10 10 10 stagnált 

31. 19 · 19 7 8 9 nőtt 

32. 77 · 8 9 9 11 stagnált, majd nőtt 

33. 9 · 652 8 8 9 stagnált, majd nőtt 

34. 12 · 11 7 10 10 nőtt, majd stagnált 

36. 19 · 21 7 8 9 nőtt 

37. 45 · 45 8 9 11 nőtt 

38. 77 · 99 8 8 8 stagnált 

 

 

58. táblázat. A helyes eredményre vezető szorzási stratégiák száma csökken, központi vizsgálat  

 

Feladat A helyes eredményre vezető stratégiák 

száma 

Változás 

Sor-

szám 

Item 4. 

évfolyam 

5. 

évfolyam 

6.  

évfolyam 

 

4. 8 · 99 9 7 9 csökkent, majd nőtt 

5. 49 · 51 9 10 8 nőtt, majd csökkent 

12. 17 · 99 8 7 8 csökkent, majd nőtt 

13. 12 · 15 9 7 10 csökkent, majd nőtt 

15. 8 · 999 10 10 9 stagnált, majd csökkent 

17. 25 · 32 8 7 10 csökkent, majd nőtt 

18. 25 · 65 7 6 11 csökkent, majd nőtt 

22. 24 · 24 7 12 11 nőtt, majd csökkent 

24. 15 · 16 10 9 11 csökkent, majd nőtt 

28. 9 · 888 10 11 9 nőtt, majd csökkent 

35. 11 · 11 7 12 10 nőtt, majd csökkent 

39. 10 · 690      7 10 10 nőtt, majd stagnált, 

40. 500 · 500 4 8 6 nőtt, majd csökkent 

 

24 item esetén több stratégiát, hat item esetén kevesebb stratégiát használtak a vizsgált ötödik 

osztályos tanulók, mint a negyedik évfolyamos tanulók. Az ötödikes tanulók legalább hatféle 

stratégiát használtak (18. item), 9 item esetén hetet, 9 item esetén nyolcat, 8 item esetén 9-et, 9 

item esetén tízet. 11-féle, illetve 12-féle stratégiát két-két item számolásakor használtak a 

tanulók. 27 item esetén több stratégiát, hat item esetén kevesebb stratégiát használtak a vizsgált 

hatodik osztályos tanulók, mint az ötödik évfolyamos tanulók. A hatodik is tanulók legalább 
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hatféle stratégiát használtak (40. item), 19 item esetén hetet, 4 item esetén nyolcat, 11 item 

esetén 9-et, 8 item esetén tízet. 11-féle stratégiát 10 item esetén, 12-féle stratégiát három item 

számolásakor használtak a tanulók. A legtöbb különböző számú stratégia a 25. item esetén 

figyelhető meg, a 25 · 50 kiszámításakor a tanulók 13-féle helyes stratégiát ismertek.  

 

5.6.7. A tanulók által elkövetett tipikus hibák  

 

A vizsgált tanulók által leggyakrabban elkövetett hiba a „Tízeseket a tízesekkel és egyeseket az 

egyesekkel” szoroz az összeadás mintájára, racionális hiba volt (ld. Ben-Zeev, 1998). Ezt a 

hibát a Szorzási Stratégiák Tesztet kitöltő tanulók az itemek 14,2%-a, azaz átlagosan minden 

hetedik item számításakor elkövették.  Néhány számolást a tízeseket a tízesekkel, az egyeseket 

az egyesekkel racionális hiba válfajainak is tekinthetünk; ezeket külön figyeltük: ezen 

stratégiák használata elenyésző arányban, mindössze egy-két tanulónál fordult elő. Későbbi 

vizsgálatok során ez a rendszer még tovább alakítható.  

Az elméleti részben leírt hibafajták közük többet is megfigyelhettünk kutatásaink sokán. 

Ezeken kívül számos egyéni, hibás számolásmódot tapasztaltunk, ezeket az egyéb, hibás 

eredményre vezető stratégiákhoz soroltuk be, a továbbiakban ezekről esik szó. Az itemek 8%-

ánál figyeltünk meg ebbe a kategóriába tartozó stratégiahasználatot. A helytelen eredményre 

vezető stratégiák gazdag tárházát minden item kiszámításakor, mindhárom évfolyamon és több 

iskolában megfigyeltünk, gyakrabban az 1., 2., 3., 4., 5., 10. és 11. iskolákban. 

Több tanuló olyan számokat szorzott össze, amelyek nem szerepeltek az itemben 

található összeszorzandó számok között: pl. 45 ⋅ 45 = 23 ⋅ 20.   

Egyik negyedikes tanuló az 1. iskolából így számolt: 15 ⋅ 16 = 10 ⋅ 48 ⋅ 2 + 5 ⋅ 48 =

960 + 40 = 1000. Érdekes, hogy ugyanez a gyermek a 15⋅ 48 szorzást  így számolta ki: 10 ⋅

48 ⋅ 2.  Egy ötödikes tanuló a 2. iskolából a 49  ⋅ 51  kiszámítására a 400 ⋅ 51 + 2 ⋅ 51 =

2499 eredményt kapta, a  20 ⋅ 30 -at így számolta ki: 20 ⋅ 27 + 3 ⋅ 27 = 540 + 81 = 621. 

Ugyanez a tanuló a 8⋅ 999 kiszámítására a 8, 9 és 48 számokat összeszorozva 699-et kapott, a 

20⋅ 27 szorzásra pedig 3 ⋅ 7 ⋅ 21 = 147-et. Egy 4. osztályos tanuló ugyanebből az iskolából a 9 

⋅ 742-t így számolta ki: 900 ⋅ 700 + 90 ⋅740 + 9 ⋅ 2, amire 6300 + 60306 + 9=18000-et kapott. 

A 31⋅ 32 kiszámítására született válaszok: 30 ⋅ 30 + 1 ⋅ 20 = 900 + 20 = 920,  30⋅ 30 + 30 ⋅

20 = 900 + 300 = 1200  (3. iskola), 3  ⋅ 3 ⋅ 2 = 9 ⋅ 2 = 18  (5.iskola), 30 ⋅ 30 + 1 + 2 ⋅

60, illetve 32 ⋅ 3 + 20  (6. iskola). A 7 iskola egyik negyedikes tanulója a 32⋅ 32 szorzást így 

végezte el: 32  ⋅ 3 ⋅ 10 ⋅ 2 = 960 ⋅ 2 = 1920.  Hasonlóan érdekes egy ötödikesgyerek 

gondolkodása a 3. iskolából: a 32 ⋅ 32 kiszámítására 10 ⋅ 10 = 100, 10 ⋅ 10 = 100, 10 ⋅ 10 =

100, 2 ⋅ 2 = 4, ezeket összeadva 304-et kapott eredményül.  

Többször előfordult a tanulók körében ─ rossz vagy jó kerekítést követő ─ kerekített 

értékkel szorzás, így pl. 19 ⋅ 21 helyett 20 ⋅ 20  számítása, 77 ⋅ 99 helyett 80 ⋅ 100 + 7 ⋅ 9 

számítása, 77 ⋅ 99 helyett 80 ⋅ 100 + 7 ⋅ 90  számítás; 19 ⋅ 21 helyett 20 ⋅ 20 + 9 ⋅ 2 . Erre 

példa még 49  ⋅ 51 = 50⋅ 50 = 2500, 45 ⋅ 45 = 40 ⋅ 40 = 1600, ez utóbbi hibás kerekítés, 

ahogy a 45 ⋅ 45 = 50 ⋅ 40 = 5 ⋅ 4 ⋅ 100 = 2000 is. Hasonló hibás számítások 49 ⋅

51 helyett 40 ⋅ 50 vagy 50 ⋅ 50 vagy 50 ⋅ 50 + 1 ⋅ 90 számítása. Szintén hibás stratégia a 23⋅

27  kiszámításakor 25⋅ 25 = 625, vagy 25 ⋅ 65 = 20 ⋅ 70 = 1400  vagy 25⋅ 65 = 30 ⋅ 60 =

1800.  
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Egyik negyedikes gyermek a 11. iskolából következetesen ugyanazt a hibás eredményre 

vezető stratégiát választotta szinte mindegyik itemnél: a kétjegyű számokat szorzás helyett 

összeadta, pl.: 12 ⋅ 18 = 12 + 18 = 28. De ez a stratégia megfigyelhető volt a 2. iskola egyik 

4. osztályos tanulójánál is, pl. 50⋅ 50 = 50 + 50 = 100 + 00 = 100. 

Egy másik tanuló a 2. iskolából az egyjegyű szám háromjegyű számmal típusú szorzást 

úgy végezte el, hogy az egyjegyű számot a háromjegyű szám mögé írta, így szerinte 9 ⋅ 652 =

6529. Hasonlóan gondolkodott a 11. iskolából egy 5. évfolyamos tanuló minden item esetén, a 

szorzótényezőket egymás után írva kapta meg az eredményt, így 19 ⋅ 21 az 1921, 45 ⋅

45 az 4545, 10 ⋅ 690 = 10690, 500 ⋅ 500 = 500500, stb.  Egy negyedikes tanuló a 2. 

iskolából végig így gondolkodott: 25 ⋅ 48 az 2E 5 sz 4t 8e = 2548, tehát úgy vette, a feladat a 

2548 felbontása helyiértékek szerint. 

Egy ötödikes diák esetén a 8 ⋅ 900 + 90 ⋅ 9  számítás utalhat arra, hogy a tanuló rosszul 

tagolta a 999-et, majd a 99-en belül még a 90-et a 9-cel összeszorozta. A 8 ⋅ 999 kiszámítására 

született további variációk egyike: 8 ⋅ 99 + 8 ⋅ 9, rossz tagolás, a helyiérték figyelmen kívül 

hagyásával. Az 1. iskola egyik 5. osztályos fiútanulója szerint 7292 helyett 9 ⋅ 8 ⋅ 8 ⋅ 8 = 4708 

az eredmény, míg évfolyamtársa szerint 9 ⋅ 8 ⋅ 3 ⋅ 10 = 340. A 8 ⋅ 900 + 9 ⋅ 3, illetve 8 ⋅ 9 ⋅3 = 

72 ⋅ 3 = 239 válasz során a tanulók arra gondolhattak, hogy háromszor szerepel a kilences az 

egyik tényezőben.  

Hasonló számolási stratégiát figyeltünk meg azoknál a számoknál, amelyek egyforma 

számjegyből álltak. Ha szerepel a tényezők között két egyforma számjegyet tartalmazó kétjegyű 

szám, akkor a tanulók némelyike a 2-t; ha háromjegyű a szám, akkor a 3-at beveszi a 

szorzótényezők közé, ahogy ez megfigyelhető pl. 8 ⋅ 99 = 8 ⋅ 9 ⋅ 2 = 72 ⋅ 2 = 144, 3 = 72 ⋅

3 = 216, vagy 77 ⋅ 8 = 7 ⋅ 8 ⋅ 2 = 56 ⋅ 2 = 112  és a 9 ⋅  888 = 9 ⋅ 8 ⋅ 3 = 72 ⋅ 3 = 216 

esetén. De előfordult a 2. iskolába járó negyedikes tanulók között olyan, aki a 77  ⋅

99 kiszámítására a 77 ⋅ 99 ⋅ 5 számítást alkalmazta.  

Egy 10. iskolában tanuló 4. évfolyamos diák szerint 9⋅ 88 úgy számítható ki, hogy 

888 + 888 = 1776  és 1776 ⋅ 7 = 13808, a kettő összege 15584; 19⋅ 19 pedig (10 ⋅ 9 + 9 ⋅

9)  ⋅ (10   ⋅ 9 + 9 ⋅ 9) = (90 + 81)  ⋅ (90 + 81) = 171 ⋅ 171. A 8  ⋅ 99 kiszámítására született 

variációk közül még néhány: 8 ⋅ 90 + 9 ⋅ 1; 8 ⋅ 90 ⋅ 2; 11 ⋅ 11 = 11 ⋅ 10 ⋅ 2; vagy 11⋅11 = 2 ⋅

 11 = 22.  

Több tanuló hasonló hibát vétett: az egyik szorzótényezőt megszorozták a másik 

szorzótényező tízeseivel, és befejezettnek tekintették a számolást, eszerint pl. a 15 ⋅ 16 = 15 ⋅

10 = 500. A 13⋅ 13 kiszámításánál csak az egyesekkel sorozták meg a 13-at, így  13 ⋅ 3 = 39, 

mint egy 5. osztályos fiú szerint. A 13⋅ 13 kiszámítására született egy 10 ⋅ 10 + 30 ⋅  3 = 100 + 

900 = 1000 megoldás a 2. iskolában. Ugyanez a 4. évfolyamos tanuló a 8 ⋅  99 -et így számolta 

ki: 8 + 9 ⋅ 9 ⋅ 8 = 9180 , a 15 ⋅ 48 -at pedig így: 4 + 8 ⋅ 1 + 1 = 114. A 4. és 5. iskolában a 

8 ⋅  99 kiszámításakor megfigyeltük a 8 ⋅ 9 ⋅ 2 = 72⋅ 2 = 144, és a 8 ⋅ 99 + 9 = 42 + 9 = 51, 

illetve a 8 ⋅ 9 ⋅ 9 = 72⋅ 9 = 66 számítást. Néhány variáció a 6. iskolából a 25⋅ 50 kiszámítására: 

25 ⋅ 50 ⋅ 5 = 525, 25 ⋅ 50 + 25 ⋅ 5 = 1295, 20 ⋅ 50 + 5, 20 ⋅ 50 + 20 ⋅ 5 + 50 ⋅ 5 = 550.  

A továbbiakban az egyes itemeknél tapasztalt hibák bemutatása következik. Többféle 

megoldás született a 8 ⋅4211 kiszámítására. Pl. 8  ⋅ 42 + 8  ⋅ 11, a tanuló rosszul tagolta a 

négyjegyű számot és nem vette figyelembe a helyiértékeket, 8⋅ 4 = 32, 32 ⋅ 2=64, 64⋅ 11 =

64, tartja egy fiú, illetve 4 ⋅ 8 + 2⋅ 11=36 vallja egy másik fiú az 5. iskolából. Néhány további 
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verzió a teljesség igénye nélkül pl. a 3. iskolából: 8 ⋅ 4000 + 8 ⋅ 21 + 8 ⋅ 1; 8 ⋅ 4000 + 8 ⋅ 21 + 

8⋅ 1; 8 ⋅ 4000 + 200 ⋅ 11 vagy 8 ⋅ 400 + 211. A 15 ⋅ 16 kiszámítása  némelyik tanuló szerint 

lehetséges a következőképpen: 10 ⋅ 20 + 5  ⋅ 6 ; a 45  ⋅ 45  pedig 40 ⋅ 4 + 50 ⋅ 5 . A 20  ⋅ 30 

kiszámítására is több verziót láthattunk, pl. 20 ⋅ 3 +  20 ⋅ 0; 2 ⋅ 30 ⋅ 2;  20 ⋅ 3 +  20 ⋅ 10. Több 

részletszorzat is lemaradt a következő típusú számoláskor: 25 ⋅ 48 = 20 ⋅ 40 + 5 ⋅ 40.   

Az 500  ⋅ 500  kiszámítása során megfigyeltük az 5  ⋅ 5 + 50 ⋅500 számítási módot. 

Némelyik tanuló szerint 25 ⋅120 típusú feladatok helyes számítási módja az 20 ⋅ 100 + 5 ⋅

10; vagy 12 ⋅ 250 = 200 + 10 ⋅ 50 + 20;  míg 25 ⋅ 50 = 20 ⋅ 50 + 5 ⋅ 0.  A 2. és a 3. 

iskolában láttuk, hogy a 25 ⋅ 48  számításakor némelyik tanuló az azonos számokon belüli 

számjegyeket szorozta össze, majd ezeket a részletszorzatokat adta össze, következetesen több 

item esetén, így 25 ⋅ 48 = 2 ⋅ 5 + 4 ⋅ 8 vagy 25 ⋅ 48 = 20 ⋅ 5 + 40 ⋅ 8. De a kétjegyű számok 

szorzása során találkoztunk olyan stratégiával, mikor az egyik számot megszorozták a másik 

tényezőben szerepelő számjegyekkel, így 25 ⋅ 65 kiszámításakor megfigyeltük a 25 ⋅ 60 ⋅ 5 

vagy 25 ⋅ 6 ⋅ 5 típusú válaszokat, mint pl. a 11. iskola 5. és 6. évfolyamos diákjai között.  

A 25 ⋅ 48  feladat azért is érdekes, mert bár a helyes eredmény (1200) könnyen 

kiszámolható lenne a 48 százszorosának kiszámítása, majd az eredmény negyedelése révén, 

többféle helytelen eredményre vezető stratégiát láthatunk a tanulók munkáiban. Így 20 ⋅ 40 =

800, 25 ⋅ 8 = 200 összegeként 1000 jön ki eredményül egy-egy 6. évfolyamos tanulónak (1. 

és 11. iskola). Az 1. iskola 5. osztályosainak egyike szerint 25  ⋅  48 = 25 ⋅ 4 ⋅

8, míg az iskola 6. osztályosai között némely tanuló szerint 25 ⋅ 40 ⋅ 8 = 1000 ⋅ 8 = 8000 , 

illetve 25 ⋅ 8 + 7 ⋅ 40 = 200 + 280 = 480 vagy 5 ⋅ 4 = 20, 2 ⋅ 4 = 8, 5 ⋅ 8 = 40, 2 ⋅ 8 = 16  

számolások eredményeképp 20 + 8 + 40 + 16 = 84 az eredmény, míg egy 4. évfolyamos szerint 

inkább 20 ⋅ 8 = 160 és 40 ⋅ 5 = 200 számok összege, vagyis 360. De megkaphatjuk az itt 

tanuló gyerekek szerint másképp is: 25 ⋅ 20 + 25 ⋅ 48 = 1700, vagy 25 ⋅ 40 + 48 ⋅ 5 = 1240; míg 

a 6. iskolában tanulók egyike szerint a 20 ⋅ 40 + 5 + 8 számítás, a 7. iskolában egy 4. osztályos 

szerint 25 ⋅ 48 ∶ 2 = 420 számítás eredményeképp. A 2. iskolában néhány tanuló szerint a 

helyes eredmény a 20  ⋅ 40 = 800 és 50 ⋅ 80 = 130 részletszorzatok összegeként 930. A 6. 

iskolában a tanuló egy része így számolt: 20 ⋅ 40 + 5 + 8.  A 3. iskolában tapasztaltuk a 20⋅50 

+ 5 ⋅ 80 = 1000 + 400 = 1400,  valamint a 20 ⋅ 40 + 5 ⋅ 40 = 800 + 200 = 1000 számítási 

módokat. Az 5. iskolában a 20 ⋅ 40 ⋅ 4 ⋅ 8 , a 6. iskolában a 20 ⋅ 40 + 5 + 8 számítás fordult elő 

inkább.  

Érdekes, de hibás egyéb számítási módok közül többet láthatunk. Pl. hogyan tagolja az 

egyik tényezőt az 1. iskola egyik 5. évfolyamos diákja: 10 ⋅ 690 = 10 ⋅ 90 + 60 = 960, 77⋅

99 = 70 ⋅ 9 + 7 ⋅ 90 = 1260 , 9 ⋅ 652=9⋅ 2+65=83, 9 ⋅ 742 = 9 ⋅ 40 + 72 = 432  (a helyes 

eredmények 6900; 7623; 5868 és 6678 lettek volna). Egy 6. évfolyamos tanuló a 12 ⋅

11 kiszámítására 10 ⋅ 10 + 2 ⋅ 10 + 11 ⋅ 10 =100 + 20 + 11 = 132 eredményt kapta. A 3. 

iskola egyik tanulója szerint 10  ⋅ 690 = 10 ⋅ 600 ⋅ 90 , vagyis a második szorzótényezőt 

százasokra és tízesekre bontotta, majd ezek szorzatát szorozta 10-zel. A 20 ⋅ 30 = 20 ⋅ 3+20⋅

10 a 3. iskolába járó egyik kisdiák szerint, a 77 ⋅  8. pedig kiszámítható úgy, ha a 77-et tízesekre 

és egyesekre bontjuk, majd duplázzuk: 70 + 70 = 140, 7 + 7 = 14, vagyis az eredmény 154. A 

11. iskola egyik lánytanulójánál ilyen leírást láttunk: 15 ⋅ 16 az 15 ⋅ 16 = 31 és 15 ⋅ 10 = 25 

összegeként áll elő 30 + 20 = 55 = 56, vagyis összeadta a szorzótényezőket és még összeadott 

két számot velük, ezt a stratégiát 11 itemen keresztül használta. Több 4. évfolyamos tanuló 
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ebből az iskolából összeadást végzett a szorzások helyett, pl. 150 ⋅ 6 = 6 + 80 + 150, 50 ⋅

50 = 50 + 10 + 50 = 720, 9 ⋅ 652 = 12 + 10 + 11 = 39, 11 ⋅ 11 = 11 + 10 + 11, rejtély, 

miért éppen ezeket a számokat adta össze vagy miért adott hozzá még 10-et a két szám 

összegéhez (következetesen 6 itemen át).  

Amikor két egyforma kétjegyű szám szorzása a feladat, több 6. évfolyamos diák, mint 

pl. a 24 ⋅ 24 típusú szorzásokra a 24 ⋅ 10 ⋅ 2 ⋅ 4 = 240 ⋅ 2 ⋅ 4 =  1920 , 25 ⋅ 50= 50 ⋅ 20 ⋅ 5=5000 

stratégiát ötölte ki. A 32 ⋅ 32 = 30 ⋅ 30 − 4 ⋅ 32 = 900 − 128 = 772, egy 6. évfolyamos diák 

szerint (a helyes eredmény 1024). Megfigyeltük még azt, hogy az egyik tényezőt megszorozzák 

a tanulók a másik tényezőből származó számokkal, melyet helyiértékre bontott alakból kapnak, 

így 16 ⋅ 16 = 16 ⋅ 10 ⋅ 6 = 960.  

Némelyik tanuló elégedetlen a két szám összeszorzásával, és még hozzáad valamit, pl. 

20 ⋅ 50 = 20 ⋅ 50 + 5 = 1005, vagy 25 ⋅ 48 = 25 ⋅ 10 + 25 ⋅ 48, azaz 250 + 1180 = 1430. A 

25 ⋅ 50 az 25 ⋅ 50 = 120 meg 25 ⋅ 50 = 120, vagyis 240 a 6. iskolába járó egyik gyermek szerint. 

A tanulók egy része kevésnek találja az 50 ⋅ 50 = 100 eredményét, és még egyszer hozzáadja, 

vagyis 200-at kap, ahogy egy 6. osztályos lány a 11. iskolából. Az 1. iskola egyik 4. osztályos 

diákja így számolt: 50 ⋅ 50 = 5 ⋅ 50 + 5 ⋅ 50 = 250 + 250 = 500, illetve 11 ⋅ 11 = 10 ⋅ 11 +

10 ⋅ 11 =101 + 101=202. Amellett, hogy ez a tanuló a 10-zel való szorzás során történő 

helyiértékváltozási szabályt nem ismeri, az egyik tényezőt megszorozza a másik tényező tízesre 

kerekített értékével, majd ezeket a részletszorzatokat összeadja.  

Az egyeseket a tízesekkel szorzom, majd a részeredményeket összeadom stratégia is 

megfigyelhető volt, így pl. az 1. iskolába járó 4. évfolyamosok egyike az itemek szorzásakor 

így járt el: 15  ⋅ 48 = 10 ⋅ 8 + 5 ⋅ 40 = 80 + 200 = 280 . Két részletszorzat is kimaradt a 

számításból, és a helyiértékeket sem vette figyelembe a tanuló, még a végén sem. 

Próbáltak ügyesen szorozni a diákok az algebrai azonosságok vagy a szubtraktív 

disztribúció gondolatával, de néhány esetben rossz stratégiát találtak ki. Így 18 ⋅ 16 = 10 ⋅

20 − 36 = 200 − 36 = 164, 6 ⋅ 20 − 12 = 120 − 12 = 108, véli egy tanuló az 1. iskolába 

járó ötödikesek közül. 8 ⋅ 4211 = 10 ⋅ 4211 − 1 = 42100 − 1 = 42110 , mondja egy 6. 

osztályos diák a 2. iskolában, egy ötödikes iskolatársa szerint 9 ⋅ 888 = 100 ⋅ 8 − 8 = 800 −

8 = 792, és 8 ⋅ 4211 az 8 ⋅ 420 − 8 = 4100. Míg 19 ⋅ 21 = 20 ⋅ 20 − 1 = 400 − 1 = 399 a 

8. iskolába járó egyik ötödikes szerint. 

 

5.6.8. A fiúk és lányok, az egyes évfolyamok és iskolák közötti különbségek 

 
A fiúk (N = 410) és a lányok (N = 390) stratégiahasználata közti különbséget is vizsgáltuk. A 

lányok szignifikánsan gyakrabban számoltak írásban (lányok átlaga 2,48, szórás 8,68, fiúk 

átlaga 1,17, szórás 5,81, a Levene-féle F = 24,67 (p < 0,001), a páros t-próba eredménye t = 

2,52 (df = 798, p < 0,01, 1-tailed). A lányok szignifikánsan gyakrabban tagolták összegre az 

egyik szorzótényezőt (fiúk átlaga 0,88, szórás 4,11, lányok átlaga 1,47, szórás 5,03, Levene-

féle F-próba értéke 10,22, p < 0,002, t = 1,81, df = 798, p < 0,04, 1-tailed). A fiúk szignifikánsan 

gyakrabban alkalmazták a kvadratikus disztribúció stratégiát (a fiúk átlaga 0,01, szórás 0,11, a 

lányok átlaga 0,00, szórás 0,00, a Levene-féle F = 19,69, p < 0,001, t = -2,19, df = 798, p < 

0,02, 1-tailed). 
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Az évfolyamokra végzett különbségvizsgálat eredményeit az 59. táblázatban foglaltuk 

össze. Az évfolyamok közötti különbségeket a homogenitásvizsgálat és a varianciaanalízis 

segítségével állapítottuk meg. A Levene-féle próba eredményeképp tíz item esetén azt 

tapasztaltuk, hogy a részminták által reprezentált populációkban a szórások különböznek            

(p < 0,001). Az ANOVA Welch-féle próba 81. táblázatbeli F értékei is azt mutatták, hogy 

szignifikáns különbség figyelhető meg az egyes évfolyamok átlagai között. 

59. táblázat. Az alkalmazott stratégiák összehasonlítása évfolyamonként, központi vizsgálat 

Stratégia Év-folyam Átlag Szórás Levene-féle F 

(szignifikancia-

szint, df = 2) 

Welch-féle F 

(szignifikanciaszint, df)  

Írásban számol 4. 0,85 5,28 3,51 

 (p < 0,03) 

4,48 

 (p < 0,02) 

501,66 

5. 2,51 8,49 

6. 2,07 7,90  

Egyesekkel kezd 4. 0,09 0,79 6,20 

(p < 0,002) 

3,43 

(p < 0,04) 

454,49 

5. 0,79 4,26 

6. 0,16 0,85 

Tízesekkel kezd 4. 8,80 10,41 4,53  

(p < 0,02) 

4,57  

(p < 0,02) 

522,02 

5. 11,76 11,47 

6. 10,20 11,16 

Egyik tényezőt bontja 

összegre 

4. 1,68 1,73 3,47  

(p < 0,04) 

4,29  

(p < 0,02) 

531,12 

5. 1,26 1,65 

6. 1,58 2,19 

Mindkét tényezőt 

összegre bontja 

4. 1,87 5,82 0,56  

(p < 0,004) 

6,63  

(p < 0,01) 

488,39 

5. 0,51 2,52 

6. 1,10 4,61 

Szubsztraktív 

disztribúció 

4. 0,21 1,14 14,99 

(p < 0,001) 

24,82 

(p < 0,002) 

447,18 

5. 1,23 2,78 

6. 1,15 2,78 

Ismert szabály 4. 0,09 0,29 17,45  

(p < 0,001) 

25,57  

(p < 0,001) 

479,68 

5. 0,27 0,54 

6. 0,32 0,55 

Emlékezeti előhívás 4. 0,07 0,68 6,64  

(p < 0,001) 

8,03  

(p < 0,001) 

513,58 

5. 0,26 0,93 

6. 0,34 1,03 

TT + EE racionális 

hiba 

4. 8,32 11,17 17,49  

(p < 0,001) 

14,30  

(p < 0,001) 

513,04 

5. 4,06 8,25 

6. 4,24 8,36 

Egyéb, hibás 

eredményre vezető 

stratégia 

4. 5,07 8,73 15,24  

(p < 0,001) 

11,46  

(p < 0,001) 

508,22 
5. 2,14 5,25 

6. 2,37 5,80 

Mivel a részminták által reprezentált populációkban a szórások között szignifikáns a különbség, 

így a post-hoc elemzések közül a Dunnett’ T3–teszt eredményei mutatják, hogy az évfolyamok 

közötti különbség szignifikáns. Az ANOVA vizsgálat eredményei szerint az 5-6. évfolyamosok 

szignifikánsan gyakrabban számoltak írásban. Az 5-6. évfolyamosok körében volt gyakrabban 

megfigyelhető több számolást könnyítő eljárás, mint pl. a szubtraktív disztribúció, gyakrabban 

végezték el a szorzást ismert szabály vagy emlékezeti előhívás segítségével. Az 5. 

évfolyamosok szignifikánsan gyakrabban kezdték a szorzást az egyesekkel, az 5-6. évfolyamos 
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tanulók a tízesekkel. A 4. osztályos tanulók gyakrabban tagolták összegre valamelyik 

szorzótényezőt. A 4. és 6. évfolyamos tanulók gyakrabban bontották összegre mindkét 

szorzótényezőt a szorzás előtt. A nem helyes eredményre vezető stratégiákat a 4. évfolyamosok 

használták szignifikánsan gyakrabban a fejben végzett szorzások során. 

 

Iskolák közötti különbségek  

 

Az iskolák esetén kiszámítottuk a Szorzási Stratégiák Tesztre a legfontosabb statisztikai 

mutatókat. Az iskolák stratégiahasználata közötti különbséget homogenitásvizsgálat és 

varianciaanalízis segítségével vizsgáltuk.  

Az elemzés során a következő stratégiákra nem tudtunk számolásokat végezni, ugyanis 

a mintában szereplő tanulók ezeket nem alkalmazták: egy részletszorzatot számjegyenként, egy 

részletszorzatot emlékezeti előhívással szoroz; felhalmozás; számlálás; tízeseket a tízesekkel 

szorozza, majd a szorzatot a második tényezővel megszorozza. A számológéppel számol 

stratégia kivételével minden stratégia esetén szignifikáns különbség figyelhető meg az iskolák 

tanulóinak stratégiahasználatában (a szignifikanciaszint p < 0,02 vagy attól kisebb érték). A  

Levene-féle próba értékei szerint a részminták által reprezentált populációkban a szórások 

különböznek. Így a post-hoc elemzések közül a Dunnett’ T3 – teszt eredményei utalnak az 

egyes iskolák közötti szignifikáns különbségre. Az iskolák általában 2-4 homogén csoportra 

bonthatók az egyes stratégiák használatát tekintve. A 3. iskola tanulói gyakrabban alkalmazták 

az írásban számolást, mint a többi iskola tanulói. A legtöbb számolást üresen a 10. iskolában 

hagyták, ennél kevesebbet a 3., 11., 2., 8., 1., 6. és 4. iskolákban, a legkevesebbet pedig a 9., 5., 

és 7. iskolákban. Az additív disztribúciót a 7. iskolában tanulók gyakrabban alkalmazták. A 

tízesekkel kezdi a kétjegyű számok szorzását stratégia szerint az iskolák négy homogén 

csoportra bonthatók: a 10. iskola az egyik csoport, a 3., 11., 4., 2. és 1. iskola a második csoport, 

az 5., 8. és 6. iskola a harmadik csoport, a 9. iskolában alkalmazták legnagyobb arányban ezt a 

stratégiát. Az egyik tényezőt összeadandókra ritkábban tagolják a 10., 3. 11. és 4. iskola tanulói, 

mint a többi iskoláé. Mindkét tényezőt a leggyakrabban az 5., 10. és 4. iskola tanulói tagolják. 

Az általános faktorizáció stratégia használata szerint a minta két homogén csoportra bontható, 

a 3., 10., 2., 5. és 4. iskolában ritkábban használják ezt a stratégiát a gyerekek. Az ismert szabály 

alkalmazása stratégia három homogén csoportra bontja az iskolákat, ritkábban alkalmazzák ezt 

a stratégiát a 2., 6., 11., 10., 3., 5. és 4. iskolákban, gyakrabban a 8., 1. és 7. iskolában, 

leggyakrabban pedig a 9. iskolában. A 9. iskola tanulói szignifikánsan gyakrabban használják 

a szubtraktív disztribúció, felezés-duplázás, emlékezeti előhívás és exponenciális faktorizáció 

stratégiákat, mint a többi iskola. A nem helyes eredményre vezető stratégiák közül az egyéb 

stratégiák alkalmazása ritkábban fordul elő a 9. iskolában, gyakrabban az 1., 3., 10., 11., 7., 4., 

6. és 8. iskolában, az 5. és 2. iskolában számolnak így a gyerekek a legnagyobb arányban.  

 

Az osztályok közötti különbségek  

A Szorzási Stratégiák Teszten elért eredmény osztályonként változó. Az osztályok közötti 

különbségek megállapításában a homogenitásvizsgálat és a varianciaanalízis segít. A Levene-

féle próba esetén kapott F értékekre a p < 0,001 teljesül, vagyis a részminták által reprezentált 

populációkban a szórások között szignifikáns különbség van. Az egyes osztályok átlagai között 
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különbség figyelhető meg, ezt az ANOVA Fischer-féle F értékek mutatják (p < 0,001). A 

mintaelemszám különbözősége miatt a post-hoc elemzések közül a Hochberg’s GT2 próbát 

használtuk.  

Vizsgáltuk az egyes osztályokban alkalmazott szorzási stratégiákat. Az „írásban 

számol” stratégia szerint az osztályokat három homogén csoportra oszthatjuk: a 4. és 18. 

osztályban gyakrabban, a 8., 36., 41., 20., 45., 19. és 21. osztályban ritkábban, a többi 

osztályban még ritkábban alkalmazták ezt a stratégiát.  A géppel számolás a 8. osztályban 

figyelhető meg. Az elképzelem fejben leírva stratégia használata a 8., 11., 2. és 21. osztályban 

gyakoribb; mindkét szorzótényezőt összegre bontók leginkább a 43. osztályból kerülnek ki, 

ebben az osztályban kezdik szignifikánsan gyakrabban a tanulók a fejben szorzást az egyesek 

helyiértékén álló számmal. A frakcionális disztribúció szignifikánsan gyakoribb a 9., 24., 35. 

és 41. osztályban. Az egyik tényezőt összegre bontja, a másikat szorzótényezőkre, ezt a 

stratégiát a 16. és 12. osztályban figyeltük meg, a többi osztályban nem alkalmazták a tanulók. 

Az összeg négyzete azonosságot a 46. és a 22. osztályban használták a tanulók, az algebrai 

átalakítást a 31. osztályban, a többiben nem. Az emlékezeti előhívás a 36. és 37. osztályban 

gyakoribb, a többi osztályban ritkább. Az exponenciális faktorizációt a 8., 14., 13., 37. és 36. 

osztálybeli tanulók használták. A TT + EE: tízeseket a tízesekkel és az egyeseket az egyesekkel 

szoroz, majd a két részletszorzatot összeadja stratégiát a 32. osztálybeli tanulók kivételével 

minden osztály alkalmazta, ez a fajta hibázás leggyakrabban a 20., 6., 44., 31., 8., 2., 7., 3., 4., 

42., 14., és 17. osztályokban fordult elő. A TT + EE + az egyik tényezőt hozzáadja helytelen 

eredményre vezető stratégia használata a 37., 36. és 3. osztályban szignifikánsan gyakoribb 

volt. Tízeseket a tízesekkel szorozza, majd az egyik tényezőt hozzáadja a részletszorzathoz; 

tízesekkel kezdi a szorzást, majd az egyeseket a tízesekkel szorozza; szubtraktív disztribúció 

2.; hiányzó részletszámítások mindkét tényező összegre bontásakor; helyiérték figyelmen kívül 

hagyása két osztályban volt megfigyelhető, a 36. és a 37. osztályokban. Egyéb, hibás 

eredményre vezető stratégia a 19. és 32. osztályok kivételével minden osztályban előfordult, a 

leggyakrabban a 15., 30., 28., 31., 14. és 13. osztályokban.  

Érdekes kérdés, vajon az osztályok közötti különbségek visszavezethetőek-e az évfolyamok 

közötti különbségekre, röviden a válasz: nem mindig.  

• Ami az évfolyamok közötti különbségre visszavezethető, pl. a frakcionális disztrició 

helyes eredményre vezető stratégia alkalmazása, ezt 3 hatodikos és egy 5.-es osztályban 

figyeltük meg.  

• Példa még az emlékezeti előhívás stratégia, egy 5.-es és egy 6.-os osztálynál figyelhető 

meg leggyakrabban.  

• Egyéb hibás eredményre vezető stratégia két 5. évfolyamos osztály kivételével 

mindenhol előfordult, a leggyakrabban hibázók: négy negyedikes, 1 ötödikes és egy 

hatodikos osztályba járnak. 

De számos ellenpéldát is felsorolhatunk, amikor az évfolyamok közti különbségre nem tudjuk 

visszavezetni az osztályok közötti különbséget:  

• Az „írásban számol” stratégia az 1. iskola 4. évfolyamán és a 3. iskola 5. évfolyam egyik 

osztályában volt leggyakoribb stratégia. Ettől ritkábban használta még öt 6.-os és két 5.-

es osztály, a többi osztályban ez ritkábban megfigyelhető.  

• A géppel számolás egy hatodik osztályban volt megfigyelhető. 
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• Az elképzelem fejben leírva stratégia használata egy 4. évfolyamos és 3 hatodik 

évfolyamos osztályban érhető tetten.  

• Mindkét tényezőt összegre bontók leggyakrabban egy 5.-es osztályból kerültek ki, 

ugyanakkor az egész mintán általában a 4. évfolyamon volt ez a leggyakrabban 

megfigyelhető stratégia. Ezek tehát ellenpéldák arra, hogy a magasabb évfolyamokon 

jobb eredményt érnek el a gyerekek. Az osztályokra vetítve ez a kép már nem mindig 

igaz, előfordul, hogy egy stratégiát gyakrabban használnak alacsonyabb évfolyamokon. 

• Másik ellenpélda: az exponenciális faktorizáció egy 5.-es osztály mellett két negyedikes 

osztályban is gyakori volt. 

• A nem helyes eredményre vezető stratégiákat a 4.-esek használták szignifikánsan 

gyakrabban, ugyanakkor a tízeseket a tízesekkel, egyeseket az egyesekkel szorzom 

szorzási stratégiát a 32., vagyis egy ötödikes osztály kivételével mindenhol 

megfigyeltük: a leggyakrabban három negyedikes, három ötödikes és két hatodikos 

osztályban volt ez a fajta hibázás gyakori.  

• Hasonlóan ennek a stratégiának egy változatát, hogy az egyik tényezőt még hozzáadják 

az összeghez, a 4., 5., 6. évfolyamon is gyakran használták egy-egy osztályban.  

• Egyéb hibás eredményre vezető stratégia két 5. évfolyamos osztály kivételével 

mindenhol előfordult, a leggyakrabban hibázók: négy negyedikes, 1 ötödikes és egy 

hatodikos osztályba járnak. 

Összegezve: A negyedik évfolyamokon gyengébb eredményt érnek el a gyerekek a 

szorzási stratégiák alkalmazásában. Az osztályokra vetítve ez a kép már nem mindig igaz. Tehát 

az osztályonkénti vizsgálat azért érdekes, mert árnyalja az összképet. 

Összefoglalva, a tanulók sok esetben kitartóan ragaszkodtak az általuk helyesnek tartott, 

ám hibás eredményre vezető stratégiákhoz, gyakran szinte minden item esetén azt alkalmazták. 

Ez adódhat a tanuló tanulási képességeiből, szokásaiból (ld. Csíkos, 2013; Schillemans, Luwel, 

Bulté, Onghea és Verschaffel, 2009), de következhet az osztályok sajátosságokból is. 

Tapasztalataink szerint az iskolák stratégiahasználata között különbségek vannak. Ez 

adódhatna az iskolák által használt tankönyvek, feladatgyűjtemények közötti különbségekből. 

Viszont a magyarországi általános iskolákban használatos tankönyvekből hiányoznak a fejben 

számolás stratégiáinak explicit tanítására vonatkozó elméleti részek, gyakorló feladatok 

(Csíkos, 2013). A 9. évfolyamos Sokszínű matematika Mozaikos tankönyvben találunk néhány 

számolási trükköt az algebrai azonosságok témaköréhez kapcsolódva.  

A hibás stratégiák alkalmazása mellett gyakran tapasztaltuk, hogy a szorzótábla rosszul 

vagy nem rögzült több gyermek esetén, pl. 10 ⋅ 10 = 20. Ahogy a fenti példákból láthattuk, a 

tanulók jelentős résznél hiányzott a becslés képessége és az eredmény ellenőrzésének igénye a 

számítások során. Gyakoriak voltak az egyes műveletek végzése közben az elszámolások a 

helyes eredményre vezető stratégiát alkalmazó tanulók körében is. A gyerekek által vétett hibák 

közül még szemezgethetnék, de talán a leírtak alapján is látható, milyen szomorú a helyzet a 

számolási stratégiák, becslés, kerekítés, szorzótábla alkalmazása tekintetében. Összességében 

elmondható, hogy a fiúk és a lányok között egyaránt, és minden iskolában megfigyeltük 

helytelen eredményre vezető stratégiák használatát.  

 

Korrelációk az egyes stratégiák között 
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A 800 fős mintában a Pearson korrelációszámítást elvégezve közepesen erős korrelációt 

figyeltünk meg a felezés-duplázás szubtrakcióval és az exponenciális faktorizálás (r = 0,65, p 

< 0,001), valamint a felezés-duplázás stratégia között (r = 0,50, p < 0,001). A tízesekkel kezd 

stratégia és az egyik tényezőt összegre bontja, valamint az egyesekkel kezd és a mindkét 

tényezőt összegre tagolja stratégia között is közepes erősségű a korreláció (r = 0,43 és r = 0,47, 

p < 0,001). Több stratégia között találtunk gyenge, pozitív kapcsolatot, pl. az additív 

disztribúció és a tízesekkel kezd stratégia (r = 0,33, p < 0,001), az általános faktorizáció között 

(r = 0,30, p < 0,001), az egyik tényezőt tagolja stratégia (r = 0,26, p < 0,001), valamint 

„Tízeseket a tízesekkel, egyeseket az egyesekkel” stratégia között (r = 0,23, p < 0,001). A 

maradék nélküli részekre bont stratégia és a szubtraktív disztribúció között is gyenge a 

korreláció (r = 0,34, p < 0,001).  

Összegezve a tapasztaltakat, a fejben számolás vizsgálata során a hibás válaszok és a 

használt stratégiák szempontjából szignifikáns különbségeket találtunk a vizsgálatban részt vett 

iskolák és osztályok, valamint a fiúk és a lányok között. Hope és Sherrill (1987) tanulmányában 

és Milligan, Mitchelmore és Prescott (2005) tanulmányában leírt stratégiák használatának nagy 

részét megfigyelhettük a vizsgált tanulók körében. Az általunk létrehozott rendszerben 35-féle 

számítási stratégia szerepelt, ezek egy része azért jött létre, mert az eddigi külföldi 

tanulmányokban publikált stratégiák egyike sem írta le. A mintában szereplő tanulók nem 

alkalmazták a Hope és Sherrill által leírt következő stratégiákat: egy részletszorzatot 

számjegyenként, egy részletszorzatot emlékezeti előhívással szoroz; felhalmozás; számlálás. 

Ugyanakkor néhány vizsgált tanuló körében megfigyeltük az elképzelem fejben leírva stratégia 

használatát. A kétjegyű számok kétjegyű számmal történő szorzásakor a leggyakrabban a 

tízesek helyiértékén levő számmal szorozták meg a tanulók, az egyesekkel jóval ritkábban 

kezdték a szorzást.  

Számos hibás eredményre vezető stratégiát megfigyeltünk kutatásunk során. A tipikus 

hiba az összeadás mintájára kialakult racionális hiba volt (vö. Ben-Zeev, 1998a, 1998b): a 

tanulók a tízeseket a tízesekkel szorozták, az egyeseket pedig az egyesekkel, és a két 

részletszorzatot összeadták. Ennek a stratégiának számos variációját láthattuk. A gyakorlati 

életben szükséges a jó számolási készség, fejben és írásban, ezért a hibák korrigálása 

mindenképpen szükséges és célszerű lenne.  

A helyes eredményre vezető stratégiák gazdag variációját láthattuk, ugyanakkor a 

számolást könnyítő eljárásokat (szubtraktív disztribúció, kvadratikus disztribúció, általános 

faktorizálás, felezés-duplázás, maradék nélküli részekre bontás aránylag kevés osztályban és 

kevés tanuló alkalmazta. Összességében a helyes eredményre vezető stratégiák számának évről 

évre növekedése állapítható meg. A tanulók metakognitív képességeinek fejlődéséhez 

hozzájárulhatna az, ha az órákon gyakrabban beszélgetnének arról a gyerekek, miért és milyen 

stratégiával számoltak ki egy adott feladatot. Mindezek miatt célszerűnek tartjuk a fejben 

számolási, köztük a szorzási stratégiák tanítását a 4. évfolyam után tovább folytatni, a már tanult 

stratégiarepertoárt újabbakkal bővíteni. Új, helyes eredményre vezető stratégiák megtanítása 

fontos lenne az 5-6. évfolyamos tanulók számára. 

 

5. 6.9. A Matematika Tudásszintmérő Teszt jóságmutatói 
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A Matematika Tudásszintmérő Tesztre teljesül az objektivitás, és validitása is megfelelő. A 

következőkben a teszt megbízhatóságát elemezzük részletesebben.  

A matematika tudásszintmérő papír-ceruza alapú teszt mindkét változata ugyanannyi 

feladatot tartalmazott az egyes évfolyamokon, reliabilitása magas. A 4. évfolyamosok 

Matematika Tudásszintmérő Tesztje 38 itemet, az 5. évfolyamosoké 57 itemet, a 6. 

évfolyamosoké pedig 71 itemet tartalmazott. A Matematika Tudásszintmérő Teszt írásakor 22 

fő hiányzott, így a tesztet 828-an oldották meg, 52,66 %-uk az A változatot írta, 47,34%-uk 

pedig a B tesztváltozatot. A Matematika Tudásszintmérő Teszt reliabilitása mindkét 

tesztváltozat esetén Cronbach-α = 0,95, átlagpontszám 22,12, szórás 14,23. Az A változatot 437 

fő oldotta meg, átlagpontszám 22,24 pont, szórás: 14,30. A B változatot 391 fő oldotta meg, 

átlagpontszám 22 pont, szórás: 14,20. A reliabilitás értéke a teljes tesztet tekintve és mindkét 

tesztváltozat esetén is magasabb 0,90-nál, tehát a teszt megbízhatóan mér (Nagy, 1975).  

Mindhárom évfolyamon magasnak találtuk a Matematika Tudásszintmérő Teszt 

reliabilitását. A 4. évfolyamos minta 268 fős volt, a teszt reliabilitása Cronbach-α = 0,93, 

magas. A 38 itemes teszten a tanulók által elért átlagpontszám 16,02 pont, ez 42,16%pontos 

teljesítményt jelent, (szórás 9,70). Nehéz itemek az 1., 3. és 8. feladat (kockás, Grillparty és 

Torta feladat) mértékegységátváltást kérő itemei, ezek megoldottsága rendre 12%, 16% és 19%. 

Legkönnyebbnek a Locsolkodás feladatnak tűnt, az itemek megoldottsága 70%, 58%, 51% é s 

58%. A könnyebb feladatok közé tartozott még az Állítások feladat, itt is 53% és 62% közötti 

megoldottságot találunk. 49%-os a megoldottsága a kockás feladat c itemének és a Sárkányok 

feladat első itemének. Alacsony megoldottságú és 0,3 alatti elkülönítésmutatóval rendelkezik, 

ezért a legközelebbi mérésnél megfontolandó az 1. feladat mértékegységátváltást kérő itemének 

elhagyása. 0,6 feletti, jó elkülönítési mutatójúak a Pékség e), g), h), k), l), m); a Strucc feladat 

c) iteme, a Sárkányok feladat b) és c) itemei, valamint a Torta feladatok itemei.   

Az 5. évfolyamon a minta 254 fős volt, a reliabilitás-mutató magas, Cronbach-α = 0,95. 

Az átlag 21,70 pont (szórás 13,25), ez 37,07%pontos teljesítményt jelent. Az 5. évfolyamos 

tanulók számára is nehéz itemek voltak az 1., 3. és 8. feladat (Kockatérfogat, Grillparty és Torta 

feladat) mértékegységátváltást kérő itemei, ezek megoldottsága rendre 7%, 23% és 20%. A 

kockás feladat többi itemének, a Torta feladat b és c, A Strucc feladat első két itemének is 20% 

alatti a megoldottsága. A nehezebb feladatok közé tartozott a törtek bővítésére vonatkozó 

feladat, megoldottsága 21% és 38 % között váltakozik. 0,3 alatti elkülönítésmutatóval 

rendelkezik a 2. feladat a), b) és c) iteme, a Sport feladat c) iteme és a Strucc feladat d) iteme. 

Ezeket az alacsony elkülönítési mutatójú itemeket a legközelebbi vizsgálat során érdemes 

kihagyni.0,6 feletti elkülönítési mutatójúak a pékség e), f), g), h) és l) itemei, valamint a Törtek 

feladat d) és f) iteme.  

A 6. évfolyamos minta 306 fős, a reliabilitásmutató itt is magas, Cronbach-α = 0,96. A 

tanulók által elért pontszámok átlaga 27,97 pont (szórás 16,11), ez 39,39%pontos teljesítményt 

jelent. Nehéz itemek az 1. feladat (kockás feladat) itemei, Grillparty feladat, Sport b, Strucc a, 

b és c iteme, Aránybővítés feladat j iteme, ezek megoldottsága kisebb, mint 20%. 

Legkönnyebbnek a Szög a és c iteme bizonyult (84%-os, illetve 82%-os megoldottság). A Torta 

item megoldottsága közelíti meg legjobban az 50%-os megoldottságot (51%). Alacsony, 0,3 

alatti elkülönítésmutatóval rendelkezik az 1. feladat b) iteme, a 2. feladat a), b) és c) iteme, a 

Sport feladat c) iteme és a Strucc feladat d) iteme. Közel 0,6 az elkülönítési mutatója a pékség 

f), g), h), j) és l) itemeinek, valamint a Törtek feladat d) itemének. 
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 Összegezve a tapasztalatainkat, a Matematika Tudásszintmérő Teszt a teljes mintán, 

évfolyamonként, valamint a mintát nemek szerint bontva is igen megbízhatóan mér. Osztályok 

szintjén vizsgálva is számos igen jó, 1-hez közeli értéket számoltunk. A reliabilitás viszont függ 

a vizsgált csoport képességeloszlásától is (Csapó, 2004b). Egy kecskeméti negyedikes osztály 

esetében a teszt reliabilitása nagyon alacsony (0,19) volt. Az osztály valószínűleg túl homogén 

összetételű, jó képességű, az országos átlaghoz képest magasabb tudásszintű csoport, így 

számukra ugyanaz a teszt, ami több osztályban jól mér, túl könnyűnek bizonyult.  

5.6.10. A Matematika Tudásszintmérő Teszt elemzése  

 
A Matematika Tudásszintmérő Teszt feladatait a mért tartalmak közötti korrelációk szerinti 

vizsgálatnak vetettük alá mindhárom évfolyamon. Ezt követően klaszteranalízist végeztünk, 

hogy megállapíthassuk az egyes mért tartalmak, ill. az egyes feladatok közötti kapcsolatokat. 

A dolgozat terjedelme miatt ezen adatok részletes elemzésétől eltekintünk.  

A teszt feladatait a mért tartalom szerint 11 altesztre bonthatjuk. Negyedik évfolyamon 

ezekből a tesztben öt csoport szerepel: a számok szorzása, törtrészszámítás, egyenes 

arányosság, mértékegységátváltás, összeadás. Minden itemcsoport között pozitív a korreláció, 

ezek mindegyike szignifikáns kapcsolatot fejez ki. Közepesen erős vagy gyenge korrelációt 

figyelhetünk meg a legtöbb itemcsoport között. A törtbővítés és számok szorzása között a 

korreláció közepes (r = 0,56); a legmagasabb (0,6 fölötti) értékeket az egyenes arányosság és 

számok szorzása, törtrész számítása és mértékegységátváltás itemcsoportok között találjuk. A 

legalacsonyabb korrelációban a százalékszámítás és a kockatérfogat itemek állnak a többi 

itemcsoporttal. A feladattípusokra és a feladatokra végzett klaszteranalízis (a legközelebbi 

szomszéd módszere, négyzetes euklideszi távolság) során a kapott koefficiensek (43; 165; 267; 

357; 1160; 1753; 5874; 7463) alapján megállapítható, hogy a a százalékszámítás és a kocka 

térfogata feladattípusok kapcsolata a legszorosabb, velük a mértékegységátváltás 

itemcsoportok kapcsolata szoros. A törtrész számítás és az összeadás is szorosan kapcsolódik 

egymáshoz, majd e két hasonlósági csoport csatlakozik egymáshoz. Később hozzájuk társul a 

törtbővítés, majd e fürt az egyenes arányosság csoportjával kapcsolódik össze. Végül az egész 

számok szorzása kapcsolódik be a fürtalkotásba. 

A teszt az ötödik évfolyamon a Szögek, Törtek feladatokkal, térfogatszámításra, 

százalékszámításra vonatkozó itemekkel bővül. A hatodik évfolyamon a teszt 71 itemből áll.  

Az 5. évfolyamosok által írt teszt feladatain kívül még a fordított arányosságra, aránybővítésre 

vonatkozó itemek, valamint még törtrész számításra vonatkozó itemek kerültek be a tesztbe.   

A teszt szerkezetének megismeréséhez az egyes évfolyamokon lépésenkénti 

regresszióanalízist is végeztünk a feladatokra. A vizsgálat során azt tapasztaltuk, a 4. 

évfolyamon négy feladat adja a megmagyarázott variancia 95,6%-át. A legnagyobb, 77%-os 

magyarázó erővel a 14 itemes Grillparty feladat rendelkezik; ezt követi a következő lépésben 

regresszióba lépő Sárkányok feladat. A Sárkányok és a Locsolkodás feladatok a Grillparty 

feladattal együtt már a variancia 92,8%-át magyarázzák. A teszt 4 feladatának 26 iteme adja a 

megmagyarázott variancia 95,6%-át, így a további vizsgálatok során ezeket az itemeket 

célszerű beletenni a tesztbe.  

Az 5. évfolyamon íratott teszt 10 feladata közül öt feladatnak van a legnagyobb hatása 

a teszt összpontszámára. A teszt lépésenkénti regresszióanalízissel történő vizsgálata alapján a 
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Grillparty feladat adja a megmagyarázott variancia 71,3%-át; a Szögek és a Sárkányok 

feladattal együtt már a megmagyarázott variancia 90,8%-át adják. A Törtek feladat 3,5-os, az 

Állítások pedig 2,3%-os magyarázó erővel rendelkezik.  Ezen öt feladat 38 iteme adja a 

megmagyarázott variancia 96,7%-át, így a további vizsgálatok során ezeket az itemeket 

célszerű beletenni a tesztbe.  

A 6. évfolyamon hat feladatnak van a legnagyobb hatása a teszt összpontszámára. A 

Grillparty feladat adja a megmagyarázott variancia 53,2%-át; a Szögek és a Strucc feladatokkal 

együtt már a megmagyarázott variancia 85,7%-át adják. Ez a három feladat a Törtek, 

Locsolkodás és Tömeg feladatokkal együtt adja a megmagyarázott variancia 96,1%-át, így a 

további vizsgálatok során ezeket a feladatokat érdemes a tesztben hagyni, ez 48 item.  

Összegzésképp elmondhatjuk, hogy a teszt itemcsoportjainak és feladatainak 

elemzésekor a reliabilitás értéke minden évfolyamon a még elfogadható 0,7 érték közelében 

vagy attól magasabb volt. A feladatokra végzett reliabilitás esetén is 0,73, 0,77, 0,82 értékeket 

kaptunk. Az elkülönítésmutatók néhány kivétellel 0,3 fölöttiek voltak, több itemcsoport esetén 

0,6, illetve 0,7 fölötti értéket is láthattunk. A 4. évfolyamon  minden elkülönítésmutató legalább 

0,5 volt, magas az elkülönítésmutatója az egyenes arányosságnak és a számok szorzásának. 5. 

évfolyamon két itemcsoport (kocka térfogata, százalékszámítás) kivételével mind elfogadható 

értékűek az elkülönítésmutatók. A 6. évfolyamon minden itemcsoport, illetve feladat 

elkülönítésmutatója legalább 0,5, kivéve a kockatérfogat itemet. Az elkülönítésmutatók közül 

a 0,7 fölöttti értékkel rendelkeznek a számok szorzásához, az egyenes arányossághoz, valamint 

a törtrészszámításhoz tartozók.  

Az itemcsoportokra végzett korrelációszámítások alapján elmondhatjuk, hogy minden 

itemcsoport között pozitív és szignifikáns korreláció található (p < 0,001). A 4. évfolyamon 

főleg közepes, 0,4 és 0,7 közötti korrelációkat találunk. A legmagasabb korrelációt az egyenes 

arányosság és a számok szorzása között (r = 0,63), illetve az egyenes arányosság és a 

mértékegységátváltás között (r = 0,69) mértük. Az 5. évfolyamon magas korrelációt 

figyelhetünk meg a törtbővítés és az aránybővítés között (r = 0,71). Közepesen erős vagy 

gyenge korrelációt figyelhetünk meg a legtöbb itemcsoport között. A törtbővítés és számok 

szorzása között a korreláció közepes (r = 0,56); a legmagasabb (0,6 fölötti) értékeket az egyenes 

arányosság és számok szorzása, törtrész számítása és mértékegységátváltás itemcsoportok 

között találjuk A legalacsonyabb korrelációban a százalékszámítás és a kockatérfogat itemek 

állnak a többi itemcsoporttal. A 6. évfolyamon magas a korreláció a törtbővítés és az 

aránybővítés között (r = 0,71). Közepes a korreláció az egyenes arányosság és a számok 

szorzása, a törtrész számítás és a mértékegységátváltás között, értékeik rendre r = 0,56, r = 0,52 

és r = 0,58. Továbbá közepes erősségű a kapcsolat a számok szorzása és a törtrész számítás, a 

mértékegységátváltás, az összeadás a szögfajták között, valamint az összeadás és az egyenes 

arányosság között. A kockatérfogat két kivétellel (mértékegység átváltás, százalékszámítás) 

minden itemcsoporttal alacsony.  

 A mérősezköz itemeire, itemcsoportjaira és a feladatokra is elvégeztük a reliabilitás-

vizsgálatot, kiszámítottuk az elkülönítésmutatókat. Összességében kijelenthetjük, hogy minden 

évfolyamon megfelelőek, elfogadhatóak voltak a reliabilitás-, és elkülönítésmutatók. A 

reliabilitás (Cronbach-α) a kevesebb itemet tartalmazó tesztrészek esetén is a még elfogadható 

0,7 érték közelében volt. A teszt mindegyik évfolyamon megbízhatóan mér. így sikerült 
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igazolnunk a hipotézisünket, mely szerint az általunk készített mérőeszköz a 4., 5. és 6. 

évfolyamon alkalmas a tanulók tudás-és képességszintjének mérésére. 

5.6.11. A Matematika Tudásszintmérő Teszt összpontszáma részminták szerint 

 

A H8 hipotézis szerint a vizsgált iskolák, évfolyamok, osztályok, fiúk és lányok Matematika 

Tudásszintmérő Teszten nyújtott teljesítménye szignifikánsan eltér egymástól. Ez a 

hipotézisünkbeigazolódott. 

A következőkben a Matematika Tudásszintmérő Teszt néhány jellemző statisztikai 

mutatóját foglaljuk össze. A teszten elért átlagpontszám a teljes mintán 22,12 pont volt (az 

átlagteljesítmény 31,12 %), módusz 25, medián 19. A teljesítmények szórása pedig 14,23.  A 

teljesítmények mediánja kisebb, mint a módusz, és kisebb, mint az átlag, ezért az ábrán látható 

eloszlást figyelhetjük meg. A 46. ábrán a teljes minta Matematika Tudásszintmérő Teszten elért 

eredményének eloszlása látható. A 828 fős mintán elért pontszám relatív gyakoriságát vizsgálva 

megállapíthatjuk, hogy az eloszlás egymóduszú, azaz a mért tudást tekintve a minta 

homogénnek tekinthető. A ferdeségi mutató 0,65, így az ábrán aszimmetrikus, balra tolódó 

eloszlást látunk, és mivel a lapultság -0,12, az eloszlásfüggvény laposabb, mint a normális 

haranggörbéé.   

 

 

46. ábra A teljes minta Matematika Tudásszintmérő Teszten elért eredményének eloszlása, 

központi vizsgálat 

 

A tesztet 424 fiú és 404 lány töltötte ki. A fiúk által elért átlagpontszám 21,64, szórás 14,39; 

átlagos teljesítményük 30,48%pont, a lányok átlagosan 22,62 pontot értek el, szórás 14,06; 

átlagos teljesítményük 31,86%pont. A módusz a fiúk esetén 9, a lányoknál 7; a medián értékek 

19 és 21. A ferdeségi mutató a fiúknál 0,62, a lányoknál 0,69; hozzá tartozó sztenderd hiba 0,12 
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mindkét nem esetén. A lapultság a fiúknál -0,23, a lányoknál 0,01, hozzá tartozó sztenderd hiba 

0,24.  

A 47. ábrán a Matematika Tudásszintmérő Teszten elért eredmények összehasonlítását 

láthatjuk nemek szerint bontásban. Az ábrán látható, hogy az eloszlásfüggvény hasonlít a teljes 

mintán látottra. A fiúk és a lányok mintáján is egymóduszú, aszimmetrikus, balra tolódó 

eloszlást látunk, a fiúk esetén az eloszlásfüggvény laposabb, a lányok esetén kicsit magasabb, 

mint a normális haranggörbéé. A fiúk 38,9%-a, a lányok 32,4%-a a legfeljebb 20%-os 

teljesítményt elérők közé tartozik. A fiúk 81,8%-a, a lányok 81,8%-a legfeljebb 50%-os 

teljesítményt ért el. A fiúk 0,5 %-a, míg a lányok 0,7 %-a ért el legalább 90%-os teljesítményt.  

 

 

 

47. ábra A Matematika Tudásszintmérő Teszten elért eredmények nemek szerint, központi 

vizsgálat 

Évfolyamonkénti különbségek 

Az egyes évfolyamokra jellemző adatok olvashatók ki a 60. táblázat adataiból. A 

negyedik évfolyamon a mintát 268 tanuló alkotta. A 38 itemes teszten a tanulók által elért 

átlagpontszám 15,72 pont, ez 41,37%pontos teljesítményt jelent, (szórás 9,84). 
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60. táblázat. A Matematika Tudásszintmérő Teszten elért eredmények évfolyamok szerint, 

központi vizsgálat 

Évfolyam 4. 5. 6. Összesen 

Minta (fő) 268 254 306 828 

Minimum    0    0    0     0 

Maximum   38   52  70   70 

Medián   15   20  27   19 

Átlag        15,72        21,70       27,81        22,12 

Szórás         9,84        13,25       15,99        14,23 

Ferdeség        0,54          0,35         0,31          0,65 

Szt. hiba        0,15          0,15         0,14          0,09 

Lapultság       -0,57         -0,87        -0,13         -0,12 

Szt. hiba        0,30          0,30         0,28          0,17 

Az 5. évfolyamon a minta 254 fős volt, Az átlag 21,70 pont (szórás 13,25), ez 37,07%pontos 

teljesítményt jelent. A 6. évfolyamos minta 306 fős. A tanulók által elért pontszámok átlaga 

27,97 pont (szórás 16,11), ez 39,39%pontos teljesítményt jelent. Mindhárom évfolyamon volt 

0 pontos dolgozat. Negyedik évfolyamon több tanuló elérte maximális pontszámot, ez a többi 

évfolyamon tanulóknak nem sikerült. Az 5. évfolyamosok által elért legnagyobb pontszám 52 

volt az 57-ből, míg a 6. évfolyamon 70 pont a 71 pontból. Relatív szórás értéke az egyes 

évfolyamokon 0,63; 0,61 és a 6. évfolyamon a legkisebb, értéke 0,58. 

Az évfolyamok közötti különbségeket homogenitásvizsgálat és a varianciaanalízis 

segítségével állapítottuk meg. A Levene-féle próba esetén F = 34,40, p = 0,000-t kaptuk, amire 

p < 0,05 teljesül, vagyis a részminták által reprezentált populációkban a szórások különböznek. 

A Welch-próba F értéke 60,99, p < 0,001, vagyis szignifikáns különbség figyelhető meg az 

egyes évfolyamok átlagai között. A negyedik évfolyamosok által elért átlag a legkisebb, a 

hatodik évfolyamosok által elért a legnagyobb. Ez a szignifikáns különbség jól látható a box-

plot diagramon is, melyet a 48. ábrán tekinthetünk meg.  

 
 

48. ábra A Matematika Tudásszintmérő Teszten elért eredmények box-plot diagramon 

évfolyamok szerint, központi vizsgálat 



175 
 

Az évfolyamok közötti különbség a 49. ábrán is látható, itt az egyes évfolyamok 

sűrűségfüggvényének eloszlását tekinthetjük meg.  

 

49. ábra A Matematika Tudásszintmérő Teszten elért eredmények eloszlása évfolyamonként, 

központi vizsgálat 

Mindhárom évfolyamon pozitív a ferdeségi mutató, a sűrűségfüggvények aszimmetrikusak, 

elől van a csúcsuk. Az ábrán is látható, a 4. és 5. évfolyam ferdeségi mutatói kicsit nagyobbak, 

mint a 6. évfolyamé, így annak eloszlása hasonlít jobban a normális haranggörbéhez. A 

lapultság mindhárom évfolyam esetén negatív, megfigyelhetjük, hogy minél kisebb a negatív 

szám abszolút értéke, jelen esetben a 6. évfolyam görbéjén, annál közelebb van a 

sűrűségfüggvény eloszlása a normális haranggörbe eloszlásához.  

A fiúk és a lányok által elért átlagpontszám eltérő volt minden évfolyamon. A 4. 

évfolyamon a lányok átlagpontszáma volt magasabb (16,19 pont, szórás 9,52), mint a fiúké 

(15,9, szórás 9,92). Az ötödik évfolyamon a fiúk értek el magasabb átlagpontszámot (22,37 

pont, szórás 13,91), a lányoké 21 pont, szórás 12,52. A 6. évfolyamon pedig ismét a lányok 

átlagpontszáma volt magasabb, 28,99 pont a fiúk 22,65 pontjával szemben (a szórás a lányok 

esetén 15,52, a fiúk mintáján 16,46). A t-próbát elvégezve azonban elmondhatjuk, hogy ez a 

különbség egyik évfolyamon sem szignifikáns. A t-próbák esetén az egyes évfolyamokon 

számított F értékek a 4. évfolyamon F = 0,07 (p = 0,799); az 5. évfolyamon F = 0,67 (p = 0,412), 

a 6. évfolyamon 1,51 (p = 0,221). A 74. ábra a Matematika Tudásszintmérő Teszten elért 

átlagpontszámot jeleníti meg nemek szerint. 

Az 50. ábrán látható, hogy a negyedik évfolyamra járó tanulók 7,1%-a, az 5. évfolyamra 

járók 9,1%-a, a 6. évfolyamra járók 11,1%-a teljesített 10 % alatt. A 4. évfolyamon a tanulók 

69,4%-a, az 5. évfolyamon a tanulók 69,7%-a, a 6. évfolyamon a tanulók 69,3%-a az elérhető 

pontszámnak legfeljebb a felét érte el. A 4. évfolyamon a tanulók 7,1%-a, az 5. évfolyamon a 

tanulók 0,4%-a, míg a 6. évfolyamon a tanulók 1,6%-a nyújtott legalább 90%-os teljesítményt. 
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50. ábra A Matematika Tudásszintmérő Teszten elért átlagpontszám nemek szerint, központi 

vizsgálat 

Az egyes évfolyamokon a fiúk és lányok teljesítményére vonatkozó statisztikai mutatókat 

találunk a 61. táblázatban. 

61. táblázat. A fiúk és lányok teljesítményére vonatkozó statisztikai mutatók évfolyamonként 

Nem Évfo- Minta Mini- Maxi- Medián Átlag Szórás 

 lyam (fő) mum mum    

        

Fiú 4. 145 0 38 15,0 15,90 9,92 

 5. 131 0 51 23,0 22,37 13,91 

 6. 148 0 70 26,5 22,65 16,46 

Összesen 424 0 70 19,0 21,65 14,40 

Lány 4. 123 0 36 15,0 16,19 9,52 

 5. 123 0 52 18,0 21,00 12,52 

 6. 158 0 68 29,0 28,89 15,52 

Összesen 404 0 68 21,0 21,70 14,06 

A 4. évfolyamon tesztet író 268 tanuló 54%-a volt fiú (145 fő) és 46%-a lány (123 fő). Az 5. 

évfolyamon tesztet író 254 tanuló 51,57%-a volt fiú (131 fő) és 48,43%-a lány (123 fő). A 6. 

évfolyamos minta 306 fős, ennek 48,37%-a fiú (148 fő), 51,63%-a lány (158 fő). Mint láthatjuk, 

a fiúk és a lányok között is volt olyan, aki 0 pontot ért el a teszten. A negyedikes fiúknál 38, a 

lányoknál 36 pont volt a legmagasabb pontszám, az 5. évfolyamon a legnagyobb szerzett 

pontszám a fiúknál 51, a lányoknál 52 pont volt, a 6. évfolyamon a fiúknál 70, a lányoknál 68 

pont volt a maximum.  
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Az 51. ábrán látható 4. évfolyamos fiúk és lányok teljesítményének eloszlása. A 

negyedik évfolyamra járó fiúk 8,3%-a, lányok 5,7%-a teljesített 10 % alatt. 11% és 20% közötti 

teljesítményű tanulók szinte ugyanolyan arányban fordultak elő a fiúk és a lányok között. A fiú 

tanulók 68,3%-a, a lány tanulók 70,7%-a az elérhető pontszámnak legfeljebb a felét szerezte 

meg. A fiúk 7,6%-a, a lányok 6,5%-a nyújtott legalább 90%-os teljesítményt. A teljesítmények 

sűrűségfüggvényének eloszlásán megfigyelhetjük az aszimmetriát, a csúcs elől van mindkét 

esetben. A lapultsági mutató jelzi, hogy a sokaság eloszlás sűrűségfüggvénye laposabb, mint a 

normális haranggörbéé lenne.  

 

51. ábra A 4. évfolyamos fiúk és lányok teljesítményének eloszlása a Matematika 

Tudásszintmérő Teszten, központi vizsgálat 

Az 52. ábrán tekinthető meg 5. évfolyamos fiúk és lányok teljesítményének eloszlása. Az ötödik 

évfolyamra járó fiúk 10,7%-a, lányok 7,3%-a teljesített 10 % alatt. Az ötödik évfolyamosok 

mintáján is a lányok voltak nagyobb arányban a legfeljebb 50%-os teljesítményt nyújtók, ez a 

fiú diákok 66,4%-a, a lányok 73,2%-a.  51% és 60% közötti teljesítményű tanulók közel 

egyforma arányban fordultak elő a fiúk és a lányok között. A fiúk 5,3%-a, a lányok 1,6%-a 

teljesített 81% és 90% között, viszont egy fiú sem ért el 90%-osnál jobb eredményt, míg a 

lányok 0,8%-a igen. Az 5. évfolyamos fiúk és lányok teljesítménye sűrűségfüggvényének 

eloszlása is aszimmetrikus, a csúcsot elől találjuk. A lapultsági mutató jelzi, hogy a fiúk eloszlás 

sűrűségfüggvénye laposabb, mint a lányoké, és mindkettő laposabb, mint a normális 

haranggörbéé lenne.  
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52. ábra Az 5. évfolyamos fiúk és lányok teljesítményének eloszlása a Matematika 

Tudásszintmérő Teszten, központi vizsgálat 

Az 53. ábrán mutatjuk be a 6. évfolyamos fiúk és lányok teljesítményének eloszlását. A hatodik 

évfolyamra járó fiúk között nagyobb arányban vannak a 10%, 20% alatt teljesítők, mint a 

lányoknál. A fiúk 12,8%-a, a lányok 9,5%-a ért el legfeljebb 10%-os eredményt. 20%-nál 

kisebb teljesítményt látunk a fiúk 29,1%-ánál és a lányok 19%-ánál. A hatodik évfolyamosok 

mintáján szinte egyforma arányban vannak a legfeljebb 50%-os teljesítményt nyújtók, ez a fiúk 

69,6%-a, a lányok 69%-a.  A fiúk 1,3%-a, a lányok 2,5%-a teljesített 81% és 90% között, a fiúk 

1,4%-a, a lányok 1,9%- ért el legalább 90%-os eredményt. A 6. évfolyamos fiúk és lányok 

teljesítménye sűrűségfüggvényének eloszlása is aszimmetrikus, a csúcsot elől találjuk. A fiúk 

eloszlás sűrűségfüggvénye ez esetben is kicsit laposabb, mint a lányoké, és mindkettő laposabb, 

mint a normális haranggörbéé.  

 

53. ábra A 6. évfolyamos fiúk és lányok teljesítményének eloszlása a Matematika 

Tudásszintmérő Teszten, központi vizsgálat 
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A 54. ábrán található vonaldiagramon a fiúk teljesítményének eloszlását hasonlíthatjuk össze 

évfolyamonként. Az évfolyamok közötti különbség az ábrán is látható. A negyedik évfolyamos 

fiúk közül kisebb arányban vannak a 10%-os teljesítményszint alatt, mint a többi évfolyamon. 

A legnagyobb arányban a 21-30% között, valamint 90%-os teljesítmény fölött találunk 

negyedikeseket. Az ötödik évfolyamosok között legnagyobb arányban a 11-20% közötti és a 

41-50%-os teljesítményt nyújtók vannak.  

 

54. ábra A fiúk Matematika Tudásszintmérő Teszten nyújtott teljesítményének 

összehasonlítása évfolyamonként, központi mérés 

Az évfolyamok közötti különbség a lányok mintáján is megfigyelhető, ezt látjuk az 55. ábrán. 

A negyedik évfolyamos lányok közül is kisebb arányban vannak a 10%-os teljesítményszint 

alatt, mint a többi évfolyamon. A legnagyobb arányban negyedikeseket találunk a 81-90% 

között, valamint 90%-os teljesítmény fölött (4,1%-uk, illetve 7,6%-uk). Az ötödik 

évfolyamosok között legnagyobb arányban a 11-20% közötti teljesítményt nyújtók vannak, 

mintegy ötöd részük, 18,7%-uk a 21-30%-os teljesítményt nyújtott. A 41-50% közötti 

teljesítményt elérők között a legnagyobb arányban hatodikos tanulókat találunk, közel ötöd 
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részüket látjuk itt. 

 

55. ábra A lányok Matematika Tudásszintmérő Teszten nyújtott teljesítményének 

összehasonlítása évfolyamonként, központi vizsgálat 

 

Iskolák és osztályok közötti különbségek  

A H8b hipotézis szerint a vizsgált iskolák tanulóinak a Matematika Tudásszintmérő Teszten 

nyújtott teljesítménye szignifikánsan eltér egymástól. Ez a hipotézisünk beigazolódott.  

Az egyes osztályok által elért eredmények terén megfigyelhető különbségeket mutatja a 62. 

táblázat.  

 

62. táblázat. Iskolák közötti különbségek a Matematika Tudásszintmérő Teszten, 4. évfolyam 

Iskola 
Minta 

Átlag 

(pont) 

Átlag 

 (%pont) 
Szórás 

Minimum Maximum 

1. 74 21,22 55,84 11,37 2 40 

2. 29 12,00 31,58 7,48 3 29 

3. 25 16,08 42,32 7,26 4 34 

4. 34 11,71 30,82 7,82 0 32 

5. 7   7,43 19,55 7,83 0 18 

6. 41 19,12 50,32 6,89 8 34 

7. 15   9,73 25,61 4,70 2 18 

10. 20 12,10 31,84 6,46 2 23 

11. 23 15,39 40,50 10,96 0 35 

Összesen 268 16,03 42,18 9,72 0 40 
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Az iskolák közötti különbségeket a homogenitásvizsgálat és a varianciaanalízis segítségével 

vizsgáltuk. A Levene-féle próba esetén F = 8,64, (df1 = 8, df2 = 259) p < 0,001-t kaptunk, 

vagyis a részminták által reprezentált populációkban a szórások szignifikánsan különböznek. A 

Welch-próba során kapott F értéke 8,99, (df1 = 8, df2 = 66,01), p < 0,001, vagyis szignifikáns 

különbség figyelhető meg az egyes iskolák átlagai között. A post hoc elemzések közül a 

Hochberg’s GT2 eredményei mutatják, hogy szignifikáns különbség van az iskolák tanulóinak 

teszten elért eredményei között. Az iskolák csoportra oszthatók, a 2., 3., 4., 5., 7., 10. és 11. 

iskola teszteredménye szignifikánsan nem tér el egymástól, míg az 1. és 6. iskola eredménye 

ettől szignifikánsan magasabb. Egy másik felosztás szerint az egyik csoportot az 5. és 7. iskola 

alkotja, a másik csoportot a 2., 3., 4., 10. és 11. iskola, míg a harmadik csoportot a legjobb 

teljesítményű 1. és 6. iskola alkothatja. 

Az egyes osztályok által elért eredmények terén is különbségeket láthatunk, ezt 

tekinthetjük meg a 96. táblázatban. A legkisebb teljesítményt (19,55%pont) a 26. osztályban 

érték el a tanulók. A 3. osztály teljesítménye egyedülálló a mintában, 91,18%pontot értek el itt 

a tanulók. 25,61%pontot értek el a 31. osztályban, 7 osztályban értek el 30% és 40% közötti 

teljesítményt. A 17., 30. és 38. osztály tanulói 30% és 40% pont közötti átlagteljesítményt 

mutattak, a 29. osztály pedig 53%pontot.  

 

63. táblázat. A Matematika Tudásszintmérő Teszt megoldottsága iskolánként osztályonként, 4. 

évfolyam 

 Isko- 

la 

Osz-tály 
Minta Mini- Maxi- 

Medián 
Átlag Szórás 

  (fő) mum mum    

        

1. 1. 17 6 38 12,00 14,94 8,74 

 2. 18 3 38 15,50 14,79 9,48 

 3. 23 31 36 35,00 34,65 1,43 

 4. 16 2 27 14,00 13,88 7,36 

2. 13. 13 4 29 11,00 12,92 8,93 

 14. 16 3 21 11,50 11,25 6,28 

3. 17. 25 4 34 17,00 16,08 7,26 

4. 22. 17 1 29 10,00 11,88 7,25 

 23. 17 0 32 11,00 11,53 8,58 

5. 26. 7 0 18   6,00   7,43 7,83 

6. 29. 22 10 30 19,00 20,14 5,38 

 30. 19 8 34 19,00 17,95 8,30 

7. 31. 15 2 18 10,00   9,73 4,70 

10. 38. 20 2 23 12,00 12,10 6,46 

11. 42. 23 0 35 11,00 15,39 10,96 

Összesen 15 268 0 38 15,00 15,72 9,84 
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Az osztályok közötti különbségek megállapításában ismét a homogenitásvizsgálat és a 

varianciaanalízis volt segítségünkre. A Levene-féle próba esetén F = 4,52, p < 0,001-t kaptunk, 

vagyis a részminták által reprezentált populációkban a szóráshomogenitás nem teljesül. A 

Welch-próba F értéke 96,31, p < 0,001, vagyis szignifikáns különbség figyelhető meg az egyes 

osztályok átlagai között. A post hoc elemzések közül a Hochberg’s GT2 eredményei mutatják, 

hogy szignifikáns különbség van az osztályok tanulóinak teszten elért eredményei között. Az 

osztályok három csoportra oszthatók. Az 1., 2., 4., 13., 14., 17., 22., 23., 26., 31., 38. és 42. 

osztályok teszteredménye szignifikánsan nem tér el egymástól, a 29. és 30. osztály eredménye 

ettől magasabb, a 3. osztály eredménye szignifikánsan magasabb, mint az összes többi osztály 

eredménye.  

 A 64. táblázatban A Matematika Tudásszintmérő Teszt 5. évfolyamán iskolánként 

elért eredmények statisztikáját láthatjuk. 

64. táblázat. Matematika Tudásszintmérő Teszt, iskolák közötti különbségek, 5. évfolyam 

Iskola Minta Átlag Szórás Minimum Maximum 

1. 57 19,04 11,39 2 45 

2. 16 20,06 8,10 5 34 

3. 37 17,08 11,20 1 39 

4. 16 20,38 15,21 0 46 

5. 10 12,10 10,51 0 26 

7. 16 30,69 14,31 2 51 

8. 15 35,00 10,10 9 46 

9. 31 37,68  9,06 17 52 

10. 16 13,75  5,51 7 25 

11. 40 15,60  9,05 0 38 

Összesen 254 21,70 13,25 0 52 

 

Az iskolák 5. évfolyamai közötti különbségek megállapítására ismét a homogenitásvizsgálatot 

és a varianciaanalízist hívtuk segítségül. A Levene-féle próba esetén F = 3,88, (df1 = 9, df2 = 

244) p < 0,001-t kaptunk, vagyis a részminták által reprezentált populációkban a szórások 

szignifikánsan különböznek. A Welch-próba során kapott F értéke 20,31, (df1 = 9, df2 = 70,18), 

p < 0,001, vagyis az egyes iskolák átlagpontszámai szignifikánsan különböznek egymástól. A 

post hoc elemzések közül a Hochberg’s GT2 eredményeit tekintve látjuk, hogy szignifikáns 

különbség van az iskolák tanulóinak teszten elért eredményei között. Az iskolák több csoportra 

oszthatók. Az 5., 10., 11., 3., 1., 2. és 4. egy csoportot alkothat, míg a 7., 8. és 9. iskola egy 

másik csoportot. A 9. iskola teljesítménye szignifikánsan magasabb, mint az összes többi 

iskoláé. Egy másik csoportosítás szerint egy csoportot alkot az 5., 10., 11., 3. és 1. iskola, a 2., 

4. és 7. egy másik csoportot, és a 3. csoportba kerül a 8. és 9. iskola.  

Az 5. évfolyamon is összehasonlítottuk az egyes osztályok által elért teljesítményt. A 

65. táblázat a Matematika Tudásszintmérő Teszt megoldottságát mutatja be iskolánként, 

osztályonként. A legkisebb teljesítményt (17,33%pont) a 43. osztályban érték el a tanulók, a 

legnagyobbat pedig (66,11%pontot) a 36. osztályban. A 32. osztály tanulói 53,84%pontot értek 

el, a 34. osztály tanulói pedig 61,4%pontot. 25%pont alatt teljesítettek a 19., 27., 39. és a 43. 

osztály tanulói.  
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65. táblázat. A Matematika Tudásszintmérő Teszt megoldottsága iskolánként, osztályonként, 

5. évfolyam 

Iskola Osztály Minta Mini- Maxi- Medián Átlag Szórás 

  (fő) mum mum    

        

 5 18 2 35 12,50 15,00 8,14 

1. 6 18 3 45 14,00 16,44 11,18 

 7 21 6 44 26,00 24,71 12,08 

2. 15 16 5 34 19,00 20,06 8,10 

3. 18 17 5 37 23,00 20,24 10,17 

 19 20 1 39 10,00 14,40 11,57 

4. 24 16 0 46 16,50 20,38 15,21 

5. 27 10 0 26 15,50 12,10 10,51 

7. 32 16 2 51 29,00 30,69 14,31 

8. 34 15 9 46 35,00 35,00 10,10 

9. 36 31 17 52 39,00 37,68 9,06 

10. 39 16 7 25 13,50 13,75 5,51 

11. 43 17 0 24 8,00 9,88 8,02 

 44 23 6 38 19,00 19,83 7,39 

Összesen 14 254 0 52 20,00 21,70 13,25 

A homogenitásvizsgálat és a varianciaanalízis során a Levene-féle próba esetén F = 3,11 (df1 

= 13, df2 = 240), p < 0,001-t kaptunk, vagyis a részminták által reprezentált populációkban a 

szórások szignifikánsan különböznek. A Welch-próba F értéke 16,14 (df1 = 13, df2 = 85,252), 

p < 0,001, vagyis szignifikáns különbség figyelhető meg az egyes osztályok átlagai között. A 

post hoc elemzések közül a Hochberg’s GT2 tesztet végeztük el.  Az osztályok több csoportra 

is oszthatók. Egyik csoport állhat a 43., 27., 39., 19., 5., 6. 44., 15., 18. és 24. osztályból, ezek 

átlagai között nincsen szignifikáns eltérés. Egy másik csoport állhat a 7., 32. és 34. osztályból, 

a 3. a 36. osztályból. Egy másik csoportosítás szerint az egyik csoport lehet a 43. és 27. osztály, 

a másik csoport a 32., 34. és 36. osztály (e három osztály teszteredménye nem tér el egymástól 

szignifikánsan), és az összes többi alkothatja a 3. csoportot.   

Az 56. ábrán láthatjuk, hogyan helyezkednek el egymáshoz képest az egyes osztályok a 

box-plot diagramon. 
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56. ábra Az 5. évfolyam Matematika Tudásszintmérő Teszten elért teljesítménye osztályonként 

a box-plot diagramon, központi vizsgálat 

A 66. táblázatban foglaltuk össze az 5. évfolyamos osztályokban mért Matematika 

Tudásszintmérő Teszt megoldottságára vonatkozó adatokat. 

66. táblázat. A Matematika Tudásszintmérő Teszt megoldottsága iskolánként, 5. évfolyam 

Iskola Minta Átlag Szórás Minimum Maximum 

1. 83 28,69 12,14 2 58 

2. 17 14,53  8,36 2 32 

3. 35 26,03 13,71 1 61 

4. 16 16,75 15,75 0 50 

5. 12 17,25 14,84 3 47 

7. 25 41,28 13,18 0 62 

8. 10 14,20  8,28 2 25 

9. 32 48,44 12,18 30 70 

10. 29 14,79 12,23 0 51 

11. 47 28,55 12,59 4 57 

Összesen 306 27,81 15,99 0 70 

 

A homogenitásvizsgálat és varianciaanalízis során a következőkre jutottunk: A Levene-féle 

próba esetén F = 0,90 (df1 = 9, df2 = 296), p = 0,530-t kaptuk, amire p > 0,05 teljesül, vagyis a 

részminták által reprezentált populációkban a szórások között nincsen szignifikáns különbség. 

Az ANOVA Fischer-féle F értéke 22,175 (df1 = 9), p 0,001, vagyis különbség figyelhető meg 

az egyes osztályok átlagai között. Mivel a részminták által reprezentált populációkban a 

szórások nem különböznek szignifikánsan egymástól, így a post-hoc elemzések közül a 

Tukey’b –teszt eredményei mutatják, hogy szignifikáns különbség van az egyes osztályok 

teszten elért eredményei között. Az iskolákat három csoportra oszthatjuk, a 2., 4., 5., 8. és 10. 

iskola egy csoportba kerülhet, az 1., 3. és 11 alkot egy másik csoportot, a harmadik csoportot a 

7. és 9. iskolából áll, átlagaik között nincsen szignifikáns különbség.  
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A 67. táblázat a 6. évfolyamon mutatja a teszt eredményeit osztályonkénti bontásban. 

Az osztályokra elvégezve a homogenitásvizsgálat és a varianciaanalízist, a Levene-féle próba 

esetén F = 1,35, (df1 = 16, df2 = 289), p = 0,17-t kaptuk, amire p > 0,05 teljesül, vagyis a a 

részminták által reprezentált populációkban szórások megegyeznek. Az ANOVA Fischer-féle 

F értéke 16,42 (df1 = 16), p < 0,001, vagyis különbség figyelhető meg az egyes osztályok átlagai 

között.  

67. táblázat. A Matematika Tudásszintmérő Teszt megoldottsága iskolánként osztályonként, 6. 

évfolyam  

Iskola Osztály 
Minta 

(fő) 

Mini- 

mum 

Maxi- 

mum 

Medi 

-án Átlag Szórás 

1. 8 18 2 51 28 26,94 12,82 

1. 9 18 13 53 36,5 35,44 12,73 

1. 10 22 7 39 23 22,73 9,01 

1. 11 14 12 35 23,5 24,21 6,91 

1. 12 11 19 58 40 38,09 11,37 

2. 16 17 2 32 14 14,53 8,36 

3. 20 18 6 61 31,5 32,78 13,02 

3. 21 17 1 37 18 18,88 10,66 

4. 25 16 0 50 10,5 16,75 15,75 

5. 28 12 3 47 11 17,25 14,84 

7. 33 25 0 62 42 41,28 13,18 

8. 35 10 2 25 15,5 14,20 8,28 

9. 37 32 30 70 48 48,44 12,18 

10. 40 15 0 51 19 20,53 13,47 

10. 41 14 1 22 5 8,64 6,92 

11. 45 27 4 53 28 27,26 11,77 

11. 46 20 5 57 31 30,30 13,74 

Össz. 17 306 0 70 27 27,81 15,99 

 

Mivel a részminták által reprezentált populációkban a szóráshomogenitást tapasztalunk, így a 

post-hoc elemzések közül ismét a Tukey’b –teszt eredményei mutatják, hogy szignifikáns 

különbség van az egyes osztályok teszten elért eredményei között. Az osztályokat három 

csoportra oszthatjuk, a 41., 35., 16., 25., 28., 21. és 40. osztály tartozik egy csoportba. Egy 

másik csoportot alkot együtt a 10., 11., 8., 45., 46., 20. és 9. osztály, míg a harmadik csoportot 

a legjobb teljesítményű 12., 33. és 37. osztály alkotja.  

Összegzésképpen elmondhatjuk, hogy mindhárom vizsgált évfolyamon szignifikáns 

különbségeket tapasztaltunk az egyes iskolák, valamint osztályok Matematika Tudásszintmérő 

Teszt eredményei között.  

 

Matematika Tudásszintmérő Teszt 

 

 

A Matematika Tudásszintmérő Tesztet 828-an oldották meg, 52,66 %-uk az A változatot írta 

(A = 437), 47,34%-uk pedig a B tesztváltozatot (N = 391). A reliabilitás értéke a teljes teszt és 
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a tesztváltozatok esetén is magasabb 0,90-nál (Cronbach-α = 0,946; 0,947; 0,95), tehát a teszt 

megbízhatóan mér (Nagy, 1975).  

A Matematika Tudásszintmérő Teszt a teljes mintán, évfolyamonként, valamint a mintát 

nemek szerint bontva is igen megbízhatóan mér. Osztályok szintjén vizsgálva is számos igen 

jó, 1-hez közeli értéket számoltunk. A reliabilitás viszont függ a vizsgált csoport 

képességeloszlásától is (Csapó, 2004b). Egy kecskeméti negyedikes osztály esetében a teszt 

reliabilitása nagyon alacsony volt. Az osztály valószínűleg túl homogén összetételű, jó 

képességű, az országos átlaghoz képest magasabb tudásszintű csoport, így számukra ugyanaz a 

teszt, ami több osztályban jól mér, túl könnyűnek bizonyult.  

A teszt szerkezetének és működésének megismeréséhez végzett lépésenkénti 

regresszióanalízis eredményeit elemezve arra jutottunk, hogy a 4. évfolyamon négy, az ötödik 

évfolyamon 5, a hatodik évfolyamon 6 feladatnak van a legnagyobb hatása a teszt 

összpontszámára. Mindhárom évfolyamon a 14 itemes Grillparty feladat (57. ábra) bír a 

legnagyobb magyarázó erővel a teszten elért eredmények varianciájára, ez az egyes 

évfolyamokon rendre 77%, 71,3%, illetve 53,2%.  

 

57. ábra Grillparty. 5. évfolyamos fiú megoldása (Budapest) 

A 4. és az 5. évfolyamon a Sárkányok feladat (58. ábra) 11,8%, illetve 5,3%-ot magyaráz meg 

a varianciából.  
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58. ábra Sárkányok. 5. évfolyamos fiú megoldása (Budapest) 

A 4. évfolyamon a Locsolkodás feladat (59. ábra) 4%-ot, a Torta feladat (60. ábra) 2,8%-ot 

magyaráz meg a varianciából.  

 

59. ábra Locsolkodás. 4. évfolyamos fiú megoldása (Hajdú-Bihar megye) 

 

60. ábra Torta. 5. évfolyamos fiú megoldása (Budapest) 

Az 5. és 6. évfolyamon a Szögek (61. ábra) 14,2%, illetve 21,5%-ot magyaráznak meg a 

varianciából.  
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61. ábra Szögek. 5. évfolyamos fiú megoldása (Veszprém megye) 

A Törtek feladat (62. ábra) hozzájárulása a magyarázathoz 3,5%, illetve 6%.  

 

 

62. ábra Törtek. 6. évfolyamos fiú megoldása (Budapest) 

Az 5. évfolyamon az Állítások feladat (63. ábra) 2,3%-os magyarázó erejével lesz együtt az 5 

feladat által a megmagyarázott variancia több, mint 95%.  

 

 

63. ábra Állítások. 5. évfolyamos fiú megoldása (Borsod-Abaúj-Zemplén megye) 
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A hatodik évfolyamon a Struccfeladat (64. ábra) 11%-kal, a Tömeg feladat (65. ábra) pedig 

1,9%-kal növeli a megmagyarázott varianciát.  

 

 

642. ábra Strucc. 6. évfolyamos lány megoldása (Bács-Kiskun megye) 

 

 

65. ábra Tömeg. 6. évfolyamos lány megoldása (Budapest) 

A többi feladat csekély magyarázó erővel rendelkezik a teszteredmény értelmezésekor.  A 

828 fős mintán elért pontszám relatív gyakoriságát vizsgálva megállapíthatjuk, hogy az eloszlás 

egymóduszú, azaz a mért tudást tekintve a minta homogénnek tekinthető. A ferdeségi mutató 

0,65, így aszimmetrikus, balra tolódó eloszlást látunk, és mivel a lapultság -0,12, az 

eloszlásfüggvény laposabb, mint a normális haranggörbéé.   

 

A stratégiahasználat eredményességének összefüggései a háttérváltozókkal 

A szorzási stratégiák kutatása során fontosnak tartottuk a tanulók által használt stratégiák 

háttérváltozókkal való kapcsolatának, illetve a háttérkérdőív reliabilitásának vizsgálatát. A 

megkérdezett tanulók közül 777 fő mindhárom mérőeszközt kitöltötte A Háttérkérdőív 

reliabilitása mindhárom évfolyamon elfogadható (Cronbach-αmin = 0,72). A fejben szorzási 

stratégiák és az egyéb háttértényezők között több pozitív korrelációt találtunk. A Szorzási 

Stratégiák Teszt és Matematika Tudásszintmérő Teszt eredménye közepes erősségű kapcsolatot 

mutat egymással (r4.évf = 0,45; r5.évf = 0,67; r6.évf = 0,69; p < 0,001), ez a hipotézis beigazolódott, 

tehát a szorzási stratégiák sikeressége összefügg a matematika teszten elért eredménnyel.  
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A 4. évfolyamosok mintáján a Szorzási Stratégiák Teszten elért összpontszám gyenge, 

pozitív kapcsolatot mutat az anya iskolai végzettségével, a gyermek továbbtanulási terveivel, 

iskolai teljesítményével való elégedettséggel (a korreláció értékei rendre: ranya = 0,16; rterv = 

0,15; risk = 0,19, p < 0,01); a félévi matematika osztályzattal, a tanuló vélekedésével a 

matematika teszten elért pontszámról, az elégedettséget szerző pontszámmal, a matematikai 

teljesítménnyel való elégedettségével, a szorzás szeretetével és a matematika versenyeken való 

részvétel gyakoriságával (rfélmat = 0,36; rvéltpont = 0,35; relégpont = 0,23, rmatelegédett = 0,29; rszorzás = 

0,22; rverseny = 0,32, p < 0,001). Gyenge, negatív kapcsolatot találunk a teszt összpontszáma és 

a tanulás közben mennyire segít a zenehallgatás, a páros munkában, csoportmunkában 

dolgozás; illetve a szabadidőben tv-nézésre fordított idő között (rzene = -0,20; rpáros = -0,17; rcsoport 

= -0,18, rtv = 0,15; p < 0,01).  

A vizsgálat során vizsgáltuk a tanulók által használt stratégiák és a háttérváltozók 

kapcsolatát. A stratégiahasználatot figyelve gyenge, pozitív a kapcsolat az additív disztribúció 

és a szülők iskolai végzettsége között (ranya = 0,17; rapa = 0,14; p < 0,001); az általános 

faktorizáció és a szülők iskolai végzettsége között (ranya = 0,14; rapa = 0,18; p < 0,001); „ezt 

fejből tudom” stratégia és az apa iskolai végzettsége között (rapa = 0,20; p < 0,001). A jobb 

félévi matematika osztályzatú tanulók gyakrabban alkalmazzák a helyes eredményre vezető 

stratégiákat. Az additív disztribúció, az egyik tényező tagolása, általános faktorizáció, ismert 

szabály stratégiák és a matematika osztályzat közötti korrelációk gyengék (radditív = 0,27; regyik 

= 0,16; rált.fakt = 0,19, rismert = 0,15; p < 0,01).  

Összességében elmondható, hogy a fiúk és a lányok között egyaránt, és minden 

évfolyamon, iskolában, osztályban megfigyeltük helytelen eredményre vezető stratégiák 

használatát. A stratégiahasználat eredményességének különbségei eredhetnek az egyes iskolák 

tanulói összetételéből (vö. országos kompetenciamérések eredményei, SNI, BTMN, HH-s 

tanulók aránya), az attitűdbeli különbségekből, tanulmányi eredményekből, továbbtanulási 

terveiből, tanulási szokásaiból vagy a tanárok eltérő tanítási módszereiből, ez utóbbi egy 

további vizsgálat tárgya lehet.  

A Matematika Tudásszintmérő Teszten elért összpontszám még több gyenge, pozitív 

kapcsolatot mutat más változókkal: a szülők iskolai végzettségével, iskolai teljesítményével 

való elégedettséggel, a gyermek továbbtanulási terveivel (a korreláció értékei rendre: ranya = 

0,30; rapa = 0,23; risk = 0,14; rterv = 0,19; p < 0,02). Gyenge (0,02 és 0,4 közötti) korrelációt 

tapasztalunk a félévi osztályzatokkal kapcsolatosan, ezek közül magasabbak a matematika, 

nyelvtan, természetismeret és idegen nyelv korrelációja a tesztpontszámmal (rmat = 0,37; rnyelvtan 

= 0,37; rtis = 0,34; ridnyelv = 0,40; rterv = 0,19; p < 0,001). Gyenge a kapcsolat a tanuló 

vélekedésével a matematika teszten elért pontszámról, az elégedettséget szerző pontszámmal, 

a matematikai teljesítménnyel való elégedettségével (rvéltpont = 0,38; relégpont = 0,23; rmatelegédett = 

0,22; p < 0,001). Gyenge a tesztpontszám korrelációja az idegen nyelv iránti attitűddel, a 

szorzás, osztás, törtek iránti attitűddel (ridatt = 0,15; rszozás = 0,22; rosztás = 0,18, rtör t= 0,14; p < 

0,001); a továbbtanulási tervekkel, „azért tanulom a matematikát, mert kötelező”, „mert jó 

érettségit szeretnék tenni”, a matematika versenyeken való részvétel gyakoriságával (rterv = 

0,19; rkötelező = 0,14; rérettségi = 0,14; rverseny = 0,29, p < 0,001); az olvasási és színházba járási 

szokásokkal (rolvas = 0,13, rszínház = 0,22; p < 0,03). Gyenge, negatív kapcsolatot találunk a teszt 

összpontszáma és a matematikatanulás közben mennyire segít a rajz, az ujjakon számolás, a 
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magántanár (rrajz = -0,27; rujj = -0,20; rmagán = -0,15, rtv = 0,15; p < 0,01); a szabadidőben 

matematikatanulásra, illetve tv-nézésre fordított idő között (ridő = -0,17, rtv = 0,14; p < 0,02). 

 

Összegzés 

 

Hipotéziseink közül a következők igazolódtak be: a 4-6. évfolyamos tanulók legalább ötféle, 

helyes eredményre vezető stratégiát használnak a fejszámolás során; az eredményesség 

tekintetében, a fiúk és lányok közötti különbség inszignifikáns; az általunk kifejlesztett 

mérőeszközök alkalmasak voltak a vizsgálatok elvégzéséhez; a teszteken elért eredmények 

közepes korrelációt mutatnak. Az egyes iskolák, évfolyamok teljesítménye között 

különbségeket találtunk; és az egyes évfolyamokon alkalmazott stratégiák száma nem mindig 

csökkent, így ez a két hipotézisünk megdőlt. 

Összegzésképpen elmondhatjuk, hogy mindhárom vizsgált évfolyamon szignifikáns 

különbségeket tapasztaltunk az egyes iskolák, valamint osztályok Szorzási Stratégiák Teszten 

és Matematika Tudásszintmérő Teszten elért eredményei között. Tapasztalataink szerint a 4-6. 

évfolyamos tanulók esetén a használt stratégiák száma még változott, így az „egymást átfedő 

hullámok” fejlődési modell (Siegler, & Lin, 2010) alapján fejlődésük nem zárult le a 4. 

évfolyam végére. A kutatás során feltárt stratégia-használatbeli különbségek felhívják a 

figyelmet arra, hogy a szorzási stratégiák tanítása nem szabad, hogy véget érjen az alsó 

tagozaton, azt a felső tagozaton is folytatni kell. Ily módon a számolási stratégiák és az olvasási 

stratégiák tanítása párhuzamba állítható (vö. Józsa & Józsa, 2014).  

A következő fejezetben a hat vizsgálat eredményeit összegezzük és megfogalmazzuk a 

kutatás tapasztalatait. 
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6. DISZKUSSZIÓ ÉS KÖVETKEZTETÉSEK 

 

Kutatásunkban 10-18 éves tanulók szorzási stratégiáinak vizsgálatát tűztük ki célul. Empirikus 

vizsgálatunk során saját készítésű mérőeszközöket és más, hazai kutatásokban használt 

háttérkérdőíveket alkalmaztunk. Saját mérőeszközeinktől azt vártuk, hogy alkalmasak lesznek 

szorzási stratégiák detektálására, a tanulók matematikai tudásszintjének mérésére, az 

eredményes stratégiahasználat háttérváltozóinak megismerésére.  

Feltételeztük, hogy a vizsgálatban részt vevő tanulók képesek arra, hogy beszámoljanak 

az általuk alkalmazott szorzási stratégiákról. Feltételeztük, hogy egyes feladatok megoldása 

során néhány stratégia alkalmazásának gyakorisága hasonló (Nikolov, 2003). A szakirodalom 

alapján azt vártuk, hogy a matematika tudásszint számos háttértényezővel összefügg. 

Feltételeztük, hogy a tanulók a különböző szorzási feladatok során más-más stratégiát 

használnak, attól függően, melyik adaptív. 

Empirikus vizsgálatainkra 2013 tavasza és 2019 tavasza között került sor. Az egyes 

vizsgálatok során szöveges feladatokat és szorzási stratégiát vizsgáló tesztet vettünk fel a 4-12. 

évfolyamos tanulókkal. A vizsgálatokhoz felállított hipotéziseket az elméleti részben 

ismertettük. Ebben a fejezetben összefoglaljuk és értelmezzük eredményeinket, bemutatjuk az 

eredmények felhasználásának lehetőségeit, és további kutatási célokat jelölünk ki.  

 

6.1. Az eredmények összegzése 
 

Kutatásunk eredményeit a hipotézisek mentén foglaljuk össze. 

6.1.1. Mérőeszköz  

 

H1a: A  Szorzási Stratégiák Teszt megbízhatóan méri az egyes évfolyamokon tanuló diákok 

stratégiahasználatát a fejben végzett szorzási feladatok megoldása során. 

Az első, szemmozgásos vizsgálat során a szorzási stratégiák mérésére 8 feladatból álló szöveges 

feladatot adtunk a negyedikes tanulóknak. Az interjúk során hangosan gondolkodtatás, illetve 

a szemmozgás követés segítségével információkat kaphattunk a metakognitív stratégiáikról. A 

második vizsgálatban 120 fő 8-12. évfolyamos diák töltött ki 10 itemes szorzási stratégiák 

tesztet. A mérőeszköz reliábilis volt, ugyanakkor kevés információt adott az alkalmazott 

stratégiákról. Ezért tesztfejlesztésbe kezdtük, és külföldi vizsgálatok során is alkalmazott 

itemekkel bővítettük a tesztet, hogy azután összehasonlíthassuk eredményeinket. A 

tesztfejlesztés több lépésben történt és sikeres volt. Az általunk készített Szorzási Stratégiák 

teszt megfelelő reliabilitással rendelkezik, jól méri a 10-12 éves tanulók szorzási stratégiáinak 

használatát. Emellett egy Matematika Tudásszintmérő Tesztet is kifejlesztettünk, amely 

segítségével feltérképezhetjük a stratégiahasználat és a matematikai tudás közötti kapcsolatot. 

H1b hipotézisünk beigazolódott. 
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6.1.2. A vizsgált tanulók stratégiahasználatának jellemzői fejben szorzás során 

 

Több hipotézisünk vonatkozott a vizsgált tanulók stratégiahasználatára. 

A vizsgált tanulók legalább hatféle, helyes eredményre vezető stratégia használatáról számoltak 

be, H2a hipotézisünk beigazolódott.  

H4: A szorzási feladatok megoldása során a tanulók leggyakrabbam a számlálás, tényeken 

alapuló, helyiértéken alapuló és a holisztikus stratégiát alkalmazzák (vö: Hope Sherril, 1987), 

ez a hipotézisünk beigazolódott.  

A Hope és Sherrill (1987) és a Heirdsfield és munkatársai vizsgálatában alkalmazott modellt 

kibővítettük, és a nagymintás vizsgálat során 35 stratégiát írtunk le. Ezek közül a magyar 

tanulók mintegy 21, helyes eredményre vezető stratégiát használnak az írásban számolás, illetve 

a számológéppel számolás nem tartozik ide.  

A megfigyelt stratégiák:  

„Fejben történő írásbeli szorzás” 

Minden részletszorzatot számjegyenként szoroz össze (P&P0, Hope & Sherrill, 1987) 

Additív disztribúció (additive distribution, Hope & Sherrill, 1987) 

Kétjegyű számmal való szorzás során az egyesekkel kezd (right to left separated strategy, 

Heirdsfield & mtársai) 

Kétjegyű számmal való szorzás során a tízesekkel kezd (left to right separated strategy, 

Heirdsfield és mtársai) 

Összeadandókra tagolja az egyik tényezőt 

Mindkét tényezőt összeadandókra tagolja  

Frakcionális disztribúció (fractional distribution, Hope & Sherrill, 1987) 

Számlálás (Counting strategy, Heirdsfield & mtársai) 

Szubsztraktív disztribúció (subtractive distribution, Hope & Sherrill, 1987; wholistic 

strategy, Heirdsfield & mtársai) 

Kvadratikus disztribúció (quadratic distribution, Hope & Sherrill, 1987) 

Általános faktorizálás, egyik vagy mindkét tényező szorzattá bontása (general factoring, 

Hope & Sherrill, 1987) 

Felezés-duplázás: az egyik tényezőt felezi, a másikat duplázza (half-and-double, Hope & 

Sherrill, 1987) 

Felezés-duplázás, szubsztrakcióval 

Maradék nélkül osztható részekre bontás (aliquot parts, Hope & Sherrill, 1987) 

Maradék nélkül osztható részekre bontás, az egyik tényező átalakítása 

„Ismert szabály” alkalmazása 

„Algebrai azonosság” alkalmazása, összeg négyzete 

„Algebrai átalakítás” 

Emlékezeti előhívás (retrieval of a numerical equivalent, Hope & Sherrill, 1987, Basic fact 

strategy, Heirdsfield & mtársai)) 

Exponenciális faktorizálás (exponetial factoring, Hope & Sherrill, 1987) 
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H2b: A fejszámolással megoldható szorzási feladatokban 10-18 évesek különböző stratégiát 

alkalmaznak. A gyerekek fejlettségi szintje a stratégiahasználat rugalmassága terén eltérő, az 

egyes gyermekek – matematikában tehetséges gyermek, többségi, SNI-s tanulók – 

stratégiahasználata között szignifikáns a különbség. Ez a hipotézisünk beigazolódott. A 

matematikából jobb eredményt elérő tanulók körében gyakrabban figyeltük meg holisztikus 

stratégiák, illetve disztribúciós stratégiák alkalmazását. A gyengébb eredményt elérő tanulók 

gyakrabban alkalmaztak valamilyen hibás eredményre vezető stratégiát, úgy mint: 

„Tízeseket a tízesekkel és egyeseket az egyesekkel” szoroz az összeadás mintájára 

„Tízeseket a tízesekkel és egyeseket az egyesekkel” szoroz, majd hozzáadja még egyszer az 

egyik tényezőt 

Kétjegyű számmal való szorzás során a tízesekkel kezd, majd hozzáadja még egyszer az 

egyik tényezőt 

Kétjegyű számmal való szorzás során a tízesekkel kezd, majd ehhez hozzáadja az egyik 

tényező helyiérték szerinti felbontással kapott tagjainak szorzatát 

„Tízeseket a tízesekkel és egyeseket az egyesekkel” szoroz 

Szubsztraktív disztribúció 2. változat 

Az egyik tényező egyeseivel való részletszorzatok hiányoznak 

Helyiérték figyelembevétele nélkül számol 

Egyéb, az előzőektől különböző, helytelen eredményre vezető stratégia. 

 

H2c: Szignifikáns a különbség a stratégia használat során a különböző iskolák között. 

H2d: Szignifikáns a különbség a stratégiahasználat során a különböző osztályok között. 

H2e: A vizsgált tanulók körben megfigyelhetők racionális hibák (vö: Ben-Zeev, 1998). 

H5a: A szorzási feladatok megoldása során a 4. évfolyamos tanulók gyengébb eredményt érnek 

el, mint a magasabb évfolyamokon.  Ez a hipotézisünk beigazolódott.  

H5b: Az egyes évfolyamok teljesítménye között különbség van, az alacsonyab évfolyamos 

tanulók szignifikánsan alacsonyabb eredményt értek el, mint a magasabb évfolyamra járók. Ez 

a hipotézisünk több vizsgálat során beigazolódott. Ugyanakkor a magasabb évfolyamon tanulók 

nem feltétlenül nyújtottak jobb teljesítményt a teszten, ahogy a második vizsgálatból származó 

eredményeink mutatják. 

H5c: A magasabb évfolyamokon a tanulók által használt stratégiák száma csökkenő tendenciát 

mutat (vö. Siegler és Lin, 2010, „egymást átfedő hullámok” modellje). Ez a hipotézisünk nem 

igazolódott be. A stratégiahasználat sok háttértényezővel összefügg. A 4. évfolyamon tanulók 

szorzási stratégiáinak száma kevesebb, mint a magasabb, pl. 5. és 6. évfolyamon tanulóké. Úgy 

tűnik, egy spontán fejlődés végbemegy, nem zárul le az alsó tagozat végére. Emiatt a Siegler és 

Lin által leírt „hullámok modell” alapján arra a következtetésre juthatunk, hogy a számolási 

stratégiák tanítását az olvasási stratégiák tanításához (vö. Józsa & Józsa, 2014) hasonlóan a 

felső tagozaton is folytatni kell. 
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6.1.3. A stratégiahasználat összefüggései a háttérváltozókkal 

 

H3: Az alábbi háttérváltozókkal hozható összefüggésbe a megoldáskor alkalmazott szorzási 

stratégia és annak adaptivitása: anya iskolai végzettsége, a tanuló neme, a tanuló tanulási 

eredménye, tanulási nehézségek és zavarok. Ez a hipotézisünk részben beigazolódott. A 

szorzási stratégia használata eredményesebb volt a magasabb iskolai végzettségű anyához 

tartozó gyermek esetén. A tanulók nemével is összefüggött a stratégiahasználat, de a 

különbségek nem voltak szignifikánsak. A jobb tanulmányi eredményű diák magasabb 

eredményt ért el a szorzási stratégiák teszten. Mivel a tanulási zavarral rendelkező diákokról 

kevés információnk van, ők gyakran írásban számoltak, így a mintából kivettük őket, a kevés 

vizsgált személy eredménye alapján csak feltételezzük, hogy a stratégiahasználat 

eredményessége a tanulási zavarokkal összefügghet. 

H6: A Matematika Tudásszintmérő Teszten jobb teljesítményt elérő gyerekek 

stratégiahasználatát kettősség jellemzi: egyrészt rugalmasabb, és többféle stratégiát 

alkalmaznak, mint a Matematika Tudásszintmérő Teszten gyengébb teljesítményt nyújtó 

diákok másrészt stratégiahasználatuk nem minden esetben adaptív. Ez a hipotézis 

beigazolódott. A vizsgálat során tapasztaltuk, hogy a matematikateszten elért jobb eredmény 

nem feltétlenül jelent rugalmas stratégiahasználatot. Számos esetben a tanulók mereven 

ragaszkodtak az általuk használt stratégiához, akkor is, ha az nem volt adaptív (vö. de Smedt, 

Torbeyns, Stassens, Ghesquiére & Verchaffel, 2010) 

H7: A sajátos nevelési igényű gyerekek stratégiahasználatát nagyfokú rugalmatlanság jellemzi. 

Ugyanakkor azzal az egy-két ismert stratégiával – szorgalmuk, precizitásra törekvésük miatt – 

sokszor jobban boldogulnak, mint a Matematika Tudásszintmérő Teszten jobb teljesítményt 

elérő tanulótársaik. Erre vonatkozóan kevés információt tudtunk szerezni, így nem dönthető el, 

igaz-e.  

H8a: A Matematika Tudásszintmérő Teszten elért teljesítmény közepes korrelációt mutat a 

Szorzási Stratégiák Teszten elért eredménnyel. Ez a hipotézisónk beigazolódott. A 

vizsgálataink nagy részénél ez a korreláció 0,4 körüli érték.  

H9a, H9b, H9c hipotéziseink beigazolódtak:  

A szorzási stratégiák explicit tanításában részt vevő tanulók jobb eredményeket érnek el, mint 

a fejlesztésben részt nem vett társaik (vö. Mulligen & Mitchelmore, 2009).  

A fejlesztésben részt vett tanulók jobb eredményeket értek el a Matematika Tudásszintmérő 

utóteszten, mint a fejlesztésben részt nem vett társaik (vö. Csíkos, 2007). 

A fejlesztés hatása a késleltetett utóteszt során is kimutatható (vö. Csíkos, 2007). 

Fejlesztő kísérletünk közepes hatást mutatott ki, és a három hónappal később felvett interjúk 

alapján úgy véljük, akár egyhónapos, tartalomba ágyazott fejlesztés, a stratégiák előnyeinek és 

hátrányainak megmutatásával, metakognitív stratégiák alkalmazásával pozitívan hat a fejben 

szorzás eredményességére.  
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6.1.4. A Matematika Tudásszintmérő Teszt 

 

H8b: A Matematika Tudásszintmérő Teszten elért eredmény szerint szignifikáns a különbség  

(vö.: Hermann, 2019) a mérésben részt vevő iskolák, osztályok, a fiúk és a lányok között. 

H8c: A Matematika Tudásszintmérő Teszten elért teljesítmény közepes korrelációt mutat (vö. 

Hermann, 2019) a szülők iskolai végzettségével, az iskolai teljesítménnyel való 

elégedettséggel, a gyermek továbbtanulási terveivel, a gyermek félévi matematika 

osztályzatával.  

Mindkét hipotézisünk beigazolódott.  

 

6.2. Kutatásunk újdonságértéke 

 

Kutatásunk során arra vállalkoztunk, hogy fejben végzett szorzás során alkalmazott 

szorzási stratégiákat feltérképezzük 10-18 éves tanulók körében. Eddig hazánkban fehér foltnak 

számított a fejben számolás során alkalmazott szorzási stratégiák kutatása. Kutatásunk során 

kifejlesztettünk egy jól működő mérőeszközt a 10-12 éves tanulók szorzási stratégiák 

vizsgálatára. Az általunk kifejlesztett mérőeszközök alkalmasak voltak a 10-12 éves tanulók 

szorzási stratégiájának vizsglatához. A Szorzási Stratégiák Teszt jóságmutatója magas 

(Cronbach-α = 0,9 körüli volt ezeken az évfolyamokon).  

A tanulók képesek voltak beszámolni arról, hogyan gondolkodtak. Vizsgálataink során 

megfigyeltük, kielemeztük a tanulók által használt stratégiákat, hibázási mintázatokat tártunk 

fel. Kutatásaink során a nemzetközi kutatók eredményeivel egybecsengő következtetésekre 

jutottunk.  A stratégiakutatások egyik fő konklúziója, hogy matematikai gondolkodásunkat 

nagy változatosság jellemzi. A különféle matematikai feladatok megoldása során a többségi 

gyerekek és a felnőttek, a tehetséges gyerekek stratégiahasználata (vö. Thomas, 2002) eltérő 

jellegzetességeket mutat, függ a szituációtól, a feladat és az egyén jellemzőitől (vö. Siegler, 

2003, 2005, 2007). Az egyén élete folyamán alkalmazott stratégiák folyamatosan fejlődnek, 

egyesek eltűnnek (vö. Siegler & Lin, 2010), és célszerű egyszerre több stratégiát tanítani a 

gyerekeknek (vö. Shrager & Siegler, 1998; Siegler & Araya, 2005). A gyerekek az ismert 

stratégiák alapján spontán új stratégiákat fejlesztenek ki (v.ö. Torbeyns, De Smedt, Ghesquiére 

& Verchaffel, 2009).  

A kutatás számos új eredményt hozott. Nemzetközi szakirodalomban még nem leírt 

szorzási stratégiákat különítettünk el. A kutatási módszerek között hazai kutatásokban 

ritkaságnak számít az első vizsgálat során alkalmazott szemkamerás vizsgálat. Ötödik 

vizsgálatunk egyhónapos, tartalomba ágyazott fejlesztést tartalmazott, melyet 

matematikaórákon végeztünk. A fejlesztés hatása a késleltetett utómérés során kimutatható 

volt. A korábbi kutatások eredményeire támaszkodva választ kaptunk kutatási kérdéseinkre, 

megállapítottuk a tanulók stratégiahasználatára vonatkozó jellegzetességeket, hibázási 

mintázatokat, összefüggéseket mutattunk ki a szorzási stratégia eredményessége és a 

háttérváltozók között. A keresztmetszeti vizsgálatban három budapesti és nyolc vidéki iskola 

850 tanulója töltötte ki három saját fejlesztésű mérőeszközünket: Szorzási Stratégiák Tesztet, 

Matematika Tudásszintmérő Tesztet, Háttérkérdőívet. Elemzéseinkhez a statisztikai 

számításokat SPSS 16, illetve SPSS 17 szoftverrel végeztük. Hipotéziseink nagy része 



197 
 

beigazolódott.  Megállapítottuk, hogy a 4-6. évfolyamos tanulók legalább ötféle, helyes 

eredményre vezető stratégiát használnak a fejszámolás során; az eredményesség tekintetében a 

nemek közötti különbség inszignifikáns.  

 

6.3. Kutatásunk korlátai 

 

Az általunk végzett, 7-12. évfolyamos tanulókra vonatkozó kisebb mintás vizsgálatokból nem 

vonhatók le általános érvényű következtetések. A 4-6. évfolyam vizsgálata során azonban 

mintánk elemszáma 850 volt. Így erre a három évfolyamra tett megállapításaink vélhetően 

általánosak igazak a magyar tanulókra. Azonban szükségesek további nagyobb mintás 

vizsgálatok, településszerkezet szerint reprezentatív mintán. A mérőeszköz kotlátozottan 

használható. Sajátos nevelési igényú és tanulási zavarokkal rendelkező tanulók esetén nem 

tudtunk arról meggyőződni, jól mér-e. Másik korlátja mérőeszközünknek, hogy a számolást 

írásban végző tanulók mérésére nem alkalmas. Szükségesnek tartjuk szóbeli interjúk felvételét 

ilyen esetekben. Harmadik korlátja a mérőeszközünknek lehet az, hogy nehezebben 

emlékszünk vissza a már automatikussá vált eljárásokra.    

 

6.4. Az eredmények felhasználási lehetőségei  

 

Kutatásunk során a fejben való szorzás során alkalmazott szorzási stratégiákat vizsgáltuk 10-

18 évesek körében, 10-12 évesek között folytattuk le a vizsgálatok nagy részét.. Három kisebb 

mintás és három nagyobb mintás vizsgálatot, köztük két keresztmetszeti vizsgálatot végeztünk 

az elmúlt tíz évben. Dolgozatunkban a szorzási stratégiák vizsgálatával kapcsolatos elméleteket 

összegeztük, és a végzett vizsgálatok eredményeit foglaltuk össze. Verschaffel, De Corte és 

Pauwels (1992) megállapításaival egybecsengtek tapasztalataink. A kismintás szemmozgás 

követéses vizsgálat rámutatott arra, hogy a releváns információk felismerése, kiválasztása és 

feldolgozása elengedhetetlen a matematikai szöveges feladatok sikeres megoldásához.  

 Az általunk végzett vizsgálatok eredményei szerint a tanulók számolási készségeinek 

fejlesztése, fejben számolás, szorzási stratégiák tanítására célszerű lenne felhívni a leendő és a 

gyakorló pedagógusok figyelmét. Kutatásunkkal igyekeztünk megvilágítani, hogy a 

metakognitív stratégiák fejlesztése számos transzferhatást eredményezhet, a számolási 

stratégiák tanítását érdemes folytatni a felső tagozaton és a középiskolában. Az általunk vizsgált 

tanulók képesek voltak arra, hogy az általuk alkalmazott stratégiákról beszámoljanak. Célszerű 

lenne több fejlesztést végezni, és a tanárok képzésébe több ponton beiktatni a metakognitív 

stratégiák tanítását. 

 

6.5. További kutatások lehetőségei 
 

A kutatás eredményeire támaszkodva további kérdések vethetők fel. Érvényesek-e a 4-6. 

évfolyamos tanulók mintáján kapott eredmények a 7-12. évfolyamos tanulókra is? Vajon a 

felnőttek stratégiahasználatára mi jellemző? A matematikatanárok hogyan vélekednek a fejben 

számolás fontosságáról? Milyen stratégiát alkalmaznak a tanárok a fejben szorzás során és 
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milyeneket tanítanak? Módszertani szempontból kihívás egy olyan mérőeszköz létrehozása, 

amely segítségével hamarabb választ kapunk kérdéseinkre. Hogyan, milyen módszerrel lehetne 

gyorsabban elemezni a vizsgálat során kapott eredményeket? Az eDia online rendszer erre 

kínálkozik. A technológiaalapú tesztelés az adatfelvételi és az értékelési objektivitás 

növekedését eredményezi (Csapó, Molnár és R. Tóth, 2008), ezáltal nő a tesztek reliabilitása és 

validitása is (Csapó, Molnár és Nagy, 2014, 2015; Molnár, 2016). Vajon létrehozható-e olyan 

valid és reliábilis mérőeszköz, amely online képes mérni a tanulók stratégiahasználatát? 

Nézetünk szerint igen, de ez már egy másik kutatás témája lehet.  

Robinson (2015) szerint még mindig úgy tekintünk az iskolára, mint egy tudás-vagy 

vizsgagyárra, ahol futószalagon készülnek az iskolázott emberek. Az iskolarendszerek ma már 

a szervezeti szertartások és a szellemi szokások mátrixa, amelyek nem tükrözik megfelelően a 

résztvevő diákok tehetségének sokféleségét. Mivel ezek a rendszerek ellentmondásokat 

hordoznak magukban, túl sok diák gondolja magáról, hogy nem elég értelmes. Jelenleg egy 

olyan tömegközlekedési modellt működtetünk, amely nem képes felkészíteni a fiatalokat a 

digitális korszak drámai társadalmi-gazdasági igényeire (Robinson, 2015). Szerinte a tanítás-

tanulás ideális esetben organikus fejlődés, és a közoktatásnak ezt kellene támogatna. A 

közoktatás célja önmagát fejlesztő, kreatív, sokoldalú, digitálisan is művelt generáció nevelése 

lenne (Prievara, 2015). 

A XXI. században szinte lehetetlen körülhatárolni azon ismeretek körét, amelyekre a 

következő nemzedékeknek szükségük lehet (Csapó, 1992). Nem lehetünk biztosak abban, hogy 

a tanárok által tanított tudás a felhasználáskor is korszerűnek és hasznosíthatónak fog számítani, 

a mai posztindusztriális társadalomban ezért a leendő munkavállalók tanulási készségeit 

célszerű inkább fejleszteni (Csapó, 2008c). Ez jelenti a jó minőségű, az élethosszig tartó tanulás 

(life-long learning – LLL) során használható tudást (Csapó, 2008a). A 2003-as OECD vizsgálat 

kiegészítő adatfelvétele során kiderült, hogy a magyar iskolások inkább a memorizálásra, 

felidézésre épülő tanulási stratégiákat preferálják az elemző, gondolkodó, rendszerező 

módszerekkel szemben. A tanulásban a minőség javításának záloga a tanulási stratégiák 

arányának változtatása lehet (Csapó, 2004b). A közoktatás legfőbb tartalékait a tanulás 

hatékonyságának javítása képezheti, melynek kulcseleme a mélyebb megértésen alapuló és 

ezért szélesebb körben alkalmazható tudás (Csapó, 2008b). 

 Az oktatás területén bekövetkező változások egyik motorjává az üzleti élet válhat 

(Romberg, 1992). A gazdaság egy késleltetett visszacsatolás révén arra ösztönzi az oktatás 

szereplőit, hogy az oktatásban a munkaerőpiacon szükséges képességek elsajátítását tekintsék 

elsődlegesnek. A tudásalapú társadalomban, a tudásalapú gazdaságban a hasznosítható tudáson 

múlik a nemzet, a gazdaság, az egyén versenyképessége is. A nagyobb versenyképesség 

ugyanakkor többletjövedelmet, egészséges nemzetet, gazdagságot, és még több tudást 

eredményezhet. Nemzetgazdaságunk versenyképessége és a tudásalapú gazdaság feltételeinek 

megteremtése tehát egymást kölcsönösen feltételező fogalmak. Kiemelt szerepet kap e cél 

megvalósításában az emberi tőke, így a versenyképesség növelése az ország, a vállalat és az 

egyén szintjén is a tudásba való befektetést, több innovációt és kutatás-fejlesztést igényel 

(Varga, 2014, 2013). Hazánk gazdasági felemelkedésének kulcsa a versenyképesség növelése, 

a tudásalapú társadalom kiépítése (Pelle, 2013). A 2020-as koronavírusjárvány utáni gazdasági 

talpra állásunk gyorsasága azon is múlhat, mennyire vesszük ezt figyelembe.  
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Az iskoláztatás pozitív hatásaként a gyermekek kognitív és egyéb készségei, képességei 

fejlődnek, és az esetek egy részében elérik az antropológiai optimumot (Nagy, 2000). Viszont 

a tanulók jelentős része esetén a készségek optimális begyakorlása nem valósul meg, s alacsony 

szinten vagy hibásan működő kognitív képességekkel, mintegy funkcionális analfabétaként 

lépnek be a munka világába. Ez ellenkezik mind a társadalom, mind az egyén érdekeivel. Az 

oktatáspolitika kiemelt célja kell, hogy legyen, hogy a fiatalok között csökkenjen a minimális 

szintű társadalmi elvárásoknak sem eleget tevők száma, ezért fontosnak tartjuk az 

alapkészségek fejlesztését, a munkavégzéshez, társadalmi beilleszkedéshez szükséges szociális 

és kognitív kompetenciák kialakulásának segítését. A siker egyik kulcsa lehet többek között a 

matematikai kompetenciák fejlesztése (Vígh-Kiss, 2019). A világ több országában oktatási 

reformok zajlanak, célszerű a magyar oktatási rendszerben is átgondolni, hogyan tudnánk még 

többet segíteni abban, hogy gyermekeink, hazánk egészségesebbek és versenyképesek 

legyenek. 

 Úgy gondoljuk, megfelelő és elegendő kutatás segítségével standardizálhatóvá válik a 

fejben végzett számolások, szorzások elvárt képességszintje. Ezzel együtt új tanítási 

segédeszközök jöhetnek létre. A számolási stratégiák, a metakognitív stratégiák tudatosabb és 

gyakoribb tanítása a tanulók differenciált fejlesztésének eszközévé válhat, korunk kihívásaihoz 

jobban illeszkedő új tantermi kultúra kialakulását segítheti. Gyermekeink adaptív számolási, 

szorzási készségeinek fejlesztése a gyakorlati életben is hasznosítható, és feltételezhetően az 

adaptivitás szemléletmódja jelentős transzferhatást eredményezhet az emberi gondolkodás más 

területein is. 
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MELLÉKLETEK 

1. sz. melléklet. A fejben végzett osztás során alkalmazott stratégiák. 

 (forrás: Heirdsfield, Cooper, Mulligan & Irons, 1999. 91.o.) 

Kategóriák A stratégia leírása Példák 

Counting (CO) 

Számlálás 

A számlálás formái, előre, hátra, 

összeadás, kivonás, felezés, 

duplázás 

96 : 4 kiszámítása: 4,8,12… 

96 : 4: az 96 fele, majd 48 fele 

121:11 kiszámítása: 11, 22, 33  

Basic fact (BF) 

Tényeken alapuló 

Szorzótábla ismeretén alapuló 96 :4 kiszámítása: 4 x ? = 96, 24 

96 : 4 kiszámítása másképp: 4 ∙ 

20 =  80, 4 ∙ 4 = 16, így 24 ∙ 4 = 

96 

121 : 11 kiszámítása: 1 – 2 + 1 = 

0, így 121 : 11 = 11 

121 : 11 kiszámítása: 11 ∙ 10 = 

110, 1 ∙ 11 = 11, így 121 : 11 = 

11 

121 : 11 kiszámítása: 9 ∙ 11 = 99, 

2 ∙ 11 = 22, így 121 : 11 = 11 

RL separated (RLS) 

Jobbról balra 

Helyiérték szerint elválasztva, 

jobbról balra 

96 : 4 kiszámítása: 6 : 4 = 1, (2), 

9 : 4 = 2, (1), 12 : 4 = 3, tehát 96 : 

4 = 1 + 23 = 24 

LR separated (LRS) 

Balról jobbra 

 

Helyiérték szerint elválasztva, 

balról jobbra 

96 : 4 kiszámítása: 9 : 4 = 2 (1), 

(10 + 6) : 4 = 4 

96 : 4 = 24 

121 : 11 kiszámítása: 12 : 11 = 1, 

(1), 11 : 11 = 1,  

így 121 : 11 = 10 + 1 = 11 

Wholistic (WH) 

Holisztikus 

Kerek egészként értelmezi a 

számot 

96  :4 kiszámítása: 100 : 4 = 25, 1 

∙ 4 = 4, 96 : 4 = 24 

121 : 11 kiszámítása: 110 : 11 = 

10, 11 : 11 = 1, tehát 121 : 11 = 

11 
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2. sz. melléklet. A negyedik vizsgálat során alkalmazott Szorzási Stratégiák Teszt 

megoldókulcsa 

Minden jó válasz egy pontot ér. 

  VÉGEREDMÉNY 

1. 25 · 48 
 

1050 

2. 25 · 120 
 

3000 

3. 31 · 32 
 

992 

4. 8 · 99 
 

792 

5. 49 · 51 
 

2499 

6. 12 · 250 
 

600 

7. 8 · 4211 
 

33688 

8. 15 · 48 
 

720 

9. 12 · 16 
 

192 

10. 32 · 32 
 

1024 

11. 25 · 25 
 

625 

12. 17 · 99 
 

1683 

13. 12·15 
 

180 

14. 20 · 30 
 

600 
 
 

15. 8 · 999 
 

7992 

16. 23 · 27 
 

621 

17. 25 · 32 
 

800 

18. 25 · 65 
 

1625 

19. 13 · 13 
 

169 

20. 15 · 15 
 

225 

21. 16 · 16 
 

256 

22. 24 · 24 
 

576 

23. 9 · 742 6678 
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 VÉGEREDMÉNY 

24. 15 · 16 
 

240 

25. 25 · 50 
 

1250 

26. 18 · 16 
 

288 

27. 25 · 35 
 

875 

28. 9 · 888 
 

7992 

29. 150 · 6 
 

900 

30. 50 · 50 
 

2500 

31. 19 · 19 
 

361 

32. 77 ·  8 
 

616 

33. 9 · 652 
 

5868 

34. 12 · 11 
 

132 

35. 11 · 11 
 

121 

36. 19 · 21 
 

399 

37. 45 · 45 
 

2025 

38. 77 · 99 
 

7623 

39. 10 · 690 
 

6900 

40. 500 · 500 
 

250000 
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3. sz. melléklet. Háttérkérdőív 

Név: ………………………………………………………. Osztály:………  Kód: …………..                        
Kedves Tanuló!  

Ez a kérdőív nem a tudásodat méri. Arra vagyunk kíváncsiak, mennyire szeretsz iskolába járni, tanulni. 

Az alábbi kérdőívvel továbbá az érdeklődési körödet, továbbtanulással kapcsolatos terveidet 

szeretnénk felmérni. Kérjük, segítsd munkánkat, olvasd el figyelmesen az alábbi kérdéseket, és őszintén 

töltsd ki a kérdőívet! A megfelelő válasz sorszámát karikázd be! Ahol szükséges, írd be a válaszod! 

Válaszaidat bizalmasan kezeljük, azokat kizárólag kutatási célokra használjuk fel.  

1. Nemed: 1)  fiú 2)  lány 
2. Mikor születtél? ________év _______________hó 
3. Mi a szüleid legmagasabb iskolai végzettsége? Karikázd be a megfelelő számot! 

ANYA legmagasabb iskolai 
végzettsége 

APA 

1 általános iskola 1 
2 szakmunkásképző iskola 2 
3 érettségi 3 
4 OKJ tanfolyam 4 
5 főiskola 5 
6 egyetem 6 

4. Mennyire szeretsz iskolába járni? Karikázd be a megfelelő válasz sorszámát! 
 1)egyáltalán nem szeretek    2) nem szeretek   3) közepesen    4) szeretek   5) nagyon szeretek 

5. Milyen idegen nyelvet vagy nyelveket tanulsz? Írd a vonalra! 
1. idegen nyelv                                              …………………………………………. 

2. idegen nyelv                                              ………………………………………… 

6. Mennyire vagy elégedett a mostani iskolai teljesítményeddel? Karikázd be a megfelelő válasz 
sorszámát! 

1) nagyon elégedetlen  2) elégedetlen  3) közepesen elégedett  

4) elégedett 5) nagyon elégedett 

7. Mennyire szereted a következő tantárgyakat? Karikázd be megfelelő számokat, a számok alábbi 
jelentéseknek megfelelően! Ha valamelyik tantárgyat nem tanulod, húzd át a nevét! 
           1) egyáltalán nem szeretem 2) nem szeretem 3) közömbös 4) szeretem 5) nagyon szeretem 

a) Irodalom 1 2 3 4 5 

b) Nyelvtan 1 2 3 4 5 

c) Történelem 1 2 3 4 5 

d) Természetismeret 1 2 3 4 5 

e) 1. Idegen nyelv 1 2 3 4 5 

f) 2. Idegen nyelv 1 2 3 4 5 

g) Informatika 1 2 3 4 5 

h) Matematika 1 2 3 4 5 

i) Fizika 1 2 3 4 5 

j) Technika 1 2 3 4 5 

k) Erkölcstan/hittan 1 2 3 4 5 

l) Testnevelés 1 2 3 4 5 



237 
 

m) Művészetismeret 1 2 3 4 5 

n) Ének-zene 1 2 3 4 5 

      

1. Milyen osztályzataid voltak félévkor az alábbi tantárgyakból? Karikázd be megfelelő számot! Ha 
valamelyik tantárgyat nem tanulod, húzd át a nevét! 
 

a) Magatartás 1 2 3 4 5 

b) Szorgalom 1 2 3 4 5 

c) Irodalom 1 2 3 4 5 

d) Nyelvtan 1 2 3 4 5 

e) Történelem 1 2 3 4 5 

f) Természetismeret 1 2 3 4 5 

g) 1. Idegen nyelv 1 2 3 4 5 

h) 2. Idegen nyelv 1 2 3 4 5 

i) Informatika 1 2 3 4 5 

j) Matematika 1 2 3 4 5 

k) Fizika 1 2 3 4 5 

l) Technika 1 2 3 4 5 

m) Erkölcstan/hittan 1 2 3 4 5 

n) Testnevelés 1 2 3 4 5 

o) Művészetismeret 1 2 3 4 5 

p) Ének-zene 1 2 3 4 5 

 

9. Mit gondolsz, egy 100 pontos matematikateszten hány százalékos eredményt érnél el?  ……….. 
10. Hány százalékos eredménnyel lennél elégedett? …….. 

11. Az iskola befejezése után melyek a legtávolabbi terveid? Melyik az a legmagasabb iskolai 
végzettség, amit életed során el szeretnél érni? Karikázd be a megfelelő számot! 

1) szakmunkás bizonyítványt szerezni 
2) érettségizni 
3) érettségizni és szakmát is tanulni 
4) főiskolát végezni/diplomát szerezni felsőfokú alapképzésben 
5) egyetemet végezni/ diplomát szerezni felsőfokú mesterképzésben 
6) abbahagyni az iskolát és munkába állni, amilyen hamar csak lehet 

12. Mennyire vagy elégedett a mostani matematikai teljesítményeddel? Karikázd be a megfelelő 
válasz előtti számot! 

1) nagyon elégedetlen  2) elégedetlen  3) közepesen elégedett  

4) elégedett 5) nagyon elégedett 

   13. Mennyire szereted az alábbiakat? 
 1)egyáltalán nem szeretem    2) szeretem   3) közömbös    4) szeretem   5) nagyon szeretem 

 

Összeadás 1 2 3 4 5 

Kivonás 1 2 3 4 5 

Szorzás 1 2 3 4 5 

Osztás 1 2 3 4 5 
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Fejben számolás 1 2 3 4 5 

Írásban számolás 1 2 3 4 5 

Természetes számok 1 2 3 4 5 

Negatív számok 1 2 3 4 5 

Törtek 1 2 3 4 5 

Tizedes törtek 1 2 3 4 5 

Vegyes számok 1 2 3 4 5 

Szöveges feladatok 1 2 3 4 5 

Szerkesztési feladatok 1 2 3 4 5 

Arányossági feladatok 1 2 3 4 5 
Százalékszámítás 1 2 3 4 5 

Mértékegységátváltás 1 2 3 4 5 

Logikai feladatok 1 2 3 4 5 

14. Szerinted mennyire lesznek fontosak későbbi életed során, hogy jól tudd az alábbiakat? 
1) szükségtelen    2) nem fontos   3) közepes fontosságú  4) elég fontos   5) nagyon fontos 

 

Fejben végzett számítások 1 2 3 4 5 

Írásban végzett számítások 1 2 3 4 5 

Szöveges feladatok 1 2 3 4 5 

Szerkesztési feladatok 1 2 3 4 5 

Arányossági feladatok 1 2 3 4 5 

Százalékszámítás 1 2 3 4 5 

Mértékegységátváltás 1 2 3 4 5  

Logikai feladatok 1 2 3 4 5 

        15. Mennyire segítenek matematika tanulása közben az alábbiak? 
1) egyáltalán nem segít 2) inkább nem/ ritkán segít   4) inkább/gyakran segít   5) sokat segít 

 

Rajz készítése 1 2 4 5 

Zenehallgatás 1 2 4 5 

Ujjakon számolás 1 2 4 5 

Magamban számolás 1 2 4 5 

Hangos számolás 1 2 4 5 

Írásban számolás 1 2 4 5 

Teljes csend 1 2 4 5 

Páros munka 1 2 4 5 

Csoportmunka 1 2 4 5 

Tanár magyarázata 1 2 4 5 

Tankönyv mintapéldái 1 2 4 5 

Szülő / testvér magyaráz 1 2 4 5 

Magántanár 1 2 4 5 
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16. Egy átlagos tanítási napon mennyi időt 
fordítasz tanórán kívüli (pl.: otthoni) tanulásra? 

17. Egy átlagos tanítási napon mennyi ideig 
készülsz matematikaórára?   

1) Egyáltalán nem készülök. 1) Egyáltalán nem készülök. 
2) Naponta fél óránál kevesebbet készülök. 2) Naponta fél óránál kevesebbet készülök. 
3) Naponta fél-egy órát készülök. 3) Naponta fél-egy órát készülök. 
4) Naponta egy-két órát készülök. 4) Naponta egy-két órát készülök. 
5) Naponta két-három órát készülök. 5) Naponta két-három órát készülök. 
6) Naponta több, mint három órát készülök. 6) Naponta több, mint három órát készülök. 

 

A következő kérdések (18-23. kérdések) segítségével azt szeretném megtudni, hogyan 

vélekedsz a matematika tanulásával kapcsolatban. Miért tanulod a matematikát? Kérjük, hogy 

1-től 5-ig terjedő skálán pontozd az állításokat a pontok alábbi jelentésének megfelelően! 

Karikázd be a válaszodnak leginkább megfelelő számot! 

 

1: nem igaz, egyáltalán nem jellemző. 

2: általában nem igaz, sokszor nem így van. 

3: nem tudom eldönteni. 

4: általában igaz, legtöbbször így van 

5: igaz, mindig így van 

 

18. Mert kötelező tantárgy.  1 2 3 4 5 

19. Mert érdekes.  1 2 3 4 5 

20. Mert szeretnék jó eredménnyel bekerülni a 
középiskolába. 

 1 2 3 4 5 

21. Mert szeretnék jó eredménnyel érettségizni.  1 2 3 4 5 

22. Mert szükségem van rá a továbbtanuláshoz.   1 2 3 4 5 

23 Mert matematika szakra szeretnék jelentkezni.  1 2 3 4 5 

 

24. Milyen gyakran veszel részt 
matematikaversenyeken?  

25. Mennyi időt fordítasz 
számítógépezésre?  

1) Még sosem voltam. 1) nem szoktam számítógépezni  
2) Egyszer voltam már. 2) havonta egy óránál kevesebbet  

3) Két-háromszor voltam. 3) hetente egy-két órát  
4) Minden évben részt veszek egyen. 4) naponta egy-két órát  
5) Évente több versenyen indulok. 5) naponta három-négy órát 

 

26.  Mit szeretsz olvasni az alábbiak közül? 
Több választ is megjelölhetsz! 

27. Hányszor voltál már színházban?  

1) sms-t 1) még sosem voltam 

2) üzeneteket a facebookon, e-mailt 2) egyszer voltam  

3) híreket, érdekességeket újságban,neten 3) kétszer-háromszor voltam 

4) mesekönyvet 4) legalább négyszer voltam  

5) ifjúsági regényt  5) legalább ötször voltam már 

6) egyebet, mégpedig:  

 

6) rendszeresen járok, bérletem van 
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28.  Egy átlagos tanítási napon mennyi időt 
fordítasz TV nézésre?  

29. Mennyi időt fordítasz hetente olvasásra?  

1) nem szoktam TV-t nézni 1) nem szoktam olvasni 
2) egy óránál kevesebbet 2) egy óránál kevesebbet  

3) egy-két órát 3) egy-két órát  
4) három-négy órát 4) egy-két órát  
5) több, mint négy órát 5) három-négy órát 

 

 

Válaszaidat, együttműködésedet köszönjük! 
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4. sz. melléklet. Az egyes iskolák eredményessége az országos kompetenciaméréseken 

matematikából 2014 és 2018 között. (forrás: Országos kompetenciamérés 2018, FIT-jelentés. 

Intézményi jelentések 6. évfolyam alapján) 

Iskola 2014 2015 2016 2017 2018 Az iskola 

eredménye az 

országos 

átlaghoz 

képest (2018) 

1. 1575 

(1550;1618) 

1606 

(1576;1637) 

1573 

(1544;1604) 

1579 

(1549;1613) 

1564 

(1534;1597)  

2. 1240 

(1195;1282) 

1151 

(1120;1191) 

1138 

(1103;1171) 

1145 

(1109;1179) 

1180 

(1166;1197)  

3. 1584 

(1533;1643) 

1539 

(1486;1597) 

1480 

(1430;1533) 

1511 

(1447;1586) 

1542 

(1487;1599)  
4. 1533 

(1443;1604) 

1511 

(1408;1617) 

1432 

(1344;1528) 

1398 

(1326;1453) 

1479 

(1392;1574)  
5. 1430 

(1366;1482) 

1255 

(1174;1346) 

1285 

(1214;1370) 

1246 

(1160;1316) 

1344 

(1278;1422)  

6. 1326 

(1287;1362) 

1338 

(1302;1385) 

1295 

(1256;1336) 

1361 

(1315;1411) 

1316 

(1283;1347)  

7. 1477 

(1380;1550) 

1470 

(1426;1526) 

1456 

(1364;1537) 

1548 

(1479;1652) 

1465 

(1386;1543)  
8. 1493 

(1443;1523) 

1485 

(1429;1556) 

1441 

(1389;1489) 

1468 

(1426;1513) 

1507 

(1487;1531)  
9. 1657 

(1625;1693) 

1686 

(1656;1718) 

1683 

(1664;1707) 

1775 

(1745;1801) 

1743 

(1716;1769)  

10. 1331 

(1285;1379) 

1327 

(1269;1390) 

1376 

(1279;1451) 

1346 

(1294;1417) 

1466 

(1418;1499)  
11. 1574 

(1532;1616) 

1517 

(1464;1555) 

1564 

(1524;1604) 

1509 

(1460;1556) 

1610 

(1575;1649)  

Or-

szá-

gos 

átlag 

1491 

(1490;1492) 

1497 

(1496;1498) 

1486 

(1485;1487) 

1497 

(1496;1498) 

1499 

(1498;1499) 

 

Jelmagyarázat: 

 

Az intézmény eredményénél szignifikánsan alacsonyabb az adott érték 

 

 

Az intézmény eredménye nem különbözik szignifikánsan az adott értéktől 

 

 

Az intézmény eredményénél szignifikánsan magasabb az adott érték 
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5. sz. melléklet. A központi vizsgálatban részt vett tanulók száma, iskolánkénti, osztályonkénti 

összetétele  

Iskola Évfolyam Osztály Létszám Fiú Lány A részvevők között  

a lányok aránya (%) 

 

 

 

 

 

1. 

4. 

1 17 10  7 41,2 

2 19  9 10 52,6 

3 23 11 12 52,2 

4 17  6 11 64,7 

 

5. 

5 19  9 10 52,6 

6 18 11  7 38,9 

7 22 12 10 45,5 

 

 

6. 

8 18  7 11 61,1 

9 18  8 10 55,5 

10 22 12 10 45,5 

11 14  5  9 64,3 

12 11  9  2 18,2 

 

2. 

4. 
13 13  7  6 46,2 

14 16  8  8 50,0 

5. 15 18  8 10 55,6 

6. 16 18  7 11 61,1 

 

 

3. 

4. 17 25 16 9 36,0 

5. 
18 17  8  9 52,9 

19 21  9 12 66,7 

6. 
20 18  6 12 66,7 

21 17 10  7 41,2 

 

 

4. 

4. 
22 17  7 10 58,8 

23 17  7 10 58,8 

5. 24 16 10  6 37,5 

6. 25 16  8  8 50,0 

 

5. 

4. 26 7  4  3 42,9 

5. 27 10  3  7 70,0 

6. 28 12  9  3 25,0 

6. 
4. 

29 23 16  7 30,4 

30 20 16  4 20,0 

 

7. 

4. 31 16 10  6 37,5 

5. 32 16  9  7 43,8 

6. 33 25 14 11 44,0 

8. 
5. 34 15 10  5 33,3 

6. 35 10  5  5 50,0 

9. 
5. 36 31 18 13 41,9 

6. 37 32 17 15 46,9 

10. 
4. 38 20  7 13 65,0 

5. 39 17  9  8 47,0 

6. 
40 15  7  8 53,3 

41 14  9  5 35,7 
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5.sz. melléklet. A központi vizsgálatban részt vett tanulók száma, iskolánkénti, 

osztályonkénti összetétele  

(folytatás) 

Iskola Évfolyam Osztály Létszám Fiú Lány A részvevők között  

a lányok aránya (%) 

 

 

11. 

4. 42 24 13 11 45,8 

5. 
43 17  9  8 47,1 

44 27 11 16 59,3 

6. 
45 27  5 22 81,5 

46 25 14 11 44,0 

Összesen   850 435 415 48,8 
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6. sz. melléklet. Hátrányos helyzetű tanulók száma iskolánként, központi vizsgálat  

Iskola Évfolyam Osztály Létszám HH-s  

tanuló (fő) 

HHH-s 

tanuló (fő) 

SNI tanuló 

(fő) 

BTM 

tanuló (fő) 

 

 

 

 

 

1. 

 

 

4. 

1 17 0 0 0 0 

2 19 0 0 2 0 

3 23 0 0 0 1 

4 17 0 0 0 1 

 

5. 

5 19 0 0 1 0 

6 18 0 0 1 0 

7 22 0 0 0 1 

 

 

6. 

8 18 0 0 1 2 

9 18 0 0 0 1 

10 22 0 0 1 2 

11 14 0 0 1 0 

12 11 0 0 0 0 

 

 

2. 

4. 
13 13 0 13 0 0 

14 16 0 16 1 0 

5. 15 18 1 17 1 0 

6. 16 18 0 19 1 0 

3.  

4 17 25 0 0 0 0 

5. 
18 17 0 0 0 1 

19 21 0 0 0 0 

6. 
20 18 0 0 0 0 

21 17 0 0 0 1 

4.  

4. 
22 17 1 0 0 1 

23 17 0 0 0 0 

5. 24 16 0 0 1 0 

6. 25 16 0 0 0 2 

5. 
4. 26 7 6 0 1 1 

5. 27 10 5 0 1 2 
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6.sz. melléklet. Hátrányos helyzetű tanulók száma iskolánként, központi vizsgálat 

(folytatás) 

Iskola Évfolyam Osztály Létszám HH-s  

tanuló  

HHH-s 

tanuló  

SNI 

tanuló 

 

BTM 

tanuló  

5. 6. 28 12 8 0 2 1 

6. 4. 
29 23 12 6 0 5 

30 20 5 8 1 1 

 

7. 

4. 31 16 0 0 2 0 

5. 32 16 2 0 6 1 

6. 33 25 0 0 1 3 

8. 
5. 34 15 0 0 0 0 

6. 35 10 1 0 0 3 

9. 
5. 36 31 0 0 0 1 

6. 37 32 0 0 0 1 

10. 

4. 38 20 0 0 1 2 

5. 39 17 0 0 0 9 

6. 
40 15 0 0 4 8 

41 14 0 0 0 0 

 4. 42 24 0 0 0 2 

11. 
5. 

43 17 0 0 0 3 

44 27 0 0 1 6 

6. 
45 27 0 0 0 4 

46 25 0 0 1 5 

Összesen   850 40 79 36 71 
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7. sz. melléklet. Matematika Tudásszintmérő Teszt 6. évfolyam A csoport, központi vizsgálat  

SZEGEDI TUDOMÁNYEGYETEM                                           Vígh-Kiss Erika Rozália 

NEVELÉSTUDOMÁNYI INTÉZET                                              2019  

 MATEMATIKA Tudásszintmérő Teszt 6. évfolyam   A CSOPORT 
 

_________________________  __________________________________   ________                  Kód:

 Település             Iskola   Osztály         

Elérhető pontszám: 69                                               Elért pontszám: _________ 

     

1. Szögek. Hány fokos szöget kapunk az egyes esetekben? Írd a téglalapokba a megfelelő számot! Milyen 

fajta szöget kapunk az egyes esetekben? Írd téglalapokba a megfelelő betűjelet!  

A) hegyesszög   B) derékszög   C) tompaszög   D) homorúszög   E) teljesszög   F) egyenesszög 

 

  A szög nagysága (fok) A sokszorozás után kapott szög 
fajtája 

a)-b) 11o-os szög 9-szerese    

c)-d) 
15o-os szög 6-szorosa    

e)-f) 
12o-os szög 30-szorosa    

g)-h) 
25o-os szög 12-szerese    

i)-j) 
12o-os szög 6-szorosa    

 

2. Törtek. Panna törtek és arányok bővítését kapta házi feladatul. Segíts neki! Bővítsd az alábbi törteket, 

arányokat az előírt módon! Töltsd ki a táblázatot! 

  13-mal 19-cel 

a)-b) 2

7
 

  

c)-d) 11

12
 

  

e)-f) 21

22
 

  

g)-h) 9:10 
  

i) -j) 99:101 
  

 

3. Tömeg. Három testvér, András, Miklós és Zsolt így vallanak tömegükről:  

András: „Tömegem  
4

13
-ad része 20 kg.”   András …………………………………………………… 

Miklós „Tömegem  
5

11
-ad része 15 kg.”    Miklós …………………………………………………… 

 Zsolt „Tömegem  
11

12
-ad része 55 kg.”     Zsolt    …………………………………………………… 

Írd a fiúk neve után, ki hány kg! Indokolj számítással! 

a   

b   

c   

d   

e   

f   

g   

h   

i   

j   

 

a  

b  

c  

d  

e  

f  

g  

h  

i  

j  

 

 

a  

b  

c  

d  

e  

f  
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4. Állítások. Melyik állítás igaz, melyik hamis az alábbiak közül? Írj I-t az igaz, H-t a hamis állítás elé!  

a) …….         −15· (−15) = 125 

b) ……. 
 

        −18· (−16) = 288 

c) …….         +21· (−19) = −399 

d) 
 

……. 

          

        −39· (+41) = −1599 
 

5. Grillparty. Az üzletben 450 gramm sertéscomb 1200 Ft-ba kerül. Vendégeket hívunk hétvégére, ezért 

495 dekagramm sertéscombot szeretnénk vásárolni. Mennyibe kerül ez?           a-d) Számításaidat 

indokold!   

 

 

 

 

 

e-n) A pékségben vásárolunk. Mennyit fizetünk az egyes termékekért? Töltsd ki a táblázatot! 

Termék neve 1 darab 
tömege 

1 darab ára 
(Ft) 

Vásárolt 
mennyiség 

A vásárolt áru 
tömege 
(gramm) 

Fizetendő 
összeg (Ft) 

Kifli 65 gramm 59 12 
 

  

Túrós batyu 120 gramm 159 11   

Vizes zsemle 55 gramm 15 55 
 

  

Szezámos 
császár-
zsemle 

60 gramm 39 41   

 
 

  
 

Összesen:   

a  

b  

c  

d  

 

a  

b  

c  

d  

e  

f  

g  

h  

i  

j  

k  

l  

m  

n  
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6.  Nyaralás. Egy tíztagú baráti társaság nyaralni indult. Két hétre való élelmet vittek magukkal. Tegyük 

fel, hogy mindenki ugyanannyit eszik. Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

 

a) Hány napra lett volna elegendő ez az élelmiszermennyiség,  

ha 4 tagú a csapat?  

       ……. napra 

b) Hány napra lett volna elegendő ez az élelmiszermennyiség egy kéttagú 

csapatnak?             

       ……. napra 

c) Egy embernek hány napi elemózsiája az egész készlet?       ……. napi 

d) Ha egy hétre elegendő a készlet, akkor hány fős ez a csapat?       ……. fős 

 

 

 
 

7. Locsolkodás. Péter húsvétkor öt lány osztálytársához kopogott be. A megöntözésért minden lány 

családja egy csomag csokitojást adott a fiúnak. Egy csomagban 7 csokitojás volt. Otthon Péter a 

tojások ötödét öccsének, Zolinak, a tojások hetedét pedig kishúgának, Csillának ajándékozta.  

Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Összesen hány csokitojást kapott Péter? ……. tojást 

b) Hány tojást adott Péter Zolinak?                     ……. tojást 

c) Hány tojást kapott Csilla?                                     ……. tojást 

d) Hány tojás maradt Péteré? ……. tojás 

 
 

a  

b  

c  

d  

  

8. Sportnap. Az iskolában 16 osztály működik. A júniusi sportnapon az iskola minden osztályát hétfős 

csapat képviselte az ügyességi versenyen. Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Hány tanuló vett részt a versenyen?                                   ……. tanuló 

b) Egy másik sportversenyen 195 gyerek indult. A versenyzők 
12

13
-a fiú 

volt. Hány lány versenyzett? 

 

 

……. lány 

c) A városi gyermeknapon 160 diák vett részt az ügyességi versenyen, a 

versenyzők 15 %-a hatodikos volt. Hány hatodikos vett részt az 

ügyességi versenyen? 

 

 

……. hatodikos 
 

9. 

 

 

 

Strucc. A strucc a ma élő legnagyobb madár. Két strucctojás 36 tyúktojásnak felel meg. Válaszolj a 

kérdésekre!  Írd a megfelelő számot a vonalra! (Egy tucat= 12 darab) 

 

a) Hány tyúktojásnak felel meg egy tucat strucctojás?         ……. tyúktojásnak 

 

a  

b  

c  

  

  

  

  

  

  

  

  

a  

b  

c  

d  
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Köszönjük, hogy segítetted a munkánkat! 

 

 

 

 

 

 

 

10. 

 

 

 

 

 

 

 

 

 

11.  

 

 

 

 

b) Hány strucctojásnak felel meg 180 tyúktojás?        ……. strucctojásnak 

c) Ha egy strucctojás 9 embernek elég reggelire, akkor hány 

embernek elég reggelire 19 strucctojás? 

      

      ……. főre 

d) A 20 grammos tyúktojás 8 gramm fehérjét tartalmaz. A tojás 

tömegének hány százaléka fehérje? 

 

      ……. % 

 

Sárkányok. Süsü, a sárkány így mesél őseiről: „Nekem például már csak egy fejem van! Az apámnak 

három van! A nagyapámnak hét volt, a dédapámnak tizenkettő, az ükapámnak huszonnégy.” Válaszolj 

a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Hány feje van 120 hétfejű sárkánynak? ……. feje 

b) Hány feje van 12 tizenkétfejű sárkánynak? ……. feje 

c) Hány huszonnégyfejű sárkánynak van összesen 960 feje?                                  ……. sárkánynak 

d) Hány feje van összesen Süsü dédszüleinek, ha mindegyiknek 

ugyanannyi feje van? 

 

……. 

 

feje 

 

 

 

Dobostorta. A cukrászatban dobostortát sütnek. Egy tortához többek között a következő 

alapanyagokra van szükség: 27 dkg porcukor, 230 g vaj, 12 tojás, 10 dkg csokoládé. A hétvégi esküvőre 

29 dobostorta megrendelést vett fel a cukrászat. Válaszolj a kérdésekre!  Írd a megfelelő számot a 

vonalra! 

 

a) Hány dkg porcukorra lesz szükség?                                   ……. dkg-ra 

b) Hány dkg vajra lesz szükség?  …….  dkg-ra   

c) Hány darab tojásra lesz szükség?   ……. tojásra 
 

12. Laci egyforma kockákból tornyot épít. Egy kocka éle 4 cm. Hány dm3 a térfogata egy 12 kockából álló 

építménynek? Úgy dolgozz, hogy számításaid nyomon követhetőek legyenek! 

 

 

 

 

 

a  

b  

c  

d  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

b  

c  

  

  

  

  

  

  

  

  

  

a  

b  

c  
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8. sz. melléklet. Matematika Tudásszintmérő Teszt 6. évfolyam B csoport, központi vizsgálat  

SZEGEDI TUDOMÁNYEGYETEM                                           Vígh-Kiss Erika Rozália 

NEVELÉSTUDOMÁNYI INTÉZET                                              2019  

 MATEMATIKA Tudásszintmérő Teszt 6. évfolyam   B CSOPORT 
 

_________________________  __________________________________   ________              Kód:            

 Település             Iskola   Osztály         

Elérhető pontszám: 69                                                     Elért pontszám: _____ 

     

1. Szögek. Hány fokos szöget kapunk az egyes esetekben? Írd a téglalapokba a megfelelő számot! Milyen 

fajta szöget kapunk az egyes esetekben? Írd téglalapokba a megfelelő betűjelet!  

A) hegyesszög   B) derékszög   C) tompaszög   D) egyenesszög   E) homorúszög   F) teljesszög 

 

  A szög nagysága (fok) A sokszorozás után kapott szög 
fajtája 

a)-b) 9o-os szög 20-szorosa    

c)-d) 
16o-os szög 5-szöröse    

e)-f) 
15o-os szög 24-szerese    

g)-h) 
22o-os szög 15-szöröse    

i)-j) 
22o-os szög 6-szorosa    

 

2. Törtek. Panna törtek, illetve arányok bővítését kapta házi feladatul. Segíts neki! Bővítsd az alábbi 

törteket, arányokat az előírt módon! Töltsd ki a táblázatot! 

  16-tal 29-cel 

a)-b) 3

7
 

  

c)-d) 11

13
 

  

e)-f) 22

23
 

  

g)-h) 9:10   

i) -j) 99: 101   
 

3. Tömeg. Három testvér, András, Miklós és Zsolt így vallanak tömegükről:  

András: „Tömegem  
4

13
-ad része 40 kg.”   András …………………………………………………… 

Miklós „Tömegem  
5

11
-ad része 25 kg.”    Miklós …………………………………………………… 

a  

b  

c  

d  

e  

f  

g  

h  

i  

j  

 

a  

b  

c  

d  

e  

f  

g  

h  

i  

j  

 a  

b  

c  

d  

e  

f  
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 Zsolt „Tömegem  
11

13
-ad része 55 kg.”     Zsolt    …………………………………………………… 

Írd a fiúk neve után, ki hány kg! Számítással indokolj! 

 

 

 

 

4. Állítások. Melyik állítás igaz, melyik hamis az alábbiak közül? 

Írj I-t az igaz, H-t a hamis állítás elé!  

a) ……. −15· (−15) = 225 

b) ……. 
 

        −16· (−18) = 288 

c) …….          −21· (−19) = 399 

d) 
 

……. 

          

        −29· (+31) = −799 
 

5. Grillparty. 450 gramm sertéscomb 1200 Ft-ba kerül. Vendégeket hívunk hétvégére, ezért 585 

dekagramm sertéscombot szeretnénk vásárolni.  

a-d) Mennyibe kerül ez?  Számításaidat indokold!  

 

 

 

 

 

e-n) A pékségben vásárolunk. Mennyit fizetünk az egyes termékekért? Töltsd ki a táblázatot! 

Termék neve 1 darab 
tömege 

1 darab ára 
(Ft) 

Vásárolt 
mennyiség 

Vásárolt áru 
tömege 
(gramm) 

Fizetendő 
összeg (Ft) 

Kifli 65 gramm 59 11   

Túrós batyu 120 gramm 159 12   

Vizes zsemle 55 gramm 15 45   

a  

b  

c  

d  

 

a  

b  

c  

d  

e  

f  

g  

h  

i  

j  

k  

l  

m  

n  
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Szezámos 
császár-
zsemle 

60 gramm 39 41   

 
 
 

  
 
 
 

Összesen:   

 

6.  Nyaralás. Egy húsztagú baráti társaság nyaralni indult. Két hétre való élelmet vittek magukkal. Tegyük 

fel, hogy mindenki ugyanannyit eszik. Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

 

a) Hány napra lett volna elegendő ez az élelmiszermennyiség,  

ha 5 tagú a csapat?  

       ……. napra 

b) Hány napra lett volna elegendő ez az élelmiszermennyiség egy kéttagú 

csapatnak?             

       ……. napra 

c) Egy embernek hány napi elemózsiája az egész készlet?       ……. napi 

d) Ha egy hétre elegendő a készlet, akkor hány fős ez a csapat?       ……. fős 

 

 

 
 

7. Locsolkodás. Péter húsvétkor hét lány osztálytársához kopogott be. A megöntözésért minden lány 

családja egy csomag csokitojást adott a fiúnak.  Egy csomagban 8 csokitojás volt. Otthon Péter a 

tojások negyedét öccsének, Zolinak, a tojások hetedét pedig kishúgának, Csillának ajándékozta.  

Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Összesen hány csokitojást kapott Péter? ……. tojást 

b) Hány tojást adott Péter Zolinak?                     ……. tojást 

c) Hány tojást kapott Csilla?                                     ……. tojást 

d) Hány tojás maradt Péteré? ……. tojás 

 

a  

b  

c  

d  

 

 

8. Sportnap. Az iskolában 16 osztály működik. A júniusi sportnapon az iskola minden osztályát hétfős 

csapat képviselte az ügyességi versenyen. Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Hány tanuló vett részt a versenyen?                                   ……. tanuló 

b) Egy másik sportversenyen 195 gyerek indult. A versenyzők 
12

13
-a fiú 

volt. Hány lány versenyzett? 

 

 

……. lány 

c) A városi gyermeknapon 160 diák vett részt az ügyességi versenyen, a 

versenyzők 15 %-a hatodikos volt. Hány hatodikos vett részt az 

ügyességi versenyen? 

 

 

……. hatodikos 

 

 

  

 

 

a  

b  

c  

d  

 

a  

b  

c  
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9. 

 

 

 

 

 

 

 

 

 

10. 

 

 

 

 

 

11. 

 

 

 

 

 

 

 

 

Strucc. A strucc a ma élő legnagyobb madár. Két strucctojás 36 tyúktojásnak felel meg. Válaszolj a 

kérdésekre!  Írd a megfelelő számot a vonalra! (Egy tucat= 12 darab) 

 

a) Hány tyúktojásnak felel meg két tucat strucctojás?         ……. tyúktojásnak 

b) Hány strucctojásnak felel meg 720 tyúktojás?        ……. strucctojásnak 

c) Ha egy strucctojás 9 embernek elég reggelire, akkor hány 

embernek elég reggelire 29 strucctojás? 

       

     ……. főre 

d) A tyúktojás tömegének 60 %-a a sárgája, ami 12 g. Hány 

grammos a tyúktojás?  

  

     

     …….. gramm 

   

Sárkányok. Süsü, a sárkány így mesél őseiről: „Nekem például már csak egy fejem van! Az apámnak 

három van! A nagyapámnak hét volt, a dédapámnak tizenkettő, az ükapámnak huszonnégy.” 

Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Hány feje van 110 hétfejű sárkánynak? ……. feje 

b) Hány feje van 21 huszonnégyfejű sárkánynak? ……. feje 

c) Hány tizenkétfejű sárkánynak van összesen 960 feje?                                     ……. sárkánynak 

d) Hány feje van összesen Süsü 8 dédszülőjének, ha 

mindegyiknek ugyanannyi feje van? 

 

……. 

 

feje 

Sachertorta. A cukrászatban Sachertortát sütnek. Egy tortához többek között a következő 

alapanyagokra van szükség: 34 dkg porcukor, 165 g vaj, 6 tojás, 12 dkg búzaliszt. A hétvégi esküvőre 

19 Sachertorta megrendelést vett fel a cukrászat. Válaszolj a kérdésekre!  Írd a megfelelő számot a 

vonalra! 

 

a) Hány dkg porcukorra lesz szükség?                                   ……. dkg-ra 

b) Hány g vajra lesz szükség?  …….   grammra  

c) Hány gramm búzalisztre lesz szükség?   …….  grammra  

 

 

 

 

 

 

 

 

a  

b  

c  

d  
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Köszönjük, hogy segítetted munkánkat! 

 

  

12. 

 

 

 

 

 

 

 

Laci egyforma kockákból tornyot épít. Egy kocka éle 3 cm. Hány dm3 a térfogata egy 12 kockából álló 

építménynek? Úgy dolgozz, hogy számításaid nyomon követhetőek legyenek! 

 

 
 

  
 

  
 

  
 

a  

b  

c  
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9. sz. melléklet. Matematika Tudásszintmérő Teszt 5. évfolyam A csoport, központi vizsgálat  

SZEGEDI TUDOMÁNYEGYETEM                           Vígh-Kiss Erika Rozália 

NEVELÉSTUDOMÁNYI INTÉZET                                     2019  

  

MATEMATIKA Tudásszintmérő Teszt 5. évfolyam   A CSOPORT 

 

___________________________  __________________________________ ________         Kód:

  

 Település             Iskola            Osztály          

Elérhető pontszám: 55         Elért pontszám:  

     

1. Szögek. Hány fokos szöget kapunk az egyes esetekben? Írd a téglalapokba a megfelelő számot! Milyen 

fajta szöget kapunk az egyes esetekben? Írd a téglalapokba a megfelelő betűjelet!  

B) hegyesszög   B) derékszög   C) tompaszög   D) homorúszög   E) teljesszög   F) egyenesszög 

 

  A szög nagysága (fok) A sokszorozás után  
kapott szög fajtája 

a)-b) 11o-os szög 9-szerese    

c)-d) 
15o-os szög 6-szorosa    

e)-f) 
12o-os szög 30-szorosa    

g)-h) 
25o-os szög 12-szerese    

i)-j) 
12o-os szög 6-szorosa    

 

2. Törtek. Panna törtek bővítését kapta házi feladatul. Segíts neki! Bővítsd az alábbi törteket az előírt 

módon! Töltsd ki a táblázatot! 

  13-mal 19-cel 

a)-b) 2

7
 

  

c)-d) 11

12
 

  

e)-f) 21

22
 

  

 

3. Laci egyforma kockákból tornyot épít. Egy kocka éle 4 cm. Hány dm3 a térfogata egy 12 kockából álló 

építménynek? Úgy dolgozz, hogy számításaid nyomon követhetőek legyenek! 

 

 

 

 

a  

b  

c  

d  

e  

f  

 

a  

b  

c  

d  

e  

f  

g  

h  

i  

j  

 

 

a 

a 

 

b  

c  
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4. Állítások. Melyik állítás igaz, melyik hamis az alábbiak közül? Írj I-t az igaz, H-t a hamis állítás elé!  

a) …….         −15· (−15) = 125 

b) ……. 
 

        −18· (−16) = 288 

c) …….         +21· (−19) = −399 

d) 
 

……. 

          

        −39· (+41) = −1599 
 

5. Grillparty. a-d) A szeletelt omlós sertéscomb 450 grammos csomagolásban 1200 Ft-ba kerül. 

Vendégeket hívunk hétvégére, ezért 900 dekagramm szeletelt omlós sertéscombot szeretnénk 

vásárolni. Mennyibe kerül ez?  Számításaidat indokold!   

 

 

 

 

 

 

 

e-n) A pékségben vásárolunk. Mennyit fizetünk az egyes termékekért? Töltsd ki a táblázatot! 

Termék neve 1 darab 
tömege 

1 darab ára 
(Ft) 

Vásárolt 
mennyiség 

Vásárolt áru 
tömege 
(gramm) 

Fizetendő 
összeg (Ft) 

Kifli 65 gramm 59 12 
 

  

Túrós batyu 120 gramm 159 11   

Vizes zsemle 55 gramm 15 55 
 

  

a  

b  

c  

d  

 

a  

b  

c  

d  

e  

f  

g  

h  

i  

j  

k  

l  

m  

n  
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Szezámos 
császár-
zsemle 

60 gramm 39 41   

 
 
 

  
 
 

Összesen:   

 

6. Locsolkodás. Péter húsvétkor öt lány osztálytársához kopogott be. A megöntözésért minden lány 

családja egy zacskó csokitojást adott a fiúnak. Egy zacskóban 7 csokitojás volt. Otthon Péter a tojások 

ötödét öccsének, Zolinak, a tojások hetedét pedig kishúgának, Csillának ajándékozta.  Válaszolj a 

kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Összesen hány csokitojást kapott Péter? …… tojást 

b) Hány tojást adott Péter Zolinak?                   …… tojást 

c) Hány tojást kapott Csilla?                                  …… tojást 

d) Hány tojás maradt Péteré? …… tojás 

 

 

 
 

a  

b  

c  

d  

  

7. Sportnap. Az iskolában 16 osztály működik. A júniusi sportnapon az iskola minden osztályát hétfős 

csapat képviselte az ügyességi versenyen. Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Hány tanuló vett részt a versenyen?                                   ……. tanuló 

b) Egy másik sportversenyen 195 gyerek indult. A versenyzők 
12

13
-a fiú 

volt. Hány lány versenyzett? 

 

 

……. lány 

c) A városi gyermeknapon 160 diák vett részt az ügyességi versenyen, a 

versenyzők 15 %-a ötödikes volt. Hány ötödikes vett részt az ügyességi 

versenyen? 

 

 

……. ötödikes 
 

8. 

 

 

 

 

 

 

 

 

 

Strucc. A strucc a ma élő legnagyobb madár. Két strucctojás 36 tyúktojásnak felel meg. Válaszolj a 

kérdésekre!  Írd a megfelelő számot a vonalra! (Egy tucat= 12 darab) 

 

a) Hány tyúktojásnak felel meg egy tucat strucctojás?         ……. tyúktojásnak 

b) Hány strucctojásnak felel meg 180 tyúktojás?        ……. strucctojásnak 

c) Ha egy strucctojás 9 embernek elég reggelire, akkor hány 

embernek elég reggelire 19 strucctojás? 

      

      ……. főre 

d) A 20 grammos tyúktojás 8 gramm fehérjét tartalmaz.  

A tojás tömegének hány százaléka fehérje? 

 

      ……. % 
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Köszönjük, hogy segítetted a munkánkat! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. 

 

 

 

 

 

 

10.  

 

 

 

 

 

 

 

 

Sárkányok. Süsü, a sárkány így mesél őseiről: „Nekem például már csak egy fejem van! Az apámnak 

három van! A nagyapámnak hét volt, a dédapámnak tizenkettő, az ükapámnak huszonnégy.” Válaszolj 

a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Hány feje van 120 hétfejű sárkánynak? …… feje 

b) Hány feje van 12 tizenkétfejű sárkánynak? …… feje 

c) Hány huszonnégyfejű sárkánynak van összesen 960 feje?                                   …… sárkánynak 

d) Hány feje van összesen Süsü 8 dédszülőjének, ha mindegyiknek 

ugyanannyi feje van? 

 

…… feje 

 

Dobostorta. A cukrászatban dobostortát sütnek. Egy tortához többek között a következő alapanyagokra 

van szükség: 27 dkg porcukor, 230 g vaj, 12 tojás, 10 dkg csokoládé. A hétvégi esküvőre 29 dobostorta 

megrendelést vett fel a cukrászat. Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

 

a) Hány dkg porcukorra lesz szükség?                                                         ……. dkg-ra                               

b)   Hány dkg vajra lesz szükség?                                                                  ……. dkg-ra   

c)    Hány darab tojásra lesz szükség?                                                             ……. tojásra 

 
 

a  

b  

c  

  

  

  

  

  

  

a  

b  

c  

d  
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10. sz. melléklet. Matematika Tudásszintmérő Teszt 5. évfolyam B csoport, központi vizsgálat  

SZEGEDI TUDOMÁNYEGYETEM                           Vígh-Kiss Erika Rozália 

NEVELÉSTUDOMÁNYI INTÉZET                                     2019  

  

MATEMATIKA Tudásszintmérő Teszt 5. évfolyam   B CSOPORT 

 

___________________________  __________________________________ ________         Kód:

  

 Település             Iskola             Osztály 

Elérhető pontszám: 55                  Elért pontszám:  

     

1. Szögek. Hány fokos szöget kapunk az egyes esetekben? Írd a téglalapokba a megfelelő számot! Milyen 

fajta szöget kapunk az egyes esetekben? Írd téglalapokba a megfelelő betűjelet!  

B) hegyesszög   B) derékszög   C) tompaszög   D) egyenesszög   E) homorúszög   F) teljesszög 

 

  A szög nagysága (fok) A sokszorozás után kapott szög 
fajtája 

a)-b) 9o-os szög 20-szorosa    

c)-d) 
16o-os szög 5-szöröse    

e)-f) 
15o-os szög 24-szerese    

g)-h) 
22o-os szög 15-szöröse    

i)-j) 
22o-os szög 6-szorosa    

 

 

2. 

 

Törtek. Panna törtek bővítését kapta házi feladatul. Segíts neki! Bővítsd az alábbi törteket az előírt 

módon! Töltsd ki a táblázatot! 

  16-tal 29-cel 

a)-b) 3

7
 

  

c)-d) 11

13
 

  

e)-f) 22

23
 

  

 

3. Sachertorta. A cukrászatban Sachertortát sütnek. Egy tortához többek között a következő 

alapanyagokra van szükség: 34 dkg porcukor, 165 g vaj, 6 tojás, 12 dkg búzaliszt. A hétvégi esküvőre 

19 Sachertorta megrendelést vett fel a cukrászat. Válaszolj a kérdésekre!  Írd a megfelelő számot a 

vonalra! 

 

a  

b  

c  

 

a  

b  

c  

d  

e  

f  

 

a  

b  

c  

d  

e  

f  

g  

h  

i  

j  
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a) Hány dkg porcukorra lesz szükség?                                   ……. dkg-ra 

b) Hány g vajra lesz szükség?  …….   grammra  

c) Hány gramm búzalisztre lesz szükség?   …….  grammra  

   

 
 

4. Állítások. Melyik állítás igaz, melyik hamis az alábbiak közül? 

Írj I-t az igaz, H-t a hamis állítás elé!  

a) ……. −15· (−15) = 225 

b) ……. 
 

        −16· (−18) = 288 

c) …….          −21· (−19) = 399 

d) 
 

……. 

        

         −29· (+31) = −799 
 

5. Grillparty. a-d) A szeletelt omlós sertéscomb 450 grammos csomagolásban 1200 Ft-ba kerül. 

Vendégeket hívunk hétvégére, ezért 900 dekagramm szeletelt omlós sertéscombot szeretnénk 

vásárolni. Mennyibe kerül ez?  Számításaidat indokold!    

 

 

 

 

 

 

 

e-n) A pékségben vásárolunk. Mennyit fizetünk az egyes termékekért? Töltsd ki a táblázatot! 

Termék neve 1 darab 
tömege 

1 darab ára 
(Ft) 

Vásárolt 
mennyiség 

Vásárolt áru 
tömege 
(gramm) 

Fizetendő 
összeg (Ft) 

Kifli 65 gramm 59 11   

Túrós batyu 120 gramm 159 12   

Vizes zsemle 55 gramm 15 45   

a  

b  

c  

d  

 

a  

b  

c  

d  

e  

f  

g  

h  

i  

j  

k  

l  

m  

n  
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Szezámos 
császár-
zsemle 

60 gramm 39 41   

 
 
 

  
 
 
 

Összesen:   

 

7. Locsolkodás. Péter húsvétkor hét lány osztálytársához kopogott be. A megöntözésért minden lány 

családja nyolc festett tojást adott a fiúnak.  Péter a tojások negyedét öccsének, Zolinak, a tojások 

hetedét pedig kishúgának, Csillának ajándékozta.  Válaszolj a kérdésekre!  Írd a megfelelő számot a 

vonalra! 

a) Összesen hány hímes tojást vihetett haza Péter? ……. tojást 

b) Hány tojást adott Péter Zolinak?                     ……. tojást 

c) Hány tojást kapott Csilla?                                     ……. tojást 

d) Hány tojás maradt Péteré? ……. tojás 

 

 
 

a  

b  

c  

d  

  

8. Sportnap. A felső tagozaton 16 osztály működik. A júniusi sportnapon a felső tagozat minden osztályát 

hétfős csapat képviselte az ügyességi versenyen. Válaszolj a kérdésekre!  Írd a megfelelő számot a 

vonalra! 

a) Hány tanuló vett részt a versenyen?                                   ……. tanuló 

b) Egy másik sportversenyen 195 gyerek indult. A versenyzők 
12

13
-a fiú 

volt. Hány lány versenyzett? 

 

 

……. lány 

c) A városi gyermeknapon 160 diák vett részt az ügyességi versenyen, a 

versenyzők 15 %-a ötödikes volt. Hány ötödikes vett részt az ügyességi 

versenyen? 

 

 

……. ötödikes 
 

9. 

 

 

 

 

 

 

 

 

Strucc. A strucc a ma élő legnagyobb madár. Két strucctojás 36 tyúktojásnak felel meg. Válaszolj a 

kérdésekre!  Írd a megfelelő számot a vonalra! (Egy tucat= 12 darab) 

 

a) Hány tyúktojásnak felel meg két tucat strucctojás?         ……. tyúktojásnak 

b) Hány strucctojásnak felel meg 720 tyúktojás?        ……. strucctojásnak 

c) Ha egy strucctojás 9 embernek elég reggelire, akkor hány 

embernek elég reggelire 29 strucctojás? 

       

     ……. főre 

d) A tyúktojás tömegének 60 %-a a sárgája, ami 12 g. Hány 

grammos a tyúktojás?  

  

     

     …….. gramm 

  

 

 



262 
 

Köszönjük, hogy segítetted munkánkat! 

 

 

 

 

 

 

 

 

10. 

 

 

 

 

 

 

 

 

 

11. 

 

 

 

 

Sárkányok. Süsü, a sárkány így mesél őseiről: „Nekem például már csak egy fejem van! Az apámnak 

három van! A nagyapámnak hét volt, a dédapámnak tizenkettő, az ükapámnak huszonnégy.” 

Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Hány feje van 110 hétfejű sárkánynak? ……. feje 

b) Hány feje van 21 huszonnégyfejű sárkánynak? ……. feje 

c) Hány tizenkétfejű sárkánynak van összesen 960 feje?                                      

……. 

 

sárkánynak 

d) Hány feje van összesen Süsü dédszüleinek, ha 

mindegyiknek ugyanannyi feje van? 

 

……. 

 

feje 

Laci egyforma kockákból tornyot épít. Egy kocka éle 3 cm. Hány dm3 a térfogata egy 12 kockából álló 

építménynek? Úgy dolgozz, hogy számításaid nyomon követhetőek legyenek! 

 

 

 

 

 

 

 

 

 

 

a  

b  

c  

 
 

  

  

  

  

  

  

  

  

 

a  

b  

c  

d  
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11. sz. melléklet. Matematika Tudásszintmérő Teszt 4. évfolyam A csoport, központi vizsgálat  

 SZEGEDI TUDOMÁNYEGYETEM                                  Vígh-Kiss Erika Rozália 

NEVELÉSTUDOMÁNYI INTÉZET                                   2019 április 

 MATEMATIKA                      Tudásszintmérő Teszt 4. évfolyam   A CSOPORT 
                                                                                                                                                                Kód:

  

Település:             Iskola:                                                                 Osztály:         

                                                                          

Elérhető pontszám: 37                                                 Elért pontszám: _________  

1. 

 

 

 

 

2.  

Laci egyforma kockákból tornyot épít. Egy kocka éle 40 mm. Hány cm magas egy 12 kockából álló 

építmény? Úgy dolgozz, hogy számításaid nyomon követhetőek legyenek! 

 

 

 

 

Állítások. Melyik állítás igaz, melyik hamis az alábbiak közül? Írj I-t az igaz, H-t a hamis állítás elé!  

a) …….         15· 15 = 125 

b) ……. 
 

        18· 16 = 288 

c) …….         21· 19 = 399 

d) 
 

……. 

          

        39· 41 = 1599 
 

a    

b    

c    

 

 

3. Grillparty. a-d) A 450 grammos nádudvari gyorsfagyasztott darálthús 1200 Ft-ba kerül. Vendégeket 

hívunk hétvégére, fasírozottat készítünk, ezért 900 dekagramm darálthúst szeretnénk vásárolni. 

Mennyibe kerül ez?  Számításaidat indokold!   

 

 

 

 

 

 

 

 

 

 

a  

b  

c  

d  

 

a  

b  

c  

d  

e  

f  

g  

h  

i  

j  

k  

l  

m  

n  
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e-n) A pékségben zsemlét vásárolunk. Mennyit fizetünk az egyes termékekért? Töltsd ki a 

táblázatot! 

Termék neve 1 darab 
tömege 

1 darab ára 
(Ft) 

Vásárolt 
mennyiség 

Vásárolt áru 
tömege 
(gramm) 

Fizetendő 
összeg (Ft) 

Ciabatta 65 gramm 59 12 
 

  

Provanszi 
ciabatta 

120 gramm 159 11   

Vizes zsemle 55 gramm 15 55 
 

  

Szezámos 
császár-
zsemle 

60 gramm 39 41   

 
 
 

  Összesen:   

 

4. Locsolkodás. Péter húsvétkor öt lány osztálytársához kopogott be. A megöntözésért minden lány 

családja egy zacskó csokitojást adott a fiúnak. Mindegyik zacskóban 7 csokitojás volt. Otthon Péter 

a tojások ötödét öccsének, Zolinak, a tojások hetedét pedig kishúgának, Csillának ajándékozta.  

Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Összesen hány darab csokitojást vihetett haza Péter? …… tojást 

b) Hány tojást adott Péter Zolinak?                     …… tojást 

c) Hány tojást kapott Csilla?                   …… tojást 

d) Hány tojás maradt Péteré? …… tojás 

 

 

   

c  

d  

c  

d  

 

 

5. Sportnap. Egy iskolában 16 osztály működik. A júniusi sportnapon az iskola minden osztályát hétfős 

csapat képviselte az ügyességi versenyen. Válaszolj a kérdésekre!  Írd a megfelelő számot a 

vonalra! 

a) Hány tanuló vett részt a versenyen?                                   ……. tanuló 

b) Egy másik sportversenyen 195 gyerek indult. A versenyzők 
3

5
-e fiú 

volt. Hány lány versenyzett? 

 

 

……. lány 

 

 

 

 
 

a  

b  
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Köszönjük, hogy segítetted a munkánkat! 

 

 

 

 

 

 

 

 

6. 

 

 

 

 

 

 

 

  7. 

 

 

 

 

 

 

 

 

8. 

Strucc. A strucc a ma élő legnagyobb madár. Két strucctojás 36 tyúktojásnak felel meg. Válaszolj a 

kérdésekre!  Írd a megfelelő számot a vonalra! (Egy tucat = 12 darab) 

 

a) Hány tyúktojásnak felel meg egy tucat strucctojás?         ……. tyúktojásnak 

b) Hány strucctojásnak felel meg 180 tyúktojás?        ……. strucctojásnak 

c) Ha egy strucctojás 9 embernek elég reggelire, akkor hány 

embernek elég reggelire 19 strucctojás? 

      

      ……. főre 

 

Sárkányok. Süsü, a sárkány így mesél őseiről: „Nekem például már csak egy fejem van! Az apámnak 

három van! A nagyapámnak hét volt, a dédapámnak tizenkettő, az ükapámnak huszonnégy.” 

Válaszolj a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Hány feje van 120 hétfejű sárkánynak? ……. feje 

b) Hány feje van 12 tizenkétfejű sárkánynak? ……. feje 

c) Hány huszonnégyfejű sárkánynak van összesen 960 

feje?                                     

 

……. 

 

sárkánynak 

d) Hány feje van összesen Süsü nyolc dédszülőjének, 

ha mindegyiknek ugyanannyi feje van?  

 

 

……. 

 

 

feje 

Dobostorta. A cukrászatban dobostortát sütnek. Egy tortához többek között a következő 

alapanyagokra van szükség: 27 dkg porcukor, 230 g vaj, 12 tojás, 10 dkg csokoládé. A hétvégi esküvőre 

29 dobostorta megrendelést vett fel a cukrászat. Válaszolj a kérdésekre!   

Írd a megfelelő számot a vonalra! 

a) Hány dkg porcukorra lesz szükség?                                   ……. dkg-ra 

b) Hány dkg vajra lesz szükség?  …….  dkg-ra   

c) Hány darab tojásra lesz szükség?   ……. tojásra 
 

a  

b  

c  

d  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

b  

c  
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12.sz. melléklet. Matematika Tudásszintmérő Teszt 4. évfolyam B csoport, központi vizsgálat  

 SZEGEDI TUDOMÁNYEGYETEM                                  Vígh-Kiss Erika Rozália 

NEVELÉSTUDOMÁNYI INTÉZET                                   2019 április 

 MATEMATIKA                      Tudásszintmérő Teszt 4. évfolyam   B CSOPORT 
                                                                                                                                                                   Kód:

  

Település:             Iskola:                                                                 Osztály:         

                                                                          

Elérhető pontszám: 37                                                 Elért pontszám: _________  

1. Állítások. Melyik állítás igaz, melyik hamis az alábbiak közül? Írj I-t az igaz, H-t a hamis állítás elé!  

a) …….         15· 15 = 225 

b) ……. 
 

        18· 16 = 288 

c) …….         21· 19 = 399 

d) 
 

……. 

          

        39· 41 = 1209 

   
 

2. A 450 grammos nádudvari gyorsfagyasztott darálthús 1200 Ft-ba kerül. Vendégeket hívunk hétvégére, 

fasírozottat készítünk, ezért 900 dekagramm darálthúst szeretnénk vásárolni. Mennyibe kerül ez?  

Számításaidat indokold!   

 

 

 

 

 

 

 

 

 

 

 

 

a  

b  

c  

d  

 

a  

b  

c  

d  

e  

f  

g  

h  

i  

j  

k  

l  

m  

n  
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e-n) A pékségben zsemlét vásárolunk. Mennyit fizetünk az egyes termékekért? Töltsd ki a táblázatot! 

Termék neve 1 darab 
tömege 

1 darab ára 
(Ft) 

Vásárolt 
mennyiség 

Vásárolt áru 
tömege 
(gramm) 

Fizetendő 
összeg (Ft) 

Ciabatta 65 gramm 59 11 
 

  

Provanszi 
ciabatta 

120 gramm 159 12   

Vizes zsemle 55 gramm 15 45 
 

  

Szezámos 
császár-
zsemle 

60 gramm 39 41   

 
 
 

  
 
 

Összesen:   

 

3. Locsolkodás. Péter húsvétkor hét lány osztálytársához kopogott be. A megöntözésért minden lány 

családja egy zacskó csokitojást adott a fiúnak.  Otthon Péter a tojások negyedét öccsének, Zolinak, a 

tojások hetedét pedig kishúgának, Csillának ajándékozta.  Válaszolj a kérdésekre!  Írd a megfelelő 

számot a vonalra! 

a) Összesen hány darab csokitojást vihetett haza Péter?            ……. tojást 

b) Hány tojást adott Péter Zolinak?                     …… tojást 

c) Hány tojást kapott Csilla?                   …… tojást 

d) Hány tojás maradt Péteré? …… tojás 

 

  
 

a  

b  

c  

d  

  

4. Sportnap. Az alsó tagozaton 16 osztály működik. A júniusi sportnapon az alsó tagozat minden 

osztályát hétfős csapat képviselte az ügyességi versenyen. Válaszolj a kérdésekre!  Írd a megfelelő 

számot a vonalra! 

a) Hány tanuló vett részt a versenyen?                                   ……. tanuló 

b) Egy másik sportversenyen 375 gyerek indult. A versenyzők 
4

5
-e fiú 

volt. Hány lány versenyzett? 

 

 

……. lány 

 

 

 

 

 

 

 

 
 

a  

b  
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Köszönjük, hogy segítetted a munkánkat! 

5. 

 

 

 

 

 

 

 

6. 

 

 

 

 

 

 

7. 

Strucc. A strucc a ma élő legnagyobb madár. Négy strucctojás 72 tyúktojásnak felel meg. Válaszolj a 

kérdésekre!  Írd a megfelelő számot a vonalra! (Egy tucat = 12 darab) 

 

a) Hány tyúktojásnak felel meg egy tucat strucctojás?         ……. tyúktojásnak 

b) Hány strucctojásnak felel meg 360 tyúktojás?        ……. strucctojásnak 

c) Ha egy strucctojás 9 embernek elég reggelire, akkor hány 

embernek elég reggelire 29 strucctojás? 

      

      ……. főre 

 

Sárkányok. Süsü, a sárkány így mesél őseiről: „Nekem például már csak egy fejem van! Az apámnak 

három van! A nagyapámnak hét volt, a dédapámnak tizenkettő, az ükapámnak huszonnégy.” Válaszolj 

a kérdésekre!  Írd a megfelelő számot a vonalra! 

a) Hány feje van 130 hétfejű sárkánynak?     …… feje 

b) Hány feje van 12 tizenkétfejű sárkánynak?     …… feje 

c) Hány huszonnégyfejű sárkánynak van összesen 720 feje?                                         …… sárkánynak 

d) Hány feje van összesen Süsü nyolc dédszülőjének, ha 

mindegyiknek ugyanannyi feje van?  

 

    …… feje 

Sachertorta. A cukrászatban Sachertortát sütnek. Egy tortához többek között a következő 

alapanyagokra van szükség: 34 dkg porcukor, 165 g vaj, 6 tojás, 12 dkg búzaliszt. A hétvégi esküvőre 

19 Sachertorta megrendelést vett fel a cukrászat. Válaszolj a kérdésekre!  Írd a megfelelő számot a 

vonalra! 

 

a) Hány dkg porcukorra lesz szükség 

 

 

b) Hány g vajra lesz szükség? 

 

c) Hány gramm búzalisztre lesz szükség?   

……. dkg-ra 

 

 

…….   grammra 

 

…….  grammra 

 

 

8. Laci egyforma kockákból tornyot épít. Egy kocka éle 30 mm. Hány cm magas egy 14 kockából álló 

építmény? Úgy dolgozz, hogy számításaid nyomon követhetőek legyenek! 

 

 

 

 

a  

b  

c  

d  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

b  

c  
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13. sz. melléklet. Kérdőív 4. évfolyam, központi vizsgálat  

KÉRDŐÍV (4. osztály) 

 

Település, iskola: ……………………………………………….   Osztály:… Kód: …………..                        
Kedves Tanuló!  

Ez a kérdőív nem a tudásodat méri. Arra vagyunk kíváncsiak, mennyire szeretsz iskolába járni, tanulni. 

Az alábbi kérdőívvel továbbá az érdeklődési körödet, továbbtanulással kapcsolatos terveidet 

szeretnénk felmérni. Kérjük, segítsd munkánkat, olvasd el figyelmesen az alábbi kérdéseket, és őszintén 

töltsd ki a kérdőívet! A megfelelő válasz sorszámát karikázd be! Ahol szükséges, írd be a válaszod! 

Válaszaidat bizalmasan kezeljük, azokat kizárólag kutatási célokra használjuk fel.  

 

1. Nemed: 1) fiú 2)  lány 

2. Mikor születtél? ________év _______________hó 

3. Mi a szüleid legmagasabb iskolai végzettsége? Karikázd be a megfelelő számot! 

ANYA legmagasabb iskolai 
végzettsége 

APA 

1 általános iskola 1 
2 szakmunkásképző iskola 2 
3 érettségi 3 
4 OKJ tanfolyam 4 
5 főiskola 5 
6 egyetem 6 

4. Mennyire szeretsz iskolába járni? Karikázd be a megfelelő válasz sorszámát! 

 1)egyáltalán nem szeretek    2) nem szeretek   3) közepesen    4) szeretek   5) nagyon szeretek 

5.Milyen idegen nyelvet vagy nyelveket tanulsz? Írd a vonalra! 

                                   1. idegen nyelv:………………………….. 

2. idegen nyelv: ……………………………. 

6. Mennyire vagy elégedett a mostani iskolai teljesítményeddel? Karikázd be a megfelelő válasz 

sorszámát! 

1) nagyon elégedetlen  2) elégedetlen  3) közepesen elégedett  

4) elégedett 5) nagyon elégedett 

 

7. Mennyire szereted a következő tantárgyakat? Karikázd be megfelelő számokat, a számok alábbi 
jelentéseknek megfelelően! Ha valamelyik tantárgyat nem tanulod, húzd át a nevét! 

a) Irodalom 1 2 3 4 5 
b) Nyelvtan 1 2 3 4 5 
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           1) 

egyáltalán nem szeretem 2) nem szeretem 3) közömbös 4) szeretem 5) nagyon szeretem 

8. Milyen osztályzataid voltak félévkor az alábbi tantárgyakból? Karikázd be megfelelő számot! Ha 
valamelyik tantárgyat nem tanulod, húzd át a nevét! 
 

9. Mit gondolsz, egy 100 pontos matematikateszten hány pontos eredményt érnél el? ……….. 
Hány pontos eredménnyel lennél elégedett? …….. 

10. Az iskola befejezése után melyek a legtávolabbi terveid? Melyik az a legmagasabb iskolai 
végzettség, amit életed során el szeretnél érni? Karikázd be a megfelelő számot! 

1) szakmunkás bizonyítványt szerezni 
2) érettségizni 
3) érettségizni és szakmát is tanulni 
4) főiskolát végezni/diplomát szerezni felsőfokú alapképzésben 
5) egyetemet végezni/ diplomát szerezni felsőfokú mesterképzésben 
6) abbahagyni az iskolát és munkába állni, amilyen hamar csak lehet 

11. Mennyire vagy elégedett a mostani matematikai teljesítményeddel? Karikázd be a megfelelő 
válasz előtti számot! 
1) nagyon elégedetlen  2) elégedetlen  3) közepesen elégedett  

4) elégedett 5) nagyon elégedett 

 

12. Mennyire szereted az alábbiakat? 
 1)egyáltalán nem szeretem    2) szeretem   3) közömbös    4) szeretem   5) nagyon szeretem 

 

Összeadás 1 2 3 4 5 

Kivonás 1 2 3 4 5 

Szorzás 1 2 3 4 5 

Osztás 1 2 3 4 5 

c) Természetismeret  1 2 3 4 5 
d) 1. Idegen nyelv 1 2 3 4 5 
e) 2. Idegen nyelv 1 2 3 4 5 
f) Matematika  1 2 3 4 5 
a) Technika 1 2 3 4 5 
h) Erkölcstan/hittan 1 2 3 4 5 

i) Testnevelés 1 2 3 4 5 
j) Művészetismeret 1 2 3 4 5 
k) Ének-zene 1 2 3 4 5 
      

a) Magatartás 1 2 3 4 5 
b) Szorgalom 1 2 3 4 5 
c) Irodalom 1 2 3 4 5 
d) Nyelvtan 1 2 3 4 5 
e) Természetismeret  1 2 3 4 5 
f) 1. Idegen nyelv 1 2 3 4 5 
g) 2. Idegen nyelv 1 2 3 4 5 
h) Matematika  1 2 3 4 5 
i) Technika 1 2 3 4 5 
j) Erkölcstan/hittan 1 2 3 4 5 
k) Testnevelés 1 2 3 4 5 
l) Művészetismeret 1 2 3 4 5 
m) Ének-zene 1 2 3 4 5 
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Fejben számolás 1 2 3 4 5 

Írásban számolás 1 2 3 4 5 

Törtek 1 2 3 4 5 

Szöveges feladatok 1 2 3 4 5 

Szerkesztési feladatok 1 2 3 4 5 

Mértékegységátváltás 1 2 3 4 5 

Logikai feladatok 1 2 3 4 5 

 

13. Szerinted mennyire lesznek fontosak későbbi életed során, hogy jól tudd az alábbiakat? 
2) szükségtelen  2) nem fontos   3) közepes fontosságú  4) elég fontos   5) nagyon fontos 

 

Fejben végzett számítások 1 2 3 4 5 

Írásban végzett számítások 1 2 3 4 5 

Szöveges feladatok 1 2 3 4 5 

Szerkesztési feladatok 1 2 3 4 5 

Mértékegységátváltás 1 2 3 4 5 

Logikai feladatok 1 2 3 4 5 

 

14. Mennyire segítenek matematika tanulása közben az alábbiak? 
egyáltalán nem segít 2) inkább nem/ ritkán segít   4) inkább/gyakran segít   5) sokat segít 

 

Rajz készítése 1 2 4 5 

Zenehallgatás 1 2 4 5 

Ujjakon számolás 1 2 4 5 

Magamban számolás 1 2 4 5 

Hangos számolás 1 2 4 5 

Írásban számolás 1 2 4 5 

Teljes csend 1 2 4 5 

Páros munka 1 2 4 5 

Csoportmunka 1 2 4 5 

Tanár magyarázata 1 2 4 5 

Tankönyv mintapéldái 1 2 4 5 

Szülő / testvér magyaráz 1 2 4 5 

Magántanár 1 2 4 5 

 

15. Egy átlagos tanítási napon mennyi időt 
fordítasz tanórán kívüli (pl.: otthoni) 
tanulásra? 

16. Egy átlagos tanítási napon mennyi ideig 
készülsz matematikaórára?   

1) Egyáltalán nem készülök. 1) Egyáltalán nem készülök. 
2) Naponta fél óránál kevesebbet készülök. 2) Naponta fél óránál kevesebbet készülök. 

3) Naponta fél-egy órát készülök. 3) Naponta fél-egy órát készülök. 
4) Naponta egy-két órát készülök. 4) Naponta egy-két órát készülök. 
5) Naponta két-három órát készülök. 5) Naponta két-három órát készülök. 
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6) Naponta több, mint három órát készülök. 6) Naponta több, mint három órát készülök. 

 

 

A következő kérdések (17-22. kérdések) segítségével azt szeretném megtudni, hogyan 

vélekedsz a matematika tanulásával kapcsolatban. Miért tanulod a matematikát? Kérjük, hogy 

1-től 5-ig terjedő skálán pontozd az állításokat a pontok alábbi jelentésének megfelelően! 

Karikázd be a válaszodnak leginkább megfelelő számot! 

 

 

1: nem igaz, egyáltalán nem jellemző. 

2: általában nem igaz, sokszor nem így van. 

3: nem tudom eldönteni. 

4: általában igaz, legtöbbször így van 

5: igaz, mindig így van 

 

17) Mert kötelező tantárgy.  1 2 3 4 5 

18) Mert érdekes.  1 2 3 4 5 

19) Mert szeretnék jó eredménnyel bekerülni a 
középiskolába. 

 1 2 3 4 5 

20) Mert szeretnék jó eredménnyel érettségizni.  1 2 3 4 5 

21) Mert szükségem van rá a továbbtanuláshoz.   1 2 3 4 5 

22) Mert matematika szakra szeretnék jelentkezni.  1 2 3 4 5 

 

23. Milyen gyakran veszel részt 
matematikaversenyeken?  

24. Mennyi időt fordítasz számítógépezésre?  

1) Még sosem voltam. 1) nem szoktam számítógépezni  
2) Egyszer voltam már. 2) havonta egy óránál kevesebbet  

3) Két-háromszor voltam. 3) hetente egy-két órát  
4) Minden évben részt veszek egyen. 4) naponta egy-két órát  
5) Évente több versenyen indulok. 5) naponta három-négy órát 

 

25. Mit szeretsz olvasni az alábbiak közül? 
Több választ is megjelölhetsz! 

26. Hányszor voltál már színházban?  

1) sms-t 1) még sosem voltam 

2) üzeneteket a facebookon, e-mailt 2) egyszer voltam  

3) híreket, érdekességeket újságban, neten 3) kétszer-háromszor voltam 

4) mesekönyvet 4) legalább négyszer voltam  

5) ifjúsági regényt  5) legalább ötször voltam már 

6) egyebet, mégpedig:  

 

6) rendszeresen járok, bérletem van 

27. Egy átlagos tanítási napon mennyi időt 
fordítasz TV nézésre?  

28. Mennyi időt fordítasz hetente olvasásra?  

1) nem szoktam TV-t nézni 1) nem szoktam olvasni 
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2) egy óránál kevesebbet 2) egy óránál kevesebbet  

3) egy-két órát 3) egy-két órát  
4) három-négy órát 4) egy-két órát  
5) több, mint négy órát 5) három-négy órát 

 

 

Válaszaidat, együttműködésedet köszönjük! 
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14. sz. melléklet. Kérdőív 5-6. évfolyam, központi vizsgálat  

KÉRDŐÍV (5-6. osztály) 

Név: ………………………………………………………. Osztály:………  Kód: …………..                        

Kedves Tanuló!  

Ez a kérdőív nem a tudásodat méri. Arra vagyunk kíváncsiak, mennyire szeretsz iskolába járni, tanulni. 

Az alábbi kérdőívvel továbbá az érdeklődési körödet, továbbtanulással kapcsolatos terveidet 

szeretnénk felmérni. Kérjük, segítsd munkánkat, olvasd el figyelmesen az alábbi kérdéseket, és őszintén 

töltsd ki a kérdőívet! A megfelelő válasz sorszámát karikázd be! Ahol szükséges, írd be a válaszod! 

Válaszaidat bizalmasan kezeljük, azokat kizárólag kutatási célokra használjuk fel.  

 

1. Nemed: 1) fiú 2)  lány 
2. Mikor születtél? ________év _______________hó 
3. Mi a szüleid legmagasabb iskolai végzettsége? Karikázd be a megfelelő számot! 

ANYA legmagasabb iskolai 
végzettsége 

APA 

1 általános iskola 1 
2 szakmunkásképző iskola 2 
3 érettségi 3 
4 OKJ tanfolyam 4 
5 főiskola 5 
6 egyetem 6 

4. Mennyire szeretsz iskolába járni? Karikázd be a megfelelő válasz sorszámát! 
 1)egyáltalán nem szeretek    2) nem szeretek   3) közepesen    4) szeretek   5) nagyon szeretek 

5. Milyen idegen nyelvet vagy nyelveket tanulsz? Írd a vonalra! 
3. idegen nyelv                                              …………………………………………. 

4. idegen nyelv                                              ………………………………………… 

6. Mennyire vagy elégedett a mostani iskolai teljesítményeddel? Karikázd be a megfelelő válasz 
sorszámát! 
1) nagyon elégedetlen  2) elégedetlen  3) közepesen elégedett  

4) elégedett 5) nagyon elégedett 

 

7. Mennyire szereted a következő tantárgyakat? Karikázd be megfelelő számokat, a számok alábbi 
jelentéseknek megfelelően! Ha valamelyik tantárgyat nem tanulod, húzd át a nevét! 

           1) egyáltalán nem szeretem 2) nem szeretem 3) közömbös 4) szeretem 5) nagyon szeretem 

o) Irodalom 1 2 3 4 5 

p) Nyelvtan 1 2 3 4 5 

q) Történelem 1 2 3 4 5 

r) Természetismeret 1 2 3 4 5 

s) 1. Idegen nyelv 1 2 3 4 5 

t) 2. Idegen nyelv 1 2 3 4 5 

u) Informatika 1 2 3 4 5 

v) Matematika 1 2 3 4 5 

w) Fizika 1 2 3 4 5 
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x) Technika 1 2 3 4 5 

y) Erkölcstan/hittan 1 2 3 4 5 

z) Testnevelés 1 2 3 4 5 

aa) Művészetismeret 1 2 3 4 5 

bb) Ének-zene 1 2 3 4 5 

      

8. Milyen osztályzataid voltak félévkor az alábbi tantárgyakból? Karikázd be megfelelő számot! Ha 
valamelyik tantárgyat nem tanulod, húzd át a nevét! 
 

q) Magatartás 1 2 3 4 5 

r) Szorgalom 1 2 3 4 5 

s) Irodalom 1 2 3 4 5 

t) Nyelvtan 1 2 3 4 5 

u) Történelem 1 2 3 4 5 

v) Természetismeret 1 2 3 4 5 

w) 1. Idegen nyelv 1 2 3 4 5 

x) 2. Idegen nyelv 1 2 3 4 5 

y) Informatika 1 2 3 4 5 

z) Matematika 1 2 3 4 5 

aa) Fizika 1 2 3 4 5 

bb) Technika 1 2 3 4 5 

cc) Erkölcstan/hittan 1 2 3 4 5 

dd) Testnevelés 1 2 3 4 5 

ee) Művészetismeret 1 2 3 4 5 

ff) Ének-zene 1 2 3 4 5 

 

9. Mit gondolsz, egy 100 pontos matematikateszten hány százalékos eredményt érnél el?  ……….. 
Hány százalékos eredménnyel lennél elégedett? …….. 

10. Az iskola befejezése után melyek a legtávolabbi terveid? Melyik az a legmagasabb iskolai 
végzettség, amit életed során el szeretnél érni? Karikázd be a megfelelő számot! 

1) szakmunkás bizonyítványt szerezni 
2) érettségizni 
3) érettségizni és szakmát is tanulni 
4) főiskolát végezni/diplomát szerezni felsőfokú alapképzésben 
5) egyetemet végezni/ diplomát szerezni felsőfokú mesterképzésben 
6) abbahagyni az iskolát és munkába állni, amilyen hamar csak lehet 

11. Mennyire vagy elégedett a mostani matematikai teljesítményeddel? Karikázd be a megfelelő 
válasz előtti számot! 
1) nagyon elégedetlen  2) elégedetlen  3) közepesen elégedett  

4) elégedett 5) nagyon elégedett 

 

12. Mennyire szereted az alábbiakat? 
 1)egyáltalán nem szeretem    2) szeretem   3) közömbös    4) szeretem   5) nagyon szeretem 

 

Összeadás 1 2 3 4 5 
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Kivonás 1 2 3 4 5 

Szorzás 1 2 3 4 5 

Osztás 1 2 3 4 5 

Fejben számolás 1 2 3 4 5 

Írásban számolás 1 2 3 4 5 

Természetes számok 1 2 3 4 5 

Negatív számok 1 2 3 4 5 

Törtek 1 2 3 4 5 

Tizedes törtek 1 2 3 4 5 

Vegyes számok 1 2 3 4 5 

Szöveges feladatok 1 2 3 4 5 

Szerkesztési feladatok 1 2 3 4 5 

Arányossági feladatok 1 2 3 4 5 
Százalékszámítás 1 2 3 4 5 

Mértékegységátváltás 1 2 3 4 5 

Logikai feladatok 1 2 3 4 5 

 

13. Szerinted mennyire lesznek fontosak későbbi életed során, hogy jól tudd az alábbiakat? 
3) szükségtelen    2) nem fontos   3) közepes fontosságú  4) elég fontos   5) nagyon fontos 

 

Fejben végzett számítások 1 2 3 4 5 

Írásban végzett számítások 1 2 3 4 5 

Szöveges feladatok 1 2 3 4 5 

Szerkesztési feladatok 1 2 3 4 5 

Arányossági feladatok 1 2 3 4 5 

Százalékszámítás 1 2 3 4 5 

Mértékegységátváltás 1 2 3 4 5  

Logikai feladatok 1 2 3 4 5 

 

14. Mennyire segítenek matematika tanulása közben az alábbiak? 
2) egyáltalán nem segít 2) inkább nem/ ritkán segít   4) inkább/gyakran segít   5) sokat segít 

 

Rajz készítése 1 2 4 5 

Zenehallgatás 1 2 4 5 

Ujjakon számolás 1 2 4 5 

Magamban számolás 1 2 4 5 

Hangos számolás 1 2 4 5 

Írásban számolás 1 2 4 5 

Teljes csend 1 2 4 5 

Páros munka 1 2 4 5 

Csoportmunka 1 2 4 5 

Tanár magyarázata 1 2 4 5 
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Tankönyv mintapéldái 1 2 4 5 

Szülő / testvér magyaráz 1 2 4 5 

Magántanár 1 2 4 5 

 

15. Egy átlagos tanítási napon mennyi időt 
fordítasz tanórán kívüli (pl.: otthoni) 
tanulásra? 

16. Egy átlagos tanítási napon mennyi ideig 
készülsz matematikaórára?   

1) Egyáltalán nem készülök. 1) Egyáltalán nem készülök. 
2) Naponta fél óránál kevesebbet készülök. 2) Naponta fél óránál kevesebbet készülök. 

3) Naponta fél-egy órát készülök. 3) Naponta fél-egy órát készülök. 
4) Naponta egy-két órát készülök. 4) Naponta egy-két órát készülök. 
5) Naponta két-három órát készülök. 5) Naponta két-három órát készülök. 
6) Naponta több, mint három órát készülök. 6) Naponta több, mint három órát készülök. 

 

A következő kérdések (17-22. kérdések) segítségével azt szeretném megtudni, hogyan 

vélekedsz a matematika tanulásával kapcsolatban. Miért tanulod a matematikát? Kérjük, hogy 

1-től 5-ig terjedő skálán pontozd az állításokat a pontok alábbi jelentésének megfelelően! 

Karikázd be a válaszodnak leginkább megfelelő számot! 

 

1: nem igaz, egyáltalán nem jellemző. 

2: általában nem igaz, sokszor nem így van. 

3: nem tudom eldönteni. 

4: általában igaz, legtöbbször így van 

5: igaz, mindig így van 

 

17) Mert kötelező tantárgy.  1 2 3 4 5 

18) Mert érdekes.  1 2 3 4 5 

19) Mert szeretnék jó eredménnyel bekerülni a 
középiskolába. 

 1 2 3 4 5 

20) Mert szeretnék jó eredménnyel érettségizni.  1 2 3 4 5 

21) Mert szükségem van rá a továbbtanuláshoz.   1 2 3 4 5 

22) Mert matematika szakra szeretnék jelentkezni.  1 2 3 4 5 

 

23. Milyen gyakran veszel részt 
matematikaversenyeken?  

24. Mennyi időt fordítasz 
számítógépezésre?  

1) Még sosem voltam. 1) nem szoktam számítógépezni  
2) Egyszer voltam már. 2) havonta egy óránál kevesebbet  

3) Két-háromszor voltam. 3) hetente egy-két órát  
4) Minden évben részt veszek egyen. 4) naponta egy-két órát  
5) Évente több versenyen indulok. 5) naponta három-négy órát 

 

25.  Mit szeretsz olvasni az alábbiak közül? 
Több választ is megjelölhetsz! 

26. Hányszor voltál már színházban?  

1) sms-t 1) még sosem voltam 

2) üzeneteket a facebookon, e-mailt 2) egyszer voltam  
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3) híreket, érdekességeket újságban, neten 3) kétszer-háromszor voltam 

4) mesekönyvet 4) legalább négyszer voltam  

5) ifjúsági regényt  5) legalább ötször voltam már 

6) egyebet, mégpedig:  

 

6) rendszeresen járok, bérletem van 

27.  Egy átlagos tanítási napon mennyi időt 
fordítasz TV nézésre?  

28. Mennyi időt fordítasz hetente olvasásra?  

1) nem szoktam TV-t nézni 1) nem szoktam olvasni 
2) egy óránál kevesebbet 2) egy óránál kevesebbet  

3) egy-két órát 3) egy-két órát  
4) három-négy órát 4) egy-két órát  
5) több, mint négy órát 5) három-négy órát 

 

Válaszaidat, együttműködésedet köszönjük! 
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15. sz. melléklet. A Szorzási Stratégiák Teszt elemzése, reliabilitás, központi vizsgálat 

Item Átlag Szórás Cronbach-α, ha az itemet töröljük 

A szorzásteszt 1. iteme     25·48 0,44 0,50 0,96 

A szorzásteszt 2. iteme     25·120 0,43 0,50 0,96 

A szorzásteszt 3. iteme     31·32 0,40 0,49 0,96 

A szorzásteszt 4. iteme       8·99 0,60 0,49 0,96 

A szorzásteszt 5. iteme     49·51 0,34 0,48 0,96 

A szorzásteszt 6. iteme     12·250 0,41 0,49 0,96 

A szorzásteszt 7. iteme       8·4211 0,43 0,50 0,96 

A szorzásteszt 8. iteme      15·48 0,37 0,48 0,96 

A szorzásteszt 9. iteme      12·16 0,42 0,50 0,96 

A szorzásteszt 10. iteme    32·32 0,32 0,47 0,96 

A szorzásteszt 11. iteme     25· 25 0,38 0,49 0,96 

A szorzásteszt 12. iteme     17·99 0,35 0,48 0,96 

A szorzásteszt 13. iteme     12·15 0,45 0,50 0,96 

A szorzásteszt 14. iteme     20·30 0,66 0,47 0,96 

A szorzásteszt 15. iteme      8·999 0,49 0,50 0,96 

A szorzásteszt 16. iteme     23·27 0,35 0,48 0,96 

A szorzásteszt 17. iteme     25·32 0,41 0,49 0,96 

A szorzásteszt 18. iteme     25·65 0,35 0,48 0,96 

A szorzásteszt 19. iteme      13·13 0,46 0,50 0,96 

A szorzásteszt 20. iteme      15·15 0,44 0,50 0,96 

A szorzásteszt 21. iteme      16·16 0,38 0,49 0,96 

A szorzásteszt 22. iteme      24· 24 0,34 0,47 0,96 

A szorzásteszt 23. iteme       9·742 0,44 0,49 0,96 

A szorzásteszt 24. iteme      15·16 0,47 0,50 0,96 

A szorzásteszt 25. iteme      25·50 0,49 0,50 0,96 

A szorzásteszt 26. iteme      18·16 0,43 0,50 0,96 

A szorzásteszt 27. iteme      25· 35 0,38 0,49 0,96 

A szorzásteszt 28. iteme        9·888 0,48 0,50 0,96 

A szorzásteszt 29. iteme      150·6 0,62 0,49 0,96 

A szorzásteszt 30. iteme        50·50 0,62 0,49 0,96 

A szorzásteszt 31. iteme        19·19 0,31 0,46 0,96 
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15.sz. melléklet. A Szorzási Stratégiák Teszt elemzése, reliabilitás, központi vizsgálat 

(folytatás) 

Item Átlag Szórás Cronbach-α, ha az itemet töröljük 

A szorzásteszt 32. iteme        77· 8 0,53 0,50 0,96 

A szorzásteszt 33. iteme          9·652 0,42 0,49 0,96 

A szorzásteszt 34. iteme        12·11 0,46 0,50 0,96 

A szorzásteszt 35. iteme        11·11 0,43 0,50 0,96 

A szorzásteszt 36. iteme        19·21 0,39 0,49 0,96 

A szorzásteszt 37. iteme         45· 45 0,31 0,46 0,96 

A szorzásteszt 38. iteme         77·99 0,30 0,46 0,96 

A szorzásteszt 39. iteme         10·690      0,63 0,48 0,96 

A szorzásteszt 40. iteme        500·500 0,52 0,50 0,96 
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16. sz. melléklet. Az egyes stratégiákra vonatkozó statisztika iskolánként, központi vizsgálat 

Stratégia Iskola 
Minta 

(N) 
Átlag Szórás Minimum Maximum 

Írásban 

számol 

1 209 1,21 6,35 0 40 

2 64 0,05 0,28 0 2 

3 88 8,44 14,43 0 40 

4 66 0,00 0,00 0 0 

5 11 0,00 0,00 0 0 

6 43 0,00 0,00 0 0 

7 56 0,00 0,00 0 0 

8 25 0,32 1,60 0 8 

9 63 1,65 5,53 0 31 

10 57 0,72 4,43 0 33 

11 118 2,48 8,78 0 40 

Össz. 800 1,81 7,38 0 40 

Üresen 

hagyja 

1 209 6,84 9,78 0 37 

2 64 6,67 11,15 0 39 

3 88 6,47 9,81 0 37 

4 66 10,33 12,01 0 40 

5 11 1,09 3,30 0 11 

6 43 7,79 10,06 0 32 

7 56 1,75 6,43 0 38 

8 25 6,72 11,49 0 35 

9 63 0,14 0,44 0 2 

10 57 17,84 12,58 0 39 

11 118 6,50 9,23 0 39 

Össz. 800 6,89 10,41 0 40 

Számológéppel 

számol 

1 209 0,19 2,77 0 40 

2 64 0,00 0,00 0 0 

3 88 0,00 0,00 0 0 

4 66 0,00 0,00 0 0 

5 11 0,00 0,00 0 0 

6 43 0,00 0,00 0 0 

7 56 0,00 0,00 0 0 

8 25 0,00 0,00 0 0 

9 63 0,00 0,00 0 0 

10 57 0,00 0,00 0 0 

11 118 0,00 0,00 0 0 

Össz. 800 0,05 1,41 0 40 
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17. sz. melléklet. Az egyes stratégiákra vonatkozó Levene-féle F értékek, központi vizsgálat  

Stratégia 
Levene-féle F Szignifikan-

ciaszint (p) 

Írásban számol 30,27 0,000 

Üresen hagyja 21,67 0,000 

Számológéppel számol 1,13 0,335 

 Elképzelem fejben leírva 6,04 0,000 

Minden részletszorzatot számjegyenként szoroz össze 3,43 0,000 

Egy részletszorzatot számjegyenként, egy 

részletszorzatot emlékezeti előhívással szoroz 

nem számolható  

Két részletszorzatot emlékezeti előhívással számol ki 2,34 0,010 

Felhalmozás nem számolható  

Additív disztribúció 5,17 0,000 

Egyesekkel kezd 5,52 0,000 

Tízesekkel kezd 13,11 0,000 

Az egyik szorzótényezőt összegre tagolja 6,32 0,000 

Mindkét tényezőt részekre tagolja 37,17 0,000 

Frakcionális disztribúció 4,65 0,000 

Számlálás nem számolható  

Szubtraktív disztribúció 29,18 0,000 

Kvadratikus disztribúció 7,46 0,000 

Általános faktorizáció 2,41 0,008 

Felezés-duplázás 24,23 0,000 

Felezés-duplázás, szubtraktív disztribúcióval folytatva 10,19 0,000 

Maradék nélkül osztható részekre bontás 7,32 0,000 

Maradék nélkül osztható részekre bontás, összegre 

bontással kiegészítve 

2,49 0,006 

Ismert szabály alkalmazása 42,82 0,000 

Összeg négyzete azonosság alkalmazása 3,04 0,001 

Ötletes algebrai átalakítás 5,54 0,000 

Emlékezeti előhívás 43,67 0,000 

Exponenciális faktorizálás 18,32 0,000 

TT + EE: 

Tízeseket a tízesekkel és az egyeseket az egyesekkel 

szoroz, majd a két részletszorzatot összeadja 

15,45 0,000 

TT + EE + az egyik tényezőt hozzáadja 10,19 0,000 

Tízeseket a tízesekkel szorozza, majd az egyik tényezőt 

hozzáadja a részletszorzathoz 

3,34 0,000 

Tízeseket a tízesekkel szorozza, majd a második 

tényezővel megszorozza 

nem számolható  
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17. sz. melléklet. Az egyes stratégiákra vonatkozó Levene-féle F értékek, központi vizsgálat 

(folytatás) 

Stratégia 
Levene-féle F Szignifikan-

ciaszint (p) 

Tízesekkel kezdi a szorzást, majd az egyeseket a 

tízesekkel szorozza 

10,19 0,000 

Szubtraktív disztribúció 2.  10,19 0,000 

Hiányzó részletszámítások mindkét tényező összegre 

bontásakor 

10,19 0,000 

Helyiérték figyelmen kívül hagyása 10,19 0,000 

Egyéb, hibás eredményre vezető stratégia 19,81 0,000 

Megjegyzés: Szabadságfok (df1)=10, szabadságfok (df2)=789 
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