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Introduction

Computer vision is the scientific field that enables computers to gain high-level understand-
ing from a single digital image or sequence of images. Practically it seeks to automate tasks
that the human visual system can do. Main tasks include the acquiring, processing, analyz-
ing and understanding of digital images, and extracting of information about the real world.
The countless different applications available today can be enrolled in some well researched
sub-domains like scene reconstruction, event detection, video tracking, object recognition,
3D pose estimation, learning, segmentation, motion estimation, and image restoration. The
dissertation addresses the Author’s research results in absolute pose estimation, homogra-
phy estimation and planar scene reconstruction problems.

Region-based Pose Estimation

In this section we propose a generic, nonlinear, explicit correspondence-less pose estimation
method. The absolute camera pose estimation is based on the 3D-2D registration of a com-
mon Lidar-camera planar patch. The proposed method makes use of minimal information
(plain depth data from 3D and radiometric information from 2D) and is general enough to
be used both for perspective and omnidirectional central cameras. The proposed framework
is inspired by the 2D registration approach of [1], that was applied for a novel formulation
of the absolute pose estimation of perspective cameras by [2], then further extended to
omnidirectional cameras in [Tamas, Frohlich, Kato, 2014]. The general unifying frame-
work proposed in [Frohlich, Tamas, Kato, 2019] uses a recursive formulation to compute
the integrals in the system of equations, and compares it to the suboptimal scheme pre-
sented in [2]; extends the spherical representation of omni cameras from [Tamas, Frohlich,
Kato, 2014] to include perspective cameras, and compares the two possible formulations for
the perspective case; proposes a new numerical scheme for the surface integrals estimation
over spherical triangles that is also compared to the earlier pixel-wise surface integration
from [Tamas, Frohlich, Kato, 2014].

Let us formulate the absolute pose estimation problem for central spherical cameras.
Considering the generalized spherical camera model proposed by [3, 4] we can clearly see

Figure 1. Spherical camera model and the projection of spherical patches DS and FS .

3



that the projection of a 3D world point X = [X1, X2, X3]> ∈ R3 in the camera is basically
a central projection onto S taking into account the extrinsic pose parameters (R, t). Thus
for a world point X and its image x ∈ I, the following holds on the surface of S [Tamas,
Frohlich, Kato, 2014]:

Φ(x) = XS = Ψ(X) = RX + t
‖RX + t‖ (1)

A classical solution of the absolute pose problem is to establish a set of 2D-3D point
matches using e.g. a special calibration target [5, 6], or feature-based correspondences and
then solve for (R, t) via the minimization of some error function based on (1). However, in
many practical applications, it is not possible to use a calibration target and most 3D data
(e.g. point clouds recorded by a Lidar device) will only record depth information, which
challenges feature-based point matching algorithms. Therefore, we present a solution for
such challenging situations.

Absolute Pose of Spherical Cameras

For spherical cameras, we have to work on the surface of the unit sphere as it provides a rep-
resentation independent of the camera internal parameters. Furthermore, since correspon-
dences are not available, (1) cannot be used directly. However, individual point matches can
be integrated out yielding the following integral equation [Tamas, Frohlich, Kato, 2014]:∫∫

DS

XS dDS =
∫∫
FS

ZS dFS , (2)

where DS denotes the surface patch on S corresponding to the region D visible in the
camera image I, while FS is the surface patch of the corresponding 3D planar region F
projected onto S by Ψ in (1) as shown in Fig. 1.

To get an explicit formula for the above surface integrals, the spherical patches DS and
FS can be naturally parametrized via Φ and Ψ over the planar regions D and F [Tamas,
Frohlich, Kato, 2014]. Since a point on the surface S has only 2 independent components,
this results a system of 2 equations only. Having 6 pose parameters we construct more
equations by adopting the general mechanism from [1] and applying a function ω : R3 → R
to both sides of the equation, yielding the following form of (2):∫∫

D

ω(Φ(x))
∥∥∥∥ ∂Φ
∂x1
× ∂Φ
∂x2

∥∥∥∥ dx1 dx2 =
∫∫
F

ω(Ψ(X))
∥∥∥∥ ∂Ψ
∂X1

× ∂Ψ
∂X2

∥∥∥∥ dX1 dX2 (3)

where the magnitude of the cross product of the partial derivatives is known as the surface
element. Adopting a set of nonlinear functions {ωi}`i=1, each ωi generates a new equa-
tion yielding a system of ` independent equations. The pose parameters (R, t) are simply
obtained by solving the nonlinear system of equations (3) in the least squares sense via a
standard Levenberg-Marquardt algorithm.

Although arbitrary ωi functions could be used, power functions are computationally
favorable [1, 2] as these can be computed in a recursive manner:

ωi(XS) = X li
S1X

mi
S2X

ni
S3, with 0 ≤ li,mi, ni ≤ 2 and li +mi + ni ≤ 3 (4)

Note that the left hand side of (3) is constant, hence it has to be computed only once,
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but the right hand side involves the unknown pose parameters, thus has to be calculated in
each iteration, which is computationally rather expensive. Therefore, in contrast to [Tamas,
Frohlich, Kato, 2014] where the integrals on the 3D side were calculated over all points of
the 3D region, let’s consider a triangular mesh representationF4 of the 3D planar regionF .
Due to this representation, we only have to apply Ψ to the vertices {Vi}Vi=1 of the triangles
in F4, yielding a triangular representation [Frohlich, Tamas, Kato, 2019] of the spherical
region F4S in terms of spherical triangles. The vertices {VS,i}Vi=1 of F4S are obtained as

∀i = 1, . . . , V : VS,i = Ψ(Vi) (5)

Due to this representation of FS , we can rewrite the integral on the right hand side of (3)
adopting ωi from (4), yielding the following system of equations [Frohlich, Tamas, Kato,
2019]:∫∫
D

Φli
1 (x)Φmi

2 (x)Φni
3 (x)

∥∥∥∥ ∂Φ
∂x1
× ∂Φ
∂x2

∥∥∥∥ dx1 dx2 ≈
∑

∀4∈F4
S

∫∫
4

Z liS1Z
mi
S2Z

ni
S3 dZS , (6)

where Φ = [Φ1,Φ2,Φ3]> denote the coordinate functions of Φ : I → S . Thus only the
triangle vertices need to be projected onto S, and the integral over these spherical triangles
is calculated using the method presented in [7]. The pose parameters are then obtained by
solving the system of equations (6) in the least squares sense.

For an optimal estimate, it is important to ensure numerical normalization and a proper
initialization. In contrast to [1], in the above equation all point coordinates are on the unit
sphere, hence data normalization is implicit. To guarantee a good initialization of the pose
parameters, multiple steps are performed. First, the 3D data is roughly aligned with our
camera, ensuring that the camera is looking at the correct face of the surface in a correct
orientation [Frohlich, Tamas, Kato, 2019]. Then we also apply a translation that brings the
centroid of F4 into [0, 0,−1]>, which puts the region into the Z = −1 plane. This is nec-
essary to ensure that the plane doesn’t intersect S while we initialize the pose parameters. If
an approximate value for the vertical direction is available, which could be provided by dif-
ferent sensors, or the dataset itself, we roughly align the vertical direction to the camera’sX
axis, ensuring a correct vertical orientation of the projection. This might only be necesary
when using symmetric regions. Initialization of the pose parameters ensures that the surface
patches DS and F4S overlap as much as possible [Frohlich, Tamas, Kato, 2019], by com-
puting the centroids of DS and F4S , and initializing R as the rotation between them, and t
as the translation of the planar region F4 such that the area of F4S becomes approximately
equal to that of DS .

For two or more non-coplanar regions, the algorithm starts similarly, by first using only
one region pair for an initial pose estimation, then starting from the obtained pose as an
initial value, the system of equations is solved for all the available regions, which provides
an overall optimal pose.

Absolute Pose of Perspective Cameras

As a central camera, the perspective camera can also be represented by the spherical camera
model of [3, 4]. Since we assume a calibrated camera, we can define the projection of 3D
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world point X into normalized image coordinates x = [x1, x2]> ∈ R2:

x← K−1x̃ ∼= K−1PX = [R|t]X, (7)

Denoting the normalized image by I, the surface g of the spherical model will be g ≡ I,
hence the bijective mapping Φ : I → S for a perspective camera becomes simply the unit
vector of x:

XS = Φ(x) = x
‖x‖ (8)

Based on the above spherical representation of a perspective camera, the whole method pre-
sented in the previous section applies without any change. However, it is computationally
more favorable to work on the normalized image plane I, because this way we can work
with plain double integrals on I instead of surface integrals on S . Hence applying a nonlin-
ear function ω : R2 → R to both sides of (7) and integrating out individual point matches,
we get [2] ∫

D
ω(x) dx =

∫
[R|t]F

ω(z) dz. (9)

where D corresponds to the region visible in the normalized camera image I and [R|t]F
is the image of the corresponding 3D planar region projected by the normalized camera
matrix [R|t]. Choosing power functions for ωi(x) = xni1 x

mi
2 , and using a triangular mesh

representation F4 of the 3D region F , we can adopt an efficient computational scheme,
since this particular choice of ωi yields equations, that contain the 2D geometric moments
of the projected 3D region [R|t]F . Therefore, we can rewrite the integral over [R|t]F4

as [2] ∫
D
xni1 x

mi
2 dx =

∫
[R|t]F

zni1 z
mi
2 dz ≈

∑
∀4∈[R|t]F4

∫
4
zni1 z

mi
2 dz. (10)

The latter approximation is due to the approximation of F by the discrete mesh F4. The
integrals over the triangles are various geometric moments which can be computed using
efficient recursive formulas discussed hereafter.

Initialization of the pose parameters is done the same way as with the spherical cameras,
except that for the pose parameters conditions are checked on the normalized image plane
instead of the unit sphere. First a translation along the Z axis is determined such that the
image region D and the projected 3D region are of the same size, then R is the rotation that
brings the centroid of the projected 3D region close to the centroid of the corresponding
image region D [Frohlich, Tamas, Kato, 2019].

2D Geometric Moments Calculation

For our method we need to calculate integrals over the regions D ⊂ I and [R|t]F4 ⊂ I,
but we can easily adopt the efficient recursive formulas proposed [8] for geometric moments
calculation over triangles in 3D and apply them to our 2D regions: Since our normalized
image plane I is at Z = 1, the Z coordinate of the vertex points is a constant 1, hence the
generic 3D formula for the (i, j, k) geometric moment of a surface S [8] becomes a plain
2D moment in our specific planar case [Frohlich, Tamas, Kato, 2019]:

Mijk =
∫
S
xiyjzk dS =

∫
S
xiyj dx dy (11)
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Figure 2. Pose estimation example with omni camera image (left) and dense Lidar data
(middle), corresponding segmented regions are marked with purple and green respectively.
Right: color information projected onto 3D data using the estimated extrinsic parameters
(mean forward projection error on markers of 7 cm).

as the last term of Mijk will always be 1 regardless of the value of k. i and j are integers
such that i+ j = N is the order of the moment. Using the proposed equations in [Frohlich,
Tamas, Kato, 2019], we can thus perform the exact computation of the contribution of every
triangle to all the geometric moments of the image region in an efficient way.

The proposed algorithm has been implemented in MATLAB and was extensively tested
on large scale synthetic datasets both for perspective and omnidirectional cameras. The
method proved to be robust for up to 12% and 20% segmentation error in the omni and
perspective case respectively, with 3 planar regions. It was also shown that increasing the
number of planar regions from the minimal case of one single region, increases the perfor-
mance drastically. Switching from pointwise representation to spherical triangles brings an
order of magnitude improvement in the execution time of the algorithm. Multiple real tests
were performed on data captured by sparse 3D laser scanners, dense Lidar scanners, cata-
dioptric and fisheye cameras (see Fig. 2 for an example omni camera result), perspective
DSLR, and drone cameras, some of the test cases having precise marker based reference
parameters. Based on the publicly available KITTI [9] dataset, the proposed method proved
comparable to the mutual information based method of [10], and the CPU implementation
runtime was two orders of magnitude smaller than the GPU implementation of [10].

2D-3D Visual Data Fusion

In this section, we will present two visual data fusion applications. The first one builds
on the perspective region-based registration method presented in [Frohlich, Tamas, Kato,
2019], extending the equations to non-planar but smooth surfaces, including an ICP like
step for fine tuning the pose parameters if intensity information is available on the 3D
data [Frohlich et al., 2016]. The second application focuses on one of the key questions
that arises when dealing with a large number of cameras, that is, the correct selection of
views for colorizing the 3D model, and it also proposes a technical solution for visualizing
the fusion results through textured models with a high number of texture images [Frohlich
et al., 2018].

Non-planar Regions

There are many applications that require a camera’s absolute pose to be estimated, but in
some cases the use of planar regions and a region-based method is not possible, simply
because of the constraints of the 3D data. For example, in cultural heritage, there is an
increasing demand for solutions to digitally document objects, locations or buildings, but

7



in most of the cases, these objects, caves, ruins or old churches do not have suitable planar
surfaces as a human built modern environment most probably would have.

Let us consider again the integral equation previously presented in (9). We can clearly
see that the equation stays valid for curved, smooth surfaces as well [Frohlich et al., 2016],
as long as no self-occlusion of points takes place, thus D and F are satisfying:

D = PF , with D = ∪Ni=1Di and F = ∪Mj=1Fi (12)

where {Di}Ni=1 and {Fj}Mj=1 are a corresponding set of 2D-3D regions.

ICP Refinement

After obtaining a camera pose by minimizing the algebraic error of the system built in (10),
we can further refine it by minimizing a relevant geometric error. In [Frohlich et al., 2016]
we have shown how a standard Iterative Closest Point (ICP) [11] algorithm can be used,
if color information, even if it is of poor quality, is also available at each 3D point. In the
proposed workflow, ICP is used to align the 3D edge lines’ projection with the 2D edge map
(denoted by xe) of the camera image. To ensure, that the same edges are detected in both
domains, we simply project the 3D data onto an image with the initial camera pose, then
detect edges on that image, resulting the 3D edge points Xe. The algorithm then iteratively
projects the 3D Xe edge points using the current K[Rn|tn] camera matrix, that has only
the camera pose parameters (Rn, tn) changing between iterations, giving the reprojected
edge points ze

n at iteration n:

ze
n = K[Rn|tn]Xe (13)

The ICP algorithm will align this ze
n projection to xe, the edge map of the 2D image.

Practically ICP will minimize the backprojection error this way.

Having the estimated relative pose and the calibration matrix of the camera, we can
colorize the 3D points from the 2D image. If we had multiple 2D images, then for the 3D
points visible in more camera images, we have to decide which camera has the best view
of it. For this purpose we compute for every point Xi the angle of its normal ni with the
orientation vector cj of each camera’s optical axis as

cos θ =
cj · ni
‖cj‖‖ni‖

, (14)

and the camera image j with maximal cos θ value is used to colorize the 3D point Xi [Frohlich
et al., 2016]. As a result, we get a good quality colored 3D model of the object. For smaller
cultural heritage objects like ceramics or pottery fragments this kind of approach is suffi-
cient, since a small number of views can cover the whole object, thus colorize the 3D model
efficiently.

Quantitative evaluation on synthetic data proved, that the method performs well using
regions on curved surfaces, even with one single region used, and it is robust to segmenta-
tion errors. Real data tests were performed on multiple interesting objects, both with high
resolution images and precise 3D models, and with lower resolution images combined with
3D data captured by a hand held structured-light scanner. The latter case proved both the
robustness of the proposed method and the low precision of these capturing devices.
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Camera Selection

Let us consider now the cultural heritage applications that aim to document large caves,
ruins, or old churches. Since scanning devices are getting more accessible and experts
use them more often in their workflow, new solutions for data fusion are needed. Even
though most of the commercial solutions provide a method to automatically register 2D
camera images to the captured 3D model, these use the assumption of a rigidly mounted
camera-scanner setup, not handling images taken from different views, or even in different
time. Fusing the final 3D model is not solved well in most of the cases, thus the question of
camera selection becomes more relevant in this scenario, if large number of images are used.
We have proposed a full pipeline [Frohlich et al., 2018] that employs a special algorithm
for selecting the colorizing camera image for each 3D surface-element.

Practically the algorithm goes through a set of criteria, filtering out the bad cameras in
each step, and constructing a ranked list of the good cameras for each vertex. First we detect
if a point X is visible from a camera or it is occluded. For this purpose, we have adopted the
Hidden Point Removal operator [12]. It relies on the observation, that extracting the points
that reside on the convex hull of a spherically flipped point cloud with respect to a given
viewpoint, we get the visible points from that viewpoint.

Next, we verify if a point has a sharp image in the camera, so that only points that
fall inside the depth of field of a camera Ci should be colorized from that camera image.
The real world focus distance of a camera is not easily retrievable using only the image,
but instead we can directly measure the upper and lower limits of the depth of field. Since
for each image pixel we have the corresponding 3D point X we can directly compute the
camera-to-point distance, we only have to find the image regions that are in focus. For this
purpose, we adopt the focus measure introduced by [13], which reflects the statistical prop-
erties of the wavelet transform coefficients in different high frequency sub-bands. Using
a sliding window technique, we select the windows ws that have the focus measure above
an experimentally determined threshold level, then simply calculate the average distance
between the camera and the 3D points visible in window ws as the average of the Euclidean
distances from point to camera. Having a physical metric distance value dist(ws) assigned
to each sharp window, we determine the lowest and highest distance limit by filtering out
outliers. We apply these limits to filter out the cameras that don’t see a given point sharply.

At this point, we have for each 3D point X a set of cameras assigned in which it’s
visible and in focus. As a next step we have to choose the one that sees the point from an
optimal viewing angle and at highest resolution. Let us first calculate the angle between the
surface normal nX in X and the projection ray oXi pointing from X into the optical center
of camera Ci. The angle of these two vectors can be simply calculated using:

θ = arccos( nX · oXi
‖nX‖ · ‖oXi‖

) (15)

with oXi = X − ci being the projection vector of point X into the ith camera. The angles
|θ| ∈ (0 . . . π/2) are the geometrically correct ones, as any other angle would mean that the
camera is looking at the back side of the surface. Of course a mostly perpendicular view
with small |θ| value is more favorable here.

Next, we also check the projection resolution of the region, since a higher focal length
camera can produce higher level of detail even from a larger distance, or a lower focal
length camera from a closer position as well might have better resolution. We characterize
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the resolution of the projection of point Xm in the ith camera as resmi = fi/Dmi, where
fi is the focal length of the camera and Dmi is the distance of camera i from point Xm.

Then the final decision is taken by choosing the camera with the highest value of

dcmi = resmi/θ
′ (16)

where θ′ is the scaled version of angle θ into θ′ ∈ [0 . . . 1) with 0 corresponding to the
perpendicular view and 1 corresponding to the π/2 angle. dcmi stands for the decision
value of camera i with respect to the 3D point Xm.

Texture Mapping

In many applications it is desired to have reduced data size, while having the same visual
resolution of the 3D model. This can be achieved by using a triangular mesh representation
instead of the point cloud, and allows us to simplify the model by reducing the number
of vertices, e.g. by decimation algorithms [14], and visualizing surfaces instead. This also
brings the benefit that we can map texture to each triangle of the mesh.

Applying this to our proposed workflow [Frohlich et al., 2018], we iterate over all the
triangles F of the mesh instead of the points. This way we are able to select different
cameras for neighboring faces that have common vertices, and we are not limited to one
single camera assigned per vertex point. The camera ranking steps presented in the previous
section still remain valid and necessary, we only have to adapt the final step of the algorithm,
in this case iterating over faces F of the mesh. For each face we look at the threeCvk camera
ranking lists assigned to each vertex, that contains the previously defined dc decision values
for all Ci cameras:

Cvk =dcki, where k ∈ (a, b, c) and i ∈ (1..n) (17)

and select the camera Ci that got included in all three Cvk lists and has the highest values
of dc. Assign this to face Fj :

CFj ∈ (Cva ∩ Cvb ∩ Cvc) where dc = max dcki (18)

The data structure prepared this way can easily be written out in an ASCII Wavefront OBJ
file based on its standard specifications [15].

The efficiency of the proposed method has been demonstrated on two large case studies.
First, the documentation of the Reformed church of Somorja (Šamorín), then the documen-
tation of the Reformed church in Kolozsnéma (Klížska Nemá), both of them located in
Slovakia.

Homography Estimation

In this section, we will present our results on homography estimation related topics. In-
spired by the 2D registration framework of [1], we have extended the approach to spheri-
cal cameras [Frohlich, Tamas, Kato, 2016]. Practically the homographies in this case act
between the spherical projections in the two cameras, representing the image of the same
planar region. In general, relative pose parameters [Frohlich, Tamas, Kato, 2016], as well as
the normal [Molnár et al., 2014] and distance of the inducing plane can be factorized from
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such a planar homography. But due to the inherent parametrization of a planar homography,
direct approaches for solving the problem are also possible. We proposed a direct solution
that simultaneously estimates the relative pose of the cameras, the planar homographies and
the parameters of the inducing plane [Frohlich, Kato, 2018].

Figure 3. Homography acting between omnidirectional cameras represented as unit spheres.

Given a scene plane π, the mapping of plane points Xπ ∈ π to the camera spheres
Si, i = 1, 2 is governed by Φ(x) = XS = X

‖X‖ , hence it is bijective. Assuming that the first
camera coordinate system is the reference frame, let us denote the normal and distance of π
to the origin by n = (n1, n2, n3)T and d, respectively, and the relative pose of the second
camera is composed of a rotation R and translation t = (t1, t2, t3)T , as shown in Fig. 3,
thus projecting from sphere S2 to S1 is simply done by applying the same transformation,
then normalizing the transformed point onto the unit sphere:

xS1 = RXS2 + t
‖RXS2 + t‖

Because of the single viewpoint, planar homographies stay valid for omni cameras too [16].

From our point of view, Φ provides an equivalent spherical image and the planar ho-
mography H simply acts between these spherical images [Frohlich, Tamas, Kato, 2016], as
shown in Fig. 3. Basically, the homography transforms the rays as xS1 ∝ HxS2, hence the
transformation induced by the planar homography between the spherical points is also bijec-
tive. Thus the spherical images xS1, xS2 of a point Xπ on the plane and the corresponding
omni image points x1 and x2 are related by

Φ1(x1) = XS1 = HXS2
‖HXS2‖

= Ψ(Φ2(x2)) (19)

Any corresponding point pair (x1,x2) satisfies the above equation. Thus a classical solution
is to establish at least 4 such point correspondences {(xi1,xi2)}Ni=1 by standard intensity-
based point matching, and solve for H. However, the inherent non-linear distortion of om-
nidirectional imaging challenges traditional keypoint detectors as well as the extraction of
invariant descriptors. Therefore we propose a solution without point matches, using regions.
We integrate both sides of (19) yielding a surface integral on S1 over the surface patches
DS = Φ1(D) obtained by lifting the first omni image region D and FS = Ψ(Φ2(F)) ob-
tained by lifting the second omni image region F and transforming it by Ψ : S2 → S1. To
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get an explicit formula for these integrals, the surface patches DS and FS can be naturally
parametrized via Φ1 and Ψ ◦ Φ2 over the planar regions D ⊂ R2 and F ⊂ R2:

∀XS1 ∈ DS : XS1 = Φ1(x1),x1 ∈ D
∀ZS1 ∈ FS : ZS1 = Ψ(Φ2(x2)),x2 ∈ F ,

yielding the following integral equation:

∫∫
D
ωi(Φ1(x1))

∥∥∥∥ ∂Φ1
∂x11

× ∂Φ1
∂x12

∥∥∥∥ dx11 dx12 =∫∫
F
ωi(Ψ(Φ2(x2)))

∥∥∥∥∂(Ψ ◦ Φ2)
∂x21

× ∂(Ψ ◦ Φ2)
∂x22

∥∥∥∥ dx21 dx22 (20)

In order to generate more equations, we have applied again the technique presented in [1].
Indeed, for a properly chosen ω

ω(xS1) = ω(Ψ(Φ2(x2))). (21)

Thus we are able to generate sufficiently many independent equations by making use of a set
of nonlinear (hence linearly independent) functions {ωi}`i=1. Note however, that the gener-
ated equations contain no new information, they simply impose new linearly independent
constraints. The solution to the system directly provides the parameters of H.

The computational complexity can largely be reduced by observing that the integrals on
the left hand side of (20) are constant. However, the unknown homography H is involved in
the right hand side through Ψ, hence these integrals have to be computed at each iteration.
Of course, the spherical points XS2 = Φ2(x2) can be precomputed too, but the computation
of the surface elements is more complex. Let us rewrite the derivatives of the composite
function Ψ ◦ Φ2 in terms of the Jacobian JΨ of Ψ and the gradients of Φ2:∥∥∥∥∂(Ψ ◦ Φ2)

∂x21
× ∂(Ψ ◦ Φ2)

∂x22

∥∥∥∥ =
∥∥∥∥JΨ

∂Φ2
∂x21

× JΨ
∂Φ2
∂x22

∥∥∥∥
Since the gradients of Φ2 are independent of H, they can also be precomputed. Hence
only Ψ(Φ2(x2)) and JΨ(Φ2(x2)) have to be calculated during each iteration yielding a
computationally efficient algorithm [Frohlich, Tamas, Kato, 2016].

Since the system is solved by minimizing the algebraic error, proper normalization is
critical for numerical stability [1]. Unlike in [1], spherical coordinates are already in the
range of [−1, 1], therefore no further normalization is needed. However, the ωi functions
should also be normalized into [−1, 1] in order to ensure a balanced contribution of each
equations to the algebraic error. In our case, this can be achieved by dividing the integrals
with the maximal magnitude of the surface integral over the half unit sphere. To guarantee
an optimal solution, a good initialization ensures that the surface patchesDS andFS overlap
as much as possible. This is achieved by computing the centroids of the surface patches DS
and FS respectively, and initializing H as the rotation between them.

In this section we have presented a homography estimation algorithm, which is inde-
pendent of the camera’s internal projection functions Φ1 and Φ2. However, the knowledge
of these functions as well as their gradient are necessary for the actual computation of the
equations in (20). Robustness of the method was validated on synthetically generated data,
while two of the most commonly used omnidirectional camera models were also compared.
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Homography Factorization

Considering that a planar homography H is composed as

H ∝ R − tnT /d (22)

from a rotation R, the ratio t/d of the translation to the distance of plane and the normal
n of the plane, we can express the pose parameters as described in [17] using the singular
value decomposition (SVD) of H. Of course as the d distance of the plane is unknown, we
can only express the translation t up to a scale factor. We fixed this scale factor by choosing
the last element h33 of H to be 1.

Another approach can be taken if we consider a man-made environment where the weak
Manhattan world [18] assumption, consisting of vertical planes with an arbitrary orientation
but parallel to the gravity vector and orthogonal to the ground plane, is satisfied. Follow-
ing [18], we can also take advantage of the knowledge of the vertical direction, which can be
computed e.g. from an inertial measurement unit (IMU) attached to the camera. While [18]
deals with perspective cameras, we have shown that homographies obtained from omnidi-
rectional cameras can also be used [Frohlich, Tamas, Kato, 2016].

Let us consider a vertical plane π with its normal vector n = (nx, ny, 0)T (z is the
vertical axis, see Fig. 3). The distance d of the plane can be set to 1, because H is determined
up to a free scale factor. Knowing the vertical direction, the rotation matrix R in (22) can
be reduced to a rotation Rz around the z axis, yielding:

H = Rz − (tx, ty, tz)(nx, ny, 0)T (23)

The estimation of such a weak Manhattan homography matrix is done in the same way as
before, but the last column of H is set to (0, 0, 1)T , yielding 6 free parameters only [Frohlich,
Tamas, Kato, 2016]. Based on the above parametrization, H can be easily decomposed in
the rotation α and the translation t = (tx, ty, tz)T parameters of the relative motion between
the cameras [Frohlich, Tamas, Kato, 2016]. For example, using the fact that n2

x + n2
y = 1,

tz = ±
√
h2

31 + h2
32 (see [18] for more details).

Quantitative evaluation on synthetically generated weak Manhattan datasets proved,
that both the homography estimation presented in the previous section, and the relative
pose factorization from the estimated homographies can be performed robustly with the
proposed methods, yielding comparable results to the standard SVD-based factorization
method of [19].

Plane Reconstruction

In [Molnár et al., 2014] a closed form solution was presented to reconstruct the normal
vector of a 3D planar surface patch from the planar homography between a pair of corre-
sponding image regions and known omnidirectional cameras, that was validated using the
homography estimation method presented in the previous section. Once the normal vector
n is determined, d can be easily computed based on (22) as shown e.g. in [20]. In the dif-
ferential geometric solution of [Molnár et al., 2014], the camera independent equations are
constructed using the matrix-elements of the Jacobian of the linear transformations between
image regions, expressed through the normal vector of the observed surface element and the
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gradients of the projection functions [21]:

[Jij ] = 1
|∇x1

in∇x2
i |

[
|∇x1

jn∇x2
i | |∇x1

in∇x1
j |

|∇x2
jn∇x2

i | |∇x1
in∇x2

j |

]
(24)

The above quantities are all invariant first-order differentials: the gradients of the projections
and the surface unit normal vector. Note that (24) is a general formula: neither a special
form of projections, nor a specific surface is assumed here, hence it can be applied for
any camera type and for any reasonably smooth surface. The formula can be used for
computing the normal vector n, when both the projection functions and the Jacobian Jij
are known. Let us write the matrix components of the derivatives of an estimated planar
homography [Molnár et al., 2014]:

[Jij ]est =
[
a1

1 a1
2

a2
1 a2

2

]
(25)

To eliminate the common denominator we can use ratios, which can be constructed
using either row, column, or cross ratios [Molnár et al., 2014]. Without loss of generality,
the equation for the 3D surface normal can be deduced using cross ratios a1

1
a2

2
and a1

2
a2

1
. After

rearranging equation [Jij ]est = [Jij ] we obtain:

n ·
[
a2

2

(
∇x2

i ×∇x1
j

)
− a1

1

(
∇x2

j ×∇x1
i

)]
=0

n ·
[
a2

1

(
∇x1

j ×∇x1
i

)
− a1

2

(
∇x2

i ×∇x2
j

)]
=0 (26)

Here we have two (known) vectors, both perpendicular to the normal:

p =n ·
[
a2

2

(
∇x2

i ×∇x1
j

)
− a1

1

(
∇x2

j ×∇x1
i

)]
q =n ·

[
a2

1

(
∇x1

j ×∇x1
i

)
− a1

2

(
∇x2

i ×∇x2
j

)]
(27)

Thus the surface normal can readily be computed as

n = p× q
|p× q|

. (28)

The normal vector can thus be expressed through the gradients of the projection functions.
In [Molnár et al., 2014] it was shown in detail how to compute the coordinate gradients
∇xlk, k = i, j; l = 1, 2 w.r.t. spatial coordinates and Jij in (24) for an omni camera pair.

In summary, given a pair of corresponding regions F and D in a pair of calibrated
omnidirectional cameras with known projection functions Φi, Φj , the 3D scene plane π can
be reconstructed through the following steps:

1. Estimate the homography H acting between the corresponding spherical regions F
and D (using e.g. [Frohlich, Tamas, Kato, 2016]), which gives Ψ.

2. Estimate the relative pose (R, t) between the cameras. Given H, this can be done by
homography factorization methods, e.g. [19] or [Frohlich, Tamas, Kato, 2016].

3. Compute the normal n of π using the direct formula (28), and then d by a standard
method based on (22), e.g. [20].

The algorithm was evaluated on synthetic data, and proved comparable performance to
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the well known classical plane from homography method described by Hartley and Zisser-
man [20].

Simultaneous Relative Pose and Plane Reconstruction

In contrast to the methods presented in the previous section, where a plane induced ho-
mography was first estimated between image regions, then the relative pose of the cameras
was factorized, finally being able to calculate the parameters of the plane based on these
estimated values, here we present a simultaneous solution for all the above problems for
perspective cameras [Frohlich, Kato, 2018].

Starting from the absolute pose of perspective cameras, as described in the first section,
we can work directly with the normalized images (7). Let us formulate the relation between
a given scene plane π and its images D0 and D1 in two normalized cameras (see Fig. 4).
Choosing the camera C0 as the reference frame, let us represent π by its unit normal n =
(n1, n2, n3)> and distance d to the origin. Furthermore, the relative pose of the second
camera frame C1 is a 3D rigid body transformation (R1, t1) : C0 → C1. Thus the image in
the first and second camera of any homogeneous 3D point X of the reference frame is given
by

xC0
∼= [I|0]X and xC1

∼= [R1|t1]X. (29)

Figure 4. Projection of a 3D plane π in a multi-view camera system.

The mapping of 3D plane points Xπ ∈ π into the cameras Ci, i = 0, 1 is governed by the
same equations, giving rise to a planar homography H1

π : D0 → D1 induced by π = (n, d)
between the image regions D0 and D1, composed up to a scale factor as (22). Thus for any
point Xπ ∈ π, we have the following relation between the corresponding normalized image
points xC0 and xC1 :

xC1
∼= H1

πxC0
∼= (R1 − 1

d
t1n>)xC0 . (30)

The classical solution is to find at least 4 such point matches and solve for H1
π, then fac-

torize R1, t1, and n from H1
π (d cannot be recovered due to the free scaling factor) [22].

However, our region-based approach [Frohlich, Kato, 2018] robustly recovers the alignment
of non-linear shape deformations via the solution of a special system of equations without
established point correspondences.
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Following the idea of [1], we avoid working with point correspondences by integrating
out both sides of (30). Applying an appropriate set of ω : R2 → R functions on both sides,
the equality remains valid, yielding the following integral equation:∫

D1
ω(xC1) dxC1 =

∫
D0
ω(H1

πxC0)|JH1
π
(xC0)| dxC0 . (31)

where the integral transformation xC1 = H1
πxC0 , dxC1 = |JH1

π
(xC0)|dxC0 has been ap-

plied. Since H1
π is a 3×3 homogeneous matrix with only 8 DoF, we will set its last element

to 1. Note that the above equality is true for inhomogeneous point coordinates xCi , which
are obtained by projective division. The Jacobian determinant |JH1

π
| : R2 → R gives the

measure of the transformation at each point [1].
The unknown relative pose (R1, t1) and 3D plane parameters (n, d) are then simply

obtained as the solution of the nonlinear system of equations (31). In practice, an overdeter-
mined system is constructed, which is then solved in the least squares sense by minimizing
the algebraic error via a standard Levenberg-Marquardt algorithm.

Multiple Regions and Multiple Views

The key advantage of the proposed solution when compared to classical homography es-
timation methods, is the possibility to handle in the same system multiple planar regions
and/or cameras. Practically, since each plane πi generates a homography H1

πi between the
corresponding image regions D0

i and D1
i , (30) and (31) remains valid for each of these ho-

mographies, but we have to note that the relative pose (R1, t1) of the cameras is the same
for all H1

πi , they only differ in the 3D plane parameters (ni, di). Hence for all {πi}Ni=1, we
have

xC1
∼= H1

πixC0
∼= (R1 − 1

di
t1n>i )xC0 , with xC0 ∈ D0

i and xC1 ∈ D1
i (32)

and (31) becomes a system of N equations [Frohlich, Kato, 2018] in terms of the common
camera pose (R1, t1) and the parameters (ni, di) of the 3D planes {πi}Ni=1:∫

D1
i

ω(xC1) dxC1 =
∫
D0
i

ω(H1
πixC0)|JH1

πi
(xC0)| dxC0 , 1 ≤ i ≤ N (33)

For a given ω function, the above equations provide N constraints on the relative pose
parameters, but only 1 constraint for each plane πi, having a total of N equations. Note
also, that we have one free scaling factor for the whole system in (33), because a relative di
parameter for the planes need to be determined, only one of them can be set freely.

Similarly, when multiple cameras are observing the scene planes, then we can construct
a system of equations which contains multiple constraints not only for the camera relative
poses but also for each 3D plane.

A reference camera frame C0 is chosen, each camera’s relative pose is determined w.r.t.
C0 and all planes are reconstructed within C0. Assuming that all scene planes {πi}Ni=1 are
visible in every camera {Ck}M−1

k=0 , each plane πi generates a homography Hk
πi between the

corresponding image regions in the reference camera D0
i and the kth camera Dki :

∀1 ≤ k ≤M − 1 : xCk ∼= Hk
πixC0

∼= (Rk − 1
di

tkn>i )xC0 . (34)

Hence each camera provides a new constraint on the scene plane parameters (ni, di), yield-
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ing a total of M − 1 constraints for reconstructing πi [Frohlich, Kato, 2018]. If a particular
plane is not visible in all other cameras, then the number of these constraints is reduced.

A particular camera pair (C0, Ck) provides N equations in terms of the common camera
pose (Rk, tk) and the parameters (ni, di) of the 3D planes {πi}Ni=1, yielding a system of N
equations similar to (31). Therefore we get∫

Dki
ω(xCk) dxCk =

∫
D0
i

ω(Hk
πixC0)|JHk

πi
(xC0)| dxC0 ,

1 ≤ i ≤ N and 1 ≤ k ≤M − 1 (35)

For a given ω function, the above equations provide N constraints on each relative pose
(Rk, tk), and M − 1 constraints for each plane πi, having a total of N(M − 1) equations.
The minimal number of equations needed to solve for M ≥ 2 cameras and N ≥ 1 planes is
E = 6(M − 1) + 3N − 1.

When used with more cameras or more regions than the minimal setup assumes, the pro-
posed method [Frohlich, Kato, 2018] applies a two step algorithmic approach. First, each
neighboring camera pair is solved in a pairwise way, where the pose and plane parameters
don’t require any specific initialization. Then a final bundle adjustment step is performed,
where all previous results are transformed into the chosen reference frame, relative poses
are written up, and the reconstruction parameters are initialized with the average of the ini-
tial reconstruction values ( filtering out outliers) if multiple camera pairs reconstructed the
same scene plane. The global solution of this system will provide the final results, up to one
free scale factor.

The proposed method was extensively evaluated on synthetic data in different configu-
rations, and also proved good performance on multiple real data experiments, also compar-
ing favorable to the State-of-the-Art general reconstruction method COLMAP [23] on the
KITTI [9] dataset (see Fig. 5 for a comparative result).

Figure 5. Comparative results of the propsed method and COLMAP[23]: Camera poses
(left) and a traffic sign reconstruction (right) shown in green (ground truth), red (proposed),
and blue (COLMAP).
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Summary of the Author’s Contributions

In the following, I summarized my results into two main thesis groups. In the first one, I
present my findings on 2D-3D absolute pose estimation and visual data fusion, while in the
second one my results on planar homography estimation and 3D reconstruction are shown.
In Table A.1., the connections between the thesis points and the corresponding publications
are displayed.

I. Absolute Pose Estimation and Data Fusion
Inspired by the 2D registration framework of [1], [2] proposed a novel formulation
of the absolute pose estimation of a perspective camera with respect to a 3D depth
data as a general 2D-3D registration that works without the use of any dedicated cal-
ibration pattern or explicit point correspondences. This idea can be extended into a
general framework for the absolute pose estimation of central spherical cameras, and
applied for different visual data fusion tasks. The basic idea is to set up a system
of non-linear equations whose solution directly provides the parameters of the align-
ing transformation. This thesis group summarizes my results on the absolute pose
estimation topic and two data fusion applications.

(a) I experimentally tested the performance of the absolute pose estimation algo-
rithm of omnidirectional cameras introduced in [Tamas, Frohlich, Kato, 2014]
on synthetic data. For a common registration framework for central cameras I
implemented the proposed spherical surface integral calculation that reformu-
lates [Tamas, Frohlich, Kato, 2014] to work with triangles of a mesh represen-
tation, and I deducted an efficient 2D geometric moments calculation scheme
for the surface integrals of perspective cameras presented in [2]. I proposed an
initialization step of the rotation and translation parameters for both spherical
and perspective cameras, that works automatically using the projection of the
corresponding 2D-3D regions. Through quantitative evaluation of the method, I
proved its performance, I compared it to previous point-wise spherical integral
approximation approach [Tamas, Frohlich, Kato, 2014] on large scale synthetic
data, while also comparing the spherical and classical models applied for the
perspective camera. I also demonstrated the performance and usability of the
method on multiple real data test cases with different cameras and 3D sensors.

(b) For the first visual data fusion application for cultural heritage objects, I adapted
our region-based registration method [Tamas, Frohlich, Kato, 2014] extending
it to non-planar, smooth surfaces. As part of the workflow, I proposed an ICP
refinement step based on intensity data edges, and a simple solution for the
multi-camera fusion problem based on the cameras’ orientation. I experimen-
tally proved that despite the change to non-planar surfaces, the robustness of
the method remains the same, while also conducting real tests on collected data
of cultural heritage objects. The second application focuses on the selection of
views from large number of cameras. I implemented a more complex camera
selection algorithm, to fully benefit from the different focal length, resolution
and position of cameras, based on multiple criteria, like visibility, sharpness,
viewing angle and resolution. Visualizing the fusion results required a solution
for the correct texture mapping between the 3D model and hundreds of texture
image files, thus I proposed a technical solution that can easily use the original
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images as textures, without the need to create specially baked texture files. I
validated the proposed pipeline on the acquired 2D-3D large scale dataset of
two Reformed churches.

II. Planar Homography Estimation and 3D Reconstruction
The 2D registration framework of [1] can also be extended for estimating planar ho-
mographies between spherical cameras. Practically the homographies would act in
this case between the spherical projections in the two cameras, representing the image
of the same planar region. In general, relative pose parameters, as well as the normal
and distance of the inducing plane can be factorized from such a planar homography,
but due to the inherent parametrization of a planar homography, direct approaches
for solving the problem are also possible, avoiding the factorization step completely.
This thesis group summarizes my results on the planar homography estimation and
3D reconstruction topics.

(a) I experimentally validated the proposed region-based homography estimation
method for omnidirectional cameras using two of the most commonly used
models. Following [18] I deducted the decomposition of relative pose param-
eters from homographies assuming a weak Manhattan world constraint, then
proved its comparable performance to the standard factorization method of [17]
on synthetic data. If relative pose is available, one can also calculate the parame-
ters of the inducing planar patch from the homography. I validated the proposed
differential geometric approach for the computation of the normal vector, us-
ing the homographies estimated by our method [Frohlich, Tamas, Kato, 2016].
Through comparative evaluation on synthetic data, I proved, that the proposed
method outperforms the classical method of [20], and it is robust against noise
in the rotation and translation parameters.

(b) Taking a different approach on the homography estimation problem with per-
spective cameras, a standard parametrization of the homography was applied
through the relative pose and plane parameters. Each camera pair and each
available region pair defines a new homography, thus I deducted the homogra-
phy equations in a multi-camera multi-region setup through the common pose
and plane parameters, and validated the algorithm both in a minimal case setup,
and various configurations of cameras and regions. For the multi-camera setup
I built a bundle adjustment to simultaneously estimate all the unknown param-
eters of the system. I experimentally proved the method’s performance on syn-
thetic and on real data with precise Lidar pointcloud and marker based measure-
ments as reference, and also on the KITTI benchmark dataset where it proved
State-of-the-Art performance in comparison to the point-based multi-view re-
construction method of [23].
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I II
a b a b

[Tamas, Frohlich, Kato, 2014] •
[Frohlich, Tamas, Kato, 2019] •

[Frohlich et al., 2016] •
[Frohlich et al., 2018] •

[Frohlich, Tamas, Kato, 2016] •
[Molnár et al., 2014] •

[Frohlich, Kato, 2018] •

Table 1. The connection between the thesis points and publications.

Publications

Articles

[Frohlich, Tamas, Kato, 2019] R. Frohlich, L. Tamas, and Z. Kato. “Absolute Pose Es-
timation of Central Cameras Using Planar Regions”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2019). accepted subject to minor revision, under
review, pp. 1–16.

Book Chapters

[Frohlich et al., 2018] R. Frohlich, S. Gubo, A. Lévai, and Z. Kato. “3D-2D Data Fusion
in Cultural Heritage Applications”. In: Heritage Preservation: A Computational Ap-
proach. Ed. by B. Chanda, S. Chaudhuri, and S. Chaudhury. Springer Singapore, 2018,
pp. 111–130. ISBN: 978-981-10-7221-5. DOI: 10.1007/978-981-10-7221-5_6.

[Frohlich, Tamas, Kato, 2016] R. Frohlich, L. Tamas, and Z. Kato. “Handling Uncer-
tainty and Networked Structure in Robot Control”. In: vol. 42. Studies in Systems,
Decision and Control. Chapter 6. Springer, Feb. 2016. Chap. Homography Estimation
Between Omnidirectional Cameras Without Point Correspondences, pp. 129–151.

Conference Papers

[Frohlich, Kato, 2018] R. Frohlich and Z. Kato. “Simultaneous Multi-View Relative Pose
Estimation and 3D Reconstruction from Planar Regions”. In: Proceedings of ACCV
Workshop on Advanced Machine Vision for Real-life and Industrially Relevant Appli-
cations. Ed. by G. Carneiro. Vol. 11367. Lecture Notes in Computer Science. Springer,
Dec. 2018. ISBN: ISBN 978-3-030-21074-8. DOI: 10.1007/978-3-030-21074-
8.

[Frohlich et al., 2016] R. Frohlich, Z. Kato, A. Tremeau, L. Tamas, S. Shabo, and Y.
Waksman. “Region Based Fusion of 3D and 2D Visual Data for Cultural Heritage Ob-
jects”. In: Proceedings of International Conference on Pattern Recognition. IEEE. Can-
cun, Mexico: IEEE, Dec. 2016, pp. 2404–2409.

[Molnár et al., 2014] J. Molnár, R. Frohlich, C. Dmitry, and Z. Kato. “3D Reconstruc-
tion of Planar Patches Seen by Omnidirectional Cameras”. In: Proceedings of Interna-
tional Conference on Digital Image Computing: Techniques and Applications. Wollon-
gong, Australia: IEEE, Nov. 2014, pp. 1–8. ISBN: ISBN 978-1-4799-5409-4.

20

https://doi.org/10.1007/978-981-10-7221-5_6
https://doi.org/10.1007/978-3-030-21074-8
https://doi.org/10.1007/978-3-030-21074-8


[Tamas, Frohlich, Kato, 2014] L. Tamas, R. Frohlich, and Z. Kato. “Relative Pose Es-
timation and Fusion of Omnidirectional and Lidar Cameras”. In: Proceedings of the
ECCV Workshop on Computer Vision for Road Scene Understanding and Autonomous
Driving. Ed. by L. de Agapito, M. M. Bronstein, and C. Rother. Vol. 8926. Lecture
Notes in Computer Science. Zurich, Switzerland: Springer, Sept. 2014, pp. 640–651.
ISBN: ISBN 978-3-319-16180-8.
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