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2 Preface 

The following work presents our group’s efforts in the mapping of the human 

cytomegalovirus transcriptome. However, I would like to emphasize that these efforts meant 

so much more than merely cataloguing RNA isoforms of a pathogen. Our group was fortunate 

enough to have used state-of-the-art technology in a field that is barely beginning to flourish 

at the time of writing this manuscript. Long-read RNA sequencing presented multiple 

unexpected challenges both at the wet lab and at the informatics level. I must say it was quite 

uplifting as well as scary to walk an unwalked path. At the same time, it was inspiring to see 

the many innovative solutions emerging and I hope that our struggles contributed to paving the 

path for other researchers who decide to apply third-generation sequencing. 

The manuscript is based on a series of RNA sequencing experiments carried out using 

two long-read sequencing technologies. The results of the analyses were published in multiple 

papers, of which the one about sequencing on the PacBio RSII platform was already featured 

in the thesis of my friend and colleague, Dr. Zsolt Csabai, who presented the utility of RNA 

sequencing in a multitude of herpesviruses. Therefore, those findings will not be the main focus 

of this thesis. However, as those findings are relevant to the subject of the current thesis, they 

will be explained and referenced to contrast them to results obtained by different platforms. In 

order to show a more complete picture of the projects of our group and to provide a better 

narrative, some as of yet unpublished data is presented. 
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4 Introduction 

4.1 Sequencing and genome annotation 

With the rapid fall of the cost of sequencing the field of genomics has expanded rapidly. 

The sequencing of large genomes such as the human genome seemed an impossible task 30 

years ago and still a very expensive one 20 years ago (International Human Genome 

Sequencing Consortium, 2001). In the last decade, however, next-generation sequencing 

(NGS) has made it possible to sequence a human genome in days for the cost of a cell phone 

(Goodwin et al., 2016). With the use of NGS, many fields were able to answer interesting and 

essential questions. NGS has been used to uncover the history of the human race and also of 

more recent history of smaller populations (Green et al., 2010; Lazaridis et al., 2014). NGS has 

been used to investigate cancer and aging (Campbell et al., 2008; Lodato et al., 2018). And it 

has revealed that our body hosts a wide range of organisms (Moustafa et al., 2017; Turnbaugh 

et al., 2007). Not only do we know the genome sequence of numerous organisms (Adams et 

al., 2000; Bult et al., 2007; Schnable et al., 2009), but we can compare the genetic variability 

of thousands of individuals (Turnbull et al., 2018). Although we possess a lot of genome 

sequences, we only know the function of a very small fragment of these sequences. 

Genome annotation is the process of dividing the genome into functional regions and 

determining the functions of these units. This can involve gene prediction or other structural 

annotation of larger genetic elements, the mapping of binding sites for various proteins or the 

functional characterization of variants (Harrow et al., 2012). 

One of the many parts of genome annotation is the annotation of the transcriptome. 

RNAs are the molecules that relay the information coded in the DNA outside of the nucleus to 

determine the amino acid sequence of proteins, but RNAs can also act as enzymes and also 

possess a number of other regulatory roles (Mercer et al., 2009). Transcriptome annotation 

means the mapping of transcriptionally active genetic regions, the structural characterization 

of RNA molecules and the functional categorization of the transcripts. A complete and detailed 

transcript annotation contributes to the interpretation of genetic variants as well as to the 

analysis of quantitative RNA sequencing (RNA-Seq) data (Soneson et al., 2015; Yu et al., 

2007). When analyzing genetic mutations, it is crucial to know whether a certain variant is 
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transcribed and if it is, then whether it is in an untranslated region or whether it is alternatively 

spliced etc. Also, in the analysis of gene expression, it is essential to know how many and what 

kind of transcripts are expressed from a region, because it can greatly improve the accuracy of 

the programs which (Trapnell et al., 2012) analyze RNA-Seq data. 

Genes can express a variety of transcripts. The processes that contribute to alternative 

gene usage are alternative polyadenylation (Edwalds-Gilbert et al., 1997; Tian et al., 2005), 

alternative splicing (Roca et al., 2003), alternative promoter usage (Cramer et al., 1997) and 

RNA base modifications (Hussain et al., 2013). 

4.2 NGS revolutionizes transcriptomics 

Compared to previous tools that were available for transcript analysis such as reverse-

transcription quantitative PCR and microarrays, RNA-Seq was a rapid advancement. NGS 

enabled the simultaneous investigation of multiple genes without the need for prior knowledge 

about the sequence. As the price of sequencing fell rapidly, more and more transcriptomes and 

complete transcriptome atlases of whole human organs became available (Hawrylycz et al., 

2012). Soon, more specific applications were developed for the more detailed characterization 

of transcriptomes. PolyA-Seq emerged to characterize the 3’ ends of transcripts and to discover 

alternative polyadenylation (Shepard et al., 2011). Sequencing of the 3’ ends of the transcripts 

proved to be especially beneficial, as RNA degradation generally proceeds from the 5’ end. 

The cap analysis of gene expression (CAGE) was developed to map the 5’ ends of the 

transcripts (Kodzius et al., 2006). Novel variations of NGS such as GRO-Seq and PRO-Seq 

are used for the analysis of nascent RNA as it is being transcribed (Gardini, 2017; Mahat et al., 

2016). Short-read sequencing can efficiently characterize transcript features such as 

transcriptional start sites (TSS), transcriptional end sites (TES) and introns, however, when 

multiple transcripts overlap, short reads cannot tell, to which transcript a given read belongs. 

4.3 The third-generation of sequencing. 

Long-read sequencing is a novel tool in genomics and it is slowly gaining appreciation 

and it is being constantly improved in order to be able to applied to answer a variety of 

questions (van Dijk et al., 2018). Two companies dominate the field of long-read sequencing 
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at the moment: Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), 

which are providing technologies based on different principles of nucleotide detection. 

4.3.1 Pacific Biosciences 

Pacific Biosciences patented Single-Molecule Real-Time (SMRT) sequencing, which 

relies on a polymerase molecule fixated at the bottom of a zero-mode waveguide, a tiny 

structure that enables the detection of fluorescence emitted during the incorporation of a single 

labelled nucleotide. The fluorescence reaches a detector, which converts the signal. The 

template that the polymerase has to process is circularized using hairpin adapters (SMRTBell). 

The polymerase can make multiple rounds on each circularized template. The signals of 

multiple passes over the same sequence can be summed to create a more accurate circular 

consensus sequence (CCS). The disadvantages of PacBio sequencing are that it is less accurate 

and produces much less reads than current short-read sequencing approaches. Its advantages 

are that it can produce reads even longer than 10 kb, and that its errors are more random than 

those of any other currently available sequencing technology. This means that if a high enough 

number of passes is reached over a given sequence, its accuracy can be improved above any 

other sequencing method’s accuracy (Rhoads and Au, 2015; Roberts et al., 2013). PacBio 

sequencing has been used to improve genome assemblies, taking advantage of the long reads, 

that it provides (English et al., 2012) and also to characterize structural variations which are 

difficult to discern from short-read sequencing data (Nakano et al., 2017). PacBio achieved 

great success with its RSII platform; its improved version, the Sequel platform (Hebert et al., 

2018) has recently been released and has a substantially higher throughput. 

4.3.2 Oxford Nanopore Technologies 

Oxford Nanopore Technologies (ONT) was the first company to utilize nanopore 

sequencing commercially in nucleic acid sequencing (Wang et al., 2018). Nanopore 

sequencing is based on the electric potential changes that the DNA or RNA molecules generate 

when they pass through a nanopore. The measured changes serve as signals for basecalling. 

The accuracy of nanopore sequencing is even lower than that of PacBio sequencing (Weirather 

et al., 2017). However, its throughput is higher and also the maximum read length is 

independent of the technology, only DNA extraction and library preparation impose a limit to 

the size of the fragments that can be sequenced (Jain et al., 2018). The accuracy of the ONT 
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platform can be increased somewhat by the 1D2 method. This technology attaches special 

adapters to one end of the DNA, which increase the chance that a strand will be followed by 

its complementary strand through the nanopore. This allows for a consensus sequence to be 

called from twice as many signals, thereby improving the accuracy. The users of nanopore 

sequencing have come up with other techniques to improve the quality of the reads. The R2C2 

method utilizes rolling circle replication to produce concatamers of the template, which are 

then used to create a consensus (Volden et al., 2018). Further advantages of this technology 

are that it only requires a very low amount of capital investment and that the sequencing device 

is small and portable, therefore it can be applied in the field and does not require a large 

laboratory. Nanopore sequencing has also been utilized for genome assembly and for the 

detection of structural variations (Goodwin et al., 2015; Norris et al., 2016). For genome 

sequencing purposes, nanopore sequencing is often accompanied by an NGS method to 

improve the accuracy (Madoui et al., 2015). Both ONT and PacBio sequencing can be used to 

detect base modifications. 

4.3.3 Long-read RNA sequencing 

Long-read sequencing has clear advantages over short-read sequencing in 

transcriptome analysis. The error-prone nature of long-reads generally poses little to no 

challenge if the RNA sequencing is carried out on an organism with a known genome. 

However, long-reads provide full contig information about the transcripts, which means that 

the transcript isoforms can be differentiated by TSS, TES and exon connectivity (Figure 1). 

RNA-Seq initially meant, and mostly still refers to, cDNA sequencing, that is, the RNA has to 

be reverse transcribed first into cDNA and then the cDNA is sequenced. Both long-read 

sequencing technologies take advantage of the switching mechanism at the 5’ end of the RNA 

transcript (SMART), which enables the second strand synthesis of full-length cDNA molecules 

(Gonzalez-Garay, 2016; Zhu et al., 2001). Even though this method is widely used and 

accepted, its results are difficult to interpret due to effects of RNA degradation and technical 

artefacts. 
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Figure 1 The advantages of long-read sequencing. The yellow rectangles represent the 

transcribed exons of a gene, red rectangles represent short reads, blue ones represent long 

reads. The thin lines represent introns. It is visible, that the different transcripts could not be 

reconstructed using short-read sequencing, while long-read sequencing is able to differentiate 

the transcript isoforms. 

4.4 The drawbacks of cDNA sequencing 

Reverse transcription and PCR are known to be able to produce artefacts through 

template switching (Geiszt et al., 2004; Mader et al., 2001; Zeng and Wang, 2002). Template 

switching is the process through which the polymerase stops elongation and reinitiates at a 

different locus, which contains homologous sequences. Reinitiation is thought to be facilitated 

by the ability of the polymerase to bind to the synthesized strand even after the polymerase has 

dissociated from the template. The strand is carried over and hybridizes to a homologous locus 
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from where the polymerase can continue elongation. The DNA polymerase and the reverse 

transcriptase are both capable of template switching (Cocquet et al., 2006; Kanagawa, 2003). 

Template switching has been described to introduce chimeric cDNAs (Brakenhoff et al., 1991), 

which may resemble splicing or trans-splicing events (Cocquet et al., 2006; Roy and Irimia, 

2008), and may also appear as antisense transcripts (Yuan et al., 2013). Template switching 

can even occur between as short as 3 nucleotide-long homologous sequences, although 

generally, longer homologous sequences cause template switching more frequently (Dang and 

Hu, 2001). Increasing the concentration of the templates or lowering the temperature during 

reverse transcription may also increase the frequency of template switching. 

Another common technical artefact in cDNA sequencing is internal priming. Internal 

priming is the ability of 5’ or 3’ end adapters (such as the oligod(T) primer) to serve as primers 

at homologous positions inside the transcript, thereby truncating the transcript. Internal 

priming has been known to produce many artefacts in expressed sequence tags and in polyA-

Seq (Nam et al., 2002). Several measures can be taken in order to reduce the effects of internal 

priming. Adenine-rich genomic regions can be excluded from the analysis of polyadenylation 

by bioinformatic filtering. Usually, sites which contain six or more consecutive adenines are 

discarded (Aaronson et al., 1996; Gautheret et al., 1998). Another solution is to devise library 

preparation methods which are immune to internal priming artefacts, such as the 3’ READS+ 

method (Zheng et al., 2016). 

4.5 Direct RNA sequencing 

Direct RNA (dRNA) sequencing was first developed by Helicos as a short-read 

sequencing method (Ozsolak et al., 2009). However, as the company went bankrupt, the only 

commercially available platform, at the time of writing, is ONT (Garalde et al., 2018). The 

same device that sequences DNA, is also able to sequence RNA using the same nanopore 

technology. The advantage of dRNA sequencing is that it is not affected by the artefacts of 

reverse transcription or PCR. Both sequencing technologies can sequence non-amplified 

cDNA molecules, which are also free from PCR bias and currently produce a higher 

throughput. However, dRNA sequencing can also detect base modifications in native RNA 

molecules, thereby revolutionizing the field of epitranscriptomics (Li et al., 2017). 
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4.6 The bioinformatics of long-read RNA sequencing 

The data generated during long-read sequencing is different from short-read sequencing 

data, therefore different bioinformatic tools are needed for their analysis. Only few tools exist 

for the processing of long-read sequencing reads, and usually these tools are very new, 

consequently, no standardized method has been devised yet for the handling of long reads. The 

preprocessing of the data is different for the two technologies; SMRT Analysis is the software 

suite that is used for the primary analysis of PacBio reads and MinKNOW is the one for ONT 

reads. The two commonly used aligners are GMAP (Wu and Watanabe, 2005) and minimap2 

(Li, 2018), and they function equally well with reads provided by both technologies. The 

downstream analysis of the reads is less standardized with some programs being published 

during the writing of this manuscript. PacBio reads can be assembled into IsoSeq consensus 

isoforms by the SMRT Analysis software. These isoforms depict full-length transcripts and 

can be used for downstream analysis. However, a quality filtering of these isoforms is advised; 

SQANTI characterizes the isoforms detected by long-read sequencing and also filters them 

based on their quality (Tardaguila et al., 2018). Tools for the clustering of nanopore reads into 

consensus isoforms are also emerging, and are generally based on concepts similar to the 

IsoSeq protocol of PacBio (https://github.com/nanoporetech/pinfish, 

https://github.com/BrooksLabUCSC/flair). 

4.7 The human cytomegalovirus 

The human cytomegalovirus (HCMV) is a human pathogen betaherpesvirus which has 

a wide range of seroprevalence, depending on age, geographic location and demographics 

(Cannon et al., 2010). The infection generally has mild symptoms or can be asymptomatic in 

healthy adults and children. Sometimes the infection causes mononucleosis-like symptoms 

(Vancíková and Dvorák, 2001). HCMV can establish latency in CD33+ or CD34+ progenitor 

cells, neutrophil granulocytes or monocytes (Schottstedt et al., 2010). Reactivation or new 

infection during pregnancy often lead to severe complications (Davis et al., 2017; Wen et al., 

2002). HCMV infection has been detected in almost all cases of glioblastoma, and a high-grade 

viral infection correlated with worse prognosis (Rahbar et al., 2013). 

https://github.com/nanoporetech/pinfish
https://github.com/BrooksLabUCSC/flair
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The virus has a linear dsDNA genome of 235 kb, which is the largest genome in the 

Herpesviridae family. The genome consists of two unique regions (unique long: UL and 

unique short US) each flanked by inverted repeat sequences. It is estimated that HCMV 

expresses between 164 and 220 proteins (Davison et al., 2003; Murphy et al., 2003). It is 

difficult to maintain clinical isolates in cell cultures. The highly passaged strains which adapted 

to cell cultures usually contain multiple mutations (Dolan et al., 2004). 

HCMV replicates in the nucleus. Upon arrival in the nucleus, the tegument proteins of 

the virus serve as transactivators and recruit the host RNA polymerase II to transcribe the 

immediate-early genes of HCMV. The immediate-early genes are transactivator proteins that 

initiate the transcription of early genes and also regulate the expression of the host MHC I 

proteins (Schottstedt et al., 2010). The early genes are required for the viral DNA synthesis. 

Following the start of DNA synthesis, the late genes are expressed, which code for the 

structural proteins; they are necessary for the assembly and egress of the virus (Fields et al., 

2013). 

Similarly to other herpesviruses, HCMV has a rather complex transcriptional 

architecture: its genes are often arranged into large, overlapping polycistronic clusters (Ma et 

al., 2012). In contrast to alphaherpesviruses, betaherpesviruses such as HCMV, utilize many 

splice junctions (Gao et al., 2015; Gatherer et al., 2011; Rawlinson and Barrell, 1993). 

Alternative transcription initiation allows for the expression of multiple different proteins from 

the same gene (Arend et al., 2016; Caviness et al., 2014; Isomura et al., 2008). 

Up until recently, the HCMV transcriptome research used Northern blotting, RT-qPCR 

and Rapid amplification of cDNA ends techniques (He et al., 2012; Kondo et al., 1996; Ma et 

al., 2011). These methods can only analyze one gene at a time and the mapping of the whole 

HCMV transcriptome would prove to be a tedious work. The HCMV transcriptome was first 

analyzed using NGS in 2011. The study discovered that alternative splicing is very common 

in HCMV, and that a large part of the genome expresses antisense transcripts (Gatherer et al., 

2011). The study also found that five long non-coding intergenic RNAs are responsible for 

almost two thirds of the HCMV reads. Another RNA-Seq study examined the translational 

capacities of the virus (Stern-Ginossar et al., 2012). Ribosome profiling (the sequencing of 

mRNA stretches that are covered by ribosomes) had defined 751 translationally active open 
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reading frames (ORF) in the HCMV genome. Many of these ORFs were coding for short 

oligopeptides and were positioned upstream of the main proteins. Another fraction of those 

proteins were N-terminally truncated ORFs or the main proteins. The study has also found that 

some HCMV ORFs are not initiated with an AUG (methionine), but instead with other triplets, 

which may or may not show similarity to the Kozak sequence (Stern-Ginossar et al., 2012). A 

more recent RNA sequencing study used single-cell sequencing to examine the HCMV 

transcriptome during latency, and found that in contrast to most other herpesviruses, HCMV 

expresses no specialized latency transcript, instead the same transcripts are expressed as during 

lytic infection, albeit in different quantities (Shnayder et al., 2018). 
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5 Aims 

Long-read RNA sequencing has effectively characterized the transcriptome of several 

organisms before (Abdel-Ghany et al., 2016; Moldován et al., 2018; O’Grady et al., 2016; 

Prazsák et al., 2018; Sharon et al., 2013; Tombácz et al., 2016, 2017b; Wang et al., 2016; 

Workman et al., 2018). In all of the cases, long-read sequencing has revealed countless novel 

transcripts and transcript isoforms (Tombácz et al., 2018). 

Although many studies have investigated the HCMV transcriptome before, most of its 

genes were not transcriptionally annotated. In order to characterize the lytic transcriptome of 

HCMV, we sequenced RNA isolated from HCMV-infected human fibroblast cells. We have 

used several different long-read sequencing library preparation methods and sequenced those 

libraries on different long-read sequencing platforms. Our aim was to draw a detailed map of 

the HCMV transcriptome. 

Further, we planned on comparing the used sequencing methods in terms of 

performance and accuracy. We have used dRNA sequencing in order to be able to differentiate 

technical artefacts from real transcripts. 

In order to be able to automate the analysis of the data and also to be able to compare 

the results obtained by the different sequencing platform and sequencing methods, we needed 

to develop a pipeline for the analysis of long-read RNA sequencing data. 
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6 Materials and methods 

6.1 Samples 

The data stem from the examination of two different biological samples (with 

Biosample accession numbers ERS1870077 and ERS2312967). A summary of the layout of 

the experiments is shown in Figure 2. 

6.1.1 Biosample ERS2312967 

Four T75 cell culture flasks of MRC-5 cells [embryonic human lung fibroblast; 

American Type Culture Collection (ATCC) CCL-171] were cultured at 37°C and 5% CO2-

concentration in Dulbecco’s Modified Eagle Medium supplemented with 10% fetal bovine 

serum and 100 units of potassium penicillin and 100μg of streptomycin sulphate per 1ml. 

Rapidly-growing near-saturated cell cultures were infected with the strain Towne of HCMV 

(ATCC VR-977), at a multiplicity of infection of 0.5 plaque-forming units per cell. The 

infected cells were incubated for 1h, then the virus suspension was removed and washed with 

phosphate-buffered saline. Subsequently, the cells were incubated in fresh culture medium for 

24, 72 or 120h (in 1-2-1 flasks respectively). Total RNA was isolated using the NucleoSpin 

RNA kit and aliquots of 20μl from each sample were pooled before reverse transcription.  

6.1.2 Biosample ERS1870077 

Eight flasks of MRC-5 cells were infected with HCMV strain Towne VarS (ATCC VR-

977) and incubated under the same conditions as described above. A virus titer of 0.05 plaque 

forming units per cell was used for infection. Total RNA was isolated from the infected cells 

at 1h, 3h, 6h, 12h, 24h, 72h, 96h, 120h post infection. 

6.2 Selection and library preparation 

Polyadenylated RNAs were selected from both samples using Oligotex mRNA Mini 

Kit. Five different, poly(A)-selected libraries were prepared in order to better characterize the 

HCMV transcriptome.  

6.2.1 Poly(A)+, not cap-selected cDNA library for sequencing on the ONT platform 

31 ng polyA(+) RNA from biosample ERS1870077 was used for first strand cDNA 

synthesis using SuperScript IV and adapter-linked oligod(T) primers, then 5’ adapter sequences 
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with three O-methyl-guanine ribonucleotides were ligated to carry out second-strand synthesis. 

The cDNA was amplified through 18 cycles using KapaHiFi DNA polymerase. UltraPure 

Agarose gel was used to separate PCR products and the cDNA fragments larger than 

500 nucleotides were isolated using the Zymoclean Large Fragment DNA Recovery Kit. The 

library was prepared using the Ligation Sequencing 1D kit (SQK-LSK108) and the NEBNext 

End repair/dA-tailing Module NEB Blunt/TA Ligase Master Mix according to the 

manufacturers’ recommendations. The library was sequenced on one MinION flowcell. 

6.2.2 Poly(A)+, cap-selected cDNA library for sequencing on the ONT platform 

2 μg of total RNA of biosample ERS2312967 was reverse transcribed using the 

TeloPrime Full-Length cDNA Amplification Kit. The TeloPrime protocol contains both 

poly(A) and cap selection- The 5’ adapter was ligated to the DNA-RNA hybrid overnight at 

25 °C. Endpoint PCR (of 30 cycles) was performed using the reagents supplied in the kit. The 

sequencing library was prepared using the Ligation Sequencing 1D kit (SQK-LSK108) and the 

NEBNext End repair / dA-tailing Module NEB Blunt/TA Ligase Master Mix according to the 

manufacturers’ recommendations. One MinION flowcell was used for the sequencing. 

6.2.3 Poly(A)+ Direct RNA library for sequencing on the ONT platform 

500 ng polyA(+) RNA was used from biosample ERS2312967 for direct RNA 

sequencing. A first-strand cDNA was synthesized using SuperScript IV (Thermo Fischer 

Scientific) and the adapter primers provided by the Direct RNA Sequencing kit (SQK-

RNA001). The library was prepared following the instructions of the manufacturer. The library 

was sequenced on one MinION flowcell. 

6.2.4 Poly(A)+, cDNA library for sequencing on the RSII platform 

2 ng polyadenylated RNA from biosample ERS1870077 was reverse transcribed using 

SuperScript IV and anchored oligod(T) primers, following the PacBio Iso-Seq protocol. A PCR 

of 18 cycles was performed by using the Clontech SMARTer PCR kit to amplify the cDNA. 

No size selection was performed on the sample. The library preparation was carried out using 

SMRTbell DNA Template Prep Kit 2.0 and the MagBead Kit. P6-C4 chemistry was used for 

the sequencing. 7 SMRT cells were used to sequence the library. 
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6.2.5 Poly(A)+, cDNA library for sequencing on the Sequel platform 

2 ng poly(A)-selected RNA from biosample ERS1870077 was reverse transcribed using 

SuperScript IV and anchored oligod(T) primers, following the PacBio Iso-Seq protocol. The 

cDNA was amplified using the Clontech SMARTer PCR (18 cycles). The cDNA sample was 

not fractionated according to size. The library was prepared with the SMRTbell DNA Template 

Prep Kit 2.0 and bound to MagBeads (MagBead Kit v2) for sequencing using the P6-C4 

chemistry on one SMRT cell. 

6.2.6 Random-primer cDNA library for sequencing on the RSII platform 

Total RNA from biosample ERS1870077 was depleted of rRNA using the RiboMinus™ 

Eukaryote System v2 kit. 2ng of the remaining RNA was used for random primer driven cDNA 

synthesis. The following steps were the same as described for the poly(A)+ cDNA that was 

sequenced on the RSII platform. The library was sequenced on one SMRT cell. 

6.2.7 Not cap-selected, random-primer cDNA library for sequencing on the ONT 

platform 

2 µg total RNA from biosample ERS1870077 was treated with RiboMinus™ Eukaryote 

System v2 kit. 60ng of the remaining RNA was reverse transcribed using random primers. The 

following steps were the same as described for the not cap-selected poly(A)+ cDNA library 

sequenced on the ONT platform. 

6.2.8 Cap-selected, random-primer cDNA library for sequencing on the ONT platform 

2 µg total RNA from biosample ERS1870077 was reverse transcribed using the 

TeloPrime Full-Length cDNA Amplification Kit with random primers instead of oligod(T) 

primers. No ribodepletion was performed. The following steps were the same as described for 

the cap-selected poly(A)+ cDNA library sequenced on the ONT platform. The cap-selected 

and the not cap-selected random cDNA libraries were sequenced on the same MinION flowcell 

using barcodes supplied in the ONT Barcoding PCR kit. 

6.2.9 Technical validation 

Sample concentration was determined using the Qubit (ds)DNA HS Assay Kit. 

PacBio’s Binding Calculator in RS Remote was used to determine the conditions for primer 

annealing and binding of the polymerase when loading the PacBio samples. An Agilent 2100 

bioanalyzer was used to measure the concentrations of the PacBio libraries. 



21 

 

Figure 2 Experimental layout. MRC-5 cells were infected with the Towne strain of HCMV. The 

isolated RNA samples from different post infection time points were pooled into two independent 

biosamples (accessions: ERS1870077 and ERS2312967). Total RNA samples were subjected to either 

ribodepletion (random cDNA libraries) or to poly(A)-selection. 

6.3 Sequencing 

6.3.1 MinION platform 

All five libraries were sequenced on R9.4 SpotON Flow Cells with a MinION 

DNA/RNA sequencing device. The sequencing runs were carried out using MinKNOW. 

Voltage levels were set and reset in line with the suppliers’ recommendations. Base calling 

was performed using Albacore v1.2.6. 

6.3.2 RSII platform 

The two libraries (altogether eight SMRTcells) were sequenced on a single SMRT cell 

using the RSII system. The length of the run was 4 h. Consensus sequences were generated 

using SMRT Analysis version v2.3.0 (Potter), using the RS_ReadsOfInsert protocol. 
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6.3.3 Sequel platform 

The prepared library was sequenced on a single SMRT cell using the Sequel system. 

The length of the run was 10 h. Consensus sequences were generated using SMRT-Link v5.0.1 

(Potter). 

6.4 Read preprocessing 

Neither the nanopore, nor the PacBio reads were trimmed. No error-correction method 

was applied to the reads. All reads were mapped by GMAP (Wu and Watanabe, 2005) with 

the following arguments: gmap -d Reference.fa --nofails -f samse Reads.fastq > 

Mapped_reads.sam. The files were compressed to binary .bam files using samtools view (Li 

et al., 2009). Read statistics were extracted using custom scripts. 

6.5 A pipeline for transcript discovery 

The original pipeline that was used for transcript discovery during the analysis of the 

RSII sequencing data (Balázs et al., 2017a) is summarized in Figure 3. In brief, consensus 

reads were mapped to the HCMV genome. Reads with a high mismatch or indel ratio (>5%) 

were discarded. All good quality reads were used to identify introns. The deletions in reads 

that complied with the GT-AG rule (contained the sequences GT immediately downstream of 

the donor and AG immediately upstream of the acceptor sites) were accepted as splice 

junctions. Reads which contained at least 15 terminal (A) mismatches (i.e. a poly(A) tail) were 

considered for the validation of TESs. A TES was accepted as valid if two reads confirmed the 

same nucleotide position and the genomic region of the putative TES did not contain a stretch 

of 3 or more (A)s. Reads with a definite orientation were considered for the identification of 

TSSs. If the number of reads starting at a given genomic position was significantly higher than 

that would be expected according to the Poisson distribution, the genomic position was 

accepted as a TSS. Transcript isoforms were annotated based on reads containing the above-

mentioned annotated features. 
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Figure 3 The transcriptome profiling pipeline used for the RSII sequencing data. 
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6.6 The LoRTIA toolkit 

The original pipeline was significantly improved upon to streamline the analysis of 

long-read RNA sequencing data. The new Long-read RNA-Seq Transcript Annotator 

(LoRTIA) toolkit (Figure 4) is capable of handling a variety of long-read RNA sequencing 

inputs. The program is fast and modular and can therefore be used for multiple annotation 

purposes not merely to annotate transcriptomes. The source code is open and available online 

(Balázs, 2018). This toolkit was also used in the analysis of the varicella zoster transcriptome 

(Prazsák et al., 2018). In order to present a complete picture of the long-read RNA sequencing 

experiments of our group, all HCMV data have been processed by the LoRTIA software. The 

following paragraphs detail the functions of the software to show how the data were handled. 

6.6.1 Accepted inputs 

Accepted inputs are .bam or .sam files of aligned long-read sequences. The input reads 

should contain adapter sequences (untrimmed) otherwise the information on read orientation 

should be supplied separately (e.g. for IsoSeq sequencing or dRNA reads). Our 

recommendation is to use minimap2 (Li, 2018) as an aligner for all long-read data, however 

older datasets, which have been aligned by GMAP (Wu and Watanabe, 2005), are also 

accepted. Our dataset was aligned using the following command: minimap2 -ax splice -Y -C5 

-t4 --cs Reference.fasta Reads.fastq > Mapped_reads.sam. 

6.6.2 Software dependencies 

The software is written in python 3 and runs in any UNIX environment. Biopython 

(Cock et al., 2009) is used for the reading and writing of sequence information. Pysam (Heger) 

is used for substituting samtools functions in python. Coverage data is obtained by bedtools 

(Quinlan and Hall, 2010). Data formatting and statistics are handled using the scipy and pandas 

packages (Jones et al., 2001). 

6.6.3 Processing the input 

The orientation of input reads (if not supplied otherwise) is determined based on the 

presence or absence of 5’ and 3’ adapter molecules. The 3’ adapter is the poly(A) tail during 

poly(A)-selected cDNA sequencing. The adapter sequences are searched in both orientations 

at both ends of each read. As long-read sequencing is notoriously error-prone, adapter-searches 

are not exact searches, the user can set the limit of similarity. The longer the adapter sequence, 
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the more sequencing error can be allowed. By default, adapter sequences are only searched in 

the 30 nucleotides upstream and 5 nucleotides downstream of the start of the alignment in the 

read. This increases specificity even when dealing with noisy data. If no adapter is detected or 

discordant adapters are detected on the two ends (e.g 3’ adapters on both ends), the read 

direction is not specified, and the reads are tagged. If the end of the adapter sequence is detected 

3 or more nucleotides downstream of the start of the alignment, the adapter sequence may have 

been placed there by template switching or internal priming, the program tags such reads as 

“potential template switching”. While iterating over the reads, the program summarizes adapter 

statistics which are necessary for defining transcript features. 

6.6.4 Detecting transcriptional start sites (TSS) 

The distribution of read 5’ ends for each nucleotide of the genome is determined, and 

local maxima (of ±10 nucleotide-size bins, created by sliding window mechanism), which 

account for at least 0.1% of the local coverage and are supported by at least two reads, are 

listed. The local maxima, where significantly more reads start than in its 101- nucleotide-long 

(±50 nucleotides) vicinity, are annotated as TSSs. The significance is determined based on the 

Poisson-probability (Poisson[k0; λ]) of there being at least k0 reads starting at a given 

nucleotide in 101-nt-long bin, where on average λ reads ended. 

6.6.5 Detecting transcriptional end sites (TES) 

Every read that contains a poly(A) tail is used for the identification of TESs. Nucleotide 

positions which were supported by at least 0.1% (at minimum 2 reads) of the local reads, are 

accepted as TES. Only the local maximum of a ±10 nucleotide-size bin is considered a poly(A) 

site, in the cases of equal peaks in a bin, the most downstream position is selected. 

6.6.6 Detecting introns 

All reads which are mapped with an intron, bordered by exons of at least 25 nucleotides 

on both sides are used for the detection of splice sites. The mapped introns which are detected 

in at least two reads and in at least the 0.1% of the reads covering that genomic region, and 

also contain consensus splice site sequences (GT/AG, GC/AG or AT/AC) are accepted as 

introns. As indel errors are common in long-read sequencing platforms, rare deletions 

neighboring (not further than 20 nucleotides away from) frequent introns, are discarded. 

Introns which are directly preceded by large (longer than 30 nucleotides) insertions are 
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discarded as possible triplo-chimeras. The direction of an intron is determined based on the 

consensus sequence. 

6.6.7 Annotating transcripts 

Transcripts are annotated if at least one read connects an annotated TSS (5’ end not 

further than 10 nucleotides away from an annotated TSS) with an annotated TES (i.e. 3’ end 

not further than 10 nucleotides away from an annotated TES). Spliced transcripts are only 

annotated if there is at least one read connecting an annotated TSS with an annotated TES and 

contained an annotated intron.  

6.6.8 Output files 

Transcript and transcript feature annotations are exported as .gff3 files adhering to the 

General Feature File format version 3. Other statistics that are used for filtering are also 

exported as tab separated value (.tsv) tables. The outputs of multiple samples can be summed 

with a script that is built into the toolkit. 

6.7 The analysis of template switching artefacts 

In order to prove the effects of template switching on the analysis of transcriptional end 

sites and also to demonstrate the ability of the LoRTIA toolkit of efficiently filtering such 

artefacts, the genomic sites with potential template switching artefacts as 3’ adapters 

(polyadenine tails) were examined. The same criteria were set for artefacts as for TES (see 

5.6.5), except that here the reads tagged as “potential template switching” were used. Genomic 

positions that were not internal polyadenylation sites, were accepted as real TES and so were 

the positions where the number of not artefactual read endings in a window of ±10 nucleotides 

was higher than the number of artefactual read endings; all other genomic positions with at 

least two potentially artefactual read endings were considered artefactual TES. The common 

polyadenylation signals, which were described upstream of human TES (Beaudoing et al., 

2000), were searched for up to 50 nucleotides upstream of both bona fide real and artefactual 

TES. 
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Figure 4 The summary of the LoRTIA pipeline. The software accepts aligned .bam or .sam 

files, and additional information as well from dRNA or preprocessed data. The software first 

processes the alignment, determines read orientation and set read tags that are necessary for 

the downstream analysis. It calculates read statistics to annotate transcript features and finally 

assemble the transcript isoforms. The output annotations are in .gff format. The rounded 

orange rectangles represent modules of the software each of which can be run/re-run on its 

own, making it flexible enough for handling a variety of input datasets. 
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6.8 Visualization tools 

The Integrative Genomics Viewer (IGV) (Robinson et al., 2011) was used to visualize 

sequencing reads. Plots were rendered using the ggplot2 (Wickham, 2016) and Gviz (Hahne 

and Ivanek, 2016) R packages. Nucleotide logo figures were generated using Weblogo 3 

(Crooks et al., 2004). Genome annotations have been transferred and visualized with the 

Geneious software suite (Kearse et al., 2012). 
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7 Results 

7.1 Mapping statistics 

Our sequencing yielded 88,424 PacBio and 1,214,423 nanopore reads mapping to the 

HCMV genome (Table 1). The nanopore reads were generally shorter than PacBio reads and 

contained more errors (Figure 5). Indel errors were more common than mismatch errors. 

Table 1 The statistics of the reads mapped to the HCMV genome (LT907985) 

Technology Sample Read count Length 

ONT 

cap-selected and polyA-selected cDNA 581,320 869.9 

cap-selected random cDNA 52,380 541.1 

not cap-selected polyA-selected cDNA 357,025 1384.9 

not cap-selected polyA-selected random cDNA 187,503 673.7 

dRNA 36,195 659.6 

PacBio 

RSII-polyA 45,672 1173.2 

RSII-random 2,509 923.0 

Sequel 40,243 1894.9 

 

 

Figure 5 Boxplots showing the different error profiles of the sequencing platforms and 

library preparation methods used in our studies. 

The read length distribution shows that MinION reads contained more degraded 

sequences than did the PacBio reads (Figure 6). It is also visible that size selection removed 

many of these degraded products. The Sequel platform produced longer reads than any other 

platform. The library preparation protocols for PacBio sequencing in general tend to lose a 

large fraction of the reads that are shorter than 1 kb. SMRT cell loading on the RSII platform 
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overrepresented the fraction shorter than 2kb, that is the reason size selection was 

recommended on the RSII platform. This bias is minimal on the Sequel platform, and it is 

confirmed by our data as well. 

 

Figure 6 Read length distribution of the poly(A)-selected sequencing runs. The proportion 

of reads is represented for read length bins of 50 nucleotides. The high peaks in the PacBio 

results can be attributed to the most abundant non-coding RNAs. 

The coverage patterns of the sequencing runs were similar; the non-coding RNA 

molecules RNA2.7 and RNA1.2 in the long repeat (RL) region were the most abundant 

(Figure 7). These results are consistent with the findings of other groups. The coverage 

patterns also suggest that the (d)RNA and the cap-selected MinION reads contained more 

degraded sequences as the coverages of these samples are more rounded, while the other 

samples tended to contain more plateaus. 
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Figure 7 Genome-wide coverage in the polyadenine-selected samples. The larger repeat 

regions such as the long (RL) and short (RS) repeat sequences as well as the lytic replication 

of origin (OriLyt) are depicted by blue boxes. The coverage values are shown on a logarithmic 

scale. 

7.2 The identification of the virus isolate 

The examined virus was obtained through the ATCC; however, it has been passaged in 

the Department of Medical Microbiology and Immunobiology prior to our experiments. In 

order to ascertain the strain of the virus, a BLAST (Altschul et al., 1990) search was conducted, 

where the sequencing reads were aligned against all the complete human betaherpesvirus 5 

genomes in the NCBI database (until May 2017). The reads aligned to the FJ616285.1 genome 

showed the fewest mismatches [Table 5 in (Balázs et al., 2017b)], therefore this genome build 

was used as a reference for read alignments. When the genome sequence of the ATCC isolate 

of strain Towne HCMV was determined, it was described that the ATCC VR-977 stock of 

strain Towne HCMV contains two variants (Dolan et al., 2004). The longer variant (varL) was 

deposited in the NCBI database under the accession FJ616285.1. However, our alignments 

showed a larger deletion at the end of the UL region that was characteristic of varS. PCR 

experiments verified the existence of the deletion (Figure 8). The conditions of this PCR have 

described in details in our previous publication (Balázs et al., 2017a). Since none of the 

sequencing reads contained the terminal parts of the UL region, we concluded that the virus 

isolate used in our experiments, contained only the short variant. As only the varL genomic 

sequence was available in the NCBI database, we have deposited the genome sequence of varS 

under the accession number (LT907985) to be able to refer to genomic coordinates when 

annotating the viral transcriptome. 
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Figure 8 The reference genome. Panel A is a schematic depiction of the genomic arrangement 

of the virus isolates in the ATCC stock. In varS (below) the UL end region is substituted with 

a sequence from the beginning of the UL region which becomes the extension of the b repeat 

region (pink). Pfw and Prev denote the PCR primers which were designed to detect the 

rearrangement. Panel B shows the result of the PCR. 

7.3 The annotation of transcriptional start sites 

TSSs were identified based on the presence of the 5’ adapter. The dRNA reads could 

not be used for TSS analysis, because 5’ adapters were not ligated to the ends of the RNA 

molecules during dRNA sequencing. The sequencing of Nanopore reads proceeds with the 

help of a motor protein that ratchets the nucleic acid strands through the pore. When this motor 

protein reaches the end of the strand, it releases the nucleic acid, which then falls through the 

pore and generates nonspecific signal, therefore the very ends of a native RNA strand cannot 

be sequenced by dRNA sequencing (based on communication with the supplier). A similar 

difficulty was observed when analyzing the not cap-selected polyadenylated nanopore reads. 

Only 1.78% of the not cap-selected poly(A)+ and 1.69% of the not cap-selected random cDNA 

reads contained a recognizable adapter, in contrast to the 43.8% and 45.3% 5’-adapter-

positivity of the cap-selected poly(A)+ and the cap-selected random libraries. The majority of 

the PacBio reads (93.8-95.5%) contained a recognizable 5’ adapter. Altogether 871 

transcriptional start sites were identified by our sequencing experiments, 233 of which were 

confirmed by at least two separate experiments. The low cross-validation rate of these sites can 

be partially due to the fact that the experiment which provided more than half (64%) of the 
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reads which contained a 5’ adapter, the cap-selected poly(A)+ cDNA library, was prepared 

using a biosample different from the other experiments. 

7.4 The annotation of splice junctions 

78,952 unique intron-like deletions were found in the dataset. As many of these could 

be indel errors, results of template switching or ligation, these deletions were filtered. Out of 

the 254 identified introns, 187 were validated by at least two of our sequencing experiments 

and another 31 were already annotated by previous short read sequencing studies (Gatherer et 

al., 2011; Stern-Ginossar et al., 2012). All but one of the introns contained the most common 

consensus splice sequence (GT/AG), and only one intron was identified which contained the 

second most common (GC/AG) sequence. These results are similar to the splice site usage in 

the host, as human splice sites tend to use the GT/AG sequence with a frequency of 98% and 

GC/AG with a frequency of less than 1% (Sheth et al., 2006). 105 of the accepted introns were 

confirmed by dRNA sequencing and none of the deletions that were filtered out by the pipeline 

were. The majority of the deletions detected in the reads were only detected in one read, 

therefore we presume that they belong to the many deletion errors that long-read platforms 

make. There were some deletions which were present in multiple reads, often also in multiple 

cDNA sequencing runs and did not contain consensus splice sequences. These deletions were 

flanked by short homologous sequences that can facilitate template switching (Balázs et al., 

2017a), and were not detected in the dRNA sequencing experiment (Figure 9). As the dRNA 

sequencing results were not used by the pipeline to make filtering decisions, the confirmation 

of multiple accepted intronic sites and the lack of confirmation for the numerous sites which 

were filtered out, is a validation of the algorithm. 
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Figure 9 Template switching artefacts may resemble introns. The IGV screenshot shows a 

putative template switching artefact which could be detected in multiple reads in multiple 

cDNA sequencing runs, but not with dRNA sequencing. The blue rectangles represent aligned 

reads (in the reverse direction), grey lines are intron-like deletions connecting alignments. The 

reads which contain same false intron are highlighted with different color. The bottom line 

contains the genomic sequence in the region. The short homologous sequences which have 

probably nucleated template switching are highlighted. 

7.5 The annotation of transcriptional end sites 

The annotation of TESs was based on the detection of polyadenine tails. The majority 

of the reads from polyadenine-selected cDNA libraries actually contained reads which ended 

in a poly(A) tail. Unfortunately, the basecalling of poly(A) tails in dRNA sequencing is 

hindered by the close proximity of the DNA adapters, therefore the poly(A) tail was only 

identified in a small proportion of dRNA reads. From the 169 identified TESs 123 were 

detected in at least two samples. 
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7.6 Template switching artefacts hinder the analysis of transcriptional end sites. 

In order to validate the annotated TESs and to demonstrate the efficiency of the pipeline 

to filter out internal priming and template switching artefacts, we characterized the 

polyadenylation signal (PAS) usage of the bona fide genuine TESs and the putative template 

switching artefacts. The sequences surrounding the identified HCMV TESs contained the same 

motifs that are commonly detected around human TESs (Figure 10, Panel A). Upstream motifs 

such as the AATAAA consensus polyadenylation signal and its variant were detected 15 to 35 

nucleotides upstream of the polyadenylation site. TESs usually ended with an adenine, and 

were followed by a GU-rich region, which is a known signal of the cleavage factor (Pérez 

Cañadillas et al., 2003). The putative artefactual polyadenylation sites, were identified by reads 

that contained polyadenylation tails, but were immediately preceded by A-rich regions, which 

may had triggered template switching or internal priming. These putative artefacts had neither 

the upstream nor the downstream sequence motifs that were commonly observed in TESs. The 

PAS usage of genuine HCMV TESs resembled that of the human TESs’ (Figure 10, Panel B), 

however the artefactual sites were rarely preceded by consensus PASs, and when they were, 

these PASs were less likely to fall into the expected -15 to -35 nucleotide range than those of 

the genuine ones (Figure 10, Panel C). 
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Figure 10 PAS usage of putative artefactual and transcriptional end sites. Panel A shows a 

Weblogo (Crooks et al., 2004) of the ±50 nucleotide vicinity of the identified HCMV TESs and 

putative artefactual TESs. The polyadenylation site is at position 0. Panel B shows the 

frequency of each PAS. The human PAS usage data is based on (Beaudoing et al., 2000). Panel 

C shows the distance of the identified PASs from the TESs. 

Direct RNA sequencing is devoid of reverse-transcription and PCR artefacts. Therefore, 

to further test the validity of our results, we tested whether the spurious TESs can be 

differentiated by dRNA sequencing. The basecalling of the poly(A) tails was often 

unsuccessful (as described above), consequently even the sites that were identified by the 

pipeline as real TESs, were rarely confirmed by polyadenylated dRNA reads. However, as 

shown in Figure 11, the dRNA reads very often contained the complete 3’ sequence of the 

transcripts, only the basecalling of the homopolymer (A)s (i.e. the polyadenine tail) was 
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disrupted. Based on this information, the 3’ ends of dRNA reads can be used to validate TESs, 

even if the reads do not contain a poly(A) tail. 

 

Figure 11 The basecalling of the poly(A) tails is impaired in dRNA sequencing. The IGV 

screenshot shows dRNA (above) and cDNA (below) reads from the same genomic region. The 

pink lines represent the aligned parts of the reads. The colorful letters represent unmapped 

bases. A long sequence of unmapped (A)s is visible in the cDNA sequencing dataset, but not in 

the dRNA dataset. However, the aligned parts of the dRNA reads also end at the TES, and a 

nonspecific sequence follows. 

The putative artefactual polyadenylation sites were less frequently utilized than the 

bona fide real sites. However, a strong linear correlation was observed between the logarithm 

of the proportion of reads ending at a given artefactual position and the number consecutive 

adenines preceding the site (Figure 12). The heatmap representation of read endings in the 

neighboring locations around bona fide real HCMV and artefactual TESs in Figure 13 shows 

that most artefactual positions were detected in multiple cDNA sequencing samples similar to 

the accepted TESs. The accepted TESs were often confirmed by polyadenylated dRNA reads 

or at least by specific signals of read endings in the dRNA sequencing runs, however, the 

putative artefactual cleavage sites were not. Another characteristic of the real TESs is that the 

cleavage site is distributive (i.e. the transcript is not always cleaved at the exact same 

nucleotide, but usually in the close proximity of the most frequent site) (Sheppard et al., 2013). 

The artefacts, on the other hand, were usually detected at the exact same position, which is due 

to the fact that these are derived from (A)-rich regions (the criterion for identifying potential 
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template switching artefacts was a minimum of 3 (A)s) (Balázs et al., 2017a). If the majority 

of these artefacts were caused by template switching, the artefactual polyadenine tails should 

be shorter than the polyadenine tails at the real TESs, because the oligod(T)-primers used in 

our experiments were 20 nucleotides long and real polyadenine tails are usually longer than 

that. However, we found that the length distribution of artefactual and real poly(A) tails were 

very similar in all of our cDNA sequencing samples (Figure 14). 

 

Figure 12 The number of consecutive adenines correlates with the proportion of 

artefactually polyadenylated reads. The frequency of polyadenylation is shown on a 

logarithmic scale. The number of consecutive adenines immediately upstream of a position 

was determined based on the genomic sequence. When a homopolymer stretch of adenines 

was interrupted by other nucleotides, the other nucleotides were counted as -1.5; for 

instance, the sequence AAAGAA would be counted as 3.5 consecutive adenines. A red 

trendline with the Pearson correlation coefficient is shown. 
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Figure 13 Artefactual TESs can be differentiated from real ones, using dRNA sequencing. 
Heatmap of the 3’ ends of reads in the vicinity of the annotated TESs (above) and putative 

artefactual polyadenylation sites (below). Each row is a TES, or a putative artefact and 

columns are the surrounding nucleotides depicted for each poly(A)-selected sequencing 
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experiment. For all cDNA experiments, only the reads which ended with a poly(A) tail were 

calculated. The dRNA sequencing results are presented in two ribbons, one only showing the 

reads that ended with an identifiable poly(A) tail (specific, but only few reads), and one that 

shows all the 3’ ends (less specific, but more reads). The density value for each position is 

calculated by dividing the number of reads which ended at a given position by the sum of the 

reads which ended in the vicinity of the TES. 

 

Figure 14 Poly(A) tail length distributions in the poly(A)-selected cDNA samples. The length 

of the 3’ terminal (A) mismatches were measured at annotated TESs and at putative artefactual 

sites as well. Black vertical lines depict the median values. 

7.7 The annotation of transcript isoforms 

Based on the annotated transcript features which were confirmed by at least two 

sequencing experiments, 440 transcript isoforms were annotated. 377 of these isoforms were 

novel isoforms. 104 already described transcripts were confirmed by our annotations, while 25 

were not. The majority of the identified transcripts were confirmed by at least two sequencing 

runs (Figure 15). Even though the PacBio platforms had a substantially lower throughput than 

the nanopore platform, the PacBio platforms identified the most transcript isoforms.  
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Figure 15 Venn diagram of the number of transcripts identified by each sequencing method. 

Only those sequencing runs are depicted, which provided full-length transcript information. 

The majority of the isoforms were polycistronic isoforms, 5’-UTR or splice isoforms. 

Alternative polyadenylation was also present, however it produced much less variation. The 

different sequencing methods identified similar proportions of the types of transcript isoforms 

(Figure 16). 

 

Figure 16 The types of transcript isoforms. The polycistronic isoforms differed in the number 

of coding sequences they were carrying, the intronic isoforms used different splice junctions. 

The UTR-isoforms differed in the length of the UTRs, while the truncated isoforms contained 

a shorter version of the main protein. 
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7.8 Novel HCMV transcripts 

Most of the transcripts detected in our experiments were isoforms of already known 

transcripts or previously uncharacterized transcripts of known genes (Figure 17). However, 

we have also described novel transcripts, antisense to eight known genes: UL20, UL36, UL38, 

UL54, UL115, US1, US17 and US30 (Balázs et al., 2017a). Another novel intergenic 

transcript, named RS2, was detected partially antisense to RS1 in the short repeat region. 

 

Figure 17 Transcript isoforms of the HCMV UL71-UL75 region. The genomic positions are 

marked on the top part of the figure. The novel transcript isoforms identified by our 

experiments are depicted with blue, already known and detected transcript isoforms are shown 

with green, while the protein coding sequences are yellow. Examples for different types of 

isoforms are labelled on the right. Thin lines represent introns. 
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8 Discussion 

We have sequenced RNA and cDNA libraries prepared from HCMV-infected cells to 

characterize the lytic HCMV transcriptome. Various library preparation methods were used in 

order to capture multiple aspects of the transcripts. The majority of the reads stem from 

poly(A)-selected libraries, and therefore our studies mainly focused on the polyadenylated 

fraction of RNAs. The data we have generated is one of the few openly accessible long-read 

RNA sequencing datasets. Raw and mapped data are available on the website of the European 

Nucleotide Archive (https://www.ebi.ac.uk/ena) under the accession numbers PRJEB22072 

and PRJEB25680. The transcriptome annotation is available under the accession number 

LT907985. The dataset can be used to improve bioinformatic tools for the analysis of long-

read sequencing data or to better understand the molecular biology of HCMV. 

We developed a software toolkit for the analysis of long-read RNA sequencing data. 

The toolkit is compatible with data from the two main long-read sequencing technologies. The 

program identifies transcript features such as TSSs, TESs and introns and assembles the 

transcripts based on these features. The toolkit efficiently handles noisy long-read sequencing 

data and does not require any previous genome annotation, although it does require a genome 

sequence. The pipeline is flexible, the many filtering parameters can be changed by the user, 

which makes it adaptable to different sequencing platforms and different experimental settings. 

The software also filters template switching artefacts. We have validated the efficacy 

of the pipeline by comparing the putative artefactual TESs to the accepted TESs. Artefactual 

TESs did not contain the consensus regulatory elements of polyadenylation, which could 

clearly be observed at the bona fide real TESs. This line of evidence raises suspicion towards 

the TESs which were found in (A)-rich regions, however, it would also be possible that such 

(A)-rich regions represent a different, weaker kind of signal for alternative polyadenylation. In 

order to ascertain the artefactual nature of these TESs, we have compared the dRNA 

sequencing results to the cDNA sequencing results. Even though several of the putative 

artefactual sites were detected in multiple cDNA sequencing experiments, they were not 

detected in the dRNA experiments. Since dRNA experiments are unaffected by reverse 

transcription and PCR artefacts, we can argue that the putative artefactual sites that the pipeline 

filters out, are indeed technical artefacts. The LoRTIA pipeline uses a much stricter filtering 

https://www.ebi.ac.uk/ena
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method than previous RNA sequencing or expressed sequence tag analysis methods would use. 

Such methods assume that internal priming is the main cause of polyadenylation artefacts and 

generally discard genomic locations with six or more consecutive adenines. However, our 

method assumes that template switching is also an important factor in the generation of such 

artefacts and therefore labels genomic locations which contain three or more consecutive (A)s 

as potential template switching artefacts and filters such locations based on the distribution 

read endings compared to coverage and whether reads contained polyadenine tails in the 

vicinity of the site, at locations which contain less adenines. The fact that the length of the 

poly(A) tails was not shorter at the artefactual sites supports the assumption that many of the 

artefacts arose from template switching. As 20-nucleotide long oligod(T) primers were used 

for reverse transcription, if the artefacts were generated by internal priming, artefactual 

poly(A) tails were supposed to be shorter. Numerous artefacts were detected at (A)-rich regions 

composed of as few as three consecutive (A)s, which is not likely to have been caused by 

internal priming. We regard these findings as a validation of an algorithm that assumes 

template switching is an important factor in the generation of such artefacts.  

There can be numerous explanations as to why template switching artefacts were not 

considered to be an important source of artefacts by previous studies. One reason might be that 

template switching has been shown to occur more frequently during reverse transcription at 

lower temperatures (Mader et al., 2001) and the SMART method (Zhu et al., 2001), commonly 

used for the preparation of long-read sequencing libraries, requires 42°C for the synthesis of 

the second cDNA strand. Short-read RNA sequencing libraries but especially poly(A) Seq 

libraries do not require such conditions, and their reverse transcription can be carried out at 

higher temperatures. Another reason might be that short-read sequencing studies usually 

produce a large number of reads; therefore, high threshold can be set in order to filter out 

technical artefacts. Long-read sequencing on the other hand generally has a low throughput 

and the analysis has to rely on less reads. For example, Figure 12 showed that artefactual sites 

that contained only six or less consecutive adenines, usually only lead to template switching in 

fewer than 1% of the reads. Accordingly, a short-read sequencing study with a high coverage 

could efficiently filter out the majority of such positions. 
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Out pipeline has identified most of the previously annotated transcripts as well as a 

large number of novel transcripts. There were several already described transcripts or transcript 

features that our experiments did not detect. The reason for this may have been to the relatively 

low throughput of our sequencing or that some transcript isoforms are only expressed in the 

immediate-early or early phases of infection and our dataset presumably only contained a low 

number of reads from these time points. Another reason may be that some isoforms are specific 

to some strains and are not expressed in the strain that we used. Strain Towne is a highly 

passaged strain with numerous mutations, compared to clinical HCMV strains (Dolan et al., 

2004). We decided to use the Towne strain as it was the strain with the highest number of 

already annotated transcripts.  

Nevertheless, our experiments revealed a high transcript diversity in HCMV. A similar 

amount of diversity has been revealed by long-read sequencing in other viruses and higher 

order eukaryotes as well (Abdel-Ghany et al., 2016; Moldován et al., 2018; O’Grady et al., 

2016; Sharon et al., 2013; Tombácz et al., 2016, 2017b; Wang et al., 2016; Workman et al., 

2018). The functions of the novel transcripts are yet unknown. Some of the transcripts are 

antisense to other genes, while the majority of the transcripts contain large already annotated 

protein coding sequences, therefore they probably code for proteins. The reason why HCMV 

and the other organisms produce so many different transcript variants from the same gene 

though is still to be explained. 

One explanation could be that different isoforms are expressed with different kinetics, 

such as the transcripts of the ICP36, the major DNA-binding protein (Isomura et al., 2008). 

Long-read sequencing can help in answering this question, because long-read sequencing can 

differentiate isoforms more efficiently, therefore quantitative long-read sequencing could 

facilitate the functional annotation of transcript isoforms (Tombácz et al., 2017a). We have 

detected numerous antisense and also partially antisense or overlapping transcripts; it is 

possible that some isoforms regulate the neighboring genes through transcriptional interference 

(Eszterhas et al., 2002). The transcriptional interference network hypothesis says that the 

overlapping transcripts form genetic modules and the expression of each gene influences the 

expression of the other genes in that module (Boldogköi, 2012). Extensive antisense 

transcription from a large part of the HCMV genome had already been described using short-
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read sequencing (Gatherer et al., 2011), but this transcriptional activity has not been attributed 

to distinct transcripts. Ribosome profiling studies have revealed extensive translation from 

short upstream ORFs (Stern-Ginossar et al., 2012). We have found that many transcript 

isoforms differ in whether they contain upstream ORFs (uORF) upstream of the main ORF or 

not (Dataset S7 in (Balázs et al., 2017a)). Upstream ORFs have been shown to be able to 

control the translation of downstream genes in HCMV (Geballe and Mocarski, 1988) and in 

other organisms as well (Barbosa and Romao, 2014; Nyikó et al., 2009; Vilela and McCarthy, 

2003; Wethmar, 2014). Polycistronic transcripts are very common in herpesviruses, and 

uORFs have been shown to be able to change which polypeptides are translated from a 

transcript (Kronstad et al., 2013). Another finding in the comparison of ribosome profiling and 

long-read sequencing data was that the 5’-truncated transcripts contain N-terminally truncated 

polypeptides which are translated and may have different functions from the main proteins. 

However, it is also possible that much of the transcript diversity is merely transcriptional noise 

and that many transcript isoforms do not have differential effects. Further studies are needed 

to elucidate the function of each of the transcript isoforms. 

We also compared the performance of multiple long-read sequencing platforms in the 

analysis of the HCMV transcriptome. We confirmed the improvement in the throughput of the 

Sequel platform compared to the RSII platform and we, similarly to others (Weirather et al., 

2017), have obtained substantially more reads from the nanopore platform than from the 

PacBio platform. Notwithstanding the higher throughput of the nanopore platform, the PacBio 

reads were more likely to depict full-length transcripts. Even though we have obtained much 

more transcripts with the nanopore technology, more transcripts were detected by the PacBio 

technology. This may be due to the effect of the IsoSeq library preparation that eliminates short 

cDNA fragments, similar effects can be reached on the ONT platform by applying size 

selection. However, the ability of the ONT platform to sequence short nucleic acid fragments 

is not necessarily a disability; many previously described short transcripts (longer than 400 

nucleotides, but shorter than 1000 nucleotides) could not be detected by the PacBio platforms 

but were identifiable by MinION sequencing. 

Native RNA sequencing on the ONT platform still has several drawbacks such as its 

low throughput, the impaired basecalling of the 3’ end and the technology’s inability to 
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sequence the 5’ ends of the RNA molecules. Despite all of these weaknesses, dRNA 

sequencing is immune to a number of artefacts that plague cDNA sequencing. By applying 

dRNA sequencing we managed to ascertain the artefactual nature of numerous TESs and 

introns. 
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9 Conclusions 

We have applied long-read RNA sequencing in the study of the HCMV transcriptome. 

Our results have more than tripled the number of annotated HCMV transcripts. Cross-platform 

validation and the confirmation of dRNA sequencing gives these novel features high 

confidence. Using long-read RNA sequencing data we were able to draw a more detailed map 

of the HCMV transcriptome, which is instrumental both for the analysis of viral gene 

expression and for understanding the molecular mechanisms of infection. The publicly 

available data may facilitate the detailed analysis of HCMV genes as well as provide potential 

targets for disease control. 

We have developed and published a bioinformatic toolkit for the analysis of long-read 

sequencing data, which can be used for the analysis of long-read RNA sequencing data from 

various platforms and from various organisms. The flexibility of the pipeline allows for the 

examination of simple viral or higher order eukaryotic transcriptomes as well. 
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