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1 Weighted least squares estimators for the Parzen
tail index

The results presented in this chapter are based on [ANV20].

We propose a class of weighted least squares (WLS) estimators for the Parzen tail in-
dex. Our approach is based on the method developed by Holan and McElroy [HM10].
We investigate consistency and asymptotic normality of the WLS estimators. Through
a simulation study, we make a comparison with the Hill, Pickands, DEdH (Dekkers,
Einmahl and de Haan) and ordinary least squares (OLS) estimators using the mean
square error as criterion. The results show that in a restricted model some members
of the WLS estimators are competitive with the Pickands, DEdH and OLS estimators.

1.1 The tail index estimation

In classical tail index estimation it is assumed that the tail of the distribution func-
tion is regularly varying at infinity with some positive index. Parzen [Par79, Par04]
studied an alternative model for the tail of the distribution. Let F' be an absolutely
continuous probability distribution function with density function f and let ) denote

the corresponding quantile function defined as
Q(s) :=inf{x: F(z) > s}, 0<s<1, Q(0):=Q(0+).

Parzen |[Par79] used the density-quantile function fQ(-) = f(Q(+)) to classify proba-
bility distributions. Parzen |Par79| assumed that the limit

(1)

exists, where J is the score function defined as J(u) = —(fQ)'(u). Assumption ({1
yields the following approximation for u values near 1:

fQu) = C(1 —u)™,

for some positive constant C'. Based on the parameter vy, Parzen |[Par79] classified
the probability distributions. Heavy tailed distributions correspond to vy > 1.
Parzen [Par04] assumed that fQ(-) is regularly varying at 0 and 1:

fQ(u) = uVOLO(u)a u € [07 1/2)7 (2)
fQw) =1 —uw)"Li(l—-u), wue(1/21], (3)

where vy, v; > 0 are finite constants and Ly and L; are slowly varying at zero. The
parameters vy and v are called the left and right tail exponents of the density-quantile
function.

Using Karamata’s representation theorem for slowly varying functions ([BGT89,
Theorem 1.3.1]), Holan and McElroy [HM10| proved the following result ([HMI0,
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Lemma 1]): If K is a slowly varying function at infinity and L(x) = K(1/z) for
x € (0,1), then log L is square integrable. It follows that L; can be expressed as

Li(u) = exp {(91-70 +2 Z 0k cos(27rku)}, i=0,1. (4)
k=1

In order to estimate the tail exponents, Holan and McElroy [HM10]| assumed that L;
satisfies the representation

pi

Li(u) = Lgpi)(u) = exp {92"0 +2 Z O; i COS(QW]CU)}, i=0,1, (5)
k=1

where p; is fixed and unknown. In the representation and they considered

fQ(u) for u € (0,u] and u € [u,, 1), where u; < 1/2 and u, > 1/2 are chosen by the

statistician, and they assumed that p; < p;, where p; is a prespecified integer. Using

representation (5)), we obtain the equations

Po

log fQ(u) = vylogu + Oy + 2 Z 6o, cos(2mku), u € (0,1],
k=1

p1
log fQ(u) = v1log(1 —u) + 010 + 2291,;C cos(2rk(l —u)), wu € [u,,1).
k=1

Based on some estimator j{@(u) of the density-quantile fQ(u), this leads to the re-

gression equations

po
log fQ(u;) = vylogu; + 0o + 2 Z 6o 1 cos(2mku;) + £(u;),
k=1

p1
log f@(l —uj) =vylogu; + 60109+ 2 Z 6 cos(2mku;) + (1 — u; ),

k=1
where e(u) = log (f@(u)/f@(u)) is the residual process, u; = j/n, j = Ufna], - - -, Unb)
and 0 < a < b < 1, so the percentiles u; are chosen from a subset [a, b] of the interval
(0,1). Holan and McElroy [HM10] obtained some estimators 7, and 7 for the tail
exponents vy and 14 using ordinary least squares regression.

We propose a more general class of estimators using weighted least squares re-

gression. We choose some nonnegative weights of the form w,,, = R(j/n) with some
weight function R. Set y; := log f@(uj),

y = (yfna-|7 st 73/|_an>/7
W .= diag(w[mﬂ,n, Ce ,wLanm),
and let X := [G*, Gy, 2Gq, . .. ,2Gp,|, where

G* = (log(ufnay); - - - ,log(utnbj))/
G = (COS(QWk'u[mW), e ,COS(QWkuLan)),, k=0,...,po.



Set Bp, = (10,600,001,---,605), where §; = 0 if j > po. By minimizing the

weighted sum of squares

[nb] Do
Z wjn(y; — vologu; — O — 2 Z o k Cos(27rkuj))2,

j=[na] k=1

we obtain the following estimator of 35,
s = (X'WX) I X' Wy
Then the weighted least squares estimator of vy can be written in the form
Do = € B, = €L (X'WX) ' X' Wy,

where e; is the pg + 2 dimensional vector defined as e; = (1,0,0,...,0)". The right
tail exponent v; can be estimated similarly.

A crucial point of this method is to choose a good estimator for the density-
quantile fQ(u). Letting g(u) := @'(u) denote the quantile density function, and
using the identity

fQWQ (u) =1, (6)

one wish to estimate ¢(u) instead of fQ(u). Given a sample X7, ..., X,, with distribu-
tion function F', let F,, denote its empirical distribution function and define Q,, := F, !
to be the empirical quantile function. Holan and McElroy [HM10] used the kernel
quantile estimator of g(u):

) = 1 [ QKD ), we 0. g

where the kernel function K, (u,t) and the measure p, satisfy the following conditions
of Cheng [Che95]: (K7) For every n, 0 < pu,([0,1]) < oo, and pu,,({0,1}) = 0.

(Ks) For every n and each (u, t), K,(u,t) > 0, and for every u € [a, b] fo (u, t)dp,(t) =

1.

(K3) For every n, fo tK (u, t)dpn, (t) = u,u € [a, b].

K4) There is a sequence &, | 0 such that sup,ep, } fu+6" K (u, t)dpn(t) — 1] 1 0 as
n T oo.

Let S, be the unique closed subset of (0,1) such that p,((0,1)\S,) = 0 and
1n (0, 1)\S),) > 0 for any S), C S,,.

For the sequence ¢, in (Ky), let I,,(u) = [u — &y, u + 6,], IS(u) = (0,1)\I,(u), for
€ la,b]. Define A(u; K,) f] ) G (us 8) | dpan (2 ), € [a, b, and for a well-defined
function ¢ on (0,1), let \I/(g7K ) = SUDye[q4] fIC g(t) K] (u,t)|du,(t). It is also

assumed that the derivative K/ (u,t) = 0K, (u,t) / 8u satlsﬁes the conditions (Kj5) —
(K7) below:



(K5) For every n, sup,ejqy fol | K (u,t)|dp,(t) < oo.

(Ks) For every n and each u € [a,b], K,,(u,t) =0,t € I(u); or S, C [e,1—¢] C (0, 1),
with [a,b] C [g,1 — €] for some 0 < & < 1/2.

(K7) For the sequence 6, in (Ky), 0 sup,coy A(u; Kp) — 0 and ¥(1; K,) — 0 as

n T oo.

Similarly as in [HM10], in some cases we assume that the kernel function has the
form K, (u,t) = K (h,*(t — u))h,* and satisfies the condition

() (5

n n

(Kg) sup

u€la,b]

< Cult —s|® and |K"(z)] < C/|x|

for some constants C, 8 > 0 and |z| sufficiently large, and C,, are positive constants
such that sup,,»; C), < oo.

Moreover, Holan and McElroy [HM10] used the following assumptions of Cheng
[Che95| on g(u):

(Q1) The quantile density function is twice differentiable on (0,1).

(Q2) There exists a positive constant y such that sup,e 1) (1 — u)|J(u)|/fQ(u)

< 7, where J is the score function in ().

(Q3) Either ¢(0) < oo or ¢(u) is nonincreasing in some interval (0,u,), and either
q(1) < 0o or g(u) is nondecreasing in some interval (u*,1).

We show that the limit matrix M(a,b, R) := lim, ..o n 'X'WX exists. Let
(v*,vg,...,v5) be the first row of M(a,b, R)™!, and set Ggr(u) = R(u)(v* log u +
vo + 230, v cos(2mku)), i = 0, 1.

Finally, we assume that the weight function R satisfies the following condition:
(R) R is nonnegative and Riemann integrable on [a, b].

Let — denote convergence in probability, 2 denote convergence in distribution,
and let N(u,c?) stand for the normal distribution with mean u and variance o?.
Limiting and order relations are always meant as n — oo if not specified otherwise.

Our main results are contained in the following two theorems:

Theorem 1. Suppose that the conditions (Q1) — (Q3) are satisfied for the quantile
density q(u), and q(u) is a kernel smoothed estimator with kernel function satisfy-
ing (K1) — (K7), the weight function R satisfies the condition (R), and the matric
M(a,b, R) is invertible. Moreover, assume that the percentiles u; are chosen from a
set [a,b] C (0,1) such that u; = j/n, j = [nal,..., |nb|, and p; > p;, i =0,1. Then
v s, i=0,1.



Theorem 2. Assume that the conditions of Theorem [1| are satisfied, and suppose
that the kernel function is symmetric and differentiable on [—1,1], and satisfies the
condition (Ky). Suppose that the derivative gr(u) = Gx(u) exists, and gr and Gg
are uniformly bounded on [a,b]. Let h, be a sequence such that nh? — oo, nhl — 0
and h, — 0, and assume that p; > p;, © = 0,1. Then

Vi@, —v) 25 N(0,V), i=0,1,

where

¢ (u)q'(v)
q(u)q(v)

V= / bag(u)dw / b / bGR(u)GR(v) (1+[(u/\v)—uv] )dudv. (8)

In the special case when the weight function R is identically 1, the two theorems
above reduces to Theorems 1 and 2 of [HM10].

1.2 Comparison of tail index estimators

1.2.1 Asymptotic variances

We evaluate the limiting variance for py = 1, different weight functions and tail
indices to compare the WLS and the unweighted (ordinary least squares) estimators

in the following submodel of :
Lo(u) = exp {2cos(2mu)}, u € [a,b].

The limiting variances are contained in Table [I For the calculations we used nu-
merical integration performed by the Wolfram Mathematica software. We see that in
some cases the use of the weights makes the asymptotic variance smaller.

Table 1: Limiting variances for different weight functions and tail indices.

R(u)

vg=1.2 unweighted

—Uu

l1+cosu e —logu 1/u
a=0.1,b=04|821.232 816.812 823.778 851.364 | 822.13

a=0.1,b=0.3 | 1512.62 1513.46 1538.35 1600.46 | 1512.83
a=0.2,b=0.3 | 269523 269655 270796 272081 | 269524

R(u)

vy = 1.8 unweighted

1+cosu e™ —logu 1/u
a=0.1,b=04|821.962 819.166 829.786 860.498 | 822.66

a=0.1,b=0.3 | 1521.58 1523.69 1551.68 1617.04 | 1521.66
a=0.2b=0.3]| 267666 267807 268969 270267 | 267666




R(u)

vy = 1.667 unweighted

—Uu

1+cosu e —logu 1/u
a=0.1,0=0.4|819.423 816.278 826.109 856.14 | 820.164
a=0.1,b=0.3|1516.49 1518.31 1545.6 1610.22 | 1516.6

a=0.2,b=0.3 | 268011 268151 269308 270604 | 268012

R(u)

vy = 2.25 unweighted

u

1+cosu e —logu 1/u
a=0.1,0=0.4|840.595 838.929 825.157 885.102 | 841.151
a=0.1,0=0.3]1551.91 1555.02 1585.51 1653.45 | 1551.89
a=0.2,0=0.3| 266776 266924 268099 269406 | 266775

1.2.2 Simulation results

In order to make a comparison with existing proposals, simulations were done per-
formed by the Matlab software. The samples were generated from the model with
Ly = 1 using different tail indices vy. The Hill, Pickands, DEdH (Dekkers, Einmahl
and de Haan) and the least squares estimators were included in the simulation study.
Similarly as in [HM10], for the simulations we used the Bernstein polynomial esti-
mator of g(u). Let 0 < & < 1/2 be a constant, and assume that [a,b] C [g,1 — ¢].
Set L, :=1—2¢ and t; :== e+ (j/k)Le, 5 = 0,1,..., k. The Bernstein polynomial
estimator is defined as

i LI; ; J+11/k n(tj) (k ; 1) (u _ 5)j(1 —e— u>k—1—j_

This estimator belongs to the class (7)) and satisfies the conditions (K;) — (K7). We
used the values k = n = 700, ¢ = 0.001, a = 0.001 and b = 0.4 for the regression
estimators, and the weight function R(u) = /300 for the WLS estimator. Tables
and [3| contain the average simulated estimates (mean) and the calculated empirical

mean square errors (MSE). We used the sample fraction size k, = 100 for the Hill,
Pickands and DEdH estimators. All the simulations were repeated 200 times. We
conclude that in the submodel Ly = 1 for « values between 0.8 and 1.5 the WLS
estimator has better performance than the OLS estimator. Thus for thinner tails we
propose the WLS estimator instead of the OLS estimator. The Hill estimator is the
best among the examined estimators. This good performance is not surprising since
the Hill estimator was obtained in the special case of 1 — F(x) = a7/ (2), 0 <
x < oo when the slowly varying function ¢;(z) is constant for all z > z,,, for some
threshold z,,. The Pickands estimator has also good performance. On the other
hand, we emphasize that the WLS method can be applied not only for the estimation
of the tail index but for the estimation of the slowly varying functions L; in (2) and

(3).



Table 2: Average simulated tail index estimates (Mean) for sample size n = 700 and
for Lo = 1.

Mean
WLS OLS
@) Po=1 pp=2 pp=3[po=1 po=2 po=3
1.25) | 2.3777 24751 2.5088 | 2.4271 2.4803 2.4825 | 2.2396 | 2.2703 | 2.7346
1 2.0741 21231 2.2423 | 2.0902 2.1162 2.1177 | 2.0038 | 1.9998 | 2.4988

Hill | Pickands | DEdH

<

(

(

(
1.833(0.833) | 1.9119 1.9249 1.9405 | 1.9248 1.904 1.8959 | 1.8404 | 1.8471 | 2.3354
1.667(0.667) | 1.7163  1.6915 1.7274 | 1.7217 1.7019 1.7058 | 1.6743 | 1.6902 | 2.1692
1.556(0.556) | 1.5949 1.6294 1.5951 | 1.6017 1.5822 1.5637 | 1.5534 | 1.5567 | 2.0483
1.5(0.5) 1.5239 1.5448 1.5518 | 1.5222 1.5613 1.5668 | 1.5005 | 1.4942 | 1.9955
1.333(0.333) | 1.3639  1.389 1.3874 | 1.3598 1.3335 1.3136 | 1.3347 | 1.3294 | 1.8296
1.25(0.25) | 1.2956 1.2471 1.242 | 1.2741 1.2585 1.2629 | 1.2476 | 1.2474 | 1.7426
1.2(0.2) 1.2281 1.2483 1.2189 | 1.1967 1.2204 1.2089 | 1.1993 | 1.2144 | 1.6942
1.182(0.182) | 1.1742 1.1891 1.199 | 1.1776 1.1725 1.1677 | 1.1833 1.174 1.6783
1.167(0.167) | 1.1628 1.1953 1.1826 | 1.162 1.158 1.1452 | 1.167 | 1.1624 1.662
1.1(0.1) 11116 1.0926 1.1538 | 1.0899 1.0755 1.0725 | 1.1006 | 1.0952 | 1.5955
1.067(0.067) | 1.0761  1.106  1.0895 | 1.0456 1.0597 1.0431 | 1.0673 | 1.0562 | 1.5622
1.05(0.05) | 1.0674 1.0607 1.0866 | 1.0527 1.0476 1.0438 | 1.0496 1.048 1.5445

Table 3: Empirical mean square errors (MSE) of tail index estimates for sample size
n = 700 and for Ly = 1.

MSE

~ ~W LS ———= ~OLS ~ Hill Pickands | DEdH

v(a) Po=1 pp=2 pp=3|po=1 po= Po =
2.25(1.25) ]0.0953 0.1565 0.2224 | 0.1540 0.2701 0.3855 | 0.0177874 | 0.0592 0.2525
2(1) 0.0794 0.1121 0.1865 | 0.1029 0.1244 0.1942 | 0.0112351 | 0.0491 0.2600
1.833(0.833) | 0.0599 0.1134 0.1550 | 0.0714 0.1257 0.1673 | 0.0075016 | 0.0427 0.2598
1 607((] 667) | 0.0594 0.0817 0.1164 | 0.0565 0.0832 0.1218 | 0.0062222 | 0.0412 0.2471
56(0.556) | 0.0515 0.0935 0.0938 | 0.0404 0.0593 0.0845 | 0.0056131 | 0.0405 0.2482
1.5(0.5) 0.0465 0.1105 0.1352 | 0.0471 0.0640 0.0909 | 0.0036438 | 0.0395 0.2501
1. 333(0 333) | 0.0400 0.0679 0.1064 | 0.0292 0.0350 0.0627 | 0.0033354 | 0.0397 0.2432
1. 20(0 25) | 0.0413 0.0754 0.0878 | 0.0229 0.0445 0.0580 | 0.0009903 | 0.0436 0.2447
1.2(0.2) 0.0388 0.0716 0.1090 | 0.0196 0.0301 0.0456 | 0.0007893 | 0.0358 0.2468
1. 182(0 182) | 0.0335 0.0620 0.0894 | 0.0216 0.0284 0.0365 | 0.0007318 | 0.0335 0.2453
1.167(0.167) | 0.0304 0.0708 0.1008 | 0.0160 0.0341 0.0476 | 0.0005918 | 0.0372 0.2462
1.1(0.1) 0.0356 0.0788 0.1001 | 0.0191 0.0384 0.0489 | 0.00048686 | 0.0332 0.2454
1.067(0.067) | 0.0358 0.0652 0.1013 | 0.0169 0.0318 0.0455 | 0.00024720 | 0.0313 0.2445
1.05(0.05) 0.0308 0.0625 0.0845 | 0.0149 0.0238 0.0315 | 0.00022473 | 0.0351 0.2443

2 Regression estimators for the tail index

This chapter is based on |[ANSV].

we propose a class of weighted least squares estimators for the tail index of a distri-
bution function with a regularly varying upper tail. Our approach is based on the
method developed by Holan and McElroy (2010) for the Parzen tail index. We prove
asymptotic normality and consistency for the estimators under suitable assumptions.
Through a simulation study, these and earlier estimators are compared in the Pareto
and Hall models using the mean squared error as criterion. The results show that the

weighted least squares estimator is better than the other estimators investigated.

2.1 Introduction and main result

Let X, Xs,... be independent random variables with a common right-continuous
distribution function F', and for each n € N, let X;, <-.- < X, ,, denote the order
statistics pertaining to the sample Xy, ..., X,,. Let R, be the class of all distribution
functions F' such that 1 — F' is regularly varying at infinity with index —1/«, that is,

1—F(z)=27Y(z), 1<2< oo,



where / is some positive function on the half line [1, 00), slowly varying at infinity and
a > 0 is a fixed unknown parameter to be estimated. It is well known that F' € R,

if and only for some function L slowly varying at zero,
Q(l—s)=s“L(s), 0<s<l. 9)

The asymptotic normality of Hill estimator was first considered by Hall (1982)
[Hal82] in the following submodel of R,:

1 — F(x) =2 Y201 + Cox ™ P*{1 + 0o(1)}], as z — oo,
for some constants C; > 0 and Cs # 0. This is equivalent to
Q(1 —5) =5 “Di[l + Dys® {1 +0(1)}], s—0, (10)

where D; = C® and Dy = Cy/CY.
Following the idea of Holan and McElroy (2010) [HM10|, we assume that the
slowly varying function L in @ admits the truncated orthogonal series expansion

k=1

L(s) = exp {00 +2 zp: 0, COS(Q?T]{JS)} ,

where p > 0 is a fixed integer, and 6y, ..., 0, are unknown parameters. We suppose
that p < p, where p is a prespecified integer. The knowledge of p is not assumed,
condition p < p gives only an upper bound for p. It follows that

P
logQ(1 —s) = —alog s+ 6y + 2 Z 0y cos(2ks). (11)
k=1

Let @), be the empirical quantile function defined as

k—1 k
<s<—, k=1,2,...,n.
n n

Qn(s) = ka lf

Based on the representation , we obtain the regression equations

p
log Qn(1 —s;) = —alog s; + 6y + QZﬁk cos(2mks;) + €(s;),

k=1
where
£(s) = log(@n(1 = 5)/Q(1 = s)) (12)
is the residual process, s; = j/n, j = [nal,...,|nb], a < b are fixed constants taken

from the interval (0,1), and 6, = 0 for k > p. The value p is chosen by the statistician.
We propose a class of estimators for a using weighted least squares. We choose some
nonnegative weights of the form w;, = R(s;) with some weight function R. Set
gy = log Qul(l — 5,),

Y= (y[mﬂa e ,yLan)'7
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W .= diag(w[mﬂ,n, Ce ,wLanm),
and let X := [G*, Gy, 2G, . .., 2G|, where

G* — ( — log(s(na]), ey, log(sLan))
Gy = (COS(27T]€S[mﬂ), - ,COS(Q?T]{SLan)/, kE=0,...,p.

!/
Y

Set (5 := (o, 09,01, ...,05). By minimizing the weighted sum of squares

[nb] P
Z Wi (yj + alogs; — 6y — 2 Z 0 cos(27rksj))2,
[na) k=1

we obtain the following estimator of [5:
By = (X'WX) ' X'Wy.
Then the weighted least squares estimator of o can be written in the form

aW) = ¢l By = e, (X'WX) ' X' Wy, (13)

n

where e; is the p 4 2 dimensional vector defined as e; = (1,0,0,...,0)".

We assume the following conditions on the underlying distribution:

(@Q1) The distribution function F' is continuous and twice differentiable on (a*, b*),
where a* = sup{x: F(z) =0}, b* = inf{z: F(z) =1},—00 < a* < b* < oo and
f(z) == F'(x) # 0 on (a*,b*).

(Q2) SUPge cpap F(2)(1 = F(2))|f'(2)/ f*(2)] < o0
(Q3) sup;_peye1 o 1/|Q(s)] < 00, sSUPy_jeicy o 1/fQ(s) < 00 and
SUP| _p<s<1-q 1/ [[Q(8)Q(5)] < 0.

We show that the limit matrix M(a,b, R) := lim, o n 'X'WX exists. Let
(v*, v, ..., v5) be the first row of M(a,b, R)™", and set Gr(u) := R(u)( — v*logu +
vo + 23 %, v cos(2mku)) for u € (0,1).

Moreover, we suppose the following conditions:

(R) The weight function R is nonnegative and Riemann integrable on [a, b].
(M) The matrix M(a,b, R) is invertible.

Theorem 3. Assume that the conditions Q1 — Q3 are satisfied for the underlying
distribution and suppose that the quantile function (Q admits the representation .
Moreover, assume the conditions (R) and (M), and assume also that the percentiles
s; are chosen from a closed set U = [a,b], 0 < a < b < 1, such that s; = j/n,
j=|nal,...,|nb], and p <p. Then

V@™ — o) 25 N(0, V), (14)

where

B borb GR(S)GR(t)((l —s)AN(1—t)—(1—s)(1— t))
v ‘/a / Q1 — 5001 - 0fQ( — 97001 -1

9

dsdt. (15)



2.2 Asymptotics for p — oo

The estimation method proposed in previous section is heavily based on the assump-
tion p < p. However, Choosing p < p inflicts a bias. To overcome this difficulty, we
adjust our method to study asymptotics when p — oo. In this section our investiga-
tion is based on the following series expansion:

log L(s) ~ > Ohpi(s),
k=0

where

S S
(b—a)R(s)’

oi(s) = cos (wk

wo(s) =

s—a 1
b—a> (b—a)R(s)/2’ k=1,2,...,

and 0, = fab log L(x)¢r(z)R(z)dz. The sequence ppv/R, k = 0,1,..., is a complete
orthonormal system in L?[a,b]. For convenience, in this section we use the percentiles
55 = a—i—jb_T“, j=0,...,n—1. Similarly as in previous section, with y; := log Q,,(1 —
s;) and w;, = R(s;) define

!/
Y

Y = (y()a s 7yn—1)
W = diag(won, - - -, Wn-1n),
and let X := [G*, Gy, Gy, ..., G|, where

G* = ( —logsg,...,—log Sn—1)/, (16)
Gk = (9014(50),---,90]6(3”,1)),, k:(),,]g
Set )
7z
bp(s) :=log L(s) — Zek%(s)- (17)
k=0

Recall . Then we have

p
log Qn(1 —sj) = —alog s; + Z Orpr(sj) + b(s;) + £(s;).
k=1

By minimizing the weighted sum of squares

[nb] P
Z Win (yj + alog s; — Z 9k90k($j))2,
[na] k=0

we obtain the following estimator of a:
aW) = (X'WX) ' X'Wy.
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In order to formulate the result for &%W), we need the series expansion of the — log(+)

function: .
—logs ~ Z cji(s), (18)

=0
where ¢; = fab(—log z)pj(x)R(z)dx. We assume the following conditions on the

sequences p, 0, and c,:

(P) p— oo and p/n — 0.

(P,) For each n, 3(p+1)/n < 1.
(Ps) Y 25, ¢; — oo,

(

)
P4) Hn/cn — 0.

Theorem 4. Suppose the conditions (P1) — (Py) are satisfied. Then al" Ly q.

2.3 Simulation results

In order to make a comparison with existing proposals, simulations were done per-
formed by the Matlab software. The samples were generated from the strict Pareto
model L = 11in @ and from the Hall model . The Hill, Pickands, DEdH (Dekkers,
Einmahl and de Haan) and the weighted least squares (WLS) estimators were in-
cluded in the simulation study. We used the values n = 5000, a = 0.001, b = 0.4 and
p = 1,2,3, and the weight function R(s) = s/500 for the WLS estimator. In case
of R = 1, we refer to as ordinary least squares (OLS) estimator. The tail indexes
were chosen between 0.5 and 20. For the Hill, Pickands and DEdH estimators the
simulations were done for sample size n = 5000 and sample fraction size k, = 200.
All the simulations were repeated 1000 times.

Tables 4] and |5| contains the empirical mean square errors (MSE) and the average
simulated estimates (mean) for the strict Pareto model. We conclude that in the
submodel L =1 for all a values, the WLS estimator performs better than the other
estimators investigated.

Tables [0] and [7] presents the simulation results for the Hall model. Specifically, we
used the parameters D; = 0.4, Dy = 1 and § = 0.01. We see from Table [] that the
WLS estimator performs better than the other estimators, and the OLS estimator is
competitive with the Hill estimator especially for p = 3.

Given the values of [a, b], which determines the number of values taken from the
simulation data, we experimented with some expanding intervals to find an appro-
priate range, and we stop when we obtain reasonable stability of the estimator of a.
Figure [1] shows the tail index estimates for WLS approach for different values of (a)
for the Preto distribution with o = 1.8 (left panel) and the o = 5 (right panel), the
values of the remaining o with both Pareto distribution and Hall model give fairly

11



similar results. The results are almost stable when b=0.45 and (a) is very close to

zero, otherwise, the values start to scatter and

Table 4: Empirical mean square errors (MSE)
model and for sample size n = 5000.

move away from the true alpha value.

of tail index estimates for the Pareto

MSE

WLS

OLS

p=1

p=2

p=3

p=1

p=2

7=3

Hill

Pickands

DEdh

15

0.00049
0.001183
0.001756
0.002821

0.00451
0.006049
0.007639
0.017668
0.029136
0.047688
0.055014
0.071694
0.191172
0.402501
0.792631

0.000668
0.001572
0.002394
0.003826
0.006126
0.007993
0.010499
0.024202
0.040729
0.063472
0.076889
0.103854
0.262768
0.535825
1.095608

0.000945
0.002261
0.003668
0.005298
0.008397
0.011399
0.014921
0.034858
0.05895
0.096547
0.106532
0.141469
0.375258
0.802723
1.579634

0.00065

0.00161

0.002425
0.003641
0.005867
0.007694
0.010842
0.023523
0.03926

0.064079
0.074036
0.089924
0.233466
0.582015
0.996911

0.00098

0.002368
0.003697
0.005365
0.008671
0.011178
0.016055
0.034985
0.058641
0.094958
0.110494
0.129628
0.339353
0.884501
1.434474

0.001357
0.00325

0.005203
0.007366
0.01188

0.015334
0.022093
0.047931
0.080589
0.13097

0.151476
0.171023
0.45505

1.226799
1.916717

0.001172
0.003325
0.005457
0.007532
0.01052
0.016801
0.020194
0.044665
0.0807
0.114725
0.142506
0.173129
0.525182
1.169978
2.100758

0.017866
0.02146

0.024083
0.025102
0.03013

0.035497
0.034981
0.063986
0.094346
0.13557

0.16283

0.188113
0.558138
1.167519
1.981171

0.006558
0.008336
0.010687
0.01219
0.016092
0.021695
0.025421
0.049712
0.089062
0.121162
0.144236
0.175776
0.527627
1.176961
2.101663

Table 5: Average simulated tail index estimates (Mean) for
for the Pareto model.

sample size n = 5000 and

Mean

WLS

OLS

F=1

=2

7=3

F=1

=2

7=3

Hill

Pickands

DEdh

0.500964
0.801937
1.001483
1.201603
1.502324
1.805614
2.006075
3.004755
4.00635
5.007934
5.521636
6.010705
10.03551
15.00041
20.0481

0.501233
0.802524
1.001634
1.201804
1.502346
1.807831
2.008649
3.002857
4.009942
5.007172
5.523414
6.020936
10.0453
15.02029
20.05749

0.502571
0.803656
1.00246
1.202563
1.502635
1.808328
2.012745
3.007692
4.017468
5.011766
5.535038
6.035309
10.04212
15.05347
20.09294

0.503044
0.805577
1.005316
1.206612
1.509168
1.812501
2.016946
3.013462
4.028563
5.020999
5.54912

6.042542
10.06879
15.07633
20.11033

0.504023
0.807293
1.00711

1.208947
1.512328
1.815819
2.022076
3.017458
4.039037
5.027234
5.562017
6.057651
10.0851

15.11221
20.14008

0.505077
0.809021
1.009101
1.211492
1.515847
1.818663
2.026978
3.022898
4.049668
5.034629
5.576119
6.071267
10.099

15.14596
20.17114

0.501476
0.800238
1.001825
1.197918
1.501775
1.801355
2.004505
3.007171
3.985504
5.004943
5.498843
6.00263
9.997173
15.05984
20.01204

0.495427
0.801774
1.004785
1.195252
1.492907
1.80158
2.004395
3.002503
3.98685
5.012502
5.49632
6.012857
10.04161
15.02914
20.04928

0.489674
0.783686
0.98694
1.185589
1.485452
1.787262
1.988554
2.996076
3.966318
4.98503
5.48765
5.987134
9.981231
15.0449
19.99807

Table 6: Empirical mean square errors
model and for sample size n = 5000.

(MSE) of tail index estimates for the Hall

MSE

WLS

OLS

p=1

F=2

=3

p=1

p=2

p=3

Hill

Pickands

DEdh

ot

== O Ul Ot
= B

[

N

0.000495
0.001174
0.001749
0.002806
0.004482
0.005985
0.007566
0.017587
0.029026
0.04754

0.054727
0.071496
0.190659
0.402258
0.791792

0.000667
0.001552
0.002379
0.003801
0.006087
0.007897
0.010387
0.024119
0.040556
0.063301
0.076546
0.103502
0.262089
0.5353

1.094529

0.00092558
0.00222172
0.00363231
0.00525345
0.00834029
0.01127938
0.01474723
0.03469301
0.0586581

0.09626703
0.10602299
0.14091586
0.37450066
0.80169824
1.57797168

0.000632
0.00156

0.002374
0.003571
0.005763
0.007554
0.010648
0.023338
0.038909
0.063773
0.073448
0.089385
0.232588
0.580913
0.995368

0.000946
0.002292
0.003616
0.005259
0.008519
0.010987
0.015785
0.034725
0.058141
0.094531
0.109716
0.128878
0.338214
0.882852
1.432428

0.001306
0.003147
0.005088
0.007218
0.011673
0.015093
0.021747
0.047576
0.079932
0.130401
0.150488
0.170073
0.453664
1.2246

1.914136

0.001159
0.003306
0.00541
0.007516
0.010459
0.016721
0.020076
0.044474
0.08067
0.114477
0.142289
0.172846
0.524723
1.168656
2.099641

0.017902
0.02142

0.024003
0.025114
0.030153
0.035417
0.034877
0.063841
0.094312
0.135233
0.162625
0.187722
0.557207
1.166491
1.979735

0.00665892
0.00847904
0.01078627
0.01229618
0.01618835
0.02175322
0.02545883
0.04963012
0.08921482
0.12110866
0.14413155
0.17564752
0.52732507
1.17578666
2.10068457
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Table 7: Average simulated tail index estimates (Mean) for
for the Hall model.

sample size n = 5000 and

Mean
WLS OLS . .
a =1 5=2 =3 [5=1 =2 =3 Hill Pickands | DEdh
0.5 | 0.49603 0.496302 0.497636 | 0.498107 0.499084 0.500135 | 0.496567 | 0.490542 | 0.484814
0.8 0.797 0.79759  0.798724 | 0.800636 0.802349 0.804074 | 0.795342 | 0.796859 | 0.77882
1 0.996551  0.996707 0.997539 | 1.000382 1.002176 1.004164 | 0.996921 | 0.999856 | 0.982061
1.2 | 1.196672 1.196878 1.197643 | 1.201678 1.204011 1.206553 | 1.193032 | 1.190336 | 1.180723
1.5 | 1.497391  1.49742 1.497717 | 1.50423  1.507388 1.510903 | 1.496874 | 1.487989 | 1.480568
1.8 | 1.800674 1.802891 1.803397 | 1.807559 1.810876 1.81372 | 1.796457 | 1.796655 | 1.782377
2 2.001136 2.003709 2.007804 | 2.011997 2.017123 2.02202 | 1.999599 | 1.999456 | 1.98366
3 2.999823 2.997934 3.00277 | 3.008533 3.01253  3.017969 | 3.002265 | 2.99757 | 2.991178
4 4.001418 4.005012 4.012537 | 4.023621 4.03409  4.044716 | 3.980627 | 3.981932 | 3.961447
5 5.003001 5.002247 5.006845 | 5.016071 5.022308 5.029703 | 5.000043 | 5.007562 | 4.980135
5.5 | 5.516692 5.518475 5.530098 | 5.544169 5.557062 5.57116 | 5.493949 | 5.491392 | 5.482761
6 6.005772  6.016001 6.03037 | 6.037599 6.052704 6.066316 | 5.997733 | 6.007918 | 5.982241
10 | 10.03057 10.04036 10.03719 | 10.06385 10.08015 10.09406 | 9.99228 | 10.03666 | 9.97634
15 | 14.99548 15.01536 15.04854 | 15.07139 15.10728 15.14102 | 15.05493 | 15.0242 | 15.03999
20 |20.04316 20.05255 20.08801 | 20.1054  20.13515 20.16621 | 20.00714 | 20.04434 | 19.99317
24 T T 7 T T
[e¢] — WLS estimator of the Pareto distribution ‘ —— WLS estimator of the Pareto distribution
‘ﬁ' I 65 a=5

o

o
I3

3

»
w

IS

[
o

Average simulated estimates for a=5

Average simulated estimates for «

1 3
0 0.02 0.04 006 008 01 012 014 016 018 0.2 0 0.02 0.04 006 008 01 012 014 0.16 018
a a

0.2

Figure 1: Tail index estimates for WLS approach with Pareto distribution in (left
panel) from a = 1.8 and in (right panel) from «a = 5.

3 Application

The results presented in this chapter are based on [IAN20,IAND20].

we study the prevalence of the COVID-19 pandemic in Iraq and Egypt using a gener-
alised (SEIR) compartmental mathematical model, a logistic regression model, and a
simple Gaussian model. The extreme value theory approach for finding and modeling
Covid-19 peaks was studied, and one of the prime successes EVT is the return level
idea.

3.1 Forecast of the COVID-19 spread in Iraq and Egypt

The logistic growth takes the form:

B K
1+ bert’

C(t) (19)

where r > 0 is the rate of infection, K > 0 is the final epidemic size and b = Ka—OCO and
Cp is the initial population. Figure [2| shows the logistics growth model fitted to
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in (left panel) the cumulative number of infected cases from Iraq and in (right panel)
the cumulative number of infected cases from Egypt with parameters given in Table[§]

We note that the logistic model fitted the incidence data with a root mean square

o
T

x 10

5

EN
T

N
T

® Data ® Data

== Fitting results || m— Fitting results I

Cumulative confirmed cases in Iraq
[ w

— = 95%C.| ——95%Cl

Cumulative confirmed cases in Egypt
(2]

15/05/2020  15/08/2020  15/11/2020  15/02/2021
Egypt

. . 0
22/06/2020  22/10/2020 15/02/2020

Iraq

0
22/02/2020 22/02/2020  22/06/2021

Figure 2: The logistic model fitted to the cumulative number of infected cases in
Iraq (Left panel) and in Egypt (right panel).

error (RMSE) of 5,229.7, R? of 0.9981 for Iraq data and with (RMSE) of 1,924.4, R?
of 0.9980 for Egypt data, as shown in Tables[8 The logistic model gives a reasonable
good fit for both countries.

Table 8: Estimated parameter results of the logistics model (?7) to Iraq and Egypt.

Iraq Egypt
Parameters R = 1.0659 Cloos R = 1.0318 Ciloos
Estimated epidemic size K (cumulative cases) 490,900 (478300, 503500) 105,000 (104500, 105900)
Growth Rate r 0.03787 (0.03685,0.03889) 0.05634 (0.05546, 0.05721)
Estimated start of ending phase date 05/05/2021 04/11/2020
Goodness of fit (R?) 0.9981 0.9980
Root Mean Square Error (RMSE) 5,229.7 1,924.4

We employed a simple Gaussian model, to model the time-dependent daily change
of infections. Let I(t) denotes the time-dependent Gaussian function and takes the
following form:

1) = foe ()’

where Ip denotes the maximum value at time g and o controls the width. The
Gaussian model was fitted to data from Iraq and Egypt with reproduction numbers
1.0659 and 1.0318, respectively. Figure [3| shows the Gaussian model fitted to in (left
panel) the daily number of confirmed cases from Iraq, and in (right panel) the daily
number of confirmed cases from Egypt with parameters given in Table [0} The model
fits the actual data well with a root mean square error (RMSE) of 335.607, R? of
0.9614 for Iraq data and with (RMSE) of 110.33, R? of 0.9528 for Egypt data, as
listed in Tables [9l
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Figure 3: The Gaussian model fitted to the daily confirmed cases in Iraq (Left panel)
and in Egypt (right panel).

Table 9: Estimated parameter results of the Gaussian model to Iraq and Egypt.

Iraq Egypt
Parameters R=10659  Cloos  R=10318  Cloos
Estimated peak day cases I 4,254 (4161, 4347) 1,534 (1493,1574)
o 80.16  (74.62,85.69)  34.99  (33.94,36.04)
Estimated peak date 14/09/2020 16/06,/2020
Goodness of fit (R?) 0.9614 0.9528
Root Mean Square Error (RMSE)  335.607 110.33

3.2 Compartmental model for COVID-19 transmission

We spilt the human population into seven compartments: susceptible S(t), exposed
E(t), symptomatically infected I(¢), mildly infected I,,(t), treated H(t), recovered
individuals R(t), and D(t) is the individuals who lose their lives due to the COVID-19.
Hence, we consider the following SEIR model:

BeE(t) 4 B I (t) + 1,(t) + B H (1)

S'(t)= 5 N = D) S(t),
) — pBEO+ ﬂn;\{zgt)_ +D](St<)t) +BHO ¢ .

Il (t) = OVE(t) — opln(t) — ol (1), (20)
L(t) = (L= O)wE(t) + oly(t) — osL5(t) — 05 1,(t),

H'(t) = 0,1,(t) — o, H(t) — 6pH(t),

R'(t) = ol (t) + on H(t),

D'(t) = 8,1,(t) + S, H(2).

Figure (4| shows the model fitted to the daily number of confirmed cases in (left
panel) from Iraq, 22 February 2020 until 08 October 2020, and in (right panel) from
Egypt, 05 March 2020 until 08 October 2020. Our model gives a reasonable good fit
for both countries, predicting the peak in Iraq and showing the peak in Egypt. The
fitting parameter results are listed in Table [I0]
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Figure 4: The model fitted to the daily confirmed cases in (left panel) from Iraq
and in (right panel) from Egypt with parameters given in Table

Table 10: Parameters and fitted values of model in the case of Iraq and Egypt.

Value for Iraq Value for Egypt

Parameters Ro = 1.323 Ro = 111 Source
15} 0.753 0.56 Fitted
Be 0.082 0.053 Fitted
Bm 0.475 0.587 Fitted
B 0.2057 0.443 Fitted
0 0.778 0.875 Fitted
o 0.307 0.104 Fitted
O 0.3247 0.213 Fitted
Om 0.239 0.661 Fitted
op 0.446 0.508 Fitted
Os 0.127 0.131 Fitted
On, 0.298 0.268 Fitted
v 0.54 0.266 Fitted

3.3 Prediction of the second wave of the COVID-19 epidemic

We assume that the observations are independent and identically distributed with
common cdf F. For y > u, F(y) is estimated, by F(u) =1 — (,(1 — G(y — u)), where
G is the GPD and éu the empirical estimator of observations that exceed the threshold
u. The return level estimate is the level expected to be exceeded by the maximum of
n observations with probability 1 — « is estimated by §, of F (y)". If v # 0, we obtain
Uo as )

o = Zl(=(1— V) = 1 +u (21)

7 Cu

The mean excess function of X denote the mean residual life function is

e(u) =E(X —ul| X >u), 0<u<a. (22)

The generalized Pareto distribution (GPD) of two-parameter was used to model

exceedances over a threshold, the Maximum likelihood estimators was preferred, the
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Mean residual life function in Iraq Mean residual life function in Egypt
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Figure 5: Mean excess plot with threshold in Iraq and Egypt,2020.

estimated parameters are gamma, sigma of the GPD, where v = —0.616 and o =
686.19 for Iraq and v = —0.648 and ¢ = 316.796 for Egypt. Figure |5 shows pick the
suitable threshold u for infections, which are 4000 and 1300 for COVID-19 data in
Iraq and Egypt, respectively, which gave two corresponding observations: 35 and 37
over the threshold. Hence the estimate of the exceedance probability ¢, = 0.1003 for
Iraq and éu = 0.1039 for Egypt. Moreover, the mean excess plot with a downwards
sloping line indicated thin tailed behaviour with v < 0. We focus on estimate the
return level during the following year and the following two years with two value of
probability 0.1 and 0.01. These estimates were computed using Equation . The
results indicate that there is a possibility 0.1 that the infection cases will exceed 5083
once during the next year and 5107 within two years for Iraq, while in Egypt the
epidemic will exceed 1788 during the two years with probability 0.01, all results are
presented in table

Table 11: Estimated levels that the maximum of COVED-19 epidemic will exceed
with probability 0.1 and 0.01 for the one year and two years for Iraq and Egypt.

Probability One year Two year

(1—a) 0.1 0.01 0.1 0.01

Iraq 5083 5107 5094 5109

Egypt 1778 1787 1782 1788
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