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Bevezetés 

A diasztereomer sóképzéses reszolválás az optikai izomerek tiszta formában való 
előállításának klasszikus módszere. Pasteur1'2 másfél évszázaddal ezelőtt hajtotta végre az 
első ilyen jellegű reszolválást, azóta mintegy tízezer racemát elválasztását oldották meg ily 
módon3'sl. Annak ellenére, hogy a királis vegyületek iránt egyre növekvő igény számos 
alternatív módszer (aszimmetrikus szintézis, biológiai és kromatográfiás reszolválások) 
fejlődését és elterjedését is elősegítette, mind a mai napig és várhatóan még hosszú ideig ez a 
legelterjedtebben alkalmazott módszer, különösen ipari méretű alkalmazások esetén. 

Az elv igen egyszerű: kovalens kötésnél gyengébb kölcsönhatásokon alapuló kémiai 
reakció, mely során a megegyező fizikai tulajdonságokkal rendelkező enantiomereket egy 
királis reszolválóágens segítségével alakítanak át diasztereomerekké, amelyek fizikai 
tulajdonságai már eltérőek, és így elválaszthatóak. Az egyszerű elvek ellenére a reszolválás 
tényleges lefolyásáról, valódi hajtóerőiről rendkívül keveset tudunk, új reszolválási 
folyamatokat még napjainkban is zömmel próba-szerencse alapon dolgoznak ki. 

A területen dolgozó minden kutatót foglalkoztat reszolválás alapjainak megértése, 
melytől végső soron a folyamat tervezhetőségét várnánk el. 

Immáron több mint húsz éve dolgozom a BME Szerves Kémiai Technológia 
Tanszékének reszolválással foglalkozó, Dr. Fogassy Elemér egyetemi tanár vezette, kutató 
csoportjánál. Jelen dolgozatban a kandidátusi fokozat megszerzését követő tíz év eredményeit 
foglalom össze. 

Kutatásainkat egyszerre több irányba is folytattuk, mely így felölelte a reszolválással 
kapcsolatos alapvető kérdések jelentős részét: 

• Hogyan lehet a reszolválóágenst leghatékonyabban kiválasztani? 

• Milyen szerkezeti jellemzői vannak a hatékony reszolválóágensnek? 

• Milyen mechanizmussal játszódik le a reszolválási folyamat? 

• Milyen mechanizmussal játszódik le a királis adalék nélküli enantiomer dúsítás? 

• Milyen más fáziselválasztástól várhatunk el hatékony reszolválást vagy királis adalék 
nélküli enantiomer dúsítást a hagyományosnak tekinthető frakcionált kristályosításon 
kívül? 

A különböző részterületek vizsgálata, számos általános, egybevágó eredményt hozott. 
Minden eredmény abba az irányba mutat, hogy mind a diasztereomer sóképzéses reszolválás, 
mind a királis adalék nélküli enantiomer elválasztás szupramolekuláris modellel (nagyobb 
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asszociátumok feltételezésével) írható le, mindkét folyamat változatos összetételű és 

szerkezetű királis asszociátumok képződésével értelmezhető. 

A dolgozat némileg rendhagyó szerkesztésű. Nem készült hozzá külön irodalmi rész. 

Ennek az az oka, hogy a dolgozat szerves részét képező -mellékelt- „CRC Handbook of 

Optical Resolution via Diastereomeric Salt Formation" kézikönyvünkben81 részletes 

összefoglalását adjuk a vonatkozó irodalomnak. Jelen dolgozatban ezért csak az egyes 

témákhoz szorosan kapcsolódó irodalom kerül -az adott helyen- ismertetésre. Hiányzik a 

dolgozatból a hagyományos kísérleti rész is. Ezt azért hagytam el, miután a dolgozat szerves 

részét képezi -mellékelve- a közlemények fénymásolata, mely tartalmazza a tárgyalt összes 

kísérlet részletes leírását. 

Gyakran használt rövidítések, jelölések a dolgozatban 

A reszolválások eredményének értékelésére az 5paramétert4 használjuk, mely a termelés (7) és 

az enantiomertisztaság (ee) szorzata. 5 = 1 felel meg egy tökéletes reszolválásnak. 

$ _ 7(%) x ee(%) 
10000 

A termelést mindig az egyik t iszta diasztereomer sóra vonatkoztatjuk, tehát molekvivalens 

mennyiségű reszolválóágenssel végrehajtott reszolválás esetén, a teljes anyagmennyiség 

T= 200 %. 

Enantiomertisztaságot (eé) használunk a dolgozatban, akkor is amennyiben az enantiomerek 

tisztasága polarometriás úton (optikai tisztaság) került meghatározásra, mivel a vizsgált 

esetekben a két érték gyakorlatilag egybeesik. 

A következő gyakran használt vegyületek megnevezésére a dolgozatban rendszerint a 

zárójelben fe l tüntetet t rövidítést használom: (/?,/?)-borkősav (BS), 0,(7 -dibenzoi!-(/?,£)-

borkősav (DBBS), 0,0'-di-p-io\uo\\-(R,R)-borkősav (DPTBS), almasav (AS), AAmetamfetamin 

(MA), a-fenil-etilamin (FEA). A borkősav és szármezékai esetén a megjelölés mindig az (/?,/?)-

konfigurációjú (természetes) borkősavra illetve származékaira vonatkozik, hacsak nem jelöltem 

másképpen. 
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1 Reszolválóágens kiválasztása 

A megfelelő reszolválóágens és az oldószer kiválasztása a reszolválás legfontosabb 

kérdése.5 A reszolválóágens kiválasztása, mint korábbi munkáinkban bemutattukSR45SR50SR56 

történhet a diasztereomer sók fiziko-kémiai tulajdonságainak vizsgálatával, a terner vagy 

biner fázisdiagramok meghatározásával, mely pontos oldhatóságméréseket vagy 

termoanalitikai vizsgálatokat igényel. A fiziko-kémiai paraméterek kimérése nemcsak 

munkaigényes, de sokszor a reszolválással megbízott kémikus is szívesebben végez preparatív 

kísérleteket, mint műszeres méréseket, ezért a reszolválóágens kiválasztása a hagyományos 

próba-szerencse alapon történik legtöbbször, kisméretű preparatív kísérletekkel. 

1.1 A reszolválóágens kiválasztása hasonlóság alapjáns1 

Vizsgáltuk, hogy a rendszerint véletlenszerű sorrendben kiválasztott potenciális 

reszolválóágensek sorrendjének racionális megválasztásával lehetséges-e az előkísérletek 

számának csökkentése. 

Annak feltételezésével, hogy két szerkezetileg hasonló racemát ugyanazzal a 

reszolválóágenssel, ugyanabban az oldószerben reszolválható, az új reszolválás 

kidolgozásához szükséges próbareszolválások számát kedvező esetben csökkenthetjük. Ehhez 

a megközelítéshez célszerű áttekinteni a hasonló szerkezetű vegyületek reszolválási eljárásait 

és az első próbareszolválás során a legnagyobb mértékben hasonló szerkezetű racemát 

reszolválására kidolgozott leghatékonyabb reszolválás körülményeit alkalmazni. Amennyiben 

kristályos diasztereomer keletkezik, de alacsony az enantiomer elválasztás hatékonysága, 

akkor érdemes a reszolválóágens változatlanul hagyása mellett az oldószer változtatásával 

tovább folytatni a próbareszolválásokat. Amennyiben nem megy a reszolválás és az oldószer 

lepárlása után olajos maradékot kapunk vissza, a hasonlósági sorrendben második reszolválás 

körülményeit (reszolválóágens, oldószer) alkalmazzuk és így tovább. 

Kulcsfontosságú kérdés ezen megközelítés során, hogy mit nevezhetünk hasonló 

vegyületnek, és mit nem. A következőkben egy irodalmi áttekintést adunk erre vonatkozólag. 

1-1 1-2 

Amikor felmerült l - l bázis reszolválásának problémája, 1-2 bázis reszolválása6 már 

ismert volt, a szerzők egyszerűen csak a 1-2 reszolválására kidolgozott körülményeket 
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alkalmazták és sikeres reszolválást értek el.7 A kivált diasztereomer só átkristályosítással 

történő tovább tisztításánál kismértékben eltértek az eredeti recepturától és metanol-éter 

helyett metanol-etilacetát oldószerkeveréket alkalmaztak. 

COOH COOH 

1-3 1-4 

COOH COOH 

1-5 1-6 
Az 1-3, 1-4, 1-5 és 1-6 savak, melyek a halogén atom minőségében és helyzetében 

térnek el, teljesen azonos körülmények között voltak reszolválhatóak kininnel etanolban.8 

Az 1-7 és 1-8 savak között az eltérés némileg számottevőbb, azonban mindkettő 

reszolválható amfetaminnal vizes alkoholban.9 

COOH 

COOH 

1-7 1 - 8 

Az 1-9 bázis reszolválásakor a preparatív reszolválások kivitelezésére alig elegendő 0,5 

g -nyi racemát állt a szerzők rendelkezésére, de a szerkezetileg némileg hasonló 1-10-es 

vegyületből jelentősebb mennyiséggel rendelkeztek. A két vegyület közötti szerkezeti 

hasonlóság leginkább az aszimmetriacentrum körül figyelhető meg, és feltételezhető, hogy 

királis molekulák esetén ez a döntő tényező. 

1-9 1-10 
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Az 1-10 vegyület reszolválására próba reszolválásokat végeztek borkősavval, dibenzoil-

borkősawal, d/'-p-toluoil-borkősaval, mandulasavval, almasavval és kámfor- 10-szulfonsawal, 

oldószerként víz, metanol, etanol és etilacetát szolgált. Azt találták, hogy 1-10 

leghatékonyabban ¿//-/Moluoil-borkősavval reszolválható metanolban. Ennek a reszolválásnak 

analógiájára 1-9-et az első kísérletre sikerül reszolválni.10 A reszolválás hatékonysága is közel 

1-11 

A 1-11 a-d vegyületek az egyik orto pozícióban lévő szubsztituensben különböznek, a 

reszolválhatóság szempontjából a köztük lévő különbség elhanyagolható, mind a négy 

vegyület reszolválható cinkonidinnal etilacetát-metanol (9:1) oldószer elegyből.11 

Más esetekben a hasonló vegyületek reszolválhatóak ugyanazzal a reszolválóágenssel, 

azonban a diasztereomerek oldhatósága már nem feltétlenül hasonló és ez oldószercserét tehet 

szükségessé. 

1-12 1-13 

Az 1-12 és 1-13 savak mindegyike reszolválható cinkonidinnel, azonban míg a transz 

izomer reszolválása megvalósítható tiszta etilacetátban, addig a cisz izomert etilacetát-

kloroform 1:1 arányú elegyében lehet leghatékonyabban reszolválni.12 

Nem egyértelmű azonban az sem, hogy a cisz- és transz formában előforduló 

vegyületek minden esetben hasonló körülmények között reszolválhatóak. 
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1-14 1-15 

Az 1-14 és 1-15 cisz-transz izomerek. A cisz-1-14 vegyület metanolban reszolválható 

mandulasavval, és a kivált diasztereomer sót benzol - /zo-propanol elegyből átkristályosítva 

lehet tisztítani. A transz izomert szintén metanolban, de mandulasav helyett borkősavval lehet 

reszolválni.13 A kivált diasztereomer só tovább tisztítására a tiszta metanol elegendő. 

Az 1.1.1 táblázat néhány szerkezetileg hasonló hidroxi- és dihidroxi-karbonsav 

reszolválását foglalja össze. 

A szerkezeti különbségek és a reszolválószer különbözősége ellenére is minden esetben 

etanolt lehetett használni oldószerként. A hidroxilcsoportok különbségét figyelembe véve 

három vegyületcsaládba sorolható a kilenc racemát. Az egyes vegyületcsaládok reszolválására 

különböző reszolválóágenst kell alkalmazni, azonban az orto- és /wcta-szubsztitúcióban 

különböző vegyületek teljesen hasonlóan viselkedtek, azonos reszolválóágenssel 

reszolválhatóak voltak, míg a para-szubsztituált vegyület mindhárom sorozaton belül csak 

egy másik reszolválószerrel volt reszolválható.14'15 
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1.1.1 táblázat Néhány szerkezetileg hasonló karbonsav reszolválása etanolban 

1.1.2 táblázat Fenoxi-propionsavak reszolválása 

C O O H 

sztrichnin,16 

H20:Et0H 1:1 

Y — J C O O H 

• 17 

cinkonin, 
H20:Et0H 4:7 

C O O H 

brucin,18 

EtOH 

C O O H 

O — 

sztrichnin,19 

H20:Et0H 1:1 

C W 
J — Y C O O H 

— 0 

/-fenil-z-propilamin,19 

H20:Et0H 1:1 

/ " O ^ O O M 

brucin,20 

H20:Et0H 1:7 

-

bruc 
H20:Et< 

C O O H 

in,21 

OH 2:7 

C O O H 

sztrichnin,21 

H20:Et0H 3:4 

Y - 4 C O O H 

cinkonidin,22 

H20:Et0H 4:7 

? C O O H 

dehidroabetamin,23 

EtOH 

t w 
H. C O O H 

/-fenil-z-propilamin,24 

H20:Et0H 1:1 

tí^ 
1•( C O O H 

sztrichnin,25 

H20:Et0H 11:7 

C O O H 
CL 

cinkonidin,26 

H20:Et0H 10:27 

C O O H 

CL 

cinkonidin,27 

etilacetát 

1( C O O H 

efedrin,27 

H20:Et0H 3:2 

Y — Y C O O H 
CL 

brucin,28 

H20:Et0H 8:13 
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Az 1.1.2 táblázat néhány a fenilcsoporton különbözőképpen szubsztituált fenoxi-

propionsav reszolválását mutatja be. A tizenhat szerkezetileg hasonló sav reszolválása 

etanolban, vagy vizes etanolban minden esetben végrehajtható, azonban hét különböző 

reszolválóágensre van szükség. 

A mono-metil- és mono-metoxi vegyületek reszolválását összehasonlítva látszik, hogy 

az azonos pozícióban szubsztituált vegyületek viselkedése a hasonlóbb. Az orto-, meta- és 

/?ara-helyzet más-más reszolválóágenst igényel, a reszolválás kevésbé függ attól, hogy a 

szubsztitúció metil vagy metoxicsoporttal történt. 

A 1.1.3 táblázatban bemutatott savak egymástól csak a karboxilcsoport helyzetében 

különböznek, ennek ellenére reszolválásuk csak különböző reszolválóágensekkel és 

oldószerekkel lehetséges.29 A karboxilcsoport különböző poziciója lehet a magyarázata annak, 

hogy a reszolválás során nem viselkednek hasonlóan. 

1.1.3 táblázat Három „látszólag hasonló" sav reszolválása 
Racemát Reszolválószer Oldószer 

/ W O C O O H cinkonidin etilacetát 

amfetamin etanol-víz 

C I ^ ^ ^ C O O H 

a-fenil-etilamin etanol 

c A ^ V 
C O O H 

J Y . C O O H 

A 1-16 sav ö-konfigurációjú enantiomeijével, tizennyolc bázis reszolválását vizsgálták 

metanol és /zo-propanol oldószerekben.3031 A racemátok képletét a reszolválások 

hatékonyságának sorrendjében mutatja be a 1.1.4 táblázat. 

A 
a ^ §) 

V ÁT/ 
\ / 
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1.1.4 táblázat Racém bázisok reszolválása (S)-1-16- tal 

NH2 NH2 

/ v O 
NH2 

Í J 
^ ^ 5 = 0,82 c O ^ 5=0 ,81 O h 5 = 0,70 

NH2 \ . N H 2 NH2 

5 = 0 , 6 9 5=0 ,67 
O " 5 = 0,62 

NH2 

r * 0 

NH2 

o O 
OC; 5 = = 0,53 

" " • 0 ' " ^ 5 = 0,62 ^ ^ 5 = 0 , 6 0 

NH2 NH2 

A. 

5 = 0,52 
J T 
^ ^ 5 = 0 , 5 0 KJ nh2 s 

1:1 molekulavegyület, 
kristályos 

= 0 

NH, 

n X íPT r 
NH, 

r O ^ 
a diasztereomer só nem 
kristályos 

KJ 1 

a diasztereomer só nem 
kristályos 

u 
a diasztereomer 
kristályos 

só nem 

NH2 NH2 

0 r Y H ' 
0 0 

a diasztereomer só nem 
kristályos 

0 0 
a diasztereomer só nem 
kristályos 

a diasztereomer 
kristályos 

só nem 

A reszolválás sikere szempontjából hasonlóként viselkednek azok a vegyületek, 

melyeknél a kiralitás centrumhoz egy hidrogénatom, egy aminő-, vagy alkil- és egy aromás 

gyűrű vagy egy kettőskötés kapcsolódik. A fentiek szükséges, de nem minden esetben 

elégséges feltételei a bázisok a reszolválóágenssel szemben mutatott hasonlóságának. A 

reszolválás érdekessége, hogy az 5-konfigurációjú reszolválóágenssel minden esetben 5-

konfigurációjú bázis válik ki. 
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Sokszor rendkívüli jelentős hasonlóság sem elég azonban ahhoz, hogy két racemátot 

azonos körülmények között tudjunk reszolválni. Például a 1-18 bázis reszolválható, míg 1-17 

nem. 32 

1-17 1-18 

A Verapamil (1-19) egy racém formában forgalmazott szívgyógyszer. Diasztereomer 

sóképzéses reszolválása mindez idáig nem ismert, annak ellenére, hogy egy metoxi-

csoportban különböző analógja, a Galopamil(l-20), dibenzoil-borkősawal jól reszolválható 

/zo-propanolban.33 

R= H : Verapamil (1-19) 

R= OCH3 : Galopamil (1-20) 

A hasonlóság elvét, mint a példák mutatták, számos esetben jól alkalmazhatjuk a 

reszolválóágens és az oldószer kiválasztására. Alkalmazása felgyorsíthatja a kiválasztási 

folyamatot, mivel egy logikus sorrendet ajánl az elvégzendő kísérletekhez. 

Ahhoz, hogy a hasonló szerkezetű vegyületeket könnyebben megtalálhassuk, az 

irodalomból kigyűjtöttük 1365 bázis és 2259 sav reszolválásának főbb adatait.Slb Az adatokat 

az alkalmazott reszolválóágenseknek megfelelően csoportosítottuk a racemát szerkezeti 

képletének megadásával, az oldószer és a hivatkozás feltüntetésével. Ez segítheti új 

reszolválások tervezőit a hasonló és már reszolvált vegyületek gyors megtalálásában. 

1.2 A reszolválóágens kiválasztása statisztikai alapons1 

Sokszor a reszolválást végző személynek nincs ideje hasonlóságok után kutatni vagy 

esetleg hosszas keresés után sem talál megfelelő analógiát. Akkor sem kell feltétlenül a 

véletlenre hagyatkoznia előkísérletei során. 

Az előző fejezetben is már említett [Slb] összeállítása lehetőséget teremtett egy nagy 

mintavételen alapuló lista összeállítására, mely megmutatja, hogy mely reszolválóágenseket 

milyen gyakran alkalmaztak sikerrel. Ez hatékony segítséget nyújthat a próbálkozások 

20. / 14 oldal 
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sorrendjének megállapításához. Célszerű a próbálkozásokat a lista sorrendjének megfelelően 
végezni. Ez a sorrend gyakorlati reszolválások során alakult ki, feltehetőleg nem mindig a 
leghatékonyabb reszolválás eredményét mutatja, azonban előnye, hogy utal a reszolválóágens 
könnyebb vagy nehezebb elérhetőségére, kezelhetőségére. Mivel az összeállításban 
nagyszámú régebbi reszolválás is szerepel, nem tudja bemuatni a reszolválóágensek 
használatában kialakult trendeket (például, hogy a természetes eredetű bázikus alkaloidokat, a 
szintetikus bázikus reszolválóágensek rohamosan szorítják ki). Az 1.2.1 és 1.2.2 táblázat 
mutatja be a leggyakrabban alkalmazott reszolválóágenseket. A táblázatokban a 
leggyakrabban használt oldószereket is feltűntettük, szintén előfordulási sorrendben, így az 
oldószer kiválasztás problémáját is megközelíthetjük statisztikai alapon. 

24. / 15 o lda l 
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1.2.1 táblázat Savas karakterű reszolválóágensek relatív gyakorisága 
Reszolválószer Relatív gyakoriság 

(%) 
Leggyakrabban alkalmazott 

oldószerek 
(R,/?)-borkősav 34,2 96 % EtOH, H20, MeOH 
0,0 -dibenzoil-(J?,/?)-borkősav 16,6 96 % EtOH, MeOH, aceton 
kámfor-10-szulfonsav 9,8 96 % EtOH, MeOH, aceton 
0,0'-di-p-to\noi\-{R,R)-botkős&v 8,4 96 % EtOH, MeOH, aceton 
(5)- vagy (i?)-Mandulasav 6,3 96 % EtOH, MeOH, i-PrOH 
(li?)-vagy (15)-3 -brómkámfor-8-
szulfonsav 3,5 H20, 9 6% EtOH, MeOH, EtOAc 

V-acetilleucin 1,7 H20, Me0H-Et20, MeOH 
(5)- vagy (i?)-almasav 1,4 96 % EtOH, H20, Me0H-Et20 
(/?)-(+)-6.6'-dinitrobifenil-2.2l-
dikarbonsav 1,0 MeOH 

kámforsav 1,0 EtOH- H20, MeOH 
(Relatív előfordulás > 1% [Slb]-ben) 

1.2.2 táblázat Bázikus karakterű reszolválóágensek relatív gyakorisága 
Reszolválószer Relatív gyakoriság 

(%) 
Leggyakrabban alkalmazott 

oldószerek 
brucin 21,3 96 % EtOH, H20, MeOH, aceton 
kinin 15,6 96 % EtOH, aceton, MeOH, H20 
(5)- vagy (R)- a-fenil-etilamin 12,3 H20, 96% EtOH, EtOAc 

cinkonidin 10,3 aceton, 96 % EtOH, EtOAc, 
MeOH 

sztrichnin 6,4 H20, 96 % EtOH 
efedrin 5,8 96 % EtOH, EtOAc, H20 
cinkonin 4,2 96 % EtOH, H20, MeOH 
(15,25)- vagy (l/?,2/?)-(4-nitrofenil-
2-amino-propan-1,3 -diol 2,6 H20, 96 % EtOH, Me0H-H20 

morfin 1,7 H20, 96 % EtOH 
amfetamin 1,4 96 % EtOH, H20 
fenchilamin 0,6 H2O 
(L)-leucinamid 0,6 96 % EtOH 
1 -(1 -naftil)-etilamin 0,6 96 % EtOH, aceton 
(5)- vagy (i?)-V-benzil-2-
aminobutan-l-ol 0,6 EtOAc 
tirozin hidrazid 0,5 MeOH 
(Relatív előfordulás > 0,5 % [Slb]-ben) 

A 18 leggyakrabban alkalmazott oldószert illetve oldószerkeveréket külön is 
összefoglaltuk a 1.2.3 táblázatban, külön bázikus és savas reszolválóágensekre is. A 
reszolválóágens karakterétől alig függ az alkalmazott oldószer, amennyiben egyéb analógiára 
nem támaszkodhatunk, akkor célszerű először 96 %-os EtOH, MeOH és víz kipróbálása mint 
oldószeré. 
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1.2.3 táblázat A reszolválások során alkalmazott oldószerek relatív gyakorisága 
Oldószer Bázis (%) Sav (%) 

96 % EtOH 19,19 18,50 

MeOH 14,51 10,54 

H20 13,48 15,63 

aceton 8,42 7,84 

EtOH-H^O 5,57 9,61 

abs. EtOH 5,27 3,63 

EtOAc 3,15 6,37 

i-PrOH 2,93 0,97 

MeOH - Et20 2,34 0,35 

Me0H-H20 2,05 2,26 

EtOH - Et20 1,39 0,53 

Et20 1,10 2,26 

EtOH-EtOAc 0,95 0,80 

aceton - EtOH 0,66 0,31 

MeOH-EtOAc 0,51 1,73 
C H ^ 0,29 0,29 

CHC13 0,22 0,58 

dioxán 0,07 0,31 

nincs megadva 5,13 6,55 

egyéb 12,75 11,11 

1.3 A reszolválóágens kiválasztása desztillációs előkísérletekkelS31 

A frakcionált kristályosításon alapuló preparatív előkísérletek során a reszolválóágenst 
és az oldószert egyidejűleg keressük. A két paraméter együttes megtalálása komoly siker, de 
sokszor feltételezhető, hogy a reszolválóágens megfelelő volna, csak épp az oldószer nem az, 
vagy valami oknál fogva az első kristályok kiválása az adott körülmények között gátolt. 
Amennyiben módunk volna a megfelelő reszolválóágenst az oldószertől függetlenül keresni, 
az előkísérletek sikeressége biztosan javulna. 

Amikor az elválasztás nem frakcionált kristályosításon, hanem desztilláción alapszik, 
alkalmas lehet az oldószerhatás nélkül történő reszolválóágens kiválasztására. 
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A racemátot félekvivalensnyi mennyiségű reszolválószerrel elkeverjük és állás után a 
nem reagált hányadot ledesztilláljuk és meghatározzuk a desztillátum enantiomertisztaságát. 
Azt a reszolválóágenst választjuk, amellyel a legmagasabb enantiomertisztaságú 
enantiomerkeveréket kapjuk. Ha nem képződik stabil só a racemát és a reszolválóágens 
között, akkor a racemát teljes mennyisége változatlan formában desztillál át, és a következő 
reszolválásnál újra felhasználható. Amennyiben a desztillációs kísérlettel reszolválást lehet 
elérni, akkor megfelelő oldószer kiválasztásával frakcionált kristályosítással is. 

Mivel a desztillációs reszolválás fenékterméke a stabilabb diasztereomer só, ami 
frakcionált kristályosításos reszolválások esetén az oldatból kiváló só, ezért a desztillálási 
fenéktermék a frakcionált kristályositásos reszolválás oltókristályát is szolgáltathatja. 

Az alkalmazás jelentős korlátja, hogy csak desztillálható vegyületek, legtöbbször 
aminők reszolválásánál lehet használni. A módszer alkalmazhatóságát az A -̂metamfetamin 
(2-3, MA) desztillációs reszolválásának példáján próbáltuk ki tizenhét potenciális 
reszolválóágens alkalmazásával831 A kísérletek eredményeit a 3.2.1 táblázat foglalja össze a 
3.2 fejezetben. 

1.4 Kváziracemát képződésS7,S14 

Az előzőekben bemutatott reszolválóágens kiválasztási módszerek, statisztikai 
elemzésen és analógiák keresésén alapultak, nem volt bennük olyan elem, ami a reszolválási 
folyamatokat vezérlő tényezőket érdemben vizsgálta volna. Sajnos ismereteink jelenlegi 
szintjén e tényezőkről nagyok keveset tudunk. Komoly erőfeszítések történtek e tényezők 
megértésére, de a két legtöbbet ígérő közelítés a diasztereomer sópárok egykristály-
röntgendiflrakciós szerkezetvizsgálataSR46'SR47SR49 és a molekula modellezés nem vitt 
lényegesen közelebb a befolyásoló tényezők megértéséhez. Mindmáig nem sikerült egységes 
modellt felállítani a királis felismerés folyamatának leírására. 

Nagyszámú reszolválás áttanulmányozása alapján megfigyelhető volt, hogy amennyiben 
a reszolválóágens és a racemát szerkezete hasonló, illetve/vagy a reszolválóágens a racemát 
származéka, akkor rendszerint hatékony reszolválás érhető el.87 

Mivel a reszolválás elején rendszerint nincs a tiszta enantiomerekből jelentős 
mennyiség, így új vegyületek reszolválása legtöbbször nem oldható meg származékával. 
Annál inkább használhatóak a származék reszolválóágensek ipari méretű reszolválások 
esetében, amikor a hagyományos reszolválóágensek nem bizonyulnak kellően hatékonynak, 
de már rendelkezünk elegendő mennyiséggel az enantiomerekből. Gyakorlati szempontból 
kedvező az, hogy a származék reszolválóágens előállítására rendszerint felhasználható a 
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szükségtelen enantiomer. Általában a vele ellentétes abszolút konfigurációjú enantiomerrel 
képzett diasztereomer só válik ki a reszolváláskor (éppen az, amire szükségünk van). Ez a 
tendencia annak köszönhető, hogy az enantiomerek körében a heterokirális elrendeződés 
dominál a homokirálissal szemben, mivel a két ellentétes abszolút konfigurációjú enantiomer 
egymást kiegészítve lényegesen kompaktabb elrendeződést, így alacsonyabb energiájú állapot 
elérését teszi lehetővé.34'35 

Ezek alapján feltételezzük, hogy az ellentétes konfigurációjú, hasonló szerkezetű 
ellenionnal való kapcsolódási hajlam a diasztereomer sók körében egy heterokirális 
elrendeződésre való törekvés jele. Lévén, hogy a diasztereomer sókat felépítő ellenionok nem 
azonosak, csak hasonlóak, ezért itt „kváziracemát" jellegű elrendéződésről beszélhetünk. 
Néhány ilyen példát a 1.4.1 táblázat mutat be. A kváziracemát jellegű elrendeződés feltétele, 
hogy a racemát és a reszolválóágens minél „hasonlóbb" szerkezetű legyen. A bemutatott 
példákból is látható, hogy az elérhető reszolválhatóság arányos a molekulák hasonlóságával. 
Minél nagyobb a hasonlóság, annál hatékonyabb reszolválást lehet elérni. 

A kváziracemát képződési hajlam felismerésével, úgy véljük, megtaláltuk a 
diasztereomer sóképzéses reszolválások egyik vezérlő tényezőjét. 
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2 A diasztereomer sóképzéses reszolválási folyamatok 

mechanizmusának vizsgálata 

A diasztereomer sóképzéses reszolválási folyamatok megértésének igénye egyidejű az 
első sikeres reszolválással. Megfelelő módszer hiányában azonban a molekuláris szinten 
végbemenő folyamatok nem voltak vizsgálhatóak. Az egykristály-röntgendiffrakciós 
szerkezetvizsgálat elteijedésével sokan, köztük csoportunk is, megkísérelt molekula 
szerkezeti adatokból következtetni a reszolválásokat meghatározó hajtóerőkre.44,45'46'47'48'8*49 

Sajnos azonban ezen próbálkozások meglepően kevés eredményt hoztak. A szerkezetvizsgálat 
jól reflektáló egykristályokat követel meg, ilyeneket a reszolválási reakcióelegyből 
közvetlenül kinyerni rendszerint nem lehet, ezért a tiszta enantiomerekből előállított tiszta 
diasztereomer sókból (legtöbbször az eredeti reszolválás oldószerétől különböző oldószerből) 
növesztett kristályok képezik a vizsgálatok tárgyát. Gyakran csak a stabilabb diasztereomer 
sóból lehet egykristályt kapni, így komplett diasztereomer sópár összehasonlítására ritkán 
nyílik lehetőség, de rendszerint akkor sem lehet az adatokból messzemenő következtetéseket 
levonni a reszolválás teljes körű értelmezéséhez, ha sikerül mindkét diasztereomer só 
szerkezetét meghatározni. Ez végül is nem meglepő, mivel a reszolválási folyamatok során a 
diasztereomer sók tiszta formában csak nagyon ritkán jelennek meg. A racemát két 
enantiomerjét egyszerre tartalmazó diasztereomer só szerkezet-meghatározása még azon ritka 
esetben sem igen lehetséges, ha egykristály formájában válik ki a reszolválás során, mert 
amennyiben krisztallográfiailag egyenértékű helyen nem egy enantiomer, hanem a két 
enantiomer valamilyen arányú keveréke található, akkor ez egy átlag elektroneloszlási képet 
eredményez, ami a krisztallográfiás módszerből eredendően rendezetlenségként jelentkezik az 
aszimmetriacentrum körül. 

Belátva a tiszta diasztereomer sók vizsgálatától elvárható eredmények korlátait, új utat 
kerestünk a reszolválási folyamatok mechanizmusának tanulmányozásához. 
Vizsgálatsorozatot indítottunk ismert reszolválások során ténylegesen kivált sók 
tanulmányozására, röntgen-pordifirakciós és termoanalitikai módszerek segítségével. 
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2-5 2-6 2-7 
mandulasav almasav borkősav 

2.1 Mandulasav reszolválása cinkoninnalS13 

Jacques és munkatársai szerint5 a diasztereomer sók kristályainak viszonya határozza 

meg a reszolválási folyamatok lefolyását. Ez háromféle lehet: konglomerátum, szilárdoldat és 

molekulavegyület (racém fázis). Hatékony reszolválásra konglomerátum-képződés esetén 

számíthatunk, mikoris a két diasztereomer külön kristályfázist képez, és így könnyen 

elválasztható. Szilárdoldat képződése esetén, amikor a kristályrácsba a két diasztereomer 

véletlenszerűen épülhet be, alacsony hatékonyságú reszolválás várható. Nem várható 

enantiomer elválasztás 1:1 molekulavegyület esetén sem, amikor a két diasztereomer só 

egyetlen kristályfázist alkot. 

A mandulasav (2-5) cinkoninnal (2-1) történő reszolválása klasszikus példa, még a XIX. 

században írták le először.49"50 Ezen reszolválási folyamat felülvizsgálatába még 

doktoránsként a koppenhágai egyetemen kapcsolódtam be. Vizsgáltuk a reszolválás 

oldószerfuggését, valamint meghatároztuk a tiszta sók molekulaszerkezetét.51SR46SR53 

A reszolválást vízben végeztük a McKenzie által leírthoz hasonlóan50 (2.1.1 ábra). Az 

első lépésben kiváló só (PP1) 25,3 %-os enantiomertisztaságú (ó)-mandulasavat tartalmaz. A 

só első átkristályosításával az enantiomertisztaság 77,6 %-ra emelkedik (PP2), míg a második 

átkristályosítással 90,1 %-ot ér el (PP3). 
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(S)-2-5.2-1 
hidrát 
ee = 25,3 % 

(R)-2-5.2-1 

(R,S)-2-5 
mandulasav 

2 - 1 
cinkonin 

átkristályosítás 
vízből 

(S)-2-5.2-1 
hidrát 
ee = 77,6 % 

2.1.1 ábra 

átkristályosítás 
vízből 

(S)-2-5.2-1 
hidrát 

ee = 90,1 % 

Mandulasav reszolválása cinkoninnal vízben 

A termogravimetriás mérések szerint mindhárom minta tartalmaz 6,7 % kristályvizet, 

ami 1,75 mol víznek felel meg. A DSC görbék hasonlóak (2.1.2 ábra). 

100 120 140 

Hőmérséklet (°C) 
180 

2.1.2 ábra A racém-mandulasav cinkoninnal történő reszolválása során kivált sók 
DSC görbéje 
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Az első endoterm csúcs a kristályvíz távozásának felel meg, amelyet egy exoterm 

átkristályosodás követ (105-110 °C). Az utolsó nagy endoterm csúcs a só olvadásának felel 

meg, jól megfigyelhető, hogy az enantiomertisztaság növekedésével nő az olvadáspont. A 

vízvesztésnek megfelelő csúcs maximuma 60 °C a PP1, míg 80 °C a PP3 esetében, míg a 

PP2 esetén mindkét csúcs megfigyelhető. A termoanalitikai vizsgálatok egyértelműen jelzik, 

hogy a kiváló só két különböző formájával állunk szembe. A két változat között különbség 

figyelhető meg a vízmegkötés erősségében, annak ellenére, hogy a megkötött víz mennyisége 

azonos. A két forma létét a röntgen-pordiffrakciós vizsgálatok is bizonyították (2.1.1 

táblázat) 

2.1.1 táblázat A racém-mandulasav cinkoninnal történő reszolválása során 
kivált sók kivált röntgen-pordiffrakciós csúcsai 

PP1 PP2 PP3 

d(A) I/Io d(A) I/Io d(A) I/Io 

8,630 37,1 8,608 56,5 8,630 33,9 

6,511 52,2 6,511 24,2 

5,580 48,1 5,680 34,8 

5,505 69,6 5,522 100 

5,340 70,4 5,372 91,3 5,340 54,8 

5,246 55,5 5,246 73,9 5,246 54,8 

4,874 59,3 4,887 100 

4,720 40,7 4,732 47,8 

4,270 55,5 4,280 65,2 4,270 55,0 

4,191 59,2 4,191 69,6 4,181 69,4 

3,738 43,5 3,731 53,2 

3,648 100 3,655 82,6 

3,479 39,1 3,493 29,0 

3,272 43,5 3,272 32,3 

PP1 és PP3 diffrakciós csúcsok alapján különböző anyag, míg PP2 mindkettőből 

tartalmaz csúcsokat, tehát a két forma keveréke. A PP3 dehidratációs csúcsa már 50 °C-nál 

kezdődik, ami némi PP1 jelenlétére utal. Felmerül a kérdés, hogy PP3 nagyrészt a tiszta (S)-

mandulasavas só-e, némi szennyeződéssel? Több különböző módon is megpróbáltuk 

előállítani az (S)-mandulasavas tiszta diasztereomer só hidrátját, hogy mint referencia anyagot 

használhassuk a kérdés eldöntéséhez, de meg kellett állapítsuk, hogy a tiszta diasztereomer só 
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semmi körülmény között nem hajlandó hidrát formájában kristályosodni. Ezek alapján azt a 

következtetést vontuk le, hogy a reszolválás két egymást követő lépésben két eltérő 

összetételű, nem 1:1 arányú hidratált molekulavegyület-képződésével megy végbe. A második 

magas .S'-enantiomer tartalmú molekulavegyület-képződés teszi lehetővé a hatékony 

reszolválást. 

2.2 A mandulasav reszolválása 2-benzilamino-1-butanollalS24 

A mandulasav egy másik reszolválóágenssel, a 2-benzilamino-l-butanollal (2-2) történő 

reszolválásának is vizsgáltuk a machanizmusát (2.2.1 ábra). 

YH J f f l 
JC f oldoszer 

Í . T COOH . 1 ^ 
l ^ J f i i "" ^ (S)-2-5.(S)-2-2 (R)-2-5.(S)-2-2 

(R,S)-2-5 (S)-2-2 
mandulasav 2-benzilamino-1-butanol 

2.2.1 ábra A mandulasav reszolválása 2-benzilamino-1-butanollal 

A reszolválást vízben, etilacetátban és vízzel telített etilacetátban végeztük. A két tiszta 

oldószerben a reszolválás hatékonysága S = 0,2, míg a keverék oldószerben kb. háromszor 

hatékonyabb (2.2.1 táblázat). Termoanalitikai és röntgen-pordiffrakciós méréseknek vetettük 

alá nemcsak a reszolválás során kivált sókat, hanem a tiszta diasztereomer sókat is. A DSC 

felvételeket a 2.2.2 ábra mutatja. 

2.2.1 táblázat A racém- mandulasav reszolválása különböző oldószerekben 2-
benzilamino-1-butanollal 

Oldószer 
T 

(%) 

ee 

(%) 
S 

víz Pl 48 36 0,17 

EtOAc P2 133 16 0,21 

vízzel telített EtOAc P3 85 68 0,58 

A tiszta- és kivált sók pordiffraktogramjai közötti jelentős hasonlóság jelzi, hogy 

molekulavegyület-szerű módosulat nem vált ki a reszolválás során (2.2.3 ábra). 

Termodinamikai egyensúlyban, amennyiben szolvatálódás nem okoz zavart, konglomerátum-

képző diasztereomer sók esetén az akirális oldószer nem befolyásolhatja az elérhető 

reszolválhatóságot. A termogravimetriás mérések egyértelműen megmutatták, hogy egyik 

20. / 25 oldal 



KOZMA DÁVID: DIASZTEREOMER- ÉS ENANTIOMERKEVERÉKEK ELŐÁLLÍTÁSA ÉS ELVÁLASZTÁSA 

kivált só sem tartalmazott kristályszolvátot, az ennek ellenére megmutatkozó nagy különbség 

egyértelmű jele annak, hogy a rendszer viselkedése eltér az ideálistól. 

2.2.2 ábra A tiszta és a reszolválások során kivált mandulasav 2- benzilamino-1-
butanol sók DSC görbéi 

Az olvadási fázisdiagramokat gyakran alkalmazzák diasztereomer sópárok jellemzésére. 

Az olvadási görbe számítható a két tiszta só termikus adataiból a Schröder-van Laar egyenlet 

segítségével. ' 

AHÍ In x = 
R 71/ Tf 1 

x: a feleslegben lévő anyag móltörtje 

Tf: a tiszta anyag olvadáspontja (K) 

AH[: a tiszta anyag olvadáshője (kJ/mól) 

TJ: az x móltörtű keverék olvadási véghőmérséklete (K) 

R: az egyetemes gázállandó (kJ/mól K) 
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2.2.3 ábra Mandulasav-2-benzilamino-1-butanol sók röntgen-

pordiffraktogramjai 

A tiszta sók adataiból számított eutektikus pont 65 °C-nál van. Az első pillantásra a Pl 

és P3 sók úgy tűnnek, mint egy normál eutektikus rendszer. Azonban az eutektikumnak 

megfelelő csúcs 80 °C körül, lényegesen magasabb hőmérsékleten van, mint a számított 

eutektikus hőmérséklet, valamint az eutektikus görbe alatti területek aránya sincs összhangban 

a második csúcs alatti területtel, az eutektikumhoz a mértnél lényegesen nagyobb területnek 

kéne tartozni. Ez egyértelmű jele annak, hogy a diasztereomer só nem képez normális 

eutektikus rendszert. 

Annak érdekében, hogy jobban megértsük a sók viselkedését, három különböző 

összetételű mechanikus keveréket is készítettünk mozsárban eldörzsölve (20:80 Ml, 50:50 

M2, 80:20 M3 - (7?)-2-5-(5)-2-2 : (5)-2-5-(5)-2-2). Az M3 keverék DSC görbéje hasonló a P3 

sóhoz. Az M2 keverék görbéje már lényegesen különbözik a hozzá hasonló összetételű P2-

től. Az Ml DSC görbéje pedig az őt döntő részben alkotó diasztereomer só görbéjére hasonlít, 

de figyelemre méltó, hogy a 20 %-ban jelenlévő másik diasztereomer só nem egy csökkent 

olvadáspontú eutektikus csúcsot eredményezett, hanem az alacsonyabb olvadáspontú só saját 

normál olvadáspontján olvadt meg. Meglepő módon tehát sem a reszolválás során kivált sók, 

sem a diasztereomer sók mechanikus keveréke sem viselkedett, normál konglomerátumoktól 
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elvárhatóan, eutektikus rendszerként. A megolvasztást követő visszahűtés után egyik 

sókeverék sem kristályosodott ki. 

Úgy tűnik, hogy a kölcsönhatás a két tiszta diasztereomer só között gátolt, a szilárd 

fázis úgy viselkedik, mint két teljesen különböző anyag keveréke. A rendelkezésünkre álló 

módszerekkel nem tudtunk közelebb kerülni ezen reszolválás folyamatának megértéséhez, de 

megmutattuk, hogy a diasztereomer sók eddig ismert kölcsönhatásain kívül is léteznek még 

további eddig részleteiben fel nem derített lehetőségek. 

2.3 Az /V-metamfetamin reszolválása borkősawalS17 

Az V-metamfetamin (2-3, MA) (i?,/?)-borkősavas (2-7, BS) reszolválása szintén jól 

ismert folyamat, a Jumex gyártás részlépéseként a Chinoinban ipari méretben végzik. A 

reszolválást számos módon lehet kivitelezni, mi a félekvivalens reszolválóágenssel, 

félekvivalensnyi sósav jelenlétében abszolút etanolban végzett reszolválást vizsgáltuk (2.3.1 

ábra).54'55'SRÍ1 

OH 

.NH 
,COOH absz. EtOH 

+ HOOC J > H + . HCI ^ ^ (R)-2-3.(R,R)-2-7 
OH 

+(S)-2-3. (/?, R)-2-7 

(R,S)-2-3 (R,R)-2-7 
MA BS 

2.3.1 ábra Az N-metamfetamin reszolválása borkősavval 

A reszolválás elején gyakorlatilag a tartarát teljes mennyisége kiválik, és a kivált sóban 

a bázis enantiomertisztasága idővel növekszik. Négy időpontnak megfelelő, négy különböző 

enantiomertisztaságú sót vizsgáltunk termoanalitikai módszerekkel (2.3.1 táblázat és 2.3.2 

ábra) 

2.3.1. táblázat Az N-metamfetamin borkősavas sók termokémiai adatai 

Olvadáspont 
(°C) 

Olvadáshő 
(kJ/ mol) 

(Ó)-MA.BS só 114 36 

(fl)-MA.BS só 164 49 

(/?)-MA.HCl, (ő)-MA.HCl 173 26 
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2.3.2. ábra Az N-metamfetamin borkősavas reszolválása során kivált 

sók DSC görbéi 

2.3.2 táblázat Az N-metamfetamin borkősavas reszolválásának eredményei és 
a kivált sók termoanalitikai adatai 

Jel Idő ee Móltört 
(%) 

Számított 
olvadáspont 

(°C) 

Mért 
olvadáspont 

(°C) 
PS1 15 perc 25,0 0,625 149 150 

PS2 90 perc 27,0 0,635 150 151 

PS3 24 óra 34,0 0,67 151 153 

PS4 5 nap 60,5 0,80 157 157 

Az alacsonyabb enantiomertisztaságú minták DSC felvételei első ránézésre eutektikus 

rendszerre jellemző görbéknek tűnnek. De a görbék részletesebb vizsgálata, hasonlóan a 

2-5.2-2 esetén megfigyelthet, itt is a konglomerátum esetén várttól eltérő viselkedést jelez. Az 

eutektikus csúcsnak tűnő csúcs olvadáspontja 118 °C, ami pedig egy normál eutektikus 

rendszer esetén lehetetlen, mivel az ebben a sóban nagy feleslegben lévő (5)-MA-at 

tartalmazó diasztereomer só 114 °C-os olvadáspontja alá kell essen az eutektikus pont, a 
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Schrőder-van Laar egyenlettel végzett számítás szerint 108 °C-ra. Az eutektikumhoz tartozó 

csúcs területének egy alacsony enantiomertisztaságú sónál nagyobbnak kéne lennie, mint a 

második csúcshoz tartozó területnek. Miután ezek a feltételek nem teljesülnek a mért görbék 

esetén, teljesen egyértelmű, hogy nem egy normál konglomerátum-képző eutektikus 

rendszerrel van dolgunk. Az anyalúgból bepárlással nyert bázis-hidroklorid maradék DSC 

görbe csúcsai sem hozhatók egyértelmű összefüggésbe egy konglomerátum-képző 

enantiomerkeverék várható viselkedésével. 

A rendelkezésünkre álló módszerekkel ez esetben sem tudtunk közelebb kerülni ezen 

reszolválás folyamatának magyarázatához. Megfigyeltük azonban, hogy a kivált sók DSC 

görbéjének második csúcsához tartozó olvadáspont már jó egyezésben van a tiszta 

diasztereomer sók adataiból számított olvadási fázisdiagrammal. Ez alapján egy elméleti és 

egy gyakorlati következtetést lehet levonni. Nevezetesen, hogy a diasztereomer sók elképzelt, 

konglomerátum-szerű eutektikus viselkedése, bár nem feltétel nélkül igaz, de bizonyos 

tartományokban teljesül. A gyakorlati következtetés pedig az, hogy az ideálistól való eltérés 

ellenére lehetséges ezen esetben DSC mérések segítségével a reszolválási folyamat 

előrehaladását követni. 

2.4 Az a-fenil-etilamin reszolválása borkősavvalS25 

Egy másik jól ismert bázis az a-fenil-etilamin (2-IV, FEA) reszolválását is vizsgáltuk 

BS-val. A reszolválást metanolban írták le56, mi ezenkívül víz, etanol, acetonitril és metanol-

acetonitril valamint metanol-víz elegyben is elvégeztük. 

vizes oldószer (S)-2-4.(R,R)-2-7 + (f?)-2-4.(R,R)-2-7.hidrát 

(RS)-2-4 
FEA 

(R,R)-2-7 
BS vízmentes oldószer 

(S)-2-4. (/?, R)-2-7 + (R)-2-4.(R,R)-2-7 

2.4.1 ábra Az a-fenil-etilamin reszolválása borkősavval 

Az eredményeket a 2.4.1 táblázat foglalja össze. 
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2.4.1 táblázat A FEA reszolválása BS-sel különböző oldószerekben 
Oldószer Jel T ee 

(%) (%) 

S 

metanol MP 66,7 72,1 0,48 

víz WP 100,0 12,3 0,12 

acetonitril AP 175,9 4,6 0,08 

etanol EP 144,4 4,2 0,06 

1:1 metanol-acetonitril MAP 144,4 20,4 0,30 

1:1 metanol-víz MWP 118,5 4,4 0,05 

2.4.2 táblázat A tiszta és a reszolválások során kivált FEA-BS sók DSC és TG 
mérési eredmények összefoglalása 

Első 

(°C) 

DSC csúcs 

TG tömeg-
veszteség (%) 

Másodil 

(°C) 

i DSC csúcs 

TG tömeg-
veszteség (%) 

Olvadási 
csúcs 

(°C) 

(5)-FEA.BS - - - - 188 

(R)-FEA.BS 54 2,2 78 2,2 183 

MP 38 <0,1 67 <0,1 184 

WP 43 2,2 74 2,8 168 

EP 33 0,8 60 0,6 168 

AP 39 1,0 70 1,0 169 

MAP 40 <0,1 70 <0,1 172 

MWP 42 0,7 72 0,8 172 

A kivált sókat termoanalitikai módszerekkel (2.4.2 táblázat) és röntgen-pordiffrakciós 

módszerekkel vizsgáltuk (2.4.2 ábra). A sók olvadáspontjuk közelében már erős hőbomlást 

mutattak, így olvadáshő meghatározására alkalmas DSC felvétel nem volt róluk készíthető. 

A tiszta (Ó)-FEA.BS nem tartalmaz szolvátot, hasonlóan a metanolból és metanol-

acetonitril keverékből kristályosodott sókeverékhez. Az (R)-FEA.BS só és a többi oldószerből 

kikristályosodott sókeverékek számottevő, de nem azonos mennyiségű szolvátot 

tartalmaznak, amely melegítés hatására 30-85 °C között távozik el. Az EGD mérések 

bizonyították, hogy a szolvát minden esetben víz. 
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2.4.2 ábra A tiszta és a reszolválások során kivált FEA-BS sók röntgen-

pordiffraktogramok 

Az eredmények mutatják, hogy kristályvízmentes (S)-FEA.BS válik ki, amennyiben 

víznyomok nincsenek jelen. A röntgen-pordiffraktogram bizonyította, hogy a metanolból 

kivált só (MP), melynek az összetétele 86:14 (5)-FEA.BS: (i?)-FEA.BS nem egyszerű 

keveréke a két tiszta diasztereomer sónak, hanem egy teljesen eltérő forma, mivel a 

diffrakciós kép jelentősen különbözik a tiszta sókétól. Ezt az is jelezi, hogy a kivált só 

egyáltalán nem tartalmaz kristályvizet, és így a benne lévő (7?)-FEA.BS hányad sem, amiről 

pedig láttuk a preparatív kísérletek során, hogy lehetőség szerint mindig kristályvízzel 

kristályosodik. A metanol-acetonitril keverékből kristályosodott só (MAP) diffrakciós képén 

MP csúcsai jól felismerhetőek, de keverednek egy új forma csúcsaival, ami feltehetően 

megfelel a vízmentes (5)-FEA.BS -nek. 

A vízből és etanolból kivált só diffrakciós képe mind a tiszta sóktól, mind egymástól 

eltérő módosulatot jelez. A megfigyelt, a várttól eltérő módosulatok között egy szabályos 
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viselkedésűt találtunk, az acetonitrilből kivált sókeverék a két tiszta diasztereomer só 

keveréke. 

Termodinamikai egyensúlyban, ideális oldat esetén, amennyiben szolvatáció nem 

következik be, a konglomerátum-képző diasztereomer sópár frakcionált kristályosítását, s így 

a diasztereomer sóképzéses reszolválás hatékonyságát nem befolyásolja az alkalmazott 

oldószer. Azonban ez a szabály úgy tűnik, hogy a gyakorlatban azért bizonyul tévesnek, mert 

a gyakorlati reszolválások során különböző módosulatok jönnek létre, melyek már nem 

szabályos konglomerátumként viselkednek. A különböző módosulatok létrejöttének esélye 

igen nagy, ami a gyakorlati szempontból nem mindig hátrány, mert például ezen esetben is 

két oldószerben is hatékonyabb reszolválást lehetett elérni, mint az acetonitrilben, amikor 

szabályos konglomerátum-szerű viselkedést figyeltünk meg. Említésre méltó, hogy 

nagyszámú reszolválás összehasonlítása alapján amennyiben az egyik diasztereomer só 

kristályszolvátot tud megkötni, akkor az a stabilabb és annak kiválása esetén számíthatunk a 

leghatékonyabb reszolválásra.SR52 Ez a megfigyelés esetünkben nem bizonyult igaznak, mivel 

itt a szolvátot nem tartalmazó só kiválása eredményezte a lényegesen hatékonyabb 

reszolválást. 

2.5 Az almasav reszolválása (/?)-a-fenil-etilaminnal& i6 

A FEA (2-IV) reszolválása almasavval (2-VI, AS) már ismert volt57, de a fordított 

reszolválást, az almasavét (K)-FEA-val még nem írták le. 

NH2 

H O O C ^ ^ C O t ) H + i Q j ^ ^ (S)-2-6.(R)-2-4 j + (R)-2-6.(R)-2-4 

(R,S)-2-6 (R)-2-4 
AS FEA 

2.5.1 ábra Az almasav reszolválása a-fenil-etilaminnal 

A reszolválást vízben és metanolban is elvégeztük, az eredményeket a 2.5.1 

táblázatban foglaltuk össze. 
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2.5.1 táblázat Az almasav a-fenil-etilaminnal történő reszolválás kísérleti 
eredményeinek összefoglalása 

Oldószer Jel nin 111 s ee S 

(g) (g) (%) 
SÍ 220 68,6 52,8 0,33 

S2 65 44,6 89,3 0,38 

víz S3 40,6 33,5 100 0,35 

SM1 - 19,5 20,6 -

Ml - 118,3 69,5 -

Pl 11 4,33 44,6 0,35 
metanol 

4,33 44,6 0,35 
metanol 

RÍ - - 54,9 -

mo: kiindulási anyag tömege; m,: a kivált só illetve a maradék tömege; SÍ első kristályosítás során kivált só, S2 SÍ 
átkristályosításakor kivált só, S3 S2 átkristályosításakor kivált só, SM1 az első kristályosítás anyalúgjából kikristályosodott 
só, Ml az SM1 kiszűrése után az anyalúg szárazra párlásakor kapott maradék, Pl kivált só, RÍ anyalúg szárazra párlásakor 
kapott maradék 

A reszolválás során mindkét oldószerből a (5)-AS enantiomert feleslegben tartalmazó 

diasztereomer só vált ki. A vízből kivált só kétszeres átkristályosításával a tiszta (S)-AS.(R)-

FEA só volt előállítható. 

A tiszta sók egyike sem kristályosodott kristályszolváttal, a 177 °C-os olvadáspontú 

rosszabbul oldódó (ó)-AS.(i?)-FEA só a stabilabb, míg az (7?)-AS.(/?)-FEA sónak 152 °C az 

olvadáspontja. Az olvadás közben a sók erős hőbomlást szenvednek, így a DSC görbe alatti 

terület nem integrálható az olvadáshő meghatározása céljából. A kivált sók egy csúcsos 

olvadási görbét adtak a DSC mérések során. Lévén, hogy az olvadási görbe az alacsonyabb 

olvadáspontú só olvadáspontja fölött kezdődik, az is kizárható volt, hogy az eutektikus és az 

olvadási csúcsok a felvételen összeolvadtak. 

Az eutektikumra utaló csúcs hiánya egyértelműen jelzi, hogy a hatékony reszolválás 

ellenére sem konglomerátum-szerű viselkedéssel van dolgunk. A kivált sók röntgen-

pordiffraktogramja nagyon hasonlít egymásra és a stabilabb sóéra, míg jelentősen különbözik 

a kevésbé stabil sóétól (2.5.2 ábra). 
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2.5.2 ábra Az almasav a-fenil-etllaminnal történő reszolválása során kivált sók 
röntgen-pordiffraktogramjal 

Ezt, valamint az egy csúcsos DSC görbét figyelembe véve egyértelmű, hogy 

szilárdoldat képződéssel van ez esetben dolgunk, legalább is a kivált sók koncentráció-

tartományában. 

Vizsgáltuk ezenkívül a reszolválás közben képződött anyalúg szárazra párlásakor kapott 

diasztereomer sókeveréket is. A termogravimetriás mérések kb. 5 % szolvát vesztést jeleztek, 

amely víz vagy metanol volt az alkalmazott oldószertől függően a EGA mérések szerint. Az 
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oldószer eltávozásának magas hőmérséklete 90-130 °C között egyértelműen jelzi, hogy a 

szolvát erősen kötött, nem pedig felületen maradt oldószer maradvány. Az eltávozott szolvát 

mennyisége víz esetén 0,75, míg metanol esetén közel fele, 0,4 mol ekvivalensnyi. A DSC 

görbéken megfigyelhető elnyúló szolvátvesztésnek megfelelő csúcs után rögtön egy csúcsos 

olvadási görbe következik, itt sem lehet megfigyelni a konglomerátumok esetén várható 

eutektikumot. 

2.5.3 ábra Az almasav a-fenil-etilaminnal történő reszolválása során a 
maradékokból kinyert sók röntgen-pordiffraktogramjai 

A két oldószerből kapott maradékok röntgen-pordiffraktogramjai nagyobb mértékben 

különböznek egymástól, mint a kivált sók esetén, és teljesen különböznek a tiszta sók 

difffaktogramjától (2.5.3 ábra). A maradék esetén megfigyelt szolvatálódás szokatlan mert, 

ha lehetőség van a szolvatálódásra, akkor rendszerint a szolvatált só válik ki. 

Jelen vizsgálat bizonyította, hogy nem feltétlenül igaz az a feltételezés, hogy 

szilárdoldat képződés esetén nem lehet eredményes reszolválást elérni. Valamint megmutatta, 
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hogy a diasztereomer sók különböző összetételű keverékeinek különböző módon való 
elrendeződésére kínálkozó elvi lehetőségek közül számos valóban megvalósul, függően 
többek közt az alkalmazott kísérleti körülményektől, oldószertől, enantiomer összetételtől. 

2.6 A diasztereomer sóképzéses reszolválások szupramolekuláris jellege 

Akár a nagy számok törvénye alapján is belátható, hogy az adott racemát 
reszolválásához éppen alkalmazott reszolválóágens csak egy gyakorlati optimum. Azt 
tekinthetnénk legjobb reszolválóágensnek (F), ahol a racemát (RR) egyik enantiomerjével a 
legszorosabb, míg a másik enantiomerjével a leglazább kölcsönhatásba kerül a 
reszolválóágens. Még akkor is, amikor a reszolválóágens megválasztása valamilyen 
optimalizációs kiválasztáson alapul, csak a rendelkezésünkre álló reszolválóágensekből 
tudunk választani, így nyilvánvaló, hogy létezhet olyan reszolváló ágens, melynél a 
diasztereomerek stabilitáskülönbsége még nagyobb. 

A molekulák energia-minimumot keresve, megpróbálnak olyan elrendeződést felvenni, 
amely a köztük lévő illeszkedést szorosabbá teszi. Ekkor a kristályosodás során sokszor 
kristályszolvátot kötnek meg az oldószerből, vagy esetleg úgy javítják az illeszkedést, hogy 
kettő helyett a jelenlévő mindhárom királis vegyületből építkező struktúrát hoznak létre, pl. az 
RF diasztereomer aggregátumok bizonyos mennyiségű RF beépülésével stabilizálódnak, 
növelve az illeszkedés jóságát. Ez a magyarázata annak, hogy a reszolválás során a 
kikristályosodott fázis legtöbbször nem az egyik tiszta diasztereomert tartalmazza 
egymagában, mint ahogy a 2. fejezetben vizsgált reszolválásoknál is például mindig 
diaszteromer sókeverék keletkezett. 

A harmadik komponens rendszerint nem sztöchiometrikus mennyiségben épül be a 
reszolválás során kiváló kristályokba. Ennek leírásához célszerű molekuláris modell helyett 
szupramolekuláris modellre áttérni, ahol nagyszámú molekula kölcsönös és együttes 
egymásrahatásával jutunk a termékekhez. Azt mondhatjuk, hogy a reszolválás során kapott 
két diasztereomer frakció nem egymással szennyezett két só, hanem egy, adott 
körülményekhez legjobban illeszkedő, szupramolekuláris képződmény. Az adott körülmények 
között nem RF és RF, hanem RxRyF az egyik, míg RzRwF a másik szupramolekuláris 
képződmény képlete, ahol x+y = 1, z+w = 1, x+z = 1 ésyHv = 1 (x,y,z és w az enantiomerek 
moltörtje). 

A szupramolekuláris reszolválási modell kézenfekvő magyarázatát adja a rendkívül 
hatékony, de mindezidáig elméletileg nem indokolt38,59 „holland reszolválásnak". 
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Holland kutatók azt találták , hogyha a reszolválás során nem egy reszolválóágenst, 
hanem szerkezetileg nagyon hasonló reszolválóágensek keverékét alkalmazzák, akkor a 
reszolválni kívánt racemát egyik enantiomeijét tiszta állapotban tartalmazó diasztereomer só 
válik ki, mely a reszolválóágens keverék alkotó elemeit egy jól meghatározott, az adott 
racemát szerkezetétől fiiggö összetételben tartalmazza. A szupramolekuláris megközelítés 
egyszerű magyarázattal szolgál a „holland reszolválásra": a racemát-reszolválóágens 
illeszkedés tökéletlenségét a szerkezetileg hasonló reszolválószerek eltérő arányú beépülése 
kompenzálja, így a reszolválás során kivált só tiszta formában tartalmazza az egyik 
enantiomert, kapcsolódva az alkalmazott szerkezetileg hasonló reszolválószerek jól 

meghatározott összetételű csoportjával . A szupramolekuláris diasztereomer 

szerkezetetek stabilizálódása szerkezetileg rendkívül hasonló, azonos abszolút konfigurációjú 
reszolválóágensek alkalmazásával, úgy tűnik preferáltabb, mint az ellentétes abszolút 
konfigurációjú enantiomerrel való kompenzálás. Csak szerkezetileg nagyon hasonló 
vegyületek alkalmasak keverék reszolválóágensnek,62 mert nagyobb különbség esetén az 
optimális térkitöltést adó szükség szerint egymást helyettesítő elrendeződés már nem 
lehetséges. 

A három komponenst tartalmazó kristályszerkezetek a kétkomponensűvel szembeni 
nagyobb stabilitása azonban nem abszolút, hanem egy adott koncentrációjú oldattal szemben 
érvényesül. Ellenkező esetben sohasem lehetne tiszta diasztereomereket nyerni. 
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3 Új reszolválási módszerek 

A reszolválás során a keletkezett diasztereomer keveréket legtöbbször frakcionált 
kristályosítással választják szét. Ez a módszer rendszerint hatékony elválasztást eredményez, 
azonban a frakcionált kristályosításon kívül számos módszer áll rendelkezésre különböző 
enantiomer összetételű fázisok elválasztására812, pl. desztillációs,63'64 extrakciós,65'66'88 

szuperkritikus extrakciós67,68 módszerek. Az alternatív elválasztási módszerekkel 
könyvünkben is foglalkozunk81, itt most csak az utóbbi években általunk részletesen vizsgált 
néhány esetet írom le, melyeknek közös jellemzője az is, hogy az V-metamfetamin és rokon 
vegyületei szolgáltak modellvegyületként. 

3.1 Reszolválás két egymással nem elegyedő oldószer fázisbans21,s23 

Két egymással nem elegyedő oldószer fázisban végzett reszolválás két különböző 
módon lehetséges: 

mind az enantiomerek és mind a diasztereomerek oldott állapotban maradnak 
(extrakciós reszolválás)88 

reszolválás során a két oldószer fázis mellett megindul a kristályosodás és egy 
harmadik, szilárd fázis is részt vesz a reakcióban.69 

3.1.1 Két egymással nem elegyedő oldószer párban végrehajtott, kristályosodással 
együtt járó reszolválás522 

Az oldószer kiválasztása mindig probléma a frakcionált kristályosításon alapuló 
reszolválások során. Poláros oldószerekben rendszerint igen jó reszolválást lehet elérni, így a 
víz alkalmazása a legcélszerűbb, mivel olcsó, nem toxikus és nem tűzveszélyes. Víz, mint 
oldószer alkalmazásakor azonban sokszor problémát jelent, hogy a legtöbb szerves vegyület 
rosszul oldódik benne. 

Ez kiküszöbölhető víz-vízzel nem elegyedő oldószer pár használata esetén, amennyiben 
a reszolválóágenst félekvivalensnyi mennyiségben alkalmazzák. 

Két oldószer fázisú reszolválás kivitelezésénél a gyakorlatban úgy járunk el, hogy a 
racém vegyületet vízzel nem elegyedő szerves oldószerben oldjuk, vizet adunk hozzá és a 
félekvivalens mennyiségű reszolválóágenst valamelyik oldószerben feloldva adjuk a kapott 
keverékhez. A fázishatáron megindul a rosszabbul oldódó diasztereomer só kiválása. A kivált 
sóból az egyik, az oldószerkeverékből pedig a másik enantiomert nyerhetjük ki. Az 
oldószerkeverék szabad állapotban tartalmazza az oldott enantiomert. 821 
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Mivel az A-metamfetamint, BS-sel és O, O -dibenzoil-(7?,/?)-borkősawal (DBBS) már 

reszolválták, mi azt vizsgáltuk, hogy lehetséges-e a reszolválást 0,0'-di-p-io\uo\\-(R,R)-

borkősawal (DPTBS) is végrehajtani, és amennyiben igen, melyik módszer eredményesebb. 

Már az előkísérletek megmutatták, hogy a reszolválás lehetséges és a reszolválás során 

semleges só képződik. 

A kétbázisú savakkal való reszolválások lehetőségét a 3.1.1.1 táblázatban foglaltuk 

össze, semleges és savanyú só képződése esetén, különböző mólarányokra. 

Az összehasonlító kísérleteket elvégeztük ekvivalens reszolválóágens alkalmazásával, 

ami jelen esetben 1:2 sav:bázis arányt jelent, félekvivalens reszolválóágens alkalmazásával, 

ami 1:4 sav:bázis arányt jelent, valamint elvégeztük a kísérletet Pope-Peachy módszer szerint 

is, félekvivalensnyi sósav jelenlétében, továbbá félekvivalensnyi reszolválóágens 

alkalmazásával két oldószer fázisú reszolválással. Az eredményeket a 3.1.1.1 táblázat 

foglalja össze. 

3.1.1.1 táblázat Az N-metamfetamin DPTBS-sel történő reszolválása 
Mólarány 

B:S:HCI 

Oldószer T SÓ 

(%) 

eesö 

(%> 
S Tanyalúg 

( % ) 

CCanyalúg 

(%) 

4:1:0 metanol 73 78,8 0,58 113 42,3 

2:1:0 metanol 100 60,9 0,61 80 61,4 

4:1:2 metanol 67 68,8 0,46 120 35,5 

4:1:0 
diklór-etán 

víz 
73 82,0 0,60 107 53,4 

A Pope-Peachy módszer ez esetben mind termelésben, mind enantiomertisztaságban 

elmaradt a többitől. A másik három módszer alkalmazásával a reszolválás hatékonysága -

figyelembe véve a preparatív kísérleti módszerből eredő hibákat- gyakorlatilag megegyezik, 

ami arra utal, hogy a reszolválás során beállt a termodinamikai egyensúly és ez független az 

alkalmazott módszertől. 1:2 mólarány esetén az összes - só kivált, azonban 

enantiomertisztasága kisebb volt, mint az 1:4 mólarány esetén, amikor is a kiválás nem volt 

teljes. A két oldószer fázis jelenlétében elért reszolválás során a kivált só mennyisége 

megegyezett az azonos molaránnyal végzett kísérletben elérttel, de ez esetben lehetett a 

legmagasabb enantiomertisztaságot elérni. 
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3.1.2 Oldásközvetítő jelenlétében végrehajtott kétfázisú reszolválásS23 

A MA DBBS-sel történő reszolválásakor víz - diklóretán oldószer elegyben a 

reszolválás hatékonysága kétszer akkora mint a tiszta metanolban végrehajtott reszolválásé. 

Annak ellenére, hogy az S érték igen magas, a kivált só enantiomertisztasága nem volt 

kielégítő, még további tisztítási lépésre volt szükség. Megfigyeltük azonban, hogy ha 

metanolt adagolunk a rendszerhez a kivált só enantiomertisztasága növelhető a termelés 

rovására, bár a reszolválás hatékonysága nem változik, de nincs szükség további tisztítási 

lépésre. Az eredményeket a 3.1.2.1 táblázat mutatja be. 

3.1.2.1 táblázat Az N-metamfetamin DBBS-sel oldásközvetítő jelenlétében 
végrehajtott kétfázisú reszolválása 

Víz Díklór-etán Metanol T ee S 
ml ml ml (%) (%) 

- - 40 71,7 54,4 0,39 

15 60 - 94,8 82,5 0,78 

15 60 3 93,0 85,2 0,79 

15 60 6 90,5 87,8 0,79 

15 60 19 79,6 97,9 0,78 

A termodinamikai egyensúly már a metanol nélkül végrehajtott kétfázisú reszolválás 

során beállt, de a metanol mint oldásközvetítő alkalmazásával már hatékony, egylépéses 

reszolválást lehetett megvalósítani. 

3.2 Reszolválás desztillációvalS31 

Félekvivalens mennyiségű reszolválóágens (F) alkalmazásakor ideális esetben a 

reszolválandó vegyület (RR) egyik enantiomeije szabad állapotban marad: 

ÜR + F - ÜF + R 

Frakcionált kristályosítás során az anyalúgból különíthető el a szabad enantiomer. 

Amennyiben az enantiomer desztillálható, úgy desztillációval is kinyerhetjük.SR58 

Diasztereomer sóképzéses reszolválást, félekvivalensnyi reszolválóágens alkalmazását követő 

desztillációval Fogassy és munkatársai valósítottak meg először, amelyről egy 

előközleményben számoltak be.63 A desztillációs reszolválás jobb megértése érdekében, mi 

részletesen vizsgáltuk az A-metamfetamin desztillációs reszolválását. 

53 
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Az eljárás kivitelezése rendkívül egyszerű. A szilárd halmazállapotú reszolválóágenst 

elegyítjük a folyékony halmazállapotú racemáttal (1 mol reszolválóágensre 2 mol racemátot), 

majd fél-egy órai állás után a szabad enantiomert vákuumban ledesztilláljuk. A desztillátum a 

szabad enantiomer, míg a maradék a diasztereomer só, amelyből a másik enantiomer és a 

reszolválóágens regenerálható. 

(f?,S)-bázis reszolváló szer diasztereomer só szabad bázis 

Frakcionált kristályosítás során a BS (3-1) valamint két O-acil származéka az DBBS 

(3-2) és a DPTBS (3-3) egyformán jó reszolválóágensei az MA-nak. Mivel két 

karboxilcsoporttal rendelkeznek savanyú vagy semleges sót képeznek bázisokkal. A 

kísérletekben a bázis:sav mólarányt 1:1-től 4:1-ig változtattuk. Akkor a 2:1 mólarány a 

savanyú sónak, míg a 4:1 a semleges sónak felel meg. 1:1 mólaránynál csak a BS esetén volt 

desztillátum, mivel itt még a savanyú só képződése sem történt meg. 

A desztillátum hiánya a két O-acil borkősav származék esetében azt jelzi, hogy itt 

végbement a sóképződés. A BS, mint reszolválóágens alkalmazása esetén a desztillációs 

kísérletek mind 2:1, mind 4:1 mólaránynál a vártnál nagyobb mennyiségű desztillátumot 

eredményeztek, amelyek racémnak bizonyultak, jelezve, hogy az alkalmazott körülmények 

között az MA nem képez stabil sót BS-sel, és így reszolválás sem következik be. A két O-acil 

borkősav alkalmazásakor 2:1 mólaránynál, közel 70 %-os enantiomertisztaságú desztillátumot 

lehet kapni 50 %-os termeléssel, ami azt jelenti, hogy a maradékban a semleges és savanyú só 

aránya közel megegyezik. A mólarány 3:l-re való változtatásával, a maradék sztöchiometriája 

nem változik, azonban a desztillátum mennyisége megduplázódik. A mólarány további 

növelésével 4:l-re a desztillátum mennyisége nem változik, az elérhető enantiomertisztaság a 

2:1 és 3:1 mólarányokkal elérhető érték közé esik. 

A bázis mennyisége a maradékban nagyobb, mint ahogy az várható lenne a semleges só 

teljes mennyiségének képződése esetén, ami jelzi, hogy a semleges só valamennyi N-

metamfetamint komplex formában is megköt. A 4:1 mólarányú DBBS-sel végrehajtott 

reszolválás fenéktermékét 4-szeres tömegű elporított kálium-hidroxiddal melegítve, a 

megkötött bázis egy része ledesztillálható racém formában, és a maradékból a 

desztillátuménál is magasabb enantiomertisztaságú bázis nyerhető ki. Tehát a sóképzés során 
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a stabilabb diasztereomer só marad a fenéktermékben, ami azonban nem sztereoszelektíven 
megköt még bizonyos mennyiségű bázist, és ez csökkenti a reszolválás hatékonyságát. A 
királis megkülönböztetés a dibenzoil származék esetén jobb, mint a di-p-to\uoü származék 
esetén, mert a megfelelő enantiomertisztaság értékek rendre nagyobbak, míg a termelések 
megegyeznek. 

A reszolválás hatékonysága növelhető, ha a reszolváló savat a racém bázissal oldószer 
jelenlétében elegyítjük, és a bázis desztillálása előtt az oldószert lehajtjuk. Ily módon 
metanolos oldatból 2:1 mólaránynál már nem lehet desztillátumot kapni az acilszármazékok 
esetén, ami azt mutatja, hogy oldószer közbeiktatásával a semleges só képződése teljessé 
tehető. 4:1 bázis:sav mólaránynál magas enantiomertisztaságú bázis desztillál. A 
reszolválhatóság 0,72-es értéke hatékony reszolválást jelez, felülmúlja az egyszerű 
elegyítéssel elérhető értékeket. A közvetítő oldószer mennyisége lényegesen kevesebb volt, 
mint amennyi a frakcionált kristályosításoknál szokásos. Gyakorlati szempontból kedvező, 
hogy a leghatékonyabb reszolválást a legkisebb mennyiségű oldószer alkalmazásával lehetett 
elérni. Az eredményeket 3.2.1 táblázat foglalja össze. 

43. / 32 o lda l 



KOZMA DÁVID: DIASZTEREOMER- ÉS ENANTIOMERKEVERÉKEK ELŐÁLLÍTÁSA ÉS ELVÁLASZTÁSA 

3.2.1 áblázat Az N-metamfetamin desztillációs módszerrel történő reszolválása 
Reszolválóágens Mólarány 

Bázis: sav 
Deszt illát u ni 

T(%) 
Desztillátum 

(%) 
s 

1. 3-1 1 1 80,5 0,0 0,0 
2. 3-1 2 1 127,5 0,0 0,0 
3. 3-1 4 1 142,0 0,0 0,0 
4. 3-2 1 1 - - -

5. 3-2 2 1 40,3 71,9 0,29 
6. 3-2 3 1 87,3 58,9 0,51 
7. 3-2 4 1 80,5 67,6 0,54 
8. 3-2* 4 1 94,0 78,2 0,74 
9. 3-2 " 2 1 - - -

10. 3-2" 4 1 94,0 76,1 0,72 
11. 3-3 1 1 - - -

12. 3-3 2 1 47,0 67,8 0,32 
13. 3-3 3 1 87,3 49,9 0,44 
14. 3-3 4 1 80,5 58,8 0,47 
15. 3-3 2 1 - - -

16. 3-3" 4 1 94,0 56,2 0,53 
17. (L>3-4 2 1 181,2 0,0 0,0 
18. (L>3-5 2 1 60,0 0,0 0,0 
19. ( I > 3-6 2 1 174,4 0,0 0,0 
20. (+>3-7 2 1 87,3 7,9 0,07 
21. (S)-3-8 2 1 47,0 0,0 0,0 
22. (R,R)-3-9 2 1 67,1 0,0 0,0 
23. (i?^)-3-10 2 1 73,8 0,0 0,0 
24. (tf)-3-ll 2 1 73,8 0,0 0,0 
25. (R)-3-12 2 1 73,8 0,0 0,0 
26. (7?)-3-13 2 1 53,7 0,0 0,0 
27. (S>3-14 2 1 73,8 15,1 0,11 
28. (Z)-3-15 2 1 80,5 0,0 0,0 
29. (15)-3-16 2 1 60,4 0,0 0,0 
30. (+>3-17 2 1 94,0 10,6 0,10 

* vízmentes ** oldatból kristályosítva 

COOH 
OR 
H 

RHN 
H-

OR-
COOH 

2R,3R-
3-1: R=H 
3-2: R=benzoil 
3-3: R=p-toluoil 

COOH 

COOH 

H2N. 

3-4: R=H 
3-5: R=formil 

COOH 

COOH 

3-6 3-7 
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3-8 3 . 9 3-10 

COOH 

H 
ISL 

COOH 

H 
Nk 

0 O 
3-13: X= COOH, Y=H 
3-14: X= H, Y= COOH 

3-11 

HCL COOH 

3-15 

3-12 

SO3H 

O 

3-16 

O 

HO 

O OH 

3-17 

Az MA desztillációs reszolválására tizennégy egyéb királis savat is kipróbáltunk, mint 

reszolválószert. Minden esetben 2:1 mólarányt alkalmaztunk. Három közülük dikarbonsav 

volt. Az aszparaginsav (3-4) és a glutaminsav (3-6) nem képez stabil sót az MA-val az adott 

körülmények között, majdnem az összes bázis átdesztillál racém formában. Az A-formil-

aszparaginsav (3-5) sót képez a bázissal, az anyagmérleg szerint a maradék savanyú és 

semleges só keveréke kell legyen, azonban királis megkülönböztetés nem lép fel, az 

átdesztillált bázis racém összetételű volt. A tizenkét monokarbonsawal végzet reszolválás 

során a desztillátum mennyisége rendszerint kevesebb volt, mint a jelen lévő bázis fele, 

amiből következik, hogy ezen esetekben részleges komplexképződés játszódik le a 

sóképződés mellett. Reszolválást csak három esetben lehetett elérni (3-7, 3-14 és 3-17). A 

reszolválások hatékonysága igen alacsony volt, mind a termelés, mind az elért 

enantiomertisztaság szerény. Érdekes, hogy a /ramz-permetrinsavval el lehet érni részleges 

reszolválást, míg a c/sz-izomerrel nem. Annak ellenére, hogy 3-9 az egyik karboxilcsoportján 

szubsztituált származéka a hatékony reszolválást biztosító DBBS-nek, de még kismértékű 

reszolválást sem lehetet vele elérni. 

A desztillációs módszer az alábbi esetekben ajánlható: 1) amikor nem tudunk, vagy nem 

akarunk frakcionált kristályosításon alapuló reszolválást kidolgozni, 2) amikor az oldhatósági 
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viszonyok miatt csak híg oldatban végezhető el a reszolválás, ami jelentősen megnövelheti a 
szükséges oldószer mennyiséget és a készülék térfogatát, 3) amikor a frakcionált 
kristályosítást sokszor meg kell ismételni, hogy tiszta enantiomereket kapjunk. A desztilláció 
során kémiai tisztítás is bekövetkezik, így adott esetben a technológiai sor egy további lépése 
megtakarítható. 
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4 Komplexképzéses reszolválásokS2 

Amennyiben egy racemátnak bázikus vagy savas csoportja van, akkor reszolválása 
több-kevesebb kísérleti munkával minden esetben megoldható diasztereomer sóképzéses 
reszolválással, mert általábana nagyszámú bázikus és savas reszolválóágens közül található 

A « 

legalább egy, amellyel az enantiomerek elválasztása megoldható. 
Az alkoholok enantiomerjeinek elválasztása már nem üyen egyszerű.70 Legtöbbször 

származékukat választjuk el (kovalens diasztereomerként, vagy diasztereomer sóként). 
Egylépéses módszerként -származékképzés nélkül- csak a komplexképzéses reszolválás jön 
szóba. 

Nyilvánvaló, hogy az egylépéses út lenne a legcélszerűbb, de a gyakorlatban általánosan 
alkalmazható, könnyen hozzáférhető komplexképző reszolválószer nem ismert. Számos 
próbálkozás történt általánosan alkalmazható komplexképző reszolválóágensek előállítására, 
sokszor valamely diasztereomer sóképző reszolválóágens átalakításával.71'72'73'74'75,76'77'78 Ezek 
a komplexképző reszolválóágensek egy-egy vegyület vagy vegyületcsalád laboratóriumi 
szintű reszolválására alkalmasnak bizonyultak, nagyobb mennyiségben azonban egyik esetben 
sem gazdaságos az alkalmazásuk. 

Jelen kutatásainkat az indította el, hogy IR vizsgálatok során megfigyeltük, hogy 13 
bázikus jellegű (iV-alkil)-pipekolin-savanilid79'80 BS-sel és DBBS-sel történő frakcionált 
kristályosításos reszolválása során a kikristályosodó diasztereomer 8 esetben nem valódi só, 
hanem diasztereomer komplex810 Ezek alapján feltételeztük, hogy e két sav minden további 
átalakítás nélkül alkalmas lehet bázikus csoportot nem tartalmazó racemátok 
komplexképzésen alapuló reszolválására is. Ez azért volna előnyös, mivel a BS és a DBBS a 
két leggyakrabban alkalmazott reszolválóágens,81,82 és nagy tételben, olcsón hozzáférhetőek. 

Kutatócsoportunk korábban már sikeresen alkalmazta a DBBS-nek kalcium és réz sóit 
királis karbonsavak, észterek és alkoholok enantiomerjeinek diasztereomer koordinációs 

Q1 QA 9/Z 
fémkomplexen keresztül történő elválasztására. ' ' A továbbiakban ezeknél egyszerűbb, 
gyakorlati célra is alkalmas reszolválást kívántunk megvalósítani, ezért a koordinációs 
komplexek helyett molekulakomplexek kialakítására törekedtünk. 
4.1 Komplexképzéses reszolválás 0,0 '-dibenzoil-borkősawalsns27 

Első lépésben négy királis alkohollal [4-metil-2-pentanol (4-4), l-metoxi-2-propanol 
(4-8), tetrahidro-furfuril-alkohol (4-10), mentől (4-20)] és mind a két savval (BS, DBBS) 
végeztünk előkísérleteket molekulakomplexképzésen keresztül történő reszolválásra 
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különböző apoláris oldószerekben811. Az előkísérletekből azt a következtetést vontuk le, hogy 
amíg DBBS-sel lehetséges, addig BS-sel nem lehetséges a molekulakomplexképzéses 
reszolválás apoláris oldószerben. A vizsgált oldószerek közül legmegfelelőbbnek a »-hexán 
alkalmazását találtuk. A komplexképzés enantioszelektivitása nagyobb volt DBBS-
monohidrát alkalmazása esetében, mint vízmentes DBBS-sel, ezért a további kísérletek során 
mindig DBBS-monohidrátot használtunk827. 

Termogravimetriás mérések szerint a komplex nem tartalmaz vizet (4.5.1 ábra), tehát a 
hidrátként megkötött vizet a komplexképződés során az alkoholmolekula kiszorítja a kötődési 
helyéről826'828. 

A racém mentől (4-20) reszolválásánál kiemelkedő sztereoszelektivitású elválasztást 
tapasztaltunk, ezért a részletes kísérleti munka során nagyszámú, a mentollal bizonyos 
szerkezeti hasonlóságokat mutató alkohollal végeztünk kísérleteket. A 4.1.1 táblázatban 24 
reszolválási kísérlet eredményét foglaltuk össze.827'835 

A táblázatban feltüntettük a molekulakomplexekbe nagyobb arányban beépülő alkohol 
molekula enantiomeijének abszolút konfigurációját is, amelyet a komplexből nyert alkohol 
optikai forgatóképességének irodalmi adatokkal történő összehasonlítása alapján határoztunk 
meg. 

Eljárásunk a következő volt: a reszolválni kívánt alkoholt »-hexánban oldjuk, majd 
ebben az oldatban szuszpendáljuk a szilárd DBBS-t. Egy DBBS molekulát két 
mólekvivalensnyi alkohollal reagáltattunk, feltételezve, hogy 1:1 arányú molekulakomplex 
képződik és a racemát fele reagálatlanul az anyalúgban marad.841 

A komplexképződés szobahőfokon általában egy hét alatt lejátszódik. A komplex 
kiszűrése után az anyalúgból a komplexálatlan enantiomer, míg a komplexből a másik 
enantiomer nyerhető ki, az alkohol komponens forráspontjától függően vákuum 
desztillációval, vagy extrakcióval. A 4.1.1 ábra mutatja két konkrét vegyület esetére kimért 
reakcióidő-enantioszelektivitás görbét. 
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4.1.1 táblázat Alkoholok DBBS-sel történő reszolválásának eredményei 
A komplexből kinyert alkohol 

ee 
(%) 

T 
(%) 

S ee 
(%) 

T 
(%) 

S 

4-1 J k 0 48 0 4-13 
OH 

ó " 61 71 0,43 

4-2 
OH 

0 59 0 4-14 

OH 

<T 
Nem 

oldódik 
hexánban, 

nincs 
komplex 
képződés 

4-3 
OH 

20 63 0,13 4-15 
OH 

¿ T 
nincs 

komplex 
képződés 

4-4 
OH i 

XX 28 91 0,26 4-16 
OH 

Ö'k 50 74 0,37 

4-5 
OH 

Ó 5,0 19 0,01 4-17 
OH 

15 60 0,09 

4-6 
OH 

. 0 0 11 0 4-18 
OH 

c o 44 66 0,29 

4-7 
J> 

nincs 
komplex 
képződés 

4-19 

OH 

¿ q 0 46 0 

4-8 
OH 

7,0 66 0,05 4-20 
OH | 

¿ 0 83 45 0,37 

4-9 
OH 

0 93 0 4-21 
OH | 

¿ T 
nincs 

komplex 
képződés 

4-10 10 34 0,03 4-22 
OH 

ÓL 
nincs 

komplex 
képződés 

4-11 
OH 

Crcl 35 74 0,26 4-23 
OH | 

¿ b 
nincs 

komplex 
képződés 

4-12 
OH 

i r 56 63 0,35 4-24 
OH 

Ó 21 55 0,12 

Még egymáshoz szerkezetileg hasonló diasztereomerek frakcionált kristályosításon 

alapuló elválasztásához is rendszerint különböző oldószereket vagy különböző összetételű 

oldószerkeverékeket szükséges használni. Az oldószer kiválasztás nemcsak munkaigényes, de 
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az egyes oldószerekben elért elválasztások nem minden esetben összehasonlíthatóak. A 

komplexképzéses kísérletekben oldószerként mindig »-hexánt alkalmaztunk, mert a »-hexán a 

legtöbb esetben oldotta a vizsgált alkoholokat, de a DBBS-t és a DBBS-sel képzett komplexet 

gyakorlatilag nem. Ezzel egy általánosan alkalmazható eljárást sikerült kidolgoznunk 

alkoholok egy csoportjának DBBS-sel történő reszolválására, amely nemcsak egyszerű, de 

egyben az eredmények összehasonlíthatóságát is biztosítja. 

4.1.1 ábra Komplexképzési idő-enantioszelektivitás összefüggése DBBS-sel végzett 
komplexképzés során 

4.1.1 A komplexképződés feltételei, molekulaszerkezeti összefüggések 

Az egyes homológ sorokra kapott reszolválási eredmények értékelésével az alábbi 

következtetéseket lehet levonni a komplexképződés szerkezeti hátteréről: 

1. A 2-helyzetben szubsztituált ciklohexanolok esetében a komplexképződés íramz-szelektiv 

(pl. a mentől 4-20 komplexálódik, míg az izo-mentől 4-21 nem). 

2. A 2-helyzetben /zo-propilcsoportnál nagyobb térkitöltésű csoportot tartalmazó alkil-

ciklohexanol (pl. 4-23) már nem képez komplexet DBBS-sel. 

3. A tra».sz-2-alkoxi-ciklohexanoloknál a szubsztituens méretétől függ a komplexképződés 

enantiospecifitása. Az etoxi- és /zo-propoxicsoportot tartalmazó ciklohexanoloknál (4-16, 

4-17) az R,R míg propoxicsoportot tartalmazó ciklohaxanol (4-18) esetében az S,S 

konfigurációjú alkohol épül be a komplexbe nagyobb arányban. A butoxi-csoportot 

tartalmazó ciklohexanol (4-19) esetében a komplexképződés gyenge termeléssel megy, és 

nem enantiospecifikus. 

4. A 2-helyzetben halogént tartalmazó ciklohexanolok (4-11, 4-12 és 4-13) S,S 
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konfigurációban komplexálódnak, a halogénatom méretével nő az enantioszelektivitás. 

5. A királis nyílt láncú szekunder alkoholok közül a 2-pentanolok (4-3, 4-4) komplexálódnak 
enantiospecifikusan, stabil komplexet képezve. A 2-butanolok (4-1, 4-2) 
komplexképződése nem enantiospecifikus. A hat szénatomnál hosszabb szekunder alifás 
alkoholok (pl. 4-7) már nem képeznek komplexet a DBBS-sel. 

Az általános szerkezeti megfigyeléseken kívül, alkoholok DBBS-sel képzett 
komplexeinek egykristály-röntgendiflfrakciós szerkezetvizsgálatával további fontos adatokat 
lehet nyerni a komplexképződésre vonatkozóan. Ezeket a 4.4 fejezetben mutatjuk be 
részletesebben. 

4.2 Cisz-transz izomerek elválasztása 0,0'-dibenzoil-borkősavas 

komplexképzéssel830 

A DBBS-sel való szelektív komplexképződést nemcsak racém enantiomerkeverékek 
elválaszására lehet felhasználni, hanem egyéb keverékeket is mint például cisz-transz 
keverékeket is képes szelektíven komplexálni és így preparatív elválasztásuk is megoldhatóvá 
válhat (4.2.1 táblázat) 
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4.2.1 táblázat Alkil-ciklohexanolok sztereo- és enantioszelektív komplexálódása 
DBBS-sel 

Vegyület Alkohol 
DBBS 

mol 
arány 

Kiindulási 
alkohol 

összetétel 

Alkohol a 
komplexből 

Alkohol az 
anyalúgból 

4-25 X 
^OH 

2:1 cisz 33% 
transz 67 % 

cisz 25 % 
transz 75 % 

cisz 55% 
transz 45 % 

4-26 f . 

.OH 
r 2:1 cisz 34% 

transz 66 % 
cisz 7 % 

transz 93 % 
cisz 73 % 
transz 27% 

4-27 v : 
s^OH 

2:1 cisz 9% 
transz 91 % 

cisz 8% 
transz 92% 

cisz 15% 
transz 85% 

4-28 0 
/OH 

4:1 

15,25 30 % 
17?,27? 30% 
15,27? 20% 
17?,25 20 % 

15,25 54% 
17?,27? 22% 
15,27? 11% 
17?,25 13% 

15,25 23 % 
17?,27? 32 % 
15,27? 23 % 
17?,25 22 % 

4-29 i a 
,OH 

4:1 

15,25 38 % 
17?,27? 38% 
15,27? 12% 
17?,25 12% 

15,25 56% 
17?,27? 6 % 
15,27? 19% 
17?,25 19% 

15,25 5 % 
17?,27? 11% 
15,27? 42% 
17?,25 42 % 

A 4-25 - 4-29 vegyületek szintézise cisz- és transz-izomerek keverékéhez vezet. A 4.1 

fejezetben ismertetett hexános módszerrel a vegyületeket preparatív léptékben reagáltattuk 

DBBS-sel. Az izomerek arányát gázkromatográfiával mértük. 4-25 - 4-27 vegyületek esetén 

az anyalúg a cisz izomerben dúsult, míg a transz-forma nagyobb arányban épült be a 

komplexbe. 

Az alkil lánc növekedésével a komplexképződés sztereoszelektivitása nő. 

4-28, 4-29 vegyületek négy izomer keverékei. A komplexképződés ez esetben is transz-

specifikus. Ez esetben is a lánchossz növekedésével (metil, etil) nő sztereoszelektivitás, de 

nem korlátok nélkül, mivel a 2-fórc-butil-ciklohexanol esetén már egyáltalán nem történik 

komplexképződés. 

4.3 Alternatív módszerek a komplexképzéses reszolválásra 

4.3.1 „One-pot" reszolválás szilárdfázisú reakciót követő szublimációval839 

Alternatív kivitelezési módokat keresve a komplexképzéses reszolválás végrehajtására 

felvetődött, hogy a reszolválás szilárd fázisban is kivitelezhető. Célszerűen olyan racemátot 
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választva, amely szublimálható, közvetlenül a szilárd reakcióelegyből kinyerhetők lehetnek az 

enantiomerek. 

Modellvegyületnek /ra«sz-2-jód-ciklohexanolt (4-13) választottuk, mivel 

szobahőmérsékleten szilárd (op: 43 °C), szublimálható és hexános szuszpenzióban 

reszolválható. A DBBS-t a racém 4-13-mal elkevertünk különböző 1:2 és 1:4 molaránnyal, 

majd frakcionált szublimálást végeztünk. Alacsonyabb hőmérsékleten a nem komplexált 

enantiomer kiszublimálható, amely az (li?,27?)-enantiomerben dúsabb, míg a hőmérséklet 

növelésével megindul a komplex bomlása és 100 °C-ig emelve a fenék hőmérsékletet a 

komplexált enantiomer \S,2S izomerben dúsulva távozik. A folyamatot a 4.3.1.1 ábra mutatja 

be, az eredményeket a 4.3.1.1 táblázat foglalja össze. 

OH 

0 " 
OH 

i f 

OH 

— ö " iblimáció ^^ 

OH 

0 " O szublimáció v szublimáció 

1 szublimátum 2. szublimátum 

T2>T1 

racém-transz-2-\óá-
ciklohexanol 

4.3.1.1 ábra 

DBBS 

HO 

maradék 

transz-2-jód-ciklohexanol „one-pot" reszolválása DBBS-sel 
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4.3.1.1 táblázat transz-2-jód-ciklohexanol „one-pot" reszolválása DBBS-sel 
Reakcióidő Szublimáció Frakciók Eredmények 

(hét) hőmérséklete 
Mólarány °C T Konfiguráció ee S 

DBBS : 4-13 (%) 4-13 (%) 
50 1. 30 17?,27? 68 0,20 

(1) 50 2. 58 17?,27? 86 0,50 

1:2 100 3. 53 \S,2S 80 0,42 

50 1. 56 17?,27? 76 0,42 

(2) 50 2. 37 17?,27? 55 0,20 

1:2 100 3. 53 \S,2S 46 0,25 

50 1. 10 17?,27? 76 0,08 

(3) 50 2. 77 17?,27? 79 0,61 

1:2 100 3. 18 \S,2S 72 0,13 

50 1. 15 17?,27? 77 0,12 

(4) 50 2. 77 \R,2R 79 0,61 

1:2 100 3. 26 IS,2S 58 0,15 

50 1. 34 17?,27? 40 0,14 

(4) 50 2. 28 17?,27? 23 0,07 

1:4 100 3. 18 1S,2S 92 0,17 

A táblázatban megadott adatok nem kevert reakcióelegyre vonatkoznak. Ekkor az 

egyensúly közel három hét elteltével áll be. Megfigyeltük, hogy amennyiben a szilárd 

reakcióelegyet 1-2 órán keresztül mozsárban intenzíven dörzsöljük azonos eredményt érhető 

el. Legnagyobb enantiomertisztaságot a komplexből az 1:4 mólarány (reszolválószer:racemát) 

esetén lehetett elérni, de mivel ekkor nincs elegendő reszolválószer, hatékony reszolválás nem 

várható el. Ez az eljárás az általunk ismert legegyszerűbb reszolválás. 

4.3.2 Komplexképzéses reszolválás olvadékbanS37 S42 

A mentől reszolválása DBBS-sel hatékony, de lassú folyamat. Alternatív, gyorsabban 

kivitelezhető utakat keresve felmerült, hogy közvetítő oldószer nélkül, két fázis helyett egy 

fázisban, a racemát olvadékában oldott DBBS-sel is meg lehetne valósítani a reszolválást. 

A mentől enyhén melegítve valóban oldja a DBBS-t, az elegyet visszahűtve megindul a 

komplex kristályosodása, a visszahűlt reakcióelegyből desztillációval kinyerhető a reagálatlan 

és a komplexált mentől enantiomer. A különböző kezdeti mólarányokkal elért eredményeket a 

4.3.2.1 táblázat foglalja össze. 
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4.3.2.1 táblázat A mentől reszolválása DBBS-sel olvadékban 

Mólarány Szabad mentől Mentől komplexből 

DBBS: T ee T ee S 
mentől (%) (%) (%) (%) 

0,2 128,8 8,0 12,0 89 0,11 

0,3 156,0 16 30,0 85 0,26 

0,4 137,8 28 51,8 76 0,39 

0,5 113,4 44 72,6 63 0,46 

155,0* 24* 45,0* 83* 0,37* 

0,6 124,2 34 56,4 67 0,38 

0,7 109,4 30 73,6 44 0,33 

*n-hexánban elért eredmény 

A komplexből felszabadított mentől enantiomertisztasága annál jobb, minél kisebb 

mennyiségben van jelen a reszolválóágens, de a reszolválhatóság az 1:2 mólaránynál 

maximális. A reszolválás hatékonyabb, mint hexán alkalmazásánál. 

A 1. hexán 
szures 

B 1. olvadék 

Ö 1 " 

2.szűrés 

olvadék 
2. frakc. deszt. 

szabad 
enantiomer 

racém mentől DBBS mentol-DBBS molekulakomplex 

desztilláció 

" A racém mentől és 
a DBBS hexán jelenlétében 
reagál, az enantiomer 
elválasztás szűréssel és 
a komplex elbontásával 
történik. 

B A racém mentől és a 
DBBS olvadékban reagál, 
a kristályos komplexet az 
olvadéktól szűrjük. Az 
így kapott két fázisból 
nyerjük az enantiomereket. 

A racém mentől és a DBBS 
" olvadékban reagál, a kristályos 

komplex mellől vákuumban 
desztilláljuk az első frakciót, 
majd magasabb hőfokon meg-
bomlik a komplex és desztillál-
juk a második frakciót. 

desztillátum 

T2 > T1 

mentol-DBBS molekulakomplex 

desztilláció 

OH 

DBBS 
maradék 

X 

II. desztillátum 

4.3.2.1 ábra Mentől reszolválása DBBS-sel, enantiomer elválasztási lehetőségek 
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A neo-mentolt (4-21) hexános szuszpenzióban nem lehetett reszolválni, de a fent leírt 

olvadékos módszerrel meglehetősen hatékony (S = 0,34) reszolválást lehetet elérni. 

A mentol-DBBS reakcióját olvadék fázisban fénymikroszkóp alatt is 

tanulmányoztuk (4.3.2.2 ábra). 

a b C 

e d 
a) DBBS és b) mentől szobahőmérsékleten; 1:1 arányú keverékük c) 63 °C, d) 68 °C és e) 113 °C-on. 

4.3.2.2 ábra A mentol-DBBS reakciója fénymikroszkóp alatt 

A mentől 32 °C körül megolvad és ebben az olvadékban 60 °C fölött indul meg a 

komplexképződés. A komplex 90 °C körül kikristályosodik, majd 113 °C fölött megolvad. 

4.3.3 Reszolválás komplexképzést követő szuperkritikus extrakcióvalS15 S43 

Egy másik, a diasztereomer sóképzéses reszolválás során már bevált, alternatív 

reszolválási módszert is kipróbáltunk, mikoris a reszolválás során keletkezett fázisokat 

szuperkritikus extrakcióval választottuk szét. A kísérleteket a BME Vegyipari Műveletek 

Tanszékén Simándi Béla és Keszei Sándor végezték. 

A minta előkészítése úgy történt, hogy a reszolválandó alkohol hexános oldatába 4:1, 

2:1 illetve 4:3 alkohol:DBBSH20 mólaránynak megfelelő mennyiségű reszolválóágenst 
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szuszpendáltunk. Az oldathoz, inert hordozóként, adott tömegű perfiltet adtunk (a nagyobb 

fajlagos felület miatt, valamint azért, hogy a DBBS el ne tömje az extraktorban lévő 

fémszűrőt). A reakcióidő letelte után az «-hexánt lepároltuk a szuszpenzióról, és a szilárd 

maradékot szuperkritikus állapotú széndioxiddal extraháltuk (ld. 4.3.3.1 ábra). Néhány 

sikeres kísérlet eredményét a 43.3.1 táblázat foglalja össze. A táblázatban az extraktumban 

nagyobb arányban jelenlévő enantiomer szerkezeti képletét tüntettük fel. 

racém-transz- 2-jód- DBBS 
ciklohexanol 

raffinátum 

4.3.3.1 ábra transz-2-jód-ciklohexanol szuperkritikus extrakciós reszolválása 

DBBS-sel 

A mentol-DBBS komplexből a komplexált mentől teljes egészében eltávozik, ha a 

szuperkritikus extrakció hőmérsékletét 32 °C-ról 50 °C fölé emeljük 200 bar nyomáson, 

azonban ezen a hőmérsékleten a szeparátorból a mentől elszublimál, ez készülék probléma, 

ugyanis a szeparátor hőmérsékletét nem lehetett külön állítani, csak a nyomását. Ez a 

megfigyelés azt mutatja, hogy ebben az esetben a nagy nyomás hatására csökken a komplexek 

stabilitása, és a hőmérséklet megfelelő változtatásával a komplexált enantiomerkeverék is 

kinyerhető a DBBS mellől. A stabilabb ciklohexán gyűrűs alkoholt tartalmazó komplexeknél 

a szuperkritikus extrakcióval elért enantiomer elválasztás az oldószeres extrakciós elválasztás 

hatékonyságával egyezik meg. 
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4.3.3.1 táblázat Alkoholok szuperkritikus állapotú széndioxiddal végrehajtott 

4.4 0,0'-dibenzoil-borkősav-alkohol komplexek egykristály-

röntgendiffrakciós szerkezetvizsgálata838 

Minden reszolválási elegyből megkíséreltünk szerkezetvizsgálati célra egykristályokat 

növeszteni, de ez csak néhány esetben sikerült. Ekkor az egykristályok kiválása mindig a 

preparatív reszolválások anyalúgjából indult meg, de enantiomer összetétele szerint mindig a 

szilárd fázisban lévő komplexnek felelt meg. Néhány akirális alkohollal képzett komplex 

szerkezetét is vizsgáltuk. 

Az egykristály-röntgendiflfakciós szerkezetvizsgálatok eredménye szerint a DBBS 

különböző alkoholokkal alkotott molekulakomplexei három osztályba sorolhatók. Az A 

osztályba sorolható komplexekben a királis alkohol/DBBS mólarány 1:1 (4.4.1 ábra), amíg a 

B osztályban az akirális alkohol/DBBS arány 2:1 (4.4.2 ábra). A C osztályba a racém alkohol 

- racém DBBS molekulakomplexe tartozik, amelyre példa a racém 2-metil-ciklohexanol és a 

racém DBBS komplexe 2:1 alkohol/DBBS sztöchiometriával (4.4.3 ábra). A három 

osztálynak teljesen eltérő kristályszerkezete van, de az egy osztályon belüli intermolekuláris 

kapcsolatok nagyon hasonlóak, vagy sok esetben az egy osztályon belüli kristályok 

izostruktúrális szerkezetet alkotnak. 

Egyik vizsgált komplex sem tartalmazott vizet vagy más vendégmolekulát a megfelelő 

alkoholtól eltekintve. 

58. / 32 oldal 



KOZMA DÁVID: DIASZTEREOMER- ÉS ENANTIOMERKEVERÉKEK ELŐÁLLÍTÁSA ÉS ELVÁLASZTÁSA 

Az A osztályba tartozó komplexek a királis alkoholoknak csak az egyik 

sztereoizomerjét tartalmazzák, annak ellenére, hogy racém alkoholból lettek előállítva. 

A C osztály esetében a kiindulási alkohol cisz- és transz keverék volt, míg a kristály csak a 
87,88 transz izomert tartalmazta. Mindhárom szerkezet hidrogénkötés donorban szegény. ' 

< 
> V<? 

c r í 
s... V 

d y r M : 7 > 

4.4.1 ábra Az A osztályba tartozó mentol-DBBS komplex kristályszerkezete 

i i 
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4.4.2 ábra A B osztályba tartozó transz-4-metil-ciklohexanol-DBBS 

molekulakomplex szerkezete 
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4.4.3 ábra A C osztályba tartozó racém transz-2-metil-ciklohexanol-racém 
DBBS molekulakomplex szerkezete 

Az A osztály szerkezetében (4.4.1 ábra) a borkősav rész fej-láb kapcsolással 

hidrogénkötésű láncokat alkot, az egyik savas hidrogént a fej és az oxo-oxigént a láb részen 

felhasználva. Ezek a borkősav láncok további hidrogénhidas keresztkötésű kapcsolásban 

vannak az alkohol komponens hidroxilcsoportja által. 

A kialakult rácsszerkezet megfelelő méretű hidrofób üregeket tartalmaz, amelyet a 

vendég alkohol hidrofób alkilláncai töltenek ki. Ahogy változik a vendég alkohol molekula 

mérete, úgy változik, bizonyos határok között, a gazdamolekula kristályrácsának mérete is. Ez 

jól megmutatható a mentől—> 4-metil-2-pentanol—» 2-pentanol sorozaton. Ezek a molekulák 

szigorúan izostruktúrális kristályszerkezetet alkotnak (4.4.4 ábra). 
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4.4.4 ábra A mentől, 2-pentanol, 4-metil-2-pentanol és racém transz-2-metil-

ciklohexanol DBBS komplexeinek szuperpozíciója 

Ezt tükrözi vissza a cellaállandók szisztematikus változása is. A mentőitől a 2-

pentanolig a mentől molekula egyes részleteit tüntetjük el, amely a c tengely irányába eső 

cellaállandó csökkenését okozza. 

Ha összehasonlítjuk a 4-metil-2-pentanol és a 2-pentanol komplexek kristályszerkezetét, 

akkor egy kis változást észlelhetünk mind az a mind a b kristálytengely irányába, mivel az 

elhagyott metilcsoport párhuzamos az ab egységcella átlójával. 

A B típusú szerkezetekben (4.4.2 ábra) a borkősav részegységek nem kapcsolódnak 

közvetlenül egymáshoz hidrogénkötéssel, hanem mindig csak az alkoholos hidroxilcsoport 

közvetítésével. 

Az A és a B osztályba tartozó molekulák kristályai nem alkotnak azonos 

kristályszerkezetet, azonban a hidrofób üregek falait mindkét esetben a szomszédos DBBS 

molekulák párhuzamosan orientált benzoilcsoportjai hozzák létre. Ez utóbbi tény rávilágít 

arra, hogy a DBBS-sel ellentétben a BS miért nem képez komplexet. A BS ugyanis nem 

képes nagy hidrofób felületet nyújtani a szükséges hidrofób rácsüreg számára, míg a hidrofób 

benzoilcsoportok miatt, a DBBS éppen megfelelő erre a célra 

A B osztály két kisebb alosztályra osztható, amelyek csak a monoklin szög értékének 

változásásban különböznek, a ciklohexanol és 1-metil-ciklohexanol vegyületek sorrendjében 

nő, és a 4-metil-ciklohexanol esetében kisebb. 
OQ 

Sybyl programot használva molekulamodellező eljárással megpróbáltuk modellezni 

azt, hogy az akirális alkoholok miért nem képesek felvenni azt a szerkezetet, amelyet a királis 

alkoholok képeznek a DBBS-sel, és fordítva. A modellezés alapján úgy feltételezzük, hogy a 

királis alkoholok vagy túl nagyok, hogy beleilleszkedjenek a B osztály rácsüregébe, vagy 
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energetikailag kedvezőtlen konformációt kellene felvenniük ahhoz, hogy beleférjenek a B 

típusú gazdarácsba. 

A B osztályba tartozó kristályrács 2:1 alkohol:DBBS sztöchiometriával alacsonyabb 

energiájú környezetet biztosít a komplexeknek a sokkal kedvezőbb donor-akceptor arány 

miatt és jobb lehetőséget nyújt a molekulák hidrofób és hidrofil részeinek elkülönüléséhez. 

Ezt a típusú kristályszerkezetet a királis alkoholok nem tudják létrehozni, ezért más 

szerkezetű kristályrácsot építenek fel, amelyben képesek zárt szerkezetet létrehozni más 

sztöchiometriával. Az A osztályba sorolható (1:1) komplexeknél az izostrukturalitás foka 

általában sokkal nagyobb, mint a B típusú komplexeknél. Ez visszatükröződik a megfelelő 

cellaállandók sokkal nagyobb hasonlóságából is. 

A komplexált molekulákat egymásra helyeztük úgy, hogy a DBBS-t használtuk 

templátnak (4.4.5 ábra). Ez lehetőséget nyújt arra, hogy megvizsgáljuk a vendégmolekula 

elhelyezkedésének részleteit a gazda molekulához képest. 

A DBBS molekulák szuperpozíciója a vendégmolekulák következetes szuperpozícióját 

is eredményezi. Ez azt mutatja, hogy a DBBS közel azonos konformációt vesz fel a vizsgált 

kristályszerkezetek mindegyikében. A vendégmolekulák közel hasonló pozíciót töltenek be az 

A és a B osztályon belül, de a két osztály tagjai a DBBS karbonilcsoport oxigénatomjának két 

különböző magányos elektronpáljához kapcsolódnak és két jól meghatározható térrészt 

töltenek be. A komplexek szerkezetének szuperpozícióját a 4.4.5 ábra mutatja be (sárga 

színnel az akirális, lila színnel a királis alkoholt tartalmazó komplexeket jelöltük). 

4.4.5 ábra Az összes általunk meghatározott alkohol-DBBS komplex 
kristályszerkezetének szuperpozíciója 
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4.4.6 ábra A mentől, transz-2-metil- és 2-etil-ciklohexanol-DBBS komplexek 

szuperpozíciója 

Az A osztály két alosztályra osztható. A mentől (4-20) által felvett konformációt 

utánozza a 2-pentanol (4-3) és a 4-metil-2-pentanol (4-4), míg az optikailag tiszta transz-2-

metil- és 2-etil-ciklohexanol ciklohexán gyűrűi elcsúsztak a mentolhoz képest (4.4.6 ábra). 

Ez utóbbi két molekula esetében a hidroxilcsoporthoz kapcsolódó szénatom konfigurációja S 

míg a 4-20 és 4-3, 4-4 esetében R. 

Érdemes megjegyezni, hogy a racém mentől- racém DBBS komplex nem kristályosodik 

centroszimmetrikus tércsopotban (4.4.3 ábra). A C2 tércsoport aszimmetrikus egysége a 

molekulák mindkét enantiomer párját tartalmazza egy lokális szimmetriacentrum két oldalán 

elrendezve. Ebben a rácsban a racém /nmsz-2-metil-ciklohexanol elhelyezkedése hasonló a 

mentoléhoz, míg az optikailag tiszta /r<msz-2-metil-ciklohexanolt tartalmazó komplex az A 

osztály második alosztályába tartozik (4.4.4 ábra). A főbb kristálytani adatokat a 4.4.1 

táblázat foglalja össze. 
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4.4.1 táblázat Az alkohol-DBBS komplexek egykristály-röntgendiffrakciós 
szerkezetmeghatározás adatainak összefoglaló táblázata 

Vendég 
molekula 

Téncsop. a 
(A) 

b 
(A) 

c 
(A) 

P Z 7? H7? GOF Do* 

kiralis alkohol-DBBS (omplexek 
(VW5R}-

mentol 
P2, 8,738(3) 12,753(5) 13,036(5) 97,66(3) 2 0,0403 0,1254 1,021 1,187 

(/?>2-pentanol P2i 8523(2) 12362(5) 11,699(3) 100,93(2) 2 0,0422 0,1569 1,010 1225 

(/?}4-metik2-

pentanol 
F2, 8638(1) 12322(1) 11,694(1) 99,844(11) 2 0.0489 0,1949 0,957 1227 

2-metik 

dklohexanol 

P2, 8643(4) 11,821(4) 12307(6) 10228(4) 2 ((0654 02517 0,979 1257 

transz-(\S2Sy 

2-etfl-

ciklohexanol 

P2, 87651(17) 11,979(3) 12,643(1) 101,085(12) 2 0,0493 0,1827 0,995 1240 

akiralis alkohol- DBBS komplexek 

dklohexanol C2 18917(4) 6,455(8) 15,063(4) 122909(12) 2 0.0786 03067 1,055 1201 

transzA-w&ür 

cydohexanol 
a 18793(4) 6,463(4) 14,456(4) 109,047(18) 2 0,0595 02284 1,032 1,174 

1-metfl-

dklohexanol 
C2 18446(2) 7,626(3) 142980(17) 123,637(7) 2 0,0710 02971 1,025 1,164 

racém alkohol-racém DE IBS komplex 

racém transz-2-

metik 

dklohexanol 

a 14/338(12) 9,911(7) 23,027(4) 101,03(3) 4 0,0535 02187 0,946 1,188 

A kristályrendszer monoklin mindegyik esetben. 
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4.5 O,O'-dibenzoiI-borkősav-alkohol komplexek termikus vizsgálataS26S28S33 

Minden reszolválási kísérlet során keletkezett szilárd fázist termoanalitikai 

módszerekkel is vizsgáltunk. A 4.5.1 ábra a mentol-DBBS komplex DSC felvételét mutatja. 

A felvételből (4.5.1 ábra) jól látható, hogy annak ellenére, hogy a reszolválóágenst 

monohidrát formában reagáltattuk, víz egyáltalán nincs jelen a komplexben. Ezt lehetett 

megfigyelni a többi komplex esetében is. 

Termogravimetriával tovább vizsgáltuk a DBBS hidrátját. Az monohidrát esetén 4,78 % 

vizet kellene tartalmazzon, de ekkora víztartalmat soha sem sikerült meghatároznunk. A 

kereskedelmi monohidrát 4,48 % vizet tartalmaz, amely például vizes átkristályosításkor 

veszít víztartalmából (4,02 %). 

A DBBS komplexképző hajlamát akirális alkoholokkal és akirális fenolokkal is 

vizsgáltuk. Rövid szénatomszámú alkoholok, mint metanol és etanol nem tudnak 

komplexálódni, de a hosszabb szénláncúak (/zo-propilalkohol, fe/r-butilalkohol) vagy a 

ciklohexán gyűrűsök, pl. ciklohexanol vagy egyéb alkil-ciklohexanolok jól komplexálódnak. 

0 50 100 150 200 250 

Hőmérséklet (°C) 

4.5.1 ábra A mentol-DBBS komplex DSC görbéje 

4-30 4-31 4-33 4-34 4-35 
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Az öt fenol típusú vegyület közül, csak a fenol (4-34) és a 2-metil-fenol (4-35) alkalmas 

vendégmolekulának. Érdekes, hogy a timol (4-31) amelynek hidrogénezett származéka a jól 

komplexálodó mentől, nem képzett komplexet. 

A nagyszámú termikus vizsgálat, összhangban a röntgen-diffrakciós 

szerkezetmeghatározásokkal arra az eredményre vezetett, hogy a DBBS legalább három 

egymástól lényegesen eltérő típusú komplexképzésére képes. 

• Királis alkoholokkal és vízzel 1:1 arányú komplexet képez, melyek közül mindig a 

vízzel képzett a leggyengébb. 

• Akirális alkoholokból kettő kötődik meg egy DBBS molekulával. 

• Fenolok esetén egy fenol molekula képez komplexet két DBBS-sel. 

4.6 Komplexképzéses reszolválás 0,0'-<//-p-toluoil-borkősawalS36 

A DPTBS csak két, a fenilcsoporton elhelyezkedő metilcsoportban különbözik a DBBS-től.90 

Felmerül a kérdés, hogy ez a kicsiny szerkezeti különbség befolyásolja-e a 

komplexképződést. Kiválasztottunk három racemátot, mellyel a DBBS jó reszolválást adott és 

ezekkel kíséreltük meg a reszolválást hexános szuszpenzióban. Az eredményeket a 4.6.1 

táblázat foglalja össze. 

4.6.1 táblázat DPTBS-sel végzett komplexálási kísérletek összefoglalása 

(összehasonlításképpen a DBBS-sel elért eredményeket is 

feltüntettük). 

Racemát Szilárd fázis 

T 
(%) 

ee 
(%) 

S 

4-20 
DPTBS 16 0,47 0,00076 

DBBS 45 83 0,37 

4-4 
DPTBS 0 0 0 

DBBS 91 28 0,25 

4-13 
DPTBS 114 22 0,25 

DBBS 71 61 0,43 

Csak 4-13-mal volt érdemleges komplexképződés és sikerül reszolválást is elérni, de 

hatékonysága kisebb volt a DBBS-sel elértnél. A komplex termikus analízise kimutatta, hogy 

a komplexbe víz is beépül. Ez érdekes, mert mind a DPTBS, mind a DBBS monohidrát 
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formában került felhasználásra, de a DBBS-sel képzett komplexekben sohasem tudtunk 

kristályvizet megfigyelni. 

A rendkívül kis szerkezeti különbség ellenére két savnak jelentősen eltérő 

komplexképző tulajdonsága van. A DPTBS kevésbé erős kötést tud létrehozni, ami a kisebb 

hatékonyságú reszolválásban is megmutatkozik. 
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5 Enantiomertisztítás királis segédanyag nélkülS2° 

A királis vegyületek előállítását célzó kémiai eljárások, mint a reszolválás és az 

aszimmetrikus szintézis első lépésben rendszerint nem a tiszta enantiomerhez, hanem 

enantiomerek keverékéhez vezetnek, amelyekből az optikailag tiszta enantiomer előállítása 

mind laboratóriumi, mind ipari méretben egyaránt fontos feladat. 

Az enantiomerkeverékekből a tiszta enantiomerek kinyerhetőek valamely királis ágens 

segítségével, azaz újrareszolválással, vagy királis segédanyag nélküli enantiomertisztítással 

(enantiomeric enrichment), amely sokszor a legegyszerűbb út a tiszta enantiomerek 

előállítására. Az enantiomertisztítás történhet segédanyag nélkül, vagy valamely akirális 

reagenssel való (részleges vagy teljes) származékképzéssel. A származékképzést, amennyiben 

lehetséges, célszerű sóképzéssel megvalósítani, mivel az enantiomerek visszanyerése a sóból 

lényegesen egyszerűbb, mint például egy kovalens vegyületből. Amennyiben a nem racém 

enantiomerkeverék két fázis közötti megoszlatását idézzük elő, úgy eltérő összetételű 

enantiomerkeverékekhez juthatunk. Legkedvezőbb esetben a tiszta enantiomer és a racém 

hányad két különböző fázisba kerül. 

Az enantiomertisztítás legáltalánosabban alkalmazott módja a frakcionált kristályosítás, 

de számos alternatív enantiomer elválasztási technika alkalmazása is lehetséges, melyek 

egyéb fázisátmeneteken alapulnak. A módszereket zömében csoportunk dolgozta ki, az 5.1 

táblázatban foglaltuk őket össze. 

5.1 táblázat Lehetséges fázisegyensúlyok a királis segédanyag nélküli 

enantiomertisztítás során 

1. fázis 2. fázis Elválasztás módja 

szilárd 
folyadék 

(olvadék) 
kristályosítás olvadékból91 

szilárd 
folyadék 

(oldat) 
kristályosítás oldószerből92'93 

szilárd gőz szublimálás94"95 

folyadék gőz desztilláció%,SRi7 

folyadék folyadék extrakció96 

szilárd szilárd flotálásSb'S4ü 

Aíz alternatív megoldásoknak számos technológiai és technikai előnye lehet a 

frakcionált kristályosítással szemben, amelyek közül egyik legfontosabb az oldószer 
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mennyiségének csökkentése vagy teljes elhagyása. Ez nemcsak anyagköltség csökkentést 

eredményez, hanem kiküszöbölheti az oldószer okozta környezeti problémákat is. 

Az Enantiomer című folyóirat felkérésére egy rövid összefoglalót írtunk a témáról."0 

Ebben bevezettük az enantiomer elválasztások jellemzésére az EEE (Efficiency of the 

Enantiomeric Enrichment) mérőszámot. Az EEE mérőszám megadja az enantiomer tartalom 

dúsulását a kiindulási enantiomerkeverék enantiomer tartalmához viszonyítva (5.1 egyenlet). 

ee r 
EEE = - j - 5.1 egyenlet 

<?e0 
ahol: eee az enantiomer felesleg a dúsult fázisban [%] 

eea az enantiomer felesleg a kiindulási enantiomerkeverékben [%] 

r a dúsult és a kiindulási fázis aránya [%]. 

Az EEE értéket csak a dúsult fázisra lehet számítani (ee0<eee), így értelmezési 

tartománya 0-tól 100-ig teijed. Például EEE = 90 azt jelenti, hogy a kiindulási 

enantiomerkeverék enantiomer feleslegének 90 %-a átment a dúsult fázisba. 

Jelen dolgozatban két új enantiomertisztítási módszert ismertetünk (5.1 és 5.2 fejezet), 

valamint összehasonlítjuk az enantiomertisztítási módszereket az MA példáján (5.3 fejezet). 

5.1 Enantiomerkeverékek dúsítása a racemát és az enantiomerek 

sűrűségkülönbsége alapjánS6'S40 

Molekulavegyület-képző enantiomerkeverékek esetén a racemát és a tiszta 

enantiomerek sűrűsége sokszor eltérő, ezért elvileg ezen különbség alapján is elválaszthatóak. 

Kristályok sűrűségét szokás úgy is meghatározni, hogy két eltérő sűrűségű inert oldószer 

keverési arányát addig változtatjuk, amig a kristályszemcse lebegni kezd. Ez adta az ötletet, 

hogy a racemát és az enantiomer sűrűsége közé eső sűrűségű oldószerrel megkíséreljük az 

enantiomer elválasztását. A megfelelő inert, egymással elegyedő és nagy sűrűségkülönbségű 

oldószerként klór-benzolt (d = 1,106 g/ml) és bróm-benzolt (d = 1,495 g/ml) használtunk. 

Néhány ilyen kísérlet eredményét az 5.1.1 táblázat mutatja be. 
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5.1.1 táblázat Enantiomer dúsítás a sűrűségkülönbség kihasználásával 

eeQ 

(%) 

Felül 

kristály 

ee0 

(%) 

úszó 

os fázis 

T 
(%) 

Leülc 

kristály 

ee 
(%) 

ipedő 

os fázis 

T 
(%) 

EEE 

FEA-

hidrögén 

fumarát 

50 45 64 61 34 41,5 FEA-

hidrögén 

fumarát 
70 57 48 75 50 53,6 

aminodiol 50 90 44 13 55 79,2 

A táblázatban összefoglalt adatok mutatják, hogy tényleg lehetséges ily módon 

enantiomer elválasztást elérni. Az l-(4-nitrofenil)-2-amino-l,3-propándiol (aminodiol) esetén 

nagy EEE értéket kaptunk. Az űr-fenil-etilamin-hidrogénfumarát esetén kisebb az elválasztás 

hatékonysága. Érdekes, hogy ezen esetben az enantiomer dúsulás az alsó fázisban következett 

be, tehát a racemátnak kisebb a sűrűsége, mint az enantiomernek, ami ritka, mert az ellentétes 

abszolút konfigurációjú enantiomerek egymást kiegészítve rendszerint szorosabban tudnak a 

kristályban elrendeződni, ami az enantiomernél nagyobb sűrűséggel jár együtt.102 

OH OH 

klórbenzol 

brómbenzol 

(R,R)-aminodiol » (S,S)-aminodiol 
ee = 50 % 

OH OH 

(R,R)-aminodiol > » (S,S)-aminodiol 
ee = 90 % 

OH OH OH OH 

(R,R)-aminodiol > (S,S)-aminodiol 
ee = 13 % 

felül úszó 
kristályos fázis 

leülepedő 
kristályos fázis 

5.1.1 ábra A sűrűségkülönbségen alapuló enantiomer tisztítás vázlata 

Teljes elválasztást egyik esetben sem sikerült elérni, ami azt mutatja, hogy még a 

finoman elporított kristályok is mindig az enantiomer és a racemát kristályainak az 

aggregátumai. A részecskeméret csökkentésével elvileg javítani lehetne az elválasztás 

hatékonyságát, de ennek az szab határt, hogy a részecskeméret csökkenésével négyzetesen nő 

az elválasztási idő. Az elválasztás nagy léptékben sokkal könnyebben végrehajtható, mint 

laboratóriumi méretben, az alkalmazott oldószer szűréssel visszanyerhető, és újból 
Iái ""G^jj ^ 
V 4y 
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felhasználható, ezért ez az új módszer alkalmas környezetbarát, ipari eljárások 

megvalósítására. 

5.2 Enantiomertisztítás részleges sóképzést követő desztillációvalS9S29S32 

A folyékony enantiomerkeverékek a hagyományos kristályosításon alapuló enantiomer 

elválasztásra alkalmatlanok. A folyadékok tisztítására rendszerint alkalmazott desztilláció 

pedig nem alkalmas enantiomer elválasztásra, mert enantiomerkeverékek egyszerű 

desztilláció során gyakorlatilag nem változtatják enantiomer összetételüket. Folyékony 

halmazállapotú anyagok esetén tehát először valamely akirális reagenssel szilárd származékot, 

legtöbbször sót szoktak képezni és ezt tisztítják frakcionált kristályosítással. Felmerül a 

kérdés, hogy szükség van-e ekvivalens mennyiségű akirális adalékra, vagy elegendő 

kevesebb, célszerűen az optikailag tiszta- vagy a racém-hányaddal ekvivalens mennyiségű 

akirális só képzése is az elválasztáshoz. Ilyen esetekben a részlegesen képzett szilárd 

halmazállapotú akirális só mellől a folyékony halmazállapotú reagálatlan enantiomert 

célszerűen desztillációval lehet elválasztani. Ilyen jellegű elválasztási kísérletet -tudomásunk 

szerint- még nem írtak le, ezért célul tűztük ki ilyen folyamatok részletesebb vizsgálatát. 

Modellvegyületként FEA-t használtunk, akirális sóképzőként pedig akirális dikarbonsavakat. 

S R R « 1 
desztillátum f ^ i R.S-só 

maradék 

5.2.1 ábra Részleges sóképzést követő desztillációs enantiomer tisztítás 

vázlata 

Négy akirális dikarbonsav alkalmazásával bebizonyítottuk, hogy ily módon valóban 

lehet enantiomer elválasztást elérni és az eljárás előnye lehet, hogy a frakcionált 

kristályosításhoz képest lényegesen kisebb a készülék térfogat igénye. 

Később részletesebben is vizsgáltuk a folyamatot, összehasonlítva a részleges sóképzést 

követő desztillációs módszert, a részleges sóképzést követő extrakciós és a teljes sóképzést 

követő frakcionált kristályosításos módszerrel. Részleges sóképzést követő desztilláció során, 

fúmársav és ftálsav alkalmazásakor mindig a desztillátumban kaptunk enantiomer dúsulást, 

míg maionsav és oxálsav esetén, az hogy melyik fázisban kaptunk enantiomer dúsulást, 
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függött a kiindulási enantiomer összetételtől (5.2.1 ábra). Amikor a részleges sóképzés után 

nem desztillációt (szilárd-folyadék fáziselválasztás) alkalmaztunk, hanem két nem elegyedő 

oldószer pár közötti megoszlatással (víz-diklór-metán) próbáltunk enantiomer elválasztást 

elérni, azt tapasztaltuk, hogy a vizes fázisba került akirális só és a szerves fázisban oldódott 

szabad bázis enantiomer összetétele gyakorlatilag megegyezik. Úgy tűnik, hogy a folyadék-

folyadék fázisátmenet ebben az esetben nem elegendő, legalább az egyik fázisnak lehetőleg 

szilárdnak kell lenni a sikeres enantiomer elválasztáshoz. 

A teljes sóképzést követő frakcionált kristályosítás során elért enantiomer dúsulási 

eredmények azonban nagymértékben hasonlítottak a részleges sóképzést követő 

desztillációval elért értékekhez (5.2.2 ábra). 

A desztillációs és átkristályosítási görbék lefütása nagyon hasonló, az összetartozó 

enantiomertisztaság görbe párok (desztillátum- desztillációs maradék, kivált só-anyalúgban 

maradt só) metszéspontja egymáshoz rendkívül közel esik. Ezen hasonlóság arra enged 

következtetni, hogy a részleges sóképzést követő desztillációval történő enantiomer dúsítás 

során a szilárd fázisnak van döntő szerepe, melynek összetétele gyakorlatilag megegyezik a 

frakcionált kristályosításos elválasztás szilárd fázisáéval. 
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Ezen következtetés ellenőrzésére kimértük a négy semleges só oldhatósági 

háromszögdiagramját etanolban, ill. oxálsavas só esetén vízben (5.2.3 ábra). 

ftalát malonát 
EtOH EtOH 

fumarát oxalát 

5.2.3 ábra Az a-fenil-etilamin dikarbonsavakkal képzett sóinak oldhatósági 
háromszögdiagramjai 
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Az oldhatósági háromszögdiagramokból látszik, hogy mind a négy só racém 

molekulavegyületet képez. Az oxál- és maionsavas valamint a fumár- és ftálsavas sók 

háromszögdiagramja nagyon hasonló, megegyezően az enantiomer dúsítási kísérleteknél 

tapasztaltakkal. 

Az oxálsavas só eutónikus pontja x = 0,82, a maionsavas sóé x = 0,85 móltörtnél 

figyelhető meg. Ezen savak enantiomer dúsításhoz való alkalmazásakor a desztillátum és a 

maradék görbék, ill. a kivált kristály és anyalúg enantiomertisztaság görbék metszéspontja az 

eutónikus pont összetételének megfelelő helyen található. 

A fumár és ftálsavas sók is molekulavegyület-képzőek, csak ezek esetében a racemát 

sokkal stabilabb elrendeződést vesz fel, uralja gyakorlatilag a teljes koncentráció tartományt, 

eutónikus pont gyakorlatilag nem figyelhető meg. Nyilvánvalóan itt is létezni kell eutónikus 

pontnak, azonban, ezen esetekben ez 0,99-1 -es móltört között helyezkedik el, amely 

tartomány szűkebb, mint az enantiomer dúsítási kísérleteink hibája. Belátható, hogy a 

gyakorlati elválasztások esetében az ilyen jellegű viselkedés a kívánatos, mert az, hogy 

melyik fázisban kapjuk a dúsulást, gyakorlatilag nem függvénye a kiindulási összetételnek. 

A frakcionált kristályosítást konglomerátum-képző enantiomerek ill. akirális sóik esetén 

célszerű választani, mivel ekkor a kikristályosodó szilárd fázisban lehet enantiomer dúsulást 

elérni. Részleges sóképzést követő desztillációs enantiomer elválasztás molekulavegyület-

képző akirális sók esetében kedvező, mivel ekkor desztillációs maradékként kapjuk a 

molekulavegyületet, azaz a racemátot, míg a desztillátum nemcsak enantiomer tartalmában 

dúsul, hanem a kiindulási enantiomerkeverék egyéb esetleges szennyező összetevőitől is 

mentesül. Amennyiben az akirális ágenssel képzett molekulavegyület nem kellően stabil 

(eutónikus összetétel x = 0,5 - 0,95), akkor célszerű az akirális ágens változtatásával stabil 

molekulavegyületet létrehozni. 

5.3 Enantiomertisztítási módszerek összehasonlítása az /V-metamfetamin 

példájánS34 

A legtöbb enantiomer elválasztással foglalkozó cikkben nem vagy csak röviden térnek 

ki az enantiomertisztításra. Célul tűztük ki, hogy egy jól ismert enantiomerkeverék példáján, 

kipróbáljuk az elvileg számba jöhető összes preparatív léptékű enantiomertisztítási 

eljárásokat, annak érdekében, hogy összehasonlítható eredményeket kapjunk. 

Modellvegyületként a MA-t választottuk. 

A MA legegyszerűbb akirális sója a sósavas só, mely egy jól tanulmányozott 

konglomerátum-képző vegyület. Ekvivalens mennyiségű sósavval képzett só esetén a 
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frakcionált kristályosítást és a szublimációt vizsgáltuk. Az 5.1 fejezetben ismertetett 

fajsúlykülönbségen alapuló elválasztás itt nem jöhetett szóba. A rendszer valóban 

konglomerátumtól elvárhatóan viselkedett, frakcionált kristályosításkor a dúsulást a kivált 

sónál, míg szublimációnál a maradékban kaptuk. Bár a szublimációs maradék 

enantiomertisztasága volt a legmagasabb, a frakcionált kristályosítás volt a hatékonyabb. 

A nem ekvivalens akirális ágenssel végzett kísérleteket kétféle módon viteleztük ki. B 

keverék esetén az akirális ágens (HC1) az enantiomer felesleggel, míg C keverék esetén a 

racém hányaddal volt ekvivalens. Az elválasztásra kristályosítást, desztillációt, extrakciót és 

eddig még le nem írt részleges sóképzést követő vízgőz desztillációs módszert próbáltuk ki. 

Az enantiomer dúsulást minden esetben abban a fázisban kaptuk, amelybe a sósavas só 

átkerült, ami összhangban van a só konglomerátum-képző jellegével. C keverékben mindig 

magasabb enantiomertisztaságúra dúsult fel a MA.HCI, de mivel az akirális sóképző nem volt 

elegendő mennyiségben, így a nagy enantiomertisztasággal elkülönült fázisokba a magasabb 

enantiomertisztaság ellenére kevés anyag jutott. A B keverék esetén volt legnagyobb az 

enantiomer elválasztás hatékonysága. Az, hogy a vízgőzdesztillációs és extrakciós kísérlet 

hatékonysága kicsi volt, az itt is megmutatta, hogy szilárd fázis jelenlétében hatékonyabb 

enantiomer dúsulásra számíthatunk. 

Figyelemre méltó, hogy a nem ekvivalens mennyiségű akirális ágens alkalmazásakor 

lényegesen hatékonyabb volt az enantiomer dúsulás, mint az ekvivalens mennyiségű akirális 

ágens alkalmazásakor. Ez alapján levonhatjuk azt a következtetést, hogy a nem ekvivalens 

mennyiségű akirális ágens alkalmazásának nemcsak az az előnye, hogy kevesebb reagens 

szükséges, de még ennél is fontosabb, hogy hatékonyabb enantiomer dúsulás várható. 
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5.3.1 táblázat N-metamfetamin enantiomerkeverékek enantiomer tisztítása 
ekvivalens mennyiségű akirális ágenssel vagy anélkül 

Módszer ee 
(%) 

k (ee„: 73,3 %) 
T 

(%) 
EEE 

A 
ee 

(%) 

keverék (ee„: 73,3 
T 

(%) 

%) 
EEE 

DESZTILLÁCIÓ 
maradék 
desztillátum 

7 3 , 3 
7 3 , 3 

2 5 , 0 
7 0 , 0 

- - -

EXTRAKCIÓ 
szerves fázis 
vizes fázis 

7 3 , 3 
7 3 , 3 

6 0 , 0 
3 5 , 0 

- - -

KRISTÁLYOSÍTÁS 
kivált anyag 
anyalúg 

- - 9 3 , 6 
6 0 , 3 

4 1 , 5 
5 7 , 5 

5 3 , 0 

SZUBLIMÁLÁS 
szublimátum 
maradék 

- - 7 1 , 2 
9 7 , 9 

8 9 , 0 
10 ,5 14 ,0 

5.3.2 táblázat N-metamfetamin enantiomerkeverékek enantiomer tisztítása nem 
ekvivalens mennyiségű akirális ágenssel vagy anélkül 

B keverék (ee„: 76,1 %) C keverék {ee„: 84,6 %) 
Módszer ee 

(%) 
T 

(%) 
EEE ee 

(%) 
T 

(%) 
EEE 

KRISTÁLYOSÍTÁS 
kivált anyag 9 4 . 9 8 0 , 0 9 9 , 8 9 7 , 9 2 0 , 0 2 3 , 1 
anyalúg 0 ,9* 20 ,0* - 81 ,2* 8 0 , 0 -

DESZTILLÁCIÓ 
maradék 9 2 , 1 7 8 , 5 9 5 , 0 9 5 , 6 2 0 , 0 2 2 , 6 
desztillátum 0 , 0 19 ,5 - 8 1 , 7 7 7 , 5 -

VÍZGŐZ 
DESZTILLÁCIÓ 
maradék 76 ,3* 82 ,5* 8 2 , 7 90 ,3* 20 ,0* 2 1 , 3 
desztillátum 7 5 , 3 17 ,5 - 8 2 , 7 8 0 . 0 -

EXTRAKCIÓ 
szerves fázis 7 3 . 8 18 ,0 - 8 3 , 1 8 1 , 0 -

vizes fázis 7 6 , 6 * 82 ,0* 8 2 , 5 90 ,6* 19,0* 2 0 , 3 

*Az enantiomer egyensúlyból számítva 
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6 Enantiomerek vizsgálata 

6.1 Az ar-fenil-etilamin akirális dikarbonsavakkal képzett sóinak vizsgálata 

A FEA a leggyakrabban alkalmazott szintetikus bázikus reszolválóágens, reszolválási 

és enantiomertisztítási kísérleteink gyakori modellvegyülete. Már Ph D. dolgozatomban is 

külön fejezetben foglalkoztam vele. Ott többek között beszámoltam a borostyánkősavas és a 

maleinsavas savanyú só kristályszerkezetéről.SR48 A savanyú sók szerkezetének kutatását 

tovább folytattuk annak reményében, hogy közelebb kerüljünk annak az enantiomerek 

körében mindig érdekes problémának a megválaszolásához, hogy milyen paraméterek 

befolyásolhatják a konglomerátum- illetve molekulavegyület-képződési hajlamot. Ez 

gyakorlati szempontból is fontos kérdés, különösen azért, mert konglomerátum-képző 

racemátok akár királis reszolválóágens nélkül is reszolválhatóak indukált 

kristályosítással.97'98'" 

Az indukált kristályosítási technológia azon alapszik, hogy racém, vagy az egyik 

enantiomerből némi felesleget tartalmazó kiindulási oldatból, az egyik vagy a feleslegben 

lévő enantiomerrel beoltva a rendszert az oltókristállyal megegyező kiralitású kristályok 

kiválása várható.SR59 A módszer jelentős előnye, hogy nem igényel külső királis ágenst, ami 

nemcsak anyagköltség megtakarítást eredményez, de szükségtelenné válik a reszolválóágens 

elválasztásának lépése is, különösen ipari méretekben jól méretnövelhető, automatizálható. A 

módszer korlátja, hogy a kristályosítást viszonylag alacsony termelésnél le kell állítani, 

valamint, hogy csak konglomerátum-képző enantiomerek esetén alkalmazható. 

Amennyiben az ily módon elválasztani kívánt enantiomer nem kristályos, vagy nem 

konglomerátum formájában kristályosodik, érdemes megpróbálni valamely akirális ágenssel 

szilárd, konglomerátum-képző származékot előállítani. 

Statisztikai és krisztallográfiai megfontolások is azt mutatják, hogy a molekulavegyület-

képződési hajlam lényegesen erősebb az enantiomerek között, mint a konglomerátum-képző 

hajlam.10034"35 Ennek szisztematikus vizsgálatához a FEA-t kilenc különböző akirális 

dikarbonsawal reagáltattuk savanyú só képzés céljából (ld. 6.1 táblázat). 
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6.1 táblázat Az a-fenil-etilamin akirális dikarbonsavakkal képzett savanyú sói 
Dikarbonsav (R)-FEA só 

sűrűsége 
(g/ml) 

racém-FEA só 
sűrűsége 

(g/ml) 

(/?)- és racém-FEA 
só IR spektruma 

C O O H 

C O O H 
Semleges só képződött 

COOH < 
C O O H 

1,305 1,320 különböző 

COOH 

COOH 
1,301 1,301 azonos 

COOH 

COOH 
1,271 1,237 különböző 

COOH 

Jl 
HOOC 

1,309 1,256 különböző 

H , C . . C O O H 

COOH 
1,281 1,281 azonos 

COOH 

k ^ / C O O H 
1,228 1,192 különböző 

| COOH 

L COOH 
1,185 1,179 különböző 

1,320 1,317 különböző 

6.1.1 Az a-fenil-etilamin oxálsavas semleges sójaS5 

Míg a hosszabb szénláncú akirális dikarbonsavakkal a savanyú só könnyen képződik, 

több különböző módon megkísérelve sem tudtunk az oxálsawal savanyú sót képezni, mindig 

semleges só képződött, jelentős hőfejlődés mellett. Fiziko-kémiai vizsgálatokat végeztünk 

mind az tiszta enantiomerből mind a racemátból képzett sókon (IR, TG, DSC, oldhatóság 

mérés), melyek bizonyították, hogy a só racém molekulavegyületet képez. A sók olvadási 

fázisdiagramja nem volt megszerkeszthető a termikus bomlás miatt. Az oldhatósági 

háromszögdiagram kimérésével meghatározott eutónikus összetétel (x = 0,83) gyakorlatilag 

megegyezik azzal az összetétellel, amelynél a preparatív enantiomertisztítás során az izomer 

dúsulás megváltozik (lásd 5 fejezet). 

Meghatároztuk egykristály-röntgendiffrakciós technikával mindkét só szerkezetét. Az 

(/?)-or-fenil-etilammonium-oxalát (OARPOX) a C2 tércsoportban kristályosodik [a = 

10,786(1) A, b = 7,4300(6) A, c = 11,4930(7) A, J3= 98,661(6)°; Z = 4; R = 0,060], míg az 
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(R, S)-a-fenil-etilammonium-oxalát (RACPOX) a Pca2| tércsoportban [a = 12,237(4) Á, b = 

6,786(5) A, c = 21,859(4) Á;Z = 4;i? = 0,071]. 

A hidrogénkötések Etter féle101 leírása szerint a két só hidrogénkötés rendszere a 

következő módon irható le: OARPOX [NI = c \ (7) r J (12) R j (5)R^ (8) N2 = R^ (8) c \ 

(12) ]; RACPOX [NI = C^ (14) C^ (12) R^ (5) (8) N2 = R^ (8) R^ (10) c \ (6)]. 

6.1.1 ábra Az (R)-a-fenil-etilammonium-oxalát (a) és (R,S)-a-fenil-
etilammonium-oxalát (b) hidrogénkötéseinek ábrája 

Látható, hogy a hidrogénkötések a két szerkezetben sok hasonlóságot mutatnak (6.1.1 

ábra). A két rövid normál hidrogénkötés és a két hosszabb kettéágazó hidrogénhíd a 

RACPOX szerkezetében erősebb kölcsönhatásokat eredményez, azaz nagyobb stabilitást, 

mint az egy rövid kettéágazó és két hosszabb normál hidrogénhíd az OARPOX szerkezetében. 

A RACPOX szerkezete érdekes példa arra, hogy egy racém molekulavegyület 

kristályosodhat krisztallográfiai szimmetriacentrumot nem tartalmazó kristályrendszerben is. 
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6.1.2 Az a-fenil-etilamin savanyú sóinak vizsgálata53 84 818 

A többi nyolc akirális dikarbonsawal savanyú só képződött. Mindegyik formának 

meghatároztuk sűrűségét, IR spektrumát és mindegyikből megkíséreltünk egykristályokat 

növeszteni a röntgendiffrakciós-szerkezetvizsgálathoz. Mindkét mérési módszer azt jelezte, 

hogy csak a borostyánkősavas és az itakonsavas savanyú só képez konglomerátumot, a többi 

molekulavegyületet. Wallach102 még 1895-ben közölte sejtését, hogy a racém 

molekulavegyületek kristályainak -a két egymást kiegészítő kiralitású enantiomer szorosabb 

elhelyezkedési lehetősége miatt- várhatóan nagyobb a sűrűsége, mint az optikailag tiszta 

formáé. Jacques5 és Brock34 elméleti alapon szintén erre a következtetésre jutottak. Ezzel 

szemben érdekes, hogy az általunk talált hat molekulavegyület esetén ötnél az optikailag tiszta 

forma sűrűsége a nagyobb, és csak a legrövidebb láncú maionsav esetén igaz a Wallach 

szabály. 

A konglomerátum-képződés további bizonyítékául szolgált az is, hogy a 

borostyánkősavas só után az itakonsavas savanyú sónak is megoldottuk az indukált 

kristályosítással történő reszolválását. 

Szerkezetmeghatározásra alkalmas jó minőségű egykristályt sajnos csak a ftálsavas és 

maionsavas molekulavegyületből, valamint az optikailag tiszta itakonsavas sóból tudtunk 

előállítani. 

A racé/w-or-fenil-etilammonium-hidrogénftalát (RACPHP) a P2]/a monoklin 

rendszerben kristályosodik (a = 8,503(3) A, b = 16,748(5) A, c = 10,544(3) A, P = 

104,48(2)°; Z = 4; R = 0,058) míg a racé/w-ör-fenil-etilammonium-hidrogenmalonat 

(RACPHM) a P-l triklin rendszerben kristályosodik (a = 8,768(1) A, ú = 9,014(1) A, c = 

7,485(1) A, a= 104,31(1)°, p= 96,95(1)°, y= 91,68(1)°; Z = 2; R = 0,069). Az (A)-a-fenil-

etilammonium-hidrogénitakonát (OARPHI) ortorombos kristály-rendszerben kristályosodik 

P2i2j2i (a = 11,049(5) A, b = 18,758(4) A, c = 6,317(3) A, Z = 4, R = 0,0397). 

A szintén ebbe a csoportba tartozó (7?)-ar-fenil-etilammonium-hidrogenszukcinát 

(KACBEV)103,104 szerkezetét már kandidátusi dolgozatomban ismertettem. (A részletes 

krisztallográfíai adatok a mellékelt cikkekben megtalálhatóak, itt most csak a hidrogénhidas 

szerkezeteket mutatjuk be a 6.1.2.1 ábrán). 
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6.1.2.1 ábra A racém-a-fenil-etilammonium-hidrogénftalát (a), a racém-a-fenil-
etílammonium-hidrogenmalonat (b), (R)-a-fenil-etilammonium-hidrogen 
szukcinát (c) és (R)-a-fenil-etilammonium-hidrogénitakonát (d) 

hidrogénkötéseinek ábrája 
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A hidrogénhidas szerkezetek összehasonlító leírására bevezetett Etter féle gráf elmélet 

szerint: RACPHP [s(7)Q2{9)R4
4 (l (30)C4

4(l2)J, RACPHM ^(ó)C2
2 ( l ( l 6 > C J , 

tehát a két molekulavegyület-képző hidrogénhidas rendszere egymáshoz nagyon hasonló, míg 

az OARPHI hidrogénhidas rendszere [A , = C(7)C 2
2 (Ó), A 2 = R3

3 (S)R5
5 ( 2 2 ) ] nagyon hasonló a 

másik konglomerátum-képző savanyú só, a borostyánkősavaséhoz KACBEV 

[A, = C ( 7 ) C 2 (9), A2 = R^ (8)i?3 (l 3)J, de jelentősen eltér a molekulavegyületet képzőktől. 

A szerkezetvizsgálatokból az a következtetés vonható le, hogy akkor lép fel 

konglomerátum-képződés a vizsgált modellvegyületeknél, ha a dikarbonsavak protonált és 

nem protonált karboxilcsoportjai egymással hidrogénkötésekkel kapcsolt láncot alkotnak. 

Racém molekulavegyület azon esetekben képződik, amikor a két karboxilcsoport között 

lehetőség van intramolekuláris hidrogénhidak kialakulására. 

A vizsgált vegyületcsoporton belül még az is megállapítható, hogy akkor van lehetőség 

konglomerátum-képződésre, amikor a két karboxilcsoportot egy -CH2-CH2- lánc választja el 

egymástól. Amennyiben a lánc hosszabb vagy rövidebb, illetve a két szénatom között 

kettőskötés van, molekulavegyület képződik, ami arra utal, hogy jelen esetben a két 

karboxilcsoport közötti távolság a döntő tényező a konglomerátum-képződés szempontjából. 

6.2 Konglomerátum- illetve molekulavegyület-képződés az /V-alkil-

pipekolinsav-xilididek körébenS19 

Az A-alkil-pipekolinsav-xilididek (6-1 - 6-5) körében is vizsgáltuk a konglomerátum-

illetve molekulavegyület-képződés kérdését. 

6-1 R = H, 6-2 R = metil, 6-3 R = etil, 6-4 R = w-propil, 6-5 R = butil 

A 6-2 vegyület a Mepivacaine, a 6-5 Bupivacaine néven forgalmazott gyógyszerhatóanyag. 

Elkészítettük az öt analóg A-alkil-2,6-pipekoloxilididet és termoanalitikai módszerekkel 

tanulmányoztuk őket. DSC mérések segítségével megállapítottuk az enantiomerek olvadási 

tulajdonságait ( 6.2.1 táblázat). 
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6.2.1 táblázat Az N-alkil-2,6-pipekoloxilididek termikus adatai 

Minta Mért 

olvadáshő 

(kJ/mól) 

Mért 

olvadáspont 

(°C) 

Konglomerátumra 

számított olvadáspont 

(°C) 

6-1 
opt. tiszta 24,19 130 -

6-1 
racém 23,13 112 95 

6-2 
opt. tiszta 17,77 153 -

6-2 
racém 16,94 150 101 

6-3 
opt. tiszta 19,90 135 -

6-3 
racém 18,10 132 92 

6-4 
opt. tiszta 44,50 141 -

6-4 
racém 23,80 118 104 

6-5 
opt. tiszta 26,25 140 -

6-5 
racém 19,35 103 102 

A mért és számított adatokból nyilvánvaló, hogy a vizsgált öt vegyület közül négy 

racemátképző. A racém molekulavegyületek esetén a Schröder van Laar egyenlettel (2.1 

egyenlet) a racém összetételre számított olvadáspont lényegesen eltért a racemát esetén mért 

értéktől. Egyezés csak a 6-5 esetén volt, ami konglomerátum-képződést jelez, így csak itt van 

lehetőség az indukált kristályosítással történő reszolválásra. 

Úgy tűnik, hogy az alkil lánc hossza befolyásolja a konglomerátum- illetve 

molekulavegyület-képződést. Rövidebb alkil lánc esetén van csak lehetőség a szorosabb 

illeszkedést biztosító molekulavegyület-képződésre, míg az analóg sorozat leghosszabb, n-

butil láncot tartalmazó tagja már konglomerátum. 

6.3 Eutektikus pont meghatározása IR felvételek segítségével 

Enantiomerkeverékek esetén az eutektikus pont ismeretének számos esetben (pl. 

enantiomer dúsításnál) fontos szerepe van. Az eutektikus pontot legtöbbször olvadási 

fázisdiagramok vagy oldhatósági háromszögdiagramok kimérésével lehet megállapítani. 

Sokszor a gyors és kis anyagigényű termikus módszer a hőbomlás miatt nem alkalmazható, az 

oldhatósági háromszögdiagram kimérése pedig rendkívül munka- és anyagigényes. Ezért 

vizsgáltuk, hogy lehetséges-e az eutektikus pont meghatározása a szilárd fázisban meglévő 

gyenge kölcsönhatásokat szintén érzékelő IR spektrumok tanulmányozásával. Ezért felvettük 
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az IR spektrumát különböző enantiomer összetételű a-fenil-etilammóniumoxalát, és -malonát 

sóknak (6.3.1 és 6.3.2 ábra), majd elemeztük ezeket. 

A kiindulási enantiomer összetételének függvényében ábrázolt hullámszámok eltolódást 

mutatnak 920, 1540, 2900, 1200 cm"1 körüli értéken, ahol a C-H, C-N rezgések vannak (6.3.3. 

és 6.3.4 ábra). A kiindulási enantiomerösszetétel függvényében ábrázolt frekvenciagörbe 

inflexiós pontjához rendelhető enantiomerösszetétel jól közelíti az oldhatósági háromszög 

diagramon megfigyelhető eutektikus összetételt. Ezek alapján a vizsgált esetekben csak az IR 

felvételekből is megállapítható az eutektikus pont helye. Az IR spektrumokkal történő 

eutektikus pont meghatározás mindezidáig nem ismert az irodalomból. További vizsgálatokat 

igényel annak eldöntése, hogy a módszer mennyire általánosan alkalmazható. Az eutektikus 

összetétel ily módon történő meghatározásának előnye lehet, hogy gyors és anyagigénye 

minimális. 

[cm"1] 

6.3.1 ábra Különböző enantiomer összetételű a-fenil-etilammónium-malonát sók 
infravörös spektrumai 

/ v= 

V 73. 
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[cm"1] 

6.3.2 ábra Különböző enantiomer összetételű a-fenil-etilammónium-oxalát sók 
infravörös spektrumai 
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6.3.3 ábra Az enantiomertisztaság függvényében felvett eltolódások a-fenil-
etilammónium-malonát enatiomer keverékek esetében 
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6.3.4 ábra Az enantiomertisztaság függvényében felvett eltolódások a-fenil-
etilammónium-malonát enantiomerkeverékek esetében 
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Összefoglalás 

Szerkesztettem és jelentős részben írtam a diasztereomer sóképzéses reszolválások 
területének első átfogó kézikönyvét. 

Kimutattam, hogy már ismert reszolválások analógiájára a reszolválóágens 
kiválasztható. Az analógiák keresésének megkönnyítése céljából közel 3600 reszolválás 
legfontosabb adatait összefoglaló adatbázist hoztam létre, amely segítségével az analógiák 
gyorsan kereshetőek. Amennyiben az adatbázisban nem található megfelelő analógia, célszerű 
az alkalmazott reszolválóágenseket és az oldószereket felhasználásuk statisztikai 
gyakoriságának sorrendjében kipróbálni. 

Az ellentétes abszolút konfigurációjú, hasonló szerkezetű ellenionnal való kapcsolódási 
hajlam a diasztereomer sók körében a heterokirális elrendeződésre való törekvés jele. A 
jelenséget „kváziracemát" képződésnek neveztük, és úgy véljük, hogy evvel megtaláltuk a 
diasztereomer sóképzéses reszolválás egyik jelentős tényezőjét. 

Mivel a diasztereomer sóképzéses reszolválások mechanizmusának jobb megértését 
nem várhatjuk pusztán a tiszta diasztereomer sók tanulmányozásától, ezért felülvizsgáltunk 
számos reszolválást a reszolválás során keletkező fázisok termoanalitikai és röntgen-
pordiflrakciós elemzésével. Ezek alapján feltételezhető, hogy a reszolválási folyamatok 
kimenetelét szupramolekuláris szerkezetek kialakulása befolyásolja. A reszolválás során 
feltehetően sohasem a tökéletes reszolválóágenssel dolgozunk, ezért a molekulák úgy javítják 
az illeszkedést, hogy a jelenlévő három molekulából (a racemát két enantiomerje és a 
reszolválóágens) felépülő struktúrákat hoznak létre, ami egy új képződmény és nem a két 
tiszta diasztereomer só keveréke. Ez a magyarázata annak, hogy a reszolválás során a 
kikristályosodott fázis legtöbbször nem az egyik tiszta diasztereomert tartalmazza 
egymagában. Ilyenkor a két diasztereomer frakció nem egymással szennyezett, hanem egy az 
adott körülményekhez legjobban illeszkedő szupramolekuláris képződmény. 

Új reszolválási módszereket dolgoztunk ki, folyadék-folyadék fázisátmenettel, valamint 
bevezettük az oldásközvetítő oldószer alkalmazását a két folyadékfázisban végrehajtott 
reszolválásokhoz. „One-pot" reszolválást dolgoztunk ki, szilárd fázisban lejátszódó 
reszolválást követő szublimációs fázis-elválasztással. A reszolválás végrehajtható szintén 
oldószer nélkül a racemát olvadékában, vagy szuperkritikus állapotú fluidummal végzett 
extrakcióval is. 
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Az (A-alkil)-pipekolin-savanilidek BS-sel és DBBS-sel történő frakcionált 
krístályosításos reszolválása folyamán kivált diasztereomerek fiziko-kémiai vizsgálata során 
felfigyeltünk arra, hogy 13-ból 8 esetben nem valódi diasztereomer sóképzésen, hanem 
komplexképzésen keresztül megy végbe a reszolválás. Ezek alapján feltételeztük, hogy e két 
sav minden további átalakítás nélkül alkalmas lehet bázikus csoportot nem tartalmazó 
racemátok komplexképzésen alapuló reszolválására is. 

Nagyszámú főleg alkohol jellegű racém vegyülettel végzett reszolválási kísérlet alapján 
megállapítottuk, hogy a DBBS kitűnő komplexképző reszolválóágens. Általánosan 
alkalmazható módszert dolgoztunk ki a folyamat végrehajtására »-hexán mint közvetítő 
oldószer használatával. A nagyszámú kísérlet alapján megállapítottuk a vendégmolekulákkal 
szembeni követelményeket. 

Megállapítottuk, hogy a sztereoszelektív komplexképződés nemcsak racemátok 
elválasztására alkalmazható, de cisz-trcmsz izomerek elválasztására is. 

Egykristály-röntgendiffrakciós szerkezetvizsgálattal kilenc alkohol- DBBS komplex 
szerkezetét határoztuk meg. 

Megállapítottuk, hogy a DBBS legalább három egymástól lényegesen eltérő típusú 
komplexképzésére képes. 

• Királis alkoholokkal és vízzel 1:1 arányú komplexet képez, melyek közül 
mindig a vízzel képzett a leggyengébb. 

• Akirális alkoholokból kettő kötődik meg egy DBBS molekulával. 
• Fenolok esetén egy fenol molekula képez komplexet két DBBS-sel. 

Megkíséreltük a komplexképzéses reszolválást a DBBS-től csak két metilcsoportban 
különböző DFIBS-sel is. A kis szerkezeti különbség ellenére két savnak jelentősen eltérő 
komplexképző tulajdonsága van. A DPTBS kevésbé erős kötést tud létrehozni, ami a kisebb 
hatékonyságú reszolválásban is megmutatkozik. 

Elemeztük az enantiomerek királis segédanyag nélkül történő dúsításának lehetőségeit. 
Új módszert dolgoztunk ki molekulavegyület-képző enantiomerkeverékek akirális ágens 
nélküli dúsítására, az optikailag tiszta és a racém forma sűrűségkülönbségére alapozva. 
Szintén új módszer az enantiomerkeverékek dúsítása részleges sóképzést követő desztilláció 
alkalmazásával. 

A FEA akirális dikarbonsavakkal képzett savanyú sóit vizsgáltuk annak érdekében, 
hogy közelebb kerüljünk a konglomerátum- illetve molekulavegyület-képződés alapjainak 
megértéséhez. 
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Vizsgáltuk a konglomerátum- illetve molekulavegyület-képződés okait az V-alkil-
pipekolinsav-xilididek körében is. Az alkil lánc hossza befolyásolja a konglomerátum- illetve 
molekulavegyület-képződést. 

Enantiomerkeverékek IR spektrumának tanulmányozásával megállapítottuk, hogy egyes 
esetekben a csúcsok enantiomer összetételtől fiiggő eltolódása alapján lehetséges az 
eutektikus pont gyors meghatározása. 
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