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1. Fejezet

Bevezetés

1.1 A dolgozat témdjanak el6zményei

Az atomi rendszerek tulajdonsagait a XX. szdzad elsé negyedében kifejlesztett kvan-
tummechanika irja le. A kvantummechanika alapegyenlete a Schrédinger-egyenlet,
melynek megoldasaként kapjuk a hullimfiiggvényt. A hullimfiiggvény ismeretében
megadhatjuk a rendszert jellemz6 fizikai mennyiségek varhaté értékeit és a rend-
szer dllapotdnak id6beli fejlodését. Az atomi rendszerek hullimfiiggvényének egzakt
meghatdrozasa a hidrogénatom staciondrius allapotainak esetét kivéve nem lehetséges.

Az atomok és molekuldk id6tdl fiiggetlen, nemrelativisztikus Schrddinger-
egyenletének megolddsira szdmos kozelité eljirist dolgoztak ki. Mind torténeti,
mind elvi szempontbdl jelentds a fiiggetlenrészecske- vagy Hartree-Fock (HF) mo-
dell (D.R. Hartree 1928, V. Fock 1930). A HF mddszerrel véges szdmu egyelek-
tron fiiggvényt kapunk, amelyek antiszimmetrizilt szorzatdbdl (Slater-determindns,
J.C. Slater 1930) felépitheté a rendszer hullimfiiggvényének egy kozelitése. Eldnyei
és hatranyai egyarant abbdl kovetkeznek, hogy az elektronok atlagolt kolcsonhatdsat
veszi csak figyelembe. Elvi egyszeriisége, viszonylag kis szamitdsigénye, az eredményiil
kapott molekulapalyak j6 tulajdonségai és szemléltethetSsége teszik igen széles korben
hasznilhatéva, valamint szinte minden egyéb molekulafizikai szdmitdsi mddszer kiin-
dulépontjava. A Hartree-Fock modell hidnyossdga, hogy nem ad szdmot az elektron-
korrelaciordl, s az ezzel kapcsolatos korreldciés energidrdl.

A hulldmfiiggvényt varidcids vagy perturbaciés mdédszerekkel kozelithetjik. Mig a
varidciés médszerek a rendszer teljes energidjira mindig felsé becslést adnak, a per-
turbdciés mddszerekre ez nem igaz, ami miatt tiilbecsiilhetik a korreldcids energidt. A

3



1.1. A DOLGOZAT TEMAJANAK ELOZMENYEI 4

teljes konfigurdcids kélcsénhatas (full configurational interaction, rév.: FCI) mddszere
adja az elektronkorreldcié legteljesebb leirdsat. Altaldban a FCI eredményekkel valé
Osszevetés alapjan vizsgiljdk az egyéb eljardsok teljesitlépességét. A FCI modszert
elvi egyszeriisége és varidcids jellege is vonzdva teszi, legnagyobb erdssége azonban
az altaldnossdg és a rugalmassig. Barmilyen elektrondllapotra alkalmazhatd, vi-
szonylag egyszeriien vezethet6k be a spin- ill. szimmetria-megszoritdsok. Hétranya,
hogy szamitasigénye (%) -nel ardnyos, ahol N az elektronok szdma, M pedig az
egyrészecskebazis mérete.

A hulldmfiiggvény sokkal tobb informdciét hordoz, mint amennyi a
parkolcsonhatdsokat tartalmazé rendszerek jellemzéséhez sziikséges. A hullamfiiggvény
kiiktatdsa a kvantummechanikibél (”hulldmmechanika hulldmfiiggvény nélkil”) az
1960-as évektdl kezdve igen intenziven kutatott kérdéskorré valt.

A Hohenberg-Kohn tétel (1964)szerint a molekula alapillapoti elektronsiiriiségéhez
kolcsonosen egyértelmiien hozziarendelheté az alapédllapoti hulldmfiiggvény. Az e
tételen alapuld siiriségfunkciondl elméletben (density functional theory, DFT) az elek-
tronstirliségbdl egy univerzdlis funkciondlon keresztiil szimolhaté ki az energia, amely
mar a korrelaciés energiat is magiban foglalja. Sajnos az utébbi néhany évtizedben
folytatott igen intenziv kutatémunka ellenére sem ismert az egzakt energia-funkciondl.

Egy kvantummechanikai rendszer leirdsira a hullimfiiggvény helyett mind elméleti
mind szadmitési szempontok miatt elénydsebb a mdasodredii redukalt sirtiségmatrix .
A kétrészecske redukalt slirliségmatrix a legfeljebb pdrkoélcsonhatdsokat tartalmazé
rendszer leirdsdhoz sziikséges minden informéciét magdban foglal. A siiriiségmadtrix
formalizmus szamos fizikai probléma tdrgyaldsiban hatékonyan alkalmazhatdé. Az
elektronkorreldcido leirdsira és a molekuldk tulajdonsiganak vizsgdlatira is a
mésodrendii redukalt sliriiségmadtrix a legegyszeriibb matematikai eszk6z. Az tn.
N-reprezentalhatdsdgi probléma azonban jelentésen megneheziti a madsodredi redukalt
stirliségmatrixok alkalmazdsit a kvantummechanikai szdmitdsokban. Az energidnak
a variaciés elv dltal kijelolt minimalizildsa nem végezhet6 el a siirtiségmatrix ,
mint valtozé szerint, mert a siriiségmatrix nem varidlhaté szabadon, és a varidldsat
megszorité feltételeket (N-reprezentilhatésigi feltételek) nem ismerjiik.

A kontrahdlt Schrodinger-egyenlet (contracted Schrédinger-eq., CSE) megoldésa
nem-varidciés eljarast kindl a redukalt silirliségmétrixok kozvetlen meghatdrozasdra.
Azonban nem tudjuk a magasabbrendii siirfiségmaétrixokat alacsonyabb rendiiekkel
egzaktul kifejezni. amire sziikségiink volna az egyenlet megolddsahoz.
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1.2 Célkitizések

Olyan varidciés eljards kifejlesztését tiiztiikk ki célul, amely a FCI mddszerrel
egyenértékiien irja le az elekrtonkorreldciét, rendelkezik a mdsodredii redukdlt
siirliségmatrix egyszriiségéb6l fakadd elényokkel, és annak N-reprezentilhatésigat
midvégig egzaktul biztositja.

Vizsgdlni kivintam hdrom kiilonb6z6 varidciés funkciondl esetén a mddszer
pontossigat, konvergenciasebességét, stabilitdsat. Végiil a médszer hatékonysdgianak

bemutatésa céljabol szamitdsokat végztem atomokra és molekulakra.

Az els6 fejezetben dttekintem dolgozatom témédjanak legfontosabb el6zményeit, az
alapfogalmakat és bevezetem a sziikséges jeloléseket. A masodik fejezetben leirom azt
a modszert, amit a sliriségmatrixok eldallitisara fejlesztettiink ki. Ezutdn bemutatom,
hogyan épithetd fel erre az el6allitasi mddszerre az elektronrendszerek alapéllapotdnak
illetve korreldcids energidjanak kiszamitdsdra szolgdlé varidcids eljards. Az energia
héromféle paraméterezését és ennek megfeleld harom eljarast (C-, B-, D-algoritmusok)
fogunk latni. Egy rovid alfejezetben kitérek a spin szdmitdsira is. Végiil a negyedik
fejezetben a médszerek konkrét szamitdsi feladatokra valé alkalmazdsat mutatom be

és megvizsgilom a konvergencia tulajdonsigaikat.



2. Fejezet

Elmeéleti attekintés

2.1 A Schrodinger-egyenlet, molekulak Hamilton-

operatora

Egy kvantummechanikai rendszer valamely stacionarius allapotdnak leirdsihoz ele-

gendo a
HY = BV (2.1)

id6tol fiiggetlen Schrodinger-egyenletet megoldani, ahol H a rendszer Hamilton-
operatora, ¥ a H egy sajatfiiggvénye (sajatvektora), E pedig a H megfelels sajatértéke.
A legkisebb (alapéllapoti) sajatértéket és a hozza tartozé (alapéllapoti) sajatvektort a
Ritz-féle varidcids elv szerint gy is kiszdmolhatjuk, hogy meghatérozzuk az
< U|H|T >

EY| =
7] < | >

(2.2)

energia-funkciondl minimumét. (A fizikai mennyiségek és a formuldk megadésakor
atomi egységeket hasznilunk.)

Vizsgalatunk targya az N elektror_xt és m atommagot tartalmazd, kiils6 eroktol
mentes (szabad) rendszer, dltaldban erre gondolunk, amikor a “molekula” kifejezést
hasznaljuk. Ez a széhaszndlat tehdt magdban foglalja a semleges atomokat és a
szokdsos értelemben vett molekuldkat, az egyszertii és Gsszetett ionokat és a gydkoket is.
Jelolje r; (i =1,..., N) az elektronok koordindtait és r, (a = 1,...,n) az atommagok
koordindtdit a magok silypontjihoz rogzitett derékszogl koordindta-rendszerben, e
vektorok kiilonbségéinek hosszat r;;, ro; és 74 jelOli értelemszeriien. Az operdtorok
véltozéinak feltiintetésekor azonban az atlithatésig kedvéért r; helyett i-t irunk. -

6



2.2. A FUGGETLENRESZECSKE-KOZEL{TES 7

Nemrelativisztikus és adiabatikus kozelitésben a molekuldk tn. elektron-Hamilton

operatora igy irhaté:

HQ1,2,...,N) = Eh(z) +2k(z 7). (2.3)
i<j
A fenti képletben a
h(i) = ——v2 Z— (2.4)
1 Tia
egyelektron-operdtor a kinetikai energiat és a mag—elektron potencialis energiit, a
1
k(z j)= (2.5)
Tij

kételektron-operator pedig az elektron-elektron kolcsénhatdst irja le. A (2.3) operdtor
sajatértékét elektron-energianak is szoktuk nevezni. A rendszer teljes energidjahoz
jarul még az E,,. magtaszitasi energia

=~ ZaZb

Enue = Z

a<b Tab

(2.6)

ami rogzitett magok esetén (adiabatikus kozelités) dllandd, ezért nem szerepeltetjiik a
Hamilton-operdtorban. Az elektron-energia és a magtaszitasi energia osszege a teljes

energia. A késébbiekben haszndlni fogjuk a

K(i,j) = 37— (h(d) + h(5)) + k(. 5) (2.7)
redukalt Hamilton-operatort. A H és K kozotti osszefiiggés:
~ N -~
H(1,2,...,N)=>_ K(i,j) (2.8)
i<j

2.2 A fuggetlenrészecske-kozelités

A molekuldk Hamilton-operatoranak sajatérték-egyenlete a k(s, j) kétrészecske tagok
miatt nem oldhaté meg egzaktul, ezért kozelité moédszerekhez kell folyamodnunk.
Altaldban az egyelektron-operatorok 6sszegeként, azaz

N

0(1,2,...,N) =Y 4(s) (2.9)

i=1
alakban megadott operdtorok sajitfiiggvényei szorzat alakban (Hartree-szorzat)
irhatodk fel:
$1(1)$2(2) ... o (N), (2.10)
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ahol ¢; az 6 egyik sajatfiiggvénye. A molekuldk nemrelativisztikus, id6tél fiiggetlen
Schrodinger egyenletének megoldasara egy lehetséges kozelitd6 médszer a kétrészecske-
operatorok olyan egyrészecske-operdtorokkal valé helyettesitése, amelyek az elek-
tronok atlagos kolcsonhatdsdt irjdk le. Mivel most elektronokbdl &ll6 rendszer
hullamfiiggvényét szeretnénk kozeliteni, figyelembe kell venniink az elektronrendszer
statisztikus (fermion) tulajdonsigait, igy a hulldmfiiggvénynek antiszimmetrikusnak
kell lennie a koordindtdk cseréjére. A hullimfiiggvény fentebb irt kozelitése nem anti-

szimmetrikus, ezért helyette a

_\/% Y. (1) PV P(¢pu)(1)8p)(2) - - - pvy(N)) =

PeSy

et {311, 62(2)., (V) (211)

antiszimmetrizalt hullimfiiggvényt alkalmazzuk. P az egyrészecskepdlydk indexeinek
permutaldsat jelenti, 7 (P) pedig e permutécié paritdsa, Sy az N-edrendii szimmetrikus
csoport, az Osszegzés végig fut az osszes permutdcion. Y p(—1)"F) P nem m4s, mint

az antiszimmetrizal operator. Ezt a fiiggvényalakot Slater-determindnsnak nevezziik.

2.3 Variacios elv

A Hamilton-operator sajatfiiggvényét a varidcids elv segitségével kozelithetjiik. Az
energia

_ < OV|H - E|¥ >+ < U|H - E|§T >

OF
U >

(2.12)

els6 varidciéja eltiinik, ha a hullimfiiggvény megegyezik a Hamilton operator
valamely U; sajatfiiggvényével, ekkor az E energia egyenlo az E; sajitértékkel.
Ebbél adédik az alabbi, a varidciés médszert megalapozd tétel. Egy tetszbleges
(négyzetesen integradlhatd) prébafiiggvénnyel szdmitott energia mindig felsd korlatja
az alapéllapot egzakt energia-sajitértékének. A gyakorlatban a prébafiiggvénybe
beépitett paraméterek varidldsival keressiikk az energia minimumét. Az igy meg-
taldlt energia az adott fliggvényalakkal és paraméterekkel elérhetd legjobb kozelitése
az egzakt alapallapoti energidanak.
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2.4 A Hartree-Fock modszer

A Hartree-Fock (HF)-modell egyetlen Slater-determinénssal kozeliti az (2.3) Hamilton-
operator egzakt alapallapoti sajitfiiggvényét. Az energidt minimalizald egyrészecske-
fiiggvények el6allithaték a variacids elvbdl levezetheté kanonikus

F'qbi:Ei’lﬁi i=1,...,N (2.13)

HF egyenlet megolddsaiként. A fenti egyenletben szerepld F' egyrészecske-operétor a
Fock-operator, amely igy irhaté:

R . N 1 R
P)=h(1) + Y / $1(2)7—(1 ~ Pra)y(2)d2. (2.14)

A Fock-operator a potencidlis energist leiré tagjiban tartalmazza a sajatfiiggvényeit.
igy sajatértékegyenlete (nem valédi sajitértékegyenlet, hanem 1n. al-
sajatértékegyenlet) nem linedris, ezért iterdciés eljirdssal kell megoldani a (2.13)
egyenleteket. ElGszor tetszoleges probafiiggvényeket valasztunk, ezekkel kiszamitjuk
a Fock-operitort, majd meghatirozzuk a sajatfiiggvényeit. Ezek utdn a kapott
sajatfiiggvényeket tekintjiilk prébafiiggvénynek. Addig folytatjuk, amig az uj
sajatfiiggvények adott pontossiggal meg nem egyeznek az el6zéekkel. Az eljardst
HF-SCF (self-consistent-field) mddszernek nevezziik. A kapott {;},7 = 1,...,N
egyrészeéske-fiiggvényeket dltaldban HF-molekulapalydknak (HFMO) nevezziik,
ezeket az e; sajatérték novekvd sorrendje szerint rendezhetjilk. Az els6 N moleku-
lapalyabdl felépitett Slater-deteminédns a rendszer alapillapoti hullamfiiggvényének a
kozelitése, az ehhez tartozé Eyr energidt HF-energidnak hivjuk, ami felsé korldtja
az egzakt alapdllapoti energidnak. A molekulapilydk egy oOnadjungalt operator
sajatfiiggvényei, ebb6l kovetkezik, hogy ortogondlisak egymdsra. A késobbiekben
azt is mindig feltételezziik, hogy egységre normiltak, igy a belliik képzett (2.11)
Slater-determindns is az lesz. A fent leirt eljirds a megszoritds nélkiili HF médszer. A
gyakorlatban (konvencionélis HF médszerek) szimmetria- és/vagy spinmegszoritasokat
szokas-alkalmazni, ami jelentGsen csokkenti a szamitésigényt, azonban altaldban mag-
asabb Eyr energidhoz vezet. Megemlitjiik, hogy a HF-SCF mddszer nem feltétleniil
konvergdl, vagy ha igen, akkor is vizsgdlatot igényel, hogy hova, kiilondsen akkor, ha
megszoritdst alkalmaztunk. Ugyanis a HF-determindnssal szdmolt energidnak az els6
nem biztositjdk azt, hogy a mésodik varidcié pozitiv definit legyen [5, XII.fejezet) [6,
3.fejezet).
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2.5 A molekulapalyiak sorfejtése

A molekulapilydk numerikus meghatérozdsa 4ltaldban kivihetetlen (kivétel ezaldl az
atomok esete). Roothaan egy olyan médszert dolgozott ki [89], amely differencidle-
gyenlet numerikus integraldsa helyett algebrai egyenlet megolddsara vezeti vissza a fe-
ladatot, igy az a standard matrix-formalizmussal megoldhaté. A szdmitdsi munka meg-
takaritdssal egyiitt azonban jelentésen lecsokkenti a fiiggvények ”hajlékonysdgat”, azaz
nem tudjuk tébbé oly szabadon varidlni 6ket, mint ahogy azt a numerikus megoldas
esetén tehettiik volna. Mivel a HF mddszer a variaciés elven alapul, ez elvi szempontbél
jelentés koriilmény.

Roothaan szerint a molekulapdlyakat ismert, és a szdmitds sordn nem valtoztatott
fiiggvények (bazisfliggvények) linedrkombindciéjaként keressiik. A linedrkombindcids
egylitthatdk a varidciés paraméterek, tehdt ezeket hatdrozzuk meg az SCF mddszerrel.
A bazisfiiggvények rendszerét jelolje {x,}(p = 1,..., M), a molekulapalydkat tehat

M
"/)i = Z dpiXp (215)
p=1

alakban keressiikk. Az (2.15) kifejezést behelyettesitve a (2.13) egyenletbe, balrdl

szorozva Xj-val és integrdlva az alabbi egyenlethez jutunk:

M X M
Do <XelFlxp>dpi =€) <Xqlxp > dpi i=1,...,N. (2.16)
p=1 p=1

A métrixelemekre bevezetve a F, =< Xo|F|xp > és Sgp =< Xglxp > jel6léseket,

valamint a kiilonb6zd ¢ indexekre vonatkozé egyenleteket Osszefoglalva a kovetkezé

matrix-egyenlethez jutunk:
Fd = Sde, (2.17)

ahol F a Fock-métrix, S a bazisfiiggvények atfedési mdtrixa, d az egyiitthatomatrix,
melynek (p,i) indexii eleme a ¢; molekulapilya kifejtésében a x, bazisfiiggvény
egyiitthatdja, € pedig a sajdtértékeket tartalmazé diagonélis métrix. A Fock-matrix
felépitéséhez a bazisfiiggvények aldbbi tipusi integraljai sziikségesek:

< XplhlxXq >= hpq: egyelektron-integralok, OEI (one-electron integrals)

< XpXqlk|XeXs >= kpayrs: kételektron-integralok, TEI (two-electron integrals).

Mivel a bazisfiiggvények rogzitettek, ezeket egyszer kell meghatdrozni a szdmitis
sordn. Altaliban t&bb bazisfiiggvényt vesziink fel, mint ahdny elektron van (M >
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N), ezért molekulapdlydnk is tobb lesz. Az N legalacsonyabb sajatértékd moleku-

lapalyat betoltott palyanak nevezziik, mert ezeket felhasznéljuk az egydetermindns

kozelitésben, a t6bbit virtudlis palydnak. [5, XI. fejezet] [6, 3. fejezet] (7, 1. fejezet]
Elvileg barmilyen fiiggvény lehet bazisfiiggvény. A gyakorlatban &dltaldban atom-

okon centralt

Guow(Ta) = z¥ylzlexp(—ar?)

alakd Gauss-tipusi fiiggvényeket (ahol u,v,w, nemnegativ egészek) , illetve ezek
linedrkombindcidit haszniljak, mert ezekkel egyszeriien szamolhatdk az integrilok. (A
formuldban az a index arra utal, hogy egy bizonyos atommagra vonatkoztatott relativ
koordinatakkal adtuk meg a fiiggvényt.) Egy adott atomhoz tartozé bazisfiiggvények
maguk is optimalizdlva vannak vagy a varidciés elv alapjan, vagy ugy, hogy kisérletileg
meghatarozott fizikai mennyiségekhez illeszkedjenek. Az elérhet6 bazisok tarhiza sz-
inte kimerithetetlen [18, 19, 20, 21, 22]. A vilasztdst a feladat és a rendelkezésre
allé szamitasi kapacitds hatdrozza meg els6sorban. A bazisfiiggvények szdmatol
(bézisméret) dltaldban erésen fiigg a feladat szdmitis- és/vagy memoriaigénye. Mivel
a molekulapalydk atomokon centrilt fiiggvények kombindciéi, ezt a médszert LCAO
(linear combination of atomic orbitals) -kozelitésnek is nevezik.

2.6 Elektronkorrelacid, korrelacios energia

A HF kozelités fizikai jelentését vizsgdlva megéllapithaté, hogy egy elektron
kornyezetében a kicserél6dési kolcsonhatds miatt az azonos spinii elektronok stiriisége
lecsokken, az adott elektron helyén eltiinik (Fermi-lyuk). Ez azt jelenti, hogy az
azonos spini elektronok mozgdsa nem fiiggetlen egymadstdl, korreldciéban van. Az
egydetermindns-kozelités a Fermi-lyuk létezését jol leirja, hiszen ez az antiszimmetria
kovetkezménye. Az elektronok kornyezetében a spintél fiiggetleniil, a Coulomb-taszitas
miatt is lecsokken az elektronsiirliség, Coulomb-lyuk keletkezik. Mivel a HF modell
az elektronok atlagos kolcsonhatdsat veszi csak figyelembe, errdl a korreldciérél nem
ad, nem is adhat szdmot. A Fermi-lyuk miatt a parhuzamos spini elektronok eleve
viszonylag tavol helyezkednek el egymdstél igy ebben az esetben az elektrontaszitas
miatt fellépd korreldcié elhanyagoldsibél eredd hiba kisebb, mint az ellentétes spini
elektron-parok esetében. A HF-modell f6 hidnyossdga tehdt, hogy elhanyagolja a
Coulomb-taszitds miatti korreldciét, ”tdl kozel engedi egymashoz” az elektronokat.
Természetesen ez a hiba az energidban is jelentkezik, amit korreldcids energidnak
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neveziink. Pontosabban a korreldciés energia (Fcorr) nem mds, mint az egzakt nem-
relativisztikus energia (E) és a HF-energia végtelen bazisra extrapoldlt hatarértékének
(E$ep, HF-limit) kiilonbsége [5, 6, 65] [11, (E.M.Siegbahn)] [9, (M.Urban et.al.)] :

Ecorr = E — E‘;{op

Ez a definicid, ha alaposan szemiigyre vessziik, nem is olyan egyszeri. Taldn
konnyebben megragadhaté az Effr, mert azt extrapoldciéval szamolhatjuk. Az egzakt
nemrelativisztikus energia azonban csak becsiilhet6. Ennek két mddja van. Egyrészt a
kisérleti adatok felhasznéldsaval becsiilhetjiik gy, hogy abbdl levonjuk a relativisztikus
és a magmozgéasbdl eredd (becsiilt) korrekcidkat [5, XV.1. fejezet]. Vagy a kor-
relaciés energia becslésére kidolgozott eljarasok valamelyikével szamitott energidval

helyettesitjik.

A gyakorlatban el6fordul, hogy az Efr hatdrértéket sem szdmoljdk ki, hanem
egyszerien az adott véges bdzissal szamolt HF-SCF energia illetve a FCI energia
kiilonbségét nevezik korreliciés energidnak. Sét, a FCI helyett gyakran CID, CISD,
MP2-3-4 (Moller-Plesset perturbaciészamitds) energidkbdl is szdmolnak ”korrelaciés
energiat”. Jelen dolgozatban mi egy adott véges bazisra vonatkozé HF-SCF és FCI
energidk kiilonbségét szamoltuk ki. Valdjaban, a definiciéval dsszevetve, ez nem mas,
mint a korrelacids energia adott bazissal elérhetd legjobb kozelitése, de a széhasznalat
egyszertisitése végett mi korreldcids energianak fogjuk hivni.

Egy molekula korrelacids energidja a teljes energidjahoz képest kicsi. A kémiai
dtalakuldsokat azonban a kis energiavaltozdsok jellemzik és befolyasoljak. Jellemzd
a vizmolekula példdja: korreldciés energisja és kotési energidja egyarint a teljes en-
ergidnak kb. 0.5% -a [7, 189.0.]. A korrelaciés energia ugyanazon rendszer kiilénboz6
elektronallapotaiban mdés-mds lehet. A molekuldk forgasi-rezgési szinképének, a
reakciéutak (stb.) kiszamitisiban alapvetd szerepet jatszik a molekula energijinak
magkoordinataktdl valo fiiggése. A teljes energidt, mint a magkoordindték figgvényét
potencidlfeliiletnek is nevezziik. A HF potencidlfeliilet tulajdonsdgait (pl. gradiensek,
szélséértékek helye) jelentésen megviltoztathatja a korreldciés energia hozzdaddsa.
Ezért csak az elektronkorreldcié figyelembevételével lehet nagy pontossdgi kvan-

tumkémiai szdmitdsokat végezni.
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2.7 Slater-determinansok

Miel6tt ratérnénk a konfiguricids kélesonhatds mddszerére, attekintjik a Slater-
determindnsokkal kapcsolatos legfontosabb tudnivalékat. Ez egyben mar kozvetlen
el6készités is lesz a kovetkezl fejezethez. Legyen M darab ortonormalt
egyrészecskefiiggvényiink: {¢;} (i = 1,...,M) (egyrészecske-bdzis), ezek lehet-
nek HF molekulapdlydk, de mds is. Ezekbél (2.11) alaki fiiggvényeket, Slater-
determindnsokat épithetiink fel. Annyi Slater-determinédns képezhet6, ahianyféleképpen
ki tudunk vdlasztani N kiilonboz6 figgvényt az M kozil, ez éppen (M) Az

N
Osszes determindns halmaza: {®,};a = 1,..., (ﬁ,’) Minden Slater-determinénshoz
egyértelmien hozzatartozik egy I, = {04, ao,...,an} indexhalmaz, ami a benne sze-

replo egyrészecskefiiggvények sorszamait tartalmazza. Egy determindns igy frhaté:

1
(I)a = :/—-_Iﬁdet{'l/)al, ey ’l/}aN } (2.18)

Az elektron-koordindtdkat a felsorolds sorrendjében rendeljiik az egyrészecske-
fiiggvényekhez. Az egyértelmiiség kedvéért az oy elemeket névekvé sorrendben
szerepeltetjiik a (2.18) formuldban (a felcserélés az antiszimmetria miatt legfel-
jebb a determindns el6jelén véltoztat), azaz “rendezett” determindnsokat épitiink.
E megaillapoddsnak igen nagy jelentésége van, mihelyt matematikai miiveleteket
kezdilink végezni a determindnsokkal. Az igy képzett N-részecske fiiggvények anti-

szimmetrikusak, egységre normaltak és egymasra ortogonalisak, azaz
/ B,B5d1d2...dN = d,5. (2.19)

Osszefoglalva: az M egyelektron-fiiggvényb6l képezhetd rendezett Slater-
determindnsok Osszessége az N-elektron Hilbert-tér egy (%) dimenzidés alterének
egy ortonormdlt bazisa. Mivel a bazisfiiggvények antiszimmetrikusak, ennek az
altérnek minden eleme antiszimmetrikus. Megjegyezziik, hogy a hulldmfiiggvény
valésziniiségi értelmezése alapjin szdmunkra ennek az altérnek csak az egységre
normdilt vektorai érdekesek, melyek Gsszessége nem mds, mint az (%) dimenzids
egységgomb feliiletén 1évé pontok helyvektorai.

Miért érdekes ez az altér? A HF-SCF eljards soran el6allé molekulapalydkbdl
képzett Slater-determinansok az N-elektron Hilbert-tér egy olyan alterét feszitik ki,
amely altérben maga a HF-SCF eljdrds nem taldlja meg a minimdlis energidji el-
emet, csupan a fiiggvények egy sziikebb korében minimalizdlja az energidt. Az
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aldbbiakban azt fogjuk megmutatni, hogy az altér egy tetszéleges elemébdl kiindulva,
csupan egyrészecskepdlydk uniter transzformacidjaval (ennek a transzformacidnak a
paraméterei éppen a HF eljrds varidciés paraméterei) nem tudjuk minden elemét
eldallitani a Slater-determindnsok altal kifeszitett altérnek. Hajtsunk végre egy U
matrixszal uniter transzforméciét az egyrészecskefiiggvényeken, az 4j fiiggvényeket
jelolje {x:} (i=1,...,M) és

M
Xi = D Unithp. (2-20)
b=1
Ezek is ortonormadlt rendszert képeznek, és lehet beléliilk Slater-determinansokat
képezni:
1
¢, = —mdet{xm, s Xan }- (2.21)

Az igy kapott determindnsok a Hilbert-tér ugyanazon alterének egy masik ortonormalt
bazisat alkotjdk. Ezek az j bazisvektorok kifejezhetSk a régiekkel a V = [vng) tran-
szormécidés matrix segitségével , = Y g vg, Py alakban.

Meghatdrozzuk a wg, egyiitthatékat. A (2.21) kifejezésbe behelyettesitjiikk a x
fiiggvények (2.20) alakjat:

1 M M M
(pa’ = \/N_!de‘t{bg__:l meu "/)bl ] bgl Ub202¢62’ ey sz=1 UbNal¢bN} =
1 M
il bhbz’%m Usiar Ubsan - - - Usyan Q€ {08y, Wogs - - - Yoy } (2.22)

A b; 6sszegz06 indexek egymdstol fiiggetleniil futnak, ezért el6fordul, hogy koziiliik le-
galdbb ketté megegyezik, ebben az esetben a determinins eltlinik. Ha a b; indexek
mind kiilonbozéek, akkor az Osszegzés sordn minden sorrendben elédllnak. Ekkor
a det{®¥s,, Vb, - - -, ¥by} determindns sltaldban nem rendezett. Az eredeti, ® deter-
minansokkal valé azonositds végett szimunkra fontos volna, hogy rendezett deter-
minansok lépjenek fel a fenti kifejezésben. Ezért a kovetkezoképpen jarunk el: a
T .. by=1 Osszgezést az aldbbi alakba frjuk: N cbac.. <ty LPesy- Itt Sy az N-
edrendl szimmetrikus csoportot jeloli, az &sszegzés végigfut a teljes csoporton. A
kétfajta Osszegzés egymassal egyenértékii, hiszen a masodik esetben el6szor felsoroljuk
az Osszes rendezett N-elemii index-halmazt, majd az Sy permuticiécsoport minden
elemét alkalmazva rajuk valdban el6 4ll az Osszes lehetséges index-kombinacié. A P
permutécié paritdsdt w(P) jeloli. A kovetkezd kifejezést nyertilk (folytatva a fent
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megkezdett (2.22) egyenlGséget):

1 M
! [ J—
%= vN! 2. Z Ublap—l(x)U"”‘P—l(z) "'U"""‘P“(N)
*hi<be<..<by=1 P€S,

(1) P)det{y,, Yo - - - » Yoy }- (2.23)

A determindnsok helyére most mar beirhatjuk a megfelelé rendezett konfiguracidkat.
Mivel a permutdciokra valé Osszegzés végigfut a teljes Sy csoporton, valamint
m(P~!) = w(P), ezért P! helyett P-t irhatunk. Hasznaljuk az Ig = {b;,bs,...,bx}
jelolést és ezzel a formulank igy alakul:

M
o, = ) > U,,l,,,,(,)u,,2,,,,(,)...U,,N,,,,(N)(—l)”“’)) Bp. (2.24)

b1 <ba<...<by=1 PES,

Most U{f-val jeloljiuk az U maétrix I indexii sorainak és I, indexii oszlopainak met-

szetében levs elemeibdl képzett aldetermindnst, ezekkel végeredményiink igy irhaté:
&, =S ULa,, (2.25)
B

tehat
vpe = UpL. (2.26)

Tehat, ha az egyrészecske fiiggvényeket uniter transzformaéljuk, akkor a Slater-
determinansok is transzformalédnak, és a Slater-determinansok (%)-dimenziés al-
terében torténé V uniter transzformdciét teljesen meghatdrozza az egyrészecske-

fiiggvények (1‘2”) fiiggetlen paraméterrel rendelkez6 U transzformdcidja. A V transz-

formacidt altalaban ((1'\2:)) fiiggetlen paraméterrel jellemezhetnénk. Minden U transz-
forméciéhoz hozzarendelhetiink a (2.26) definiciéval egy, a determindnsokon haté V (U)
transzformaciét, melyek tehat ("2” ) paraméterrel adhatok meg, ezek szama kevesebb,
mint az 6sszes lehetséges V. Ezért, ha egy bazisvektorra (vagy tetszéleges, de rogzitett
vektorra) alkalmazzuk a V' (U) transzformaciékat, akkor a képvektorok sszessége nem
fedi le az egységgombot.

A HF-SCF eljaras soran el6allé molekulapalydkbél képzett Slater-determindnsok
tehat valéban az N-elektron Hilbert-tér egy olyan alterét feszitik ki, amely altérben
maga a HF-SCF eljards nem taldlja meg a minimalis energidji elemet, csupan a V(U)
transzforméciokkal elérhetd fiiggvények korében minimalizélja az energiat. Az altér-

beli igazi minimum ott van valahol az ily médon el nem érhet6 részben. A korrelacids
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energia szamitasara kidolgozott eljirdsok éppen ezt a minimumot prébéaljak minél job-
ban megkézeliteni. A fenti meggondolds megmutatja a HF-SCF mddszer alapvet
szerepét, egyuttal hidnyossigat is, valamint az elektronkorrelacié figyelembevételének
altalanos stratégidjat.

Az egy- és kételektron-operatorok mdtrixeleme két Slater-determinans kozott
kifejezhetd az egy- és kételektron integrilokkal (Slater-Condon szabilyok). A
matrixelemek csak akkor nem nulldk, ha egyelektron-operator esetén a két determindans
legfeljebb egy, kételektron-operitor esetén legfeljebb két kiilonbozé egyrészecske
fiiggvényt tartalmaz [5]. A (2.3) Hamilton-operator egy- és kételektron operatorok
Osszege, ezért csak az egymdstl legfeljebb két egyrészecskefiiggvényben kiilonbozé
Slater-determinansok koz6tti matrixelemei nem tiinnek el.

Most megvizsgaljuk a (2.7) redukilt Hamilton-operdtor métrixelemeit. ElGszor
ismerjiik fel, hogy két Slater-determindns kozt a K (4, j) és egy mas koordinatékra haté
K (4, ;') operator matrixeleme ugyanaz. Valéban, permutsljuk gy a determininsban
az elektron-koordindtakat, hogy az i’ és j' arra a helyre keriiljon, ahol a masik esetben
az i és j van, ez a permutdcié legfeljebb a determinans eldjelét forditja meg, ami viszont
a matrixelemen nem valtoztat annak bilinesris volta miatt. A H és K kozotti (2.8)
osszefiiggés felhasznalasival az aldbbi, a redukalt és a nem redukélt Hamilton-operator

matrixelemei kozt fennallé fontos Osszefiiggést kapjuk:
" N .
< ®G|H(L,...,N)|®g >= (2> < ®,|K(1,2)|®p > (2.27)

Megjegyezzilkk még, hogy nem ortonormailt egyrészecske fiiggvényekbdl is lehet
Slater-determinansokat képezni. Ilyen esetben nagy szerepet kap a determinansok
tfedési matrixa [64, 65, 66], mi azonban ilyen esettel nem foglalkozunk.

2.8 A konfiguracios kolcsonhatas moédszere

A konfiguriciés kolcsonhatds modszerének [90] angol elnevezésébdl (configura-
tional interaction) addédik a széleskorben haszndlatos roviditése: CI, amivel mi
is élni fogunk. A HF-SCF eljarassal meghatirozott, ortonormélt egyrészecske
fiiggvényekbdl eldallithatjuk az Gsszes Slater-determindnst és a hulldmfiiggvényt ezek
linedrkombinéacidjaként kozelithetjiik :

N
=Y @, (2.28)
a=1
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(A fenti formuldban és a tovdbbiakban, elsésorban az Gsszegzések jel6lésénél hasznaljuk
majd a p = (%) jelolést.) A c, egyiitthaték szabad varidciés paraméterek. A (2.1)
Schrodinger-egyenletbe behelyettesitve ezt a fiiggvényalakot, balrdl szorozva ®j-val és

integrdlva az alabbi matrix sajatérték-egyenletet kapjuk:
Hc = Ec. (2.29)

Emlékeztetiink arra, hogy jelen dogozatban csak ortonormalt Slater-determinansokkal
foglalkozunk, ezért nem jelenik meg az 4tfedési matrix az egyenletben. A H (CI-
matrix) nem mds, mint a Hamilton-operdtornak a Slater-determindnsok bazisiban
felirt métrixa. Ennek a sajatvektorai a renszer staciondrius alap- illetve gerjesztett
allapotait leiré hullamfiiggvényeknek a kozelitését adjak Slater-determindnsok al-
terében, sajatértékei pedig a megfelel6 energia varhaté értékeket. Az Gsszes sajatvektor
és sajatérték meghatdrozasahoz diagonalizilni kell a H matrixot. Mivel a H egy (%)2
-es matrix, ez a feladat renkiviil szamitis- és memoriaigényes. Azonban &ltaldban
nincs is sziikség a teljes diagonalizdldsra, mert a legtobb kémiai véltozds leirdsihoz
az alapdllapot és a néhany legalacsonyabb gerjesztett dllapot meghatéarozdsa elegendé.
Mi a tovabbiakban az alapallapot meghatédrozasira szoritkozunk. Az erre kidolgo-
zott szdmos eljards megemlitése helyett csak utalunk a [7, 11) kényvek megfeleld fe-
jezeteire (ezekbdl sok egyéb részlet is megtudhaté a CI mddszerrel kapcsolatban). E
dolgozat szempontjabdl az a tétel lesz csupan fontos, hogy egy onadjungélt maétrix
Rayleigh-kvdciense a matrix legkisebb sajatértékii sajatvektorandl minimilis, a min-
inum értéke éppen a sajatérték [24]. Ily médon tehdt az alapallapoti sajitvektor és
sajatérték meghatarozasa madtrixalgebrai miiveletek helyett az energia minimumanak
megkeresésével is elvégezhetd.

A Hamilton-operator felcserélhet a spin-operatorokkal (S, 52) és a rendszer térbeli
szimmetria-operdtoraival, ha vannak ilyenek. Ha a vizsgalt rendszer térbeli szim-
metridval rendelkezik, akkor a Slater-determininsokbdl olyan linedrkombindcidkat
képeznek, amelyek a szimmetriacsoport valamely irreducibilis reprezenticidjanak
bézisvektorai (szimmetria-adaptalt konfigurdciok). Ezen 1j Dbazisfiiggvényeken
rovidebb lesz a sajatvektor sorfejtése. Hasonlé okokbdl a Slater-determindnsokbél spin
(S5?)-sajatfiiggvényeket is lehet képezni (spin-adaptilt konfigurdciék). Gyakran csak
ezeket nevezik “konfigurciénak”, de mi a Slater-determindnsokat fogjuk igy hivni,
mert a spin- és térszimmetria-adapticiéval nem foglalkozunk.

Mivel a Slater-determindnsok altere igen nagy, a gyakorlatban ennek az altérnek
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csak egy részét hasznéljdk fel a szdmoldsban. Tipikus vilasztasok: a HF alapallapoti
Slater-determindns és az ett6l egy egyrészecskefiiggvényben eltéré (egyszeresen ger-
jesztett) determindnsok altere ekkor a szamitast ”Cl-singles”-nek hivjdk és ugy
roviditik, hogy CIS. Ha ehhez még a kétszeresen gerjesztett determindnsokat is
hozzdveszik, akkor CISD szédmoldsrél beszélnek, és igy tovabb: CISDT, CISDTQ
is haszndlatos. Ezeket Gsszefoglalé néven truncated (csonkitott)-CI szdmoldsoknak
nevezik. Az ilyen szamolasok jellemz6je a méretkonzisztencia-probléma. Az energidban
emiatt jelenkezd hiba csokkentésére léteznek mddszerek (pl. Davidson-korrekei6 [6, 4.6
fejezet], Pople-korrekcié [91], kvadratikus-CI médszer [23]). A korrekcidk alkaimazdsa
miatt azonban a szdmitasi eljairds tobbé mar nem tekinthetd varidciés modszernek.
a sajatvektort, akkor ezt full(teljes)-CI (FCI) mddszernek nevezziik. A FCI médszer
varidciés médszer és alkalmazdsa esetén nem lép fel a méretkonzisztencia-probléma.
Szamunkra a késobbiekben csak a FCI mddszer és az azzal kaphatd sajatérték és
sajatfiiggvény lesz érdekes.

Mig a HF alapdllapoti Slater-determindnssal szamitott energia-virhaté érték az
egzakt energia egy-determinans hulldnfiiggvénnyel elérheté legjobb kozelitését adja az
adott bazisban, a FCI alapdllapot az dsszes Slater-determindns alterében a legjobb
kozelités. Ezért dltaldban azt virhatjuk hogy az alapallapoti Slater-determindns nagy
siillyal szerepel az alapallapoti FCI hullamfiiggvényben, igy egy iterativ eljirds soran
alkalmas kiindulépontként szolgélhat.

2.9 Siuriuségmatrixok

A hulldmfiiggvény sokkal tobb informdciét tartalmaz, mint amennyi az egy- és
kételektron-operatorok varhaté értékének kiszdmoldsihoz sziikséges.  Legfeljebb
kételektron-kolcsénhatasokat tartalmazé Hamilton-operdtor esetén egy kvantum-
mechanikai rendszer lairdsdhoz sziikséges minden informacié benne foglaltatik a
masodrendii redukalt slirliségmatrixban.

A siriiségmadtrix egy N-elektron-térbeli integréloperator (projektor) magfiiggvénye:
rQa,z2,...,N1,2,... N)=9@1,2,..., N)¥*(@1,2,...,N). (2.30)
A redukalt siiriiségmatrixok ennek részleges integraldsaval allnak el6:

r*(1,2,...,p11,2,...,p) =
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[e@,2,...,N)¥1,2,...,p,p+1,...,N)d(p+1)...dN, (2.31)

ezeket p-edrendii redukalt siiriségmditrixoknak nevezzitkk. A mdsodrendi redukdlt
stirliségmatrixot 2-mdtrixként is emlegetjiikk. A redukalt siiriiségmatrixok nem pro-
jektorok. [14, 36, 41] Emlitést érdemel a siiriiségmdtrix-formalizmussal kapcsolatos
széhasznilat hagyomdnyos kovetkezetlensége. A (2.30) és (2.31) formuldk 3ltal
definidlt matematikai objektumok valéjaban inegraloperitorok. Ezért a (redukalt)
siirliségoperator elnevezés indokoltabbnak tiinik. Kiilonosen akkor szembetiing ez,
amikor ezen operatorok egy bazisban felirt matrixirdl szeretnénk beszélni. Ilyenkor
kinosan kell ligyelniink a "matrix métrixa” székapcsolat elkeriilésére. E dolgozatban
megmaradunk a hagyomdanyndl, majd a szoveg6sszefiiggésbol fog kideriilni, hogy éppen
az operdtorra vagy annak matrixara gondolunk.

A silirliségmatrixok egyik fontos alkalmazdsa operatorok varhaté értékének
szamoldsa. Az o' egyelektron-operdtor varhaté értéke megadhaté az elsérendii re-

dukalt siiriiségmatrixszal:
< U|o'|¥ >= NTr{o'I'}. (2.32)

A kételektron-operdtorokra analég médon a

< ¥|o*|¥ >= (];,)Tr{ozl"z}. (2.33)
formula érvényes. A rendszer energidjanak kiszamitdsdhoz elegend6 tehat a

masodrendii redukalt siirliségmatrix ismerete.

2.10 A sitriiségfunkcional elmélet

Megemlitjiik a siiriiségfunkciondl elméletet (density functional theory, DFT), amely
az energidt nem a hulldmfiiggvény, hanem az elektronsiiriiség funkciondljdnak tek-
inti és a varidcios elv alapjan hatirozza meg. Ez az elmélet a Hohenberg-Kohn
tételre épiil (P.Hohenberg, W.Kohn 1964, [36, 37]). A tétel szerint a molekula
alapéllapoti egyelektron-siirliségéhez egyértelmiien hozzirendelhet6 az alapallapoti
hullimfiiggvény, igy az egyelektronsiiriiség az az alapvet6 mennyiség, melynek
segitségével az alapéllapot valamennyi tulajdonsiga jellemezheté {12]. Mivel az elek-

tronsiiriiségnek csak hdrom véltozéja van, ezért sokkal kevesebb szdmitdsi munkat
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igényel az eljards, rdaddsul a korreldciét is tartalmazza. Azonban a kicseréloédési-
korreldciés funkciondl nem ismert, ezért egzaktul nem alkalmazhaté az eljaras, kozelitd
funkciondlokat kell haszndlni. Napjaink kvantumkémiai gyakorlatiban széles korben
haszndlatosak a DFT médszerek és az azokra épiilé hibrid eljarasok (16, 17, 40). A
stiriiségfunkciondlelméletet nemrégen gerjesztett dllapotokra is kiterjesztették [15).

2.11 Az N-reprezentalhatdsagi probléma

A miésodrendli redukdlt siirliségmaétrix a legegyszeribb matematikai eszkoz
molekuldk elektronszerkezetének targyalasdra, amely tartalmazza az elektronkor-
reldciét. Altaliban lényegesen kevesebb eleme van, mint a FCI hullimfiiggvény
paramétereinek a szdma. Kézenfekvs, hogy az energiit hatékonyabban lehetne
minimalizdlni, ha a 2-mditrix elemeit tekintenénk varidciés paraméternek. Azon-
ban kideriilt, hogy nem minden, egy adott véges bdzisra vonatkozdéan felirt matrix
tekinthetd silirliségmadtrixnak. Azaz, nem mindhez adhaté meg egy ¥ hullamfiiggvény
gy, hogy a (2.31) definiciét p = 2 esetre alkalmazva, az adott bazisban feirva a kivint
matrixhoz jussunk. Amely matrixhoz létezik hullimfiiggvény (N-elektron fliggvény),
arra azt mondjuk, hogy N-el6illithat6é (N-reprezentdlhatd). Tehat a maétrixelemek sz-
abad varialasaval hamis matrixok dllnak elé, és ez azért jelent nagy gondot, mert ezek
a hamis matrixok alacsonyabb energiaértékeket adhatnak, mint az egzakt energia. A
problémét meg lehetne oldani feltételes minimumkereséssel. Olyan feltételeket kellene
kiszabni a métrixokra, hogy a minimalizilds sordn csak N-reprezentdlhaté matrixok
dllhassanak eld. Mas széval, egy tetsz6leges mdtrixrdl el kellene tudnunk donteni
egyértelmiien, hogy N-reprezentdlhat6 vagy sem. Vagy azt kellene tudnunk biztositani,
szintén matematikai feltételek alkalmazdsival, hogy egy N-reprezentilhaté matrixbol
kiindulva az elemek varidciéja sordn megérzédjon az N-reprezentalhatésig. Ilyen
matematikai feltételeket még nem sikeriilt megfogalmazni. Ez az N-reprezentalhatdsagi
probléma. [2]

Mindenképp szét érdemel az a tény, hogy az egyelektron siiriiségmatrixok esetén
ismerjiik a sziikséges és elégséges feltételeit az N-el6allithatésdgnak. A p(1) = Tr{I'}
egyelektron siirtiségre teljesiilnie kell a kovetkezéknek [74, 12]:

p(l) =2 0
/p(l)dl = N
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/ IVo(1)3Pdl < oo. (2.34)

A maésodredii redukalt siirliségmatrixra vonatkozé N-reprezentdlhatésagi feltételt elvi-
leg meg tudjuk ugyan adni, de a gyakorlatban is alkalmazhaté médon ezt nem sikeriilt
megfogalmazni. A 2-métrixnak az aldbbi feltételt kell kielégitenie:
> KY j;k,,I‘?,j;k,, >EY Wy, (2.35)
ijikd
ahol {K"} az Gsszes lehetséges redukalt Hamilton-operdtor halmaza, {E“} pedig a
K" operétorral jellemzett rendszer alapéllapoti energidjat jelenti. Vagyis egy N-
reprezentilhaté 2-matrixszal szamolt varhaté érték barmilyen K esetén nagyobb vagy
egyenlé az alapéllapoti energidndl [35] [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80].

2.12 A kontrahalt Schrédinger-egyenlet

A kontrahdlt Schrodinger-egyenletet (contracted Schrédinger-equation, CSE) H.
Nakatsui szdrmaztatta a Schrédinger-egyenletbél (1976), [48]) az n-edrendi
stiriiségmatrixokra (n-DE). Ezek az egyenletek lehet6séget adnak a redukalt
stiriségmatrixok kozvetlen, nem a varidcids elven alapulé meghatarozasira. Az egyen-
letek tobbféle rendiiségli siirliségmatrixot tartalmaznak. Az egzakt megoldashoz
sziikséges, siiriségmatrixok kozotti osszefiiggések még nem ismertek. Az eredményiil
kapott masodredii redukilt siiriiségmatrix nem N-reprezentalhatd, de jo kozelitéssel
kielégit bizonyos feltételeket [35, H.Nakatsui]. A témdban foly6 igen intenziv ku-
tatémunka (C.Valdemoro, D.A.Maziotti) ellenére az eljirdst nem sikeriilt egzaktta
tenni [50, 55, 93, 94, 95).

2.13 A minimumkeresésrol

A teljesség kedvéért attekintjiik még a minimumkereséssel, mint matematikai feladat-
tal kapcsolatos alapfogalmakat, kiilonds tekintettel az dltalam hasznalt eljirdsra. A

minimumkeresés alatt a kovetkez6t értjiik. Legyen adott egy
f@):R" - R

fiiggvény (R a valds szémok halmaza, és z,s € R"*). Keressiik azt az zo vektort, amire
teljesiil, hogy
min. f(z) = f(zo) -
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Egy fiiggvény minimumadban a fiiggvény gradiense (V f) eltiinik, a masodik derivalt
tenzora (Hess-matrix) pedig pozitiv (szemi)definit. A minimumkeres$ eljirasokat
osztalyozhatjuk aszerint, hogy milyen informdaciét hasznilnak fel. Eszerint ismeriink
csak fiiggvényértékre tdmaszkodd (pl. Monte-Carlo médszer, véletlen séta algorit-
mus, racsmenti keresés stb.), fliggvényértéket és gradienst felhaszndlé (pl. legmere-
dekebb lejtd, konjugdlt gradiens mddszerek), valamint a fiiggvényértéket, gradienst és
a Hess-mdtrixot (vagy masodrendi informéaciékat) is felhaszndlé (pl. Newton- és kvazi-
Newton tipusi) eljardsokat. Mi csak az utébbiakkal foglalkozunk a tovdbbiakban.

A Newton- és kvazi-Newton tipusi algoritmusok a fiiggvény kvadratikus modelljén
alapulnak, tehat az alabbi alakban kézelitik:

1
flz+s)= f(z)+ Vf(z) s+ EsGs .
Itt G' a masodik derivaltat jeloli. A fiiggvényt minimalizal6 vektort a
Vflz+s)=0

egyenletrendszer megolddsaval allitjik el6. A modellt definidlé egyenlet jobb oldaldnak
gardiensét behelyettesitve a fenti egyenletbe ezt kapjuk:

-GV f(z) =s.

Vagyis a kvadratikus fiiggvény minimuméba mutaté vektort egy lépésben ki tudjuk
szamitani els6 és masodik derivaltjanak ismeretében. Ha nem kvadratikus a fiiggvény,
akkor ezen formuldn alapulf iterativ eljirassal is lehet keresni a minimumét (Newton-
médszerek). Azonban sokvaltozds fiiggvények esetében a Hess-matrix kiszdmolasa és a
vele végzett miiveletek igen sok szimolasi munkat igényelnek. A kvizi-Newton tipusd
modszerek csak a gradiens ismeretét kivanjik meg, a Hess-mdtrixot (illetve inverzét)
pedig valamilyen médon kozelitik, a szdmolds sordn pedig javitjik. Az eljirds lényege,
hogy adott z; pontban a gardiens és a Hess-mdtrix inverze kozelitésének (H) fel-
haszndlasival meghatdroznak egy vektort (u), majd megkeresik az f(z;+au) fiiggvény
a szerinti minimumaét (linedris keresés), ez lesz az zx41. Végil a H maétrixot is
megviltoztatjdk adott ("korrekciés”) formula szerint. A leghatékonyabb korrekciés
formuldk egyike az Gn. BFGS-formula (Broyden-Fletcher-Goldfarb-Shanno utin)
[31, 32, 33, 34]:

Ve Hive, 00; Ok Hie) + (Hive) 05

Hiyi=Hp+(1+ ,
* ( Tve ' OF v 6Ty

(2.36)
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ahol

Ok = Ti41 — T
Y = Vf(Zrt1) — V().

Megemlitjiik, hogy ez az eljirss kvadratikus fiiggvényen legfeljebb n+1 lépésben taldlja
meg a minimumot. Ha nem kvadratikus a fiiggvény akkor természetesen ennél tobb
lépés varhaté iltaldnos esetben. A kvézi-Newton mddszerek altaldnos tulajdonsaga,
hogy lokdlis minimumokat taldlnak meg.



3. Fejezet

N-reprezentalhato6 striliségmatrixok

el6allitasa

Ebben a fejezetben bemutatjuk azt a mddszert, amelyet N-reprezentalhatd
slirliségmatrixok eldallitasira fejlesztettiink ki. Szarmaztatjuk a FCI hullamfiiggvény
masodredii redukalt siirliségméatrixdnak gemindlbézisban felirt alakjat. Olyan matrixot
adunk meg, amely a siirliségmatrix szerkezetét meghatérozza (szerkezeti matrix), meg-
mutatjuk néhdny tulajdonsdgit. A szerkezeti matrix elemeit olyan alakba irjuk,
amely lehet6vé teszi a siiriiségmatrix elemeinek hatékony kiszamitdsat. Ismertetjiik
a slirliségmatrix eldallitdsira szolgalé algoritmust, amely egytttal 1ényegében az ener-

gia gradiensének komponenseit is szolgéltatja. [97, 104]

3.1 A masodredii redukdlt siirtiségmatrix

Induljunk ki egy {%;}i=1..as ortonormélt egyrészecskebazisbél. Mint emlitettiik,
a bazisfiiggvényeket gyakran HF-SCF mdédszerrel kapjuk meg, ez azonban nem
sziikséges, csupdn az ortonormaltsigot koveteljiik meg. Az ezekbdl felépithetd Slater-
determindnsok (®,) 4ltal kifeszitett 1 dimenzids alterében az egzakt hullimfiiggvényt

FCI tipusu fiiggvénnyel kozelitjiik:

U= ic,,,q)a, u= (A]:/[) (3.1)

A miésodredii redukalt siiriiségmatrix definiciéja az (2.31) formuldbél szdrmaztathato:
1"(2>12,1,2)_/\1:123 N©*(1,2,3,...,N) d3...dN.  (3.2)

24
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Ebbe behelyettesitjiik a hullamfiiggvény alakjat:
. " 1
r®(1,2,1,2) = / Y cala 3 c3@5 d3...dN. (3.3)
a= =1

A tovabbi atalakitashoz fejtsiik ki a determindnsokat az els6 két soruk szerint, un.

Laplace-kifejtéssel:

Bo(l,...,N) = \/%det{@bm(l), e ey (N)} =

1
/ 1 1,7 1 2 1 V 3 3.4
{1]Z§}C[a 9isl12) g,]( ) 4
ahol
%:;(1,2) = Yi(1)¥;(2) — ¥i(2)y;(1) i,j€laési<y (3.5)

anitszimmetrikus kételektron-fiiggvény (geminal) és

911(3 N) = det{'@ba’l (3)1 %'2 (4)$ SRR ")ba’N_z (N)} (36)

a gi,j-hez tartozé adjungdlt gemindl, azaz a ®, determinans-hulldmfiiggvény elsé két
soranak valamint 7. és j. oszlopanak kihizdsival adédé aldetermindns (szintén
fiiggvény). Az adjungdlt gemindl maga is rendezett determindns, az o} szamok az
I \{7,7} halmaz elemei. A fenti (3.4) Laplace-kifejtésben az i, j index-pdrok befutjak
az I, halmaz minden kételemii részhalmazit. Mindezt behelyettesitve a (3.3) for-
muldba, az Gsszegzések atrendezése utin a masodredi redukalt siiriiségmatrixra az

aldbbi kifejezést kapjuk:

M
r'®(1,2;1,2) = > 6:(1,2) ©ijig 95(1,2), (3.7)
i<jk<l
ahol 1
Qi jikt = N D caCh %:(3,...,N) gk,( .,N)d3...dN (3.8)
a,f=1

nem m4s, mint a masodredii redukalt siiriiségmatrix gemindl bazisban. Latszik. hogy
a O kifejezésében az adjungilt geminalok ortogonalitdsa miatt az integral szamértéke
+(N — 2)! vagy 0 lehet. Célszerlinek littuk bevezetni az aldbbi szerkezeti matrixot:

Vit = 2),/9,,(3 ,N) %t1(3,...,N)d3...dN. (3.9)

Ebben a képletben az V' indexei barmilyen értéket felvehetnek. Abban az esetben,
amikor {4, j} C I, vagy a {k,l} C I; feltételek valamelyike nem teljesiil,.a kijel6lt
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ANH )

matematikai miivelet értelmét vesziti, de ekkor a V5" értékét nulldnak definidljuk.

A 2-métrix ezzel egyszeriibben adhaté meg:

N [
ei,j;lc,l(c) (jT\rz__ Z CaC ﬂ V‘h],kl (IVIV 2) Tr {C V:,J,k l} (310)

ahol Co 3 = cacg - Eddigi formuldinkban figyelembe vettiik, hogy a hullimfiiggvény
dltaldaban komplex. = Azonban az energia-virhaté érték szdmitdsakor a fazis
lényegtelen, ezért a targyalds dltaldnossdganak megsértése nélkiil valésnak tekinthetjiik
a hullimfiiggvényt. A dolgozat hitralevd részében tehat valésnak tekintjiik mind az
egyrészecske-fiiggvényeket s veliikk egyiitt a Slater-determinansokat is, mind a kon-
figuracids egyiitthatékat. Ezzel elkeriiljiik a formalizmus felesleges bonyolitasat.

3.2 A szerkezeti matrix tulajdonsagai

A szerkezeti matrix nevét onnan kapta, hogy csak az eletronok és a
bazisfiiggvények szamatdl fligg, valamint attél a feltételezést6l, hogy ortonormailtak
az egyrészecskefiiggvények, valamint a determindnsok antiszimmetridjatél. (Megje-
gyezziik, hogy bozonrendszerekre is lehet analég médon szerkezeti matrixot definidlni,
ahol a hullamfiiggvény nem antiszimmetrikus, de ezzel a kérdéssel itt nem foglalkozunk,
csak elektronrendszerek targyaldsira szoritkozunk.) Szerkezeti mdtrixunk tehdt
fiiggetlen nemcsak az egyrészecskefiiggvények alakjatél, hanem a renszertdl is. A
matrix elemei haromfajta szamértéket vehetnek fel: +1 és 0.

Vizsgdljuk meg a matrix méretét! A gemindlokat rendezett indexekkel allitottuk
el6, azaz mindig 7 < j illetve k¥ < I. A gemindlok szdma annyi, ahanyféleképpen ki
tudunk vilasztani M elembél kettdt, azaz ( ) A matrix elemeinek szima tehat

M\* (M\?
() (2)-
Ez igen nagy szam lehet viszonylag kis rendszerekre is. Példaul N = 5 és M = 10 esetén
6 350 400, N = 10, M = 20 esetén mar kb. 6.91 - 10!3. Azonban litni fogjuk, hogy
ez nem okoz problémadt, mert csak kevés matrixelemet kell kiszamolni, és még azokat
sem muszdj tarolni, mert létezik olyan algoritmus, amivel gyorsan kiszimolhatdk.
Jellemzd, hogy a V' matrixnak kevés nem nulla eleme van. Régzitsiik az i, j; k, [

indexhalmaz elemeit ugy, hogy mind kiil6nb6z6 legyen, majd vizsgiljuk meg, hogy az
ehhez tartozé o, § indexii elemek koziil mennyi tér el nullatél. Annyi, ahdny adjungalt
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aldeterminanst tudunk késziteni a 1, 1;, ¥, Y egyrészecskefiiggvények kihagydsdval,
ezek szama éppen (%:;) Ilyen index-kombinécié 6 - (’f) van. Abban az esetben,
ha a négy index koziil kett6 megegyezik, pl. i = k, vagy ¢ = [ stb.,- ezeket Ossze-
foglaldéan 1, j, , [-tipusi kombindciéknak nevezziik- a nem nulla métrixelemek szima
(%Zg) és ilyen kombindciébodl 2 - (1;" ) van. Végiil a fentiekkel analég beszédméd sze-
rint az i,j;i,j indexkombinaciékbdl (1‘2") van, és mindegyikhez (%::) nem nulla elem
tartozik. Lathatd, hogy a V ritka matrix, tehdt elemeinek nagy része nulla.

A maétrixon beliil a 1 elemek elhelyezkedésérdl is tehetiink kijelentéseket. A leg-

fontosabb megallapités a sliriségmatrix szimmetrikus voltabdl kovetkezik:

Vil = kb (3.11)
A (3.9) egyenletbdl adédik, hogy:
Vadkl£0 = Vit =o. (3.12)
Tovabba igazak még az alabbiak:
Vi = o,
Vi = o,
Vyi#d = 1 vagy 0,
‘/;:%,;111 = 0-

Szdmos tovabbi szabalyszeriiség is felismerheté a nemelt{iné matrixelemek elhe-

lyezkedésében és az almditrixok egymashoz valé viszonydban [104].

3.3 A szerkezeti matrix elemei

Az eddig felvazolt formalizmus sajatossiga, hogy nagy szerep jut benne a V' szerkezeti
matrixnak. Ezért alapvet6 kérdés, hogy milyen médon tudjuk eléallitani és felhaszndlni
ennek mdtrixelemeit. [97)

Mindegyik antiszimmetrizalt szorzat-fiiggvényhez kolcsondsen egyértelmiien
hozzérendeliink egy szdmot. Kordbban littuk, hogy minden ®, Slater-determindnst
a hozzd tartozé6 I, = {a1,...,an} indexhalmazzal azonosithatunk, amely a de-
termindnst felépitd egyrészecske-fiiggvények indexeit tartalmazza. Ehhez a kon-
figuraciohoz rendeljiink hozzéd egy m, szdmot a kovetkezéképpen:

N
Mo = Y 2%, (3.13)
i=1
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Ezen szdmok kettes szdamrendszerbeli alakja legfeljebb M jegyi és pontosan N
helyiérték 1, a tobbi 0. Analég definiciéval szdmokat rendelhetiink a geminalokhoz
(my;) és az adjungalt gemindlokhoz (mg;) is. Ezeknek a kettes szimrendszerbeli alakja
szintén legfeljebb M jegyili szdm, de nem N, hanem pontosan kettd illetve N — 2 nem
nulla helyiértékkel. A determinansokhoz, gemindlokhoz és adjungdlt geminalokhoz
ilyen médon hozzarendelt szimok mind kiilonb6zéek, a hozzirendelés kdlcsondsen
egyértelmli. Tovabba érvényes kozottiik az aldbbi dsszefiiggés:

me;

i =My — m,-j. (314)

Lathato, hogy a Vo’;:gk” nulla vagy nem nulla volta az integrandusban szereplé adjungalt
gemindlok ortogonalitdsdin mulik. Mivel az egyrészecske-fiiggvények ortonormaltsiga
miatt az ezekbdl képzett N — 2-es determindnsok ortogonalisak egymadsra, az integral
csak akkor nem nulla, ha "‘g,-’fj = :tﬁg,‘:,,, vagyis az elGjeltdl eltekintve azonosak. Mas
szavakkal, a ®, és a ®p determindnsokat jellemz6 I, és Ig indexhalmazok N — 2
eleme megegyezik, csak az egyikben levd i, j helyett k,l szerepel a masikban. A két

indexhalmaz viszonya egymashoz:

Ig = (I\ {3, 7}) U {k, }. (3.15)

Az i,j és k,l altaldban kiilonb6z6 egymadstdl, de lehet részben vagy teljesen azonos is.
Készitsiik el az m, és m;; szimokat és taroljuk Gket egy-egy vektorban. Adott

w4 métrixelem nulla, ha

Mo — Myj # Mg — M. (3.16)

Ha egyenlSek, akkor még nem biztos, hogy a métrixelem nem nulla, mert eléfordulhat
az is, hogy {i,7} ¢ I és {k,l} ¢ Ig, és az (3.16) egyenldség teljesiil. Ezt a hamis
esetet tehdt ki kell és lehet az algoritmus megfelelé szervezésével sziirni. Végiil, ha
a matrixelem valéban nem nulla, akkor meg kell adni az elGjelét, ami nem mas,
mint az adjungilt gemindlok elGjelének szorzata. Az adjungdilt gemindlok elGjelét
a szokdsos definicié szerint hatdrozzuk meg. Ha egy determindnsbdl "kihizzuk” az
81, 82 . . . szamui sorokat és az 0, 0, . . . szamu oszlopokat, akkor a keletkez6 minor elgjele:
—1sisetetortort.. - Fsetiinkben, mint emléksziink, az elsé két sor szerinti kifejtésrél
van szo, igy s1 = 1,s3 = 2 mindig. Az oszlopok sorszdma mar komolyabb gondot
okoz. Meg kellene adni ugyanis, hogy pl. az i index az I, indexhalmaz elemei kozt
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nagysag szerint hanyadik. Azonban mi csak az m, szdmot jegyeztiik meg, az index-
halmazt nem. Természetesen ez is kiderithetd, ha az m, bindris alakjat vizsgiljuk. E
rovid dttekintés is megmutatja ennek a médszernek az elonyeit és hatranyait. El6nye,
hogy a V matrix nem nulla elemei gyorsan kisziirhet6k, valamint a nem nulla ele-
mek szdmoldsit bitmiiveletekkel meg lehet oldani. Hatranya, hogy az egész tipusi
valtozok értelmezési tartomanyat hamar kimeritik az m, szamok, ami miatt nehézkes
az implementédldsa. A nem nulla maétrixelemek tiroldsa nagy memoriat igényel, az
ijraszamolédshoz viszont elegendden gyorsan futé kédot nehéz késziteni.

Elééllithaték azonban a V' métrix nem nulla elemei ennél hatékonyabban is, amely
nagyon elényds lesz specidlisan az elektronkorreldciés probléma tédrgyaldsa soréan.
Ne feledjiik el, hogy amikor konkrét fizikai problémdkat vizsgalunk, szdmunkra a
masodredii redukalt slirliségmatrix kiszamitdsa az els6dleges fontossigi, hiszen ezzel
minden sziikséges mennyiség megadhaté. Visszatériink egészen a mdsodredi re-
dukalt siirliségmatrix (3.8) kifejezéséhez. A konnyebb &attekinthetség kedvéért itt
megismételjitk (de valds esetre szoritkozva):

Oijikt = -—, CaCg / 9;4( i g,c F3,...,N)d3...dN =
a,f=1

1 [
=5 X / Ca®07;(3,..,N) csPgt,(3,...,N) d3...dN (3.17)
a,B=1

Ez az egyszeril dtrendezés azt sugallja, hogy a mdsodredii redukalt sliriiségmatrix
egy eleme ugy is felfoghaté, mint az adjungdlt gemindlok altal kifeszitett vektortér
két vektoranak skaldrszorzata. Most &4tirjuk a kifejezést tgy, hogy az adjungilt
geminé,lokra. legyen benne Osszegzés. Liassuk el sorszimmal az adjungélt gemindlokat
1-t6l ( ) -ig. Valdjaban az "adjungilt gemindl” megnevezést a gemindlokkal és
a Slater-determinansokkal fenndllé osszefiiggés diktdlja, azonban ezek Gnmagukban
is értelmezheté determinans-fiiggvények (N-2 elektron fiiggvények), halmazukat igy
jeloljik: {g+},A = 1,..., (1\;‘12), valamint a gi determindns-fiiggvényt felépitd
egyrészecske-fiiggvények indexeinek halmazat igy: I,. A gemindlokat is ellatjuk
sorszammal: {g.},k =1,..., (1;’ ), illetve az adott geminalt felépit6 egyrészecskepalyak
indexeinek halmaza: I;. Ezek a szdmozdsok tetsz6legesek, csak a beszédmdd
egyszerlisitését szolgaljdk. Az N-, N — 2-, és 2-elektron-fiiggvények halmazaibdl
véve egy-egy elemet index-hirmasokat valaszthatunk ki: {a, A, k}. Vegyiik észre a
kovetkezét. Azokat az indexhdrmasokat, amelyekre érvényes a

JAVASS A (3.18)
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Osszefiiggés, barmely két eleme meghatirozza. Ha ismert I, és I, akkor a megfelel6
halmazmiivelettel megkaphaté Iy és ebbél ) is. Mds szavakkal, most azt az egyszerii
tényt igyeksziink formadlisan leirni, hogy egy determindnsban egy gemindlhoz egy és
csakis egy adjungalt gemindl tartozik. Ugyanakkor az is igaz, hogy egy geminélnak egy
bizonyos N — 2 elektron fiiggvény csak egy determininsban lehet az adjungiltja (vagy
egyben sem). Vagyis, ha ismerjiik a {k, A} pérost, akkor meg tudjuk mondani az a-t,
vagy azt, hogy nincs ilyen a. Ezt az 6sszefiiggést a jelolésben igy juttatjuk kifejezésre:
a(k, ), vagy a(i, j; A), ahol k = {4, j}. Annak érdekében, hogy teljesen kiovetkezetes
legyen a jelolés, a ¢ vektort bévitsiik egy co = 0 elemmel, az (3, j; A) pedig legyen 0
akkor, ha az I, U {,j} indexhalmaz elemei nem mind kiilénbbzdek (vagyis az adott
gemindlhoz nem létezik olyan determindns, amiben a g az adjungiltja lenne). Azt
is meg tudjuk mondani az indexhalmazokbél, hogy a g aldetermindnsnak mi lesz az
elGjele a @, Slater-determinansban. Ezt az el8jelet fejezze ki az w(x, A) illetve w(i, j; \)
fiiggvény.

A (3.17) egyenlGség masodik felébsl kiindulva az indexek fent emlitett Osszefiiggését

kihasznalva tovabbi dtalakitasokat végziink:
1
ei,j;k,t=m > / ca’9:;(3,...,N) C,gﬂg,:[(3,...,N) d3...dN

a,f=1

1 - .
=N Z/ Cai,jiA) w(z,J;Algj(3, ...,N)-
AN

v

Dj
k) w(k, I N) g5:(3,...,N) d3...dN
D!

1 .
= 5 S DYDY [g£(3,.... Mgh(3,..., N)d3...dN
AN ~

JA"\I' (N—2)!

- -2 i 2)! ;D}ij\‘". (3.19)

Az atalakitds lényege, hogy az «, B indexek szerinti kettds Gsszegzésrol attértiink a
A, )\ indexpér szerinti Osszegzésre, majd vektor skaldrszorzat alakra hoztuk a kife-
jezést. A A, X indexpdr szerinti Osszeg sokkal kevesebb tagd, mint az o, szer-
inti, de csak olyan tagokat hagytunk el, amelyek nullik. A mdsodredii redukalt
slirliségmatrix madtrixelemeit tehdt tenzorok trace-skaldrszorzata helyett vektorok

skaldrszorzata alakjaban sikeriilt megadni. Ezzel a V métrixban tarolt informéciét az
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energia vérhatd érték kiszamitdsa szempontjabdl elényosebb alakban reprezentaltuk.
A fenti formuldban D betiivel jeloltikk az N — 2 -es determinidnsok bazisan értelmezett
aldbbi vektorokat:

D% : D3 = cagijiyw (6, J; A). (3.20)
Ezzel a jel6léssel a siiriiségmatrix elemei igy adhaték meg:

1 v
N(N -1) g

,,=(MA;2).

A fenti formalizmus el6nye a szdmitdsok végrehajtdsa sordn mutatkozik meg. A

ei,j;k,l = Di’ij\’l, (321)

ahol

(3.10) egyenlet a ©; j,x, matrixelemek kiszdmitdsadhoz megkivédnja, hogy minden ¢, j; k, /
indexhez kiszdmoljuk a V' matrix elemeit. Azonban az ott szerepl6 osszeg tagjai a (3.18)
Osszefiiggés alapjan a kovetkez6képpen irhatdk:

cacsVin, = DYDY gy, hogy a = a(s,5;N), B = B(k,1; A). (3.22)
Vagyis, a masodredii redukdlt slirliségmatrix elemeinek kiszdmoldsdéhoz minden in-
formacié megtaldlhaté a D% vektorokban. Ez (1;4) darab, (N“f 2) dimenziés vektort
jelent, melyeknek sok komponense még mindig nulla. A vektorok annyi adatot jelen-
tenek, mint amennyi a V' matrix ¢, j; ¢, j indexii elemeinek (tehat csupdn a © diagonalis
elemeihez sziikséges rész) osszessége.

Fontos kérdés még szamitastechnikai szempontbél, hogy a D™/ vektorokat. illetve
az eldallitdasukhoz sziikséges mintdzatokat a szamolds sordn mindig djra eléallitjuk,
vagy taroljuk. Vildgos, hogy a tdrolds és beolvasas jelentGsen gyorsitja a szamitds
elvégzését. Ugyvanakkor egy bizonyos hatdron til (ami nem mdés, mint a szdmitégép
memoridja) nem val6sithaté meg a tirolds. Ebben az esetben tgy kell eljarnunk,
hogy tjraszamoljuk a D% vektorokat, amikor sziikség van rdjuk. Ez nem jelent
problémat, mert erre a feladatra megfelelé gyorsasigi algoritmust és kddot lehet
késziteni. Természetesen ennek az eljirasnak a gépid6 mégiscsak hatart szab, azonban
egyre gyorsabb processzorok alkalmazdsaval, illetve parhuzamositdsukkal a szamitasok
hatdrai jelentds mértékben kitdgithatok.
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3.4 A siirtiségmatrix elemeinek kiszamitasa

Az alibbiakban lefrom azt az algoritmust, amelyet kifejlesztettem a siirliségmatrix
elemeinek kiszdmitasira, egyben az energia gradiensének kiszdmitasdra is. Az aldbbi
sémaban a STEPD, STEPG, STD1, STDZ2 egész szémok, az S(( ),2) pedig egy () x2
méretli valés tipusd tomb. A siirliségmatrix elemeit a @(("2"), (1‘24)) valés tombben
taroljuk. A ©; ;. négy indexébdl lgy lett kettd, hogy a gemindlokat sorszammal lattuk
el, igy most az i,j indexpar egy szdmnak felel meg, hasonléan a k,! is. Valéjaban
a © métrixnak csak a felsd triangularisat allitjuk el6. A c((y)) a konfigurciés
egyiitthatdkat tartalmazé vektor, g((’,‘\,’)) pedig az F(c) fiiggvény gradiense. Hasznélni

fogom az el6z6 alfejezetben bevezetett jelGléseket.
1. START |
2. inicializdlds, STEPD=0, STEPG=0, © minden eleme=0
3. I, léptetése, STEPD=STEPD+1

4. {1,7} = I € {1... M}\I; indexpér léptetése

5. STEPG= a g; ; gemindl sorszima

6. S(STEPG,1)=ca(z, j; A)

7. S(STEPG,2)=w(z, j; A)

8. GOTO 4, mindaddig, amig az 6sszes indexpart fel nem soroltuk

9. DO STD1=1,(})
10. DO STD2=STD1,(*)

11. ©srp1,sTD2 = OsTDp1,5TD2 +
es(sTo1y) * S(STD1,2) * cs(sTp2,1) * S(STD2,2)

12. gs(sTo1,1) = gs(sTp1,1) + Cs(sTpz,1) * S(STD1,2) * S(STD2, 2)
13. gs(sTD2,1) = 9s(sTD2,1) + Cs(sTp1,) * S(STD1,2) * S(STD2,2)
14. ENDDO STD2

15. ENDDO STD1
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16. GOTO 3, minaddig, amig az 6sszes I halmaz sorra nem keriilt
17. END

A fenti algoritmus szavakban igy foglalhaté 6ssze. A (3.21) skalarszorzatokat szamoljuk
ki gy, hogy a D¥ vektorok mindegyikének egyidejiileg csak a . elemét téroljuk.
A DY vektorok elemei nem kozvetleniil, hanem az S tdmbben kddolva éllnak el6, a

kovetkezoképpen (1. 6. és 7. 1épés):
DgT5pp = csistepc) * S(STEPG, 2) . (3.23)

Az algoritmus kikeriili a nulla elemeket, csak a DY nem nulla elemeit éllitja el6. A
6. lépésben a sorszam hozzirendelése egy konfiguricidhoz alkalmas szimozés esetén
megoldhaté egy M x N méretl tombben tirolt, az algoritmus soran nem valtoztatott
szamok legfeljebb N tagu Osszegeként. Az I, indexhalmaztdl fiiggéen kevesebb tagu
is lehet ez az dsszeg.

Az algoritmus egyittal az F(c) fiiggvény gradiensét is el6éllitja (11., 12. 1épések).
A minimumkeresés szempontjabdl, kiilénésen, ha a valtozok szama nagy, fontos kérdés
az, hogy a fiiggvényérték és a gradiens vektor egyszeri el6illitasa mennyi id6t vesz
igénybe. Esetlinkben a fent leirt algoritmussal igen hatékonyan lehet az energidt és

gradiensét szamolni.



4. Fejezet

Elektronrendszerek korrelacios

energiajanak szamitasa

Az el6z6 fejezet eredményeire alapozva a korrelacids energia szamitdsdra mutatunk be
hérom eljardst (C-, B-, D-algoritmusok). [102, 103, 104, 106]

4.1 Az energia és gradiensének kifejezése

A rendszer hullimfiiggvényének egy kozelitését a (3.1) formuldban szereplé c
egyiitthatévektor definidlja, amit a targyalds 4ltaldnossigdnak megsértése nélkiil
val6snak tekinthetiink. A (2.8) és a (2.33) egyenletek alapjan az energia varhaté értékét

a kovetkez6 alakba irhatjuk:
F(c)

ahol

Flc) = < U|H|E >= (N)Tr{K@}=

l<],k<l 1ﬂ'—
[ M

> Y cacs KipigVai™ .

a,f=11i<j,k<l

<
M
( )(N 2 Kkl,t,] Z cac ”kl (4.2)
1
2

ahol K nem maés, mint a K reduk4lt Hamilton-operator matrixeleme
Kijra= [ 6;(L,2R(1,2)964(1,2)d1d2. (43)

34
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Az F(c) fiiggvény c szerinti gradiensének egy komponense pedig igy irhaté:

_aF 1§ 1,53kl 1,55k,
des| = -2-5221 (Zk le Kiij(Vah ™ +Vga ) . (4.4)
¢ =1i<jk<

4.2 Az energia minimumadnak keresése

A molekula nemrelativisztikus alapéallapoti energidjanak legjobb kozelitését a Slater-
determindnsok alterében a (3.1) fiiggvényalakkal az energia c egyiitthatévektor szerinti
minimumanak megkeresésével kapjuk.

A minimunkeresés célfiiggvényének valtozéi a c egyiitthatévektor komponensei. A
lc| = 1 feltételt dgy vessziik figyelembe, hogy az energia (4.1) Rayleigh-hanyadosit
minimalizdljuk. Ennek gradiense igy irhaté:

VF -2Ec
E(lc) = ——— 4.5
VC (C) ch2 ’ ( )
itt felhaszniltuk, hogy
V.lc|* = 2c.

Esetiinkben az E energidval egyidejiileg kiszamithaté a VE. Vagyis a gradiens
kiszdmitdsa nagysigrendileg nem néveli a felhasznilt gépidét. Ez az egyik f6 oka annak,
hogy a minimumkereséshez, mint kordbban emlitettiik, egy kvézi-Newton mddszert
valasztottunk. Ezt az eljirist a kés6bbiekben réviden C-algoritmusnak fogjuk nevezni
(103)].

4.3 A redukalt Hamilton-operator matrixa

Eddig a siirliségmatrixszal foglalkoztunk, megnéztiikk, hogy lehetne minél
hatékonyabban elééllitani. Ha szimunkra az energia érdekes, mert azt szeretnénk mi-
nimalizdlni, akkor tanulsdgos megvizsgilnunk a redukalt Hamilton-operdtor matrixat,
a K-t is.

Mint emlitettilkk, a K métrixelemei az egy- és kételektron-integralok fel-
hasznéldsaval kiszdmithaték. Munkdnk sordn standard kvantumkémiai programcso-
magokkal végeztiik el a HF-SCF szdmoldst. Elészor az integralokat MO bézisra transz-
formaltuk, ezutan kovetkezett a K elemeinek felirdsa. Ehhez tudnunk kell pontosan,
hogy milyen kapcsolatban vannak a geminélok a {4;},7 = 1, ..., M molekulapalydkkal.
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A gemindlokat a {p;},i = 1,...,2M spinpalyakbdl épitettiik fel, melyek a 1 moleku-
lapalyakkal az aldbbi kapcsolatban vannak:

Vo1 = Yra Yok = Y. (4.6)

Ezzel a formuldval a tér- és spinfiiggvény adataibél egyértelmiien tudjuk képezni a
spinpalydk sorszamdt és forditva is. Azonban, ha majd kés6bb a spinpdlya szamdabdl
meg kell mondani a tér- és spinfiiggvényeket, akkor a formuldk felesleges bonyolitdsanak
elkeriilése végett az aldbbi jelolést kovetjiik: ¢, — 1,01, ahol a gy vagy a vagy . Mivel
a molekulapdlydk és a spinfiiggvények is ortonormaltak, ezért a spinpdlydk is azok

lesznek:
/ k1 = Oxy (4.7)
A gemindlok a spinpdlyak antiszimmetrizilt szorzatai:
93(1,2) = 0i(1)w;(2) — ¢;(1)¥:(2)- (4.8)

A redukalt Hamilton-operitor gemindlok kézti matrixelemei tehdt, a (2.7) és a (4.3)

definicidk figyelembevételével, valds esetre szoritkozva:

Kijwr =1 9:(1,2) KQ1,2) grs(1,2) d1d2 =
= [ (2:(1)9;(2) - 0i(Dei(2)) (7 (RQ) + ~(2)) + k(1,2))
(e (Wen(2) - (1)en(2))d1d2 =
= 727 (hiebjisik — hadjesi — hikbusik + hjdisi) +
2(kijrsiksit — kijikSisik) (4.9)
Az utolsé lépésben alkalmaztuk az

1, ha i + k paros

(4.10)
0, ha 7 + k paratlan

Sik = / oi(1)or(1)dl = / 0i(2)ox(2)d2 = {

jelolést, valamint a kételektron integrélok indexeinek felcserélésére vonatkozé szabélyt.
A hyj és kijr @ h illetve a k operatorok (1. (2.4) és (2.5) képletek) métrixelemei.
Most térjiink vissza az energia kifejezéséhez:
E(c) = (I;I)T’I'{K@} = (];I) Z Ki,j;k,lei,j;k,l- (4.11)
i<j k<! -
Kihasznaltuk, hogy a mdtrixok szimmetrikusak (6nadjungéltak). A siirliségmatrix

azon madtrixelemeit, amelyek szorzéja, azaz az azonos indexii K matrixelem nulla,
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felesleges kiszamolni. Ezek nem adnak jdrulékot sem az energidhoz, sem annak gradi-
enséhez (1. 4.4 formula). Ezek kihagydsival szdamitdsi munkét takarithatunk meg. A
K matrixnak n = (23’1 )2 = 4M* — 4M?® + M? eleme van sszesen, melyek két okbél
t{inhetnek el: a spin- és a térszimmetria miatt.

Ha a (4.6) képlettel definidlt spinpdlyakat haszndljuk, akkor megadhatd, hogy hiny
matrixelem tinik el a spinfiiggvények ortonormaltsdga miatt. Ismert, hogy a redukalt
Hamilton-operator kiilonb6zé s, kvantumszémi geminalok (2 x 2-es determindnsok)
kézti métrixeleme a spinfiiggvények ortonormadltsdga miatt eltiinik. A gemindlok s,
kvantumszama +1,0 vagy —1 lehet. Az s, = £1 gemindlokbdl (1‘2' ) db van, az s, =0
kvantumszamiibél pedig M2 db. A spin miatt nem elt{in6 matrixelemek szdma tehat
n = 2(‘;’)2 + M= B g %2 Ez a szimmetria teh4t nagysigrendileg nem
csokkenti a matrixelemek szdmadt, viszont a vizsgélt molekularis rendszertél fiiggetleniil
mindig fennall.

Eltinik a matrixelem akkor is, ha van térszimmetridja a rendszernek, és a két
gemindl, amelyek kozt képezziik a madtrixelemet a szimmetriacsoport mas-mas ir-
reducibilis dbrazoldsdhoz tartozik. Mivel azonban a térszimmetria esetleges, nem
foglalkozunk vele részletesen. Azonban illusztriciéként néhany térszimmetridval bird
molekuldra megadtuk a nemeltiin6 elemek szdmat. A 4.1. tdbldzatban illusztriljuk a
fentebb elmondottakat. Feltiintettikk a vizsgdlt rendszert, az elektronok szdmat (N),
a spinpdlydk szamat (M), a Slater-determindnsok szamat (u), a K osszes (n), illetve
a spin miatt eltiin6 elemeinek elhagydsa utdn megmaradé matrixelemeinek szamat
(n'), végiil a 10~'2-nél nagyobb abszolut értékii elemek szamat (n"). Vannak sorok,
ahol rendszer és n” nem szerepel, ezekben az esetekben nem vizsgiltunk meg konkrét

molekuldt, de a fenti formuldk kiszdmithatdak.

4.4 A valtozok szamanak csokkentése

A c konfiguracids egyiitthatd-vektor komponensei szerinti minimumkeresés valtozdinak
szama, mint lattuk, g = (%) Ez a szam igen gyorsan novekszik az M és N
novekedésével. Ezért fontos kérdés az, hogy milyen lehet6ségek vannak a viltozdk
szamdnak csokkentésére ligy azonban, hogy a varidlds sordn a teljes konfiguracids teret
bejarhassa a ¢ vektor.

Balint Imre javaslatara a c vektort specidlis médon varidljuk. Vegyiink fel egy

kiinduldsi préba-vektort, ezt nevezziik cyp-nak. A varidldst az alibbi formula szerint
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4.1. T4blazat: Feltiintettiik a vizsgdlt rendszert, az elektronok szdmat (N), a spinpalydk

szdmat (M), a Slater-determindnsok szamit (u), a K &sszes (n), illetve a spin miatt

eltiing elemek elhagydsa utin megmaradé matrixelemeinek szamat (n'), végiil a 10~12-

nél nagyobb abszolut értéki elemek szamdt (n").

molekula | N | M I n n' n'
Li 3|10 120 | 2025 825 | 141
LiH 412 495 | 4356 1746 | 594
Li; 6|20 38760 [ 36 100 | 14 050 | 2 906
C 6|20 210 2025 825 | 141
HF 10| 12 66| 4356 1746 | 594
H,O 10 | 14 1001 8 281 3283 1043
NH;3 10| 16 8008 | 14 400 5664 | 3 552
CH, 10 | 18 43758 | 23409 | 9153|9005
- 10 | 20 184 756 | 36 100 [ 14 050 -
- 10 [ 30 | 30045015 | 189 225 | 72 675 -
- 12 | 30 { 86493 225 | 189 225 | 72 675 -
- 14 | 30 | 145 422 675 | 189 225 | 72 675 -
- 14 | 35 | 148 877 026 | 354 025 | 120 513 -
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végezziik:
M

c=co+ D bijks VOijku(co)- (4.12)

i<j k<!
A vari4ciés paraméterek a b vektor komponensei. gy a siirliségmatrix és az annak
megfeleld energia is a b vektor fiiggvénye E(c) = E(co,b). Az E(co,b) funkciondlt
minimalizalé bl,;, vektor meghatiroz egy 4j c vektort a 4.12 formula szerint, amit

jeloljiink c;-gyel. Vagyis

miny E(co, b) = E(co, b, ) = E(cy).

min
Ezzel a c; vektorral djra kezdheté az eljaras.
fgy a konfigurdciés egyiitthaté vektorok egy sorozata &ll elé: cp,cy,C2,...,Ci. Az
ezekhez tartozé energia-virhaté értékek monoton csokkend sorozatot alkotnak: Ey >
E, > E, > ... > E;. E sorozat minden tagja fels6 korlatja a minimdlis energidnak, a

c; sorozat pedig a ¢, sajatvektorhoz konvergal.

4.5 A B-algoritmus

A késébbiekben sokszor kell haszndlnunk az {3, j; k, } indexhalmazt olyan médon, hogy
nem lesz lényeges az egyes elemeinek ismerete. Ezért bevezetjikk az {i,j;k,l} = z
jelolést. A c vektort a (4.12) formula szerint igy irjuk:

c=cg+ Y b,VO;(co). (4.13)

Ebben a formuldban tehét az 6sszegzés végigfut az 6sszes {3, j; k, [} index-kombinacién.
A kovetkezékben a VO, alatt mindig a VO, (cq) gradienst értjiik.

Irjuk fel az energist, mint a b vektor fiiggvényét. Kiindulunk az F(c) (4.2) for-
muldjibdl, majd behelyettesitjiik a c fenti alakjat.

1 1
F(C) = F(Co,b) = 5 Z Kz@z = 5 ZKzZCanV:ﬂ =
T z a,f

1
-2- Z K, Z(cm + Z b,,:V@,,a)(c.,ﬂ + Z by V@znp)V: =
zl

z a,8 o

1
=52 Kz Y (Coatop + (3 b VOua)copt
z o, z/

teoa(3 berVOanp) + (3 bar VOyra) (3 ber VOig) Vi (4.14)

z' M
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Most a nagy zardjelben levé osszeg masodik és harmadik tagjat Gsszevonjuk az 6sszegz6

indexek megfeleld atjelolésével, s igy folytatjuk a megkezdett egyenlSséget:

= Fleo) + 3 S Ko 3 (25 b (VOra)eont
z aff z

+ 37 byrben (VOog - VO ﬂ))v;ﬂ (4.13)

zl zll
Ha az F(c) fiiggvényt dltaldnositjuk, akkor egyszeriibben leirhatjuk a fentieket. A
© jel6lés alatt ne csak siirliségmdtrixot értsiink, hanem 4dtmeneti matrixot is, amit a

kovetkezoképpen szamolhatunk ki:
Oz(c1,¢2) = Y craC2sVip (4.16)
ap

A ilyen matrixszal szamolt varhaté értékeket az aldbbi médon jeldljiik:

F(Cl, Cg) = TT{I( e(cl; Cg)} . (417)

\/|¢1|2 |c2[?

A korabbi O(c) és F(c) jelolés megfelel a ©(c, c)-nek ill. F(c, c)-nek, de az egyszeriiség

kedvéért ebben az esetben megmaradunk az el6bbi jelolésmddnal. Visszatérve az

F(cq, b) kifejezésére, azt a kovetkezd alakba irhatjuk:
F(cp,b) = F(co)+

2 Z sz(COa vex) + Z bzbz’F(Vexa vez’)' (418)

z,z’

A formalizmus tovabbi részletezése helyett most csupdn annyit jegyziink meg, hogy
az energia és a gradiens kiszdmoldsa itt miiveletigényesebb, mint a C-algoritmus esetén.
Azonban a véltozok szdma lényegesen lecsékkent. Most érdemes visszalapozni a 38.
oldalra a 4.1. tablazathoz és Osszevetni a u és az n”, vagy annak hidnyiban az n'
szamértékeket.

Osszefoglalva, a konfiguracis egyiitthaté vektor olyan varidlasi modjat vezettiik be,
amely jelent6sen csokkenti a varidcids paraméterek szimat gy, hogy a minimumkeresés
szempontjabdl ez nem jelent megszoritst, tehit az eljards tovdbbra is egyenértékii
marad a FCI mddszerrel [102, 104] . Illusztracidként kiszdmoltuk atomok és molekuldk

alapallapoti energiajit, amely eredményeket a kovetkezo fejezetben mutatunk be.
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4.6 A D-algoritmus

A varidciés paraméterek szamédnak csokkentését egészen mds stratégidval valsitja
meg a D-algoritmus. Az egyrészecske bdzisnak csak egy részét, azaz az egyelek-
tron fiiggvények terének egy alterét haszniljuk az elektronkorrelacié szimitdsakor,
ugyanakkor az adott altér bazisvektorait is megvaltoztatjuk. Emlékeztetdiil pillantsunk

rd az energia kifejezésére:

Itt K a tcljes egyrészecskebazisbél képzett geminilokon felirt redukalt Hamilton-
matrix. Valasszunk ki az M-dimenzids egyrészecske fiiggvénytér bazisvektorai (By)
koziil k darabot (B:). Irjuk fel a redukdlt Hamilton operdtor matrixat a csak ezen
egyrészecske-fiiggvényekbdl képzett gemindlok bazisian (L). Ugyanakkor vezessiink
be olyan paramétereket, amelyek a kivilasztott Bj altal kifeszitett altérnek a teljes
egyrészecske-térben vald uniter transzformdciéjat jellemzik. E paramétereket az o
vektorba gyiijtjiik ssze. A By transzformicidja utdn a B, bazisfiiggvényekbdl képzett
gemindlokon felirt redukédlt Hamilton-métrix (L') kiilonbozik L-t6l, vagyis az L matrix
az o paraméterek fiiggvénye

L = L(e). (4.19)

A hulldmfiiggvényt most a By bazisvektorokbdl (illetve ezek uniter transzformdiciéval
kapott képeibdl) képzett Slater-determindnsok alterében fejtjiik ki. Ennek az altérnek
a dimenzidja (1‘\‘,) Az ebben az altérben értelmezett konfiguriciés egyiitthaté vek-
tort jelolje d. A (3.3) képlet alapjin a megfelelé behelyettesitéssel kiszamithatjuk
a siuriségmatrixot, amit jeloljiink f-val, ami egy (';) X (’;) méretd matrix. A
stiriiségmatrix a d vektor fliggvénye:

9 = 6(d). (4.20)

Az energia kifejezését a bevezetett paraméterekkel igy irhatjuk:

E(d,q) = (1;’ ) Tr{6(d)L(a)}. (4.21)

A minimumkeresés kétféleképpen torténhet. Minimalizdlhatjuk az energiit a d és a
paraméterek Osszessége szerint, vagy felviltva, tobb ciklusban a d és a szerint. Az
energidt a d és az o paramétereken keresztiil minimalizdlé médszert a késébbiekben
D-algoritmusként fogjuk emlegetni [106].
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Az igy kapott energia mélyebb lesz az els6ként kivilasztott By altér felett végzett
d szerinti minimumndl, de folétte marad a By, teljes tér feletti Slater-determinansok
terében szdmolt energia-minimumnak. Ez a Slater-determinansokrdl sz6l6 bevezetd
fejezetben leirtakbdl vildgosan kovetkezik. Ennek az algoritmusnak az az igen nagy
elénye, hogy a paraméterek szdma viszonylag kényelmesen valtoztathaté az igényeknek
és a szamitasi kapacitdsnak megfeleléen. Sziikség esetén jelentOsen csokkentheték
a paraméterek, és ezzel egyiitt a szdmitdsi munka is csékken. Hatrdnya, hogy
a B-algoritmussal ellentétben a D-algoritmus csokkenti a siiriiségmadtrix , illetve a
hullamfiiggvény "rugamassagat”, azaz nem tesz lehet6vé a FCI mddszerrel ekvivalens
mértékll varidlhatésagot a teljes B, felett képzett Slater-determindnsok terében. A
B, altér feletti Slater-determininsok terében azonban FCl-ekvivalens, ezzel egyiutt
méretkonziszrens marad az eljirds, azzal az elénnyel, hogy maguk az egyrészecske
fiiggvények is javulnak az eljaras sorén.

A minimumkeresés megvalésitdsival kapcsolatos kérdésekre és a kapott szamitdsi

eredményekre a kovetkez6 fejezetben visszatériink.

4.7 A redukalt Hamilton-matrix transzformacidja

Ebben az alfejezetben azt fogjuk ldtni, hogy milyen formuldk sziikségesek ahhoz, hogy
adott kiinduldsi L mdtrixbdl a By transzformécidjat leiré o paraméterek ismeretében
kiszamitsuk az L' madtrixot. Az egész K madtrixot transzformaljuk, majd a kapott
transzformalt matrix elemeibdl gyiijtjiik dssze az L' elemeit. A By, bazisvektorokat
transzformaljuk. Az M dimenziés forgatis matrixdnak M? eleme van. Minden osz-
lopvektora egység hosszi, ami M Gsszefiiggést jelent, valamint az oszlopok mindegyike
ortogondlis az Osszes tobbi oszlopra, ez ("2’) tovabbi egyenletet ad. A matrixelemek
szamabdl kivonva az elemekre felirhaté egyenletek szamadt, kapjuk a fliggetlen elemek

szamat:

MZ—M—M(M_1)=M(M—1)=(M)‘

2 2 2

Adjuk meg a transzformdciét az aldbbi szorzat alakban:
R(a) = R(a(t\zf)), ..., R(as)R(0), (4.22)

ahol R(a,) egy kétdimenzids, a, szogii forgatdst jel6l két bazisvektor 4ltal kifeszitett
sikban. Az R(ca,) forgatis hasson az r és s indexii egyrészecskefiiggvényekre, ekkor
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matrixa az egyrészecskefiiggvények bazisiban a kovetkezo:

( (r) (s) )
1 0 0 0
(r) O cos- Qg sin a, 0 (4.23)
(s) 0 —sina, COS Qg 0
\ 0 0 0 1)
Az ilyen elemi forgatds sz6g szerinti derivéltja:
0 T
e R(a,) = R(aw + E)Ers: (424)

ahol r és s az elforgatott két bazisvektort indexeli, E,, pedig olyan madtrix, amelynek

az r,r és s, s eleme 1, a tobbi nulla:

( r () )
o --- 0 --- 0 ---0
B, = (r) 0 1 0 0 (4.25)
sy 0 --- 0 --- 1 --- 0

Most megvizsgdljuk, hogy egy elemi forgatds, R(a) (a szog indexelésétél most
eltekintiink), hogyan véltoztatja meg a redukdlt Hamilton-métrixot. Az {v;}
egyelektron-fiiggvények a kovetkezéképpen transzformalédnak (r < s):

¥, = cosa Y, +sina P,
Y, = —sina ), +cosa i,

Y, = i, hai#r ési#s. (4.26)

A kovetkez6 gondolatmenetben az i, j, k,l indexek olyanok, hogy sohasem egyenldek
sem r-rel sem s-sel. Az egyrészecskebazis ilyen transzformiciéja a gemindlokat is
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megvaltoztatja, mégpedig a kovetkezéképpen. Nem valtoznak aldbbiak:

91"1' = Gij
g;'s = Grs- (4.27)
Alaposabban meg kell vizsgalnunk azokat, amelyek megvaltoznak.
gy = W - v,
= (cosa 1, + sina 9,)9; — P;(cos o P +sina ;)
cos a(Yrth; — P;9r) + sin a(Ps¥; — Y;¥s)

Ebben a formuldban az antiszimmetrikus szorzatokat azonosithatjuk az eredeti
gemindalokkal. Az r és j viszonyardl eddig hallgattunk, azonban ettél fiigg a geminalok
eléjele, hiszen mi rendezett gemindlokat hasznilunk. Ezt figyelembevéve (ne feledjiik:
T < 8):

ha j<r 9ir = COSQ gjr +SiN O gjs
ha r<j<s g,;=cosagj—sina gj
ha r<s<j g =cosagj +sina gjs.
(4.28)

Az elGjel egyszerii figyelembevételére bevezetjiikk az aldbbi, indexeken értelmezett
fiigvényt:

sg(j,r,8)=1 haj<r<s
sg(j,rs)=-1 har<j<s
sg(j,7s)=1 har<s<j. (4.29)

Ennek segitségével mar egyszeriibben felirhat6 a transzformalt matrix. A tovdbbiakban
a jelolés tovabbi egyszeriisitése céljabél mindig a rendezett sorrendet értjiik a gi; és
hasonlé jelolések alatt (azaz i < j). Mindezeknek figyelembevételével a transzformacié
soran megvaltozo gemindlok a kovetkez6képpen irhatok:

!

ij

K, = Kijrs = K,

ijrs TSty

!
KTSTS

= Krsrs
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K;jk, = cos aKrju + $9(j, 7, ) sin aKjm = Kiyp;i
K. irs = €08 0K pjrs + 59(4, 7, 5) sin @Kyjrs = Ky ;
Ky = —sg(j, 7, 8) sinaK,ji + cos aKgju = Ky,
Kjrs = —59(j, 7, 8) sin aKyjrs + €08 0K gjrs = Ky
K i = sg(4, 1, s) cos asin a(K,jusg(l, 7, 5) + Ksjrisg(d, 7, 8))+
cos? aK,jn + +sin® aKjqsg(j,r, s)sg(l, 7, 8) = Koiri
Kq = sin® aK,jnsg(j, v, s)sg(l, 1, s) + cos® aKja—
cos asin a(K;jssg(j, 7, s) + Ksjmsg(l, 7, 8)) = Kys;
rist = C08* aKyjq — sin? aKjnsg(j, 7, 8)sg(l, 7, 8)+
cos asin o Kjsis9(j, 7, 8) — Krjrsg(l, 7, 8)) = Kg,; - (4.30)

Ki kell még szdmolnunk a K elemeinek adott szog szerinti derivaltjat. Ehhez az elfor-

gatott bazison szamolt maétrixelemeket derivaljuk o, szerint:

0 0 . ~ 0

a—a:K{,-m =< aTzagé,-lK lgr > + < g;;|1K |a9kl- >. (4.31)
Latszik, hogy a gemindlok derivaltjit kell meghatiroznunk a maétrixelemek de-
rivaltjainak kiszamolasahoz:

0 a .., ,, 0
B = (5a—a¢i)¢j - w,-(aa V) + ¥i(

1/)~) - (—1/)-)1/)2- (4.32)

Oag 7
Az egyes spinpdlydk derivaltjait pedig igy kapjuk:

sV = g RO = Rlag), - goRlaa)y o Rlaais  (439)

Vagyis a derivdlt szdmolasakor ugyanazokat az elemi forgatdsokat alkalmazzuk, mint
az elforgatdsnal, egy kivétellel. Ezt az egy 1épést kell még kidolgozni ahhoz, hogy
derivéltat lehessen szdmolni. Ha az R(c,) elemi forgatds az r < s spinpalyak sikjdban
forgat, akkor hatasa azokra:

Y. = —sina ¥, + cosa P
Y, = —cosa P, —sina P

¥, = 0, hai#r ési#s, (4.34)
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a (4.32) formula szerint a geminélok deriviltjai pedig:

gi; = 0

9,; = —sinag,;+sg(j,r,s)cosags;

95 = —39(j,r,s)cosag; — sinags;

gs = 0. (4.35)

Végiill az eddigiek felhasznaldsdval, a (4.31) Osszefiiggés alapjan felirhatjuk a

métrixelemek deriviltjanak szamoldsdhoz sziikséges lépés formuldit (o, helyett ismét

a-t irunk):
z!jkl =0
K., =0
K, = —sinaK,ju + sg(j, 7, 5) cos aK et = Kurj

Klirs = —sinaKyjrs + 59(j, 7, 8) cos aKyjrs = Krgrj
Kijn = 2cosasin a(Kjusg(5, 7, 5)sg(l, 7, 8) — Krjrt)+

(cos® a — sin® a)(K,jnsg(j, 7, 8) + Krjasg(l,1, 5)) = K}

Kjlw = —59(j, 7, 8) cos aKyju — sin aKjx = Kpisj
I(.;jrs = —sg(j, T S) Cos C‘51{1-1'”; — sin aKsjrs = Krssj
I(-;jé‘l = 2cosasin a(I{TjTlsg(js r, s)sg(l, T, S) - Ksjsl)—

(cos? @ — sin® @) (Kyjmsg(l, 7, s) + Krjasg(j, T, 8)) = Ky,
K. iy = —2cos asina(Kgnusg(j, 7, s)sg(l, 7, s) + Krjsu)+
(cos® a — sin® @) (Ksjais9(j, 1, 5) — Krjnsg(l,r,5)) = Ky,; (4.36)

Osszefoglaljuk a jelen és az el6zd alfejezetet. Az energia minimalizdlasanak egy
stratégidjat mutattuk be. Az energia a paraméterek két, egymastdl jellegiikben élesen
elkiiloniilé csoportjatdl fiigg, amelyeket a d és az o vektorok komponenseiként fog-
tuk fel. Az egyrészecskefiiggvények M dimenzids terének egy k dimenzids alterét
vélasztottuk ki. Ezt az alteret a teljes térben az o paraméterekkel jellemzett uniter
transzformdciéval transzformilhatjuk. A redukédlt Hamilton-operatornak az altér
bazisvektoraibdl képzett gemindlokon felirt L mdtrixa, és ezen keresztiil az energia
is fiigg az o paraméterekt6l. A d vektor komponensei a hullimfiiggvény kifejtési
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egyiitthatéi az altér bazisvektoraibdl képzett Slater-determindnsokon. Ettdl a vek-
tortél fiigg a slirliségmatrix , és ezen keresztiil az energia is. A minimumkeresést
végrehajthatjuk felvaltva kiilon-kiilon a két paraméter-csaldd szerint, vagy egyszerre
mindkettd szerint. D-algoritmusnak neveztiik az energia minimuménak e véltozék sz-
erinti keresését. Az alkalmazdsokrél sz6l6 kovetkezd fejezetben visszatériink az eljards

konvergencia tulajdonsigaira illetve a kapott szamitdsi eredményekre.

4.8 A spinoperatorok varhaté értékeinek
kiszamitasa

Kiegészitésként egy alfejezetet szdnunk a spinoperdtorok varhaté értékeinek
meghatirozasira. Annal is inkdbb, mivel a spin négyzet és az egyik spinvetiilet
operatorok sajatértékei nemrelativisztikus esetben mindig jé kvantumszamok, lévén
a szabad molekuldk nemrelativisztikus Hamilton-operétora spinfiiggetlen. A spin
négyzetének operdtora $2(1,2,...,N) és az egyik spinvetiilet (szokdsosan a ko-
ordintarendszer z tengelyére vett vetiilet) $,(1,2,...,N) operitora egymassal és
a Hamilton-operdtorral is felcserélhet6ek, ezért varhaté értékeikkel, mint kvan-
tumsziamokkal jellemezhetjiik a molekula stacionarius allapotait. Megadjuk ezen
spinoperatorok varhat6 értékeinek kiszamitdsara szolgalé formuldinkat.

Korabban lattuk, hogy a méasodredii redukalt siiriiségmatrix segitségével minden
kételektron-operdtor varhatd értékét ki tudjuk szémolni, feltéve, hogy ismerjiik az
operdtor matrixat abban a bazisban, amelyikben a siiriiségmatrixot felirtuk. A rend-
szer z irdnyid spinvetiiletének operitora az egyes elektronokra haté (i) operatorok

Osszege, egyrészecske-operator

$.(1,2,...,N) = ﬁ,:.i,(i). (4.37)

=1

A (2.7) egyenlettel analég médon képezhetjiik a £, "redukalt” spinvetiilet operdtort:

£06,7) = e (8:) + 8.9). (4.38)

Természetesen itt kételektron-tag nincs. A #,(1,2) operdtor métrixelemeit kell
meghatéroznunk gemindl béazisban. Egyszeriien ellendrizhet6, hogy a nemdiagonilis
matrixelemek ({i,7} # {k,!}) eltiinnek, a diagonalis matrixelemek ({i,7} = {k,!})
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pedig az adott gemindl s, kvantumsziménak 's-szerese (ez a tényezé a redukélt
operatorban megjelend szorzé miatt lép fel).

A spin négyzetét mar valédi kételektron operator irja le:
5%(1,2,...,N) =
S_(1,2,...,N)S8.(1,2,...,N) + 5,(1,2,...,N) + §2(1,2,...,N) =
= Z §-(3) %:S“+(J') + 21_252(%') + 22 5:(1) Xj:s}(j) =
= Z_Zj:(é-(i)§+(j) +8:(1)3:(4)) + Z 8.(1) =

= (3-(8)3+(5) + 3-(5)3+(3) + 8:(5)3.(4)) + 3:(3)3:(3)) +
i<j ~

stwo(i,j)
> (3-(8)3+(6) + 8:(4) + 8:(2)3:(3)) - (4.39)
: sone(i)

Bevezetjiik a redukailt spin-négyzet operatort:

t(i, ) = stwo + (sone(i) + sone(j)). (4.40)

1
N -1
Ennek gemindl bazisban felirt matrixat T betiivel jeloljik. A redukdlt Hamilton-

operator esetével analég mddon teljesiil a

8%(1,2,...,N) =Y i, 5), (4.41)
i<j
és a
< 0|89 >= (";’ )Tr{@T} (4.42)

Osszefiiggés. A T elemeinek kiszdmoldsdhoz vezessilkk be az aldbbi jelGléseket a
gemindlokkal illetve a spinpdlyakkal kapcsolatban. A gemindlt igy irtuk:

9p.g = Ypg — Yy,

ahol a szorzatokban el6l all6 tag az 1. elektron-koordindtatdl fiigg, a hatul all6 pedig
a 2.-tél, a ¢ spinpdlyat jelol. A spinpalyakat felépité tér- és spinfiiggvényekre a
kévetkezéképpen fogunk hivatkozni:

'(/)p = Soprdpn, (4.43)
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az indexek az alabbi mdédon fiiggenek Gssze:

29 -1,haop=a

= (4.44)
2p’ ) ha Opr = ﬂ )

p

a p” pedig kétféle értéket vehet fol:

o, hap” =+1

8 hap =1 (4.45)

o=

A (1, 2) operator konkrét alakja:

£(1,2) = 3-(1)84(2) + 8-(2)8+(1) + 8:(1)3:(2) + 3. — (2)5:(1) +

(B (1)50(1) + 520342 + 5:(1) + () + BV + @) (446)

A tp 4.rs matrixelem dltaldban igy szamolhat6 ki:
togirs =< IpalE(1,2)]9r,s >=

< (p,,IO'pntpq:O'qn - (quO'qn(pplUpnlf(l’ 2)|(Pr’a'r”(Ps'0's” = PO gnPp1Tpn >=

T” s”

22
1 ,r” s” 1 1
!V -1 (67'".367’"1963”0” + 6—15"6—lq” rp" + (_2' + ? + Z + Z)&rnpn s”q”)]_

” N

™ s
20p 5 0qrrr [0 177015701 017 + G177 0157012 01p> + 2 ?Jp”s”‘sq”r"'*‘

26plr16qlsl [6_13”61qu 611.)1 6—1})” + 6_11.»61”1) 613” 6_1qn + 2 6”'”?”63"q“+

1 s 11
T r0bipbig + Sebipdop + (5 + 5+ T+ Dopbog)]  (447)

A térpdlydk ortonormadltsiga miatt a gemindlokban szerepld, Gsszesen négy térpalya
koziil legaldbb kettd-kettd , vagy mind a négy azonos kell, hogy legyen. Ez alapjdn két
tipusra oszthaték a nem nulla matrixelemek. Az egyik esetben mind a négy térpalya
megegyezik, egy geminalon beliil az egyik o, a mésik 8 spinfiiggvénnyel szorzodik, azaz

Ipq = PpQPy B — Py PPy = Grs-

Ekkor a (4.47) formulaba valé behelyettesitéssel megkaphatd, hogy a métrixelem:

3
tp.girs = N_-1_ 3
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4.2. T4blazat: A f operator néhdny matrixeleme geminal bazisban, bévebb magyarazat

a szovegben

Op» | Og | O | O togrs
o |la|la|la|l+iy
BB |38 |8 |1+xh
a|B|lal|B|7H5-1
Bla|B8]|a|zgg-1
a| B | 3| « 2
Blal]lallp 2

A madsik eset kicsit bonyolultabb. A két gemindlban a térpdlydk egymassal paronként
megegyeznek, de egy gemindlon beliil kiilonb6zéek és a spinfiiggvények minden kom-

bindcidjdra kiilon meg kell vizsgdlnunk a matrixelemet. Tehat:

Gpg = Pp'0p"Pg0g> — Pq' Tq"Pp'Op”,
és
Grs = PpOrPg s — PgOs»Pp'Orn.
Az ezen gemindlok kozti nemelt{ind matrixelemeket a spinfiiggvények feltiintetésével a
(4.2.) tdblazatban foglaltuk Gssze. Mindezek ismeretében a tpqrs méatrixelemek minde-
gyike megadhatd, a siirliségmatrix segitségével pedig az S? vérhaté érték kiszaimithaté
a (4.42) formula szerint. A spin négyzetének ismerete két szempontbél lehet hasznos.
A {H,8%,8.} operitorok kolcsondsen felcserélhetdek, vagyis van kozos
sajatfliggvény-rendszeriik. Ebbél kovetkezik, hogy a Hamilton-operator egy nemde-
generalt sajitértékéhez tartozé sajatfiiggvénye egyben spin-sajatfiiggvény is. Az
S, sajatérték ebbdl a szempontbdl nem nagyon érdekes. Ugyanis minden Slater-
determindns sajitfiiggvénye az §, operatornak, igy az azonos S, sajatértékhez tar-
tozé determinansokbdl képzett linedrkombindcié maga is S, sajatfiiggvény lesz. Ennek
teljesiilését a minimumkeresés megfelel6 inditdsival biztosithatjuk, mert a Hamilton-
operator kiilonb6zé S, sajatértékii determindnsok kozti matrixelemei mind eltiinnek.
Nem viselkedik azonban ilyen kellemesen az S? sajitérték. A Slater-determindnsok
ugyanis 4ltalsban nem 52 sajitfiiggvények, csak bizonyos linedrkombinéciéik. Kérdés

az, hogy pusztdn az energia szerinti minimumkereséssel eljutunk-e olyan c vektorhoz,
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amely S2 sajatfiiggvényt ir le. Mint ismeretes, az elmélet szerint igen, ennek teljesiilni
kell. Hogy valéban teljesiil-e, azt megvizsgalhatjuk az S? sajatérték kiszdmitdsdval és
annak a lehetséges értékekkel val6 osszehasonlitdsaval.

Eléfordul, hogy adott spinii 4llapotra végziink szamitist. Ekkor az S? fiiggvény
segitségével tudunk olyan mellékfeltételt szabni a minimumkeresésre, ami a spint biz-

tositja.



5. Fejezet

Alkalmazasok atomokra és

molekulakra

Ez a fejezet az el6zéekben leirt mddszer elektronkorrelacié és korreldcids energia
szamitdsdra torténé alkalmazisairdl szél. [98, 99, 100, 101, 102, 103, 104]

5.1 Elokészités

A sziikséges bazisfiiggvényeken vett egy- és kételektron integrilokat valamint a moleku-
lapélyak linedrkombindciés egyiitthatéit tartalmazé métrixot (MO-mdtrix) standard
kvantumkémiai szoftverek (Hondo7.0, Gaussian94) outputjdbdl olvastuk ki. Ez gy
tortént, hogy egy RHF szamoldst végeztiink veliik. Igy egyittal megkaptuk az RHF
energidt és a magtaszitdsi energiat is, amit fel is haszndltunk a késébbiekben a kor-
reldciés energia kiszamoldsara (illetve becslésére, 1. 1.5 fejezet). Ismét hangsilyozzuk,
hogy korreldciés energia alatt (a szohasznilat egyszeriisitése céljdbdl) e dolgozat
hatralevo részében mindig egy adott véges bazisban szamolt FClI-energia és HF-energia
kiilonbségét értjiik:

Egorr = Ef-*cz - E;’IF ) (5.1)

itt a b fels6 index az adott véges bézisra utal.

A minimumbkeresésekhez az LBFGS-B szubrutin-csomagot haszniltunk. Ez nem
més, mint egy BFGS mddszer [30] 'limited-memory’ implementéciéja. Az eljirds nagy
elénye, hogy igen takarékosan banik a szdmitégép meméridjaval, ezért nagy méretii
nemlinedris optimalizacids feladatok megoldésira is alkalmas. A Hess-mitrixot és a

52
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célfiiggvény szerkezetének ismeretét nem hasznilja fel. A H-maétrix taroldsara fel-
haszndlt memdria a véltozdék szdmatdl linedrisan fiigg. Az eljards korldtozott keresést
is képes végezni. Az LBFGS-B mddszer részletes leirdsa a [86] dolgozatban olvashaté.

A fent emlitett részek kivételével elvégeztem a szdmitdsi médszerek algoritmusba
szervezését, implementaldsit és tesztelését. A kédot Fortran77 nyelven irtam. Az igy
el6allé programokkal hoztam létre az e fejezetben szereplé eredményeket.

A programozist és a szamitdsok donté tobbségét egy 400MHz frekvencidju pro-
cesszorral és 256Mb RAM-mal rendelkezé szimitdgéppel végeztem, duplapontos arit-

metikaval.

5.2 Korrelaciés energidk szamitiasa atomokra és

molekulakra

Az els6 szdmszerii eredmények, amelyeket kiszamoltunk kiilonb6z6 molekuldk
alapallapotdara vonatkozé korreldciés energidk voltak. Ezekben a szdmitasokban
minimdlis bdzist haszndltunk (STO-3G). A molekuldk geometridja rogzitett volt a
szdmolis sordn, megegyezett az STO-3G bazissal szimolt HF-energiat minimalizalé
magkonfiguraciéval.

A Slater-determinansokat megszamoztuk, a HF alapdllapoti Slater-determindns
sorszama 1. A c szerinti minimumkeresés kezdd vektora az (1,0,0,...,0) vek-
tor volt, ami megfelel a HF-determininsnak. A minimumbkeresés megdlldsi feltétele
valéjaban két, vagy kapcsolattal osszekotott feltétel volt. Az egyik azt vizsgilta,
hogy két egymast kovetd iterdcids 1épésben szamolt fiiggvényértékek (energidk, Hartree
egységben kifejezve) kiilonbsége egy elére megadott hatar (fvtol) alatt van-e. Ezt a
hatdrt mi a gépi pontossdg 10-szeresére allitottuk be, ami gépiink esetén 1.22 - 10718
volt. A madsik feltétel a fliggvényérték c szerinti gradiensének a minimumbkeresé altal
generdlt legutolsé keresési altérre (specidlis esetben irdnyra) vett vetiiletének norméjat
vizsgdlta, hogy az kisebb-e, mint egy elére megadott kiiszob (pgtol). Ezt a hatart mi
10~20-ra 4llitottuk be, tehat olyan kicsire, hogy a gép szamoldsi pontossiga als esik, igy
a minimumbkeresés megéllitdsakor varhatéan nem ez lesz a dontd. A megallasi feltétel

tehdt igy formulazhaté:

By, — E. < futol vV V E; < pgtol . (52)
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5.1. T4ablazat: A minimdlis bazissal végzett szimitisok eredményei. Az elektronok
szama (N), az egyrészecskebdzis mérete (M), a Slater-determindnsok terének di-
menziéja, HF elektron-enegidk(Egr), a minimélis energidk (E(cmin)), a gradiens

norméja a minimumban, a minimumkeresésre felhaszndlt gépidd (tcpy). Az energidk

Hartree egységekben értenddk. [102]

N{M| (3 EyF E(cmin) | IVE(c)| | tcpu(s)
Li 3110 120 | -7.31552600556 | -7.31583657689 | 3 - 10~ 0.05
LiH 4112 495 | -8.91409693612 | -8.93323540871 | 4-1078 1.36
Lis 6 | 20 | 38760 | -16.4044437420 | -16.4329682789 | 5-10~7 9214
C 6|10 210 | -37.1983925465 | -37.2187335341 | 3-10~7 2.25
HF |10 |12 66 | -103.743255848 | -103.76939252 | 2.107° 7.05
H,O [ 10 [ 14 | 1001 | -838718124789. | -83.926342343 | 8-10~7 258
NH; | 10 | 16 | 8008 | -67.1927778405 | -67.261918910 | 2-10~® 5038
CH, | 10 | 18 | 43758 | -53.2482272262 | -53.326493161 | 1-107° 50331

5.2. Tablazat: Az 5.1. tabldzatban feltiintetett eredményekhez
eresések jellemz6 adatai: a véltozék szdma ((’,‘v’)), az iterdciok szdma (Kyer), a €

vektor nem nulla komponenseinek szima a minimumban (K,).

(%) | Kier | K
Li 120 6 8
LiH 495 42 69
Li; | 38760 73 | 2856
C 210 24 7
HF 66 54 18
H,O | 1001 76 133
NH; | 8008 66 | 2374
CH, | 43758 44 | 14629

vezetd minimumk-
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5.3. Tébldzat: A nem minimaélis bazissal végzett szdmitdsok eredményei. Az elek-
tronok szama (N), az egyrészecskebdzis mérete (M), a Slater-determindnsok terének
dimenzidja, HF elektron-enegidk(Exr), a minimalis energidk (E(Cmin)), és megadtuk
a korreldcids energiét is (E,or). Az energidk Hartree egységekben értendok.

N | M (%) Enr E(Cmin) Ecorr
C /DZV/ 6|18 18 564 | -37.3639718827 | -37.4172729816 | -0.053301099
C /DZP/ 6130 | 593775 |-37.3655028240 | -37.4566423179 | -0.091139494
C /TZV/ 6 | 40 | 3 838 380 | -37.3687158542 | -37.4806636887 | -0.111947833
C /6-311+G/ | 6| 34 | 1 344 904 | -37.6002978119 | -37.7464656168 | -0.146167807
H,O /DZV/ |10 |26 | 5 311 735 | -85.2500580395 | -85.3911841411 | -0.141126102

Azt tapasztaltuk, hogy a minimumkeresés igen kevés lépéssel elérte a megalldsi
feltételeket. A 5.1. és 5.2. tabldzatban Osszefoglaltuk a szdmitdsaink sordn végzett
minimumkeresések legfontosabb adatait [98, 100, 103] (a 5.1. és a 5.2. tdbldzatok sorai
megfelelnek egymasnak, azaz ugyanarra a szadmitdsra vonatkozé adatokat kozélnek). !
A HFMO térpalydkat az « ill. 8 spinfiiggvénnyel szoroza adédtak a spinpalydk, ame-
lyek az egyrészecske bazist képezték. A nem minimaélis bazisokkal végzett szamitasaink
eredményeit a 5.3. tabldzatban tiintettiik fel. 2

A minimumbkeresés célfiiggvénye nem kvadratikus, hanem két kvadratikus fiiggvény
hanyadosa. Amint az elméleti attekintésben arrél szd esett, n-viltozés kvadratikus
fiiggvény esetében az eljards n + 1 lépéssel taldlja meg a minimumot. Altaldnos, nem
kvadratikus esetben is legaldbb ennyi iterdciés Iépést virndnk a minimumbkeresés soran.

Lathatd, hogy ennél lényegesen kevesebb lépéssel kielégité médon megkozelitettiik a

1A 5.1. tablazat utolsé oszlopaban szereplé iddadatoknél (tcpy) mér jobb eredmények is van-
nak. Az algoritmus ujraszervezésével, illetve 400MHz helyette 800MHz frekvenciaji processzorral
ugyanezekre a szdmitasokra rendre az aldbbi gépidék adédnak (s egységben): 0.03, 0.5, 143, 0.3, 0.8,

7.2, 176, 963.
2A DZV, DZP, TZV double- ill. triple-zeta Dunning-féle bazisok, a P polarizécids fiiggvényekre

utal. Bar elsddleges célunk most nem a korreliciés energidk minél pontosabb meghatdrozasa volt,
hanem az algoritmus vizsgédlata, mindenképpen ramutatunk, hogy az 5.3. tdblizat taniisaga is igazolja
az egyébként ismert tényt, hogy a kapott eredményeket jelentésen befolydsolja az egyrészecske bazis
mindsége.
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minimumot, vagyis a minimumkeresés szempontjabél igen kedvez6 alaki az energia-
funkcional.

Fizikai megfontoldsok alapjan nyilvdnval4, hogy a HF-determindns az alapallapoti
FCI hullimfiiggvényben nagy stillyal fog szerepelni. Més széval a globdlis minimumhoz
viszonylag kozel es6 pontbdl inditottuk a minimumkeresést. Ez egyfel6l azért fontos,
mert megé6vja az eljardst attél, hogy (a globalis minimumnaél magasabban fekvd) lokalis
minimumokba tévedjen, amelyek nyilvdin nem az altalunk keresett alapéllapotnak
felelnének meg. Masfel6l, mivel minimumkeresésiink véges pontossigi, nem mind-
egy, hogy a minimumtél milyen messze van a kiinduldsi vektor. A mdsik koriilmény,
ami miatt viszonylag kevés lépéssel érhetd el a minimum, a spinpdlydkbdl felépitett
Slater-determinansok &ltal kifeszitett tér sajatossdgaibdl adédik. Tudjuk, hogy spin-
és (esetleges) térszimmetridk fellépte miatt a Hamilton-matrix elemei bizonyos deter-
mindnsok kozott eltiinnek. Ez az dltalunk alkalmazott eljarasban ugy jelenik meg,
hogy az energia gradiensének az ilyen bazisvektorokra vett vetiilete mindig nulla lesz.
Vagyis, a minimumkeres6 eljirds eleve nem is ”érzékeli” a tér azon részét amelyek
szimmetria okokbdl nem jarulnak hozzd az alapdllapoti hullimfiiggvényhez. Az 5.2.
tabldzatban lathaté a minimumba mutaté ¢ konfigurécids egyiitthaté vektor nem nulla
elemeinek szdma és a minimum eléréséhez sziikséges 1épések szdma. A tdblazatbol le-
olvashatd, hogy kevesebb iterdcids lépéssel eléri a megalldsi feltételeket, mint ahdny
nemelt{ind komponense van a minimumban az egyiitthatévektornak. Ebbdl latszik,
hogy mind a célfiiggvény altalunk vélasztott alakja, mind a minimumkeresés modszere
és kezdo vektora szerencsés valasztdsnak bizonyult, és Osszességében igen hatékony

meghatarozdsat teszik lehet6vé az alapéllapoti siirliségmatrixnak.

5.3 Potencialgorbék

A molekula energidjdnak a magkoordindtikt6l vald fiiggése (pbtencié.lfeliilet) SZOros
kapcsolatba hozhaté a molekula szamos fizikai jellemzdjével (pl. forgdsi-rezgési szinkép,
aktivalasi energidk, reakcidutak stb.). A korreldciés energia figyelembevétele je-
lent6sen befolyasolhatja a kapott potencidlfeliilet alakjat. Az el6z6 fejezetben a po-
tencidlfeliilet egy pontjat szamoltuk ki. Kétatomos molekuldk esetén az atommagok
egymashoz viszonyitott helyzete egyetlen paraméterrel, a magtivolsiggal megadhaté, a
potencidlfeliilet egy potencidlgorbévé egyszeriisodik. Mddszeriinkkel kiszamoltuk a LiH
és Li, molekuldk potencidlgérbéit , egyittal minden ponthoz kiszdmoltuk a molekula
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5.1. dbra: A LiH molekula alapdllapoti energidjéanak (E, Hartree) fliggése a
magtavolsagtol (r, A).

LiH 6-31G energia
-7.43

7 BaiE

-7.83

-8.03
0

spinjét is.
A LiH molekula esetén 6-31G bazist hasznaltunk, a bazisfliggvények szdma 22,

M
N

esetében a ¢ = (1,0,...,0) vektorbdl (HF alapallapot) inditva, a megallasi feltételeket

az elektronok szama 4, és ( ) = 7315. A minimumkeresést minden egyes pont
az elozo fejezetben leirtakkal azonosan beallitva az alabbi 5.1. és 5.2. dbrdkon Ossze-
foglalt eredményeket kaptuk.

A potencidlgorbét meghatdroztuk ugy is, hogy a gorbe pontjait tovabbra is
egymastol fiiggetleniil szamoltuk, de a minimumkeresést a ¢ = a - (1,1,...,1)
kezd6vektorral inditottuk (a egy normdlé tényezé). Ebben az esetben az el6z6tol

kiilonb6z6 eredményt kaptunk, amit a 5.3. és 5.4. abrakon mutatunk be.

Megprébaltuk kiszdmitani az S = 1 kvantumszamu allapothoz tartozé po-
tencialgorbét tigy, hogy a legnagyobb magtavolsagtdl (12.54) haladtunk a kisebbek
felé és az egyes minimumkeresések kiindulé ¢ vektorai az el6z6 pontbeli, minimalis
energianak megfelel6 vektorok voltak. Ezzel az eljardssal azonban nem sikeriilt
végighaladni az S = 1 gorbén. Amikor az S = 1 spinhez tartozé pontok szdmottevéen
az S = 0-hoz tartozo6 energiagorbe f61é keriiltek, akkor a minimumkeresés mar az alac-

sonyabb energidjui gorbén elhelyezked pontoknak megfelel6 minimumokat taldlta meg.
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5.2. 4bra: A LiH molekula alapallapotdban szamitott S? varhaté érték (i egységben)

kiilonb6zé magtavolsdgoknal (r, A).

LiH 6-31G S2

4e-15

2e-15 |

S2

-2e-15

5.3. dbra: A LiH molekula energidjira (E, Hartree) kapott eredmények abban az eset-

ben, ha a minimumkeresést a ¢ = (1,...,1) vektorbdl inditjuk.

LiH 6-31G energia
-7.43

-763 +

-7.83

-8.03
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5.4. dbra: A LiH molekula spin négyzetére (S?, h?) kapott eredmények abban az

esetben, ha a minimumkeresést a ¢ = (1,...,1) vektorbdl inditjuk.

LiH 6-31G s2

2.85

S2

Ezt lathatjuk a 5.5. és a 5.6. abrakon.
Ha a 5.3. és a 5.5. abrak gorbéit egy grafikonra rajzoljuk (5.7. dbra), akkor szemmel
lathato, hogy nagy magtavolsagnal a két gorbe egybeesik.
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5.5. abra: A LiH molekula S = 1 dllapotdra kapott energidk (E, Hartree) a legnagyobb
magtavolsag felél kezdve, a minimumkeresést mindig az el6z6 pontban kapott mini-

mumnak megfelel6 ¢ vektorbdl inditva, azaz ” visszafele” szamolva.
b

LiH 6-31G energia

~7.43 —

5.6. abra: A LiH molekula spin négyzetére (S?, h?) kapott eredmények, amikor ”vis-

szafelé” szamoltunk (magyardzat az 5.5. abra feliratdban).

LiH 6-31G S2

SETrq il

] b
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5.7. dbra: A LiH molekula S =0 és S = 1 spinii dllapotainak energidja (E, Hartree).

LiH 6-31G energia

-7.43 : T

-763 F

-7.83

&
LA
S

-8.03 L

0 5 10 15

A nagyobb spinii gorbét ugy sikeriilt meghatdrozni, hogy a minimumkeresést mds
célfiiggvénnyel végeztik. A (4.1) célfiiggvényt kiegészitettiik egy, a spin négyzetét
tartalmazoé taggal:

- Tr{K6} Tr{TO}
O

Itt SZ egy elére megadott és rogzitett szam, a kivdnt spin négyzet sajatérték, w pedig

= g (5.3)

egy stlyozé tényez6. Haszndlva az

E 9 7 2 s? o
F=Trike} &= Hz—, s*=Tr{TO} és S°= W (5.4)
jeloléseket, ennek a célfiiggvénynek a c szerinti gradiense igy irhato:

V.F - 2Ec V.52 — 25%¢
V(o) =~ + 2w(S? — SS)T

A V_s? kiszamitdsa az E gradiensével analég médon torténik (1. 4.1 fejezet), csak ebben

(5.5)

az esetben a K matrix helyett a 4.8 fejezetben definidlt 7' matrixot kell hasznalnunk.
A w sulyozo6 tényezét a HF energia abszolit értékével tettiik egyenlévé. Az eredményiil
kapott gorbét az S? = 0 gorbével egyiitt dbrazoltuk az 5.8. dbran.

Hasonld vizsgalatot végeztiink a Li, molekuldn. Az RHF szdmoldshoz STO-3G
bazist haszndltunk. A bazisfiiggvények szama 20, az elektronoké 6, (?V'I) = 38760 . A

5.9. dbra mutatja a két kiilonb6z6 spinhez tartozé potencidlgorbéket.
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5.8. dbra: A LiH molekula S = 0 és S = 1 kvantumszamokhoz tartozé potencidlgorbéi.

LiH 6-31G S=0, S=1 energia

-7.24

E _764 |

-7.84

Végiil megjegyezziik, hogy az (5.3) definiciéval fentebb bevezetett célfiiggvénnyel
végzett minimumkeresés az Sy kvantumszamu allapotok koziil a legkisebb energidhoz
tartozét taldlja meg. A molekula minden gerjesztett allapotdhoz, az azonos spintiekhez
is mas-mds potencidlgorbe tartozik, amelyek keresztezhetik is egymadst. Ilyen esetben
az U(c) célfiiggvénnyel szamolt potencidlgérbén ”1épcsét” figyelhetiink meg, azaz a
két gorbe metszéspontjaban a kapott potencialgorbe meredeksége nem folytonosan
valtozik. Egy ilyen esetet figyelhetiink meg az 5.9. dbrdn, a Lip molekula S = 1

kvantumszamhoz tartozé potencidlgérbéjén.
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5.9. abra: A Li; molekula S = 0 és S = 1 spinhez tartoz6 potencidlgorbéi.

Li2 6-31G S=0, S=1 energiak

-13.25

-13.75 1

-14.25 +

-14.75
0

5.4 A B-algoritmussal kapott eredmények

A B-algoritmussal kapcsolatosan a legfontosabb kérdés, amit tisztazni kellett az, hogy
valéban FCI ekvivalens-e és az 1j paraméterek bevezetése hogyan befolyasolja a konver-
genciasebességet. E kérdéskor tisztdzasdra megvizsgaltuk az azonos kezdofeltételekkel
inditott C- és B-algoritmussal torténé minimumkeresésekkel kapott energidkat, a gra-

dienseket a minimumban és a felhasznalt gépidét. A gradiensek vizsgalatdra az aldbbi
€ =cos(VTr{KO}(c);c)+1 (5.6)

mennyiséget hasznaltuk. A minimumban az energia (Rayleigh-hdnyados) c szerinti
gradiense eltiinik ugyan, de az F'(c = Tr{K©} masodrendii homogén fiiggvényé nem,
ennek gradiense pont ellenkezé irdnyt a ¢ vektorral. Igy a két vektor altal bezart szog
koszinusza —1 a minimumban, az € pedig nulla. Az € nullatdl val6 eltérése méri tehat
azt, hogy mennyire pontosan kozelitettiilk meg a minimumot. Vizsgédlataink céljara
a szénatomot, a viz- és az ammoénia molekuldkat valasztottuk, eredményeinket a 5.4.
tablazat mutatja. [102] A minimumkeresés végén e minden esetben kisebb volt, mint
10715, ezért azt nem tiintettiik fel a tablazatban.

A tabldzat alapjan megallapithatjuk, hogy a két eljards azonosan jé eredményeket

szolgaltatott. A minimumot mindketté megfelelé pontossiggal taldlta meg. A kapott
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5.4. Tabldzat: A minimumkereséssel kapott elektron-energidk (E(c) ill. F(b)) Hartree
egységekben, feltlintettiik a gépid6ket is (¢, és t,) masodpercben.

E(?) e E(5) o
C(sro-3c) | -37.21873353415815 | 2.25 | -37.21873353415826 | 4.5
Cipz) | -37.41727298157322 | 2057 | -37.41727298157323 | 674
H2O(sTo-36) | -83.93598674062193 | 258 | -83.93598674062230 | 198
NHj3(sTro-36) | -67.274647805818090 | 12046 | -67.274647805818242 | 2560

energidkban mutatkozé kiilonbség a numerikus hibdk nagysdgrendjébe esik. A B-
algoritmusal a négyb6l harom esetben, mégpedig a nagyobb feladatok esetén kevesebb
gépidore volt sziikség a szamitashoz. Megjegyezziik, hogy az id6 adatokbdl messzemend
kovetkeztetést levonni nem érdemes, mert a kédokat a fenti eredmények kozzététele 6ta
is folyamatos fejlesztjiik. Most azt igazoltuk, hogy a B-algoritmusnak megvannak az

elmélet alapjan vart j6 tulajdonsigai.

5.5 A D-algoritmussal kapott eredmények

A valtozék szamdnak csokkentésére haszniltuk a D-algoritmust is. Az M szimu
egyrészecske bazisfiiggvény (Bs) koziil kivalasztotunk K bazisfiggvényt(By, N < k <
M) és ezeket hasznéltuk fel a Slater-determinansok felépitéséhez. Az igy kapott ( I'f,)
szamu Slater-determindns linedrkombindcids egyiitthatdjat varidltuk, ezek Gsszességét
tartalmazza a d vektor. Ugyanakkor a determindnsokat felépité fiiggvényeket tran-
szformaltuk a B)s térbeli forgatdsokkal, e transzformdicié paramétereit jeloltik a-val.
Ezzel az eljardssal olyan egyelektron fiiggvényeket illitunk eld, amelyekkel a legjobban
lehet kozeliteni a korreldcids energiat a (l'f,) szamu determindns linedrkombinacidjaval.

Az energia d és o paraméterek szerinti minimalizdldsa sok kérdést vet fol. Ha a
minimumkeresést egyszerre hajtjuk végre a két paraméter vektor komponensei szerint,
akkor azt tapasztaljuk, hogy az eljaras rendkiviil lassan konvergal. Ezért mi nem ezt az
utat vilasztottuk. Az d és o paraméterek szerinti minimumkeresést kiilon hajtottuk
végre.

A d szerinti minimumkeresés nem més, mint a C-algoritmus, amirdl az 5.2 fe-

jezetben megéllapitottuk, hogy rendkiviil gyorsan konvergil. Az ott leirtak a d szerinti
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minimalizdldsra is érvényesek. A megéllasi feltételeket az ott leirtaknak megfelelGen
allitottuk be ebben az esetben is.

Az energia az o paraméterekt6l azok szogfiiggvényein keresztiil fiigg, vagyis nem
mutat hasonlésigot a minimumkeresés szempontjabdl kedvezé homogén fiiggvényekkel.
Az o komponensei szerint kiilén-kiilén végezziik a minimumkeresést. Azt a komponenst
valtoztatjuk, amelyik szerint aktudlisan a leggyorsabban valtozik az energia. Addig
folytatjuk az eljirdst, amig az energia o szerinti gradiense egy hatdr ald nem keriil. 3

A konnyebb attekinthetség kedvéért itt felvazoljuk a minimumbkeresés algorit-
musit, s majd aldbb részletesen leirjuk. A két paraméter-vektor szerinti gradiens
(VoE, V4E) norméjat fogjuk vizsgilni annak eldontésére, hogy abbahagyhatjuk-e a
minimumkeresést. Az eljirds akkor &ll le, ha az aktuilis {d, a} értékeknél mindkét gra-
diens norméja kisebb egy elére megadott és rogzitett szimndl (GLIMIT). Tekintsiik &t

az eljaras lépéseit.

1. START, Kezdeti értékek megaddsa, LOGD=.true., LOGA=.true.

2. IF |V4E| < GLIMIT THEN
LOGD=.false.
GOTO 4
ENDIF

3. mingE(d, ), o = const.

4. IF |V,E| < GLIMIT THEN
LOGA=.false.
GOTO 10
ENDIF

5. LOGD=.true.

6. GLIMA= |V,E|/2

3Ez a minimalizalasi feladat hasonlésdgot mutat a molekulapaly4k Edminston-Ruedenber kritérium

alapjén torténd lokalizaciéjdval. Az o szerinti rész-minimumbkeresés ilyen megvalésitdsa a lokalizdcié
egyik standard technikédja.
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7. megkeressiik a V,E legnagyobb komponensét, ennek indexe a

8. ming, E(d, ), d = const., oy = const. Vb # a

9. GOTO 7 mindaadig, amig |V,E| > GLIM
10. IF (LOGD.AND.LOGA) GOTO 2

11. END

A 2.-10. 1épések Osszességét a késobbiekben ”minimumkeresési ciklus”-nak hivom,
a 3. és a 6-9. lépéseket pedig "rész-minimumkeresés”’-nek. A LOGC és a LOGA
két logikai valtozd, amelyek értéke attél fiigg, hogy az energia c illetve o szerinti
gradienseinek a normdja hogyan viszonyul az elére megadott és rogzitett GLIMIT
szdmhoz. Az eljards akkor all le, amikor mind a két gradiens norma egyidejiileg kisebb,
mint GLIMIT. A GLIMA az « szerinti rész-minimumbkeresést kontrolldlja. Lehetne
allandé, azonban célszeriibbnek ldttuk minden részminimumkeresés alkalmaval a kiin-
dulési gradiens segitségével megadni. A d és « szerinti rész-minimumkeresések ugya-
nis befolydsoljdk a masik paramétervektor szerinti gradienst. Kiilondsen a szdmitds
kezdetén, amikor még nagy mértékben véaltoznak a paraméterek felesleges a rész-
minimumkeresések nagy pontossiggal valé végrehajtdsa. A GLIMA szabélyozasaval
tehat szdmitdsi munkat takaritunk meg.

Szamitasainkat elGszor viz, amménia és metdn molekuldra végeztiik el minimadlis
bazissal. A korreldciés energiit az adott bazisban a C-algoritmussal hatiroztuk
meg, majd vizsgaltuk, hogy ennek mekkora hinyadit kaptuk meg a D-algoritmussal.
Eredményeinket az 5.5., az 5.6. és az 5.7. tdblazatokban foglaltuk Gssze. Megadtuk az
egyes esetekben a minimumkeresési ciklusok szdmat is.

Tovébbi vizsgilatainkat a vizmolekulan végeztiik. Double zeta bézist hasznéltunk,
amivel- az egyelektron fiiggvények szima 26, az elektronok szdma 10, (%) pedig
5311735. A C-algoritmussal elvégeztiik az osszes Slater-determinans terében a min-
imumkeresést, ezzel megkaptuk a FCI energidt. Ehhez az energidhoz viszonyitjuk
a tobbi eredményt. Az o vektor komponenseinek a szima 156. A 5.8. tdbldzatbol
latszik, hogy a variiciés paraméterek szdimanak k-val val6 gyors csokkenése ellenére a
korreldciés energidnak viszonylag nagy hdnyadardl képes szamot adni ez a médszer.
A 5.10. 4bran szmléltettiik a valtozék szdmdanak viltozdsit az altér k¥ dimenzidjanak
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5.5. Tabldzat: A D-algoritmussal kapott eredmények a vizmolekuldra. A fols6

tablazatban a C-algoritmussal kapott eredmények lithaték. (Nit: az iteraciék
szama, E: az elektron energia, E.,,: a korrelaciés energia az adott bizisban). Az
als6 tdbldzatban Nck a minimumbkeresési ciklusok szdma. Az energidkat Hartree

egységekben adtuk meg.

M|N| (%) E Nit Ecorr

14 | 10 | 1001 | -83.92634234 | 62 | -0.054529870
k| (k)| Nek E* E: . EX_/Ecorr * 100
12| 66 | 5 |[-83.88733894 | -0.015526470 28.47
10 1 | 1 |[-83.87181247 0 0

5.6. Tablazat: A D-algoritmussal kapott eredmények az ammodnia molekuldra. A
folsé tdbldzatban a C-algoritmussal kapott eredmények lithaték. (INit: az iteraciok
szama, E: az elektron energia, E.,, a korreldciés energia az adott bazisban). Az
als6 tdbldzatban Nck a minimumkeresési ciklusok szima. Az energidkat Hartree

egységekben adtuk meg.

M|N| (%) E Nit |  Ecorr
16 | 10 | 8008 | -67.26191891 | 66 | -0.069141070
k| (%) | Nek E* Et EX__/Ecorr * 100
14 | 1001 -67.23489738 | -0.042119540 60.91
12| 66 -67.20301973 | -0.01024189 14.81
10] 1 -67.19277784 0 0
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5.7. Tdbldzat: A D-algoritmussal kapott eredmények a metdn molekuldra. A f6ls6
tabldzatban a C-algoritmussal kapott eredmények lathatok.
szama, E: az elektron energia, E.,,. a korreliciés energia az adott bazisban). Az

alsé tibldzatban Nck a minimumkeresési ciklusok szima.

egységekben adtuk meg.

(Nit:

M|N| (3 E Nit | Ecom
16 | 10 | 43758 | -53.32649316 | 44 | -0.078265940
k| (5) | Nck E* Et E% | Ecorr * 100
16 | 8008 | 4 |-53.30349577 | -0.05526855 70.69
14 | 1001 -53.27430787 | -0.02608065 33.32
12| 66 | 8 |-53.26420523 | -0.015978010 20.41
10 1 | 1 |-53.24822722 0 0

az iteraciok

Az energidkat Hartree

fiiggvényében, és a kapott korrelacids energia relativ eltérését a teljes téren szdmolt
korreldcios energiatol szintén a k fiiggvényében.

Megfigyelhetd, hogy double zeta bizissal mir a k = IV esetben is a HF energidnal
mélyebbre jut az algoritmus, mig minimalis bazis esetén nem. Ennek oka az, hogy mi
RHF energiat szdmoltunk, aminél az UHF energia mélyebb, ezt taldlja meg az algo-
ritmusunk. Minimalis bdzis esetén azonban a térpalydknak nincs olyan kombinacidja,
amivel az UHF az RHF energia ald tudna menni. Ezért az 5.5., az 5.6. és az 5.7.
tabldzatokban kiilon nem tiintettiik fol a HF energiit, mert a k = 10 sorban éppen az
szerepel.

Osszefoglalva, a D-algoritmus konvergencidjit az o« paraméterek szerinti min-
imumkeresés rontja ugyan, azonban ez az eljards a valtozék szamanak jelentds
csokkentése esetén is szimot ad a korrelaciés energia nagy hanyadardl, a By feletti
Slater-determinansok terében szémolt FCI energist tekintve viszonyitdsi alapnak. A
viltozék szdma széles skdldn szabilyozhat6. A moédszer méretkonzisztens. Meg-
forditva a gondolatsort, a D-algoritmus alkalmas arra, hogy a k &lland6 értéken
tartdsa mellett az egyrészecske bazis méretét névelve kapjunk mélyebb energiat. Ilyen
" médon a valtozdk szdma csupan M2-tel ardnyosan novekszik, nem pedig a binomidlis

egyiitthatdk szerint.
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5.8. Tabldzat: A vizmolekuldra double zeta bdizissal végzett szdmitdsok fontosabb
paraméterei és eredményei. A f6ls6 tdblazatban a teljes egyrészecske bazis felett képzett
Slater-determindnsok terében végzett szdmitds eredményét (M: egyelektron bézis
mérete, Nit: az iteracids lépések szdma, E: a teljes energia, Ec.rr: a korrelicids ener-
gia). Az alsé tabldzatban pedig az egyelektron fliggvénytér egy k-dimenzids alterének
forgatdsaval osszekapcsolt minimumkeresés eredményei lathaték (Nck: a minimumk-

Ek.

% oo a korreldcids energia kozelitése). Ebben az esetben a c és

eresési ciklusok szama,
az a paraméterek szerint felvaltva kerestiilk a minimumot, mindaddig, amig mindkét
gradiens normdja 10~* ald csokkent. A rendszer HF energidja: Egr = —85.25005803

A tablizat legfontosabb adatait a 5.10. dbrdn szemléltetjiik.

M| (V) | it E Ecorr

26 | 5311735 | 96 | -85.39118414 | 0.141126102
k (%) | Nek E* Ek.. EX [ Eecory % 100
241961256 | 5 |-85.38887781 | 0.138819780 98.37
22| 646646 | 5 |-85.38598372 | 0.135925686 96.31
20| 184576 | 6 |-85.37908035 | 0.129022315 91.42
18| 43758 | 4 |-85.37442945 | 0.124371417 88.12
16 8008 | 5 |-85.34385346 | 0.093795429 66.46
14 1001| 5 |-85.30978869 | 0.059730651 42.32
12 66| 5 |-85.28080935 | 0.030751313 21.79
10 1| 2 |-85.27056803 | 0.020509999 14.53
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5.10. dbra: A vizmolekuldra double zeta bézissal kapott, a 5.8. tdbldzatban Osszefoglalt

eredmények szemléltetése. A fols6 dbrdn az EX  relativ eltérését lathatjuk az E...,

corr

teljes téren szamolt korreldciés energiatdl a k fiiggvényében. Az alsé dbra a varidcids

paraméterek szamat mutatja k fiiggvényében.
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Az eredmények Osszefoglalasa

Molekuldris rendszerek elektronszerkezetének meghatarozisara javasoltunk eljardst.
Az N szémi elektront tartalmazé rendszer hulldmfiiggvényét egy adott, M dimenzids
egyelektron-bazis felett képzett (1\1\/,1) szamu Slater-determindns linedrkombindcidjaként
vettiik fel, ¢ a linedirkombindcids egyiitthatékat tartalmazé vektor. A masodredi re-
dukélt silirliségmatrixot megadtuk gemindl bézisban. A slirliségmatrix struktursjat
biztositd, az elektronrendszerek statisztikus tulajdonsigai alapjan felirhaté szerkezeti
maétrixot adtunk meg. Az alapillapoti siiriiségmdétrixot a varidciés elv alapjin
kozelitettiik véges bazisban. Az energia konfiguriciés egyiitthatdk szerinti minimumaét
kerestiik, ami nem mads, mint az egzakt alapéllapoti energia adott véges bazisban
elérhetd legjobb kozelitése. A minimumkeresést BFGS moédszerrel végeztiik, ehhez
sziikségiink volt az energia gradiensének kifejezésére, amit felirtunk. Az energia mini-
malizdldsdnak ezt a médjat C-algoritmusnak neveztiik. A varidciés paraméterek szaima
ebben az esetben (“1(,’)

Egy szdmitdsi mddszer alkalmazisdnak mindig hatirt szabnak a rendelkezésre allé
véges szamitdsi kapacitdsok. A varidciés eljardsok esetében ennek 6 oka a varidcids
paraméterek nagy szama.

A variaciés paraméterek szdmanak jelent6s csOkkentését értiik el a konfiguricids
egyiitthaté vektor specidlis varidldsdval. A c varidldst az aldbbi formula szerint
végezziik:

M
cC=Cp+ E bi,j;k,l V@,-,j;k,,(co). (5.7)
i<jk<l
A varidciés paraméterek a b vektor komponensei, amelyek szima legfejebb
(1;')( (1;’ ) +1)/2 <« (%), de a spin- és térszimmetridk miatt ezek koziil sok eltiinhet.
Kis szdm1 paraméter szerinti minimumkeresések véges sorozatdval talaljuk meg a min-
imumot. Ezt az eljarast B-algoritmusnak neveztiik.

A varidciés paraméterek szama 1igy is csékkenthetd, hogy az egyelektron fiiggvények
terében egy alacsonyabb dimenzi6ju alteret vdlasztunk ki, az ezen altér felett képzett
Slater-determindnsok egyiitthatéit varidljuk. A d vektor ezeknek a determindnsoknak
az egyiitthatévektora. A kivilasztott alteret a teljes egyelektron-térben lehet forgatni,
ami a redukilt Hamilton-operdtor mitrixelemeit megvaltoztatja. A d vektor, ezzel
egyiitt a siirliségmatrix rogzitésével megkereshetd az energidnak az altér forgatdsanak

paraméterei (o) szerinti minimuma. Az energia most a d és a paraméterek fiiggvénye
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E = E(d,a) . A varidciés paraméterek szdma a kivélasztott altér dimenziéjatdl (k)
fiigg. Ezt az eljarast D-algoritmusnak hivtuk.

A kovetkezékben pontokba foglalva felsoroljuk a dolgozatban szereplé uj tu-
doményos eredményeket.

1. Kifejlesztettink a mdsodredi redukdlt striségmdiriz elddllitdsdra és opti-
malizdldsdra egy olyan eljdrdst, amely sordn az N-reprezentdlhatosdg mindvégig
egzaktul teljesil. A mdsodredid redukdlt siriségmdtriz elemeinek kiszdmitdsdra
olyan algoritmust készitettem, amely nem igényli a mdtrizelemek szdmoldsdhoz

sziikséges igen nagy adatmennyiség tdroldsdt [97, 98, 100).

2. A sitriségmdtriz formalizmusra alapozva az N-reprezentdlhatdsdg biztositdsdval
1ij mddszert adtunk meg a korreldcids energia kiszdmitdsdra (in. C-algoritmus).
Megirtam a korreldcids energia kiszdmitdsdra szolgdlé C-algoritmus szdmitégépen
vald alkalmazdsdhoz sziikséges kédot.  Mintaszdmitdsaim sordn megfigyel-
tem, hogy a megirt kéddal az energiafunkciondl kiszdmitdsa hatékonyan meg-

valdsithatd, és a minimalizdlds gyorsan konvergdl. [103].

3. A Slater-determindnsok terének dimenzidjdndl lényegesen kevesebb, a mdsodredi
redukdlt stdriségmdtriz elemszdmdval megegyezd szdmdu paramétert bevezetve

frtuk fel az energiafunkciondlt (in. B-algoritmus). Ezzel az energia mini-

M
N

negyedik hatvdnydval ardnyos, az elektronszdmtol pedig nem fiigg. Osszeha-

malizdldsdhoz szikséges paraméterek szdima nem ( )-nel, hanem a bdzisméret
sonlitottam a C- és B-algoritmusokat. Megdllapitottam, hogy a két eljdérds azonos

inditdsi feltételekkel ugyanazokat a lokdlis minimumokat dllitja elé [102, 104).

4. A Slater-determindnsok (%) dimenzids terébdl az egqyrészecske fiiggvények for-
gatdsdval egy, a korreldcids energia szdmitdsa szempontjdbol optimdlis (I’f,) <
(%) dimenzids alterér bdzisvektorait vdlasztottunk ki (un.  D-algoritmus).
Elédllitottam a D-algoritmushoz sziikséges formuldkat megirtam a szdmitdgépes
kédot és megmutattam, hogy a D-algoritmus konvergencidjit a forgatdsi
paraméterek szerinti minimumkeresés rontja ugyan, azonban ez az eljirds a
vdltozok szdmdnak jelentds csokkentése esetén is méretkonzisztens mddon szdmot

ad a korreldcids energia nagy hdnyaddrél. A wvdltozdk szdma széles skdldin
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szabdlyozhatd [106]

. A C-, B- és D-algoritmusok hatékonysdgdnak bemutatdsdra kilonbozé bdzisokkal
szdmitdsokat végeztem. Kiszdmoltam a korreldcids energidt Li, C atomokra,
valamint LiH, Li,, CHy, NH3, H,O, HF molekuldkra. Kiszdmoltam a LiH és a
L1y molekuldk potencidlis energia gorbéit. Megadtam a spin négyzetének vdrhatd
értékét a magtdvolsdg figguényében [100, 102, 103, 104].
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Angol nyelvii 6sszefoglalé / Summary

A method for calculating electronic structure of molecular systems was presented
in this thesis. The wave function of the N-electron system was written in the form
of linear combination of Slater-determinants constructed over an M-dimensional one-
electron basis. The vector ¢ contains the linear combination coefficients. The second-
order reduced density matrix (2-matrix) was expressed in geminal basis. The structure
matrix (V') determining the the structure of 2-matrix was defined. This matrix is
independent of the one-electron functions, and depends on the number of electrons, on
the number of one electron functions, on the orthonormality of them, on the statistical
properties of electrons.The ground state density matrix was approximated in finite
basis by means of variational principle. The minimum of the energy was searched
with respect to the vector c¢. This minimum energy is the best approximation of the
exact ground state energyin the frame of the given basis. Minimization was performed
with BFGS method, gradients required for it were derived. We call this procedure for
minimizing the energy C-algorythm.

The applicability of a method is allways limited by computational capabilities. In
the case of variational methods difficulties arises mainly from the large number of
variational parameters.

To keep the computational work under a manageable limit the vector c will be
sought in the form: o

c=co+ Y. bijis VOijku(co). (5.8)

i<j,k<l

Components of vector b are the variational parameters, the number of them is at most
("24 )((1\24 ) +1)/2 < (%), but because of symmetries a lot of them can be eliminated
in symmetric cases. Although one evaluation of the energy and its gradient requires
more computational cost then it does in the C-algorythm, the decrease in the number
of variational parameters is significant profusely balancing the disadvantage of extra
computing in functional evaluation. The minimum can be found by a sequence of
minimizations with small number of parameters. This procedure is called B-algorythm.

An other way to reduce the number of variational parameters is based on selecting a
k-dimensional subspace of the space of one-electron functions (k < M). We construct
Slater determinants over this subspace. The number of these determinants is (I'f,), and
the vector d is considered as the coefficient vector of them. The k-dimensional subspace
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can be transformed in the space of one-electron functions, so the matrix elements
of reduced Hamiltonian will change. The energy is the functional of parameters of
transformations. The energy can be minimized with respect to the parameters of
unitary transformations of the subspace (). The energy is a functional of parameter
vectors d and a: E = E(d,a) . The number of variational parameters is depending

on k. This procedure is called D-algorythm.

Main results of this thesis is summarized as follows:

1. We have developed a method for optimizing the second order reduced density ma-
triz which ensures ezactly the N-representability by construction. I have developed
an algorythm for calculating the matriz elements which allows not to store the

large amount of data needed for calculating matriz elements. [97, 98, 100].

2. We have presented a novel method for calculating correlation energy based on
reduced density matriz formalism and ensuring N-representability exactly (C-
algorythm). The method is variational. I have implemented the C-algorythm.
I have shown that the minimization of the energy can be performed effectively
with C-algorythm in the sense that the computation is effective and the number

of iterations is low. [103).

3. The energy was written in the form that has essentially less parameter than the
number of Slater-determinants. So the number of parameters required for mini-
mizing the energy is not in proportion to (%), but to the square of the dimension
one-electron basis and is independent of the number of electrons (B-algorythm).
I have compared algorythms C and B. I have found that algorythms give the
same local minima, and started from the same vector they converge to the same

. minimum energy [102, 104].

4. I have derived the formulas for the D-algorythm and have coded them. I have
shown that the number of variational parameters may decrease remarkably. Al-
though the convergence of the procedure is slower than that of the C or B-
algorythms, but it can give account a large amount of correlation energy even
with small number of minimization parameters. The method is size consistent
[108].
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5. I have performed pilot calculations for demonstrating features of C-, B- and D-
algorythms. I have calculated the correlation energies for the atoms Li and C,
and for molecules: LiH, Li, CHy, NH3, H,O, HF . I have calculated potential

curves and the spin expectation values depending on the distance of nuclei for
LiH and Li, molecules. [100, 102, 103, 104].
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