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1. Introduction 

Increasing atmospheric concentration of CO2 and depletion of fossil energy sources are 

just a few examples for today’s major environmental challenges that materials science needs to 

be working on. Nanotechnology offers a new point of view because it deals with matter with at 

least one dimension in the 1 to 100 nm range and the size control brings about different physical 

and chemical properties compared to the bulk phase. There are many kinds of nanomaterials 

such as quantum dots, nanotubes and nanowires, nanosheets with thickness of a few atomic 

layers, or hierarchical structures. These materials can be applied as sensors, in energy storage, 

biomedicine or as catalyst supports because of their favorable properties.  

Discovery of carbon nanotubes made the ‘90s the decade of tubular nanostructures. In 

1998, Kasuga firstly reported about trititanate nanotubes synthesized by an alkaline 

hydrothermal route. These rolled-up nanotubes have layered structure with a length of 100-200 

nm, diameter of 10-12 nm and specific surface area of 200-300 m2/g. Protonated trititanate 

nanotubes (TiONT) transform into different types of titanium-dioxides upon heat treatment. 

Thus, from the application point of view, the investigation of TiONTs is as appropriate as that 

of TiO2. 

Since 1972, TiO2 has become one of the most investigated semiconductors especially in 

the field of heterogeneous photocatalysis, owing largely to Fujishima’s and Honda’s 

groundbreaking photoelectrochemical study. Titanium-dioxide exhibits photocatalytic activity 

only under UV irradiation. However, modifications such as doping or the formation of 

heterostructures can push its activity into the visible light region.  

The Department of Applied and Environmental Chemistry has been active in 1D 

titananate nanostructure research for nearly 15 years now. This was the research direction that 

I joined when I started my work at the Department. The goals of my doctoral studies were to 

prepare modified (ion-exchanged, doped, heterostructure based) titanate nanotubes and to 

investigate their heat stability and photocatalytic properties. In order to deepen our 

understanding of these nanostructures the following particular topics were investigated: 

 Synthesis and heat stability of bismuth and/or antimony ion-exchanged titanate 

nanotubes: structural and morphological investigation. 



 Investigation of nitrogen doping by thermal and ion-implantation methods. Study 

of the chemical environment of the incorporated nitrogen. Revealing the effect of 

dopants and post heat treatments on the structure and morphology of TiONT. 

 Preparation of bismuth- and antimony-oxychloride based TiONT heterostructures 

by immobilization of oxychloride nanoparticles on the surface of nanotubes. 

Investigation the heat stability of composites and studying their photo-activated 

methyl orange dye decolorization properties. 

2. Experimental 

Titanate nanotubes were synthesized via the alkaline hydrothermal method. 50 g TiO2 

was stirred in 10 M NaOH solution, then the obtained suspension was transferred to a PTFE-

lined stainless steel autoclave and kept at 130 °C for 24 hours with continuous rotation at 3 

RPM. The as-prepared product was neutralized by deionized water, then protonated in 0.01 M 

HCl for one week. After the protonation step remnant Cl- ions were washed out of the system 

by deionized water. The product was finally dried at 60 °C for 2 days. 

In order to prepare bismuth and/or antimony ion-exchanged titanate nanotubes 2 g of 

TiONT was suspended in 100 ml deionized water by ultrasonic homogenization and 

subsequently bismuth-acetate, antimony-acetate or both of them were added to the system. The 

total metal content was set to 10 w/w% in all cases. The mixture was stirred for 24 hours then 

the solid product was separated by filtration. Remnant acetate ions were washed out by 

deionized water, then the ion exchanged nanotubes were dried at 60 °C for 2 days. All samples 

underwent heat treatment at 600, 750 or 900 °C for 1 hour. 

In the case of thermal nitrogen doping 12 g of urea and 1 g of TiONT were transferred 

into a PTFE-lined stainless steel autoclave with a volume of 0.4 dm3. The precursors were 

physically separated from each other. The sealed system was kept at 200 °C during which 

ammonia gas developed in situ by the thermal decomposition of urea served as the dopant 

source. The doping time was 2, 4, 8, 12 or 24 hours. Pristine and doped materials underwent 

heat treatments between 400–900 °C for 1 hour. 

Ion bombardment was performed in the analytical chamber of an X-ray photoelectron 

spectrometer using a hot-filament equipped ion gun (Kratos MacroBeam) fed with high-purity 

(5N5) N2. The ion beam (spot size of approximately 2 mm, non-mass-selected, incident at mean 



angle of 55° to the surface normal) was rastered over a sample surface of approximately 

8×8 mm. The accelerating voltage was 3 kV and the energy of the incident ions was 1.5 keV. 

Plasma treatment was performed in the stainless steel sample preparation chamber of 

the XPS instrument (base pressure <1×10−4 Pa). High purity N2 (5N) or NH3 flow of a few 

ml/min (STP) was regulated by a bleeding valve that set the pressure to 5–7 Pa. Constant RF 

power of 100 W at 13.56 MHz was applied through a matching circuit to a cooper coil fixed 

outside of a glass dome attached to the preparation chamber. The sample bias was set to negative 

values between 100 and 300 V. Treatment time varied from 5 to 30 min. After treatment the 

sample was transferred to the analysis chamber without exposing it to the ambient air. 

TiONT supported bismuth oxychloride was prepared by a precipitation reaction. 1 g 

TiONT was suspended in 50 ml deionized water by ultrasound treatment for 2 hours, then 

bismuth(III)-chloride was added to the system. The atomic ratio of Ti:Bi was set to either 10:1 

or 100:1. The suspension was stirred for 24 hours, then filtered and washed with deionized 

water. Powder samples were dried at 60 °C for 48 hours. In order to prepare reference bulk 

BiOCl, 2 g of the precursor salt was mixed in 200 ml deionized water. The as-prepared 

suspension underwent the same treatments as the supported counterparts. Samples were heat 

treated between 200-900 °C. 

Antimony-oxychloride/TiONT systems were prepared by the solvothermal route. In all 

cases, the Sb content was set to 15 w/w%. In a typical synthesis, antimony(III)-chloride was 

stirred in 0.28 dm3
 50/50 v/v% ethylene glycol and deionized water mixture. The pH of the 

medium was 1–2 in this step, while pH = 4–5 and pH = 8–9 samples were prepared by adding 

the necessary amount of 6 mol dm3 NaOH solution. After 1 hour of intensive stirring, the 

suspension was transferred into a 0.4 dm3 PTFE-lined stainless steel autoclave and kept at 120 

°C for 12 hours. The pale yellowish product was washed with deionized water to remove 

chloride ions and dried at 60 °C for 24 hours. The pristine and nanoparticle decorated samples 

were subjected to thermal annealing at 100, 200, 300, or 400 °C for 1 h. The product materials 

were characterized after each annealing step. Commercial anatase TiO2 was decorated and heat 

treated by following exactly the same protocol, and used as the reference material. 

The morphology of samples was studied by transmission and scanning electron 

microscopy. X-ray diffraction, selected area electron diffraction and Raman spectroscopy were 

applied for structural examination. The elemental composition was studied by energy dispersive 

X-ray spectrometry and the chemical environment was investigated by X-ray photoelectron 



spectroscopy. The specific surface area and pore volume were determined by nitrogen 

adsorption measurements. The light absorption properties of semiconductor samples were 

investigated by diffuse reflectance UV-Vis spectroscopy. Surface functional groups were 

identified by diffuse reflectance Fourier transform infrared spectroscopy. 

 

The photocatalytic activity was studied in methyl orange dye decolorization test 

reactions under UV-Visible or visible light irradiation. Dye concentrations were measured by 

UV-Vis spectrophotometry. 

  



3. New scientific results 

1. We were the first to synthesize bismuth and/or antimony ion-exchanged titanate 

nanotubes and investigate their thermal stability 

1.1. We incorporated bismuth and/or antimony ions into the structure of titanate nanotubes by 

taking advantage of their ion-exchange property. Successful ion exchange was verified 

by EDS, TEM and XRD measurements. 

1.2. We proved by TEM measurements that bismuth promotes the thermally induced 

collapsing of the tubular morphology. TiONT turns into particles with size of 20-30 nm 

upon heat treatment at 600 °C. The effects of thermal annealing at 600, 750 and 900 °C 

were investigated by XRD and Raman spectroscopy. We demonstrated that bismuth ion-

exchange promotes the trititanate–anatase–rutile phase transition compared to the pristine 

TiONT. At 900 °C the conversion to rutile is 100%. 

1.3.  We proved by TEM measurements that the presence of antimony inhibits the thermally 

induced collapsing of the tubular morphology. After heat treatment at 600 °C, nanotubes 

are still observable in the sample and they even exhibit a higher aspect ratio than the 

pristine ones. The effects of thermal annealing at 600, 750 and 900 °C were investigated 

by XRD and Raman spectroscopy. We demonstrated that antimony-containing trititanate 

turns into B-TiO2 besides the anatase phase. Moreover, at 900 °C the anatase–rutile phase 

transition is lower than in the case of pristine TiONT at the same temperature. The 

formation of intermediate B-TiO2 was affected by Sb3+ because of its favorable ionic 

radius.  

1.4.  We proved that bismuth segregates on the surface as bismuth-titanate nanoparticles with 

size of 2.5-3 nm when a sample with 10 w/w% Bi content is annealed between 600-

900 °C. The structure of the sample calcined at 900 °C was identified as rutile 

TiO2/Bi2Ti4O11, which is applicable in the field of heterogeneous photocatalysis. Our 

experiment serves a new and easy method for the synthesis of this nanostructure. 

2. We devised a thermal nitrogen doping method and investigated the stability of doped 

structures 

2.1.  We doped titanate nanotubes with nitrogen using ammonia gas that was prepared in situ 

by the thermal decomposition of urea at 200 °C in a purpose–built reactor. The doping 

time was chosen as 2, 4, 8, 12 or 24 hours. TEM and XRD investigations revealed that 



nanotubes became partially fragmented after 8 hours of doping and a mixed 

trititanate/anatase was formed. After 12 hours cubic and octahedrally shaped anatase 

nanoparticles were formed. The crystallinity degree of TiO2 increased after 24 hours 

doping time. Using our experimental setup we succeeded in preparing nitrogen doped 

TiO2 nanoparticles using ammonia gas as the dopant source at the lowest temperature so 

far. 

2.2.  By EDS analysis we showed that the nitrogen content changes between 0.11-6.6 at.% 

during the 2-24 hours doping time. XPS and DRIFTS measurement revealed that the 

incorporated nitrogen is in interstitial position as NH4
+ and NH2 in the 24 hours doped 

sample. 

2.3.  By thermal stability investigation between 400 and 900 °C we demonstrated that 

increasing doping time promotes the transformation of nanotubes into nanorods and then 

into smaller nanoparticles. This observation was confirmed by TEM and SEM image 

analysis and the calculation of average particle length and circularity. These two 

parameters exhibited similar characteristics as a function of doping time. 

2.4.  An XRD study revealed that both elongated doping time and increased temperature 

results in anatase (101) crystallite size growth. The extent of the anatase–rutile phase 

transition was increasing with the doping time at 900 °C: in the case of pristine TiONT 

the rutile content is ~5 w/w%, whereas after 24 hours doping time it is almost 40 w/w%. 

2.5.  The effects of doping time and heat temperature on the structure and morphology were 

summarized in a phase diagram. This can be a useful tool for the design of nitrogen toped 

titan-oxide nanostructures.  

3.Nitrogen doping of trititanate nanotubes by different ion implantation methods 

3.1.  We were the first to dope titanate nanotubes by nitrogen using nitrogen bombardment, 

nitrogen and ammonia plasma treatment.  

3.2.  The chemical environment of nitrogen in trititanates was analyzed by XPS. The amount 

of incorporated surface nitrogen was 1.1, 7.0 and 18.6 at.% in the case of N2
+ 

bombardment, N2 plasma, and NH3 plasma treatment, respectively. All samples contained 

both substitutional and interstitial nitrogen.  



3.3.  We succeeded in incorporating a record high amount (8-10%) of nitrogen into titanate 

nanotubes in substitutional position by ammonia plasma treatment. We identified NH4
+, 

CH2 and CH3 functional groups on the surface by DRIFTS measurements. 

3.4.  XRD and TEM measurements revealed that unlike thermal nitrogen doping, ammonia 

plasma treatment does not affect the structure or morphology of TiONTs. 

4. Preparation, heat stability and photocatalytic activity of bismuth-oxichloride/titanate 

nanotube heterostructures 

4.1.  We were the first to synthesize titanate nanotube supported bismuth-oxychloride 

nanoparticles. During the precipitation reaction BiOCl nanoparticles formed with the size 

of ~5 nm as determined by TEM. We identified their structure as tetragonal BiOCl 

(XRD).  

4.2.  By XRD and TEM investigations we proved that TiONT turns into anatase nanotubes at 

400 °C. Supported nanoparticles grew to ~10 nm and loose their crystal structure. XRD 

analysis showed that although BiOCl became partially decomposed, its componenst Bi, 

O and Cl still remained in the system. DR-UV-Vis absorption spectra exhibited a red shift 

compared to those of pristine nanotubes, which may related to the dissolution of Bi3+ into 

the anatase structure during the heat treatment at 400 °C. 

4.3.  We performed an XRD based thermal stability investigation between 200 and 900 °C. 

We found that in the case of 100:1 Ti:Bi atomic ratio samples, the anatase–rutile phase 

transition was advanced like in the case of bismuth ion-exchanged ones compared to 

pristine TiONT. The 100:10 Ti:Bi atomic ratio favors for the formation of tetragonal 

BiOCl nanoparticles. The carrier stability is similar to that in pristine TiONT. According 

to the XRD measurements BiOCl turns into amorphous phase around 300-400 °C. 

4.4.  The sample with 100:10 Ti:Bi atomic ratio was heat treated at 400 °C and subsequently 

decomposed 88% of the model compound (methyl orange) under visible light irradiation. 

The visible light activity originated from the incorporation of Bi3+ into the anatase 

structure and the dye sensitization effect promoted by methyl orange adsorbed on the 

surface. Electron transfer between TiO2 and BiOCl is also possible, but its direction is 

undetermined.  

5. Synthesis and photocatalytic properties of antimony-oxychloride/titanium-oxide 

heterostructures 



5.1.  We were the first to synthesize antimony-oxychloride/titanate nanotube and antimony-

oxychloride/titanium-dioxide heterostructures. Nanoparticles with sizes between 8-11 nm 

were successfully immobilized on the surface of TiONT, while in the case of TiO2, we 

did not observe any supported nanoparticle formation during the pH regulated 

solvothermal synthesis. 

5.2.  The heterostructures underwent thermal annealing between 100 and 400 °C and each 

annealed sample was examined by XRD. We described the effect of the different 

titanium-oxide supports on the formation of antimony-oxychlorides and antimony-oxides 

for the first time. We compared our results with literary data to determine the structure of 

various solvothermally synthesized products. In the presence of TiONT support, at pH = 

1-2 SbOCl or Sb4O5Cl2, at pH = 4-5 Sb8O11Cl2 or Sb8O11Cl2(H2O)6, and at pH = 8-9 α-

Sb2O3 was formed. In the case of TiO2, at pH = 1-2 Sb8O11Cl2(H2O)6, at pH = 4-5 

Sb8O11Cl2(H2O)6 or Sb8O11Cl2(H2O)3, and at pH = 8-9 α-Sb2O3 and β-Sb2O3 was formed. 

5.3.  DR-UV-Vis measurements revealed that the light absorption of TiONT based samples 

changes continuously during the formation of different antimony oxychlorides and oxides 

because of the trititanate–anatase phase transition of the support. In the case of TiO2 based 

heterostructures there is no significant change in the optical properties. 

5.4.  Each sample was tested in methyl orange decolorization under UV-Vis irradiation. 

Apparent reaction rates in the presence of TiONT supported oxychlorides are higher by 

one order of magniture than those measured in their TiO2 based or antimony-oxide 

containing counterparts. We attributed this effect to the continuously changing structure 

of both the support and the oxychlorides during the heat treatment.  
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