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1 Weighted least squares estimators for the Parzen

tail index

The results presented in this chapter are based on [ANV20].

We propose a class of weighted least squares (WLS) estimators for the Parzen tail in-

dex. Our approach is based on the method developed by Holan and McElroy [HM10].

We investigate consistency and asymptotic normality of the WLS estimators. Through

a simulation study, we make a comparison with the Hill, Pickands, DEdH (Dekkers,

Einmahl and de Haan) and ordinary least squares (OLS) estimators using the mean

square error as criterion. The results show that in a restricted model some members

of the WLS estimators are competitive with the Pickands, DEdH and OLS estimators.

1.1 The tail index estimation

In classical tail index estimation it is assumed that the tail of the distribution func-

tion is regularly varying at infinity with some positive index. Parzen [Par79, Par04]

studied an alternative model for the tail of the distribution. Let F be an absolutely

continuous probability distribution function with density function f and let Q denote

the corresponding quantile function defined as

Q(s) := inf{x : F (x) ≥ s}, 0 < s ≤ 1, Q(0) := Q(0+).

Parzen [Par79] used the density-quantile function fQ(·) = f(Q(·)) to classify proba-

bility distributions. Parzen [Par79] assumed that the limit

ν1 := lim
u→1

(1− u)J(u)

fQ(u)
(1)

exists, where J is the score function defined as J(u) = −(fQ)′(u). Assumption (1)

yields the following approximation for u values near 1:

fQ(u) ≈ C(1− u)ν1 ,

for some positive constant C. Based on the parameter ν1, Parzen [Par79] classified

the probability distributions. Heavy tailed distributions correspond to ν1 > 1.

Parzen [Par04] assumed that fQ(·) is regularly varying at 0 and 1:

fQ(u) = uν0L0(u), u ∈ [0, 1/2), (2)

fQ(u) = (1− u)ν1L1(1− u), u ∈ (1/2, 1], (3)

where ν0, ν1 > 0 are finite constants and L0 and L1 are slowly varying at zero. The

parameters ν0 and ν1 are called the left and right tail exponents of the density-quantile

function.

Using Karamata’s representation theorem for slowly varying functions ([BGT89,

Theorem 1.3.1]), Holan and McElroy [HM10] proved the following result ([HM10,
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Lemma 1]): If K is a slowly varying function at infinity and L(x) = K(1/x) for

x ∈ (0, 1), then logL is square integrable. It follows that Li can be expressed as

Li(u) = exp

{
θi,0 + 2

∞∑
k=1

θi,k cos(2πku)

}
, i = 0, 1. (4)

In order to estimate the tail exponents, Holan and McElroy [HM10] assumed that Li
satisfies the representation

Li(u) = L
(pi)
i (u) = exp

{
θi,0 + 2

pi∑
k=1

θi,k cos(2πku)

}
, i = 0, 1, (5)

where pi is fixed and unknown. In the representation (2) and (3) they considered

fQ(u) for u ∈ (0, ul] and u ∈ [ur, 1), where ul ≤ 1/2 and ur ≥ 1/2 are chosen by the

statistician, and they assumed that pi < p̃i, where p̃i is a prespecified integer. Using

representation (5), we obtain the equations

log fQ(u) = ν0 log u+ θ0,0 + 2

p0∑
k=1

θ0,k cos(2πku), u ∈ (0, ul],

log fQ(u) = ν1 log(1− u) + θ1,0 + 2

p1∑
k=1

θ1,k cos(2πk(1− u)), u ∈ [ur, 1).

Based on some estimator f̂Q(u) of the density-quantile fQ(u), this leads to the re-

gression equations

log f̂Q(uj) = ν0 log uj + θ0,0 + 2

p0∑
k=1

θ0,k cos(2πkuj) + ε(uj),

log f̂Q(1− uj) = ν1 log uj + θ1,0 + 2

p1∑
k=1

θ1,k cos(2πkuj) + ε(1− uj),

where ε(u) = log
(
f̂Q(u)/fQ(u)

)
is the residual process, uj = j/n, j = udnae, . . . , ubnbc

and 0 < a < b < 1, so the percentiles uj are chosen from a subset [a, b] of the interval

(0, 1). Holan and McElroy [HM10] obtained some estimators ν̂0 and ν̂1 for the tail

exponents ν0 and ν1 using ordinary least squares regression.

We propose a more general class of estimators using weighted least squares re-

gression. We choose some nonnegative weights of the form wj,n = R(j/n) with some

weight function R. Set yj := log f̂Q(uj),

y := (ydnae, . . . , ybnbc)
′,

W := diag(wdnae,n, . . . , wbnbc,n),

and let X := [G∗, G0, 2G1, . . . , 2Gp̃0 ], where

G∗ =
(

log(udnae), . . . , log(ubnbc)
)′

Gk =
(

cos(2πkudnae), . . . , cos(2πkubnbc)
)′
, k = 0, . . . , p̃0.
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Set βp̃0 := (ν0, θ0,0, θ0,1, . . . , θ0,p̃0)
′, where θ0,j = 0 if j > p0. By minimizing the

weighted sum of squares

bnbc∑
j=dnae

wj,n
(
yj − ν0 log uj − θ0,0 − 2

p̃0∑
k=1

θ0,k cos(2πkuj)
)2
,

we obtain the following estimator of βp̃0 :

β̂p̃0 = (X ′WX)−1X ′Wy.

Then the weighted least squares estimator of ν0 can be written in the form

ν̂0 = e′1β̂p̃0 = e′1(X
′WX)−1X ′Wy,

where e1 is the p̃0 + 2 dimensional vector defined as e1 = (1, 0, 0, . . . , 0)′. The right

tail exponent ν1 can be estimated similarly.

A crucial point of this method is to choose a good estimator for the density-

quantile fQ(u). Letting q(u) := Q′(u) denote the quantile density function, and

using the identity

fQ(u)Q′(u) = 1, (6)

one wish to estimate q(u) instead of fQ(u). Given a sample X1, . . . , Xn with distribu-

tion function F , let Fn denote its empirical distribution function and define Qn := F−1n

to be the empirical quantile function. Holan and McElroy [HM10] used the kernel

quantile estimator of q(u):

q̂n(u) =
d

du

∫ 1

0

Qn(t)Kn(u, t)dµn(t), u ∈ (0, 1), (7)

where the kernel function Kn(u, t) and the measure µn satisfy the following conditions

of Cheng [Che95]: (K1) For every n, 0 < µn([0, 1]) <∞, and µn({0, 1}) = 0.

(K2) For every n and each (u, t), Kn(u, t) ≥ 0, and for every u ∈ [a, b],
∫ 1

0
Kn(u, t)dµn(t) =

1.

(K3) For every n,
∫ 1

0
tKn(u, t)dµn(t) = u, u ∈ [a, b].

(K4) There is a sequence δn ↓ 0 such that supu∈[a,b]
∣∣ ∫ u+δn

u−δn Kn(u, t)dµn(t) − 1
∣∣ ↓ 0 as

n ↑ ∞.

Let Sn be the unique closed subset of (0,1) such that µn
(
(0, 1)\Sn

)
= 0 and

µn
(
(0, 1)\S ′n

)
> 0 for any S ′n ⊂ Sn.

For the sequence δn in (K4), let In(u) = [u − δn, u + δn], Icn(u) = (0, 1)\In(u), for

u ∈ [a, b]. Define Λ(u;Kn) =
∫
In(u)
|K ′n(u, t)|dµn(t), u ∈ [a, b], and for a well-defined

function g on (0,1), let Ψ(g;Kn) = supu∈[a,b]
∫
Icn(u)
|g(t)K ′n(u, t)|dµn(t). It is also

assumed that the derivative K ′n(u, t) = ∂Kn(u, t)/∂u satisfies the conditions (K5) −
(K7) below:
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(K5) For every n, supu∈[a,b]
∫ 1

0
|K ′n(u, t)|dµn(t) <∞.

(K6) For every n and each u ∈ [a, b], Kn(u, t) ≡ 0, t ∈ Icn(u); or Sn ⊆ [ε, 1−ε] ⊂ (0, 1),

with [a, b] ⊂ [ε, 1− ε] for some 0 < ε < 1/2.

(K7) For the sequence δn in (K4), δ
2
n supu∈[a,b] Λ(u;Kn) → 0 and Ψ(1;Kn) → 0 as

n ↑ ∞.

Similarly as in [HM10], in some cases we assume that the kernel function has the

form Kn(u, t) = K
(
h−1n (t− u)

)
h−1n and satisfies the condition

(K8) sup
u∈[a,b]

∣∣∣∣h−1n K
(s− u

hn

)
− h−1n K

(t− u
hn

)∣∣∣∣ ≤ Cn|t− s|β and |K ′′(x)| ≤ C/|x|

for some constants C, β > 0 and |x| sufficiently large, and Cn are positive constants

such that supn≥1Cn <∞.

Moreover, Holan and McElroy [HM10] used the following assumptions of Cheng

[Che95] on q(u):

(Q1) The quantile density function is twice differentiable on (0,1).

(Q2) There exists a positive constant γ such that supu∈(0,1) u(1− u)|J(u)|/fQ(u)

≤ γ, where J is the score function in (1).

(Q3) Either q(0) < ∞ or q(u) is nonincreasing in some interval (0, u∗), and either

q(1) <∞ or q(u) is nondecreasing in some interval (u∗, 1).

We show that the limit matrix M(a, b, R) := limn→∞ n
−1X ′WX exists. Let

(v∗, v0, . . . , vp̃i) be the first row of M(a, b, R)−1, and set GR(u) := R(u)
(
v∗ log u +

v0 + 2
∑p̃i

k=1 vk cos(2πku)
)
, i = 0, 1.

Finally, we assume that the weight function R satisfies the following condition:

(R) R is nonnegative and Riemann integrable on [a, b].

Let
P−→ denote convergence in probability,

D−→ denote convergence in distribution,

and let N(µ, σ2) stand for the normal distribution with mean µ and variance σ2.

Limiting and order relations are always meant as n → ∞ if not specified otherwise.

Our main results are contained in the following two theorems:

Theorem 1. Suppose that the conditions (Q1) − (Q3) are satisfied for the quantile

density q(u), and q̂(u) is a kernel smoothed estimator with kernel function satisfy-

ing (K1) − (K7), the weight function R satisfies the condition (R), and the matrix

M(a, b, R) is invertible. Moreover, assume that the percentiles uj are chosen from a

set [a, b] ⊂ (0, 1) such that uj = j/n, j = dnae, . . . , bnbc, and p̃i > pi, i = 0, 1. Then

ν̂i
P−→ νi, i = 0, 1.
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Theorem 2. Assume that the conditions of Theorem 1 are satisfied, and suppose

that the kernel function is symmetric and differentiable on [−1, 1], and satisfies the

condition (K8). Suppose that the derivative gR(u) := G′R(u) exists, and gR and GR

are uniformly bounded on [a, b]. Let hn be a sequence such that nh2n → ∞, nh4n → 0

and hn → 0, and assume that p̃i > pi, i = 0, 1. Then

√
n(ν̂i − νi)

D−→ N(0, V ), i = 0, 1,

where

V =

∫ b

a

G2
R(u)du+

∫ b

a

∫ b

a

GR(u)GR(v)

(
1 + [(u ∧ v)− uv]

q′(u)q′(v)

q(u)q(v)

)
dudv. (8)

In the special case when the weight function R is identically 1, the two theorems

above reduces to Theorems 1 and 2 of [HM10].

1.2 Comparison of tail index estimators

1.2.1 Asymptotic variances

We evaluate the limiting variance (8) for p̃0 = 1, different weight functions and tail

indices to compare the WLS and the unweighted (ordinary least squares) estimators

in the following submodel of (4):

L0(u) = exp
{

2 cos(2πu)
}
, u ∈ [a, b].

The limiting variances are contained in Table 1. For the calculations we used nu-

merical integration performed by the Wolfram Mathematica software. We see that in

some cases the use of the weights makes the asymptotic variance smaller.

Table 1: Limiting variances for different weight functions and tail indices.

ν0 = 1.2
R(u)

unweighted
1 + cosu e−u − log u 1/u

a = 0.1, b = 0.4 821.232 816.812 823.778 851.364 822.13
a = 0.1, b = 0.3 1512.62 1513.46 1538.35 1600.46 1512.83
a = 0.2, b = 0.3 269523 269655 270796 272081 269524

ν0 = 1.8
R(u)

unweighted
1 + cosu e−u − log u 1/u

a = 0.1, b = 0.4 821.962 819.166 829.786 860.498 822.66
a = 0.1, b = 0.3 1521.58 1523.69 1551.68 1617.04 1521.66
a = 0.2, b = 0.3 267666 267807 268969 270267 267666
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ν0 = 1.667
R(u)

unweighted
1 + cosu e−u − log u 1/u

a = 0.1, b = 0.4 819.423 816.278 826.109 856.14 820.164
a = 0.1, b = 0.3 1516.49 1518.31 1545.6 1610.22 1516.6
a = 0.2, b = 0.3 268011 268151 269308 270604 268012

ν0 = 2.25
R(u)

unweighted
1 + cosu e−u − log u 1/u

a = 0.1, b = 0.4 840.595 838.929 825.157 885.102 841.151
a = 0.1, b = 0.3 1551.91 1555.02 1585.51 1653.45 1551.89
a = 0.2, b = 0.3 266776 266924 268099 269406 266775

1.2.2 Simulation results

In order to make a comparison with existing proposals, simulations were done per-

formed by the Matlab software. The samples were generated from the model (2) with

L0 ≡ 1 using different tail indices ν0. The Hill, Pickands, DEdH (Dekkers, Einmahl

and de Haan) and the least squares estimators were included in the simulation study.

Similarly as in [HM10], for the simulations we used the Bernstein polynomial esti-

mator of q(u). Let 0 < ε < 1/2 be a constant, and assume that [a, b] ⊂ [ε, 1 − ε].

Set Lε := 1 − 2ε and tj := ε + (j/k)Lε, j = 0, 1, . . . , k. The Bernstein polynomial

estimator is defined as

q̂Bn (u) =
1

Lkε

k−1∑
j=0

Qn(tj+1)−Qn(tj)

1/k

(
k − 1

j

)
(u− ε)j(1− ε− u)k−1−j.

This estimator belongs to the class (7) and satisfies the conditions (K1)− (K7). We

used the values k = n = 700, ε = 0.001, a = 0.001 and b = 0.4 for the regression

estimators, and the weight function R(u) = u/300 for the WLS estimator. Tables 2

and 3 contain the average simulated estimates (mean) and the calculated empirical

mean square errors (MSE). We used the sample fraction size kn = 100 for the Hill,

Pickands and DEdH estimators. All the simulations were repeated 200 times. We

conclude that in the submodel L0 ≡ 1 for α values between 0.8 and 1.5 the WLS

estimator has better performance than the OLS estimator. Thus for thinner tails we

propose the WLS estimator instead of the OLS estimator. The Hill estimator is the

best among the examined estimators. This good performance is not surprising since

the Hill estimator was obtained in the special case of 1 − F (x) = x−1/α1`1(x), 0 <

x < ∞ when the slowly varying function `1(x) is constant for all x ≥ xα1 , for some

threshold xα1 . The Pickands estimator has also good performance. On the other

hand, we emphasize that the WLS method can be applied not only for the estimation

of the tail index but for the estimation of the slowly varying functions Li in (2) and

(3).
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Table 2: Average simulated tail index estimates (Mean) for sample size n = 700 and
for L0 ≡ 1.

Mean
WLS OLS

Hill Pickands DEdH
ν(α) p̃0 = 1 p̃0 = 2 p̃0 = 3 p̃0 = 1 p̃0 = 2 p̃0 = 3

2.25(1.25) 2.3777 2.4751 2.5088 2.4271 2.4803 2.4825 2.2396 2.2703 2.7346
2(1) 2.0741 2.1231 2.2423 2.0902 2.1162 2.1177 2.0038 1.9998 2.4988

1.833(0.833) 1.9119 1.9249 1.9405 1.9248 1.904 1.8959 1.8404 1.8471 2.3354
1.667(0.667) 1.7163 1.6915 1.7274 1.7217 1.7019 1.7058 1.6743 1.6902 2.1692
1.556(0.556) 1.5949 1.6294 1.5951 1.6017 1.5822 1.5637 1.5534 1.5567 2.0483

1.5(0.5) 1.5239 1.5448 1.5518 1.5222 1.5613 1.5668 1.5005 1.4942 1.9955
1.333(0.333) 1.3639 1.389 1.3874 1.3598 1.3335 1.3136 1.3347 1.3294 1.8296
1.25(0.25) 1.2956 1.2471 1.242 1.2741 1.2585 1.2629 1.2476 1.2474 1.7426
1.2(0.2) 1.2281 1.2483 1.2189 1.1967 1.2204 1.2089 1.1993 1.2144 1.6942

1.182(0.182) 1.1742 1.1891 1.199 1.1776 1.1725 1.1677 1.1833 1.174 1.6783
1.167(0.167) 1.1628 1.1953 1.1826 1.162 1.158 1.1452 1.167 1.1624 1.662

1.1(0.1) 1.1116 1.0926 1.1538 1.0899 1.0755 1.0725 1.1006 1.0952 1.5955
1.067(0.067) 1.0761 1.106 1.0895 1.0456 1.0597 1.0431 1.0673 1.0562 1.5622
1.05(0.05) 1.0674 1.0607 1.0866 1.0527 1.0476 1.0438 1.0496 1.048 1.5445

Table 3: Empirical mean square errors (MSE) of tail index estimates for sample size
n = 700 and for L0 ≡ 1.

MSE
WLS OLS

Hill Pickands DEdH
ν(α) p̃0 = 1 p̃0 = 2 p̃0 = 3 p̃0 = 1 p̃0 = 2 p̃0 = 3

2.25(1.25) 0.0953 0.1565 0.2224 0.1540 0.2701 0.3855 0.0177874 0.0592 0.2525
2(1) 0.0794 0.1121 0.1865 0.1029 0.1244 0.1942 0.0112351 0.0491 0.2600

1.833(0.833) 0.0599 0.1134 0.1550 0.0714 0.1257 0.1673 0.0075016 0.0427 0.2598
1.667(0.667) 0.0594 0.0817 0.1164 0.0565 0.0832 0.1218 0.0062222 0.0412 0.2471
1.556(0.556) 0.0515 0.0935 0.0938 0.0404 0.0593 0.0845 0.0056131 0.0405 0.2482

1.5(0.5) 0.0465 0.1105 0.1352 0.0471 0.0640 0.0909 0.0036438 0.0395 0.2501
1.333(0.333) 0.0400 0.0679 0.1064 0.0292 0.0350 0.0627 0.0033354 0.0397 0.2432
1.25(0.25) 0.0413 0.0754 0.0878 0.0229 0.0445 0.0580 0.0009903 0.0436 0.2447
1.2(0.2) 0.0388 0.0716 0.1090 0.0196 0.0301 0.0456 0.0007893 0.0358 0.2468

1.182(0.182) 0.0335 0.0620 0.0894 0.0216 0.0284 0.0365 0.0007318 0.0335 0.2453
1.167(0.167) 0.0304 0.0708 0.1008 0.0160 0.0341 0.0476 0.0005918 0.0372 0.2462

1.1(0.1) 0.0356 0.0788 0.1001 0.0191 0.0384 0.0489 0.00048686 0.0332 0.2454
1.067(0.067) 0.0358 0.0652 0.1013 0.0169 0.0318 0.0455 0.00024720 0.0313 0.2445
1.05(0.05) 0.0308 0.0625 0.0845 0.0149 0.0238 0.0315 0.00022473 0.0351 0.2443

2 Regression estimators for the tail index

This chapter is based on [ANSV].

we propose a class of weighted least squares estimators for the tail index of a distri-

bution function with a regularly varying upper tail. Our approach is based on the

method developed by Holan and McElroy (2010) for the Parzen tail index. We prove

asymptotic normality and consistency for the estimators under suitable assumptions.

Through a simulation study, these and earlier estimators are compared in the Pareto

and Hall models using the mean squared error as criterion. The results show that the

weighted least squares estimator is better than the other estimators investigated.

2.1 Introduction and main result

Let X1, X2, . . . be independent random variables with a common right-continuous

distribution function F , and for each n ∈ N, let X1,n ≤ · · · ≤ Xn,n denote the order

statistics pertaining to the sample X1, . . . , Xn. Let Rα be the class of all distribution

functions F such that 1− F is regularly varying at infinity with index −1/α, that is,

1− F (x) = x−1/α`(x), 1 < x <∞,
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where ` is some positive function on the half line [1,∞), slowly varying at infinity and

α > 0 is a fixed unknown parameter to be estimated. It is well known that F ∈ Rα

if and only for some function L slowly varying at zero,

Q(1− s) = s−αL(s), 0 < s < 1. (9)

The asymptotic normality of Hill estimator was first considered by Hall (1982)

[Hal82] in the following submodel of Rα:

1− F (x) = x−1/αC1[1 + C2x
−β/α{1 + o(1)}], as x→∞,

for some constants C1 > 0 and C2 6= 0. This is equivalent to

Q(1− s) = s−αD1[1 +D2s
β {1 + o(1)}], s→ 0, (10)

where D1 = Cα
1 and D2 = C2/C

β
1 .

Following the idea of Holan and McElroy (2010) [HM10], we assume that the

slowly varying function L in (9) admits the truncated orthogonal series expansion

L(s) = exp

{
θ0 + 2

p∑
k=1

θk cos(2πks)

}
,

where p > 0 is a fixed integer, and θ0, . . . , θp are unknown parameters. We suppose

that p ≤ p̃, where p̃ is a prespecified integer. The knowledge of p is not assumed,

condition p ≤ p̃ gives only an upper bound for p. It follows that

logQ(1− s) = −α log s+ θ0 + 2

p∑
k=1

θk cos(2πks). (11)

Let Qn be the empirical quantile function defined as

Qn(s) = Xk,n if
k − 1

n
< s ≤ k

n
, k = 1, 2, . . . , n.

Based on the representation (11), we obtain the regression equations

logQn(1− sj) = −α log sj + θ0 + 2

p̃∑
k=1

θk cos(2πksj) + ε(sj),

where

ε(s) = log(Qn(1− s)/Q(1− s)) (12)

is the residual process, sj = j/n, j = dnae, . . . , bnbc, a < b are fixed constants taken

from the interval (0,1), and θk = 0 for k > p. The value p̃ is chosen by the statistician.

We propose a class of estimators for α using weighted least squares. We choose some

nonnegative weights of the form wj,n = R(sj) with some weight function R. Set

yj := logQn(1− sj),
y := (ydnae, . . . , ybnbc)

′,
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W := diag(wdnae,n, . . . , wbnbc,n),

and let X := [G∗, G0, 2G1, . . . , 2Gp̃], where

G∗ =
(
− log(sdnae), . . . ,− log(sbnbc)

)′
,

Gk =
(

cos(2πksdnae), . . . , cos(2πksbnbc)
)′
, k = 0, . . . , p̃.

Set βp̃ := (α, θ0, θ1, . . . , θp̃)
′. By minimizing the weighted sum of squares

bnbc∑
dnae

wj,n
(
yj + α log sj − θ0 − 2

p̃∑
k=1

θk cos(2πksj)
)2
,

we obtain the following estimator of βp̃:

β̂p̃ = (X ′WX)−1X ′Wy.

Then the weighted least squares estimator of α can be written in the form

α̂(W )
n := e′1β̂p̃ = e′1(X

′WX)−1X ′Wy, (13)

where e1 is the p̃+ 2 dimensional vector defined as e1 = (1, 0, 0, . . . , 0)′.

We assume the following conditions on the underlying distribution:

(Q1) The distribution function F is continuous and twice differentiable on (a∗, b∗),

where a∗ = sup {x : F (x) = 0}, b∗ = inf {x : F (x) = 1} ,−∞ ≤ a∗ < b∗ ≤ ∞ and

f(x) := F ′(x) 6= 0 on (a∗, b∗).

(Q2) supa∗<x<b∗ F (x)(1− F (x))|f ′(x)/f 2(x)| <∞.
(Q3) sup1−b≤s≤1−a 1/|Q(s)| <∞, sup1−b≤s≤1−a 1/fQ(s) <∞ and

sup1−b≤s≤1−a 1/|fQ(s)Q(s)| <∞.

We show that the limit matrix M(a, b, R) := limn→∞ n
−1X ′WX exists. Let

(v∗, v0, . . . , vp̃) be the first row of M(a, b, R)−1, and set GR(u) := R(u)
(
− v∗ log u +

v0 + 2
∑p̃

k=1 vk cos(2πku)
)

for u ∈ (0, 1).

Moreover, we suppose the following conditions:

(R) The weight function R is nonnegative and Riemann integrable on [a, b].

(M) The matrix M(a, b, R) is invertible.

Theorem 3. Assume that the conditions Q1 − Q3 are satisfied for the underlying

distribution and suppose that the quantile function Q admits the representation (11).

Moreover, assume the conditions (R) and (M), and assume also that the percentiles

sj are chosen from a closed set U = [a, b], 0 < a < b < 1, such that sj = j/n,

j = dnae, . . . , bnbc, and p ≤ p̃. Then

√
n(α̂(W )

n − α)
D−→ N(0, V ), (14)

where

V =

∫ b

a

∫ b

a

GR(s)GR(t)
(
(1− s) ∧ (1− t)− (1− s)(1− t)

)
Q(1− s)Q(1− t)fQ(1− s)fQ(1− t)

dsdt. (15)
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2.2 Asymptotics for p̃→∞
The estimation method proposed in previous section is heavily based on the assump-

tion p ≤ p̃. However, Choosing p̃ < p inflicts a bias. To overcome this difficulty, we

adjust our method to study asymptotics when p̃→∞. In this section our investiga-

tion is based on the following series expansion:

logL(s) ∼
∞∑
k=0

θkϕk(s),

where

ϕ0(s) =
1√

(b− a)R(s)
,

ϕk(s) = cos

(
πk
s− a
b− a

)
1√

(b− a)R(s)/2
, k = 1, 2, . . . ,

and θk =
∫ b
a

logL(x)ϕk(x)R(x)dx. The sequence ϕk
√
R, k = 0, 1, . . . , is a complete

orthonormal system in L2[a, b]. For convenience, in this section we use the percentiles

sj = a+ j b−a
n

, j = 0, . . . , n−1. Similarly as in previous section, with yj := logQn(1−
sj) and wj,n = R(sj) define

y := (y0, . . . , yn−1)
′,

W := diag(w0,n, . . . , wn−1,n),

and let X := [G∗, G0, G1, . . . , Gp̃], where

G∗ =
(
− log s0, . . . ,− log sn−1

)′
,

Gk =
(
ϕk(s0), . . . , ϕk(sn−1)

)′
, k = 0, . . . , p̃.

(16)

Set

bp̃(s) := logL(s)−
p̃∑

k=0

θkϕk(s). (17)

Recall (12). Then we have

logQn(1− sj) = −α log sj +

p̃∑
k=1

θkϕk(sj) + b(sj) + ε(sj).

By minimizing the weighted sum of squares

bnbc∑
dnae

wj,n
(
yj + α log sj −

p̃∑
k=0

θkϕk(sj)
)2
,

we obtain the following estimator of α:

α̂(W )
n = e′1(X

′WX)−1X ′Wy.
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In order to formulate the result for α̂
(W )
n , we need the series expansion of the − log(·)

function:

− log s ∼
∞∑
j=0

cjϕj(s), (18)

where cj =
∫ b
a
(− log x)ϕj(x)R(x)dx. We assume the following conditions on the

sequences p̃, θn and cn:

(P1) p̃→∞ and p̃/n→ 0.

(P2) For each n, 3(p̃+ 1)/n < 1.

(P3) n
∑∞

i=p̃+1 c
2
i →∞.

(P4) θn/cn → 0.

Theorem 4. Suppose the conditions (P1)− (P4) are satisfied. Then α̂
(W )
n

P−→ α.

2.3 Simulation results

In order to make a comparison with existing proposals, simulations were done per-

formed by the Matlab software. The samples were generated from the strict Pareto

model L ≡ 1 in (9) and from the Hall model (10). The Hill, Pickands, DEdH (Dekkers,

Einmahl and de Haan) and the weighted least squares (WLS) estimators were in-

cluded in the simulation study. We used the values n = 5000, a = 0.001, b = 0.4 and

p̃ = 1, 2, 3, and the weight function R(s) = s/500 for the WLS estimator. In case

of R ≡ 1, we refer to as ordinary least squares (OLS) estimator. The tail indexes

were chosen between 0.5 and 20. For the Hill, Pickands and DEdH estimators the

simulations were done for sample size n = 5000 and sample fraction size kn = 200.

All the simulations were repeated 1000 times.

Tables 4 and 5 contains the empirical mean square errors (MSE) and the average

simulated estimates (mean) for the strict Pareto model. We conclude that in the

submodel L ≡ 1 for all α values, the WLS estimator performs better than the other

estimators investigated.

Tables 6 and 7 presents the simulation results for the Hall model. Specifically, we

used the parameters D1 = 0.4, D2 = 1 and β = 0.01. We see from Table 6 that the

WLS estimator performs better than the other estimators, and the OLS estimator is

competitive with the Hill estimator especially for p̃ = 3.

Given the values of [a, b], which determines the number of values taken from the

simulation data, we experimented with some expanding intervals to find an appro-

priate range, and we stop when we obtain reasonable stability of the estimator of α.

Figure 1 shows the tail index estimates for WLS approach for different values of (a)

for the Preto distribution with α = 1.8 (left panel) and the α = 5 (right panel), the

values of the remaining α with both Pareto distribution and Hall model give fairly

11



similar results. The results are almost stable when b=0.45 and (a) is very close to

zero, otherwise, the values start to scatter and move away from the true alpha value.

Table 4: Empirical mean square errors (MSE) of tail index estimates for the Pareto
model and for sample size n = 5000.

MSE
WLS OLS

Hill Pickands DEdh
α p̃ = 1 p̃ = 2 p̃ = 3 p̃ = 1 p̃ = 2 p̃ = 3

0.5 0.00049 0.000668 0.000945 0.00065 0.00098 0.001357 0.001172 0.017866 0.006558
0.8 0.001183 0.001572 0.002261 0.00161 0.002368 0.00325 0.003325 0.02146 0.008336
1 0.001756 0.002394 0.003668 0.002425 0.003697 0.005203 0.005457 0.024083 0.010687

1.2 0.002821 0.003826 0.005298 0.003641 0.005365 0.007366 0.007532 0.025102 0.01219
1.5 0.00451 0.006126 0.008397 0.005867 0.008671 0.01188 0.01052 0.03013 0.016092
1.8 0.006049 0.007993 0.011399 0.007694 0.011178 0.015334 0.016801 0.035497 0.021695
2 0.007639 0.010499 0.014921 0.010842 0.016055 0.022093 0.020194 0.034981 0.025421
3 0.017668 0.024202 0.034858 0.023523 0.034985 0.047931 0.044665 0.063986 0.049712
4 0.029136 0.040729 0.05895 0.03926 0.058641 0.080589 0.0807 0.094346 0.089062
5 0.047688 0.063472 0.096547 0.064079 0.094958 0.13097 0.114725 0.13557 0.121162

5.5 0.055014 0.076889 0.106532 0.074036 0.110494 0.151476 0.142506 0.16283 0.144236
6 0.071694 0.103854 0.141469 0.089924 0.129628 0.171023 0.173129 0.188113 0.175776
10 0.191172 0.262768 0.375258 0.233466 0.339353 0.45505 0.525182 0.558138 0.527627
15 0.402501 0.535825 0.802723 0.582015 0.884501 1.226799 1.169978 1.167519 1.176961
20 0.792631 1.095608 1.579634 0.996911 1.434474 1.916717 2.100758 1.981171 2.101663

Table 5: Average simulated tail index estimates (Mean) for sample size n = 5000 and
for the Pareto model.

Mean
WLS OLS

Hill Pickands DEdh
α p̃ = 1 p̃ = 2 p̃ = 3 p̃ = 1 p̃ = 2 p̃ = 3

0.5 0.500964 0.501233 0.502571 0.503044 0.504023 0.505077 0.501476 0.495427 0.489674
0.8 0.801937 0.802524 0.803656 0.805577 0.807293 0.809021 0.800238 0.801774 0.783686
1 1.001483 1.001634 1.00246 1.005316 1.00711 1.009101 1.001825 1.004785 0.98694

1.2 1.201603 1.201804 1.202563 1.206612 1.208947 1.211492 1.197918 1.195252 1.185589
1.5 1.502324 1.502346 1.502635 1.509168 1.512328 1.515847 1.501775 1.492907 1.485452
1.8 1.805614 1.807831 1.808328 1.812501 1.815819 1.818663 1.801355 1.80158 1.787262
2 2.006075 2.008649 2.012745 2.016946 2.022076 2.026978 2.004505 2.004395 1.988554
3 3.004755 3.002857 3.007692 3.013462 3.017458 3.022898 3.007171 3.002503 2.996076
4 4.00635 4.009942 4.017468 4.028563 4.039037 4.049668 3.985504 3.98685 3.966318
5 5.007934 5.007172 5.011766 5.020999 5.027234 5.034629 5.004943 5.012502 4.98503

5.5 5.521636 5.523414 5.535038 5.54912 5.562017 5.576119 5.498843 5.49632 5.48765
6 6.010705 6.020936 6.035309 6.042542 6.057651 6.071267 6.00263 6.012857 5.987134
10 10.03551 10.0453 10.04212 10.06879 10.0851 10.099 9.997173 10.04161 9.981231
15 15.00041 15.02029 15.05347 15.07633 15.11221 15.14596 15.05984 15.02914 15.0449
20 20.0481 20.05749 20.09294 20.11033 20.14008 20.17114 20.01204 20.04928 19.99807

Table 6: Empirical mean square errors (MSE) of tail index estimates for the Hall
model and for sample size n = 5000.

MSE
WLS OLS

Hill Pickands DEdh
α p̃ = 1 p̃ = 2 p̃ = 3 p̃ = 1 p̃ = 2 p̃ = 3
0.5 0.000495 0.000667 0.00092558 0.000632 0.000946 0.001306 0.001159 0.017902 0.00665892
0.8 0.001174 0.001552 0.00222172 0.00156 0.002292 0.003147 0.003306 0.02142 0.00847904
1 0.001749 0.002379 0.00363231 0.002374 0.003616 0.005088 0.00541 0.024003 0.01078627
1.2 0.002806 0.003801 0.00525345 0.003571 0.005259 0.007218 0.007516 0.025114 0.01229618
1.5 0.004482 0.006087 0.00834029 0.005763 0.008519 0.011673 0.010459 0.030153 0.01618835
1.8 0.005985 0.007897 0.01127938 0.007554 0.010987 0.015093 0.016721 0.035417 0.02175322
2 0.007566 0.010387 0.01474723 0.010648 0.015785 0.021747 0.020076 0.034877 0.02545883
3 0.017587 0.024119 0.03469301 0.023338 0.034725 0.047576 0.044474 0.063841 0.04963012
4 0.029026 0.040556 0.0586581 0.038909 0.058141 0.079932 0.08067 0.094312 0.08921482
5 0.04754 0.063301 0.09626703 0.063773 0.094531 0.130401 0.114477 0.135233 0.12110866
5.5 0.054727 0.076546 0.10602299 0.073448 0.109716 0.150488 0.142289 0.162625 0.14413155
6 0.071496 0.103502 0.14091586 0.089385 0.128878 0.170073 0.172846 0.187722 0.17564752
10 0.190659 0.262089 0.37450066 0.232588 0.338214 0.453664 0.524723 0.557207 0.52732507
15 0.402258 0.5353 0.80169824 0.580913 0.882852 1.2246 1.168656 1.166491 1.17578666
20 0.791792 1.094529 1.57797168 0.995368 1.432428 1.914136 2.099641 1.979735 2.10068457
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Table 7: Average simulated tail index estimates (Mean) for sample size n = 5000 and
for the Hall model.

Mean
WLS OLS

Hill Pickands DEdh
α p̃ = 1 p̃ = 2 p̃ = 3 p̃ = 1 p̃ = 2 p̃ = 3
0.5 0.49603 0.496302 0.497636 0.498107 0.499084 0.500135 0.496567 0.490542 0.484814
0.8 0.797 0.79759 0.798724 0.800636 0.802349 0.804074 0.795342 0.796859 0.77882
1 0.996551 0.996707 0.997539 1.000382 1.002176 1.004164 0.996921 0.999856 0.982061
1.2 1.196672 1.196878 1.197643 1.201678 1.204011 1.206553 1.193032 1.190336 1.180723
1.5 1.497391 1.49742 1.497717 1.50423 1.507388 1.510903 1.496874 1.487989 1.480568
1.8 1.800674 1.802891 1.803397 1.807559 1.810876 1.81372 1.796457 1.796655 1.782377
2 2.001136 2.003709 2.007804 2.011997 2.017123 2.02202 1.999599 1.999456 1.98366
3 2.999823 2.997934 3.00277 3.008533 3.01253 3.017969 3.002265 2.99757 2.991178
4 4.001418 4.005012 4.012537 4.023621 4.03409 4.044716 3.980627 3.981932 3.961447
5 5.003001 5.002247 5.006845 5.016071 5.022308 5.029703 5.000043 5.007562 4.980135
5.5 5.516692 5.518475 5.530098 5.544169 5.557062 5.57116 5.493949 5.491392 5.482761
6 6.005772 6.016001 6.03037 6.037599 6.052704 6.066316 5.997733 6.007918 5.982241
10 10.03057 10.04036 10.03719 10.06385 10.08015 10.09406 9.99228 10.03666 9.97634
15 14.99548 15.01536 15.04854 15.07139 15.10728 15.14102 15.05493 15.0242 15.03999
20 20.04316 20.05255 20.08801 20.1054 20.13515 20.16621 20.00714 20.04434 19.99317
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Figure 1: Tail index estimates for WLS approach with Pareto distribution in (left
panel) from α = 1.8 and in (right panel) from α = 5.

3 Application

The results presented in this chapter are based on [IAN20, IAND20].

we study the prevalence of the COVID-19 pandemic in Iraq and Egypt using a gener-

alised (SEIR) compartmental mathematical model, a logistic regression model, and a

simple Gaussian model. The extreme value theory approach for finding and modeling

Covid-19 peaks was studied, and one of the prime successes EVT is the return level

idea.

3.1 Forecast of the COVID–19 spread in Iraq and Egypt

The logistic growth takes the form:

C(t) =
K

1 + be−rt
, (19)

where r > 0 is the rate of infection, K > 0 is the final epidemic size and b = K−C0

C0
and

C0 is the initial population. Figure 2 shows the logistics growth model (19) fitted to
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in (left panel) the cumulative number of infected cases from Iraq and in (right panel)

the cumulative number of infected cases from Egypt with parameters given in Table 8.

We note that the logistic model fitted the incidence data with a root mean square
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Figure 2: The logistic model (19) fitted to the cumulative number of infected cases in
Iraq (Left panel) and in Egypt (right panel).

error (RMSE) of 5, 229.7, R2 of 0.9981 for Iraq data and with (RMSE) of 1, 924.4, R2

of 0.9980 for Egypt data, as shown in Tables 8. The logistic model gives a reasonable

good fit for both countries.

Table 8: Estimated parameter results of the logistics model (??) to Iraq and Egypt.

Parameters
Iraq Egypt

R = 1.0659 C.I0.95 R = 1.0318 C.I0.95
Estimated epidemic size K (cumulative cases) 490, 900 (478300, 503500) 105, 000 (104500, 105900)
Growth Rate r 0.03787 (0.03685, 0.03889) 0.05634 (0.05546, 0.05721)
Estimated start of ending phase date 05/05/2021 04/11/2020
Goodness of fit (R2) 0.9981 0.9980
Root Mean Square Error (RMSE) 5, 229.7 1, 924.4

We employed a simple Gaussian model, to model the time-dependent daily change

of infections. Let I(t) denotes the time-dependent Gaussian function and takes the

following form:

I(t) = I0e
−
(
t−µ
σ

)2
,

where I0 denotes the maximum value at time µ and σ controls the width. The

Gaussian model was fitted to data from Iraq and Egypt with reproduction numbers

1.0659 and 1.0318, respectively. Figure 3 shows the Gaussian model fitted to in (left

panel) the daily number of confirmed cases from Iraq, and in (right panel) the daily

number of confirmed cases from Egypt with parameters given in Table 9. The model

fits the actual data well with a root mean square error (RMSE) of 335.607, R2 of

0.9614 for Iraq data and with (RMSE) of 110.33, R2 of 0.9528 for Egypt data, as

listed in Tables 9.
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Figure 3: The Gaussian model fitted to the daily confirmed cases in Iraq (Left panel)
and in Egypt (right panel).

Table 9: Estimated parameter results of the Gaussian model to Iraq and Egypt.

Parameters
Iraq Egypt

R = 1.0659 C.I0.95 R = 1.0318 C.I0.95
Estimated peak day cases I0 4, 254 (4161, 4347) 1, 534 (1493, 1574)
σ 80.16 (74.62, 85.69) 34.99 (33.94, 36.04)
Estimated peak date 14/09/2020 16/06/2020
Goodness of fit (R2) 0.9614 0.9528
Root Mean Square Error (RMSE) 335.607 110.33

3.2 Compartmental model for COVID–19 transmission

We spilt the human population into seven compartments: susceptible S(t), exposed

E(t), symptomatically infected Is(t), mildly infected Im(t), treated H(t), recovered

individuals R(t), and D(t) is the individuals who lose their lives due to the COVID–19.

Hence, we consider the following SEIR model:

S ′(t) = − ββeE(t) + βmIm(t) + Is(t) + βhH(t)

N(t)−D(t)
S(t),

E ′(t) = β
βeE(t) + βmIm(t) + Is(t) + βhH(t)

N(t)−D(t)
S(t)− νE(t),

I ′m(t) = θνE(t)− σmIm(t)− σIm(t),

I ′s(t) = (1− θ)νE(t) + σIm(t)− σsIs(t)− δsIs(t),
H ′(t) = σsIs(t)− σhH(t)− δhH(t),

R′(t) = σmIm(t) + σhH(t),

D′(t) = δsIs(t) + δhH(t).

(20)

Figure 4 shows the model (20) fitted to the daily number of confirmed cases in (left

panel) from Iraq, 22 February 2020 until 08 October 2020, and in (right panel) from

Egypt, 05 March 2020 until 08 October 2020. Our model gives a reasonable good fit

for both countries, predicting the peak in Iraq and showing the peak in Egypt. The

fitting parameter results are listed in Table 10.
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Figure 4: The model (20) fitted to the daily confirmed cases in (left panel) from Iraq
and in (right panel) from Egypt with parameters given in Table 10.

Table 10: Parameters and fitted values of model (20) in the case of Iraq and Egypt.

Parameters
Value for Iraq Value for Egypt

SourceR0 = 1.323 R0 = 1.11

β 0.753 0.56 Fitted
βe 0.082 0.053 Fitted
βm 0.475 0.587 Fitted
βh 0.2057 0.443 Fitted
θ 0.778 0.875 Fitted
σ 0.307 0.104 Fitted
σs 0.3247 0.213 Fitted
σm 0.239 0.661 Fitted
σh 0.446 0.508 Fitted
δs 0.127 0.131 Fitted
δh 0.298 0.268 Fitted
ν 0.54 0.266 Fitted

3.3 Prediction of the second wave of the COVID-19 epidemic

We assume that the observations are independent and identically distributed with

common cdf F . For y > u, F (y) is estimated, by F̂ (u) = 1− ζ̂u(1− Ĝ(y− u)), where

Ĝ is the GPD and ζ̂u the empirical estimator of observations that exceed the threshold

u. The return level estimate is the level expected to be exceeded by the maximum of

n observations with probability 1−α is estimated by ŷα of F̂ (y)n. If γ 6= 0, we obtain

ŷα as

ŷα =
σ̂

γ̂
[(

1

ζ̂u
(1− α1/n))−γ − 1] + u (21)

The mean excess function of X denote the mean residual life function is

e(u) = E(X − u | X > u), 0 ≤ u < x∗. (22)

The generalized Pareto distribution (GPD) of two-parameter was used to model

exceedances over a threshold, the Maximum likelihood estimators was preferred, the
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Figure 5: Mean excess plot with threshold in Iraq and Egypt,2020.

estimated parameters are gamma, sigma of the GPD, where γ = −0.616 and σ =

686.19 for Iraq and γ = −0.648 and σ = 316.796 for Egypt. Figure 5 shows pick the

suitable threshold u for infections, which are 4000 and 1300 for COVID-19 data in

Iraq and Egypt, respectively, which gave two corresponding observations: 35 and 37

over the threshold. Hence the estimate of the exceedance probability ζ̂u = 0.1003 for

Iraq and ζ̂u = 0.1039 for Egypt. Moreover, the mean excess plot with a downwards

sloping line indicated thin tailed behaviour with γ < 0. We focus on estimate the

return level during the following year and the following two years with two value of

probability 0.1 and 0.01. These estimates were computed using Equation (21). The

results indicate that there is a possibility 0.1 that the infection cases will exceed 5083

once during the next year and 5107 within two years for Iraq, while in Egypt the

epidemic will exceed 1788 during the two years with probability 0.01, all results are

presented in table 11.

Table 11: Estimated levels that the maximum of COVED-19 epidemic will exceed
with probability 0.1 and 0.01 for the one year and two years for Iraq and Egypt.

Probability
(1− α)

One year Two year
0.1 0.01 0.1 0.01

Iraq 5083 5107 5094 5109
Egypt 1778 1787 1782 1788
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