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One of the most well-known nonlinear maps is the logistic

map [0, 1] 3 x 7→ ax(1 − x) ∈ R with parameter a > 0. In

this thesis we are studying the global stability of the delayed

version of the logistic map, more precisely we consider the

delayed logistic di�erence equation

xn+1 = axn(1− xn−d),

or equivalently the (d+ 1)-dimensional map

Fd : Rd+1 3 u =


u1

u2
...

ud+1

 7→


u2

u3
...

aud+1(1− u1)

 ∈ Rd+1,

where a > 0 and d ∈ N. The thesis is based on papers [1, 2]

of the author, where we study the cases d = 1 and d = 2,

respectively.

Despite the fact that we demonstrate our method only

on a speci�c equation, i.e., on the delayed logistic map, we

believe that it can be applied or extended to other similar

maps, for instance the Ricker map (see [3]) or the Pielou

map (see [4]). So the delayed logistic map can be considered

also as a case study for the method developed in the thesis,

since the whole argument could be repeated with slight and

straightforward modi�cations to the aforementioned maps as

well.
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It is well known that for a ∈ (0, 1] the origin is the

unique �xed point of Fd in [0, 1]d+1, which is locally sta-

ble and limn→∞ F
n
d (u) = 0 for every u ∈ [0, 1]d+1. For a > 1

a nontrivial �xed point uA = (A,A, . . . , A) with A = 1 − 1
a

appears in [0, 1]d+1. There exists an a0 > 1, depending on d

such that this �xed point is locally asymptotically stable for

a ∈ (1, a0), and unstable for a > a0. At a = a0 a Neimark�

Sacker bifurcation takes place. We show that the following

conjecture is true for d ∈ {1, 2}.

Conjecture. The nontrivial �xed point uA is locally stable

and lim
n→∞

F n
d (u) = uA for a ∈ (1, a0] and u ∈ Sd, where

Sd =
{
u ∈ [0, 1)d × (0, 1) : akud+1

k∏
j=1

(1− uj) < 1,

k ∈ {1, 2, . . . , d}
}
.

Here, Sd contains exactly those (x1, x2, . . . , xd+1) ∈ Rd+1
+

for which xn > 0 for every n > d+1. The conjecture can be

formulated so that local stability implies global stability for

the �xed point uA. This is satis�ed for several problems, see

e.g., [5, 6, 4, 3, 7], but it is not true in general, see e.g., [8].

For smaller parameter values, more precisely for a ∈(
1, d+2

d+1

]
with d = 1 and d = 2 we give purely analyti-

cal proofs of the conjecture. However, in the main part

of the thesis, for larger a the proof of the global stability

is a combination of analytical and rigorous computer-aided
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tools. First, we construct analytically an attracting neigh-

borhood M of the nontrivial �xed point uA, i.e., we show

that lim
n→∞

F n
d (u) = uA for every u ∈ M. Then, by applying

reliable numerical tools, it is shown that for every u ∈ Sd

the iterates F n
d (u) eventually enter M, i.e., there exists an

n0 = n0(u) such that F n0
d (u) ∈ M. Consequently, all points

of Sd belong to the region of attraction of uA. Here, reliable

means that all possible numerical errors are controlled by us-

ing interval arithmetic techniques. Therefore, the computer-

assisted part also provides mathematically rigorous state-

ments.

As a �rst approach to construct an attracting neighbor-

hood around uA we use a standard linearization technique for

parameter values further from a0. However, the attracting

neighborhood obtained via linearization shrinks to the �xed

point as a tends to a0. Therefore, for parameter values a

close to a0 this neighborhood is not big enough for computer

use in the second part of the method and we need another

approach to construct an attracting neighborhood for these

parameter values.

For parameter values a < a0 close to a0 we use the normal

form of the Neimark�Sacker bifurcation. More precisely, in

case d = 1, with smooth and invertible maps we transform

the map into the form

w 7→ λw + c1w
2w +R2,
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where c1 is the Lyapunov-coe�cient and R2 = O (|w|4) de-
notes the higher-order terms. Then we show that there exists

a ρ0 > 0 such that

∣∣λw + c1w
2w +R2

∣∣ < |w|
for every w ∈ C with 0 < |w| ≤ ρ0, which guaratees that Bρ0

is inside the attracting neighborhood. Since we need the size

of the constructed neighborhood M for computer use, it is

not enough to determine only the lower-order terms during

the normal form transformation, like we would do in a regular

bifurcation analysis. These lower-order terms only assure the

existence of such a su�ciently small neighborhood, whose

size is not explicitly determined by them. Therefore, it is

essential during the transformation to trace the higher-order

terms and to estimate them as well as possible, in order to

obtain a su�ciently big neighborhoodM.

For the case d = 2 our aim is to adapt the Neimark�

Sacker bifurcational normal form technique. However, we

need new ideas, since F3(u) is three-dimensional, and thus

the adaptation of the method is not that straightforward.

The novelty of this thesis is an explicit construction of a rel-

atively large attracting neighborhood of the nontrivial �xed

point of the three-dimensional logistic map by using center

manifold techniques and the Neimark�Sacker bifurcational

normal form.

To this end we carry out an approximate version of the
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center manifold reduction. We consider the fourth-order

polynomial approximation φ(z) of the center manifold and

the set

T (r, C) = {(z, y) ∈ C× R : |z| ≤ r, |y − φ(z)| ≤ C|z|5}

around y = φ(z), where r and C are some positive constants.

The appropriate shape of T (r, C) assures the adaptability of

the two-dimensional technique to higher dimension.

First, we investigate the y-directional dynamics in T (r, C).

Using the property that solutions close to the �xed point

decay exponentially to the center manifold we show that

T (r, C) is conditionally invariant in direction y. After that

the z-directional dynamics in T (r, C) is investigated by us-

ing the Neimark�Sacker bifurcational normal form technique.

Exploiting the special shape of T (r, C) we can show that in

an appropriate coordinate system the transformed z coor-

dinate is strictly decreasing during the iteration, similar to

the two-dimensional case. Finally, combining the y- and z-

directional dynamics, we obtain that T (r, C) is inside the

region of attraction of the �xed point.

However, T (r, C) is clearly not a proper neighborhood of

the origin in C× R. Therefore, we de�ne the set

T̃ (r̂, K) = {(z, y) ∈ C× R : |z| ≤ r̂, |φ(z)− y| ≤ K}

for some r̂ > 0 and K > 0. By using the exponential y-
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directional attractivity of T (r, C) we show that T̃ (r̂, K) is

also in the region of attraction of the �xed point. So this

proper neighborhood can be used in the second part of the

method.

Finally, we describe the computer-assisted part of our

method for d = 1 and d = 2, respectively. We associate

the delayed logistic map with a directed graph re�ecting the

behavior of the map up to a given resolution. More pre-

cisely, we cover Sd with �nitely many (d + 1)-dimensional

small cubes. Considering these cubes as vertices of a graph

we introduce a directed graph, which, to a certain extent,

describes the behavior of map Fd on these cubes. Therefore,

we convert the issue of examining in�nitely many points into

a �nite graph problem, which can be handled by computer.

To construct the edges of this graph we use reliable numer-

ical methods in order to handle the rounding errors of the

computer. We show with the help of this graph that the

iterates of every point from Sd enter the neighborhood con-

structed before, and the proof of Conjecture is completed for

d ∈ {1, 2}.
As some �nal remarks we emphasize that the computa-

tional part is more and more compute-intensive and time-

consuming as we get closer to the �xed point, so it is of cru-

cial importance to construct with analytical tools a neigh-

borhood which is relatively large. On the other hand the

analytical part becomes more and more cumbersome as we

aim to obtain higher precision during the estimations and
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there is an upper limit to analytically obtainable size of the

attracting neighborhood which cannot be exceeded. More-

over, in higher dimension it is also essential to choose r and

C (where the one can be enlarged only at the expense of the

other) in T (r, C) appropriately since they also have a great

impact on the speed of the computer-aided part.

Note that the aforementioned Ricker and Pielou maps

with delay d = 2 essentially di�er only in that they are not

polynomial maps. Hence, only a slight modi�cation would

be necessary in the estimations. However, the main question

is whether the analytically obtained neighborhood is large

enough for the computer-aided part of the method. These

two maps along with the logistic map would also be interest-

ing for larger delay, i.e., d > 2. We believe that the analyti-

cal part could be extended using only natural modi�cations.

However, the computer-aided part can be critical in these

cases, since the increasing dimension causes an exponentially

growing graph.

It also would be interesting to prove the existence of the

unique invariant closed curve around the nontrivial �xed

point for parameter values larger than the critical value.

However, this question is substantially di�erent from the one

studied in this thesis.
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