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1 Introduction

The thesis is about the limit behavior of the temporal and contempora-
neous aggregates of certain branching processes. Aggregates, also known as
partial sums, are well-known to be very important in stochastics. All of the
chapters of the thesis deal with this question, either for different processes,
different manners regarding the convergence (iterated, simultaneous), or dif-
ferent centralizations.

Chapter 1 contains an introduction where we explain the goal of the thesis,
the historical background of the studied topic, along with an overview of the
work. In the following paragraph we specify the scheme of aggregation that
we use.

The aggregation problem is concerned with the relationship between in-
dividual (micro) and aggregate (macro) behavior. In general, we consider
independent copies of a stationary branching process, we denote these by
(X

(j)
k )k∈N, j ∈ N, where N := {1, 2, . . . }. We are interested in the limit be-

havior of the aggregate process
(∑N

j=1

∑bntc
k=1 X

(j)
k

)
t∈[0,∞)

, as both n, the

time parameter, and N , the number of copies tend to infinity in some man-
ner. If we take the limits in an iterated manner, i.e., first n tends to infinity
and then N tends to infinity, or vice versa, then the resulting limit theorem
is called an iterated one. If both converge to infinity at the same time, then
it is called a simultaneous limit theorem. To achieve such limit theorems, we
also consider the simple aggregates,

∑n
k=1X

(j)
k , which is called temporal

(or time-aggregated), and
∑N
j=1X

(j)
k , which is called contemporaneous (or

space-aggregated).
Let us recall the most important antecedents of the work presented in this

thesis. The scheme of contemporaneous aggregation of random coefficient au-
toregressive processes of order 1 (AR(1)) was firstly proposed by the Nobel
prize winner Clive W. J. Granger [5] in order to obtain the long memory phe-
nomena in aggregated time series. In a series of papers, Donatas Surgailis and
his co-authors studied the aggregation of random coefficient AR(1) processes,
where (X

(j)
k )k∈Z+:={0,1,... }, j ∈ N, are independent copies of a stationary

random coefficient AR(1) process

Xk = aXk−1 + εk, k ∈ N,

with standardized independent and identically distributed (i.i.d.) innovations
(εk)k∈N and a random coefficient a with values in (0, 1), being independent
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of (εk)k∈N and admitting a probability density function of the form

ψ(x)(1− x)β , x ∈ (0, 1),

where β ∈ (−1,∞) and ψ is an integrable function on (0, 1) having a
limit limx↑1 ψ(x) := ψ1 ∈ (0,∞). In the paper Pilipauskaitė and Surgailis [7]
both iterated and simultaneous limit theorems were presented concerning the
limit behavior of the aggregate process

(∑N
j=1

∑bntc
k=1 X

(j)
k

)
t∈[0,∞)

.

Our aim is to provide such results when branching processes take the
place of the random coefficient AR(1) model explained before. These processes
are widely applicable as they can model integer-valued phenomena, such as
migration and the spreading of contagious diseases like COVID-19. These
possible applications are more thoroughly detailed in Chapter 2 of the thesis.

2 Limit theorems for the aggregation of multi-
type Galton–Watson branching processes
with immigration

Chapter 2 is devoted to the investigation of the aggregates of multitype
Galton–Watson processes with immigration. The proofs of Chapter 2 are
based on the paper Barczy et al. [3].

The p-dimensional process (Y k = [Yk,1, . . . , Yk,p]
>)k∈Z+

, where p ∈ N,
is a p-type Galton–Watson branching process with immigration if

Y k =

Yk−1,1∑
`=1


ξ

(1,1)
k,`
...

ξ
(1,p)
k,`

+ · · ·+
Yk−1,p∑
`=1


ξ

(p,1)
k,`
...

ξ
(p,p)
k,`

+


ε

(1)
k
...
ε

(p)
k

 =

p∑
i=1

Yk−1,i∑
`=1

ξ
(i)
k,` + εk

for every k ∈ N, where we define
∑0
`=1 := 0, and

{
Y 0, ξ

(i)
k,`, εk : k, ` ∈

N, i ∈ {1, . . . , p}
}

are independent Zp+-valued random vectors. Moreover, for
all i ∈ {1, . . . , p}, {ξ(i), ξ

(i)
k,` : k, ` ∈ N} and {ε, εk : k ∈ N} consist of

identically distributed random vectors, respectively. We suppose that

E(ξ(i)) ∈ Rp+, i ∈ {1, . . . , p}, mε ∈ Rp+ \ {0},
%(Mξ) < 1, Mξ is primitive,

where R+ := [0,∞), mε := E(ε) ∈ Rp+, Mξ := E
([
ξ(1), . . . , ξ(p)

])
∈ Rp×p+ ,

and %(Mξ) is the spectral radius of the matrix Mξ. Then a unique stationary
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distribution exists. We choose that as the distribution of Y 0, resulting that
the considered process is strictly stationary. Then we take independent copies,
(Y

(j)
k )k∈Z+

, j ∈ N, of this process. For each N,n ∈ N, we consider the
stochastic process S(N,n) = (S

(N,n)
t )t∈R+ given by

S
(N,n)
t :=

N∑
j=1

bntc∑
k=1

(Y
(j)
k − E(Y

(j)
k )), t ∈ R+.

Let us define the matrix

V := (Vi,j)
p
i,j=1 :=

(
v>(i,j)

[
(Ip −Mξ)

−1mε

1

])p
i,j=1

∈ Rp×p,

where Ip denotes the p-dimensional identity matrix, provided that the
covariances

v(i,j) :=
[
Cov(ξ(1,i), ξ(1,j)), . . . ,Cov(ξ(p,i), ξ(p,j)),Cov(ε(i), ε(j))

]> ∈ R(p+1)×1

for i, j ∈ {1, . . . , p}, are finite. Now we present the main results of this chapter
of the thesis. Note that Df -lim means the convergence of finite dimensional
distributions.

Theorem 2.1. If all entries of the vectors ξ(i), i ∈ {1, . . . , p}, and ε have
finite second moments, then

Df- lim
n→∞

Df- lim
N→∞

(nN)−
1
2S(N,n) = (Ip −Mξ)

−1V
1
2B,

where B = (Bt)t∈R+ is a p-dimensional standard Brownian motion.
If all entries of the vectors ξ(i), i ∈ {1, . . . , p}, and ε have finite third

moments, then

Df- lim
N→∞

Df- lim
n→∞

(nN)−
1
2S(N,n) = (Ip −Mξ)

−1V
1
2B,

where B = (Bt)t∈R+
is a p-dimensional standard Brownian motion.

Theorem 2.2. If all entries of the vectors ξ(i), i ∈ {1, . . . , p}, and ε have
finite third moments, then

(nN)−
1
2S(N,n) D−→ (Ip −Mξ)

−1V
1
2B,

if both n and N converge to infinity (at any rate), where B = (Bt)t∈R+

is a standard p-dimensional Brownian motion.
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The proofs of these theorems rely on the multidimensional central limit
theorem and the functional martingale central limit theorem.

Among others, we also discuss these results in the special case of integer-
valued autoregressive processes of order 1 (INAR(1)) with Poisson innova-
tions. These are one-dimensional Galton–Watson processes with immigration
where the offsprings have Bernoulli distribution with parameter α ∈ (0, 1)

and the immigrations have Poisson distribution.
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3 Iterated limit theorems for the aggregation of
randomized INAR(1) processes with Poisson
innovations

In Chapters 3 and 4 we consider a certain randomized INAR(1) process
(Xk)k∈Z+ with randomized thinning parameter α, given formally by the
recursive equation

Xk =

Xk−1∑
`=1

ξk,` + εk = α ◦Xk−1 + εk, k ∈ N,

where ◦ is the so-called Steutel and van Harn thinning operator, α is a
random variable with values in (0, 1) and X0 is some appropriate random
variable. This means that, conditionally on α, the process (Xk)k∈Z+

is an
INAR(1) process with thinning parameter α, i.e., conditionally on α, the
offsprings, (ξk,`)k,`∈N, have Bernoulli distribution with parameter α. Con-
ditionally on α, the i.i.d. innovations (εk)k∈N have a Poisson distribution
with parameter λ ∈ (0,∞), and the conditional distribution of the initial
value X0 given α is the unique stationary distribution, namely, a Poisson
distribution with parameter λ/(1 − α). In Chapter 3 we provide a rigor-
ous construction of this process. For the desired iterated and simultaneous
limit theorems we assume that the random parameter α admits a mixing
distribution having a probability density of the form

ψ(x)(1− x)β , x ∈ (0, 1),

where ψ is a function on (0, 1) having a limit limx↑1 ψ(x) = ψ1 ∈ (0,∞).
Note that necessarily β ∈ (−1,∞) (otherwise

∫ 1

0
ψ(x)(1 − x)β dx = ∞),

and the function (0, 1) 3 x 7→ ψ(x) is integrable on (0, 1). The Beta
distribution is a special case of this form. Certain ◦ operators, where the
summands are random parameter Bernoulli distributions with a parameter
having Beta distribution, appear in catastrophe models. Moreover, Clive W.
J. Granger used the square root of a Beta distribution as a mixing distribution
for random coefficient AR(1) processes.

Chapter 3 contains an exhaustive list of iterated limit theorems related to
the aggregates in multiple manners. In Chapter 3 the proofs are based on the
papers Nedényi and Pap [6] and Barczy et al. [1].

We consider three different aggregate processes regarding the central-
ization: S̃(N,n) := (S̃

(N,n)
t )t∈R+ , S(N,n) := (S

(N,n)
t )t∈R+ and Ŝ(N,n) :=
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(Ŝ
(N,n)
t )t∈R+

for each N,n ∈ N, with

S̃
(N,n)
t :=

N∑
j=1

bntc∑
k=1

(X
(j)
k − E(X

(j)
k |α

(j))),

where we center with the conditional expectation with respect to the random
parameter belonging to the corresponding process,

S
(N,n)
t :=

N∑
j=1

bntc∑
k=1

(X
(j)
k − E(X

(j)
k )),

where we center with the expectation (note that this only exists for β > 0),
and

Ŝ
(N,n)
t :=

N∑
j=1

bntc∑
k=1

(
X

(j)
k −

∑n
`=1X

(j)
`

n

)
,

where we center with the empirical mean of the first n observations for
the corresponding process in order to provide a well-applicable, observable
alternative. As there are two different approaches to iterated limit theorems
(n → ∞ and then N → ∞ or vice versa), and we have different limit
theorems for different ranges of the parameter β, this chapter contains
many limit theorems.

The next four results are limit theorems for appropriately scaled versions
of S̃(N,n), first taking the limit N → ∞ and then n → ∞ in the case
β ∈ (−1, 1].

Theorem 3.1. If β ∈ (−1, 0), then

Df- lim
n→∞

Df- lim
N→∞

n−1N−
1

2(1+β) S̃(N,n) = (V2(1+β)t)t∈R+ ,

where V2(1+β) is a symmetric 2(1+β)-stable random variable (not depending
on t) with characteristic function

E(eiθV2(1+β)) = e−Kβ |θ|
2(1+β)

, θ ∈ R,

where

Kβ := ψ1

(
λ

2

)1+β
Γ(−β)

1 + β
.

Theorem 3.2. If β = 0, then

Df- lim
n→∞

Df- lim
N→∞

n−1(N logN)−
1
2 S̃(N,n) = (Wλψ1

t)t∈R+
,

where Wλψ1 is a normally distributed random variable with mean zero and
with variance λψ1.
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The proofs of Theorems 3.1 and 3.2 rely on a lemma that was developed for
this research, which helps us prove the convergence of characteristic functions.

For β ∈ (0, 2), let (B1− β2
(t))t∈R+

denote a fractional Brownian motion
with parameter 1 − β/2, that is a Gaussian process with zero mean and
covariance function

Cov(B1− β2
(t1),B1− β2

(t2)) =
t2−β1 + t2−β2 − |t2 − t1|2−β

2
, t1, t2 ∈ R+.

Theorem 3.3. If β ∈ (0, 1), then

Df- lim
n→∞

Df- lim
N→∞

n−1+ β
2N−

1
2 S̃(N,n) =

√
2λψ1Γ(β)

(2− β)(1− β)
B1− β2

.

For the proof of Theorem 3.3 we apply Theorem 4.3 of Beran et al. [4],
which is about convergence of partial sums of a Hermite function of a sta-
tionary sequence of standard normal random variables.

Theorem 3.4. If β = 1, then

Df- lim
n→∞

Df- lim
N→∞

(n log n)
− 1

2N−
1
2 S̃(N,n) =

√
2λψ1B,

where B = (Bt)t∈R+
is a standard Wiener process.

For the proof of Theorem 3.4 we use that in case of zero mean Gaussian
processes, to prove their convergence in distribution, the convergence of their
covariance functions has to be shown.

The next two results are limit theorems for an appropriately scaled version
of S̃(N,n), first taking the limit n → ∞ and then N → ∞ in the case
β ∈ (−1, 1].

Theorem 3.5. If β ∈ (−1, 1), then

Df- lim
N→∞

Df- lim
n→∞

N−
1

1+β n−
1
2 S̃(N,n) = Y1+β ,

where Y1+β =
(
Y1+β(t) :=

√
Y(1+β)/2Bt

)
t∈R+

, and Y(1+β)/2 is a pos-

itive 1+β
2 -stable random variable with Laplace transform E(e−θY(1+β)/2) =

e−kβθ
1+β
2 , θ ∈ R+, with

kβ :=
(2λ)

1+β
2 ψ1

1 + β
Γ

(
1− β

2

)
,

and (Bt)t∈R+ is an independent standard Wiener process. The process Y1+β

has (1 + β)-stable one-dimensional distributions and stationary increments.
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Again, the proof of Theorem 3.5 relies on our lemma mentioned before
like those of Theorems 3.1 and 3.2.

Theorem 3.6. If β = 1, then

Df- lim
N→∞

Df- lim
n→∞

n−
1
2 (N logN)

− 1
2 S̃(N,n) =

√
λψ1B,

where B = (Bt)t∈R+ is a standard Wiener process.

For the proof of Theorem 3.6 we apply Theorem 7.1 of Resnick [8], which
is about weak convergence of partial sum processes for a triangular array
towards a Lévy process.

Next we show an iterated scaling limit theorem where the order of the
iteration can be arbitrary in the case β ∈ (1,∞). This theorem completes
the list of results concerning S̃(N,n).

Theorem 3.7. If β ∈ (1,∞), then

Df- lim
n→∞

Df- lim
N→∞

(nN)−
1
2 S̃(N,n) = Df- lim

N→∞
Df- lim

n→∞
(nN)−

1
2 S̃(N,n) = σB,

where σ2 := λE((1 + α)(1 − α)−2) and (Bt)t∈R+
is a standard Wiener

process.

We note that for β > 1 the parameter σ is finite. Again, the proof of
Theorem 3.7 relies on checking the convergence of the covariance functions of
Gaussian processes, and the multidimensional central limit theorem.

Now we present our results for the aggregate process S(N,n). These are the
counterparts of Theorems 3.3, 3.4, 3.5, 3.6 and 3.7. Note that the expectation
E(X0) = E

(
λ

1−α
)

is finite if and only if β > 0, so Theorems 3.1 and 3.2 can
not have counterparts in this sense.

Theorem 3.8. If β ∈ (0, 1), then

Df- lim
n→∞

Df- lim
N→∞

n−1N−
1

1+β S(N,n) = Df- lim
N→∞

Df- lim
n→∞

n−1N−
1

1+β S(N,n)

=
(
Z1+β t

)
t∈R+

,

where Z1+β is a (1 +β)-stable random variable with characteristic function
E(eiθZ1+β ) = e−|θ|

1+βωβ(θ), θ ∈ R, where

ωβ(θ) :=
ψ1Γ(1− β)λ1+β

−β(1 + β)
e−iπ sign(θ)(1+β)/2, θ ∈ R.
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Note that the following theorem was developed for the thesis, it has not
appeared in any of our papers.

Theorem 3.9. If β = 1, then there exists a sequence (aN )N∈N such that√
N/aN = o(1) as N →∞ (meaning that limN→∞

√
N/aN = 0) and

Df- lim
n→∞

Df- lim
N→∞

n−1a−1
N S(N,n) = Df- lim

N→∞
Df- lim

n→∞
n−1a−1

N S(N,n)

= (W t)t∈R+ ,

where W is a standard normally distributed random variable.

Theorem 3.10. If β ∈ (1,∞), then

Df- lim
n→∞

Df- lim
N→∞

n−1N−
1
2S(N,n) = Df- lim

N→∞
Df- lim

n→∞
n−1N−

1
2S(N,n)

= (Wλ2 Var((1−α)−1) t)t∈R+
,

where Wλ2 Var((1−α)−1) is a normally distributed random variable with mean
zero and with variance λ2 Var((1− α)−1).

In the proofs of Theorems 3.8, 3.9 and 3.10 we show that some random
variables are in the domain of attraction of a stable or normal distribution.
Note that in case of Theorems 3.1, 3.2, 3.8, 3.9 and 3.10 the limit processes
are lines with random slopes.

Lastly, we present the limit theorems concerning the aggregate process
Ŝ(N,n). First we observe that

Ŝ
(N,n)
t =

N∑
j=1

bntc∑
k=1

[
X

(j)
k − E(X

(j)
k |α

(j))−
∑n
`=1(X

(j)
` − E(X

(j)
` |α(j)))

n

]

= S̃
(N,n)
t − bntc

n
S̃

(N,n)
1

for every t ∈ R+. Therefore, by Theorems 3.3, 3.5, 3.4, 3.6, and 3.7, using
Slutsky’s lemma, the following limit theorems hold. Note that the two results
of the following corollary which hold when β = 1 have not been published
before.

Corollary 3.11. If β ∈ (0, 1), then

Df- lim
n→∞

Df- lim
N→∞

n−1+ β
2N−

1
2 Ŝ(N,n)

=

√
2λψ1Γ(β)

(2− β)(1− β)

(
B1− β2

(t)− tB1− β2
(1)
)
t∈R+

,
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where the process B1− β2
is given before Theorem 3.3.

If β ∈ (−1, 1), then

Df- lim
N→∞

Df- lim
n→∞

N−
1

1+β n−
1
2 Ŝ(N,n) = (Y1+β(t)− tY1+β(1))t∈R+

,

where the process Y1+β is given in Theorem 3.5.
If β = 1, then

Df- lim
n→∞

Df- lim
N→∞

(n log n)
− 1

2N−
1
2 Ŝ(N,n) =

√
2λψ1(Bt − tB1)t∈R+

,

moreover,

Df- lim
N→∞

Df- lim
n→∞

n−
1
2 (N logN)

− 1
2 Ŝ(N,n) =

√
λψ1(Bt − tB1)t∈R+

,

where B = (Bt)t∈R+
is a standard Wiener process.

If β ∈ (1,∞), then

Df- lim
n→∞

Df- lim
N→∞

(nN)−
1
2 Ŝ(N,n) = Df- lim

N→∞
Df- lim

n→∞
(nN)−

1
2 Ŝ(N,n)

= σ(Bt − tB1)t∈R+
,

where σ2 is given in Theorem 3.7 and B = (Bt)t∈R+
is a standard Wiener

process.

In Corollary 3.11, the limit processes restricted on the time interval [0, 1]

are bridges in the sense that they take the same value (namely, 0) at the time
points 0 and 1, and especially, in case of β ∈ (1,∞), it is a Wiener bridge.
We note that no counterparts appear for the rest of the theorems because
in those cases the limit processes are lines with random slopes, which result
the constant zero process in this alternative case. In case of β ∈ (−1, 0],
by applying some smaller scaling factors, one could try to achieve a non-
degenerate weak limit of Ŝ(N,n) by first taking the limit N →∞ and then
that of n→∞.

To sum up the results of this chapter, let us point out that the scaling
of the processes becomes heavier as the parameter β decreases, since the
finiteness of the first and second moments of the stationary distribution of
the randomized INAR(1) process depends on this parameter. Also, it is inter-
esting that in most of the cases the two different orders of iteration result in
significantly different limit theorems as the scaling factors and limit processes
differ.
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4 Simultaneous limit theorems for the aggrega-
tion of randomized INAR(1) processes with
Poisson innovations

In Chapter 4 two simultaneous limit theorems are presented. The proofs
of Chapter 4 are based on the paper Barczy et al. [2] that has been submitted
to a journal.

Contrary to the iterated limit theorems, the list of the simultaneous ones
is not complete, some cases remain for future work. We have the following two
simultaneous results. To represent the connection between the two parameters
n and N , we will use a sequence Nn, n ∈ N, instead of the parameter
N , and the theorems will be given as n tends to infinity, which will always
imply that Nn, n ∈ N, tends to infinity as well.

Theorem 4.1. If β ∈ (−1, 0), then

n−1N
− 1

2(1+β)
n S̃(Nn,n) Df−→ (V2(1+β)t)t∈R+

as n→∞ and N
−β
1+β
n n−1 →∞, where V2(1+β) is a symmetric 2(1 + β)-

stable random variable (not depending on t) with characteristic function

E(eiθV2(1+β)) = e−Kβ |θ|
2(1+β)

, θ ∈ R,

where Kβ = ψ1(λ2 )1+β Γ(−β)
1+β .

We note that Theorem 4.1 can be considered as a counterpart of Theorem
3.1. The scaling factors and the limit processes coincide in these two theorems.

Theorem 4.2. If β = 0, then

n−1(Nn logNn)−
1
2 S̃(Nn,n) Df−→ (Wλψ1

t)t∈R+

as n→∞ and (logNn)2n−1 →∞, where Wλψ1 has a normal distribution
with mean 0 and variance λψ1.

We note that Theorem 4.2 can be considered as a counterpart of Theorem
3.2. The scaling factors and the limit processes coincide in these two theorems.

The proofs of these limit theorems are based on our lemma developed for
this research, which is a counterpart of the one applied for the iterated limit
theorems. We plan to handle the remaining cases as future work which will
require a different proof technique.

11



References

[1] M. Barczy, F. Nedényi, and G. Pap. Iterated limits for aggregation of
randomized INAR(1) processes with Poisson innovations. J. Math. Anal.
Appl., 451(1):524–543, 2017.

[2] M. Barczy, F. Nedényi, and G. Pap. On simultaneous limits for aggre-
gation of stationary randomized INAR(1) processes with Poisson innova-
tions. arXiv: 2001.07127, 2020.

[3] M. Barczy, F. K. Nedényi, and G. Pap. On aggregation of multitype
Galton-Watson branching processes with immigration. Mod. Stoch. The-
ory Appl., 5(1):53–79, 2018.

[4] J. Beran, Y. Feng, S. Ghosh, and R. Kulik. Long-memory processes. Prob-
abilistic properties and statistical methods. Springer, Heidelberg, 2013.

[5] C. W. J. Granger. Long memory relationships and the aggregation of
dynamic models. J. Econometrics, 14(2):227–238, 1980.

[6] F. Nedényi and G. Pap. Iterated scaling limits for aggregation of random
coefficient AR(1) and INAR(1) processes. Statist. Probab. Lett., 118:16–
23, 2016.
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