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1. Fejezet 

Bevezetés 

1.1 A dolgozat témájának előzményei 

Az atomi rendszerek tulajdonságait a XX. század első negyedében kifejlesztett kvan-
tummechanika írja le. A kvantummechanika alapegyenlete a Schrödinger-egyenlet, 
melynek megoldásaként kapjuk a hullámfüggvényt. A hullámfüggvény ismeretében 
megadhatjuk a rendszert jellemző fizikai mennyiségek várható értékeit és a rend-
szer állapotának időbeli fejlődését. Az atomi rendszerek hullámfüggvényének egzakt 
meghatározása a hidrogénatom stacionárius állapotainak esetét kivéve nem lehetséges. 

Az atomok és molekulák időtől független, nemrelativisztikus Schrödinger-
egyenletének megoldására számos közelítő eljárást dolgoztak ki. Mind történeti, 
mind elvi szempontból jelentős a függetlenrészecske- vagy Hartree-Fock (HF) mo-
dell (D.R. Hartree 1928, V. Fock 1930). A HF módszerrel véges számú egyelek-
tron függvényt kapunk, amelyek antiszimmetrizált szorzatából (Slater-determináns, 
J.C. Slater 1930) felépíthető a rendszer hullámfüggvényének egy közelítése. Előnyei 
és hátrányai egyaránt abból következnek, hogy az elektronok átlagolt kölcsönhatását 
veszi csak figyelembe. Elvi egyszerűsége, viszonylag kis számításigénye, az eredményül 
kapott molekulapályák jó tulajdonságai és szemléltethetősége teszik igen széles körben 
használhatóvá, valamint szinte minden egyéb molekulafizikai számítási módszer kiin-
dulópontjává. A Hartree-Fock modell hiányossága, hogy nem ad számot az elektron-
korrelációról, s az ezzel kapcsolatos korrelációs energiáról. 

A hullámfüggvényt variációs vagy perturbációs módszerekkel közelíthetjük. Míg a 
variációs módszerek a rendszer teljes energiájára mindig felső becslést adnak, a per-
turbációs módszerekre ez nem igaz, ami miatt túlbecsülhetik a korrelációs energiát. A 
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teljes konfigurációs kölcsönhatás (full configurational interaction, röv.: FCI) módszere 
adja az elektronkorreláció legteljesebb leírását. Általában a FCI eredményekkel való 
összevetés alapján vizsgálják az egyéb eljárások teljesítőlépességét. A FCI módszert 
elvi egyszerűsége és variációs jellege is vonzóvá teszi, legnagyobb erőssége azonban 
az általánosság és a rugalmasság. Bármilyen elektronállapotra alkalmazható, vi-
szonylag egyszerűen vezethetők be a spin- ill. szimmetria-megszorítások. Hátránya, 
hogy számításigénye -nel arányos, ahol N az elektronok száma, M pedig az 
egy részecskebázis mérete. 

A hullámfüggvény sokkal több információt hordoz, mint amennyi a 
párkölcsönhatásokat tartalmazó rendszerek jellemzéséhez szükséges. A hullámfüggvény 
kiiktatása a kvantummechanikából ("hullámmechanika hullámfüggvény nélkül") az 
1960-as évektől kezdve igen intenzíven kutatott kérdéskörré vált. 

A Hohenberg-Kohn tétel (1964)szerint a molekula alapállapoti elektronsűrűségéhez 
kölcsönösen egyértelműen hozzárendelhető az alapállapoti hullámfüggvény. Az e 
tételen alapuló sűrűségfunkcionál elméletben (density functional theory, DFT) az elek-
tronsűrűségből egy univerzális funkcionálon keresztül számolható ki az energia, amely 
már a korrelációs energiát is magában foglalja. Sajnos az utóbbi néhány évtizedben 
folytatott igen intenzív kutatómunka ellenére sem ismert az egzakt energia-funkciónál. 

Egy kvantummechanikai rendszer leírására a hullámfüggvény helyett mind elméleti 
mind számítási szempontok miatt előnyösebb a másodredű redukált sűrűségmátrix . 
A kétrészecske redukált sűrűségmátrix a legfeljebb párkölcsönhatásokat tartalmazó 
rendszer leírásához szükséges minden információt magában foglal. A sűrűségmátrix 
formalizmus számos fizikai probléma tárgyalásában hatékonyan alkalmazható. Az 
elektronkorreláció leírására és a molekulák tulajdonságának vizsgálatára is a 
másodrendű redukált sűrűségmátrix a legegyszerűbb matematikai eszköz. Az ún. 
N-reprezentálhatósági probléma azonban jelentősen megnehezíti a másodredű redukált 
sűrűségmátrixok alkalmazását a kvantummechanikai számításokban. Az energiának 
a variációs elv által kijelölt minimalizálása nem végezhető el a sűrűségmátrix , 
mint változó szerint, mert a sűrűségmátrix nem variálható szabadon, és a variálását 
megszorító feltételeket (N-reprezentálhatósági feltételek) nem ismerjük. 

A kontrahált Schrödinger-egyenlet (contracted Schrödinger-eq., CSE) megoldása 
nem-variációs eljárást kínál a redukált sűrűségmátrixok közvetlen meghatározására. 
Azonban nem tudjuk a magasabbrendű sűrűségmátrixokat alacsonyabb rendüekkel 
egzaktul kifejezni, amire szükségünk volna az egyenlet megoldásához. 
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1.2 Célkitűzések 

Olyan variációs eljárás kifejlesztését tűztük ki célul, amely a FCI módszerrel 
egyenértékűen írja le az elekrtonkorrelációt, rendelkezik a másodredű redukált 
sűrűségmátrix egyszrűségéből fakadó előnyökkel, és annak N-reprezentálhatóságát 
mid végig egzaktul biztosítja. 

Vizsgálni kívántam három különböző variációs funkcionál esetén a módszer 
pontosságát, konvergenciasebességét, stabilitását. Végül a módszer hatékonyságának 
bemutatása céljából számításokat végztem atomokra és molekulákra. 

Az első fejezetben áttekintem dolgozatom témájának legfontosabb előzményeit, az 
alapfogalmakat és bevezetem a szükséges jelöléseket. A második fejezetben leírom azt 
a módszert, amit a sűrűségmátrixok előállítására fejlesztettünk ki. Ezután bemutatom, 
hogyan építhető fel erre az előállítási módszerre az elektronrendszerek alapállapotának 
illetve korrelációs energiájának kiszámítására szolgáló variációs eljárás. Az energia 
háromféle paraméterezését és ennek megfelelő három eljárást (C-, B-, D-algoritmusok) 
fogunk látni. Egy rövid alfejezetben kitérek a spin számítására is. Végül a negyedik 
fejezetben a módszerek konkrét számítási feladatokra való alkalmazását mutatom be 
és megvizsgálom a konvergencia tulajdonságaikat. 



2. Fejezet 

Elméleti áttekintés 

2.1 A Schrödinger-egyenlet, molekulák Hamilton-
operátora 

Egy kvantummechanikai rendszer valamely stacionárius állapotának leírásához ele-
gendő a 

H * = (2.1) 

időtől független Schrödinger-egyenletet megoldani, ahol H a rendszer Hamilton-
operátora, a H egy sajátfüggvénye (sajátvektora), E pedig a H megfelelő sajátértéke. 
A legkisebb (alapállapoti) sajátértéket és a hozzá tartozó (alapállapoti) sajátvektort a 
Ritz-féle variációs elv szerint úgy is kiszámolhatjuk, hogy meghatározzuk az 

energia-funkciónál minimumát. (A fizikai mennyiségek és a formulák megadásakor 
atomi egységeket használunk.) 

Vizsgálatunk tárgya az N elektront és n atommagot tartalmazó, külső erőktől 
mentes (szabad) rendszer, általában erre gondolunk, amikor a "molekula" kifejezést 
használjuk. Ez a szóhasználat tehát magában foglalja a semleges atomokat és a 
szokásos értelemben vett molekulákat, az egyszerű és összetett ionokat és a gyököket is. 
Jelölje u (i = 1 , . . . , N) az elektronok koordinátáit és ra (a = 1 , . . . , n) az atommagok 
koordinátáit a magok súlypontjához rögzített derékszögű koordináta-rendszerben, e 
vektorok különbségéinek hosszát r,j, rai és rab jelöli értelemszerűen. Az operátorok 
változóinak feltüntetésekor azonban az átláthatóság kedvéért r,- helyett i-t írunk. 
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Nemrelativisztikus és adiabatikus közelítésben a molekulák ún. elektron-Hamilton 
operátora így írható: 

H( 1 , 2 , . . . , N) = £ h(i) + £ Hh j)- (2-3) 
¿=1 i<j 

A fenti képletben a 

L o=l Tia 

egyelektron-operátor a kinetikai energiát és a mag-elektron potenciális energiát, a 

k(i,j) = - (2.5) 

kételektron-operátor pedig az elektron-elektron kölcsönhatást írja le. A (2.3) operátor 
sajátértékét elektron-energiának is szoktuk nevezni. A rendszer teljes energiájához 
járul még az Enuc magtaszítási energia 

Enne = (2-6) 
a<b Tab 

ami rögzített magok esetén (adiabatikus közelítés) állandó, ezért nem szerepeltetjük a 
Hamilton-operátorban. Az elektron-energia és a magtaszítási energia összege a teljes 
energia. A későbbiekben használni fogjuk a 

= JT=i + fa)) + fa fi W 

redukált Hamilton-operátort. A H és K közötti összefüggés: 

H{l,2,...,N) = '£k{i,j). (2.8) 
i<j 

2.2 A függetlenrészecske-közelít és 

A molekulák Hamilton-operátorának sajátérték-egyenlete a k(i, j) kétrészecske tagok 
miatt nem oldható meg egzaktul, ezért közelítő módszerekhez kell folyamodnunk. 
/ 

Általában az egyelektron-operátorok összegeként, azaz 

Ő(l,2,...,N)=^ő(í) (2.9) 
í=i 

alakban megadott operátorok sajátfüggvényei szorzat alakban (Hartree-szorzat) 
írhatók fel: 

<^1(1)^2(2)... 4>N(N), (2.10) 
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ahol fa az ö egyik sajátfüggvénye. A molekulák nemrelativisztikus, időtől független 
Schrődinger egyenletének megoldására egy lehetséges közelítő módszer a kétrészecske-
operátorok olyan egyrészecske-operátorokkal való helyettesítése, amelyek az elek-
tronok átlagos kölcsönhatását írják le. Mivel most elektronokból álló rendszer 
hullámfüggvényét szeretnénk közelíteni, figyelembe kell vennünk az elektronrendszer 
statisztikus (fermion) tulajdonságait, így a hullámfüggvénynek antiszimmetrikusnak 
kell lennie a koordináták cseréjére. A hullámfüggvény fentebb írt közelítése nem anti-
szimmetrikus, ezért helyette a 

-7= E (-1)^P(0P(1)(1)0P(2)(2) ... = 
v N I P e S N 

^Ldeí{<Ml) , fc(2), • • •, M N ) } (2.11) 

antiszimmetrizált hullámfüggvényt alkalmazzuk. P az egyrészecskepályák indexeinek 
permutálását jelenti, 7r(P) pedig e permutáció paritása, Sn az N-edrendű szimmetrikus 
csoport, az összegzés végig fut az összes permutáción. £p(—l)*(p)p nem más, mint 
az antiszimmetrizáló operátor. Ezt a függvényalakot Slater-determinánsnak nevezzük. 

2.3 Variációs elv 

A Hamilton-operátor sajátfüggvényét a variációs elv segítségével közelíthetjük. Az 
energia 

ŐE = <69\H-E\*> + <*\H-E\8*> 
> 

első variációja eltűnik, ha a hullámfüggvény megegyezik a Hamilton operátor 
valamely sajátfüggvényével, ekkor az E energia egyenlő az Ei sajátértékkel. 
Ebből adódik az alábbi, a variációs módszert megalapozó tétel. Egy tetszőleges 
(négyzetesen integrálható) próbafüggvénnyel számított energia mindig felső korlátja 
az alapállapot egzakt energia-sajátértékének. A gyakorlatban a próbafüggvénybe 
beépített paraméterek variálásával keressük az energia minimumát. Az így meg-
talált energia az adott függvényalakkal és paraméterekkel elérhető legjobb közelítése 
az egzakt alapállapoti energiának. 
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2.4 A Hartree-Fock módszer 

A Hartree-Fock (HF)-modell egyetlen Slater-determinánssal közelíti az (2.3) Hamilton-
operator egzakt alapállapoti sajátfüggvényét. Az energiát minimalizáló egyrészecske-
függvények előállíthatók a variációs elvből levezethető kanonikus 

Frl>i=eiilti i = l,...,N (2.13) 

HF egyenlet megoldásaiként. A fenti egyenletben szereplő F egyrészecske-operátor a 
Fock-operátor, amely így írható: 

F( l ) = h(l) + £ ) f ^ ( 2 ) — ( 1 - P12)^(2)d2. (2.14) 

A Fock-operátor a potenciális energiát leíró tagjában tartalmazza a sajátfüggvényeit, 
így sajátértékegyenlete (nem valódi sajátértékegyenlet, hanem ún. ál-
sajátértékegyenlet) nem lineáris, ezért iterációs eljárással kell megoldani a (2.13) 
egyenleteket. Először tetszőleges próbafüggvényeket választunk, ezekkel kiszámítjuk 
a Fock-operátort, majd meghatározzuk a sajátfüggvényeit. Ezek után a kapott 
sajátfüggvényeket tekintjük próbafüggvénynek. Addig folytatjuk, amíg az új 
sajátfüggvények adott pontossággal meg nem egyeznek az előzőekkel. Az eljárást 
HF-SCF (self-consistent-field) módszernek nevezzük. A kapott {ipi}, i = 1, ...,N 
egyrészecske-függvényeket általában HF-molekulapályáknak (HFMO) nevezzük, 
ezeket az £i sajátérték növekvő sorrendje szerint rendezhetjük. Az első N moleku-
lapályából felépített Slater-detemináns a rendszer alapállapoti hullámfüggvényének a 
közelítése, az ehhez tartozó Ehf energiát HF-energiának hívjuk, ami felső korlátja 
az egzakt alapállapoti energiának. A molekulapályák egy önadjungált operátor 
sajátfüggvényei, ebből következik, hogy ortogonálisak egymásra. A későbbiekben 
azt is mindig feltételezzük, hogy egységre normáltak, így a belőlük képzett (2.11) 
Slater-determináns is az lesz. A fent leírt eljárás a megszorítás nélküli HF módszer. A 
gyakorlatban (konvencionális HF módszerek) szimmetria- és/vagy spinmegszorításokat 
szokás alkalmazni, ami jelentősen csökkenti a számításigényt, azonban általában mag-
asabb EHF energiához vezet. Megemlítjük, hogy a HF-SCF módszer nem feltétlenül 
konvergál, vagy ha igen, akkor is vizsgálatot igényel, hogy hova, különösen akkor, ha 
megszorítást alkalmaztunk. Ugyanis a HF-determinánssal számolt energiának az első 
variációja eltűnik, de a második variációját általában nem vizsgálják. A HF-egyenletek 
nem biztosítják azt, hogy a második variáció pozitív definit legyen [5, XILfejezet] [6, 
3. fejezet]. 
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2.5 A molekulapályák sorfejtése 

A molekulapályák numerikus meghatározása általában kivihetetlen (kivétel ezalól az 
atomok esete). Roothaan egy olyan módszert dolgozott ki [89], amely differenciále-
gyenlet numerikus integrálása helyett algebrai egyenlet megoldására vezeti vissza a fe-
ladatot, így az a standard mátrix-formalizmussal megoldható. A számítási munka meg-
takarítással együtt azonban jelentősen lecsökkenti a függvények "hajlékonyságát", azaz 
nem tudjuk többé oly szabadon variálni őket, mint ahogy azt a numerikus megoldás 
esetén tehettük volna. Mivel a HF módszer a variációs elven alapul, ez elvi szempontból 
jelentős körülmény. 

Roothaan szerint a molekulapályákat ismert, és a számítás során nem változtatott 
függvények (bázisfüggvények) lineárkombinációjaként keressük. A lineárkombinációs 
együtthatók a variációs paraméterek, tehát ezeket határozzuk meg az SCF módszerrel. 
A bázisfüggvények rendszerét jelölje {Xp}(p = 1 , . . . , M), a molekulapályákat tehát 

M 

1>i = EdPiXp (2-15) 
p=í 

alakban keressük. Az (2.15) kifejezést behelyettesítve a (2.13) egyenletbe, balról 
szorozva xi|f v a l és integrálva az alábbi egyenlethez jutunk: 

M M 
E < x j ^ l x p >dpi=€i E < Xq\Xp > dpi i = l,...,N. (2.16) 
p=i p=i 

A mátrixelemekre bevezetve a Fqp =< Xq\É\Xp > és Sqp =< Xq\Xp > jelöléseket, 
valamint a különböző i indexekre vonatkozó egyenleteket összefoglalva a következő 
mátrix-egyenlethez jutunk: 

Fd = Sde, (2.17) 

ahol F a Fock-mátrix, S a bázisfüggvények átfedési mátrixa, d az együtthatómátrix, 
melynek (p, i) indexű eleme a fa molekulapálya kifejtésében a Xp bázisfüggvény 
együtthatója, e pedig a sajátértékeket tartalmazó diagonális mátrix. A Fock-mátrix 
felépítéséhez a bázisfüggvények alábbi típusú integráljai szükségesek: 

< Xp\h\Xq >= hpq. egyelektron-integrálok, OEI (one-electron integrals) 
< XpXj^lXrXs > = kPg)rs: kételektron-integrálok, TEI (two-electron integrals). 
Mivel a bázisfüggvények rögzítettek, ezeket egyszer kell meghatározni a számítás 
során. Általában több bázisfüggvényt veszünk fel, mint ahány elektron van (M > 
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N), ezért molekulapályánk is több lesz. Az N legalacsonyabb sajátértékű moleku-
lapályát betöltött pályának nevezzük, mert ezeket felhasználjuk az egydetermináns 
közelítésben, a többit virtuális pályának. [5, XI. fejezet] [6, 3. fejezet] [7, 1. fejezet] 

Elvileg bármilyen függvény lehet bázisfüggvény. A gyakorlatban általában atom-
okon centrált 

9uvw{ra) = xtVaza exP(~0cra) 

alakú Gauss-típusú függvényeket (ahol u,v,w, nemnegatív egészek) , illetve ezek 
lineárkombinációit használják, mert ezekkel egyszerűen számolhatók az integrálok. (A 
formulában az a index arra utal, hogy egy bizonyos atommagra vonatkoztatott relatív 
koordinátákkal adtuk meg a függvényt.) Egy adott atomhoz tartozó bázisfüggvények 
maguk is optimalizálva vannak vagy a variációs elv alapján, vagy úgy, hogy kísérletileg 
meghatározott fizikai mennyiségekhez illeszkedjenek. Az elérhető bázisok tárháza sz-
inte kimeríthetetlen [18, 19, 20, 21, 22]. A választást a feladat és a rendelkezésre 
álló számítási kapacitás határozza meg elsősorban. A bázisfüggvények számától 
(bázisméret) általában erősen függ a feladat számítás- és/vagy memóriaigénye. Mivel 
a molekulapályák atomokon centrált függvények kombinációi, ezt a módszert LCAO 
(linear combination of atomic orbitals) -közelítésnek is nevezik. 

2.6 Elektronkorreláció, korrelációs energia 

A HF közelítés fizikai jelentését vizsgálva megállapítható, hogy egy elektron 
környezetében a kicserélődési kölcsönhatás miatt az azonos spinű elektronok sűrűsége 
lecsökken, az adott elektron helyén eltűnik (Fermi-lyuk). Ez azt jelenti, hogy az 
azonos spinű elektronok mozgása nem független egymástól, korrelációban van. Az 
egydetermináns-közelítés a Fermi-lyuk létezését jól leírja, hiszen ez az antiszimmetria 
következménye. Az elektronok környezetében a spintől függetlenül, a Coulomb-taszítás 
miatt is lecsökken az elektronsűrűség, Coulomb-lyuk keletkezik. Mivel a HF modell 
az elektronok átlagos kölcsönhatását veszi csak figyelembe, erről a korrelációról nem 
ad, nem is adhat számot. A Fermi-lyuk miatt a párhuzamos spinű elektronok eleve 
viszonylag távol helyezkednek el egymástól így ebben az esetben az elektrontaszítás 
miatt fellépő korreláció elhanyagolásából eredő hiba kisebb, mint az ellentétes spinű 
elektron-párok esetében. A HF-modell fő hiányossága tehát, hogy elhanyagolja a 
Coulomb-taszítás miatti korrelációt, "túl közel engedi egymáshoz" az elektronokat. 
Természetesen ez a hiba az energiában is jelentkezik, amit korrelációs energiának 



2.6. ELEKTRONKORRELÁCIÓ, KORRELÁCIÓS ENERGIA 2 

nevezünk. Pontosabban a korrelációs energia (Ecorr) nem más, mint az egzakt nem-
relativisztikus energia (E) és a HF-energia végtelen bázisra extrapolált határértékének 
(EfiF, HF-limit) különbsége [5, 6, 65] [11, (E.M.Siegbahn)] [9, (M.Urban et.al.)] : 

rp 77T 771 oo 
&COTT — a — &HF-

Ez a definíció, ha alaposan szemügyre vesszük, nem is olyan egyszerű. Talán 
könnyebben megragadható az EfjF, mert azt extrapolációval számolhatjuk. Az egzakt 
nemrelativisztikus energia azonban csak becsülhető. Ennek két módja van. Egyrészt a 
kísérleti adatok felhasználásával becsülhetjük úgy, hogy abból levonjuk a relativisztikus 
és a magmozgásból eredő (becsült) korrekciókat [5, XV. 1. fejezet]. Vagy a kor-
relációs energia becslésére kidolgozott eljárások valamelyikével számított energiával 
helyettesítjük. 

A gyakorlatban előfordul, hogy az EJfF határértéket sem számolják ki, hanem 
egyszerűen az adott véges bázissal számolt HF-SCF energia illetve a FCI energia 
különbségét nevezik korrelációs energiának. Sőt, a FCI helyett gyakran CID, CISD, 
MP2-3-4 (Moller-Plesset perturbációszámítás) energiákból is számolnak "korrelációs 
energiát". Jelen dolgozatban mi egy adott véges bázisra vonatkozó HF-SCF és FCI 
energiák különbségét számoltuk ki. Valójában, a definícióval összevetve, ez nem más, 
mint a korrelációs energia adott bázissal elérhető legjobb közelítése, de a szóhasználat 
egyszerűsítése végett mi korrelációs energiának fogjuk hívni. 

Egy molekula korrelációs energiája a teljes energiájához képest kicsi. A kémiai 
átalakulásokat azonban a kis energiaváltozások jellemzik és befolyásolják. Jellemző 
a vízmolekula példája: korrelációs energiája és kötési energiája egyaránt a teljes en-
ergiának kb. 0.5% -a [7, 189.0.]. A korrelációs energia ugyanazon rendszer különböző 
elektronállapotaiban más-más lehet. A molekulák forgási-rezgési színképének, a 
reakcióutak (stb.) kiszámításában alapvető szerepet játszik a molekula energiájának 
magkoordinátáktól való függése. A teljes energiát, mint a magkoordináták függvényét 
potenciálfelületnek is nevezzük. A HF potenciálfelület tulajdonságait (pl. gradiensek, 
szélsőértékek helye) jelentősen megváltoztathatja a korrelációs energia hozzáadása. 
Ezért csak az elektronkorreláció figyelembevételével lehet nagy pontosságú kvan-
tumkémiai számításokat végezni. 
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2.7 Slater-determinánsok 

Mielőtt rátérnénk a konfigurációs kölcsönhatás módszerére, áttekintjük a Slater-
determinánsokkal kapcsolatos legfontosabb tudnivalókat. Ez egyben már közvetlen 
előkészítés is lesz a következő fejezethez. Legyen M darab ortonormált 
egyrészecskefüggvényünk: (i = 1 ,...,M) (egyrészecske-bázis), ezek lehet-
nek HF molekulapályák, de más is. Ezekből (2.11) alakú függvényeket, Slater-
determinánsokat építhetünk fel. Annyi Slater-determináns képezhető, ahányféleképpen 
ki tudunk választani N különböző függvényt az M közül, ez éppen Az 
összes determináns halmaza: {<3>a};a. = 1 , M i n d e n Slater-determinánshoz 
egyértelműen hozzátartozik egy I a = {ai, »2, • • •, <%n} indexhalmaz, ami a benne sze-
replő egyrészecskefüggvények sorszámait tartalmazza. Egy determináns így írható: 

= ' • • • ' ^ 
Az elektron-koordinátákat a felsorolás sorrendjében rendeljük az egyrészecske-
függvényekhez. Az egyértelműség kedvéért az atj elemeket növekvő sorrendben 
szerepeltetjük a (2.18) formulában (a felcserélés az antiszimmetria miatt legfel-
jebb a determináns előjelén változtat), azaz "rendezett" determinánsokat építünk. 
E megállapodásnak igen nagy jelentősége van, mihelyt matematikai műveleteket 
kezdünk végezni a determinánsokkal. Az így képzett N-részecske függvények anti-
szimmetrikusak, egységre normáltak és egymásra ortogonálisak, azaz 

J $a$f}dld2... dN = Sap. (2.19) 

Összefoglalva: az M egyelektron-függvényből képezhető rendezett Slater-
determinánsok összessége az N-elektron Hilbert-tér egy ( f y dimenziós alterének 
egy ortonormált bázisa. Mivel a bázisfüggvények antiszimmetrikusak, ennek az 
altérnek minden eleme antiszimmetrikus. Megjegyezzük, hogy a hullámfüggvény 
valószínűségi értelmezése alapján számunkra ennek az altérnek csak az egységre 
normált vektorai érdekesek, melyek összessége nem más, mint az ( f y dimenziós 
egységgömb felületén lévő pontok helyvektorai. 

Miért érdekes ez az altér? A HF-SCF eljárás során előálló molekulapályákból 
képzett Slater-determinánsok az N-elektron Hilbert-tér egy olyan alterét feszítik ki, 
amely altérben maga a HF-SCF eljárás nem találja meg a minimális energiájú el-
emet, csupán a függvények egy szűkebb körében minimalizálja az energiát. Az 
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alábbiakban azt fogjuk megmutatni, hogy az altér egy tetszőleges eleméből kiindulva, 
csupán egy részecskepályák unitér transzformációjával (ennek a transzformációnak a 
paraméterei éppen a HF eljárás variációs paraméterei) nem tudjuk minden elemét 
előállítani a Slater-determinánsok által kifeszített altérnek. Hajtsunk végre egy U 
mátrixszal unitér transzformációt az egy részecskefüggvényeken, az új függvényeket 
jelölje {xí} {i = 1 , . . . ,M) és 

M 

Xi = E Utfh. (2.20) 
6=1 

Ezek is ortonormált rendszert képeznek, és lehet belőlük Slater-determinánsokat 
képezni: 

Az így kapott determinánsok a Hilbert-tér ugyanazon alterének egy másik ortonormált 
bázisát alkotják. Ezek az új bázisvektorok kifejezhetők a régiekkel a V = tran-
szormációs mátrix segítségével = v 0 a a l a k b a n . 

Meghatározzuk a vpa együtthatókat. A (2.21) kifejezésbe behelyettesítjük a x 
függvények (2.20) alakját: 

j M M M 

= -fedeti E Ubiai4>6L, Ub2(X2i;b2,..., E ubNaifaN} = 
Vyv- 61=1 62=1 bN=l 

^ M 
-7= E Ub\AIUb2a2 • • • UBNANdet{il>bi,ipb2,..-,ipbN} (2.22) 
V NI 6l,62,....6^=1 

A b{ összegző indexek egymástól függetlenül futnak, ezért előfordul, hogy közülük le-
galább kettő megegyezik, ebben az esetben a determináns eltűnik. Ha a b{ indexek 
mind különbözőek, akkor az összegzés során minden sorrendben előállnak. Ekkor 
a det{i>bl,ipb2,... ,ipbN} determináns általában nem rendezett. Az eredeti, $ deter-
minánsokkal való azonosítás végett számunkra fontos volna, hogy rendezett deter-
minánsok lépjenek fel a fenti kifejezésben. Ezért a következőképpen járunk el: a 
12bl,b2,...,by=\ összgezést az alábbi alakba írjuk: 10,bl<b2<...<bN 

EP6SÍV- LTT AZ N" 
edrendü szimmetrikus csoportot jelöli, az összegzés végigfut a teljes csoporton. A 
kétfajta összegzés egymással egyenértékű, hiszen a második esetben először felsoroljuk 
az összes rendezett N-elemű index-halmazt, majd az Sn permutációcsoport minden 
elemét alkalmazva rájuk valóban elő áll az összes lehetséges index-kombináció. A P 
permutáció paritását 7r(P) jelöli. A következő kifejezést nyertük (folytatva a fent 
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megkezdett (2.22) egyenlőséget): 

l M 
= 77W\ ^ ^ ^l«p-l(l)^20p-l(2) ''' U>>N<*P-hn) 

v M • bi<Ö2<—<bn=l P<zSn 
(2.23) 

A determinánsok helyére most már beírhatjuk a megfelelő rendezett konfigurációkat. 
Mivel a permutációkra való összegzés végigfut a teljes Sn csoporton, valamint 
7r(P-1) = 7r(P), ezért P - 1 helyett P-t írhatunk. Használjuk az Ip = {bi,b2,..., b^} 
jelölést és ezzel a formulánk így alakul: 

M 

*« = £ ( £ UbiapwUb2Qpm . . . ¿ W ^ í - i r ^ ) (2.24) 
6i<62<...<6w=l P€Sn 

Most U^-val jelöljük az U mátrix Ip indexű sorainak és Ia indexű oszlopainak met-
szetében levő elemeiből képzett aldeterminánst, ezekkel végeredményünk így írható: 

= (2-25) 
fi 

tehát 

vpa = U\l (2.26) 

Tehát, ha az egyrészecske függvényeket unitér transzformáljuk, akkor a Slater-
determinánsok is transzformálódnak, és a Slater-determinánsok -dimenziós al-
terében történő V unitér transzformációt teljesen meghatározza az egyrészecske-
függvények független paraméterrel rendelkező U transzformációja. A V transz-
formációt általában független paraméterrel jellemezhetnénk. Minden U transz-
formációhoz hozzárendelhetünk a (2.26) definícióval egy, a determinánsokon ható V{U) 
transzformációt, melyek tehát paraméterrel adhatók meg, ezek száma kevesebb, 
mint az összes lehetséges V. Ezért, ha egy bázisvektorra (vagy tetszőleges, de rögzített 
vektorra) alkalmazzuk a V(U) transzformációkat, akkor a képvektorok összessége nem 
fedi le az egységgömböt. 

A HF-SCF eljárás során előálló molekulapályákból képzett Slater-determinánsok 
tehát valóban az N-elektron Hilbert-tér egy olyan alterét feszítik ki, amely altérben 
maga a HF-SCF eljárás nem találja meg a minimális energiájú elemet, csupán a V(U) 
transzformációkkal elérhető függvények körében minimalizálja az energiát. Az altér-
beli igazi minimum ott van valahol az ily módon el nem érhető részben. A korrelációs 
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energia számítására kidolgozott eljárások éppen ezt a minimumot próbálják minél job-
ban megközelíteni. A fenti meggondolás megmutatja a HF-SCF módszer alapvető 
szerepét, egyúttal hiányosságát is, valamint az elektronkorreláció figyelembevételének 
általános stratégiáját. 

Az egy- és kételektron-operátorok mátrixeleme két Slater-determináns között 
kifejezhető az egy- és kételektron integrálokkal (Slater-Condon szabályok). A 
mátrixelemek csak akkor nem nullák, ha egyelektron-operátor esetén a két determináns 
legfeljebb egy, kételektron-operátor esetén legfeljebb két különböző egyrészecske 
függvényt tartalmaz [5]. A (2.3) Hamilton-operátor egy- és kételektron operátorok 
összege, ezért csak az egymástól legfeljebb két egyrészecskefüggvényben különböző 
Slater-determinánsok közötti mátrixelemei nem tűnnek el. 

Most megvizsgáljuk a (2.7) redukált Hamilton-operátor mátrixelemeit. Először 
ismerjük fel, hogy két Slater-determináns közt a K(i,j) és egy más koordinátákra ható 
K(i',j') operátor mátrixeleme ugyanaz. Valóban, permutáljuk úgy a determinánsban 
az elektron-koordinátákat, hogy az i' és j' arra a helyre kerüljön, ahol a másik esetben 
az i és j van, ez a permutáció legfeljebb a determináns előjelét fordítja meg, ami viszont 
a mátrixelemen nem változtat annak bilineáris volta miatt. A H és K közötti (2.8) 
összefüggés felhasználásával az alábbi, a redukált és a nem redukált Hamilton-operátor 
mátrixelemei közt fennálló fontos összefüggést kapjuk: 

< $ Q | ^ ( l , . . . , i V ) | ^ > = ^ < *a\k{l,2)\*f > (2.27) 

Megjegyezzük még, hogy nem ortonormált egyrészecske függvényekből is lehet 
Slater-determinánsokat képezni. Ilyen esetben nagy szerepet kap a determinánsok 
átfedési mátrixa [64, 65, 66], mi azonban ilyen esettel nem foglalkozunk. 

2.8 A konfigurációs kölcsönhatás módszere 

A konfigurációs kölcsönhatás módszerének [90] angol elnevezéséből (configura-
tional interaction) adódik a széleskörben használatos rövidítése: Cl, amivel mi 
is élni fogunk. A HF-SCF eljárással meghatározott, ortonormált egyrészecske 
függvényekből előállíthatjuk az összes Slater-determinánst és a hullámfüggvényt ezek 
lineárkombinációjaként közelíthetjük : 

* = £ (2.28) 
a=l 
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(A fenti formulában és a továbbiakban, elsősorban az összegzések jelölésénél használjuk 
majd a ¡x = ( f y jelölést.) A cQ együtthatók szabad variációs paraméterek. A (2.1) 
Schrödinger-egyenletbe behelyettesítve ezt a függvényalakot, balról szorozva $£-val és 
integrálva az alábbi mátrix sajátérték-egyenletet kapjuk: 

Hc = Ec. (2.29) 

Emlékeztetünk arra, hogy jelen dogozatban csak ortonormált Slater-determinánsokkal 
foglalkozunk, ezért nem jelenik meg az átfedési mátrix az egyenletben. A H (CI-
mátrix) nem más, mint a Hamilton-operátornak a Slater-determinánsok bázisában 
felírt mátrixa. Ennek a sajátvektorai a renszer stacionárius alap- illetve gerjesztett 
állapotait leíró hullámfüggvényeknek a közelítését adják Slater-determinánsok al-
terében, sajátértékei pedig a megfelelő energia várható értékeket. Az összes sajátvektor 
és sajátérték meghatározásához diagonalizálni kell a H mátrixot. Mivel a H egy 
-es mátrix, ez a feladat renkívül számítás- és memóriaigényes. Azonban általában 
nincs is szükség a teljes diagonalizálásra, mert a legtöbb kémiai változás leírásához 
az alapállapot és a néhány legalacsonyabb gerjesztett állapot meghatározása elegendő. 
Mi a továbbiakban az alapállapot meghatározására szorítkozunk. Az erre kidolgo-
zott számos eljárás megemlítése helyett csak utalunk a [7, 11] könyvek megfelelő fe-
jezeteire (ezekből sok egyéb részlet is megtudható a Cl módszerrel kapcsolatban). E 
dolgozat szempontjából az a tétel lesz csupán fontos, hogy egy önadjungált mátrix 
Rayleigh-kvóciense a mátrix legkisebb sajátértékű sajátvektoránál minimális, a min-
inum értéke éppen a sajátérték [24]. Ily módon tehát az alapállapoti sajátvektor és 
sajátérték meghatározása mátrixalgebrai műveletek helyett az energia minimumának 
megkeresésével is elvégezhető. 

A Hamilton-operátor felcserélhető a spin-operátorokkal (Sg, S2) és a rendszer térbeli 
szimmetria-operátoraival, ha vannak ilyenek. Ha a vizsgált rendszer térbeli szim-
metriával rendelkezik, akkor a Slater-determinánsokból olyan lineárkombinációkat 
képeznek, amelyek a szimmetriacsoport valamely irreducibilis reprezentációjának 
bázisvektorai (szimmetria-adaptált konfigurációk). Ezen új bázisfüggvényeken 
rövidebb lesz a sajátvektor sorfejtése. Hasonló okokból a Slater-determinánsokból spin 
(S2)-sajátfüggvényeket is lehet képezni (spin-adaptált konfigurációk). Gyakran csak 
ezeket nevezik "konfigurációnak", de mi a Slater-determinánsokat fogjuk így hívni, 
mert a spin- és térszimmetria-adaptációval nem foglalkozunk. 

Mivel a Slater-determinánsok altere igen nagy, a gyakorlatban ennek az altérnek 
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csak egy részét használják fel a számolásban. Tipikus választások: a HF alapállapoti 
Slater-determináns és az ettől egy egyrészecskefüggvényben eltérő (egyszeresen ger-
jesztett) determinánsok altere ekkor a számítást "CI-singles"-nek hívják és úgy 
rövidítik, hogy CIS. Ha ehhez még a kétszeresen gerjesztett determinánsokat is 
hozzáveszik, akkor CISD számolásról beszélnek, és így tovább: CISDT, CISDTQ 
is használatos. Ezeket összefoglaló néven truncated (csonkított)-CI számolásoknak 
nevezik. Az ilyen számolások jellemzője a méretkonzisztencia-probléma. Az energiában 
emiatt jelenkező hiba csökkentésére léteznek módszerek (pl. Davidson-korrekció [6, 4.6 
fejezet], Pople-korrekció [91], kvadratikus-CI módszer [23]). A korrekciók alkalmazása 
miatt azonban a számítási eljárás többé már nem tekinthető variációs módszernek. 
Megkülönböztetésül, ha a Slater-determinánsok által kifeszített teljes térben közelítjük 
a sajátvektort, akkor ezt full(teljes)-CI (FCI) módszernek nevezzük. A FCI módszer 
variációs módszer és alkalmazása esetén nem lép fel a méretkonzisztencia-probléma. 
Számunkra a későbbiekben csak a FCI módszer és az azzal kapható sajátérték és 
sajátfüggvény lesz érdekes. 

Míg a HF alapállapoti Slater-determinánssal számított energia-várható érték az 
egzakt energia egy-determináns hullánfüggvénnyel elérhető legjobb közelítését adja az 
adott bázisban, a FCI alapállapot az összes Slater-determináns alterében a legjobb 
közelítés. Ezért általában azt várhatjuk hogy az alapállapoti Slater-determináns nagy 
súllyal szerepel az alapállapoti FCI hullámfüggvényben, így egy iteratív eljárás során 
alkalmas kiindulópontként szolgálhat. 

2.9 Sűrűségmátrixok 

A hullámfüggvény sokkal több információt tartalmaz, mint amennyi az egy- és 
kételektron-operátorok várható értékének kiszámolásához szükséges. Legfeljebb 
kételektron-kölcsönhatásokat tartalmazó Hamilton-operátor esetén egy kvantum-
mechanikai rendszer laírásához szükséges minden információ benne foglaltatik a 
másodrendű redukált sűrűségmátrixban. 

A sűrűségmátrix egy N-elektron-térbeli integráloperátor (projektor) magfüggvénye: 

r ( l , 2 , . . . , Nil ' , 2 ' , . . . , N') = 9(1,2,..., N)9'(l', 2',..., rf). (2.30) 

A redukált sűrűségmátrixok ennek részleges integrálásával állnak elő: 

rP ( l ,2 , . . . , p | l ' , 2 ' , . . . , p ' ) = 
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j*(l,2,...,N)V*(l',2',...:p',p+l,...,N)d(p + l)...dN, (2.31) 

ezeket p-edrendű redukált sűrűségmátrixoknak nevezzük. A másodrendű redukált 
sűrűségmátrixot 2-mátrixként is emlegetjük. A redukált sűrűségmátrixok nem pro-
jektorok. [14, 36, 41] Említést érdemel a sűrűségmátrix-formalizmussal kapcsolatos 
szóhasználat hagyományos következetlensége. A (2.30) és (2.31) formulák által 
definiált matematikai objektumok valójában inegráloperátorok. Ezért a (redukált) 
sűrűségoperátor elnevezés indokoltabbnak tűnik. Különösen akkor szembetűnő ez, 
amikor ezen operátorok egy bázisban felírt mátrixáról szeretnénk beszélni. Ilyenkor 
kínosan kell ügyelnünk a "mátrix mátrixa" szókapcsolat elkerülésére. E dolgozatban 
megmaradunk a hagyománynál, majd a szövegösszefüggésből fog kiderülni, hogy éppen 
az operátorra vagy annak mátrixára gondolunk. 

A sűrűségmátrixok egyik fontos alkalmazása operátorok várható értékének 
számolása. Az o1 egyelektron-operátor várható értéke megadható az elsőrendű re-
dukált sűrűségmátrixszal: 

< o 1 ^ >= NTr{olT1}. (2.32) 

A kételektron-operátorokra analóg módon a 

< > = ^ T r { o 2 r 2 } . (2.33) 

formula érvényes. A rendszer energiájának kiszámításához elegendő tehát a 
másodrendű redukált sűrűségmátrix ismerete. 

2.10 A sűrűségfunkcionál elmélet 

Megemlítjük a sűrűségfunkcionál elméletet (density functional theory, DFT), amely 
az energiát nem a hullámfüggvény, hanem az elektronsűrűség funkcionálj ának tek-
inti és a variációs elv alapján határozza meg. Ez az elmélet a Hohenberg-Kohn 
tételre épül (P.Hohenberg, W.Kohn 1964, [36, 37]). A tétel szerint a molekula 
alapállapoti egyelektron-sűrűségéhez egyértelműen hozzárendelhető az alapállapoti 
hullámfüggvény, így az egyelektronsűrűség az az alapvető mennyiség, melynek 
segítségével az alapállapot valamennyi tulajdonsága jellemezhető [12]. Mivel az elek-
tronsűrűségnek csak három változója van, ezért sokkal kevesebb számítási munkát 
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igényel az eljárás, ráadásul a korrelációt is tartalmazza. Azonban a kicserélődési-
korrelációs funkcionál nem ismert, ezért egzaktul nem alkalmazható az eljárás, közelítő 
funkcionálokat kell használni. Napjaink kvantumkémiai gyakorlatában széles körben 
használatosak a DFT módszerek és az azokra épülő hibrid eljárások [16, 17, 40]. A 
sűrűségfunkcionálelméletet nemrégen gerjesztett állapotokra is kiterjesztették [15]. 

A másodrendű redukált sűrűségmátrix a legegyszerűbb matematikai eszköz 
molekulák elektronszerkezetének tárgyalására, amely tartalmazza az elektronkor-

paramétereinek a száma. Kézenfekvő, hogy az energiát hatékonyabban lehetne 
minimalizálni, ha a 2-mátrix elemeit tekintenénk variációs paraméternek. Azon-
ban kiderült, hogy nem minden, egy adott véges bázisra vonatkozóan felírt mátrix 
tekinthető sűrűségmátrixnak. Azaz, nem mindhez adható meg egy 4/ hullámfüggvény 
úgy, hogy a (2.31) definíciót p = 2 esetre alkalmazva, az adott bázisban feírva a kívánt 
mátrixhoz jussunk. Amely mátrixhoz létezik hullámfüggvény (N-elektron függvény), 
arra azt mondjuk, hogy N-előállítható (N-reprezentálható). Tehát a mátrixelemek sz-
abad variálásával hamis mátrixok állnak elő, és ez azért jelent nagy gondot, mert ezek 
a hamis mátrixok alacsonyabb energiaértékeket adhatnak, mint az egzakt energia. A 
problémát meg lehetne oldani feltételes minimumkereséssel. Olyan feltételeket kellene 
kiszabni a mátrixokra, hogy a minimalizálás során csak N-reprezentálható mátrixok 
állhassanak elő. Más szóval, egy tetszőleges mátrixról el kellene tudnunk dönteni 
egyértelműen, hogy N-reprezentálható vagy sem. Vagy azt kellene tudnunk biztosítani, 
szintén matematikai feltételek alkalmazásával, hogy egy N-reprezentálható mátrixból 
kiindulva az elemek variációja során megőrződjön az N-reprezentálhatóság. Ilyen 
matematikai feltételeket még nem sikerült megfogalmazni. Ez az N-reprezentálhatósági 
probléma. [2] 

Mindenképp szót érdemel az a tény, hogy az egyelektron sűrűségmátrixok esetén 
ismerjük a szükséges és elégséges feltételeit az N-előállíthatóságnak. A p( 1) = T r j r 1 } 
egyelektron sűrűségre teljesülnie kell a következőknek [74, 12]: 

2.11 Az N-reprezentálhatósági probléma 

/ 

relációt. Általában lényegesen kevesebb eleme van, mint a FCI hullámfüggvény 

P(1) > o 

N 
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I |V/?(l)2|2dl < oo . (2.34) 

A másodredű redukált sűrűségmátrixra vonatkozó N-reprezentálhatósági feltételt elvi-
leg meg tudjuk ugyan adni, de a gyakorlatban is alkalmazható módon ezt nem sikerült 
megfogalmazni. A 2-mátrixnak az alábbi feltételt kell kielégítenie: 

Vi>, (2.35) 

ahol {Kv} az összes lehetséges redukált Hamilton-operátor halmaza, {Eu} pedig a 
K" operátorral jellemzett rendszer alapállapoti energiáját jelenti. Vagyis egy N-
reprezentálható 2-mátrixszal számolt várható érték bármilyen K esetén nagyobb vagy 
egyenlő az alapállapoti energiánál [35] [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80]. 

2.12 A kontrahált Schrödinger-egyenlet 

A kontrahált Schrödinger-egyenletet (contracted Schrödinger-equation, CSE) H. 
Nakatsui származtatta a Schrödinger-egyenletből (1976), [48]) az n-edrendű 
sűrűségmátrixokra (n-DE). Ezek az egyenletek lehetőséget adnak a redukált 
sűrűségmátrixok közvetlen, nem a variációs elven alapuló meghatározására. Az egyen-
letek többféle rendűségű sűrűségmátrixot tartalmaznak. Az egzakt megoldáshoz 
szükséges, sűrűségmátrixok közötti összefüggések még nem ismertek. Az eredményül 
kapott másodredű redukált sűrűségmátrix nem N-reprezentálható, de jó közelítéssel 
kielégít bizonyos feltételeket [35, H.Nakatsui]. A témában folyó igen intenzív ku-
tatómunka (C.Valdemoro, D.A.Maziotti) ellenére az eljárást nem sikerült egzakttá 
tenni [50, 55, 93, 94, 95]. 

2.13 A minimumkeresésről 

A teljesség kedvéért áttekintjük még a minimumkereséssel, mint matematikai feladat-
tal kapcsolatos alapfogalmakat, különös tekintettel az általam használt eljárásra. A 
minimumkeresés alatt a következőt értjük. Legyen adott egy 

f(x) : 9T 5R 

függvény (9? a valós számok halmaza, és x,s £ 97n). Keressük azt az x0 vektort, amire 
teljesül, hogy 

minxf{x) = f(x0) . 
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Egy függvény minimumában a függvény gradiense (V/) eltűnik, a második derivált 
tenzora (Hess-mátrix) pedig pozitív (szemi)definit. A minimumkereső eljárásokat 
osztályozhatjuk aszerint, hogy milyen információt használnak fel. Eszerint ismerünk 
csak függvényértékre támaszkodó (pl. Monte-Carlo módszer, véletlen séta algorit-
mus, rácsmenti keresés stb.), függvényértéket és gradienst felhasználó (pl. legmere-
dekebb lejtő, konjugált gradiens módszerek), valamint a függvényértéket, gradienst és 
a Hess-mátrixot (vagy másodrendű információkat) is felhasználó (pl. Newton- és kvázi-
Newton típusú) eljárásokat. Mi csak az utóbbiakkal foglalkozunk a továbbiakban. 

A Newton- és kvázi-Newton típusú algoritmusok a függvény kvadratikus modelljén 
alapulnak, tehát az alábbi alakban közelítik: 

Itt G a második deriváltat jelöli. A függvényt minimalizáló vektort a 

V f ( x + s) = 0 

egyenletrendszer megoldásával állítják elő. A modellt definiáló egyenlet jobb oldalának 
gardiensét behelyettesítve a fenti egyenletbe ezt kapjuk: 

Vagyis a kvadratikus függvény minimumába mutató vektort egy lépésben ki tudjuk 
számítani első és második deriváltjának ismeretében. Ha nem kvadratikus a függvény, 
akkor ezen formulán alapuló iteratív eljárással is lehet keresni a minimumát (Newton-
módszerek). Azonban sokváltozós függvények esetében a Hess-mátrix kiszámolása és a 
vele végzett műveletek igen sok számolási munkát igényelnek. A kvázi-Newton típusú 
módszerek csak a gradiens ismeretét kívánják meg, a Hess-mátrixot (illetve inverzét) 
pedig valamilyen módon közelítik, a számolás során pedig javítják. Az eljárás lényege, 
hogy adott Xk pontban a gardiens és a Hess-mátrix inverze közelítésének (H) fel-
használásával meghatároznak egy vektort (u), majd megkeresik az f(xk+au) függvény 
a szerinti minimumát (lineáris keresés), ez lesz az Xk+i- Végül a H mátrixot is 
megváltoztatják adott ("korrekciós") formula szerint. A leghatékonyabb korrekciós 
formulák egyike az ún. BFGS-formula (Broyden-Fletcher-Goldfárb-Shanno után) 

f{x + s) « f(x) + V/(x) • s + ^sGs . 

-G~lVf(x) = s. 

[31, 32, 33, 34]: 

Hk+! = Hk + ( 1 + l
T

kHklk,5k8l ők(rfHk) + (Hklk)8T
k ) (2.36) 

áÍ7k ¿lik ¿¡fi* 
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ahol 

6k = xk+i - xk 

LK = V/(XFC+I) - V/(®*)-

Megemlítjük, hogy ez az eljárás kvadratikus függvényen legfeljebb n + 1 lépésben találja 
meg a minimumot. Ha nem kvadratikus a függvény akkor természetesen ennél több 
lépés várható általános esetben. A kvázi-Newton módszerek általános tulajdonsága, 
hogy lokális minimumokat találnak meg. 



3. Fejezet 

N-reprezentálható sűrűségmátrixok 
előállítása 

Ebben a fejezetben bemutatjuk azt a módszert, amelyet N-reprezentálható 
sűrűségmátrixok előállítására fejlesztettünk ki. Származtatjuk a FCI hullámfüggvény 
másodredű redukált sűrűségmátrixának geminálbázisban felírt alakját. Olyan mátrixot 
adunk meg, amely a sűrűségmátrix szerkezetét meghatározza (szerkezeti mátrix), meg-
mutatjuk néhány tulajdonságát. A szerkezeti mátrix elemeit olyan alakba írjuk, 
amely lehetővé teszi a sűrűségmátrix elemeinek hatékony kiszámítását. Ismertetjük 
a sűrűségmátrix előállítására szolgáló algoritmust, amely egyúttal lényegében az ener-
gia gradiensének komponenseit is szolgáltatja. [97, 104] 

3.1 A másodredű redukált sűrűségmátrix 

Induljunk ki egy {V,í}»=i...a/ ortonormált egyrészecskebázisból. Mint említettük, 
a bázisfüggvényeket gyakran HF-SCF módszerrel kapjuk meg, ez azonban nem 
szükséges, csupán az ortonormáltságot követeljük meg. Az ezekből felépíthető Slater-
determinánsok ($a) által kifeszített \i dimenziós alterében az egzakt hullámfüggvényt 
FCI típusú függvénnyel közelítjük: 

A másodredű redukált sűrűségmátrix definíciója az (2.31) formulából származtatható: 

(3.1) 

r ( 2 )(l , 2; l', 2') = I $(1,2,3, . . . , N)V{l', 2', 3 , . . . , N) d3... dN. (3.2) > • 

24 
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Ebbe behelyettesítjük a hullámfüggvény alakját: 

r ( 2 ) ( i , 2; 1', 2') = / E E CK d 3 • • • d N • (3-3) 
J Q=1 0=1 

A további átalakításhoz fejtsük ki a determinánsokat az első két soruk szerint, ún. 
Laplace-kifejtéssel: 

...,N) = -±=det{ipai (1),..., ij>aN (N)} = 

^ E A^(L>2)apJ(3,...,iV), (3.4) 
{i,j:Í<j}CIa 

ahol 
a

9i!j(l, 2) = - ^ ( 2 ) ^ ( 1 ) i,3 <= Ia ési<j (3.5) 

anitszimmetrikus kételektron-függvény (geminál) és 

V j ( 3 , . . •, N) = det{i>a. (3), ^ ( 4 ) , . . -, ̂ Q'NJN)} (3.6) 

a pij-hez tartozó adjungált geminál, azaz a <í>a determináns-hullámfüggvény első két 
sorának valamint i. és j. oszlopának kihúzásával adódó aldetermináns (szintén 
függvény). Az adjungált geminál maga is rendezett determináns, az a'j számok az 
I a \ { i , j } halmaz elemei. A fenti (3.4) Laplace-kifejtésben az i , j index-párok befutják 
az I a halmaz minden kételemű részhalmazát. Mindezt behelyettesítve a (3.3) for-
mulába, az összegzések átrendezése után a másodredű redukált sűrűségmátrixra az 
alábbi kifejezést kapjuk: 

M 
r(2>(l,2;l ' ,2 ')= Y. ^ ( 1 - 2 ) 0 ^ ^ ( 1 ' , 2 ' ) , (3.7) 

i<j,k<l 

ahol 

Öí jw = ¿ r E Wfi í XA3- • • •> N ) V ; ( 3 , ...,N)d3...dN (3.8) 
iy-<*,P=i J 

nem más, mint a másodredű redukált sűrűségmátrix geminál bázisban. Látszik, hogy 
a 0 kifejezésében az adjungált geminálok ortogonalitása miatt az integrál számértéke 
±(N — 2)! vagy 0 lehet. Célszerűnek láttuk bevezetni az alábbi szerkezeti mátrixot: 

V l f ' 1 = ^ 2 ) 1 / " ' " • • N ) • • > N ) d 3 - - - d N - ( 3 - 9 ) 

Ebben a képletben az V indexei bármilyen értéket felvehetnek. Abban az esetben, 
amikor j } C Ia vagy a {A;,/} C Ip feltételek valamelyike nem teljesül,.a kijelölt 
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matematikai művelet értelmét veszíti, de ekkor a értékét nullának definiáljuk. 
A 2-mátrix ezzel egyszerűbben adható meg: 

6y«(c) = ^ n 1 t Ca$ V j f ' = V"**} , (3.10) 
a,0=1 

ahol CQ,/j = cac*p . Eddigi formuláinkban figyelembe vettük, hogy a hullámfüggvény 
általában komplex. Azonban az energia-várható érték számításakor a fázis 
lényegtelen, ezért a tárgyalás általánosságának megsértése nélkül valósnak tekinthetjük 
a hullámfüggvényt. A dolgozat hátralevő részében tehát valósnak tekintjük mind az 
egyrészecske-függvényeket s velük együtt a Slater-determinánsokat is, mind a kon-
figurációs együtthatókat. Ezzel elkerüljük a formalizmus felesleges bonyolítását. 

3.2 A szerkezeti mátrix tulajdonságai 

A szerkezeti mátrix nevét onnan kapta, hogy csak az eletronok és a 
bázisfüggvények számától függ, valamint attól a feltételezéstől, hogy ortonormáltak 
az egyrészecskefüggvények, valamint a determinánsok antiszimmetriájától. (Megje-
gyezzük, hogy bozonrendszerekre is lehet analóg módon szerkezeti mátrixot definiálni, 
ahol a hullámfüggvény nem antiszimmetrikus, de ezzel a kérdéssel itt nem foglalkozunk, 
csak elektronrendszerek tárgyalására szorítkozunk.) Szerkezeti mátrixunk tehát 
független nemcsak az egyrészecskefüggvények alakjától, hanem a renszertől is. A 
mátrix elemei háromfajta számértéket vehetnek fel: ±1 és 0. 

Vizsgáljuk meg a mátrix méretét! A geminálokat rendezett indexekkel állítottuk 
elő, azaz mindig i < j illetve k < l. A geminálok száma annyi, ahányféleképpen ki 
tudunk választani M elemből kettőt, azaz . A mátrix elemeinek száma tehát 

Ez igen nagy szám lehet viszonylag kis rendszerekre is. Például N = 5 és M = 10 esetén 
6 350 400, N = 10, M = 20 esetén már kb. 6.91 • 1013. Azonban látni fogjuk, hogy 
ez nem okoz problémát, mert csak kevés mátrixelemet kell kiszámolni, és még azokat 
sem muszáj tárolni, mert létezik olyan algoritmus, amivel gyorsan kiszámolhatok. 

Jellemző, hogy a V mátrixnak kevés nem nulla eleme van. Rögzítsük az i,j]k,l 
indexhalmaz elemeit úgy, hogy mind különböző legyen, majd vizsgáljuk meg, hogy az 
ehhez tartozó a, ¡3 indexű elemek közül mennyi tér el nullától. Annyi, ahány adjungált 
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aldeterminánst tudunk készíteni a i>i,i/>j,ipk,i>i egyrészecskefüggvények kihagyásával, 
ezek száma éppen (^z f ) • Ilyen index-kombináció 6 • van. Abban az esetben, 
ha a négy index közül kettő megegyezik, pl. i = k, vagy i = l stb.,- ezeket össze-
foglalóan i, j, j, /-típusú kombinációknak nevezzük- a nem nulla mátrixelemek száma 
(yv-2) ®s üyen kombinációból 2 • van. Végül a fentiekkel analóg beszédmód sze-
rint az i,j;i,j indexkombinációkból van, és mindegyikhez n e m nulla elem 
tartozik. Látható, hogy a V ritka mátrix, tehát elemeinek nagy része nulla. 

A mátrixon belül a ±1 elemek elhelyezkedéséről is tehetünk kijelentéseket. A leg-
fontosabb megállapítás a sűrűségmátrix szimmetrikus voltából következik: 

K f * = V k ^ . (3.11) 

A (3.9) egyenletből adódik, hogy: 

# 0 V j * w = 0. (3.12) 

Továbbá igazak még az alábbiak: 
Vi,j,;k,l _ rj Ka,a u> 
yi,j,;j,l _ 0 Ka,a u> 

= 1 vagy 0, 

K f ' j = 0. 

Számos további szabályszerűség is felismerhető a nemeltűnő mátrixelemek elhe-
lyezkedésében és az almátrixok egymáshoz való viszonyában [104]. 

3.3 A szerkezeti mátrix elemei 

Az eddig felvázolt formalizmus sajátossága, hogy nagy szerep jut benne a V szerkezeti 
mátrixnak. Ezért alapvető kérdés, hogy milyen módon tudjuk előállítani és felhasználni 
ennek mátrixelemeit. [97] 

Mindegyik antiszimmetrizált szorzat-függvényhez kölcsönösen egyértelműen 
hozzárendelünk egy számot. Korábban láttuk, hogy minden Slater-determinánst 
a hozzá tartozó I a = {0:1,... ,0:^} indexhalmazzal azonosíthatunk, amely a de-
terminánst felépítő egyrészecske-függvények indexeit tartalmazza. Ehhez a kon-
figurációhoz rendeljünk hozzá egy m a számot a következőképpen: 

m a = f ] 2*. (3.13) 
¿=1 
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Ezen számok kettes számrendszerbeli alakja legfeljebb M jegyű és pontosan N 
helyiérték 1, a többi 0. Analóg definícióval számokat rendelhetünk a geminálokhoz 
(rriij) és az adjungált geminálokhoz (m?) is. Ezeknek a kettes számrendszerbeli alakja 
szintén legfeljebb M jegyű szám, de nem N, hanem pontosan kettő illetve N — 2 nem 
nulla helyiértékkel. A determinánsokhoz, geminálokhoz és adjungált geminálokhoz 
ilyen módon hozzárendelt számok mind különbözőek, a hozzárendelés kölcsönösen 
egyértelmű. Továbbá érvényes közöttük az alábbi összefüggés: 

mfj = m a — rriij. (3-14) 

Látható, hogy a nulla vagy nem nulla volta az integrandusban szereplő adjungált 
geminálok ortogonalitásán múlik. Mivel az egyrészecske-függvények ortonormáltsága 
miatt az ezekből képzett N — 2-es determinánsok ortogonálisak egymásra, az integrál 
csak akkor nem nulla, ha ag^j = vagyis az előjeltől eltekintve azonosak. Más 
szavakkal, a és a <&p determinánsokat jellemző Ia és 1$ indexhalmazok N — 2 
eleme megegyezik, csak az egyikben levő i, j helyett k, l szerepel a másikban. A két 
indexhalmaz viszonya egymáshoz: 

Ip = (Ia\{i,j})u{k,l}. (3.15) 

Az i,j és k,l általában különböző egymástól, de lehet részben vagy teljesen azonos is. 
Készítsük el az m a és rriij számokat és tároljuk őket egy-egy vektorban. Adott 

V J * " mátrixelem nulla, ha 

m a — rriij ^ m p ~ mki• (3.16) 

Ha egyenlőek, akkor még nem biztos, hogy a mátrixelem nem nulla, mert előfordulhat 
az is, hogy {i,j} $ IQ és {k,l} £ Ip, és az (3.16) egyenlőség teljesül. Ezt a hamis 
esetet tehát ki kell és lehet az algoritmus megfelelő szervezésével szűrni. Végül, ha 
a mátrixelem valóban nem nulla, akkor meg kell adni az előjelét, ami nem más, 
mint az adjungált geminálok előjelének szorzata. Az adjungált geminálok előjelét 
a szokásos definíció szerint határozzuk meg. Ha egy determinánsból "kihúzzuk" az 
Si, s2 •.. számú sorokat és az Oi, 02... számú oszlopokat, akkor a keletkező minor előjele: 
_pi+s2+...+oi+o2+... Esetünkben, mint emlékszünk, az első két sor szerinti kifejtésről 
van szó, így Si = l , s 2 = 2 mindig. Az oszlopok sorszáma már komolyabb gondot 
okoz. Meg kellene adni ugyanis, hogy pl. az i index az Ia indexhalmaz elemei közt 
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nagyság szerint hanyadik. Azonban mi csak az m a számot jegyeztük meg, az index-
halmazt nem. Természetesen ez is kideríthető, ha az m a bináris alakját vizsgáljuk. E 
rövid áttekintés is megmutatja ennek a módszernek az előnyeit és hátrányait. Előnye, 
hogy a V mátrix nem nulla elemei gyorsan kiszűrhetők, valamint a nem nulla ele-
mek számolását bitműveletekkel meg lehet oldani. Hátránya, hogy az egész típusú 
változók értelmezési tartományát hamar kimerítik az m a számok, ami miatt nehézkes 
az implementálása. A nem nulla mátrixelemek tárolása nagy memóriát igényel, az 
újraszámoláshoz viszont elegendően gyorsan futó kódot nehéz készíteni. 

Előállíthatók azonban a V mátrix nem nulla elemei ennél hatékonyabban is, amely 
nagyon előnyös lesz speciálisan az elektronkorrelációs probléma tárgyalása során. 
Ne feledjük el, hogy amikor konkrét fizikai problémákat vizsgálunk, számunkra a 
másodredű redukált sűrűségmátrix kiszámítása az elsődleges fontosságú, hiszen ezzel 
minden szükséges mennyiség megadható. Visszatérünk egészen a másodredű re-
dukált sűrűségmátrix (3.8) kifejezéséhez. A könnyebb áttekinthetőség kedvéért itt 
megismételjük (de valós esetre szorítkozva): 

4 t / ..., ..., N) d3... dN = 

= Tü E [ c«*&3> • • •. •N) •••,N)d3...dN (3.17) 

Ez az egyszerű átrendezés azt sugallja, hogy a másodredű redukált sűrűségmátrix 
egy eleme úgy is felfogható, mint az adjungált geminálok által kifeszített vektortér 
két vektorának skalárszorzata. Most átírjuk a kifejezést úgy, hogy az adjungált 
geminálokra legyen benne összegzés. Lássuk el sorszámmal az adjungált geminálokat 
1-től (A^2)-ig- Valójában az "adjungált geminál" megnevezést a geminálokkal és 
a Slater-determinánsokkal fennálló összefüggés diktálja, azonban ezek önmagukban 
is értelmezhető determináns-függvények (N-2 elektron függvények), halmazukat így 
jelöljük: {</*}, A = 1, • • •, valamint a gf determináns-függvényt felépítő 
egyrészecske-függvények indexeinek halmazát így: I\ . A geminálokat is ellátjuk 
sorszámmal: {</«},«; = 1 , . . . , illetve az adott geminált felépítő egyrészecskepályák 
indexeinek halmaza: IK. Ezek a számozások tetszőlegesek, csak a beszédmód 
egyszerűsítését szolgálják. Az N-, N - 2-, és 2-elektron-függvények halmazaiból 
véve egy-egy elemet index-hármasokat választhatunk ki: {a,A,«}. Vegyük észre a 
következőt. Azokat az indexhármasokat, amelyekre érvényes a 

Iq\IK = h (3.18) 
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összefüggés, bármely két eleme meghatározza. Ha ismert Ia és IK, akkor a megfelelő 
halmazművelettel megkapható I \ és ebből A is. Más szavakkal, most azt az egyszerű 
tényt igyekszünk formálisan leírni, hogy egy determinánsban egy geminálhoz egy és 
csakis egy adjungált geminál tartozik. Ugyanakkor az is igaz, hogy egy geminálnak egy 
bizonyos N — 2 elektron függvény csak egy determinánsban lehet az adjungáltja (vagy 
egyben sem). Vagyis, ha ismerjük a {«, A} párost, akkor meg tudjuk mondani az a-t, 
vagy azt, hogy nincs ilyen a. Ezt az összefüggést a jelölésben így juttatjuk kifejezésre: 
q(k, A), vagy a(i,j\ A), ahol k = {i,j}. Annak érdekében, hogy teljesen következetes 
legyen a jelölés, a c vektort bővítsük egy c0 = 0 elemmel, az a(i, j\ A) pedig legyen 0 
akkor, ha az I\ U {i,j} indexhalmaz elemei nem mind különbözőek (vagyis az adott 
geminálhoz nem létezik olyan determináns, amiben a gf az adjungáltja lenne). Azt 
is meg tudjuk mondani az indexhalmazokból, hogy a g~l aldeterminánsnak mi lesz az 
előjele a $ a Slater-determinánsban. Ezt az előjelet fejezze ki az u(k, A) illetve uj(i,j\ A) 
függvény. 

A (3.17) egyenlőség második feléből kiindulva az indexek fent említett összefüggését 
kihasználva további átalakításokat végzünk: 

= F E / • • •,N) cMÁ3,...,N)d3...dN 

1 r 
= JpHJ Ca(i,j;A) U){i,j\ A)1^(3, • •., N)-

A, A' 

• cmi;x) u(k, l; A') g+ (3 , . . . , N) d3... dN > 

= f (3, • • • i N)gy (3 , . . . , N)d3... dN 

= (3-19) 

Az átalakítás lényege, hogy az a, ¡3 indexek szerinti kettős összegzésről áttértünk a 
A, A' indexpár szerinti összegzésre, majd vektor skalárszorzat alakra hoztuk a kife-
jezést. A A, A' indexpár szerinti összeg sokkal kevesebb tagú, mint az a, ¡3 szer-
inti, de csak olyan tagokat hagytunk el, amelyek nullák. A másodredű redukált 
sűrűségmátrix mátrixelemeit tehát tenzorok trace-skalárszorzata helyett vektorok 
skalárszorzata alakjában sikerült megadni. Ezzel a V mátrixban tárolt információt az 
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energia vérható érték kiszámítása szempontjából előnyösebb alakban reprezentáltuk. 
A fenti formulában D betűvel jelöltük az N — 2 -es determinánsok bázisán értelmezett 
alábbi vektorokat: 

Did:DÍf = ca{i<j.iX)u(i,j;X). (3.20) 

Ezzel a jelöléssel a sűrűségmátrix elemei így adhatók meg: 

(3-21) 

ahol 
(M — 2\ 

" = l " )• 
A fenti formalizmus előnye a számítások végrehajtása során mutatkozik meg. A 

(3.10) egyenlet a Qi,j-,k,i mátrixelemek kiszámításához megkívánja, hogy minden i, j\ k, l 

indexhez kiszámoljuk a V mátrix elemeit. Azonban az ott szereplő összeg tagjai a (3.18) 
összefüggés alapján a következőképpen írhatók: 

CaCpV^ = DifDl'1 úgy, hogy a = a(i, j ; A),/3 = P(k, Z; A). (3.22) 

Vagyis, a másodredű redukált sűrűségmátrix elemeinek kiszámolásához minden in-
formáció megtalálható a Dl'j vektorokban. Ez darab, dimenziós vektort 
jelent, melyeknek sok komponense még mindig nulla. A vektorok annyi adatot jelen-
tenek, mint amennyi a V mátrix i,j)i,j indexű elemeinek (tehát csupán a 0 diagonális 
elemeihez szükséges rész) összessége. 

Fontos kérdés még számítástechnikai szempontból, hogy a D1'* vektorokat, illetve 
az előállításukhoz szükséges mintázatokat a számolás során mindig újra előállítjuk, 
vagy tároljuk. Világos, hogy a tárolás és beolvasás jelentősen gyorsítja a számítás 
elvégzését. Ugyanakkor egy bizonyos határon túl (ami nem más, mint a számítógép 
memóriája) nem valósítható meg a tárolás. Ebben az esetben úgy kell eljárnunk, 
hogy újraszámoljuk a vektorokat, amikor szükség van rájuk. Ez nem jelent 
problémát, mert erre a feladatra megfelelő gyorsaságú algoritmust és kódot lehet 
készíteni. Természetesen ennek az eljárásnak a gépidő mégiscsak határt szab, azonban 
egyre gyorsabb processzorok alkalmazásával, illetve párhuzamosításukkal a számítások 
határai jelentős mértékben kitágíthatok. 
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3.4 A sűrűségmátrix elemeinek kiszámítása 

Az alábbiakban leírom azt az algoritmust, amelyet kifejlesztettem a sűrűségmátrix 
elemeinek kiszámítására, egyben az energia gradiensének kiszámítására is. Az alábbi 
sémában a STEPD, STEPG, STD1, STD2 egész számok, az S((^),2) pedig egy ( f ) x 2 
méretű valós típusú tömb. A sűrűségmátrix elemeit a valós tömbben 
tároljuk. A Oij-kj négy indexéből úgy lett kettő, hogy a geminálokat sorszámmal láttuk 
el, így most az i,j indexpár egy számnak felel meg, hasonlóan a k,l is. Valójában 
a 0 mátrixnak csak a felső triangulárisát állítjuk elő. A a konfigurációs 
együtthatókat tartalmazó vektor, <7((w)) pedig az F(c) függvény gradiense. Használni 
fogom az előző alfejezetben bevezetett jelöléseket. 

1. START 

2. inicializálás, STEPD=0, STEPG=0, 0 minden eleme=0 

3. Ix léptetése, STEPD=STEPD+1 

4- {h j ) = IK. C ( 1 . . . M}\Is indexpár léptetése 

5. STEPG= a geminál sorszáma 

6. S(STEPG,l)=a(z,;;A) 

7. S(STEPG,2)=u;(z,j;A) 

8. GOTO 4, mindaddig, amíg az összes indexpárt fel nem soroltuk 

9. DO STD1=1,(^) 

10. DO STD2=STD1,(*Í) 

11- ®STDl,STD2 = ®STD1,STD2 + 

cS(STDi,i) * S(STD1,2) * C S ( S T W ) * S{STD2,2) 

12. 9S(STDI,i) = 9S(STDI,I) + CS(STD2,Í) * S(STD1,2) * S(STD2,2) 

13. 9S(STD2,I) = 9S(STD2,I) + cs(5toi,i) * S(STD 1,2) * S(STD2,2) 

14. ENDDO STD2 

15. ENDDO STD1 
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16. GOTO 3, minaddig, amíg az összes I\ halmaz sorra nem került 

17. END 

A fenti algoritmus szavakban így foglalható össze. A (3.21) skalárszorzatokat számoljuk 
ki úgy, hogy a JDlJ vektorok mindegyikének egyidejűleg csak a A. elemét tároljuk. 
A vektorok elemei nem közvetlenül, hanem az S tömbben kódolva állnak elő, a 
következőképpen (1. 6. és 7. lépés): 

dstepd = cs{stepg,\) * S(STEPG, 2) . (3.23) 

Az algoritmus kikerüli a nulla elemeket, csak a D y nem nulla elemeit állítja elő. A 
6. lépésben a sorszám hozzárendelése egy konfigurációhoz alkalmas számozás esetén 
megoldható egy M x N méretű tömbben tárolt, az algoritmus során nem változtatott 
számok legfeljebb N tagú összegeként. Az I a indexhalmaztól függően kevesebb tagú 
is lehet ez az összeg. 

Az algoritmus egyúttal az F(c) függvény gradiensét is előállítja (11., 12. lépések). 
A minimumkeresés szempontjából, különösen, ha a változók száma nagy, fontos kérdés 
az, hogy a függvényérték és a gradiens vektor egyszeri előállítása mennyi időt vesz 
igénybe. Esetünkben a fent leírt algoritmussal igen hatékonyan lehet az energiát és 
gradiensét számolni. 



4. Fejezet 

Elektronrendszerek korrelációs 
energiájának számítása 

Az előző fejezet eredményeire alapozva a korrelációs energia számítására mutatunk be 
három eljárást (C-, B-, D-algoritmusok). [102, 103, 104, 106] 

4.1 Az energia és gradiensének kifejezése 

A rendszer hullámfüggvényének egy közelítését a (3.1) formulában szereplő c 
együtthatóvektor definiálja, amit a tárgyalás általánosságának megsértése nélkül 
valósnak tekinthetünk. A (2.8) és a (2.33) egyenletek alapján az energia várható értékét 
a következő alakba írhatjuk: 

(4.1) 

ahol 

(4.2) 

= E E . 
fi M 1 £ 

a,0=1 i<j,k<l 

ahol K nem más, mint a K redukált Hamilton-operátor mátrixeleme 

(4.3) 

34 
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Az F(c) függvény c szerinti gradiensének egy komponense pedig így írható: 

dF 
dca 

i ti m 
= 5 E £ * KkAitj(v:f'1 + . (4.4) 2 

c ' 0 = 1 i<j,k<l 

4.2 Az energia minimumának keresése 

A molekula nemrelativisztikus alapállapoti energiájának legjobb közelítését a Slater-
determinánsok alterében a (3.1) függvényalakkal az energia c együtthatóvektor szerinti 
minimumának megkeresésével kapjuk. 

A minimunkeresés célfüggvényének változói a c együtthatóvektor komponensei. A 
|c| = 1 feltételt úgy vesszük figyelembe, hogy az energia (4.1) Rayleigh-hányadosát 
minimalizáljuk. Ennek gradiense így írható: 

_ . V F - 2Fc „ 
V c E ( c ) = í^p ' ( 4 5 ) 

itt felhasználtuk, hogy 

Vc |c|2 = 2c. 

Esetünkben az E energiával egyidejűleg kiszámítható a VE. Vagyis a gradiens 
kiszámítása nagyságrendileg nem növeli a felhasznált gépidőt. Ez az egyik fő oka annak, 
hogy a minimumkereséshez, mint korábban említettük, egy kvázi-Newton módszert 
választottunk. Ezt az eljárást a későbbiekben röviden C-algoritmusnak fogjuk nevezni 
[103]. 

4.3 A redukált Hamilton-operátor mátrixa 

Eddig a sűrűségmátrixszal foglalkoztunk, megnéztük, hogy lehetne minél 
hatékonyabban előállítani. Ha számunkra az energia érdekes, mert azt szeretnénk mi-
nimalizálni, akkor tanulságos megvizsgálnunk a redukált Hamilton-operátor mátrixát, 
a K-t is. 

Mint említettük, a K mátrixelemei az egy- és kételektron-integrálok fel-
használásával kiszámíthatók. Munkánk során standard kvantumkémiai programcso-
magokkal végeztük el a HF-SCF számolást. Először az integrálokat MO bázisra transz-
formáltuk, ezután következett a K elemeinek felírása. Ehhez tudnunk kell pontosan, 
hogy milyen kapcsolatban vannak a geminálok a i = l,...,M molekulapályákkal. 



4.3. A REDUKÁLT HAMILTON-OPERÁTOR MÁTRIXA 36 

A geminálokat a i = 1,..., 2M spinpályákból építettük fel, melyek a ip moleku-
lapályákkal az alábbi kapcsolatban vannak: 

V>2k-1 = i M <P2k = ipkfi- (4.6) 

Ezzel a formulával a tér- és spinfüggvény adataiból egyértelműen tudjuk képezni a 
spinpályák sorszámát és fordítva is. Azonban, ha majd később a spinpálya számából 
meg kell mondani a tér- és spinfüggvényeket, akkor a formulák felesleges bonyolításának 
elkerülése végett az alábbi jelölést követjük: tpi —> ipi<Ji, ahol a 0/ vagy a vagy /?. Mivel 
a molekulapályák és a spinfüggvények is ortonormáltak, ezért a spinpályák is azok 
lesznek: 

J Vk<Pi = 5ki (4.7) 

A geminálok a spinpályák antiszimmetrizált szorzatai: 

2 ) = <Pi{l)<Pj(2) - ipj(\)ipi{2). ( 4 . 8 ) 

A redukált Hamilton-operátor geminálok közti mátrixelemei tehát, a (2.7) és a (4.3) 
definíciók figyelembevételével, valós esetre szorítkozva: 

Kiá-M = / 9i,Á 1,2) K( 1,2) gktl( 1,2) dld2 = 

= f (y>i(l)tpj(2) - ^ ( 1 ) ^ ( 2 ) ) ( ^ ( h ( l ) + h(2)) + k( 1,2)) 

•(v?fe(l)vi(2) — <pi{l)ipk{2))dld2 = 

= jj^iihikSjiSik - huöjkSa - hjkőuSjk + hjiőikSji) + 

2{kijkiSikSjl - kijikSuSjk) (4.9) 

Az utolsó lépésben alkalmaztuk az 

= / * ( l ) < * ( l ) d l = / * i ( 2 M 2 ) d 2 = l 1
n

, ^ Í + ll ^ (4-10) J J [ 0, ha % + k paratlan 

jelölést, valamint a kételektron integrálok indexeinek felcserélésére vonatkozó szabályt. 
A 

A híj és kijki a h illetve a k operátorok (1. (2.4) és (2.5) képletek) mátrixelemei. 
Most térjünk vissza az energia kifejezéséhez: 

E(c) = ( ^ { A r e } = ( ^ ) Ek<i (4-11) 

Kihasználtuk, hogy a mátrixok szimmetrikusak (önadjungáltak). A sűrűségmátrix 
azon mátrixelemeit, amelyek szorzója, azaz az azonos indexű K mátrixelem nulla, 
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felesleges kiszámolni. Ezek nem adnak járulékot sem az energiához, sem annak gradi-
enséhez (1. 4.4 formula). Ezek kihagyásával számítási munkát takaríthatunk meg. A 
K mátrixnak n = = 4M4 - 4M 3 + M2 eleme van összesen, melyek két okból 
tűnhetnek el: a spin- és a térszimmetria miatt. 

Ha a (4.6) képlettel definiált spinpályákat használjuk, akkor megadható, hogy hány 
mátrixelem tűnik el a spinfüggvények ortonormáltsága miatt. Ismert, hogy a redukált 
Hamilton-operátor különböző sz kvantumszámú geminálok (2 x 2-es determinánsok) 
közti mátrixeleme a spinfüggvények ortonormáltsága miatt eltűnik. A geminálok sz 

kvantumszáma +1,0 vagy —1 lehet. Az sz = ±1 geminálokból (A
2
;) db van, az sz = 0 

kvantumszámúból pedig M2 db. A spin miatt nem eltűnő mátrixelemek száma tehát 
n' = 2(2') + M4 = ~ - M3 + !y~. Ez a szimmetria tehát nagyságrendileg nem 
csökkenti a mátrixelemek számát, viszont a vizsgált molekuláris rendszertől függetlenül 
mindig fennáll. 

Eltűnik a mátrixelem akkor is, ha van térszimmetriája a rendszernek, és a két 
geminál, amelyek közt képezzük a mátrixelemet a szimmetriacsoport más-más ir-
reducibilis ábrázolásához tartozik. Mivel azonban a térszimmetria esetleges, nem 
foglalkozunk vele részletesen. Azonban illusztrációként néhány térszimmetriával bíró 
molekulára megadtuk a nemeltűnő elemek számát. A 4.1. táblázatban illusztráljuk a 
fentebb elmondottakat. Feltüntettük a vizsgált rendszert, az elektronok számát (N), 
a spinpályák számát (M), a Slater-determinánsok számát (p), a K összes (n), illetve 
a spin miatt eltűnő elemeinek elhagyása után megmaradó mátrixelemeinek számát 
(n'), végül a 10-l2-nél nagyobb abszolút értékű elemek számát (n"). Vannak sorok, 
ahol rendszer és n" nem szerepel, ezekben az esetekben nem vizsgáltunk meg konkrét 
molekulát, de a fenti formulák kiszámíthatóak. 

4.4 A változók számának csökkentése 

A c konfigurációs együttható-vektor komponensei szerinti minimumkeresés változóinak 
száma, mint láttuk, p = Ez a szám igen gyorsan növekszik az M és N 
növekedésével. Ezért fontos kérdés az, hogy milyen lehetőségek vannak a változók 
számának csökkentésére úgy azonban, hogy a variálás során a teljes konfigurációs teret 
bejárhassa a c vektor. 

Bálint Imre javaslatára a c vektort speciális módon variáljuk. Vegyünk fel egy 
kiindulási próba-vektort, ezt nevezzük c0-nak. A variálást az alábbi formula szerint 
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4.1. Táblázat: Feltüntettük a vizsgált rendszert, az elektronok számát (N), a spinpályák 
számát (M), a Slater-determinánsok számát (fj), a K összes (n), illetve a spin miatt 
eltűnő elemek elhagyása után megmaradó mátrixelemeinek számát (n'), végül a 10-12-
nél nagyobb abszolút értékű elemek számát (n"). 

molekula n m m n rí n" 

Li 3 10 120 2 025 825 141 
LiH 4 12 495 4 356 1 746 594 
LÍ2 6 20 38 760 36 100 14 050 2 906 
c 6 20 210 2 025 825 141 
HF 10 12 66 4 356 1 746 594 
H 2 0 10 14 1 001 8 281 3 283 1 043 
n h 3 10 16 8 008 14 400 5 664 3 552 

c h 4 10 18 43 758 23 409 9 153 9 005 
- 10 20 184 756 36 100 14 050 -

- 10 30 30 045 015 189 225 72 675 -

- 12 30 86 493 225 189 225 72 675 -

- 14 30 145 422 675 189 225 72 675 -

- 14 35 148 877 026 354 025 120 513 -
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végezzük: 
M 

C = C0+ Y (4.12) 
i<j,k<l 

A variációs paraméterek a b vektor komponensei. így a sűrűségmátrix és az annak 
megfelelő energia is a b vektor függvénye E(c) = E(c0 ,b). Az E(c0 ,b) funkcionált 
minimalizáló b^ i n vektor meghatároz egy új c vektort a 4.12 formula szerint, amit 
jelöljünk cx-gyel. Vagyis 

minb E(c„,b) = E(co,b^ n ) = E(cx). 

Ezzel a Ci vektorral újra kezdhető az eljárás. 
így a konfigurációs együttható vektorok egy sorozata áll elő: c0, Ci, c2 , . • •, C{. Az 

ezekhez tartozó energia-várható értékek monoton csökkenő sorozatot alkotnak: Eq > 
Ei > E2 > • • • > Ei. E sorozat minden tagja felső korlátja a minimális energiának, a 
c, sorozat pedig a cmj„ sajátvektorhoz konvergál. 

4.5 A B-algoritmus 

A későbbiekben sokszor kell használnunk az {z, j; k, 1} indexhalmazt olyan módon, hogy 
nem lesz lényeges az egyes elemeinek ismerete. Ezért bevezetjük az {i,j]k, 1} = x 
jelölést. A c vektort a (4.12) formula szerint így írjuk: 

c = co + $>xV0 x (co) . (4-13) 
X 

Ebben a formulában tehát az összegzés végigfut az összes {i,j\ k, 1} index-kombináción. 
A következőkben a V0X alatt mindig a V0x(co) gradienst értjük. 

írjuk fel az energiát, mint a b vektor függvényét. Kiindulunk az F(c) (4.2) for-
mulájából, majd behelyettesítjük a c fenti alakját. 

F(c) = F(c0, b) = 1 Y = J E E w v a
x p = 

Z x z x a,P 

lYK* E(c°* + Y bx>vex,a)(c0/} + Y bx«vex.,p)v:p = 
Z X a,13 X' x" 

= \ E K * E {CoaCof) + ( Y bx>VQx>a)Co(}+ 
Z x a,f} x> 

+coa(Y bx»VQx„p) + (Y bx.VQx.a)(Y bx"^ex"p))v^ (4.14) 
-r" -r> -r" 



4.5. A B-ALGORITMUS 81 

Most a nagy zárójelben levő összeg második és harmadik tagját összevonjuk az összegző 
indexek megfelelő átjelölésével, s így folytatjuk a megkezdett egyenlőséget: 

= ^(co) + 5 £ Kx £ (2 £ ^ (VQx,a)co0+ 
1 X a 0 x' 

+ £ £ M x » ( V 0 l ( a • V © ^ ) ) ^ (4.15) 
x' x" 

Ha az F(c) függvényt általánosítjuk, akkor egyszerűbben leírhatjuk a fentieket. A 
0 jelölés alatt ne csak sűrűségmátrixot értsünk, hanem átmeneti mátrixot is, amit a 
következőképpen számolhatunk ki: 

ö*(ci,c2) = £ c 1 q c 2 0 V ^ (4.16) 
a/3 

A ilyen mátrixszal számolt várható értékeket az alábbi módon jelöljük: 

v ^ p m * 

A korábbi 0(c) és F(c) jelölés megfelel a 0(c, c)-nek ill. F(c, c)-nek, de az egyszerűség 
kedvéért ebben az esetben megmaradunk az előbbi jelölésmódnál. Visszatérve az 
F(c0 , b) kifejezésére, azt a következő alakba írhatjuk: 

F(c0 ,b) = F(c0)+ 

2 £ bxF{c0, V0X) + £ bxbx,F(VQx, VQX.). (4.18) 
1 x,x' 

A formalizmus további részletezése helyett most csupán annyit jegyzünk meg, hogy 
az energia és a gradiens kiszámolása itt műveletigényesebb, mint a C-algoritmus esetén. 
Azonban a változók száma lényegesen lecsökkent. Most érdemes visszalapozni a 38. 
oldalra a 4.1. táblázathoz és összevetni a ^ és az n", vagy annak hiányában az n' 
számértékeket. 

Összefoglalva, a konfigurációs együttható vektor olyan variálási módját vezettük be, 
amely jelentősen csökkenti a variációs paraméterek számát úgy, hogy a minimumkeresés 
szempontjából ez nem jelent megszorítást, tehát az eljárás továbbra is egyenértékű 
marad a FCI módszerrel [102,104] . Illusztrációként kiszámoltuk atomok és molekulák 
alapállapoti energiáját, amely eredményeket a következő fejezetben mutatunk be. 
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4.6 A D-algoritmus 

A variációs paraméterek számának csökkentését egészen más stratégiával valósítja 
meg a D-algoritmus. Az egyrészecske bázisnak csak egy részét, azaz az egyelek-
tron függvények terének egy alterét használjuk az elektronkorreláció számításakor, 
ugyanakkor az adott altér bázisvektorait is megváltoztatjuk. Emlékeztetőül pillantsunk 
rá az energia kifejezésére: 

„ _ f N \ Tr{K&) 

Itt K a teljes egyrészecskebázisból képzett geminálokon felírt redukált Hamilton-
mátrix. Válasszunk ki az M-dimenziós egyrészecske függvénytér bázisvektorai (Bm) 
közül k darabot (Bk). írjuk fel a redukált Hamilton operátor mátrixát a csak ezen 
egyrészecske-függvényekből képzett geminálok bázisán (L). Ugyanakkor vezessünk 
be olyan paramétereket, amelyek a kiválasztott Bk által kifeszített altérnek a teljes 
egyrészecske-térben való unitér transzformációját jellemzik. E paramétereket az a 
vektorba gyűjtjük össze. A Bk transzformációja után a B'k bázisfüggvényekből képzett 
geminálokon felírt redukált Hamilton-mátrix (L') különbözik L-től, vagyis az L mátrix 
az a paraméterek függvénye 

L = L(a). (4.19) 

A hullámfüggvényt most a Bk bázisvektorokból (illetve ezek unitér transzformációval 
kapott képeiből) képzett Slater-determinánsok alterében fejtjük ki. Ennek az altérnek 
a dimenziója Az ebben az altérben értelmezett konfigurációs együttható vek-
tort jelölje d. A (3.3) képlet alapján a megfelelő behelyettesítéssel kiszámíthatjuk 
a sűrűségmátrixot, amit jelöljünk 0-val, ami egy (*) x (2) méretű mátrix. A 
sűrűségmátrix a d vektor függvénye: 

9 = 0(d). (4.20) 

Az energia kifejezését a bevezetett paraméterekkel így írhatjuk: 

£ ( d , a ) = ^ T r { 0 ( d ) L ( a ) } . (4.21) 

A minimumkeresés kétféleképpen történhet. Minimalizálhatjuk az energiát a d és a 
paraméterek összessége szerint, vagy felváltva, több ciklusban a d és a szerint. Az 
energiát a d és az a paramétereken keresztül minimalizáló módszert a későbbiekben 
D-algoritmusként fogjuk emlegetni [106]. 
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Az így kapott energia mélyebb lesz az elsőként kiválasztott Bk altér felett végzett 
d szerinti minimumnál, de fölötte marad a Bm teljes tér feletti Slater-determinánsok 
terében számolt energia-minimumnak. Ez a Slater-determinánsokról szóló bevezető 
fejezetben leírtakból világosan következik. Ennek az algoritmusnak az az igen nagy 
előnye, hogy a paraméterek száma viszonylag kényelmesen változtatható az igényeknek 
és a számítási kapacitásnak megfelelően. Szükség esetén jelentősen csökkenthetők 
a paraméterek, és ezzel együtt a számítási munka is csökken. Hátránya, hogy 
a B-algoritmussal ellentétben a D-algoritmus csökkenti a sűrűségmátrix , illetve a 
hullámfüggvény " rugamasságát", azaz nem tesz lehetővé a FCI módszerrel ekvivalens 
mértékű variálhatóságot a teljes Bm felett képzett Slater-determinánsok terében. A 
Bk altér feletti Slater-determinánsok terében azonban FCI-ekvivalens, ezzel együtt 
méretkonziszrens marad az eljárás, azzal az előnnyel, hogy maguk az egyrészecske 
függvények is javulnak az eljárás során. 

A minimumkeresés megvalósításával kapcsolatos kérdésekre és a kapott számítási 
eredményekre a következő fejezetben visszatérünk. 

4.7 A redukált Hamilton-mátrix transzformációja 

Ebben az alfejezetben azt fogjuk látni, hogy milyen formulák szükségesek ahhoz, hogy 
adott kiindulási L mátrixból a Bk transzformációját leíró a paraméterek ismeretében 
kiszámítsuk az L' mátrixot. Az egész K mátrixot transzformáljuk, majd a kapott 
transzformált mátrix elemeiből gyűjtjük össze az L' elemeit. A Bm bázisvektorokat 
transzformáljuk. Az M dimenziós forgatás mátrixának M2 eleme van. Minden osz-
lopvektora egység hosszú, ami M összefüggést jelent, valamint az oszlopok mindegyike 
ortogonális az összes többi oszlopra, ez további egyenletet ad. A mátrixelemek 
számából kivonva az elemekre felírható egyenletek számát, kapjuk a független elemek 
számát: 

ahol R(aa) egy kétdimenziós, a 0 szögű forgatást jelöl két bázisvektor által kifeszített 
síkban. Az R(aa) forgatás hasson az r és s indexű egy részecskefügg vényekre, ekkor 

Adjuk meg a transzformációt az alábbi szorzat alakban: 

R(a) = R(a(a,)), ..., R(a2)R(ai), (4.22) 
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mátrixa az egyrészecskefüggvények bázisában a következő: 

(r) 0 

(r) 
0 

cosaa 

(s) 
0 

sin a a 

0 

0 

(s) 0 • • • - sin a a • • • cos a a • • • 0 

\ 0 

(4.23) 

Az ilyen elemi forgatás szög szerinti deriváltja: 

^-P(aa) = R{aa + |)£rs, (4.24) 

ahol r és s az elforgatott két bázisvektort indexeli, Ers pedig olyan mátrix, amelynek 
az r, r és s, s eleme 1, a többi nulla: 

1 (r) (s) X 

0 ••• 0 ••• 0 ••• 0 

ETS = 
(r) 0 

(s) 0 

0 0 

0 

0 0 

(4.25) 

Most megvizsgáljuk, hogy egy elemi forgatás, R(a) (a szög indexelésétől most 
eltekintünk), hogyan változtatja meg a redukált Hamilton-mátrixot. Az {fa} 
egyelektron-függvények a következőképpen transzformálódnak (r < s): 

ip'r = cos oi fa + sin a fa 

fa = — sin a fa + cos a fa 

fai = fa, ha i ± r és i í s. (4.26) 

A következő gondolatmenetben az i, j, k, l indexek olyanok, hogy sohasem egyenlőek 
sem r-rel sem s-sel. Az egyrészecskebázis ilyen transzformációja a geminálokat is 
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megváltoztatja, mégpedig a következőképpen. Nem változnak alábbiak: 

9ij = 9ij 

9'rs = 9rs- (4.27) 

Alaposabban meg kell vizsgálnunk azokat, amelyek megváltoznak. 
g'rj = 

= (cos a tpr + sin a ips)i>j — ipj(cos a ipr + sin a if>s) 

= cos Oí(i)ripj - ipjtpr) + sin a(tpsipj - ipjips) 

Ebben a formulában az antiszimmetrikus szorzatokat azonosíthatjuk az eredeti 
geminálokkal. Az r és j viszonyáról eddig hallgattunk, azonban ettől függ a geminálok 
előjele, hiszen mi rendezett geminálokat használunk. Ezt figyelembevéve (ne feledjük: 
r < s): 

ha j < r g'jr = cos a gjr + sin a gjs 

ha r < j < s g'rj = cos a gjr — sin a 9jS 

ha r < s < j g'jr = cos a gjr + sin a gjs. 

(4.28) 

Az előjel egyszerű figyelembevételére bevezetjük az alábbi, indexeken értelmezett 
fügvényt: 

sg(j, r, s) = 1 ha j < r < s 

sg(j, r, s) = - 1 ha r < j < s 

sg(j, r, s) = 1 ha r < s < j. (4.29) 

Ennek segítségével már egyszerűbben felírható a transzformált mátrix. A továbbiakban 
a jelölés további egyszerűsítése céljából mindig a rendezett sorrendet értjük a g^ és 
hasonló jelölések alatt (azaz i < j). Mindezeknek figyelembevételével a transzformáció 
során megváltozó geminálok a következőképpen írhatók: 

K'ijkl = Kijkl 

K ' — K — K ' 

ijrs ~ -"•»jrs — n-rsij 

Ersrs = Ersrs 
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K'rjkl = cos ocKrjki + sg(j, r, s) sin aKsjkl = K'ktrj 

K'rjrs = cos aKrjrs + sg(j, r, s) sin áKsjTS = K'TSrj 

Kjki = sg(j, r, s) sin aKrjki + cos aKsjkl = K'klsj 

Kjrs = -sg(j> r> S) sin aKrjrs + COS OiKsjrs = K'rssj 

Kjri = S9Í3> r> s) cos a sin a(Krjslsg(l, r, s) + Ksjrlsg(j, r, s))+ 

cos2 aKrjTi + + sin2 aKsjslsg(j, r, s)sg(l, r, s) = K'rlrj 

K'sjsl = sin2 otKrjrlsg(j, r, s)sg(l, r, s) + cos2 aKsjsi~ 

cos a sin a{KTjslsg(j, r, s) + Ksjrlsg(l, r, s)) = K'slsj 

Kjsl = cos2 aKrjsl - sin2 aKsjrlsg(j, r, s)sg(l, r, s)+ 

cos a sin a(Ksjslsg(j, r, s) - KTjrlsg{l, r,s)) = K'slrj . (4.30) 

Ki kell még számolnunk a K elemeinek adott szög szerinti deriváltját. Ehhez az elfor-
gatott bázison számolt mátrixelemeket deriváljuk a a szerint: 

¿ n - =< é * , >+< > • 

Látszik, hogy a geminálok deriváltját kell meghatároznunk a mátrixelemek de-
riváltjainak kiszámolásához: 

= " ( £ > + " (4-32) 

Az egyes spinpályák deriváltjait pedig így kapjuk: 

- ¿ * < « ) * = *(<*(>)) ¿ « ( « j . • • •. « ( « 0 * . (4-33) 

Vagyis a derivált számolásakor ugyanazokat az elemi forgatásokat alkalmazzuk, mint 
az elforgatásnál, egy kivétellel. Ezt az egy lépést kell még kidolgozni ahhoz, hogy 
deriváltat lehessen számolni. Ha az R(aa) elemi forgatás az r < s spinpályák síkjában 
forgat, akkor hatása azokra: 

ip'r = — sin a ipr+ cos a ips 

ip's = — cos a ipT — sin a ips 

ip[ = 0, ha és i ± s, (4.34) 
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a (4.32) formula szerint a geminálok deriváltjai pedig: 

áj = o 
g'rj = - sin otgrj + sg(j, r, s) cos agsj 

g'sj = -sg(j, r, s) cos agTj - sin ocgsj 

g'rs = 0. (4.35) 

Végül az eddigiek felhasználásával, a (4.31) összefüggés alapján felírhatjuk a 
mátrixelemek deriváltjának számolásához szükséges lépés formuláit (ora helyett ismét 
a-t írunk): 

K'ijki = 0 

Ksrs = 0 

Kjki = - sin aKrjki + sg(j, r, s) cos aKsjki = KkCrj 

K'rjrs = - sin OiKrjrs + Sg(j, T, s) COS CtKsjTI! = Krsrj 

Kjri = 2 cos a sin a(Ksjslsg(j, r, s)sg(l, r, s) - Krjrl)+ 

(cos2 a - sin2 a){Ksjrlsg(j, r, s) + Krjsisg(l, r, s)) = K'rlrj 

Kjki = ~sg(j, r,s) cos OiKTjki - sin aKsjkl = Kklsj 

Kjrs = ~sg{j, r, s) cos aKrjrs - sin aKsjrs = Krssj 

Kjsi = 2 cos a sin cx(Krjrisg(j, r, s)sg(l, r, s) - Ksjsl)~ 

(cos2 a - sin2 oc)(Ksjrlsg{l, r, s) + Krjslsg{j, r, s)) = 

^r j i í = - 2 cos a sin a(I<sjrlsg(j, r, s)sg(l, r, s) + 7 ^ ) + 

(cos2 a - sin2 a ) (K s j s l sg( j , r, s) - Krjrisg(l, r, s)) = 7^írj- (4.36) 

Összefoglaljuk a jelen és az előző alfejezetet. Az energia minimalizálásának egy 
stratégiáját mutattuk be. Az energia a paraméterek két, egymástól jellegükben élesen 
elkülönülő csoportjától függ, amelyeket a d és az a vektorok komponenseiként fog-
tuk fel. Az egy részecskefüggvények M dimenziós terének egy k dimenziós alterét 
választottuk ki. Ezt az alteret a teljes térben az a paraméterekkel jellemzett unitér 
transzformációval transzformálhatjuk. A redukált Hamilton-operátornak az altér 
bázisvektoraiból képzett geminálokon felírt L mátrixa, és ezen keresztül az energia 
is függ az a paraméterektől. A d vektor komponensei a hullámfüggvény kifejtési 
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együtthatói az altér bázisvektoraiból képzett Slater-determinánsokon. Ettől a vek-
tortól függ a sűrűségmátrix , és ezen keresztül az energia is. A minimumkeresést 
végrehajthatjuk felváltva külön-külön a két paraméter-család szerint, vagy egyszerre 
mindkettő szerint. D-algoritmusnak neveztük az energia minimumának e változók sz-
erinti keresését. Az alkalmazásokról szóló következő fejezetben visszatérünk az eljárás 
konvergencia tulajdonságaira illetve a kapott számítási eredményekre. 

4.8 A spinoperátorok várható értékeinek 
kiszámítása 

Kiegészítésként egy alfejezetet szánunk a spinoperátorok várható értékeinek 
meghatározására. Annál is inkább, mivel a spin négyzet és az egyik spinvetület 
operátorok sajátértékei nemrelativisztikus esetben mindig jó kvantumszámok, lévén 
a szabad molekulák nemrelativisztikus Hamilton-operétora spinfüggetlen. A spin 
négyzetének operátora S2(l . 2 , . . . , N) és az egyik spinvetület (szokásosan a ko-
ordinátarendszer z tengelyére vett vetület) 5 2 (1 ,2, . . . ,N) operátora egymással és 
a Hamilton-operátorral is felcserélhetőek, ezért várható értékeikkel, mint kvan-
tumszámokkal jellemezhetjük a molekula stacionárius állapotait. Megadjuk ezen 
spinoperátorok várható értékeinek kiszámítására szolgáló formuláinkat. 

Korábban láttuk, hogy a másodredű redukált sűrűségmátrix segítségével minden 
kételektron-operátor várható értékét ki tudjuk számolni, feltéve, hogy ismerjük az 
operátor mátrixát abban a bázisban, amelyikben a sűrűségmátrixot felírtuk. A rend-
szer 2 irányú spinvetületének operátora az egyes elektronokra ható sz(i) operátorok 
összege, egyrészecske-operátor 

Sz(l,2,...,N) = Ysz(i). (4.37) 
í=i 

A (2.7) egyenlettel analóg módon képezhetjük a tz "redukált" spinvetület operátort: 

= tfTY&W + W ) ) - (4.38) 

Természetesen itt kételektron-tag nincs. A ¿¡¡(1,2) operátor mátrixelemeit kell 
meghatároznunk geminál bázisban. Egyszerűen ellenőrizhető, hogy a nemdiagonális 
mátrixelemek ( { i , j } ^ {k,l}) eltűnnek, a diagonális mátrixelemek ({¿, j } = {k,l}) 
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pedig az adott geminál sz kvantumszámának ^-¡--szerese (ez a tényező a redukált 
operátorban megjelenő szorzó miatt lép fel). 

A spin négyzetét már valódi kételektron operátor írja le: 

5 2 (1 ,2 , . . . , a0 = 

s - u i 2 , . . . , N)S+(1,2,...,N) + Sz(l,2,...,N) + ( 1 , 2 , . . . , N ) = 

= £ s _ ( 0 £ s + ö ) + £ 4 ( 0 + £ 4 ( 0 £ 4 0 ) = 
i j i i j 

= £ ( m 0 s + ö ) + 5,(05,(0) + £ sz(i) = 
i,j i 

= £ ( m o m i ) + m o m 0 + 5,(05,(0) + 5,ü)5,(0) + 
i<jy t* 

stu>o(i,j) 

£ (s_(0s+(0 + s.(0 + 5.(05.(0) • (4-39) 
sone(i) 

Bevezetjük a redukált spin-négyzet operátort: 

j) = stwo + -~—^(sőhe(i) + sdne(j)). (4.40) 

Ennek geminál bázisban felírt mátrixát T betűvel jelöljük. A redukált Hamilton-
operátor esetével analóg módon teljesül a 

5 2 ( l ,2 , . . . , iV) = £ í ( z , j ) , (4-41) 
i<j 

és a 
< 9\S2\9 >= ^ T r { 0 T } (4.42) 

összefüggés. A T elemeinek kiszámolásához vezessük be az alábbi jelöléseket a 
geminálokkal illetve a spinpályákkal kapcsolatban. A geminált így írtuk: 

9p,g = tppipg ~ Í>gll>p, 

ahol a szorzatokban elöl álló tag az 1. elektron-koordinátától függ, a hátul álló pedig 
a 2.-tól, a ip spinpályát jelöl. A spinpályákat felépítő tér- és spinfüggvényekre a 
következőképpen fogunk hivatkozni: 

% = Vp'Vp", (4.43) 
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az indexek az alábbi módon függenek össze: 

p = ( 2 p ' - l , h a V = a ( 4 4 4 ) 

2p' , ha crp» = 0 , 

a p" pedig kétféle értéket vehet föl: 

a , h a p » = + l 
0 , hap" = - 1 . 

A ¿(1,2) operátor konkrét alakja: 

¿(1,2) = S_(l)s+(2) + s_(2)s+(l) + sz(1)s2(2) + s2 - (2)s,(l) + 

+ s_(2)s+(2) + 5,(1) + á,(2) + s2(l) + s2(2)) (4.46) 

A íPiQ;r,s mátrixelem általában így számolható ki: 

tp,q\r,s = < 0p?Ih1) 2)\9r,s > = 

< <Pp'<7p»<Pq'Crq» — ipq'(Jq"ipp>crp»\i(l, 2)\ipriar»ipsias" — ipsias»ipr'Or» >= 

r" s" 
2íp'r/ú9's'[<5_is»<5x9"őir»(5_ip" + 5_ir»<Jip»5is»á_i9" + 2——őr"P"5S'>q» + 

1 r" s" 1 1 

y _ 1 (Ör"0Öp"0()s»q» + ¿_ls"ú_i,»úr»p.. + (— + — + - + -)ár"p"ús»g»)]-
r" s" 

25p'Siöq'ri[5-ir''őiS"őíq''6-ip" -f ¿ir" ő-iq»Syp" + 2——5p»S"5q«r" + 

1 r" s" 1 1 
j y — p » S r " q " + <Llr..<V<W + ( — + — + - + -)<5s"p"ár.»(J»)] (4.47) 

A térpályák ortonormáltsága miatt a geminálokban szereplő, összesen négy térpálya 
közül legalább kettő-kettő , vagy mind a négy azonos kell, hogy legyen. Ez alapján két 
típusra oszthatók a nem nulla mátrixelemek. Az egyik esetben mind a négy térpálya 
megegyezik, egy geminálon belül az egyik a, a másik 0 spinfüggvénnyel szorzódik, azaz 

9Vq = <pp>onppr0 - ipp>0(pp>a = grs-

Ekkor a (4.47) formulába való behelyettesítéssel megkapható, hogy a mátrixelem: 
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4.2. Táblázat: A t operátor néhány mátrixeleme geminál bázisban, bővebb magyarázat 
a szövegben 

<yp" Oq" <7r- tpqrs 
a a a a 1 ^ N-l 
0 0 3 P 1 + 3 1 T JV-1 
a 0 a 0 3 1 N-l A 

P a .3 a - 2 - - 1 N—l L 

a 0 3 a 2 

0 a a 0 2 

A másik eset kicsit bonyolultabb. A két geminálban a térpályák egymással páronként 
megegyeznek, de egy geminálon belül különbözőek és a spinfüggvények minden kom-
binációjára külön meg kell vizsgálnunk a mátrixelemet. Tehát: 

9pq = VpXTp" Ifiq'Oq" ~ <Pq'0q" tPp'Vp", 

és 

9rs = </2p'0y" ŴV' —
 íPq'VS"lPp'ar"-

Az ezen geminálok közti nemeltűnő mátrixelemeket a spinfüggvények feltüntetésével a 
(4.2.) táblázatban foglaltuk össze. Mindezek ismeretében a tpqrs mátrixelemek minde-
gyike megadható, a sűrűségmátrix segítségével pedig az S2 várható érték kiszámítható 
a (4.42) formula szerint. A spin négyzetének ismerete két szempontból lehet hasznos. 

A {H, S2,SZ} operátorok kölcsönösen felcserélhetőek, vagyis van közös 
sajátfüggvény-rendszerük. Ebből következik, hogy a Hamilton-operátor egy nemde-
generált sajátértékéhez tartozó sajátfüggvénye egyben spin-sajátfüggvény is. Az 
Sz sajátérték ebből a szempontból nem nagyon érdekes. Ugyanis minden Slater-
determináns sajátfüggvénye az Sz operátornak, így az azonos Sz sajátértékhez tar-
tozó determinánsokból képzett lineárkombináció maga is Sz sajátfüggvény lesz. Ennek 
teljesülését a minimumkeresés megfelelő indításával biztosíthatjuk, mert a Hamilton-
operátor különböző Sz sajátértékű determinánsok közti mátrixelemei mind eltűnnek. 
Nem viselkedik azonban ilyen kellemesen az S2 sajátérték. A Slater-determinánsok 
ugyanis általában nem S2 sajátfüggvények, csak bizonyos lineárkombinációik. Kérdés 
az, hogy pusztán az energia szerinti minimumkereséssel eljutunk-e olyan c vektorhoz, 
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amely S2 sajátfüggvényt ír le. Mint ismeretes, az elmélet szerint igen, ennek teljesülni 
kell. Hogy valóban teljesül-e, azt megvizsgálhatjuk az S2 sajátérték kiszámításával és 
annak a lehetséges értékekkel való összehasonlításával. 

Előfordul, hogy adott spinű állapotra végzünk számítást. Ekkor az S2 függvény 
segítségével tudunk olyan mellékfeltételt szabni a minimumkeresésre, ami a spint biz-
tosítja. 



5. Fejezet 

Alkalmazások atomokra és 
molekulákra 

Ez a fejezet az előzőekben leírt módszer elektronkorreláció és korrelációs energia 
számítására történő alkalmazásairól szól. [98, 99, 100, 101, 102, 103, 104] 

5.1 Előkészítés 

A szükséges bázisfüggvényeken vett egy- és kételektron integrálokat valamint a moleku-
lapályák lineárkombinációs együtthatóit tartalmazó mátrixot (MO-mátrix) standard 
kvantumkémiai szoftverek (Hondo7.0, Gaussian94) outputjából olvastuk ki. Ez úgy 
történt, hogy egy RHF számolást végeztünk velük. így egyúttal megkaptuk az RHF 
energiát és a magtaszítási energiát is, amit fel is használtunk a későbbiekben a kor-
relációs energia kiszámolására (illetve becslésére, 1. 1.5 fejezet). Ismét hangsúlyozzuk, 
hogy korrelációs energia alatt (a szóhasználat egyszerűsítése céljából) e dolgozat 
hátralevő részében mindig egy adott véges bázisban számolt FCI-energia és HF-energia 
különbségét értjük: 

Ecorr = EbFCI ~ &HF ) ( 5 1 ) 

itt a b felső index az adott véges bázisra utal. 
A minimumkeresésekhez az LBFGS-B szubrutin-csomagot használtunk. Ez nem 

más, mint egy BFGS módszer [30] 'limited-memory' implementációja. Az eljárás nagy 
előnye, hogy igen takarékosan bánik a számítógép memóriájával, ezért nagy méretű 
nemlineáris optimalizációs feladatok megoldására is alkalmas. A Hess-mátrixot és a 

34 
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célfüggvény szerkezetének ismeretét nem használja fel. A H-mátrix tárolására fel-
használt memória a változók számától lineárisan függ. Az eljárás korlátozott keresést 
is képes végezni. Az LBFGS-B módszer részletes leírása a [86] dolgozatban olvasható. 

A fent említett részek kivételével elvégeztem a számítási módszerek algoritmusba 
szervezését, implementálását és tesztelését. A kódot Fortran77 nyelven írtam. Az így 
előálló programokkal hoztam létre az e fejezetben szereplő eredményeket. 

A programozást és a számítások döntő többségét egy 400MHz frekvenciájú pro-
cesszorral és 256Mb RAM-mal rendelkező számítógéppel végeztem, duplapontos arit-
metikával. 

5.2 Korrelációs energiák számítása atomokra és 
molekulákra 

Az első számszerű eredmények, amelyeket kiszámoltunk különböző molekulák 
alapállapotára vonatkozó korrelációs energiák voltak. Ezekben a számításokban 
minimális bázist használtunk (STO-3G). A molekulák geometriája rögzített volt a 
számolás során, megegyezett az STO-3G bázissal számolt HF-energiát minimalizáló 
magkonfigurációval. 

A Slater-determinánsokat megszámoztuk, a HF alapállapoti Slater-determináns 
sorszáma 1. A c szerinti minimumkeresés kezdő vektora az (1 ,0 ,0 , . . . , 0) vek-
tor volt, ami megfelel a HF-determinánsnak. A minimumkeresés megállási feltétele 
valójában két, vagy kapcsolattal összekötött feltétel volt. Az egyik azt vizsgálta, 
hogy két egymást követő iterációs lépésben számolt függvényértékek (energiák, Hartree 
egységben kifejezve) különbsége egy előre megadott határ (fvtol) alatt van-e. Ezt a 
határt mi a gépi pontosság 10-szeresére állítottuk be, ami gépünk esetén 1.22 • 10-18 

volt. A másik feltétel a függvényérték c szerinti gradiensének a minimumkereső által 
generált legutolsó keresési altérre (speciális esetben irányra) vett vetületének normáját 
vizsgálta, hogy az kisebb-e, mint egy előre megadott küszöb (pgtol). Ezt a határt mi 
10~2°-ra állítottuk be, tehát olyan kicsire, hogy a gép számolási pontossága alá esik, így 
a minimumkeresés megállításakor várhatóan nem ez lesz a döntő. A megállási feltétel 
tehát így formulázható: 

Ek_ i - Ek < fvtol V VcEk < pgtol (5.2) 
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5.1. Táblázat: A minimális bázissal végzett számítások eredményei. Az elektronok 
száma (N), az egy részecskebázis mérete (M), a Slater-determinánsok terének di-
menziója, HF elektron-enegiák(Fpp), a minimális energiák (E(cmin)), a gradiens 
normája a minimumban, a minimumkeresésre felhasznált gépidő (tcpu)• Az energiák 
Hartree egységekben értendők. [102] 

N M 00 Ehf E{cmin) |V£(c)| tcpu( s) 

Li 3 10 120 -7.31552600556 -7.31583657689 3 • 10"14 0.05 
LiH 4 12 495 -8.91409693612 -8.93323540871 4•10"8 1.36 

Li2 6 20 38760 -16.4044437420 -16.4329682789 5•10"7 9214 

C 6 10 210 -37.1983925465 -37.2187335341 3•10"7 2.25 
HF 10 12 66 -103.743255848 -103.76939252 2•10"6 7.05 
H 2 0 10 14 1001 -838718124789. -83.926342343 8•10"7 258 
n h 3 10 16 8008 -67.1927778405 -67.261918910 2•10~6 5038 
c h 4 10 18 43758 -53.2482272262 -53.326493161 1 • io- 6 50331 

5.2. Táblázat: Az 5.1. táblázatban feltüntetett eredményekhez vezető minimumk-
eresések jellemző adatai: a változók száma az iterációk száma (Kiter), a c 
vektor nem nulla komponenseinek száma a minimumban (Ke). 

(S) Kitér Kc 

Li 120 6 8 
LiH 495 42 69 
Li2 38760 73 2856 
c 210 24 7 
HF 66 54 18 
H 20 1001 76 133 
n h 3 8008 66 2374 

c h 4 43758 44 14629 



5.2. KORRELÁCIÓS ENERGIÁK SZÁMÍTÁSA 53 

5.3. Táblázat: A nem minimális bázissal végzett számítások eredményei. Az elek-
tronok száma (N), az egyrészecskebázis mérete (M), a Slater-determinánsok terének 
dimenziója, HF elektron-enegiák(F#;r)> a minimális energiák (F(cmjn)), és megadtuk 
a korrelációs energiát is (Fcorr). Az energiák Hartree egységekben értendők. 

N M 00 Ehf E(cmin) Ecorr 

C /DZV/ 6 18 18 564 -37.3639718827 -37.4172729816 -0.053301099 
C / D Z P / 6 30 593 775 -37.3655028240 -37.4566423179 -0.091139494 
C /TZV/ 6 40 3 838 380 -37.3687158542 -37.4806636887 -0.111947835 
C /6-311+G/ 6 34 1 344 904 -37.6002978119 -37.7464656168 -0.146167807 

H 2 0 /DZV/ 10 26 5 311 735 -85.2500580395 -85.3911841411 -0.141126102 

Azt tapasztaltuk, hogy a minimumkeresés igen kevés lépéssel elérte a megállási 
feltételeket. A 5.1. és 5.2. táblázatban összefoglaltuk a számításaink során végzett 
minimumkeresések legfontosabb adatait [98, 100, 103] (a 5.1. és a 5.2. táblázatok sorai 
megfelelnek egymásnak, azaz ugyanarra a számításra vonatkozó adatokat közölnek). 1 

A HFMO térpályákat az a ill. /? spinfüggvénnyel szoroza adódtak a spinpályák, ame-
lyek az egyrészecske bázist képezték. A nem minimális bázisokkal végzett számításaink 
eredményeit a 5.3. táblázatban tüntettük fel. 2 

A minimumkeresés célfüggvénye nem kvadratikus, hanem két kvadratikus függvény 
hányadosa. Amint az elméleti áttekintésben arról szó esett, n-változós kvadratikus 

s 

függvény esetében az eljárás n + 1 lépéssel találja meg a minimumot. Altalános, nem 
kvadratikus esetben is legalább ennyi iterációs lépést várnánk a minimumkeresés során. 
Látható, hogy ennél lényegesen kevesebb lépéssel kielégítő módon megközelítettük a 

1A 5.1. táblázat utolsó oszlopában szereplő időadatoknál (tcpu) már jobb eredmények is van-
nak. Áz algoritmus újraszervezésével, illetve 400MHz helyette 800MHz frekvenciájú processzorral 
ugyanezekre a számításokra rendre az alábbi gépidők adódnak (s egységben): 0.03, 0.5, 143, 0.3, 0.8. 
7.2, 176, 963. 

2A DZV, DZP, TZV double- ill. triple-zeta Dunning-féle bázisok, a P polarizációs függvényekre 
utal. Bár elsődleges célunk most nem a korrelációs energiák minél pontosabb meghatározása volt, 
hanem az algoritmus vizsgálata, mindenképpen rámutatunk, hogy az 5.3. táblázat tanúsága is igazolja 
az egyébként ismert tényt, hogy a kapott eredményeket jelentősen befolyásolja az egyrészecske bázis 
minősége. 
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minimumot, vagyis a minimumkeresés szempontjából igen kedvező alakú az energia-
funkcionál. 

Fizikai megfontolások alapján nyilvánvaló, hogy a HF-determináns az alapállapoti 
FCI hullámfüggvényben nagy súllyal fog szerepelni. Más szóval a globális minimumhoz 
viszonylag közel eső pontból indítottuk a minimumkeresést. Ez egyfelől azért fontos, 
mert megóvja az eljárást attól, hogy (a globális minimumnál magasabban fekvő) lokális 
minimumokba tévedjen, amelyek nyilván nem az általunk keresett alapállapotnak 
felelnének meg. Másfelől, mivel minimumkeresésünk véges pontosságú, nem mind-
egy, hogy a minimumtól milyen messze van a kiindulási vektor. A másik körülmény, 
ami miatt viszonylag kevés lépéssel érhető el a minimum, a spinpályákból felépített 
Slater-determinánsok által kifeszített tér sajátosságaiból adódik. Tudjuk, hogy spin-
és (esetleges) térszimmetriák fellépte miatt a Hamilton-mátrix elemei bizonyos deter-
minánsok között eltűnnek. Ez az általunk alkalmazott eljárásban úgy jelenik meg, 
hogy az energia gradiensének az ilyen bázisvektorokra vett vetülete mindig nulla lesz. 
Vagyis, a minimumkereső eljárás eleve nem is "érzékeli" a tér azon részét amelyek 
szimmetria okokból nem járulnak hozzá az alapállapoti hullámfüggvényhez. Az 5.2. 
táblázatban látható a minimumba mutató c konfigurációs együttható vektor nem nulla 
elemeinek száma és a minimum eléréséhez szükséges lépések száma. A táblázatból le-
olvasható, hogy kevesebb iterációs lépéssel eléri a megállási feltételeket, mint ahány 
nemeltűnő komponense van a minimumban az együtthatóvektornak. Ebből látszik, 
hogy mind a célfüggvény általunk választott alakja, mind a minimumkeresés módszere 
és kezdő vektora szerencsés választásnak bizonyult, és összességében igen hatékony 
meghatározását teszik lehetővé az alapállapoti sűrűségmátrixnak. 

5.3 Potenciálgörbék 

A molekula energiájának a magkoordinátáktól való függése (potenciálfelület) szoros 
kapcsolatba hozható a molekula számos fizikai jellemzőjével (pl. forgási-rezgési színkép, 
aktiválási energiák, reakcióutak stb.). A korrelációs energia figyelembevétele je-
lentősen befolyásolhatja a kapott potenciálfelület alakját. Az előző fejezetben a po-
tenciálfelület egy pontját számoltuk ki. Kétatomos molekulák esetén az atommagok 
egymáshoz viszonyított helyzete egyetlen paraméterrel, a magtávolsággal megadható, a 
potenciálfelület egy potenciálgörbévé egyszerűsödik. Módszerünkkel kiszámoltuk a LiH 
és LÍ2 molekulák potenciálgörbéit , egyúttal minden ponthoz kiszámoltuk a molekula 
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5.1. ábra: A LiH molekula alapállapoti energiájának (E, Hartree) függése a 

magtávolságtól (r, Á). 

LiH 6-31G energia 

-7.43 —: 1 , j 

-7.63 

E 

-7.83 

-8.03 ' 1 ' 
0 5 10 15 

spinjét is. 

A LiH molekula esetén 6-31G bázist használtunk, a bázisfüggvények száma 22, 

az elektronok száma 4, és f ^ ) = 7315. A minimumkeresést minden egyes pont 

esetében a c = (1 ,0 , . . . , 0) vektorból (HF alapállapot) indítva, a megállási feltételeket 

az előző fejezetben leírtakkal azonosan beállítva az alábbi 5.1. és 5.2. ábrákon össze-

foglalt eredményeket kaptuk. 

A potenciálgörbét meghatároztuk úgy is, hogy a görbe pontjait továbbra is 

egymástól függetlenül számoltuk, de a minimumkeresést a c0 = a • ( 1 ,1 , . . . , 1) 

kezdővektorral indítottuk (a egy normáló tényező). Ebben az esetben az előzőtől 

különböző eredményt kaptunk, amit a 5.3. és 5.4. ábrákon mutatunk be. 

Megpróbáltuk kiszámítani az S = 1 kvantumszámú állapothoz tartozó po-

tenciálgörbét úgy, hogy a legnagyobb magtávolságtól (12.5Á) haladtunk a kisebbek 

felé és az egyes minimumkeresések kiinduló c vektorai az előző pontbeli, minimális 

energiának megfelelő vektorok voltak. Ezzel az eljárással azonban nem sikerült 

végighaladni az S = 1 görbén. Amikor az S = 1 spinhez tartozó pontok számottevően 

az S = 0-hoz tartozó energiagörbe fölé kerültek, akkor a minimumkeresés már az alac-

sonyabb energiájú görbén elhelyezkedő pontoknak megfelelő minimumokat találta meg. 
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5.2. ábra: A LiH molekula alapállapotában számított S 2 várható érték (h2 egységben) 

különböző magtávolságoknál (r, Á). 

U H 6-31G S2 

40-15 , , 

20-15 -

S2 

o - " v. 

1 , 1 . 
0 5 10 15 

r 

5.3. ábra: A LiH molekula energiájára (E, Hartree) kapott eredmények abban az eset-

ben, ha a minimumkeresést a c = (1 , . . . , 1) vektorból indítjuk. 

LiH 6-31G energia 

-7.43 r—: , , 

-7.63 -

E 

-7.83 -

-8.03 ' i • 
0 5 10 15 
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5.4. ábra: A LiH molekula spin négyzetére (S2, h2) kapott eredmények abban az 

esetben, ha a minimumkeresést a c = (1 , . . . , 1) vektorból indítjuk. 

2.85 

1.85 

S2 

0.85 

-0.15 

0 5 10 15 

U H 6-31 G s 2 

Ezt láthatjuk a 5.5. és a 5.6. ábrákon. 

Ha a 5.3. és a 5.5. ábrák görbéit egy grafikonra rajzoljuk (5.7. ábra), akkor szemmel 

látható, hogy nagy magtávolságnál a két görbe egybeesik. 
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5.5. ábra: A LiH molekula 5 = 1 állapotára kapott energiák (E, Hartree) a legnagyobb 

magtávolság felől kezdve, a minimumkeresést mindig az előző pontban kapott mini-

mumnak megfelelő c vektorból indítva, azaz "visszafele" számolva. 

LiH 6-31G energia 

-7 43 -

-7.63 I-

-7.83 r 

-8.03 

5.6. ábra: A LiH molekula spin négyzetére (52, k2) kapott eredmények, amikor "vis-

szafelé" számoltunk (magyarázat az 5.5. ábra feliratában). 

LiH 6-31GS2 

S2 
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5.7. ábra: A LiH molekula S = 0 és S = 1 spinű állapotainak energiája (E, Hartree). 

U H 6-31G energia 

-7.43 

-7.63 

-7.83 

-8.03 

A nagyobb spinű görbét úgy sikerült meghatározni, hogy a minimumkeresést más 

célfüggvénnyel végeztük. A (4.1) célfüggvényt kiegészítettük egy, a spin négyzetét 

tartalmazó taggal: 

U( c) = 
Tr{KQ} _ , T r { T e } 

- s o f . (5.3) 
lcl v lcl 

Itt Sq egy előre megadott és rögzített szám, a kívánt spin négyzet sajátérték, w pedig 

egy súlyozó tényező. Használva az 

(5.4) 

(5.5) 

F = Tr{KQ}, E = ~ , s2 = Tr{TO} és S2 = 
\c\ \c\ 

jelöléseket, ennek a célfüggvénynek a c szerinti gradiense így írható: 

„ TT. . V C F - 2Ec 2 V c s 2 — 252C 
V C U { C ) = + ( " ' 

A V cs2 kiszámítása az E gradiensével analóg módon történik (1. 4.1 fejezet), csak ebben 

az esetben a K mátrix helyett a 4.8 fejezetben definiált T mátrixot kell használnunk. 

A w súlyozó tényezőt a HF energia abszolút értékével tettük egyenlővé. Az eredményül 

kapott görbét az S2 = 0 görbével együtt ábrázoltuk az 5.8. ábrán. 

Hasonló vizsgálatot végeztünk a Li2 molekulán. Az RHF számoláshoz STO-3G 

bázist használtunk. A bázisfüggvények száma 20, az elektronoké 6, = 38760 . A 

5.9. ábra mutatja a két különböző spinhez tartozó potenciálgörbéket. 
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5.8. ábra: A LiH molekula S = 0 és S = 1 kvantumszámokhoz tartozó potenciálgörbéi. 

U H 6-31G S=0, S=1 energia 

-7.24 

Végül megjegyezzük, hogy az (5.3) definícióval fentebb bevezetett célfüggvénnyel 

végzett minimumkeresés az 50 kvantumszámú állapotok közül a legkisebb energiához 

tartozót találja meg. A molekula minden gerjesztett állapotához, az azonos spinüekhez 

is más-más potenciálgörbe tartozik, amelyek keresztezhetik is egymást. Ilyen esetben 

az U(c) célfüggvénnyel számolt potenciálgörbén "lépcsőt" figyelhetünk meg, azaz a 

két görbe metszéspontjában a kapott potenciálgörbe meredeksége nem folytonosan 

változik. Egy ilyen esetet figyelhetünk meg az 5.9. ábrán, a Li2 molekula 5 = 1 

kvantumszámhoz tartozó potenciálgörbéjén. 
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5.9. ábra: A Li2 molekula S = 0 és S = 1 spinhez tartozó potenciálgörbéi. 

-13.25 

-13.75 

-14.25 

-14.75 
0 5 10 15 

r 

5.4 A B-algori tmussal kapot t e redmények 

A B-algoritmussal kapcsolatosan a legfontosabb kérdés, amit tisztázni kellett az. hogy 

valóban FCI ekvivalens-e és az új paraméterek bevezetése hogyan befolyásolja a konver-

genciasebességet. E kérdéskör tisztázására megvizsgáltuk az azonos kezdőfeltételekkel 

indított C- és B-algoritmussal történő minimumkeresésekkel kapott energiákat, a gra-

dienseket a minimumban és a felhasznált gépidőt. A gradiensek vizsgálatára az alábbi 

e = cos('VTr{ KQ} (c);c) + l (5.6) 

mennyiséget használtuk. A minimumban az energia (Rayleigh-hányados) c szerinti 

gradiense eltűnik ugyan, de az F(c = Tr{KQ} másodrendű homogén függvényé nem. 

ennek gradiense pont ellenkező irányú a c vektorral. így a két vektor által bezárt szög 

koszinusza —la minimumban, az e pedig nulla. Az e nullától való eltérése méri tehát 

azt, hogy mennyire pontosan közelítettük meg a minimumot. Vizsgálataink céljára 

a szénatomot, a víz- és az ammónia molekulákat választottuk, eredményeinket a 5.4. 

táblázat mutatja. [102] A minimumkeresés végén e minden esetben kisebb volt, mint 

10 -15 , ezért azt nem tüntettük fel a táblázatban. 

A táblázat alapján megállapíthatjuk, hogy a két eljárás azonosan jó eredményeket 

szolgáltatott. A minimumot mindkettő megfelelő pontossággal találta meg. A kapott 

LÍ2 6-31G S=0, S=1 energiák 

S = 1 

s=o 
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5.4. Táblázat: A minimumkereséssel kapott elektron-energiák (F(c) ill. F(b)) Hartree 
egységekben, feltűntettük a gépidőket is (tc és Í&) másodpercben. 

m tc 
E(b) h 

C(sro-3G) -37.21873353415815 2.25 -37.21873353415826 4.5 

C (DZ) -37.41727298157322 2057 -37.41727298157323 674 

H20(sro-3G) -83.93598674062193 258 -83.93598674062230 198 

NH3(sro-3G) -67.274647805818090 12046 -67.274647805818242 2560 

energiákban mutatkozó különbség a numerikus hibák nagyságrendjébe esik. A B-
algoritmusal a négyből három esetben, mégpedig a nagyobb feladatok esetén kevesebb 
gépidőre volt szükség a számításhoz. Megjegyezzük, hogy az idő adatokból messzemenő 
következtetést levonni nem érdemes, mert a kódokat a fenti eredmények közzététele óta 
is folyamatos fejlesztjük. Most azt igazoltuk, hogy a B-algoritmusnak megvannak az 
elmélet alapján várt jó tulajdonságai. 

5.5 A D-algoritmussal kapott eredmények 

A változók számának csökkentésére használtuk a D-algoritmust is. Az M számú 
egyrészecske bázisfüggvény (Bm) közül kiválasztotunk K bázisfüggvényt(Bfe, N < k < 
M) és ezeket használtuk fel a Slater-determinánsok felépítéséhez. Az így kapott 
számú Slater-determináns lineárkombinációs együtthatóját variáltuk, ezek összességét 
tartalmazza a d vektor. Ugyanakkor a determinánsokat felépítő függvényeket tran-
szformáltuk a Bm térbeli forgatásokkal, e transzformáció paramétereit jelöltük a-val. 
Ezzel az eljárással olyan egyelektron függvényeket állítunk elő, amelyekkel a legjobban 
lehet közelíteni a korrelációs energiát a számú determináns lineárkombinációjával. 

Az energia d és a paraméterek szerinti minimalizálása sok kérdést vet föl. Ha a 
minimumkeresést egyszerre hajtjuk végre a két paraméter vektor komponensei szerint, 
akkor azt tapasztaljuk, hogy az eljárás rendkívül lassan konvergál. Ezért mi nem ezt az 
utat választottuk. Az d és a paraméterek szerinti minimumkeresést külön hajtottuk 
végre. 

A d szerinti minimumkeresés nem más, mint a C-algoritmus, amiről az 5.2 fe-
jezetben megállapítottuk, hogy rendkívül gyorsan konvergál. Az ott leírtak a d szerinti 



5.4. A B-ALGORITMUSSAL KAPOTT EREDMÉNYEK 65 

minimalizálásra is érvényesek. A megállási feltételeket az ott leírtaknak megfelelően 
állítottuk be ebben az esetben is. 

Az energia az a paraméterektől azok szögfüggvényein keresztül függ, vagyis nem 
mutat hasonlóságot a minimumkeresés szempontjából kedvező homogén függvényekkel. 
Az a komponensei szerint külön-külön végezzük a minimumkeresést. Azt a komponenst 
változtatjuk, amelyik szerint aktuálisan a leggyorsabban változik az energia. Addig 
folytatjuk az eljárást, amíg az energia a szerinti gradiense egy határ alá nem kerül. 3 

A könnyebb áttekinthetőség kedvéért itt felvázoljuk a minimumkeresés algorit-
musát, s majd alább részletesen leírjuk. A két paraméter-vektor szerinti gradiens 
(VaE, VdE) normáját fogjuk vizsgálni annak eldöntésére, hogy abbahagyhatjuk-e a 
minimumkeresést. Az eljárás akkor áll le, ha az aktuális {d, a} értékeknél mindkét gra-
diens normája kisebb egy előre megadott és rögzített számnál (GLIMIT). Tekintsük át 
az eljárás lépéseit. 

1. START, Kezdeti értékek megadása, LOGD=.true., LOGA=.true. 

2. IF \VdE\ < GLIMIT THEN 
LOGD=.false. 
GOTO 4 
ENDIF 

3. mindE(d, a), a = const. 

4. IF | V a £ | < GLIMIT THEN 
LOGA=.false. 
GOTO 10 
ENDIF 

5. LOGD=.true. 

6. GLIMA= \V*E\/2 
3 Ez a minimalizálási feladat hasonlóságot mutat a molekulapályák Edminston-Ruedenber kritérium 

alapján történő lokalizációjával. Az a szerinti rész-minimumkeresés ilyen megvalósítása a lokalizáció 
egyik standard technikája. 
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7. megkeressük a VaE legnagyobb komponensét, ennek indexe a 

8. minaaE(d, a), d = const., ab = const. Vb ^ a 

9. GOTO 7 mindaadig, amíg | V a £ | > GLIM 

10. IF (LOGD.AND.LOGA) GOTO 2 

11. END 

A 2.-10. lépések összességét a későbbiekben "minimumkeresési ciklus"-nak hívom, 
a 3. és a 6-9. lépéseket pedig "rész-minimumkeresés"-nek. A LOGC és a LOGA 
két logikai változó, amelyek értéke attól függ, hogy az energia c illetve a szerinti 
gradienseinek a normája hogyan viszonyul az előre megadott és rögzített GLIMIT 
számhoz. Az eljárás akkor áll le, amikor mind a két gradiens norma egyidejűleg kisebb, 
mint GLIMIT. A GLIMA az a szerinti rész-minimumkeresést kontrollálja. Lehetne 
állandó, azonban célszerűbbnek láttuk minden részminimumkeresés alkalmával a kiin-
dulási gradiens segítségével megadni. A d és a szerinti rész-minimumkeresések ugya-
nis befolyásolják a másik paramétervektor szerinti gradienst. Különösen a számítás 
kezdetén, amikor még nagy mértékben változnak a paraméterek felesleges a rész-
minimumkeresések nagy pontossággal való végrehajtása. A GLIMA szabályozásával 
tehát számítási munkát takarítunk meg. 

Számításainkat először víz, ammónia és metán molekulára végeztük el minimális 
bázissal. A korrelációs energiát az adott bázisban a C-algoritmussal határoztuk 
meg, majd vizsgáltuk, hogy ennek mekkora hányadát kaptuk meg a D-algoritmussal. 
Eredményeinket az 5.5., az 5.6. és az 5.7. táblázatokban foglaltuk össze. Megadtuk az 
egyes esetekben a minimumkeresési ciklusok számát is. 

További vizsgálatainkat a vízmolekulán végeztük. Double zeta bázist használtunk, 
amivel az egyelektron függvények száma 26, az elektronok száma 10, ( f y pedig 
5311735. A C-algoritmussal elvégeztük az összes Slater-determináns terében a min-
imumkeresést, ezzel megkaptuk a FCI energiát. Ehhez az energiához viszonyítjuk 
a többi eredményt. Az a vektor komponenseinek a száma 156. A 5.8. táblázatból 
látszik, hogy a variációs paraméterek számának fc-val való gyors csökkenése ellenére a 
korrelációs energiának viszonylag nagy hányadáról képes számot adni ez a módszer. 
A 5.10. ábrán szmléltettük a változók számának változását az altér k dimenziójának 
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5.5. Táblázat: A D-algoritmussal kapott eredmények a vízmolekulára. A fölső 
táblázatban a C-algoritmussal kapott eredmények láthatók. (Nit: az iterációk 
száma, E: az elektron energia, Ecorr: a korrelációs energia az adott bázisban). Az 
alsó táblázatban Nck a minimumkeresési ciklusok száma. Az energiákat Hartree 
egységekben adtuk meg. 

M N (¡0 E Nit Ecorr 

14 10 1001 -83.92634234 62 -0.054529870 

k ( i ) Nck Ek Ek 

"corr 
Ek

0JE^r * 100 

12 66 5 -83.88733894 -0.015526470 28.47 
10 1 1 -83.87181247 0 0 

5.6. Táblázat: A D-algoritmussal kapott eredmények az ammónia molekulára. A 
fölső táblázatban a C-algoritmussal kapott eredmények láthatók. (Nit: az iterációk 
száma, E: az elektron energia, Ecorr a korrelációs energia az adott bázisban). Az 
alsó táblázatban Nck a minimumkeresési ciklusok száma. Az energiákat Hartree 
egységekben adtuk meg. 

M N E Nit Ecorr 

16 10 8008 -67.26191891 66 -0.069141070 

k (i) Nck Ek Ek 
corr Ecorr /Ecorr * 100 

14 1001 9 -67.23489738 -0.042119540 60.91 
12 66 5 -67.20301973 -0.01024189 14.81 
10 1 1 -67.19277784 0 0 
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5.7. Táblázat: A D-algoritmussal kapott eredmények a metán molekulára. A fölső 
táblázatban a C-algoritmussal kapott eredmények láthatók. (Nit: az iterációk 
száma, E: az elektron energia, EcorT a korrelációs energia az adott bázisban). Az 
alsó táblázatban Nck a minimumkeresési ciklusok száma. Az energiákat Hartree 
egységekben adtuk meg. 

M N (S) E Nit ECOTT 

16 10 43758 -53.32649316 44 -0.078265940 

k Nck Ek Ek 
COTT Ek

orr/Ecorr * 100 

16 8008 4 -53.30349577 -0.05526855 70.69 
14 1001 7 -53.27430787 -0.02608065 33.32 
12 66 8 -53.26420523 -0.015978010 20.41 
10 1 1 -53.24822722 0 0 

függvényében, és a kapott korrelációs energia relativ eltérését a teljes téren számolt 
korrelációs energiától szintén a k függvényében. 

Megfigyelhető, hogy double zeta bázissal már a k = N esetben is a HF energiánál 
mélyebbre jut az algoritmus, míg minimális bázis esetén nem. Ennek oka az, hogy mi 
RHF energiát számoltunk, aminél az UHF energia mélyebb, ezt találja meg az algo-
ritmusunk. Minimális bázis esetén azonban a térpályáknak nincs olyan kombinációja, 
amivel az UHF az RHF energia alá tudna menni. Ezért az 5.5., az 5.6. és az 5.7. 
táblázatokban külön nem tüntettük föl a HF energiát, mert a k = 10 sorban éppen az 
szerepel. 

Összefoglalva, a D-algoritmus konvergenciáját az a paraméterek szerinti min-
imumkeresés rontja ugyan, azonban ez az eljárás a változók számának jelentős 
csökkentése esetén is számot ad a korrelációs energia nagy hányadáról, a Bm feletti 
Slater-determinánsok terében számolt FCI energiát tekintve viszonyítási alapnak. A 
változók száma széles skálán szabályozható. A módszer méretkonzisztens. Meg-
fordítva a gondolatsort, a D-algoritmus alkalmas arra, hogy a k állandó értéken 
tartása mellett az egy részecske bázis méretét növelve kapjunk mélyebb energiát. Ilyen 
módon a változók száma csupán M2-tel arányosan növekszik, nem pedig a binomiális 
együtthatók szerint. 
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5.8. Táblázat: A vízmolekulára double zeta bázissal végzett számítások fontosabb 
paraméterei és eredményei. A fölső táblázatban a teljes egyrészecske bázis felett képzett 
Slater-determinánsok terében végzett számítás eredményét (M: egyelektron bázis 
mérete, Nit: az iterációs lépések száma, E: a teljes energia, Ecorr: a korrelációs ener-
gia). Az alsó táblázatban pedig az egyelektron függvénytér egy ^-dimenziós alterének 
forgatásával összekapcsolt minimumkeresés eredményei láthatók (Nck: a minimumk-
eresési ciklusok szama, Ek

0TT: a korrelácios energia közelítése). Ebben az esetben a c és 
az a paraméterek szerint felváltva kerestük a minimumot, mindaddig, amíg mindkét 
gradiens normája 10-4 alá csökkent. A rendszer HF energiája: Ehf = —85.25005803 
A táblázat legfontosabb adatait a 5.10. ábrán szemléltetjük. 

M (!0 Nit E ECorr 

26 5 311 735 96 -85.39118414 0.141126102 

k Nck Ek pk 
•C/corr Ecorr/Ecorr * 100 

24 1 961 256 5 -85.38887781 0.138819780 98.37 
22 646 646 P* 

0 -85.38598372 0.135925686 96.31 
20 184 576 6 -85.37908035 0.129022315 91.42 
18 43 758 4 -85.37442945 0.124371417 88.12 
16 8 008 5 -85.34385346 0.093795429 66.46 
14 1 001 5 -85.30978869 0.059730651 42.32 
12 66 5 -85.28080935 0.030751313 21.79 
10 1 2 -85.27056803 0.020509999 14.53 
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5.10. ábra: A vízmolekulára double zeta bázissal kapott, a 5.8. táblázatban összefoglalt 

eredmények szemléltetése. A fölső ábrán az E*orr relatív eltérését láthatjuk az EC0TT 

teljes téren számolt korrelációs energiától a k függvényében. Az alsó ábra a variációs 

paraméterek számát mutatja k függvényében. 
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Az eredmények összefoglalása 

Molekuláris rendszerek elektronszerkezetének meghatározására javasoltunk eljárást. 
Az N számú elektront tartalmazó rendszer hullámfüggvényét egy adott, M dimenziós 
egyelektron-bázis felett képzett (5£) számú Slater-determináns lineárkombinációjaként 
vettük fel, c a lineárkombinációs együtthatókat tartalmazó vektor. A másodredű re-
dukált sűrűségmátrixot megadtuk geminál bázisban. A sűrűségmátrix struktúráját 
biztosító, az elektronrendszerek statisztikus tulajdonságai alapján felírható szerkezeti 
mátrixot adtunk meg. Az alapállapoti sűrűségmátrixot a variációs elv alapján 
közelítettük véges bázisban. Az energia konfigurációs együtthatók szerinti minimumát 
kerestük, ami nem más, mint az egzakt alapállapoti energia adott véges bázisban 
elérhető legjobb közelítése. A minimumkeresést BFGS módszerrel végeztük, ehhez 
szükségünk volt az energia gradiensének kifejezésére, amit felírtunk. Az energia mini-
malizálásának ezt a módját C-algoritmusnak neveztük. A variációs paraméterek száma 
ebben az esetben ( ^ . 

Egy számítási módszer alkalmazásának mindig határt szabnak a rendelkezésre álló 
véges számítási kapacitások. A variációs eljárások esetében ennek fő oka a variációs 
paraméterek nagy száma. 

A variációs paraméterek számának jelentős csökkentését értük el a konfigurációs 
együttható vektor speciális variálásával. A c variálást az alábbi formula szerint 
végezzük: 

m 
c = c0 + Y , bi,j;k,l V0y;fc>i(co). (5.7) 

i<j,k<l 

A variációs paraméterek a b vektor komponensei, amelyek száma legfejebb 
( ? ) ( ( ? ) + l ) / 2 < , d e a sP in" é s térszimmetriák miatt ezek közül sok eltűnhet. 
Kis számú paraméter szerinti minimumkeresések véges sorozatával találjuk meg a min-
imumot. Ezt az eljárást B-algoritmusnak neveztük. 

A variációs paraméterek száma úgy is csökkenthető, hogy az egyelektron függvények 
terében egy alacsonyabb dimenziójú alteret választunk ki, az ezen altér felett képzett 
Slater-determinánsok együtthatóit variáljuk. A d vektor ezeknek a determinánsoknak 
az együtthatóvektora. A kiválasztott alteret a teljes egyelektron-térben lehet forgatni, 
ami a redukált Hamilton-operátor mátrixelemeit megváltoztatja. A d vektor, ezzel 
együtt a sűrűségmátrix rögzítésével megkereshető az energiának az altér forgatásának 
paraméterei (a) szerinti minimuma. Az energia most a d és a paraméterek függvénye 
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E = E{d, a) . A variációs paraméterek száma a kiválasztott altér dimenziójától (k) 
függ. Ezt az eljárást D-algoritmusnak hívtuk. 

A következőkben pontokba foglalva felsoroljuk a dolgozatban szereplő új tu-
dományos eredményeket. 

1. Kifejlesztettünk a másodredű redukált sűrűségmátrix előállítására és opti-
malizálására egy olyan eljárást, amely során az N-reprezentálhatóság mindvégig 
egzaktul teljesül. A másodredű redukált sűrűségmátrix elemeinek kiszámítására 
olyan algoritmust készítettem, amely nem igényli a mátrixelemek számolásához 
szükséges igen nagy adatmennyiség tárolását [97, 98, 100]. 

2. A sűrűségmátrix formalizmusra alapozva az N-reprezentálhatóság biztosításával 
új módszert adtunk meg a korrelációs energia kiszámítására (ún. C-algoritmus). 
Megírtam a korrelációs energia kiszámítására szolgáló C-algoritmus számítógépen 
való alkalmazásához szükséges kódot. Mintaszámításaim során megfigyel-
tem, hogy a megírt kóddal az energiafunkcionál kiszámítása hatékonyan meg-
valósítható, és a minimalizálás gyorsan konvergál. [103]. 

3. A Slater-determinánsok terének dimenziójánál lényegesen kevesebb, a másodredű 
redukált sűrűségmátrix elemszámával megegyező számú paramétert bevezetve 
írtuk fel az energiafunkcionált (ún. B-algoritmus). Ezzel az energia mini-
malizálásához szükséges paraméterek száma nem (J^j-nel, hanem a bázisméret 
negyedik hatványával arányos, az elektronszámtól pedig nem függ. Összeha-
sonlítottam a C- és B-algoritmusokat. Megállapítottam, hogy a két eljárás azonos 
indítási feltételekkel ugyanazokat a lokális minimumokat állítja elő [102, 104]. 

4. A Slater-determinánsok dimenziós teréből az egyrészecske függvények for-
gatásával egy, a korrelációs energia számítása szempontjából optimális <C 

dimenziós alterér bázisvektorait választottunk ki (ún. D-algoritmus). 
Előállítottam a D- algoritmushoz szükséges formulákat megírtam a számítógépes 
kódot és megmutattam, hogy a D-algoritmus konvergenciáját a forgatási 
paraméterek szerinti minimumkeresés rontja ugyan, azonban ez az eljárás a 
változók számának jelentős csökkentése esetén is méretkonzisztens módon számot 
ad a korrelációs energia nagy hányadáról. A változók száma széles skálán 
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szabályozható [106] 

5. A C-, B- és D-algoritmusok hatékonyságának bemutatására különböző bázisokkal 
számításokat végeztem. Kiszámoltam a korrelációs energiát Li, C atomokra, 
valamint LiH, Li^, CH4, NH3, H20, HF molekulákra. Kiszámoltam a LiH és a 
Li2 molekulák potenciális energia görbéit. Megadtam a spin négyzetének várható 
értékét a magtávolság függvényében [100, 102, 103, 104]. 
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Angol nyelvű összefoglaló / Summary 

A method for calculating electronic structure of molecular systems was presented 
in this thesis. The wave function of the iV-electron system was written in the form 
of linear combination of Slater-determinants constructed over an M-dimensional one-
electron basis. The vector c contains the linear combination coefficients. The second-
order reduced density matrix (2-matrix) was expressed in geminal basis. The structure 
matrix (V) determining the the structure of 2-matrix was defined. This matrix is 
independent of the one-electron functions, and depends on the number of electrons, on 
the number of one electron functions, on the orthonormality of them, on the statistical 
properties of electrons.The ground state density matrix was approximated in finite 
basis by means of variational principle. The minimum of the energy was searched 
with respect to the vector c. This minimum energy is the best approximation of the 
exact ground state energyin the frame of the given basis. Minimization was performed 
with BFGS method, gradients required for it were derived. We call this procedure for 
minimizing the energy C-algorythm. 

The applicability of a method is allways limited by computational capabilities. In 
the case of variational methods difficulties arises mainly from the large number of 
variational parameters. 

To keep the computational work under a manageable limit the vector c will be 
sought in the form: 

M 
c = c 0 + £ bij.ktl V0 i j ; fci i(co). (5.8) 

i<j,k<l 

Components of vector b are the variational parameters, the number of them is at most 
+ l)/2 < but because of symmetries a lot of them can be eliminated 

in symmetric cases. Although one evaluation of the energy and its gradient requires 
more computational cost then it does in the C-algorythm, the decrease in the number 
of variational parameters is significant profusely balancing the disadvantage of extra 
computing in functional evaluation. The minimum can be found by a sequence of 
minimizations with small number of parameters. This procedure is called B-algorythm. 

An other way to reduce the number of variational parameters is based on selecting a 
/c-dimensional subspace of the space of one-electron functions (k < M). We construct 
Slater determinants over this subspace. The number of these determinants is , and 
the vector d is considered as the coefficient vector of them. The ^-dimensional subspace 
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can be transformed in the space of one-electron functions, so the matrix elements 
of reduced Hamiltonian will change. The energy is the functional of parameters of 
transformations. The energy can be minimized with respect to the parameters of 
unitary transformations of the subspace (a). The energy is a functional of parameter 
vectors d and a: E = 2?(d, a) . The number of variational parameters is depending 
on k. This procedure is called D-algorythm. 

Main results of this thesis is summarized as follows: 

1. We have developed a method for optimizing the second order reduced density ma-
trix which ensures exactly the N-representability by construction. I have developed 
an algorythm for calculating the matrix elements which allows not to store the 
large amount of data needed for calculating matrix elements. [97, 98, 100]. 

2. We have presented a novel method for calculating correlation energy based on 
reduced density matrix formalism and ensuring N-representability exactly (C-
algorythm). The method is variational. I have implemented the C-algorythm. 
I have shown that the minimization of the energy can be performed effectively 
with C-algorythm in the sense that the computation is effective and the number 
of iterations is low. [103]. 

3. The energy was written in the form that has essentially less parameter than the 
number of Slater-determinants. So the number of parameters required for mini-
mizing the energy is not in proportion to ( ^ j , but to the square of the dimension 
one-electron basis and is independent of the number of electrons (B-algorythm). 
I have compared algorythms C and B. I have found that algorythms give the 
same local minima, and started from the same vector they converge to the same 
minimum energy [102, 104]. 

4. I have derived the formulas for the D-algorythm and have coded them. I have 
shown that the number of variational parameters may decrease remarkably. Al-
though the convergence of the procedure is slower than that of the C or B-
algorythms, but it can give account a large amount of correlation energy even 
with small number of minimization parameters. The method is size consistent 
[106]. 
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5. I have performed pilot calculations for demonstrating features of C-, B- and D-
algorythms. I have calculated the correlation energies for the atoms Li and C, 
and for molecules: LiH, Lia, CH4, NH3, H20, HF . I have calculated potential 
curves and the spin expectation values depending on the distance of nuclei for 
LiH and Lia molecules. [100, 102, 103, 104]. 

34 



Köszönetnyilvánítás 

Köszönöm témavezetőmnek, Dr. Gyémánt Ivánnak, hogy lehetőséget biz-
tosított számomra az SZTE Elméleti Fizikai Tanszékén való tanulásra és munkára. 
Tanulmányaimban irányt mutatott, munkámat figyelemmel kísérte, mind szakmailag, 
mind emberileg felbecsülhetetlen segítséget nyújtott. 

Hálás vagyok Dr. Bálint Imrének, másik témavezetőmnek a témaválasztásért, 
a számtalan értékes tanácsért, amit tőle kaptam és azért, hogy figyelemmel kísérte 
munkámat és mindig volt ideje rám. 

Köszönöm a SZTE Elméleti Fizikai Tanszéke minden munkatársának, hogy 
munkámat segítették. Külön köszönöm Dr. Bartha Ferencnek és Dr. Bogár Fer-
encnek, hogy a programozás kapcsán felmerülő kérdéseimmel bármikor felkereshettem 
őket. 

Köszönöm prof. Dombi Györgynek, hogy az irányításával működő intézetben való 
munkám mellett lehetőséget biztosított a doktori dolgozatom megírásához. 

Hálás vagyok feleségemnek, Mariannának odaadó támogatásáért és a meleg családi 
háttérért. 

34 



Irodalomjegyzék 

[1] John C. Slater: Quantum theory of matter (McGraw-Hill, 1951) 

[2] A.J.Coleman-R.M.Erdahl (eds.): Reduced density matrices with appli-
cations to physical and chemical systems (Proceedings of a conference 
held at Queen's university, Kingston, 1967) 

[3] R.M.Erdahl: (eds.): Reduced density operators with applications to 
physical and chemical systems (Proceedings of a conference held at 
Queen's university, Kingston, 1974) 

[4] L.D.Landau-E.M.Lifshitz: Kvantummechanika (Budapest, 1978) 

[5] Kapuy Ede-Török Ferenc: Az atomok és molekulák kvantumelmélete 
(Akadémiai Kiadó, 1975) 

[6] Attila Szabo-Neil S. Ostlund: Modern quantum chemistry (Macmillan 
Publishing Co. Inc., 1982) 

[7] Henry F. Schaefer (ed.):Methods of electronic structure theory (Plenum 
Press,1977) 

[8] R. McWeeny: Methods of molecular quantum mechanics ( Academic 
Press, 1989) 

[9] Stephen Wilson (ed.): Methods in computational chemistry (Plenum 
Press) 

[10] P.W.Atkins: Molecular quantum mechanics (Oxford Uniiversity Press, 
1983) 

34 



[11] Björn O. Ross: Lecture notes in quantum chemistry (Springer-Verlag, 
1992) 

[12] Nagy ágnes: Molekulák elektronsűrűség elmélete 
(Debrecen, 1994) 

[13] Vibók Ágnes: Atomfizika (Debrecen, 1995) 

[14] R.G.Parr and W.Yang: Density functional theory of atoms and molecules 
(Oxford University Press, 1989) 

[15] M.Levy, Á.Nagy, Phys. Rev. Lett. 83 4361 (1999) 

[16] A.Holas, N.H.March, Int. J. Quant. Chem. 61 263 (1997) 

[17] N.H.March (ed.): Electron Correlation in Solid State (Imperial College 
Press, 1999) 

[18] S.Huzinaga (ed.): Gaussian basis sets for molecular calculations (Else-
vier, 1984) 

[19] http : //www. emsl. pnl. gov:2080/forms/basisform. html 

[20] T.H.Dunning, J.Chem.Phys. 53 2823-2833 (1970) 

[21] T.H.Dunning, J.Chem.Phys. 55 716-723 (1971) 

[22] T.H.Dunning, Chem.Phys.Lett. 7 423-427 (1970) 

[23] J.A.Pople, M.Head-Gordon, K.Raghavachari, J.Chem.Phys. 87 5968 
(1987) 

[24] Rózsa Pál: Bevezetés a lineáris algebra elméletébe 
(Budapest, 1976) 

[25] S.E.Coonin: Computational Physics (Benjamin/Cummings Publishing 
Company, 1986) 

[26] B.Friedrich, Y.Herman, R.Zahradnik, Z.Havlas, Adv. Quant. Chem. 19 
247 (1988) 

34 



[27] Ruben Pauncz: The symmetric group in quantum chemistry (CRC Press, 
1995) 

[28] Enrico Clementi (ed.): Modern Techniques in Computational Chemistry: 
MOTECC-89 (ESCOM, 1989) 

[29] I.G.Kaplan: Theory of Molecular Interactions (Elsevier, 1986) 

[30] R.Fletcher: Practical methods of optimization (Willey, New York, 1980) 

[31] C.G.Broyden, Maths. Comput. 21 368 (1967) 

[32] R.Fletcher, Comp. J. 13 317 (1970) 

[33] D.Goldfarb, Maths. Comput. 24 23 (1970) 

[34] D.F.Shanno, Maths. Comput. 24 647 (1970) 

[35] Jezry Cioslowski (ed.): Many-electron densities and reduced density ma-
trices (Kluwer Academic/ Plenum Publishers 2000.) 

[36] R.M.Dreizler, J.da Providencia (eds.): Density Functional Methods in 
Physics (Plenum Press 1985) 

[37] P.Hohenberg and W.Kohn, Phys. Rev. 136 B864-871 (1964) 

[38] E.R.Davidson: Reduced density matrices in quantum chemistry (Aca-
demic Press 1976) 

[39] Karl Blum: Density Matrix Theory and Applications 
(Plenum Press, 1981) 

[40] J.Keller and J.L.Gäzquez: Density Functional Theory / Lecture Notes 
in Physics / (Springer-Verlag, 1983) 

[41] J.I.Horväth and I.K.Gyemänt, Acta Phys. Hung. 27, 111-129. (1969) 

[42] O.Jitrik, C.F.Bunge, Phys. Rev. A 56 2614-2623 (1997) 

[43] S.P.Goldman, Phys.Rev.Lett. 78 2325-2328. (1997) 

[44] F.J.Gälvez, E.Buendia, A.Sarsa, Phys. Rev. A 61 052505 (2000) 

34 



[45] P.Jönsson, C.F.Fisher, Phys. Rev. A 48 4113 (1993) 

[46] R.McWeeny, Rev. Mod. Phys. 32 335 (1960) 

[47] L.Cohen, C.Frisberg, Phys. Rev. A 13 927 (1976) 

[48] H.Nakatsui, Phys.Rev. A 14 41-50. (1976) 

[49] H.Nakatsui, 67 329 (1978) 

[50] H.Nakatsui, K.Yashuda, Phys.Rev.Lett. 76 1039-1042. (1996) 

[51] K.Yashuda and H.Nakatsui, Phys.Rev. A 56 2648-2656 (1997) 

[52] D.A.Mazziotti, Chem. Phys. Lett. 289 419 (1998) 

[53] D.A.Mazziotti, Phys. Rev. A 60 3618 (1999) 

[54] D.A.Mazziotti, D.R.Herschbach, Phys. Rev. Lett. 83 5185 (1999) 

[55] F.W.King, J.Mol.Struct.:THEOCHEM 400 7 (1997) 

[56] E.Kapuy, J.Chem.Phys. 44 956-962 (1966) 

[57] F.Bartha, F.Bogar, E.Kapuy, Int. J. Quant. Chem. 38 215 (1990) 

[58] J.v. Neumann, Gött. Nachr., 245 (1927) 

[59] L.D. Landau, Z. Phys. 45 S 430 (1927) 

[60] P.A.M. Dirac, Proc. Cambridge Phil. Soc. 26 375 (1930) 

[61] P.A.M. Dirac, Proc. Cambridge Phil. Soc. 27 240 (1931) 

[62] V. Fock, Z. Physik 61, 126 (1930) 

[63] K. Husimi, Proc. Phys. Soc. Japan 22 264 (1940) 

[64] P.-O. Löwdin, Phys. Rev. 97 1474 (1955) 

[65] P.-O. Löwdin, Phys. Rev. 97 1490 (1955) 

[66] P.-O. Löwdin, Phys. Rev. 97 1509 (1955) 

[67] Per-Orlov Löwdin, Adv.Chem.Phys. 2 207 (1959) 

34 



[68] P.O.Löwdin, Rev. Mod. Phys. 32 328 (1960) 

[69] A.J. Coleman, Can. Math. Bull. 4 209 (1961) 

[70] A.J.Coleman, J. Math Phys. 6 1425 (1965) 

[71] Density Matrices and Density Functionals, Proceedings of the A. John 
Coleman Symposium, eds.: R. Erdahl, V.H. Smith, Jr., D. Reidel Pub-
lishing Company, Dordrecht, Holland, 1987. 

[72] I. Absar, A.J. Coleman, Int. J. Quant. Chem. 10 319 (1976) 

[73] I. Absar, A.J. Coleman, Int. J. Quant. Chem. 18 1279 (1980) 

[74] A.J. Coleman, Rev. Mod. Phys., 35 668 (1963) 

[75] A.J. Coleman, J. Math. Phys. 13 214 (1972) 

[76] C. Garrod, J. Percus, J. Math. Phys. 5, 1756 (1964) 

[77] J. Simons, J. Harriman, Phys. Rev. A 2 1034 (1970) 

[78] D.W. Smith, J. Chem. Phys. 43 S258 (1965) 

[79] D.W. Smith, Phys. Rev. 147 896 (1966) 

[80] H. Kummer, J. Math. Phys. 8 2063 (1967) 

[81] W.Kohn, Phys. Rev. Lett. 51 1596 (1983) 

[82] M.Levy, Phys. Rev. A 26 1200 (1982) 

[83] K. Yasuda, Phys. Rev. Lett. 56 2648 (1997) 

[84] E.V. Ludena, in Density Matrices and Density Functionals, Proceedings 
of the A. John Coleman Symposium, eds.: R. Erdahl, V.H. Smith, Jr., 
D. Reidel Publishing Company, Dordrecht, Holland, 1987. 

[85] D.A. Mazziotti, Phys. Rev. A, 57 4219 (1998) 

[86] D.C. Liu, J. Nocedal, Math. Progr. 45 503 (1989) 

[87] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University 
Press, Oxford (1965). 

34 



[88] P.R.Surjan (ed.): Correlation and localization (Springer-Verlag, 1999) 

[89] C.C.J.Roothan, Rev. Mod. Phys. 23 69-89 (1951) 

[90] I.Shavitt, Mol. Phys. 94(1) 3-17 (1998) 

[91] J.Pople, R.Seeger, R.Krishnan, Int. J. Quant. Chem. S l l 149 (1977) 

[92] E.Kapuy, J. Chem. Phys. 44(3) 956 (1966) 

[93] C.Valdemoro, Phys. Rev. A 45(7) 4462 (1992) 

[94] F.Colmenero, C.Perez del Valle, C.Valdemoro, Phys. Rev. A 47(2) 971 
(1993) 

[95] F.Colmenero, C.Valdemoro, Phys. Rev. A 47(2) 979 (1993) 

[96] F.Colmenero, C.Valdemoro, Int. J. Quant. Chem. 62 369 (1994) 

[97] I.Balint,G.Dezso,I.Gyemant, Journal of Molecular Structure, 
THEOCHEM 501-502 125-132 (2000) 

[98] I.Balint,G.Dezs6,I.Gyemant, Abstract Book, Density functional theory 
and its applications to materials conference, University of Antwerpen, 
June 8-10, 2000 

[99] G.Dezso,I.Balint,I.Gyemant 
a. Abstract Book pp.21., CECM-1 conference, Varazdin, 15-17 June 2000. 
b. Abstract Book pp.16., Math/Chem/Comp 2000 conference Dubrovnik, 
June 19-25, 2000 

[100] G.Dezso,I.Balint,I.Gyemant Kem.Ind. 50 (3) 125-127 (2001) 

[101] G.Dezs6,I.Balint,I.Gyemant, Abstract Book pp.56., EUCO-CC3 confer-
ence, Budapest, September 4-8, 2000 

[102] I.Balint,G.Dezso,I.Gyemant, J.Chem.Inf.Comp.Sci. 41 806-810 (2001) 

[103] G.Dezso,I.Balint,I.Gyemant, Journal of Molecular Structure, 
THEOCHEM 542 21-23 (2001) 

[104] I.Balint,G.Dezso,I.Gyemant, Int.J.Quant.Chem 84(1) 32-38 (2001) 

34 



[105] LBalint,G.Dezso,I.Gyemant, Abstract Book, Symposium on Molecular 
Informatics and Combinatorial Quantum Chemistry, Budapest, Feb. 19-
21, 2001 

[106] G.Dezs6,I.Balint,I.Gyemant, (To be published) 

34 




