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Chapter 1

Introduction

This dissertation seeks to study some classes of subfield subcodes of Hermitian codes.

These papers [EKN19; EKN20] present the results of our research that aims at revealing

the properties and the structure of the underlying classes of codes. Furthermore, we

intend to examine the potential of this class of codes to improve the practicality of

the McEliece cryptosystem. The problems we treat belong to coding theory and their

applications to cryptography. They have a common aspect, which is security that refers

to code-based cryptography. Here, we briefly introduce the preliminaries and the topics

with a short history that describes the main results.

The result of the paper [EKN19] is discussed in chapter 3 which is about the proof of

the true dimension of Hermitian subfield subcodes for specific parameters. Finding the

true dimension of the subfield subcodes of linear codes was studied by many researchers

who tried to improve the general bound of the dimension to obtain a code with a large

dimension and minimum distance. We only present this problem for the class of Goppa

codes in chapter 2. The solution to this problem allows us to find out more facts about

the class of codes and which can later lead to further research.

In chapter 4, we rely on the paper [EKN20] which deals with the problem of approximat-
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ing the true dimension of subfield subcodes of Hermitian codes by an explicit formula.

We describe the statistical set up to tackle the experimental study to analyze the datasets

of the true dimension of different subfield subcodes of Hermitian codes. The datasets

were computed using our GAP package HERmitian [NEK19]. Based on adjusting the dis-

tribution to the underlying datasets using the method fitmethis of MATLAB [TM19;

Cas20], we found that the extreme value distribution is the most suitable one.

Chapter 5 is dedicated to applying subfield subcodes of Hermitian codes in cryptography

in which we precisely suggest the mentioned class of codes for McEliece cryptosystem.

Mainly, we give a formula of the public key size in terms of the code rate using the result

of the paper [EKN20], see also chapter 4. We describe an overview of post-quantum

cryptography in which code-based cryptography is part of, representing the central area

of applications concerning coding theory. This overview shows the importance of design-

ing cryptographic schemes that can resist post-quantum attacks since the presence of

quantum computer threatens the so-called classical cryptography. All cryptosystems are

based on a computationally hard problem such as integer factorization (RSA), or discrete

logarithm problem (ECC, ElGamal).



Chapter 2

Preliminaries

2.1 Error-correcting codes

In the last decades, there has been a huge need for reliable digital data transmission

and storage systems. This need has grown thanks to the appearance of high-speed data

networks for the interchange, the treatment and the storage of digital information in

both the public and private sectors. It is necessary to incorporate communications and

computer technology to design such systems. Obtaining a reliable data reproduction can

be done by controlling the occurred errors which is the major aims of a designer.

In 1948, Shannon introduced a mathematical framework to describe communication chan-

nels with or without errors. In his famous paper [LC01], Shannon demonstrated the

existence of encoding and decoding schemes. This work was to some extent inspired by

Ludwig Boltzmann’s work in statistical physics. Hamming gave the idea of detecting

and correcting errors. It was a consequence of resolving the problem when his computer

came to turn off every time it detected an error. Shannon’s Second Theorem concerns

channel coding. In other words, it adds extra information to a message that is intended

to be sent in a noisy channel which protects it against transmission errors. Moreover, this
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2.1. Error-correcting codes 4

extra information permits us to detect or even correct some transmission errors which

gave birth to error-correcting codes theory.

2.1.1 Block codes and Hamming distance

We assume that A is the set of q symbols which is called the alphabet. We denote An

which is the set n-tuples x = (x1, · · · , xn), with xi ∈ A.

Definition 2.1 (Block code). A block code C of length n over A is a nonempty subset
of An. The elements of C are blocks called codewords. If C contains M codewords, then
C has size M , and we denote it by an (n,M) code. If M = qk, then C is called an [n, k]
code.

The value n − logq(M) is the redundancy of the code, which is the average number of

symbols added to embed a message of size less than n into an n-tuple. We define the

information rate as R = logq(M)/n.

Definition 2.2 (Encoding). An encoding of an [n, k] block code C over A is a one-to-one
map

Enc : Ak 7→ An

where C is the image of Ak by Enc.

In order to evaluate the error-correcting capability of the code, we need a metric on

An to measure the difference between two distinct words. The practical metric used in

error-correcting codes is the Hamming distance.

Definition 2.3 (Hamming distance). Let x = (x1, · · · , xn) and y = (y1, · · · , yn) be two
elements in An. The Hamming distance d(x, y) is defined as the number of positions
where x and y differ:

d(x, y) = | {i|xi 6= yi} |.

The Hamming weight of a codeword x is wt(x) = |{i |xi 6= 0}|.
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Theorem 2.1. The Hamming distance is a well-defined metric on An. It satisfies the
following properties x, y, z ∈ An:

• Non-negativity: d(x, y) ≥ 0, and d(x, y) = 0⇐⇒ x = y.

• Symmetry d(x, y) = d(y, x).

• Triangle inequality d(x, z) ≤ d(x, y) + d(y, z).

Definition 2.4. Let C be a non-empty subset of An. The minimum distance of C is
defined as:

d = d(C) = min {d(x, y)|x, y ∈ C, x 6= y} .

The main goal in the mathematical theory of error-correcting codes is to design codes

of a given length and size for the largest possible minimum distance. This allows us to

detect and correct a large number of errors. Moreover, useful codes can be characterized

by efficient encoding and decoding algorithms.

2.1.2 Sphere packing bound

Definition 2.5. • Let x ∈ An, the ball of radius ρ centred at x is defined by

Bρ(x) = {y ∈ An|d(x, y) ≤ ρ}

• The sphere of radius ρ around x is defined by:

Sρ(x) = {y ∈ An|d(x, y) = ρ} .

Theorem 2.2. Let x be an element of An, where A is an alphabet of q elements. Then

|Si(x)| =
(
n

i

)
(q − 1)i and |Br(x)| =

r∑
i=0

(
n

i

)
(q − 1)i.

Theorem 2.3 (Sphere packing bound). Let Lq(n, d) be the maximum number of code-
words in a code C of length n over A and minimum distance at least d. The sphere
packing bound is the following:
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Lq(n, d) ≤ qn∑t
i=0

(
n
i

)
(q − 1)i

, t = bd− 1
2 c.

2.2 Linear codes

Linear codes are defined over finite fields. Let q be a prime power and let A = Fq be a

finite field with q elements. In this case, An = Fnq is a vector space. In particular, linear

codes are more used than arbitrary ones since they have a structure, and they can be

represented as the null space or the image of a linear transformation.

Definition 2.6. A linear code C is a subspace of Fnq . It is denoted by [n, k, d]q or [n, k, d],
where n is the length, k is the dimension, and d is the minimum distance.

It is clear that a linear [n, k] code has qk elements. The information rate is R = k/n and

the redundancy is n− k. In this case, the encoding is one-to-one linear transformation:

Enc : Fkq 7→ Fnq

where Fkq is the message space, and Enc(Fkq) = C. Enc can be represented by a k × n

matrix that is called generator matrix denoted by G. This process consists of adding

some redundancy to a message to produce a codeword. Notice that the rows of G form

a basis for the linear code C.

A linear code C can be also defined by a null space of a matrix, which is called parity

check matrix H in such a way that

C =
{
x ∈ Fnq | xH> = 0

}
.

The error-detection and error-correction capability of a linear code C can be determined

by the mean of its minimum distance. This latest parameter controls the process of
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decoding which consists of recovering the original message.

Theorem 2.4 (Singleton bound). Let C be an [n, k] linear code. Then

d(C) ≤ n− k + 1.

A code that meets the Singleton bound is called maximum separable (MDS) code.

Definition 2.7 (Dual code). Let C be a [n, k] linear code. The dual code C⊥ of C is
defined as follows:

C⊥ =
{
x ∈ Fnq | c.x = 0, for all c ∈ C

}
.

C⊥ is an [n, n − k] linear code with generator matrix H, that is parity check matrix of

C.

2.2.1 Subfield subcodes of linear codes

Definition 2.8. Let C be a [n, k] linear code over Fq, where q = rm is a prime power.
The Fq/Fr subfield subcode C|Fr of C is by definition the set

C|Fr = C ∩ Fnr

of all codewords in C with components in Fr.

The Fq/Fr subfield subcode is a linear (n, k0, d0) code with d ≤ d0 ≤ n and n − k ≤

n− k0 ≤ m(n− k). A parity check matrix of C over Fq yields at most m(n− k) linearly

independent parity equations over Fr for the subfield subcodes C|Fr .

In general, the minimum distance of the subfield subcode is bigger than the minimum

distance of the original one.

Let TFq/Fr be the trace polynomial in the field Fq with respect to Fr, that is
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TFq/Fr(x) = x+ xr + ...+ xr
m−1

.

For a vector c ∈ Fnq , TFq/Fr(c) = (TFq/Fr(c1), · · · , TFq/Fr(n)). For a linear code C of length

n and dimension k over Fq, TFq/Fr(C) is a linear code with the same length of C and

dimension k1 over Fr.

Delsarte has come up with a very important result which relates the subfield subcode to

the trace code in the following theorem:

Theorem 2.5 ([Del75]). Let C be a [n, k] linear code over Fq. Then (C|Fr)⊥ = TFq/Fr(C⊥)
holds.

The class of subfield subcodes and trace codes held the attention of many researchers. A

lot of work was done on the class of subfield subcodes by Stichtenoth [Sti90], and it was

improved upon in [SMS97]. The study of trace codes was made by Van der Vlugt [Vlu91;

VDV91]. Roseiro stated the relation between trace codes and Goppa codes which was

established in [Ros+92] using the tool given by Delsarte (see [Del75]).

Lemma 2.6. Let C be an [n,K] linear codes over the finite field Fq, where q = rm. The
subfield subcode of C satisfies:

dimFr(C ∩ Fnr ) = n−m(n−K) + dimFr(ker(TFq/Fr)). (2.1)

Proof. In general, the dimension of the subfield subcode of C satisfies:

dimFr(C ∩ Fnr ) ≤ K, (2.2)

and the dimension of the trace code of C has the following bound:

dimFr(TFq/Fr(C)) ≤ mK. (2.3)
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From both equations 2.2, 2.3, we have

n = dimFr(C ∩ Fnr ) + dimFr(TFq/Fr(C⊥))
≤ dimFr(C ∩ Fnr ) +m(n−K).

Which means that
dimFr(C ∩ Fnr ) > n−m(n−K). (2.4)

Moreover, we have

m(n−K) = dimFr(TFq/Fr(C⊥)) + dimFr(ker(TFq/Fr))
= n− dimFr(C ∩ Fnr ) + dimFr(ker(TFq/Fr)),

Thus
dimFr(C ∩ Fnr ) = n−m(n−K) + dimFr(ker(TFq/Fr)). (2.5)

This formula allows us to look for specific parameters of the subfield subcodes that can

increase their dimension.

2.2.2 Reed-Solomon codes

In 1960, Irving Reed and Gustave Solomon constructed codes by evaluating polynomials

on finite field elements. These codes were named after their inventors Reed-Solomon

codes. In order to be useful in practice, it is not enough for a code to have a nice

structure: an efficient decoding algorithm is needed as well.

In 1969, Berlekamp and Massey gave a decoding algorithm that made Reed-Solomon

codes useful. The most notable applications of Reed-Solomon codes are in compact

disks, bar codes and QR codes. From Reed-Solomon codes, we can obtain another

class of codes that are defined over prime subfields and known as subfield subcodes of

Generalized Reed-Solomon codes [Del75]. The class of subfield subcodes represents an

area of great interest.
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Definition 2.9. Let q be a prime power, n an integers with 2 6 n 6 q. Let α =
{α1, ..., αn} ⊂ Fq, v = (v1, ..., vn) a nonzero vector of Fq. The Generalized Reed-Solomon
code, denoted by GRSk(α, v) consists of all vectors

(v1F (α1) , v2F (α2) , ..., vnF (αn)) ,

where F (z) ∈ Vk = {f(z) ∈ Fq [z] | deg(f) < k}.

Let
{

1, X,X2, ..., Xk−1
}
be one basis for the polynomial vector space Vk, then a generator

matrix of GRSk(α, v) is 

v1 . . . vn

α1v1 . . . αnvn
... . . . ...

αk−1
1 v1 . . . αk−1

n vn


generalized Reed-Solomon codes are closed under duality. The dual of GRSk(α, v) is

given by GRSn−k(α, v′), where v′ ∈ Fnq \ {0}.

Theorem 2.7. The dual of GRSk(α, v) is GRSn−k(α, v′) for some non zero v′ ∈ Fnq .
Moreover, v′ depends on v but not on k.

The definition of the usual Reed-Solomon code corresponds to the choice v = (1, . . . , 1).

2.2.3 Goppa codes

The class of Goppa codes (introduced in 1970 [Gop70] by V.G. Goppa) contains good

codes over Fq which asymptotically meet the Varshamov–Gilbert bound. In the general

case, they are viewed as the subfield subcodes of Generalized Reed-Solomon codes. They

form an important subclass of algebraic error-correcting codes.

Definition 2.10. Let g(z) ∈ Fq[z], L = {α1, ..., αn} ⊂ Fq in such a way that ∀i, g(i) 6= 0.
The Goppa Codes Γ(L, g), of length n over Fr, is the set of codewords, i.e. n−tuples
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(c1, ..., cn) ∈ Fnr , satisfying

n∑
i=1

ci
z − αi

≡ 0 ( mod g(z)) .

The simplest parity check matrix of Γ(L, g) is


g(α1)−1 . . . g(αn)−1

α1g(α1)−1 . . . αng(αn)−1

... ... ...

α
deg g(z)−1
1 g(α1)−1 . . . αdeg g(z)−1

n g(αn)−1


Proposition 2.8. Γ(L, g) is the restriction to Fr of the dual of GRSdeg g(z)(α, v)

Γ(L, g) = GRSn−deg g(z)(α, v′) ∩ Fnr

with v′i = g(αi)∏
i 6=j

(αi+αj) .

Moreover, we consider GRSdegg(z)(L, v) code, then TFq/Fr

(
GRSdeg g(z)(L, v)

)
equals the

dual of Goppa code. Thus:

Γ (L, g)⊥ = TFq/Fr

(
GRSdeg g(z)(L, v)

)
.

Applying Delsarte’s result [Theorem 2.5, ], we obtain a general formula for the dimension

of any Goppa code [Vér05]:

k = n−m deg g(z) + dimFr ker
(
TFq/Fr

)
. (2.6)

Binary Goppa codes play a distinguished role in the theory. The reason for this is the

fact that separable polynomials produce codes with twice better decoding threshold.

Theorem 2.9 ([MS77, Section 12.3, Theorem 6]). The dimension of Γ(L, g) and its
minimal distance d satisfy
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• k ≥ n−m deg g(z)

• d ≥ deg ḡ(z) + 1

ḡ(z) is the lowest degree perfect square which is divisible by g(z). If g(z) is separable
polynomial of degree δ, then d ≥ 2δ + 1.

2.3 The true dimension of binary Goppa codes

By choosing the parameters of the binary Goppa code in an appropriate way, it is possible

to increase its dimension and minimum distance. In this section, we investigate the

problem of finding the true dimension of Goppa codes which is considered as subfield

subcodes of generalized Reed-Solomon codes. We summarize two strategies that are

used to get new bound for the dimension of Goppa codes which was the aim of many

researchers [Ros+92; BS95; Véro01; Vér05; Vér98].

2.3.1 First strategy

The first strategy is about the link between the parity check matrix H̃ of Goppa codes

and the parity check matrix H of GRS codes. The parity check matrix defined above

does not generate the dual of Goppa codes because it is defined over Fq. We can compute

the parity check matrix H̃ over Fr from the parity check matrix H over Fq by converting

each column vector of H to a column vector over Fr. Therefore, computing the dimension

of Γ (L, g) is equivalent to computing the rank of H̃. H has deg g(z) rows, then H̃ has

m deg g(z) rows which are not necessarily independent. This strategy has been stated

in [Vér98], where the author explained (with an example [Vér05]) how to improve the

bound k ≥ n−m deg g(z), by looking for some polynomials and choosing a special basis,

when computing H̃ from H, in order to find linear dependent rows [Vér05].
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2.3.2 The trace Goppa codes

In [Vér98], Goppa codes are defined by the polynomial g(z) = a(z)TFrms/Frs (b(z)), where

r is a prime number, m and s are two integers withm > 1, a(z) and b(z) are two arbitrary

elements of Frms [z]. The authors proposed new bounds depending on m and s to reveal

that the general bound cannot be achieved.

Definition 2.11. Let a(z) and b(z) be two arbitrary elements of Frms. Γ (L, g) is a Trace
Goppa code iff

g(z) = a(z)TFrms/Frs (b(z))

and
L = Frms\ {z ∈ Frms , g(z) = 0} .

This code will be denoted by Γr,m,s(a(z), b(z)).

Now, we describe Véron’s bound on the dimension of the trace Goppa codes, with different

choices of the polynomials a(z) and b(z). Each case has been studied with a specific form

of the polynomials, the set L of Frms , and the basis of Frms over Fr (for more details see

[Vér98]). We present each case with its new bound as follows:

• General Case :

the dimension k of Γr,m,s(a(z), b(z)) satisfies k ≥ n−ms deg g(z) + (m− 1)s.

• Quadratic Case:

the dimension k of Γr,2,s(a(z), b(z)), satisfies k ≥ n− 2s deg g(z) + 2s− 1.

• Particular Binary Case:

the dimension k of Γ2,m,s(1, b(z)), satisfies k ≥ n−ms deg g(z) +ms.

• Binary-Quadratic Case :

the dimension k of Γ2,2,s(a(z), b(z)), satisfies k ≥ n− 2s deg g(z) + 3s− 1.
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2.3.3 Second Strategy

This strategy used Delsarte’s result [Del75] so as to define codes with large dimension k.

It is based on using the image of the dual code under the trace map with a rank that is

equal to redundancy [Ros+92]. The objective of the strategy is to find polynomials g(z)

such that the trace map has a large kernel. This strategy was the main idea of [Ros+92],

it was applied to the classes of primitive binary Goppa codes whose polynomial satisfies

G2s (X) ≡ G (X) ( mod X22s +X).

Here, we describe some special cases for which the authors in [Ros+92] stated lower

bounds for the dimension. We set r = 2 and m = 2. The authors consider primitive,

separable, binary Goppa codes of length n and dimension k with locator field L =

GF (22s). They took three Goppa polynomials, G1(X) = X2s + X, G2(X) = X2s+1 + 1

and G3(X) = G1(X)/H(X), where H(x) = X or H(X) = X + 1. For each case we take

π(X) in such a way that Gi(X)π(X) = X22s + X for i = 1, 2, 3, so n = 22s − r where

r = deg(Gi(X)).

The lower bound on the dimension for these polynomials are:

• k ≥ n− 2s degG1(X) + 3s− 1.

• k ≥ n− 2s degG2(X) + 5s.

• k ≥ n− 2s degG3(X) + s− 1.

In his dissertation, using a computer, Roseiro checked that these bounds are reached for

s = 2, 3, 4, 5. The authors of [Ros+92] called an open problem to prove this for all s ≥ 2.

In [Vér05], it is an open problem to know if it was reached for s ≥ 5.
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In [Ros+92], the authors studied the dimension of binary Goppa codes with g(z) = z2s +z.

They gave a new bound for the dimension:

dim Γ (L, g) ≥ n− 2s deg g(z) + 3s− 1.

A generalization of this result has been described in [Vér98] where the trace Goppa codes

has been introduced with the trace Goppa polynomial g(z) = a(z)TFrms/Frs (b(z)).

In [Vér98] for the binary quadratic case (r = 2, m = 2), the dimension of binary Goppa

codes defined by g(z) = a(z)TF22s/F2s (b(z)), where a(z) = 1 and b(z) = z satisfies

dim Γ (L, g) ≥ n− 2s deg g(z) + 3s− 1.

In this case, the aim of [Véro01] is to prove one of the conjectures of [Ros+92], where

the author showed that the dimension of Goppa codes achieved the lower bound in the

following theorem:

Theorem 2.10 ([Véro01]). Let g(z) = TF22s/F22 (z) and L = F22s \ F2s, the dimension of
the Goppa code Γ (L, g) satisfies

dim Γ (L, g) = n− 2s deg g(z) + 3s− 1.

In [Vér05], Véron proved the two remaining conjectures of [Ros+92] on the true dimension

of two classes of Goppa codes. The author started by proving the third conjecture, which

is about defining the dimension of Goppa codes given by g3(z). As he mentioned, the

proof is different from that of the first conjecture (which is proved in [Véro01]) and used

the result in [BS95; Vér98]. He considered polynomials of the form g1(z)/(z+ β) for any

β ∈ F2s .
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2.3.4 True dimension of Γ (L3, g3)

Let β ∈ F2s and denote by g3,β the polynomial (z2s + z)/(z + β), and let L3,β be the set

{β, α1, ..., αn} = L1 = F22s \ F2s .

Theorem 2.11 ([Vér05]). For all β ∈ F2s, the dimension of the Goppa code Γ (L3,β, g3,β)
is

n− 2s deg g3,β(z) + s− 1.

To prove the main result, the author used the following lemmas:

Lemma 2.12. All codes Γ (L3,β, g3,β) are equivalent to Γ (L3,0, g3,0).

Lemma 2.13. Let c = (c0, c1, ..., cn) ∈ F2n+1and ω(c) be the Hamming weight of c, then

c ∈ Γ (L3,0, g3,0) and ω(c) even ⇔ c0 = 0 and c = (c0, c1, ..., cn) ∈ Γ (L1, g1) .

2.3.5 True dimension of Γ (L2, g2)

Theorem 2.14 ([Vér05]). Let g(z) = z2s+1 + 1, L = F22s \ {z ∈ F22s | g(z) = 0} and
n = card(L), the dimension of the Goppa code Γ (L, g) satisfies:

k = n− 2s deg g(z) + 5s.

We checked the results above for small small values of q by our implementation in GAP

[Gap] using the GAP package GZero [Nag17].



Chapter 3

Algebraic geometry codes

In this chapter, we deal with codes constructed from geometric objects, which are usually

called algebraic geometry codes over a finite field. These codes are built from algebraic

curves. They can be defined by evaluating functions or by using residues of differentials.

Many parameters and properties can be immediately derived from well-known theorems

for algebraic curves. Constructing codes using the theory of algebraic geometry reveals

a geometric description of these codes and their duals as well. Also, one can have good

lower bounds for their parameters expressed in terms of invariants of algebraic curves.

In the following, we describe the general idea of algebraic geometry codes using the

functional approach.

Let X be a geometric object and P be a set of n points P = {P1, · · · , Pn}. We assume

that the set of function on X over a finite field Fq forms a vector space L over Fq, such

that for all i, f(Pi) ∈ Fq and f ∈ L . Then one can obtain an evaluation map

ev : L 7→ Fnq

f 7→ (f(P1), · · · , f(Pn)),

which is a linear map, and its image set represents a linear code.

17
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The construction above is a generalization of the construction of Reed-Solomon codes.

That is a typical example of AG codes, where the geometric object is a projective line

over Fq (see section 3.2.1).

In the same way, we define another vector space Ω of differentials on X . Then one takes

residues of differentials to define another class of linear codes as the image of the following

map
res : Ω 7→ Fnq

ω 7→ (resP1(ω), · · · , resPn(ω)).

This is also a linear map, its image set represents a linear code over Fq.

3.1 Algebraic geometry overview

3.1.1 Algebraic curves, places, divisors

Let f(X, Y ) ∈ K[X, Y ] be an absolutely irreducible polynomial of degree n (it is also

irreducible over the algebraic closure K). Let X be the associated algebraic plane curve

over K denoted by X : f(X, Y ) = 0. The set of affine points is as follows:

X (K) =
{

(x, y) ∈ K ×K | f(x, y) = 0
}
.

We denote the set of rational points by X (K) that is defined as:

X (K) = {(x, y) ∈ K ×K | f(x, y) = 0} .

A point P = (x, y) of X is nonsingular or smooth if there exists a tangent line to the curve

X at P , in other words, if
(
∂f
∂X

(x, y) , ∂f
∂Y

(x, y)
)
6= (0, 0). X is called smooth (nonsingular)

if every point P ∈ X is smooth, which implies that f is absolutely irreducible. The genus

is the most important invariant of an algebraic curve. It is a non-negative integer, which
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is given by the genus formula

g = (n− 1)(n− 2)
2

for smooth curves of degree n.

Now, we deal with projective curves rather than affine plane curves. The homogenous

equation of the affine curve X : f(x, y) = 0 is F (X, Y, Z) = 0 where F (X, Y, Z) =

Znf(X/Z, Y/Z). The projective points are defined as zeros of the homogenous polynomial

F (X, Y, Z). In particular, the affine point (x, y) of X is represented by the point (x : y : 1)

in projective coordinates. A projective point (x, y, z) of X is said to be at infinity when

z = 0.

A divisor on X is a formal sum D = n1P1+· · ·+nkPk where the coefficients n1, · · · , nk are

integers and P1, · · · , Pk are points of X . The degree of the divisor D is degD = ∑k
i=0 ni.

The valuation of the divisor D at a point Pi is vPi
(D) = ni. The support of D is the set

{Pi | ni 6= 0}.

3.1.2 Function fields and Riemann-Roch spaces

Let X : f(X, Y ) = 0 be a smooth plane algebraic curve. The function field K(X ) of X

is generated by the elements x, y satisfying the algebraic relation f(x, y) = 0.

Let h be a non-zero function of K(X ). We denote by Div(h) the principal divisor. The

degree of such a divisor is zero. We can define the divisor of h to be

Div(h) = Div(h)0 −Div(h)∞,

where Div(h)0 is said to be the divisor of zeros of h and Div(h)∞ is the divisor of its

poles.
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Let K ′ be a vector space over K(X ). We denote by DX ,K′ the set of all derivations

D : K(X ) 7→ K ′, and DX when K ′ = K(X ). Furthermore, for every separable function

h ∈ K(X ), dh is the exact differential arising from h. We denote the set of all differentials

by Ω. Also, resP (dh) is the residue of dh at a point P of K(X ).

For any divisor A of K(X ), the Riemann-Roch space of A is

L (A) = {h ∈ K(X ) \ {0}|Div(h) � −A} ∪ {0}.

We denote the dimension by `(A) = dim(L (A)). Furthermore, the differential space of

A is

Ω(A) = {dh ∈ Ω | Div(dh) � A} ∪ {0}.

The index of specialty for a divisor A is the integer

i(A) = `(A)− degA+ g − 1.

Both the Riemann-Roch space and the differential space are linear spaces over K. Their

dimensions are obtained by the theorem of Riemann-Roch:

Theorem 3.1 (Riemann-Roch). Let X be a smooth curve over K of genus g. Let A be
an arbitrary divisor of the function field K(X ). Then we have

`(A) = deg(A) + 1− g + `(W − A),

where W is a canonical divisor of K(X ).

An immediate corollary is the inequality

`(A) ≥ deg(A) + 1− g.
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for an arbitrary divisor A. Moreover, since W has degree 2g − 2,

`(A) = deg(A) + 1− g

provided deg(A) > 2g − 2.

3.1.3 Algebraic plane curves over finite fields

Let q be a prime power of p, and Fq the algebraic closure of Fq. We denote Frobq the

Frobenius automorphism

Frobq : Fq 7→ Fq

x 7→ xq.

This map can be extended to Fq–polynomials by coefficients and to affine and projective

points over Fq by coordinates.

Let X be a curve over Fq, and P one of its points, then Frobq(P ) is also a point of X .

X is Fq–rational curve if it is invariant under the action of Frobq. Similarly, Fq–rational

places and divisors are invariant under the action of the Frobenius automorphism.

3.2 Algebraic geometry codes (AG codes)

Let q be a prime power, and Fq be the finite field of order q. Let X be an algebraic curve,

i.e., an affine or projective variety of dimension one, which is absolutely irreducible and

nonsingular and whose defining equations are (homogeneous) polynomials with coeffi-

cients in Fq. Let g be the genus of X . In the following, P1, · · · , Pn are pairwise distinct

places on X and D is the divisor D = P1 + ... + Pn. Furthermore, G is another divisor

with support disjoint from D.
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Definition 3.1. The algebraic geometry code CL (D,G) associated with the divisors D
and G is defined as

CL (D,G) = {(f(P1), f(P2), ..., f(Pn)) | f ∈ L (G)} ⊆ Fnq .

In other words, CL (D,G) is the image of L (G) under the evaluation map

L (G) 3 f 7→ (f(P1), ..., f(Pn)) ∈ Fnq .

Theorem 3.2 ([Sti09]). CL (D,G) is a [n, k, d] codes with parameters:

• k = `(G)− `(G−D) where `(G) = dim L (G)

• d ≥ n− degG

Notice that the condition n > degG implies the evaluation map L (G) → Fn to be

injective. If n ≤ degG, then it is possible that CL (D,G) has dimension less than n

and positive true minimum distance. However, this case cannot be described by the

Riemann-Roch theorem.

Now, we define another class of AG codes called differential codes, which is an alternative

of CL (D,G) by taking the differential space Ω(G) rather than the Riemann-Roch space

L (G). We will see later that it is useful to have both families of AG codes when tackling

decoding algorithms.

Definition 3.2. Let G and D be divisors as before. We define the code CΩ(D,G) ⊆ Fq
by

CΩ(D,G) =
{

(resP1(dh), resP2(dh), ..., resPn(dh)) | dh ∈ ΩFq(X )(G−D)
}
.

Theorem 3.3 ([Sti09]). CΩ(D,G) is an [n, k′, d′] code with parameters:

k′ = i(G−D)− i(G) and d′ ≥ degG− (2g − 2).

if degG > 2g − 2, we have k′ = i(G − D) ≥ n + g − 1 − degG. If moreover 2g − 2 <
degG < n then k′ = n+ g − 1− degG.
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Figure 3.1: Dimension and designed minimum distance of AG codes

deg(G)

dim dim = deg(G)− g + 1
δΓ = n− deg(G)

n

0 2g−2 n n+2g−2

Theorem 3.4 ([Sti09]). The dual of the code CL (D,G) is the code CΩ(D,G)

CΩ(D,G) = CL (D,G)⊥.

Furthermore, the differential code CΩ(D,G) is equivalent with the functional code CL (D,W+

D−G). In particular, they have the same dimension and minimum distance, even though

this equivalence does not preserve the all-important properties of the code. The formula

k = `(G) − `(G − D) also provides a lower bound δΓ = n − deg(G) for its minimum

distance. The integer δΓ is called the Goppa designed minimum distance of the AG code.

We illustrate the behavior of the dimension k of CL (D,G) depending on the degree of the

divisor G by Figure 3.1. In fact, Theorem 3.2 implies the exact value k = deg(G)− g+ 1

provided 2g− 2 < deg(G) < n. Furthermore, if deg(G) > n+ 2g− 2, then k = n. In the

intervals [0, 2g − 2], and [n, n+ 2g − 2], the dimension depends on the specific structure

of the divisor G.
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3.2.1 Genus zero AG codes

An algebraic curve of genus-zero over Fq is isomorphic to a projective line. The associated

functions field can be identified with the field of rational functions in one indeterminate

Fq(z). In coding theory, the class of AG codes on a genus zero curve is defined as genus-

zero AG codes [Sti09]. They can be obtained by the general construction of both classes

of codes. Genus zero functional codes over Fq are known as generalized Reed-Solomon

codes. Moreover, differential codes on a genus zero curve are said to be geometric Goppa

codes [HVLP98], since they can be presented by the restriction of the dual of generalized

Reed-Solomon codes to the prime field:

CΩ(D,G)|Fr = CL (D,G)⊥|Fr = TFq/Fr(CL (D,G))⊥.

3.2.2 On the decoding of AG codes

There were beneficial papers on decoding algorithms for AG codes that started in the

1980s. The BerleKamp-Massey algorithm [Mas69] is an efficient decoding algorithm of

Reed-Solomon codes that is known as the error-locator polynomial decodes up to half

of their minimum distance. If the number of the known error positions is strictly less

than the minimum distance, then we obtain the values of errors simply by solving linear

equations involving syndromes. A generalization of this method was made by error-

locator functions on curves. Thus, it is not extraordinary that Reed-Solomon and AG

codes benefit from similar decoding algorithms. The work on the decoding of AG codes

seems to begin in 1986 when Driencourt gave a first decoding algorithm for codes on

elliptic curves of characteristic 2 [Dri85] correcting b(δΓ − 1)/2c errors. By generalizing

the work of Arimoto and Peterson [Pet60] on employing a locator polynomial to de-

code Reed-Solomon codes, Justesen, Larsen, Jensen, Havemose, and Høhold published
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[Jus+89] in 1989 a decoding algorithm for a larger class of AG codes, which can correct

up to b(δΓ− g− 1)/2c errors, moreover in improved version [Jus+92] the error capability

is increased to b(δΓ − g/2 − 1)/2c. This method was generalized to arbitrary curves by

Skorobogatov and Vladut [SV90], and independently by Krachkovskii [Kra88], then ex-

tended by Duursma [Duu93a; Duu93b] to correct b(δΓ− 1)/2c − σ errors, where σ is the

Clifford defect of the curve [Duu93b]Definition 3.7 (is approximately g/4). In 1993, Feng

and Rao [FR93] gave a majority voting scheme allowing a decoding up to b(δΓ − 1)/2c

errors. Duursma generalized this result to all AG codes [Duu93c]. An efficient algorithm

was described by Sakata, Justesen, Madelung, Jensen and Høhold in [Sak+95] using a

multidimensional generalization of Massey-Berlekamp algorithm done by Sakata [Sak90].

Kirfel and Pellikaan [KP95] noticed that one could decode beyond b(δΓ − 1)/2c errors

for 1–point AG codes by studying the Weierstrass semigroup. The reader can refer to

[HP95; HVLP98; Pel93] for more details on decoding methods.

3.3 Hermitian codes

An important class of AG codes that have good properties is the class of Hermitian

codes. This class is constructed by employing Hermitian curves over a finite field. The

Hermitian curve Hq over Fq2 in affine coordinates has the form

Hq : Y q + Y = Xq+1.

Its rational points are points of the projective plane PG(2, q2), satisfying the homogenous

equation Y qZ + Y Zq = Xq+1. It is easy to verify that Hq is nonsingular, then its genus

is g = q(q − 1)/2 by the genus formula. With respect to the line Z = 0 at infinity, Hq

has one infinite point P∞ = (0 : 1 : 0) and q3 affine rational points P1, . . . , Pq3 , which
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make the class of Hermitian curves interesting since they attain the maximal number of

rational points for the famous Hasse-Weil bound [Men+13]. As usual, we also look at

the curve Hq as the smooth curve defined over the algebraic closure F̄q2 . Then, there

is a one-to-one correspondence between the points of Hq and the places of the function

field F̄q2(Hq).

With a Hermitian code we mean a functional AG code of the form CL (D,G), where

the divisor D is defined as the sum P1 + · · · + Pq3 of all affine rational points of Hq.

In our investigations, the divisor G can take two forms. In the 1-point case, we set

G = sP∞ with integer s. In the degree 3 case, we put G = sP , where P is a place of

degree 3. Let P1, P2, P3 be the extensions of P in the constant field extension of Fq2(Hq)

of degree 3. Then P1, P2, P3 are degree one places of Fq6(Hq) and, up to labeling the

indices, Pj+1 = Frob(Pj) where Frob is the q2-th Frobenius map and the indices are

taken modulo 3. Also, P may be identified with the Fq2-rational divisor P1 + P2 + P3 of

Fq6(Hq). Functional AG codes of the form CL (D, sP∞) and CL (D, sP ) will be called

1-point Hermitian codes, and Hermitian codes over a degree 3 place, respectively. In the

1-point case, the basis of the Riemann-Roch space L (sP∞) can be given explicitly by

[Ste12]:

M(s) :=
{
xiyj | 0 ≤ i ≤ q2 − 1, 0 ≤ j ≤ q − 1, qi+ (q + 1)j ≤ s

}
.

In the degree 3 case, the Riemann-Roch space

L (sP ) =
{

f

(`1`2`3)u | f ∈ Fq2 [X, Y ], deg f ≤ 3u, vPi
(f) ≥ v

}
∪ {0}.

can be computed, see [KN13]. In this formula, `i = 0 is the equation of the tangent line

of Hq at Pi, and s = u(q + 1)− v, 0 ≤ v ≤ q.

The group Aut(Hq) of all automorphisms of Hq is defined over Fq2 . It is a group of
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projective linear transformations of PG(2, q2), isomorphic to the projective unitary group

PGU(3, q). Furthermore, Aut(Hq) acts doubly transitively on the set {P∞, P1, . . . , Pq3}

of Fq2-rational points. As it was pointed out in [KN13], the automorphism group of Hq

acts transitively on the set of degree 3 places of Fq2(Hq), as well. Hence, the geometry

of a degree 3 place is independent on the choice of P . However, the stabilizer GP of P

in Aut(Hq) is not transitive on the set of q3 + 1 rational points. In fact, GP is a cyclic

group of order q2 − q + 1 and the number of GP -orbits on the set of rational points is

q + 1. (See [CKT99; KN13], where [CKT99, Section 4.2] holds for any characteristic.)

3.3.1 1–point Hermitian codes: parameters and dual codes

The dimension k of 1–point Hermitian codes H(q2, s) is the dimension of L (sP∞), which

can be determined from Riemann-Roch Theorem [Sti09]. H(q2, s) has length n = q3,

if 2g − 2 < s < n then the dimension is k = s − g + 1 and the minimum distance is

d = q3 − s.

Theorem 3.5 (Dual codes [Men+13]). For s ≥ 0 define s̃ = q3 + q2 − q − 2 − s. The
codes H(q2, s) and H(q2, s̃) are dual to each other.

In particular, if q is even and s = (q3 + q2 − q − 2)/2, the code H(q2, s) is self-dual.

Definition 3.3. Let H(q2, s) be a 1–point Hermitian code, the subfield subcode of H(q2, s)
is

Cq,r(s) = H(q2, s)|Fr .

In [PJ14], the authors present an algorithm to compute dimCq,r(s). Using this algorithm,

the dimension of C4,2(s) is determined for each s = 0, . . . , 71.

In [Vlu91, Proposition 3.2], the author shows

dimTFq2/Fr(H(q2, q)) = 2m+ 1,
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where q = 2m. In our notation, this means

dimCq,r(q3 + q2 − 2q − 2) = q3 − (2m+ 1).

In particular, dimC4,2(70) = 59, which is confirmed by [PJ14, Table 2]. In the same

table, we find dimC4,2(s) = 1 for s = 0, . . . , 31 and dimC4,2(32) = 5. In the next section,

we prove a formula which implies these dimensions.

3.3.2 On the true dimension of the subfield subcodes of 1–point
Hermitian codes

The following is the main result of [EKN19]

Theorem 3.6. Let Cq,r(s) be a subfield subcode of the Hermitian code H(q2, s), q = rm

is a prime power. Then

dimCq,r(s) =

 1 for s < q3

r

2m+ 1 for s = q3

r

Proof. Since the constant polynomials are in L (sP∞) for all s ≥ 0, we have dimCq,r(s) ≥
1. We first show that dimCq,r(s) = 1 for s < q3

r
. Fix an integer 0 < s < q3

r
and take

an arbitrary element (c1, . . . , cq3) ∈ Cq,r(s). Then there is an element f ∈ L (sP∞) such
that for all i = 1, . . . , q3, one has ci = f(Pi) ∈ Fr. There is an element γ ∈ Fr such that
ci = γ for at least q3/r indices i. In other words, f − γ ∈ L (sP∞) has at least q3/r zeros
on the Hermitian curve Hq. (In fact, a nonzero element of L (G) cannot have more than
degG zeros on the curve.) Therefore, f − γ must be the constant zero polynomial, and
ci = γ for all i. In particular, Cq,r(s) consists of the constant vectors.

Now, we suppose that s = q3/r. Recall that

TFq2/Fr(X) = X +Xr + · · ·+Xr2m−1

is the trace polynomial of Fq2 over Fr. We define the polynomial

fd,α(X) = d+ TFq2/Fr(αX)
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where d ∈ Fr, α ∈ Fq2 . As a polynomial in one variable, fd,α maps Fq2 to Fr. If the
point Pi is given with affine coordinates Pi = (ai, bi), then fd,α(Pi) = fd,α(ai) ∈ Fr for all
i = 1, ..., q3. In other words, the evaluation vector

cd,α = (fd,α(P1), . . . , fd,α(Pq3)) ∈ Fnr .

We claim that fd,α(x) ∈ L
(
q3

r
P∞

)
. In fact,

ρ(xrk) = qrk,

which is at most qr2m−1 = q3/r for k ≤ 2m − 1. Hence, all monomials of fd,α(x) are in
L
(
q3

r
P∞

)
, and the claim follows.

From the last two properties of fd,α follows that the evaluation vector cd,α ∈ Cq,r(q3/r).
Since the map (d, α) 7→ cd,α is linear over Fr, and injective, we have dimCq,r(q3/r) =
2m+ 1.

In the last step we show that the elements cd,α exhaust the subfield subcode Cq,r(q3/r).

Take an element g ∈ L
(
q3

r
P∞

)
whose evaluation vector

(g(P1), . . . , g(Pq3)) ∈ Fnr .

We can reduce the high degree y-terms by the Hermitian equation yq+1 = x+ xq. Thus,
we can write that g in this form:

g(x, y) =
∑
j<q

ai,jx
iyj.

Moreover, since ρ(xiyj) ≡ j (mod q), if j ≤ q − 1 then the value ρ(xiyj) determines i
and j uniquely. Therefore, each term of g = ∑

j≤q−1
ai,jx

iyj has a different ρ–value. By
definition we have

ρ(xiyj) = vP∞(xiyj) = ivP∞(x) + jvP∞(y) = qi+ (q + 1)j.

The valuation of g at P∞ is

vP∞(g) = vP∞
(∑

ai,jx
iyj
)

= max
ai,j 6=0

(
vP∞(xiyj)

)
.

Equality holds since the ρ–values are different. If g ∈ L
((

q3

r
− 1

)
P∞

)
then g = fd,0 for
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some d ∈ Fr as seen above. Assume now

g ∈ L

(
q3

r
P∞

)∖
L

((
q3

r
− 1

)
P∞

)
.

Then, vP∞(g) = q3/r and g has a unique term βx
q2
r with ρ–value q3/r, β ∈ F∗q2 . Define

α ∈ Fq2 by αr2m−1 = β. Then, g − f0,α ∈ L
(
q3

r
P∞

)
and g − f0,α is again a constant

d ∈ Fr. This means g = fd,α, and the result follows.

Using similar methods, we can show that for any α ∈ Fq2 ,

TFq2/Fr(αy) ∈ L

(
(q + 1)q2

r
P∞

)
.

Hence, dimCq,r((q + 1)q2/r) ≥ 4m + 1. By [PJ14, Table 2], we have equality for q = 4

and r = 2.

In Table 3.1 we present empirical results concerning the true dimension of the subfield

subcodes of Hermitian codes for the parameters q = 8 and r = 2.
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s dimC8,2(s) dimH(64, s) s dimC8,2(s) dimH(64, s)
256 7 229 456 206 429
288 13 261 457 212 430
292 19 265 458 218 431
320 25 293 460 224 433
324 28 297 462 226 435
328 34 301 464 232 437
336 36 309 466 238 439
352 42 325 468 244 441
356 48 329 470 250 443
360 54 333 472 256 445
364 60 337 473 262 446
368 66 341 474 268 447
376 72 349 475 274 448
378 74 351 480 280 453
384 80 357 482 286 455
392 86 365 484 292 457
400 92 373 486 295 459
402 98 375 488 301 461
408 104 381 489 307 462
410 110 383 490 313 463
416 116 389 491 319 464
418 122 391 492 325 465
420 128 393 493 331 466
424 134 397 496 337 469
428 140 401 498 343 471
432 146 405 500 349 473
434 152 407 502 355 475
436 158 409 504 361 477
438 164 411 505 367 478
440 170 413 506 373 479
442 176 415 507 379 480
444 182 417 508 385 481
448 188 421 509 391 482
450 194 423 510 397 483
452 200 425 511 403 484

Table 3.1: Parameters of C8,2(s) for s ∈ {256, . . . , 511}



Chapter 4

Estimating the dimension of
Hermitian subfield subcodes

In this chapter, we study the possibility of the application of subfield subcodes of Hermi-

tian codes in the McEliece scheme. More precisely, we do the first step by investigating

the true dimension of these codes for a broad spectrum of parameters, for partial results,

see [EKN19; PJ14]. Our main observation is that the true dimension of subfield subcodes

of Hermitian codes can be estimated by the extreme value distribution function.

We established an approximating formula of the true dimension of the subfield subcodes

of Hermitian codes. We conducted an experimental study to analyze the datasets of the

true dimension of different subfield subcodes of Hermitian codes. This analysis helped

us to derive new properties of their structure and led to an approach that might be

useful for further research and applications. Before we tackle our contribution, we need

to describe the set up of statistical formulas such as moment and expectation by mean

of the extended rate function of the underlying classes of subfield subcodes of Hermitian

codes.

32
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4.1 Moments of the extended rate of subfield sub-
codes

In order to make our notation consistent, we make the following conventions. Let X be

an algebraic curve over Fq and D,G divisors such that the AG code CL(D,G) is well

defined. Assume that the objects δ and γ determine the curve X and the divisors D,G

in a unique way. Let s be an integer and Fr be a subfield of Fq. Then,

Cγ
δ,r(s) = CL(D, sG)|Fr

denotes the Fq/Fr subfield subcode of the AG code CL(D, sG). The length of Cγ
δ,r(s) is

n = deg(D).

For the integer s, let

R(s) = Rγ
δ,r(s) =

dimFr C
γ
δ,r(s)

n

denote the rate of the subfield subcode Cγ
δ,r(s). We extend Rγ

δ,r to R in the usual way:

Rγ
δ,r(x) = Rγ

δ,r(bxc).

Lemma 4.1. Let g be the genus of X and define

α =
⌈
n+ 2g − 2

deg(G)

⌉
.

Then R(x) is a monotone increasing function, with

R(x) =

0 for x < 0,
1 for x ≥ α.

Proof. If s deg(G) > n+ 2g − 2, then deg(D +W −G) < 0, and

CΩ(D,G) ∼= CL(D,D +W −G) = {0}.

Hence, if s ≥ α, then CL(D, sG) = Fnq and CL(D, sG)|Fr = Fnr .
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The following observation has been made in Theorem 3.6 for the special case of a one

point divisor of a Hermitian curve. (See also [EKN19, Theorem 5.1].)

Lemma 4.2. For 0 ≤ x < n/(r deg(G)), we have R(x) = 1/n.

Proof. As the divisor sG is positive for s > 0, the constant vectors are in CL(D, sG)|Fr

and R(s) ≥ 1/n holds. Assume R(s) > 1/n, that is, the subfield subcode contains a
non constant element v = (f(P1), . . . , f(Pn)) with f ∈ L (sG). Since f cannot have
more than deg(sG) zeros, v cannot have the same entry more than s deg(G) times. This
implies r deg(sG) ≥ n.

Lemma 4.1 implies that we can consider R(x) as the distribution function of some random

variable ξ, cf. [Shi16, Definition 1, Section 2.3].

Lemma 4.3. Let R(x) be the extended rate function of a class of subfield subcodes
CL(D, sG)|Fr . Define the integer α as in Lemma 4.1. Let ξ be a random variable with
distribution function R(x). Then

E(ξ) =
α∑
s=0

1−R(s), E(ξ2) =
α∑
s=0

(2s+ 1)(1−R(s)).

Proof. This follows from [Shi16, Section 2.6, Corollary 2].

Remark. Considered as a distribution function, Rγ
δ,r(s) has an expectation Eγδ,r, a variance

Varγδ,r and a standard deviation Dγ
δ,r. These constants can be computed from the true

dimensions of the subfield subcodes using Lemma 4.3 and the well known formulas of
random variables.

4.2 Computed true dimensions of Hermitian subfield
subcodes

Let q be a prime power. We say that the object δ = q determines the Hermitian curve

Hq over Fq2 , together with the divisor D which is the sum of affine rational points of

Hq. The objects γ = 1-pt or γ = deg-3 determine the divisor G to be equal either to the



4.2. Computed true dimensions of Hermitian subfield subcodes 35

rational infinite place P∞, or the degree 3 Hermitian place P , respectively. That being

said, for any integer s and subfield Fr of Fq2 , the Hermitian subfield subcodes

C1-pt
q,r (s) = CL(D, sP∞)|Fr , Cdeg-3

q,r (s) = CL(D, sP )|Fr

are well defined and consistent with the notation of section 4.1. In chapter 3, we denoted

Cq,r(s) by C1-pt
q,r (s). All these codes are Fr-linear codes of length n = q3.

Let R1-pt
q,r (s) and Rdeg-3

q,r (s) be the true rates of the codes C1-pt
q,r (s) and Cdeg-3

q,r (s). Using

the GAP [Gap] package HERmitian [NEK19], we have been able to compute the true

dimension values of the codes C1-pt
q,q (s), Cdeg-3

q,q (s) for

q ∈ {2, 3, 4, 5, 7, 8, 9, 11, 13}

and the binary codes C1-pt
q,2 (s), Cdeg-3

q,2 (s) for

q ∈ {2, 4, 8, 16}.

As given in Lemma 4.3, we computed the expectations E1-pt
q,q , E1-pt

q,2 , Edeg-3
q,q , Edeg-3

q,2 , the

variances Var1-pt
q,q , Var1-pt

q,2 , Vardeg-3
q,q , Vardeg-3

q,2 , and the standard deviations D1-pt
q,r , D1-pt

q,2 ,

Ddeg-3
q,q , Ddeg-3

q,2 for these true rates. The numerical results are shown in Table 4.1 for

q = 3, 4, 5, 7, 8, 9, 11, 13 and r = q, and in Table 4.2 for q = 2, 4, 8, 16 and r = 2. In Fig-

ure 4.1, we present the ratios Eγq,r deg(G)/n and Dγ
q,r deg(G)/n, where γ ∈ {1-pt, deg-3}.

While our data sets are small, these figures motivate the following open problem.

Problem 4.1. Are there constants c1, c2 > 0 such that

E1-pt
q,q ≈ Edeg-3

q,q ≈ c1q
3/ deg(G), D1-pt

q,q ≈ Ddeg-3
q,q ≈ c2q

3/ deg(G),

where a ≈ b means a/b→ 1 with q →∞.

Remark. Our data suggests that for small q, the choice c1 = 0.75 and c2 = 0.2 is sound.
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q
1-point codes Codes over a degree 3 place

Expectation Variance Expectation Variance
3 20.15 53.46 7.63 4.09
4 48.66 246.79 17.77 16.02
5 95.04 841.16 33.37 60.18
7 259.10 5 553.32 88.99 503.78
8 385.49 11 862.84 131.61 1 106.63
9 546.30 23 541.65 186.22 2 206.21
11 992.73 74 679.83 336.49 7 262.13
13 1 631.29 197 675.07 550.94 19 807.94

Table 4.1: Expectations and variances for Hermitian Fq2/Fq subfield subcodes

q
1-point codes Codes over a degree 3 place

Expectation Variance Expectation Variance
2 5.38 6.48 2.12 0.86
4 54.86 164.96 20.38 10.52
8 458.22 4 838.52 162.50 216.32
16 3 698.92 195 390.48 1 303.40 6 029.44

Table 4.2: Expectations and variances for Hermitian Fq2/F2 subfield subcodes

Figure 4.1: The ratios of expectations and standard deviations to n/ deg(G)
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4.3 Distribution fitting

In general, no explicit formula is known for the true dimension of subfield subcodes of

AG codes. We study the behavior of the subfield subcodes of Hermitian codes using

distribution fitting methods.

As in the previous sections, we use the notation Hq for the Hermitian curve over Fq2 ,

P∞, P for the places of degree 1 and 3, D and G ∈ {P∞, P} for the divisors, and Cγ
q,r(s),

γ ∈ {1-pt, deg-3}, for the Fq2/Fr subfield subcodes CL(D, sG)|Fr . Then, with fixed q, r

and γ ∈ {1-pt, deg-3} the dimensions of the subfield subcodes are given by the extended

rate functions

R1-pt
q,q (x), R1-pt

q,2 (x), Rdeg-3
q,q (x), Rdeg-3

q,2 (x).

Our goal is to consider these functions as distribution functions and fit some well known

probability distribution functions to our experimental rate function R(x).

We obtain numerical results by using the distribution fitting methods offered by MAT-

LAB’s Statistics and Machine Learning Toolbox [TM19]. The technique MLE (Maximum

Likelihood Estimation) is a method for estimating the parameters of a probability distri-

bution from a data set. The method finds the parameter values maximizing the logarithm

of the likelihood function [Eli93]. To compare different distributions for a given data set,

one can use the log-likelihood values for a ranking. This is implemented MATLAB’s

fitmethis function [Cas20]. Notice that fitmethis also computes the AIC value for

each distribution, which stands for the Akaike Information Criterion, that measures the

quality of a model (distribution) versus the other models. It has the formula

AIC = 2l − 2 log(L̂)

where l is the number of parameters, and L̂ is the maximum values of the likelihood
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function. In the case of AIC, smaller values correspond to better-fitting distributions

(see [KK08]).

In our comparisons, we restricted ourselves to parametric distributions having at most

two parameters, that is, we used MATLAB’s fitmethis to compare the log-likelihood

values of the following distributions: normal, exponential, gamma, logistic, uniform,

extreme value, Rayleigh, beta, Nakagami, Rician, inverse Gaussian, Birnbaum-Saunders,

log-logistic, log-normal and Weibull. We can summarize the results as follows:

Proposition 4.4. 1. The best fitting distribution was the extreme value distribution
for R1-pt

q,q (x), q ∈ {4, 5, 7, 8, 9, 11, 13}, for Rdeg-3
q,q (x), q ∈ {7, 8, 9, 11, 13}, and for

R1-pt
8,2 (x), R1-pt

16,2(x), Rdeg-3
4,2 (x), Rdeg-3

8,2 (x), and Rdeg-3
16,2 (x).

2. For the missing cases R1-pt
2,2 (x), R1-pt

3,3 (x), Rdeg-3
2,2 (x), Rdeg-3

3,3 (x), Rdeg-3
4,4 (x), and Rdeg-3

5,5 (x),
the best fitting distribution was the gamma distribution.

3. The second best fitting distribution was the extreme value distribution for R1-pt
3,3 (x),

Rdeg-3
3,3 (x), Rdeg-3

4,4 (x), Rdeg-3
5,5 (x).

Our results show that for q ≥ 3, among the two-parameter distributions, the extreme

value distribution function is a reasonable estimation of the rate function of subfield

subcodes of Hermitian codes.

The extreme value distribution is also referred to as Gumbel or type 1 Fisher-Tippet

distribution. In probability theory, these are the limiting distributions of the minimum

of a large number of unbounded identically distributed random variables. The extreme

value distribution function is

F (x;α, β) = 1− exp
(
− exp

(
x− α
β

))
,

with location parameter α ∈ R and a scale parameter β > 0. The mean µ and the

variance σ2 are

µ = α− βγ, σ2 = π2

6 β
2,
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where

γ =
∫ ∞

1

(
−1
x

+ 1
bxc

)
dx ≈ 0.57721566490153

is the Euler-Mascheroni constant, see [KN00, Section 1.4]. With given empirical mean

and variance of the data series, the parameters can be computed by

α = µ+
√

6γ
π

σ, β =
√

6
π
σ.

In figures 4.2 and 4.3, we visualized the fitting of the extreme value distribution function

to our experimental results on the true dimension of subfield subcodes of Hermitian codes.

The occurrence of the extreme value distribution in the context of subfield subcodes of AG

codes may be somewhat surprising, and we cannot give an understandable mathematical

explanation for this. However, the rank of random matrices over finite fields is known to

be related to the class of Gumbel type distributions; see Cooper’s result [Coo00, Theorem

2] for the theoretical background. This theory has been applied to parameter estimates

of random erasure codes by Studholme and Blake [SB10].
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Figure 4.2: Estimating the extended rate function by extreme value distribution for subfield
subcodes of 1-point Hermitian codes
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Figure 4.3: Estimating the extended rate function by extreme value distribution for subfield
subcodes of degree 3 Hermitian codes by extreme value distribution



Chapter 5

McEliece cryptosystem: attacks and
applications

This chapter provides the first step of our future work toward security analysis of McEliece

cryptosystem based on Hermitian subfield subcodes. In the long term, we aim to make

a comprehensive study in which we measure the McEliece cryptosystem security. Our

attempt intends to improve the practicality of the underlying cryptosystem.

To assess the security of McEliece cryptosystem, we present some well-known attacks, for

the reason that one of the security measurements of a cryptographic scheme is its resis-

tance to standard cryptanalysis. The structure of this chapter is the following: we start

with an overview of post-quantum cryptography [Nis; Aru+19]. In the second section,

we describe two sorts of attacks: structural and decoding attacks. In the last section, we

give an application of the subfield subcodes of Hermitian codes to cryptography. Mainly,

we give a formula of the public key size in terms of the code rate using the result of

section 4.
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5.1 Post-quantum cryptography

In 1994 Shor [Sho94] introduced a quantum algorithm that is efficient in breaking cryp-

tosystems which are believed to be secure for classical computers. Recently, the most

frequent question is what sort of cryptosystems we can use in the presence of quantum

computers. Once these latest will be available, we must have systems that are part

of post-quantum techniques and which are known as post-quantum cryptography. It

consists of different classes. Among them, we find:

• code-based cryptography,

• hash-based cryptography,

• lattice-based cryptography,

• multivariate-quadratic-equations cryptography.

Replacing these alternative systems will take time. Moreover, quantum-resistant cryp-

tosystems should be in today’s use to protect sensitive data. The construction of a secure

cryptographic scheme must rely on a computationally hard problem. In classical cryp-

tography, there are many schemes in which security is based on a difficult problem that

a classical computer cannot solve, but a quantum computer can.

It seems not easy to design such schemes since its central aspect requires security for

the systems to resist any attack. To attain this goal, the computational ability of an

attacker should be taken into account. Also, the possession of a classical or quantum

computer should be known. Thus, it is crucial to select secure classical cryptosystems if

an adversary has a quantum computer. It is of great importance to think about secure

cryptosystems that can be used for a classical computer and which will also remain secure
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Cryptosystem Broken by Quantum Algorithms
RSA public-key encryption Broken
Diffie-Hellman key-exchange Broken
Elliptic curve cryptography Broken

Buchmann-Williams key-exchange Broken
Algebraically Homomorphic Broken

McEliece public-key encryption Not broken yet
NTRU public key encryption Not broken yet

Lattice-based public-key encryption Not broken yet

Table 5.1: Current status of classical cryptosystems security in relation to quantum com-
puters.

in the existence of quantum computers. Table 5.1 displays which classical cryptosystem

will be secure in the quantum computing era. This also shows the significant attention

given to McEliece’s cryptosystem and its variants [BBD].

5.1.1 Code-based cryptography

Code-based cryptography is a set of cryptosystems in which the underlying trapdoor

function is based on error-correcting codes. The first code-based cryptosystem was in-

troduced by Robert J. McEliece in 1978. One must randomly select an error-correcting

code to generate the private key that is the structure of the chosen code and the public

key whose generator matrix has been randomly permuted. The plaintext is a codeword

to which we add some errors in order to get ciphertext. Only the private key’s possessor

can decode the ciphertext to remove errors and recover the plaintext. It is required to

adjust some parameters that concern its efficiency. Until now, there is no serious attack

that threatens the security of the McEliece scheme even on quantum computers.

There were many attempts to design other cryptosystems with similar ideas. Among

these cryptosystems, we mention: the Niederreiter scheme (which is a variant of McEliece

cryptosystem with replacing the generator matrix by the parity check matrix of the
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code [FD85]), the CFS signature scheme [CZ81], the identification schemes, and the

cryptographic hash function [Ars+04].

In code-based cryptography, the practice is a trade-off between effectiveness and security

at least for McEliece’s cryptosystem. Also, it has many robust features such as security

reduction is tight [BBD] and the encryption and decryption algorithms are very fast, i.e.,

they have low complexity.

Now, we take a look at the first code-based cryptosystem. We will briefly describe the

McEliece cryptographic scheme since we aim at investigating the use of codes other than

Goppa codes for this cryptosystem.

5.1.2 McEliece cryptosystem

McEliece introduced the first code-based public-key cryptosystem in 1978 where he em-

ployed error-correcting codes to generate the public and private key with security relying

on two aspects: NP-completeness of decoding linear codes and distinguishing the chosen

ones.

We consider a family of linear codes denoted by F with an efficient decoding algorithm.

Let C be an element of F of length n and dimension k, with a decoding algorithm AC

of error capability t. The main idea behind McEliece’s cryptosystem is that the sender

applies the encoding process to the plaintext and then he adds some errors. Then, the

receiver uses an encryption process that consists of the secret key, which is the decoding

algorithm, to remove the errors and recover the plaintext.

For the generation of the keys, we consider the generator matrix G of C, a random k× k

invertible matrix S and n× n permutation matrix P . Thus:

• Public Key: (G′ = SGP, t).



5.2. Attacks against code-based cryptography 46

• Secret Key: G, S and P .

Let m be a plaintext of length k, and e a random error vector such that wt(e) ≤ t.

• Encryption: c = mG′ = mSGP + e.

• Decryption: to get back the original message m from c, we simply compute

(mSGP + e)P−1 = mSG+ eP−1, then we decode to get mS. Thus mSS−1 = m.

The original McEliece cryptographic scheme is constructed on binary Goppa codes which

are the subfield subcodes of generalized Reed-Solomon codes.

5.2 Attacks against code-based cryptography

In the literature, several attacks have been proposed against McEliece cryptosystem

in general, and against McEliece systems that are based on AG codes in specific, see

[BBC13]. Attacks can be divided into two classes: structural or key recovery attacks

which aimed at recovering the secret code, and decoding, or message recovery attacks

that seek to decrypt the transmitted ciphertext. The generic decoding attack against

the McEliece scheme is the information set decoding (ISD) algorithm. The most recent

and most effective structural attack against AG code-based McEliece systems is the

Schur product distinguisher, which is given in [CMCP17], where the authors show that

subfield subcodes of AG codes still resist. We focus on attacks based on Information Set

Decoding (ISD) since they are useful for our case, and also, it is assumed to have the

lowest complexity [Nie+12].
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5.2.1 Structural attacks

In [CMCP17], the authors gave polynomial-time attacks against McEliece cryptosystem

that relies either on AG codes or on their restriction to small fields. Their approach is

inspired by the so-called filtration attacks. The idea of such an attack is based on the

fact that AG codes can be distinguished from random ones by the mean of Schur product

which is defined as follows:

Definition 5.1 ([CMCP17] ). The Schur product is the component wise product on Fnq :
given two elements a and b in Fnq ,

a ∗ b := (a1b1, · · · , anbn).

For two codes A,B ⊆ Fnq their Schur product is the code A ∗B defined as

A ∗B := spanFq
{a ∗ b|a ∈ A and b ∈ B}.

For B = A, then A∗A is denoted as A(2) and, we define A(t) by induction for any positive
integer t.

This attack does not need to compute the structure of the curve and divisors that pro-

vide the public key codes. In their methods, the authors employed techniques based on

filtration attacks to obtain an efficient decoding algorithm for AG codes which can be

used as a public key.

For almost any AG code, the proof of the efficiency of this attack is held, except for AG

codes on curves of large genus g with length satisfying 2g < n < 6g, since there is no

mathematical proof for such case. In [CMCP17, Section 7.3], the authors give a reason

for which subfield subcodes are still resistant against this kind of attack. In the genus

zero case, GRS subfield subcodes are still resistant to filtration attacks except for some
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cases [COT16], then as well for the case of classical Goppa codes. Consequently, subfield

subcodes of AG codes provide an interesting candidate for a secure McEliece scheme.

5.2.2 Decoding attacks (ISD)

In 1962 Prange introduced a generic decoding algorithm called Information Set Decoding

which can solve the computational syndrome decoding (CSD) [Pet10], that consists of

correcting t errors that occur in a codeword of a binary [n, k] linear code. The decoding

for linear codes is an NP-complete problem [BMT78], which is beneficial for code-based

cryptosystems security [TS16]. The well-known algorithms that do not imply an explicit

code structure are based on ISD. Briefly, the ISD procedure relies on selecting an informa-

tion set which is a set of error-free coordinates in a codeword c = x + e (the coordinate

of c which are not different from the coordinates of x), in order to find an invertible

sub-matrix formed by the corresponding columns of the generator matrix. Moreover, by

solving linear equations, it is simple to recover the message m [TS16].

We denote by Ĝ = (g>1 , ..., g>n ) the generator matrix in the systematic form. Let m =

(m1, ...,mk) ∈ Fk2 be a plain message and y its encoded codeword in such a way that :

y = (y1, ..., yn) = mĜ+ e ∈ Fn2

e = (e1, ..., en) is an added error. An attacker selects a random subset I ∈ {1, ..., n} of

size k. I is an information set in case that ĜI is invertible matrix. Then

yI = mĜI + eI .

If eI is non zero vector, then the procedure should be iterated with other information
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sets. If not eI = 0, therefore it is easy to get m by computing:

yIĜ
−1
I = mĜIĜ

−1
I + eIĜ

−1
I

Ĝ−1
I is the inverse of ĜI .

5.3 Selecting parameters to secure McEliece cryp-
tosystem

We apply the result concerning the estimation of the true dimension of the subfield

subcodes of Hermitian codes to estimate the key size of the McEliece cryptosystem. The

largest (but not the only) part of the public key of the McEliece cryptosystem is the

matrix G (see section 5.1.2). G is either the n× k generator matrix, or the n× (n− k)

parity check matrix. In either case, G may be assumed to be in a systematic form, which

means that the public key is given by k(n− k) elements of Fr. Hence, the key size is

log2(r)k(n− k).

In particular, for a fixed field Fr and length n, the key size is proportional to R(1− R),

see [Nie+12]. The true values of Rγ
q,r(s)(1−Rγ

q,r(s)) can be estimated by F (x)(1−F (x)),

where F (x) is the extreme value distribution function [EKN20], see Figure 5.1.
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Figure 5.1: Estimating the key size n2R(1−R)



Summary

Summary (in English)

The aim of this dissertation is the study of different classes of subfield subcodes of Her-

mitian codes. The results of our papers [EKN19], [EKN20] concern the structure and

properties of these classes of error correcting codes. We also investigated the possible

application of these codes in the McEliece cryptosystem. These are problems from the

area of coding theory and code-based cryptography. Hermitian codes form a subclass of

algebraic geometry (AG) codes, which can be defined by the function field of an algebraic

curve over a finite field. The simplest case of an AG code is when the curve is a projective

line, this gives the well-known class of Reed-Solomon codes. The subfield subcodes of

the latter are the BCH and binary Goppa codes. Rather few precise results are known

about the dimension of subfield subcodes of AG codes, and the known bounds typically

hold only in a small parameter domain. In chapter 2 we present one of the few precise

results, which are due to P. Véron ([Vlu90; Vlu91; VDV91]), and relate to certain classes

of binary Goppa codes.

In chapter 3, we present the results of the paper [EKN19], where we determine the true

dimension of subfield subcodes of 1-point Hermitian codes (Theorem 3.6) in the case

when the parameter s satisfies s ≤ q3/r. Later, we extend the case of inequality for a

broader class subfield subcodes (Lemmas 4.1 and 4.2).
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In chapter 4, we rely on the paper [EKN20] which deals with the problem of approximat-

ing the true dimension of subfield subcodes of Hermitian codes by an explicit formula.

We describe the statistical set up to tackle the experimental study to analyze the datasets

of the true dimension of different subfield subcodes of Hermitian codes [NEK19]. Based

on adjusting the distribution to the underlying datasets using the method fitmethis

of MATLAB [TM19; Cas20], we found that the extreme value distribution is the most

suitable one.

Recently, quantum computers and their algorithms are a real threat to the long-term

confidentiality of our data. Only a few cryptosystems can resist this threat, one of these

few is the McEliece cryptosystem, which is also the oldest and the best-known scheme.

The classical version of it uses binary Goppa codes, and from a practical point of view,

it suffers from the drawback of large key size. Chapter 5 is dedicated to these problems

and the analysis of the parameters of subfield subcodes of Hermitian codes to give more

precise estimates to the key size of the cryptosystem (Figure 5.1).

Magyar nyelvű összefoglaló (Summary in Hungarian)

Ezen disszertáció célja a Hermite-féle kódok résztest részkódjai különböző osztályainak

vizsgálata. Az [EKN19] és [EKN20] cikkekben közölt eredményeinkben ezen kódosztá-

lyok struktúrájának és tulajdonságainak a vizsgálatát végeztük el. Vizsgáltuk továbbá

ezen kódoknak a felhasználási lehetőségét a McEliece-féle titkosítási sémában. Ezek a

problémák a kódoláselmélet és a kódalapú kriptográfia témakörébe esnek. A Hermite-

kódok az algebrai-geometriai (AG) kódok osztályába tartoznak, amik egy véges test felett

értelmezett algebrai görbe függvénytestének segítségévek definiálhatók. A legegyszerűbb

esetben, amikor a görbe az egyenes, a jól ismert Reed-Solomon kódosztályt kapjuk. Ezek

résztest részkódjai a BCH és a bináris Goppa kódok. Az AG kódok résztest részkódjainak
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szélesebb osztályai esetén kevés pontos eredmény ismert a dimenzióra vonatkozóan, és a

becslések is csak szűk paraméter tartományokra élesek. A 2. fejezetben ezen kevés pon-

tos eredmények egyikét mutatjuk be, az eredmények P. Véron nevéhez fűzódnek ([Vlu90;

Vlu91; VDV91], és bizonyos bináris Goppa kód osztályokra vonatkoznak.

A 3. fejezet az [EKN19] cikk eredményeit mutatja be. Ebben a Hermite-féle 1-pont kódok

résztest részkódjainak pontos dimenzióját adjuk meg (Theorem 3.6) abban az esetben,

ha az s paraméterre teljesül s ≤ q3/r. Az egyenlőtlenség esetét később kiterjesztjük

szélesebb részkód osztályokra (Lemma 4.1 és 4.2).

A 4. fejezet az [EKN20] cikkre épül, amiben a Hermite-féle részkódok valódi dimenzióját

közelítő explicit formulát kerestünk. A fejezetben bemutatjuk a statisztikai hátteret,

valamint a kísérleti környezetet, amiben kis paraméterek esetén (q ≤ 16) kiszámoljuk

a valódi dimenziókat [NEK19]. Használva a MATLAB program statisztikai csomagját

[TM19] és az ezt kiegészítő fitmethis [Cas20] függvényt, arra a következtetésre jutunk,

hogy a kérdéses dimenzió az extrém érték eloszlás függvényével közelíthető (Proposition

4.4).

Napjainkban a kvantum algoritmusok és a kvantumszámítógépek és ezek speciális algo-

ritmusai már komoly fenyegetést jelentenek az adatok hosszú távú titkosítására nézve.

Ennek a veszélynek csak kevés kriptorendszer tud ellenállni, ezek kevesek közül a legrégibb

és legismertebb a McEliece-féle séma. Ennek klasszikus verziója a bináris Goppa-kódokat

használja, és gyakorlati szempontból nagy hátránya a nagy kulcsméret. Az 5. fejezetben

ezt a kérdést jártuk körül, és vizsgáltuk általunk tekintett kódosztály paramétereit abból

a célból, hogy pontosabb becsléseket tudjunk adni a rendszer kulcsméretére (Figure 5.1).



Appendix A

The GAP package HERmitian

HERmitian is a GAP package for computation in algebraic geometry codes theory de-

veloped by Gábor P. Nagy and Sabira El Khalfaoui. The package provides tools to

work with Divisors and Riemann-Roch Spaces of Algebraic Function Fields of Hermitian

Curves. This enables constructing different classes of AG codes over a Hermitian curve.

HERmitian relies on several GAP packages, in particular on OnAlgClosure and GZero,

both are implemented by Gábor P. Nagy.

A.1 Features

HERmitian provides the basic functionality for the following objects.

• Hermitian curves: indeterminate of a Hermitian curve, genus of a Hermitian

curve affine and rational places of a Hermitian curve, random place, random place

of a given degree.

• Automorphisms of Hermitian curves: Frobenius automorphism of a Hermitian

curve, automorphism group of a Hermitian curve.
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• Hermitian divisors: Hermitian place, Hermitian divisor, valuation, the zero di-

visor of a Hermitian curve, comparison of two Hermitian divisors, negative and

positive part of a Hermitian divisor.

• Hermitian Riemann-Roch spaces: basis of Hermitian Riemann-Roch space,

Hermitian AG functional and differential codes.

Among the crucial utilities of the HERmitian package is the possibility of computing

Hermitian codes and their subfield subcodes.

A.2 Illustrations

The following example illustrates how to use HERmitian Package commands.

Let δ be the designed minimum distance of C, and define t = [(δ − 1− g)/2]. If there is

a codeword c ∈ C with d(c, w) ≤ t then c is returned. Otherwise, the output is fail.

The decoding algorithm is from [HP95]. The function Hermitian_DECODER_DATA pre-

computes two matrices which are stored as attributes of the AG code. The decoding

consists of solving linear equations.

Example
gap> q:=4;
4
gap> # construct the curve and the divisors
gap> Y:=HermitianIndeterminates(GF(q^2),"Y1","Y2");
[ Y1, Y2 ]
gap> Hq:=Hermitian_Curve(Y[1]);
<Hermitian curve over GF(16) with indeterminates [ Y1, Y2 ]>
gap> P_infty:=Hermitian_Place(Hq,[infinity]);
<Hermitian place [ infinity ] over indeterminates [ Y1, Y2 ]>
gap>
gap> fr:=FrobeniusAutomorphismOfHermitian_Curve(Hq);
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AC_FrobeniusAutomorphism(2^4)
gap> P4:=RandomPlaceOfGivenDegreeOfHermitian_Curve(Hq,5);;
gap> P4:=Sum(AC_FrobeniusAutomorphismOrbit(fr,P4));
<Hermitian divisor with support of length 5 over indeterminates [ Y1, Y2 ]>
gap> G:=5*P4+7*P_infty;
<Hermitian divisor with support of length 6 over indeterminates [ Y1, Y2 ]>
gap> Degree(G);
32
gap>
gap> len:=50;
50
gap> affpts:=AllRationalAffinePlacesOfHermitian_Curve(Hq);;
gap> D:=Sum(affpts{[1..len]});
<Hermitian divisor with support of length 50 over indeterminates [ Y1, Y2 ]>
gap>
gap> # construct the AG differential code
gap> Hermitian_DifferentialCode(G);
<[64,37] Hermitian AG-code over GF(2^4)>
gap> agcode:=Hermitian_DifferentialCode(G,D);
<[50,23] Hermitian AG-code over GF(2^4)>
gap> DesignedMinimumDistance(agcode);
22
gap> Length(agcode)-Degree(G)-1;
17
gap>
gap> # test codeword generation
gap> t:=Int((DesignedMinimumDistance(agcode)-1-Genus(G!.curve))/2);
7
gap> sent:=Random(agcode);;
gap> err:=RandomVectorOfGivenWeight(GF(q),Length(agcode),t);;
gap> received:=sent+err;;
gap>
gap> # decoding
gap> sent_decoded:=Hermitian_DecodeToCodeword(agcode,received);
<cvec over GF(2,4) of length 50>
gap> sent=sent_decoded;
true
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