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1. Bevezetés 

A molekuláris konformáció a modern kémia és a szerkezeti biológia egyik központi fogal-

mává nőtte ki magát. A bioaktív molekulák konformációs sajátságai, amelyek a bennük lé-

vő atomok változatos kötési állapotainak köszönhetőek, kulcsfontosságú szerephez jutottak 

az élet kialakulásában és fenntartásában.  

A molekulákra jellemző stabil térszerkezetek (konformerek) létrejöttének hátterében 

az inter- és intramolekuláris kölcsönhatások húzódnak meg. Ahhoz azonban, hogy egy mo-

lekula konformációs terét és konformációs preferenciáit megismerjük, illetve az azokban 

domináló kölcsönhatásokat leírhassuk, kísérleti és elméleti módszerekre egyaránt szüksé-

günk van. Míg a termodinamikailag kedvezményezett térszerkezetek kísérleti felderítésére 

diffrakciós és spektroszkópiai technikákat hívhatunk segítségül, addig a stacionárius mag-

konfigurációk elméleti leírásához kvantumkémiai és klasszikus fizikai eljárásokat vehetünk 

igénybe. A kvantumkémiai stratégiák közel kísérleti pontosságú szerkezeteket eredményez-

hetnek, szemben a klasszikus fizikai módszerekkel, amelyek csupán félkvantitatív szerke-

zeti becsléseket képesek nyújtani. 

A bioaktív molekulák konformációs állapotainak felderítésén túl azok egymásba ala-

kulásainak (interkonverzióinak) megismerésére is nagy hangsúlyt fektetnek a kémiai és bi-

okémiai szerkezetkutatásban. Ez a fajta tudományos érdeklődés a fehérjék és nukleinsavak 

feltekeredésének (folding) problémájában csúcsosodik ki, amelyre a jelenség komplexitása 

miatt részletes kinetikai modell ez idáig nem született.  

A kisebb molekulák konformációs egyensúlyaihoz hasonlóan a biomolekulák felteke-

redését is egy ún. interkonverziós reakcióhálózat szabályozza, amely 1 2A A→  formájú re-

akciók (interkonverziók) sokaságából áll, ahol 1A  és 2A  a molekula két konformerét jelöli. 

Az interkonverziós reakcióhálózatok olyan elsőrendű lineáris differenciálegyenlet-rendsze-

reket indukálnak, amelyek megoldásai a konformerpopulációk időbeli eloszlását adják. Mi-

vel ezek a koncentrációprofilok numerikus szempontból relatíve könnyen kezelhetők, ezért 

az interkonverziós hálózatokban akár több ezer szpécieszt is figyelembe vehetünk, ami le-

hetővé teheti egy mélyreható kinetikai feltekeredés-modell sikeres felállítását a jövőben.  

Jelen doktori munka témája az elsőrendű reakcióhálózatok egyszerű algebrai jellem-

zése, illetve az n-bután és az n-pentán interkonverziós sebességi együtthatóinak lehető leg-

pontosabb becslése. Míg az előbbi irányvonal a formálkinetika területéhez kíván egy újfajta 

szemléletet hozzáadni, addig az utóbbi törekvés a kis méretű szerves molekulák rugalmas-

ságának és diszperziós viselkedésének alaposabb megértésére szolgál, ami nagyobb rend-

szerek alkilláncainak vizsgálatában közvetlen haszonnal járhat. 
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2. Elméleti háttér 

2.1. Reakcióhálózatok 

A , , ,D G A k  négyest – tömeghatás kinetika feltételezése mellett – kémiai reakcióhálózat-

nak (chemical reaction network, CRN) nevezzük, ha (i) { }ijd=D  és { }ijg=G  a reakció-

rendszer bal- és jobboldali sztöchiometriai mátrixa, valamint (ii) { }jA=A  és { }ik=k  az 

anyagfajták és a sebességi együtthatók vektora. Amennyiben kizárólag elsőrendű reakciók 

játszódnak le a rendszerben, azaz a D  mátrix minden sorában pontosan egy darab 1-es van, 

a további elemek pedig zérók, úgy , , ,D G A k  egy elsőrendű kémiai reakcióhálózat (first-

order chemical reaction network, FCRN). A , , ,D G A k  elsőrendű reakcióhálózat szpéci-

eszeinek ( )t=c c  koncentrációvektorára a 

 =c Fc&   (1) 

differenciálegyenlet-rendszert írhatjuk fel, ahol c&  a c  vektor idő szerinti deriváltja, illetve 

 ( )Tdiag ik=F S D   (2) 

az elsőrendű hálózat együttható mátrixa az = −S G D  mátrixszal. Fontos megemlíteni, hogy 

(1)-et csak a ( ) 00t = =c c  kezdeti feltétel birtokában oldhatjuk meg. Ha a , , ,D G A k  el-

sőrendű reakcióhálózatban bármely reakció „megfordítottja” is elsőrendű folyamat, akkor 

azokat izomerizációs reakcióknak nevezzük, , , ,D G A k  vonatkozásában pedig izomerizá-

ciós reakcióhálózatról (izomerization reaction network, IRN) beszélünk. 

2.2. Sebességi együtthatók becslése elméleti kémiai módszerekkel 

A molekulák interkonverziós átalakulásait az ún. konformációs potenciálisenergia-felüle-

ten (conformational potential energy surface, CPES) értelmezzük. A CPES minimumainak 

és elsőfajú nyeregpontjainak birtokában az 12S  átmeneti állapoton keresztül lezajló =R  

1 2→S S  interkonverziós reakció ( )k TR  sebességi együtthatóját az átmenetiállapot-elmé-

let és az ideális gáz közelítés keretein belül az Eyring–Polányi-egyenlettel becsülhetjük: 

 ( ) ( )‡
B

A B

exp
G Tk T

k T
h N k T

∆  = − 
  

R

R ,  (3) 

ahol AN , Bk  és h  az Avogadró-, a Boltzmann- és a Planck-állandó, az R  folyamat T  hő-

mérsékletre vonatkozó ( )‡G T∆ R  aktiválási szabadentalpiája pedig az 12S  átmeneti állapot 

és az 1S  reaktáns szerkezetéhez tartozó teljes szabadentalpia különbségeként definiálható. 

A ( )‡G T∆ R  aktiválási szabadentalpiát az ún. fókuszpont analízis (focal-point analy-

sis, FPA) megközelítés keretein belül kvantumkémiai módszerekkel számítjuk, amelyhez a  
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 ( ) ( ) ( )‡ ‡ ‡0G T G G T∆ ∆ δ= +R R R ,  (4) 

egyenletetet használjuk fel, ahol ( )‡ 0G∆ R  a 0 K-es aktiválási szabadentalpia, ( )‡G Tδ R  

pedig az aktiválási szabadentalpia termikus korrekciója. A ( )‡ 0G∆ R  paramétert a  

 ( ) ZPE,h, ZPE,a
‡ ‡

,
‡ ‡0G E E E∆ ∆ ∆ δ= + +R R R R ,  (5) 

kifejezéssel közelítjük, amelyben ZPE h
‡

, ,E∆ R  és ZPE a
‡

, ,Eδ R  a zéruspont rezgési energia (ze-

ro-point /vibrational/ energy, ZPE) harmonikus és anharmonikus járuléka az R  reakcióra 

nézve, ‡E∆ R  pedig a teljes aktiválási elektronenergia. A ‡E∆ R  mennyiségre a jelen dokto-

ri munka során alábbi (végtelen bázisra extrapolált) dekompozíciót alkalmazhatjuk: 

 ( ) ( ) ( )( )HF, CV,MP2 fc , CCSD fc ,
‡

CCSD T fc ,
‡ ‡ ‡ ‡ ‡E E E E E E∆ ∆ δ δ δ δ= + + + +R R RR R R ,  (6) 

ahol 

(i) ,
‡

HFE∆ R  az aktiválási HF (Hartree–Fock) energia,  

(ii) ( )MP2 c
‡

f ,Eδ R  az MP2 (másodrendű Møller–Plesset) perturbációs energiajárulék, 

(iii) ( )CCS c
‡

D f ,Eδ R  a CCSD (coupled-cluster singles, doubles) energiajárulék, 

(iv) ( )( )CCSD c
‡

T f ,Eδ R  a CCSD(T) (coupled-cluster singles, doubles, and perturbative triples) 

aktiválási energiajárulék, 

(v) ‘fc’ a befagyasztott mag (frozen core) közelítés használatát jelöli, 

(vi) ,
‡

CVEδ R  az atomtörzs-atomtörzs és atomtörzs-vegyérték kölcsönhatásokat (core-core 

and core-valance correction, CV) veszi figyelembe, valamint 

(vii) az egyes tagok számítását a konformerek és az átmeneti állapotok ún. referencia szer-

kezetein végezzük el.  

A néhány nehézatomból álló molekulák esetén a referencia geometriákat leggyakrab-

ban CCSD(T) módszerrel szokták előállítani. Ez az elméleti szint viszont nagyobb rendsze-

rekre irreálisan hosszú futásidőhöz vezetne, így azt az „olcsóbb” sűrűségfunkcionál techni-

kákkal helyettesítjük, amelyek megfelelő paraméterezés mellett akár a CCSD(T)-hez köze-

li eredményeket is nyújthatnak „hagyományos” szerkezetű molekulákra. 

3. Alkalmazott módszerek 

A dolgozatban az egyszerű algebrai eszközökön és az FPA megközelítésen túl a program-

fejlesztési munkához a Fortran 90 programnyelvet, a kvantumkémiai számításokhoz pedig 

a Molpro 2012.1 és a Gaussian 09 Rev. E.01 programrendszereket vettük igénybe. A Mol-

pro szoftvert az általunk felállított FPA modellben szereplő CCSD(T) energiák számítására 

használtuk fel, minden további elektronszerkezet számítást a Gaussian programmal végez-

tünk el. Az elektronkorrelációs számításokhoz megkötéses HF pályákat alkalmaztunk. 
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4. Eredmények tézisszerű összefoglalása 

4.1. A =c Fcɺ  egyenletrendszer megoldásának Luther–Rost-féle reprezentációja [1] 

A jelen doktori munka első részében a =c Fc&  egyenlet egy egyszerű és elegáns megoldás-

módjával (Luther–Rost-féle reprezentáció, LRR) foglalkoztunk, amelyet korábban hasonló 

problémák megoldására vezettek be. Az LRR procedúrát Leverrier azon algoritmusával 

egészítettük ki, amely lehetőséget nyújt arra, hogy az F  mátrix karakterisztikus polinomjá-

nak együtthatóit előállítsuk.  

Rámutattunk arra, hogy a két eljárás kombinációja mind az oktatásban, mind a kuta-

tásban a kinetikai differenciálegyenletek megoldásának egy kényelmesen használható esz-

közét jelentheti. Miként az Kyurkiev és Markov egy későbbi cikkéből világossá vált, az ál-

talunk szorgalmazott eljárás, amely megkerüli az együttható mátrix Jordan-láncainak kissé 

körülményes alkalmazását, szimbolikus-numerikus számításokra is hasznosnak bizonyult. 

Ezt a módszerpárost néhány jellegzetes reakciókinetikai modellen keresztül is tanul-

mányozhattuk, amelyek közül kettő, a négy- és az ötszögreakció olyan elsőrendű differen-

ciálegyenlet-rendszereket indukáltak, amelyek megoldásai idáig nem voltak lejegyezve az 

irodalomban. A kidolgozott példákra alapozva azt is előrevetítettük, hogy a K-szögreakci-

ók kinetikai problémáira – a Ruffini–Abel-tétel következényeképp – általános egzakt meg-

oldást kizárólag 5K ≤  mellett adhatunk. 

4.2. Új eredmények az elsőrendű reakcióhálózatok kvalitatív elméletében [2] 

A =c Fc&  egyenlet megoldására irányuló konstruktív vizsgálatokat követően figyelmünket 

az FCRN-ek eddig nem tárgyalt szerkezeti jellemzőire összpontosíttuk. Miután a CRN-ek 

felbonthatóságát értelmeztük, bebizonyítottuk, hogy nemnegatív bal- és jobboldali sztöchi-

ometriai együtthatók esetén egy elsőrendű reakcióhálózat akkor és csak akkor bontható fel, 

ha annak F mátrixa blokkdiagonalizálható. 

Igazoltuk azt is, hogy olyan szubkonzervatív elsőrendű hálózatokban, amelyek nem-

negatív egész értékű jobboldali sztöchiometriai együtthatókkal írhatók fel, minden reakció-

lépésre fennállnak az alábbi, ún. tömeginkompatibilitási relációk: (i) a reaktáns moláris tö-

mege egyetlen termék moláris tömegénél sem kisebb, (ii) amennyiben egy termék moláris 

tömege azonos a reaktánséval, akkor annak jobboldali sztöchiometriai együtthatója 1, illet-

ve (iii) ha valamely termék moláris tömege megegyezik a reaktánséval, úgy más termék 

nem képződik. Ezek a relációk azt is magukkal vonják, hogy ha egy FCRN-ben nem csak 



 7 

izomerizációs reakciók fordulnak elő, akkor a kérdéses rendszer F  mátrixa egy alkalmas 

permutációs mátrix szerinti transzformációval blokktrianguláris alakra hozható. 

Harmadszor, megmutattuk, hogy bármely konzervatív FCRN-hez létezik egy lineári-

san konjugált, pusztán izomerizációs reakciókból álló hálózat, az ún. jelölőhálózat, amely 

az eredeti hálózat időbeli viselkedését teljes egészében magán viseli („kijelöli”). Ez a jelö-

lőhálózat azt is lehetővé teszi, hogy az IRN-ekre kimondott állításokat tetszőleges konzer-

vatív elsőrendű reakcióhálózatokra átültethessük. 

Negyedszer, a sajátértékek szukcesszív leválasztásának elvére hagyatkozva egy olyan 

eljárást dolgoztunk ki, amellyel az F  mátrix Frobenius-alakjában lévő diagonális blokkok 

sajátérték-problémájának algebrai megoldhatóságáról meggyőződhetünk. Az utóbbi kap-

csán a diagonális blokkok sajátértékeinek egzakt előállíthatóságára egy elégséges feltételt 

is kimondtunk: ha egy ilyen blokk legfeljebb négy nemzérus sajátértékkel bír, akkor azok a 

polinomiális egyenletek jól ismert megoldóképleteivel állíthatók elő. 

4.3. Fortran nyelvű programok elsőrendű reakcióhálózatok kinetikai szimulációjára 

A kutatómunka következő fázisában két Fortran nyelvű programot (fcrn_lrr és fcrn) 

hoztunk létre, amelyek működését konkrét példákon tanulmányoztuk. Voltaképpen mind-

két kód az FCRN-ek szpécieszeinek koncentrációit számítja az egyes mintavételi időpon-

tokban, viszont a felhasznált módszerek és a működési feltételek tekintetében lényeges kü-

lönbségek fedezhetők fel a két program között.  

Ami az alkalmazott módszereket illeti, az fcrn_lrr szoftver alappillérét az LRR 

protokoll és a Leverrier algoritmus együttese, valamint az algebrai egyenletek gyökképletei 

képzik, szemben az fcrn kóddal, amely az F  mátrix sajátértékeit a legkorszerűbb nume-

rikus stratégiákkal (Biloti–Matioli–Yuan eljárás, Bini–Gemignani–Tisseur módszer) loka-

lizálja, a koncentrációkat pedig az együttható mátrix spektrálfelbontásából fejezi ki. A mű-

ködési körülményekkel kapcsolatosan érdemes megemlítenünk, hogy amíg az fcrn_lrr 

program olyan FCRN-ek szimulációjára készült, amelyekben az F  mátrix minden sajátér-

téke egzaktul megadható, a Krylov- és Vandermonde-mátrixok pedig stabilan számíthatók, 

addig az fcrn szoftvert, amely teszteléseink alatt 300 komponensig kellően robosztusnak 

minősült, pusztán diagonalizálható F  mátrixok esetén használhatjuk, ami a szokványos ki-

netikai problémákra általában teljesül. Bár nem kizárt, hogy a Krylov- és a Vandermonde-

mátrixok számítása skálázással stabilizálható, e kérdés tisztázása további vizsgálódásokra 

tart igényt. 
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4.4. Az n-bután és n-pentán interkonverziós kinetikája [3] 

Végül az n-bután és az n-pentán interkonverziós paramétereire (aktiválási energiák, akti-

válási szabadentalpiák 0 és 298 K-en, illetve sebességi együtthatók 298 K-en) készítettünk 

becsléseket az FPA megközelítés alapján. E projekt keretein belül az n-alkánok interkon-

verziós kinetikájának kvantumkémiai modellezésére egy olyan FPA protokollt (FPAna) épí-

tettünk fel, amely az említett kinetikai mennyiségeket a lehető legkisebb futásidejű elekt-

ronszerkezet-számító technikák segítségével az elérhető legkisebb bizonytalansággal köze-

líti. Az FPAna módszerrel nyert legjobb becsléseket a 4.4. táblázatban összegeztük, ahol t  

és g±  az n-bután egyedi konformereit szimbolizálja, a tt , tg± , g g± ±  és g x± ∓  szpécieszek 

pedig az n-pentán egyedi konformereit jelölik. 

R  1‡  / cal molE∆ −
R

 ( ) 1‡ 0  / cal molG∆ −
R

 ( ) 1‡ 298 K  / cal molG∆ −
R

 ( ) 1298 K  / sk −
R

 

t g±→  3331(30) 3347(95) 3901(158) 103(7)×107 

g t± →  2738(50) 2652(90) 3216(148) 33(2)×108 

g g± ±→  4840(47) 4916(91) 5499(151) 69(4)×106 

tt tg±→  3124(28) 3115(96) 3327(146) 27(2)×108 

tg tt± →  2524(42) 2412(91) 3047(153) 44(3)×108 

tg g g± ± ±→  2930(36) 2932(106) 3716(190) 14(1)×108 

g g tg± ± ±→  2597(38) 2404(77) 2551(112) 101(5)×108 

g g g x± ± ±→ ∓
 6162(55) 6110(143) 6186(179) 22(2)×106 

g x g g± ± ±→∓  4258(33) 4236(77) 4723(143) 26(1)×107 

tg g x± ±→ ∓
 2784(30) 2809(110) 3635(200) 16(1)×108 

g x tg± ±→∓  544(9) 404(17) 1004(86) 137(5)×109 

tg tg± ±→  423(6) 212(38) 682(118) 24(1)×1010 

g x g x± ±→∓ ∓
 4763(56) 4829(101) 5497(170) 69(5)×106 

4.4. táblázat: FPAna becslések az egyedi n-bután és n-pentán konformerek gázfázisú interkonverziós 

paramétereire. A becsült értékek bizonytalanságait zárójelben tüntettük fel. 

Az FPAna eljárás során (i) DSD-PBEP86-D2/cc-pVTZ szintű referencia geometriákat 

állítunk elő, (ii) az így kapott szerkezeteken single-point energiákat számítunk az MP2(fc)/ 

cc-pV5Z, CCSD(T)(fc)/cc-pVXZ, MP2(full)/cc-pCVXZ és az MP2(fc)/cc-pCVXZ ( X =  

2,3,4 ) módszerekkel, (iii) harmonikus rezgési analízist végzünk a DSD-PBEP86-D2/cc-

pVXZ ( 2,3X = ) funkcionálokkal, majd (iv) HDCPT2 perturbációszámítást hajtunk végre 

MP2(fc)/6-31G* szintű kvartikus erőterek előállításával. Tekintve, hogy a kérdéses FPA 

modell az n-bután és az n-pentán interkonverziós paramétereire nagy pontosságú becslése-

ket adott, joggal várhatjuk, hogy az FPAna protokoll hosszabb szénláncú n-alkánok konfor-

mációs sajátságainak termokémiai és kinetikai modellezésében is jól fog teljesíteni. 
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Független hivatkozások száma: 0 

[2] Cycle bases to the rescue  

R. Tóbiás, T. Furtenbacher, and A. G. Császár,  

Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203, 557. 

IF2016 = 2.419 

Független hivatkozások száma: 0 

[3] Critical evaluation of measured rotational-vibrational transitions of four sulfur 

isotopologues of S16O2 

R. Tóbiás, T. Furtenbacher, A. G. Császár, O. V. Naumenko, J. Tennyson, P. Kumar,  

and B. Poirier, 

Journal of Quantitative Spectroscopy and Radiative Transfer, 2018 (under revision). 
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7. Konferencia részvételek 

[1] Egzotikus izomerizációs reakciók – megoldás egy általános reakciótípusra? 

R. Tóbiás and G. Tasi, 

XXXV. Kémiai Előadói Napok, KEN 

Szeged, 2012 (szóbeli előadás) 

[2] Experimental rotation-vibration transitions and energy levels for sulfur dioxide 

T. Furtenbacher, R. Tóbiás, A. G. Császár, B. Poirier, J. Tennyson, V.-M. Hornemann, 

O. V. Naumenko, I. A. Vasilenko, A. Z. Fazliev 

The 25
th

 Colloquium on High-Resolution Molecular Spectroscopy, HRMS 2017 

Helsinki, Finnland, 2017 (poszter) 

 

 

Összes referált közlemény:    5   ebből az értekezéshez kapcsolódik: 3 

Összesített impakt faktor:      9.534  ebből az értekezéshez kapcsolódik: 5.845 

Összes független hivatkozás: 5  ebből az értekezéshez kapcsolódik: 5 

 

 


