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Introduction 

Photosynthesis is a biological process whereby the energy of the Sun is captured and stored 

by series of events that convert the free energy of light into different forms of free energy needed 

to feed cellular processes. (Blankenship 2014). The photosynthesis provides the foundation for 

essentially all life and has altered the Earth itself over geologic time profoundly. It provides all 

of our foods and most of our energy resources. Since essentially all energy used on Earth can 

be traced back to the photosynthetic transformation of solar energy into chemical energy, it is 

not surprising that the study of photosynthesis is at the center of scientific interest (Govindjee 

et al. 2005; Eaton-Rye et al. 2012; Niederman 2017). 

In photosynthetic bacteria, the energy conversion processes are considerably simpler than in 

green plants. While there are two photochemical reactions in green plants, there is only one in 

the bacteria. In contrast to the linear electron transport chain of green plants, the electron 

transport in bacteria is cyclic, in which the free energy of the charge pair produced in the 

reaction center (RC) is utilized by a cyclic pathway of electron building up a proton gradient 

across the photosynthetic membrane. The reaction center and the cytochrome bc1 complex (via 

the Q-cycle) constitute a proton-pump mechanism that translocates protons from the 

cytoplasmic side to the periplasmic side of the membrane.  

In the modern photosynthesis research, the non-sulfur type of purple bacteria plays a 

significant role, because the three-dimensional determination of the reaction center at atomic 

level (Deisenhofer et al. 1984) has made it possible to identify the structure and function of a 

photosynthetic energy conversion system. Although the details of the transformation of energy 

may vary in different species, there are structural and functional similarities. The bacterial 

reaction center has a very high photochemical quantum yield (~ 100%) since nearly all of the 

absorbed photons create charge pairs (Wraight and Clayton 1974). The highest free-energy loss 

relates to the reduction of the primary quinone (QA), which also means that physiological 

conditions make this process irreversible.  

The photosynthetic bacteria protect and operate their energy conversion system with 

remarkable efficiency and rate. An important part of this process is the light-dependent 

production and protection of tripled states of bacteriochlorophylls (BChl) essential for the 

survival of photosynthetic organisms. The energy of the BChl tripled state can be transmitted 

easily to triplet molecular oxygen (3O2) that generates harmful singlet excited oxygen ( O2
∗
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strong oxidant). To avoid this reaction, several pathways are operating in all of which 

carotenoid (Car) pigments play prominent role. 

In addition to high light intensity, photosynthetic bacteria are exposed to numerous stress 

effects including heavy metal ions. The organisms can maintain their functions even under 

harmful conditions. How do they do it and what can be learned from these experiences? What 

makes the intact photosynthetic bacterium and its reaction center robust and yet flexible enough 

to function efficiently under different stress conditions? These are the fundamental questions I 

set in the frontline of the dissertation. 



2 

Aims 

The photosynthetic purple bacteria are an excellent model for studying light-induced 

structural changes, electron- and proton transfer, electrostatic processes and protection against 

damaging effects such as high light intensity and heavy metal contamination. Therefore, my 

studies were performed with intact photosynthetic purple bacteria and isolated reaction center 

protein. 

1. By modifying some of the key amino acids in bacterial RC, the role of the protein matrix 

in electron transfer can be explored. Therefore, I expected answers to the following 

questions: 

1.1. What energetic changes are caused on the RC donor side by point mutations of the 

dimer close to the PA and PB 2 -acetyl and the 9-keto groups that result in 

modification of hydrogen bonds? 

1.2. What changes of the thermodynamic properties of QA can be expected from amino 

acid mutations on the acceptor side near the iron-ligand? 

1.3. How does the triple mutant (LHL131 - LHM160 - FHM197) modify the quantum yield 

and anisotropy of the BChl prompt fluorescence? The answer would serve better 

understanding of the transfer of the electron excitation energy between the BChl 

dimer and BChl monomer in the RC protein. 

To answer the above questions, (quasi) steady-state (fluorescence anisotropy) and kinetic 

(fluorescence induction, delayed fluorescence) spectroscopic measurements were carried with 

selective excitation of BChl. These methods have proven to be suitable and sensitive to 

characterize the kinetic and thermodynamic properties of bacterial photosynthesis. 

2. Heavy metal ions such as mercury(II) (Hg2+) ion are predominantly harmful to the 

wildlife. As the photosynthetic bacteria and its reaction center protein are highly 

sensitive to heavy metal ions and are simple organisms/protein with well studied 

structure and functions, they are ideal objects for these investigations. What structural 

and functional changes are caused by the Hg2+ ions and what are the specific binding 

sites (if they are) in the RC? 

2.1. Are there any energetic changes if the Hg2+ ion binds to the RC donor side? Does the 

mercury(II) ion modify the docking of the reduced cyt c2 to the RC and/or the 

electron transfer from cyt c2
2+ to P+? 

2.2. Can we detect any effects of binding Hg2+ ion to the RC acceptor side on the 

energetics of the quinone-acceptor system, the interquinone electron transfer or  

proton uptake?  

3. In addition to heavy metal ion contamination, strong light intensity belongs also to 

common environmental (stress) effects. The details of the protection mechanisms are 

put in the center of our interest.  
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3.1. There is a need to develop a sensitive method for the measurement of the excited 

triplet states of Cars and/or BChls. The assay should be based on the measurement 

of fast kinetics of BChl fluorescence.  

3.2. The goal is to examine the widest range of photosynthetic bacteria and to establish 

relationship between conjugation length and triplet lifetime of different carotenoids. 

The following bacteria were included in our experiments: Rvx. gelatinosus 

(anaerobic and semianaerobic), Rsp. rubrum, Thio. roseopersicina, Rba. sphaeroides 

2.4.1 and carotenoid and cytochrome modified mutants: Rba. sphaeroides Ga, R-26 

and cycA, respectively. 

3.3. Since the photoprotection function of 3Car in intact cells is not limited to RC, it is 

straightforward to work out a model of 3Car photoprotection function in which the 

carotenoids are not localized to the RC but distributed in the BChl antenna system. 

3.4. What is the sequence of light-induced charge separation (photochemical quenching) 

and 3Car production (triplet quenching)? Does the carotenoid triplet formation follow 

the charge separation or they are simultaneous and competitive processes? 

3.5. To develop our home-built instrument to determine the lifetime of 3Car with different 

number of conjugated double bonds in several bacterial strains. 

3.6. It has been observed that the 3Car lifetime measured in the light is considerably 

shorter than in the dark. What could be the reason of that? 

 

Materials and Methods 

Bacterial strains, conditions and carotenoid biosynthesis 

Cells of purple non-sulfur photosynthetic bacterium Rhodobacter (Rba.) sphaeroides strain 

2.4.1 (Maróti and Wraight 1988), Rhodospirillum (Rsp.) rubrum, Rubrivivax (Rvx.) gelatinosus 

(Vermeglio et al. 2012) and carotenoidless Rba. sphaeroides R-26 were cultivated 

anaerobically in Siström minimal medium in 1 liter screw top flasks under continuous 

illumination of about 13 W m-2 provided by tungsten lamps (40 W) after incubation in the dark 

for 5-7 h. The cytochrome c2 deficient mutant of Rba. sphaeroides cycA I (kindly provided by 

Prof. Dr. T. Donohue, University of Wisconsin, USA) was cultivated in the dark on a shaker (1 

Hz) in the presence of antibiotic kanamycin and spectinomycin in concentrations of 50 g/mL. 

The phototrophic purple sulfur bacterium Thiocapsa (Thio.) roseopersicina (obtained from Dr. 

Cs. Bagyinka, Biological Research Center Hungarian Academy of Sciences, Institute of 

Biophysics, Hungary) was grown anaerobically in a modified Pfennig's medium (Bagyinka et 

al. 1981).  

Fluorescence measurements and conditions 

The kinetics and yield of the BChl fluorescence generated by a rectangular excitation profile 

from a high power laser diode (2 W, Roithner LaserTechnik) were recorded by a homebuilt 

spectrofluorometer (Maróti 2008). The emission wavelength and bandwidth of the laser diodes 
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were 804 ± 0.5 nm which assured close to perfect excitation, because of its coincidence with 

the 800 nm absorption band of the LH2 antenna complex of Rba. sphaeroides. The 

measurements were carried out with bacterial cell cultures in a 3x3 mm prismatic quartz cuvette 

in a temperature-controlled sample holder. The maximum intensity of excitation was 2.1 

einstein/m2/s that was attenuated by calibrated neutral density filters. Due to the reciprocity of 

the intensity of light excitation and the photochemical rise time, the photochemical rate was 

used as an internal calibration to measure the intensity of light excitation. The excitation 

induced by a flash of the laser diode had the form of a step function with a rise time less than 

100 ns. For determination of the yield and kinetics of the BChl fluorescence, a fluorescent dye 

IR-806 (Sigma) was used as reference. The BChl fluorescence was detected by a large area 

(diameter 10 mm) and high gain Si-avalanche photodiode as detector (APD; model 394-70-72-

581; Advanced Photonix, Inc., USA) that was protected from the scattered laser light by an IR 

cutoff filter (Schott RG-850). The timing of the experiments was controlled by a Digital Delay-

Pulse Generator (Berkeley Nucleonics Corporation (BNC) 555) via custom-designed 

LabVIEW software. 

Light-induced absorption change 

The kinetics of absorption changes of the whole cells induced by laser diode (Roithner 

LaserTechnik LD808-2-TO3), using a wavelength of 804 nm and maximum power 2 W, and a 

rectangular excitation profile of variable duration was detected by a home-constructed 

spectrophotometer. For the measuring light, a 130-W tungsten lamp was used. A 

monochromator (Jobin-Yvon H-20 with a concave holographic grating) was used to disperse 

the measuring light and to protect the detector from the scattered laser light. The 

monochromatic transmitted measuring light was detected by photomultiplier (R928 

Hamamatsu) which was connected to a differential amplifier and to a digital oscilloscope 

(Tektronix TDS 3032). Samples were placed in a quartz cuvette (3 × 3 mm cross section). The 

light-induced energization of the membrane was monitored by electrochromic band shift of the 

carotenoids at wavelengths between 510 nm and 600 nm. The kinetic traces of absorption 

changes of RC induced by saturating Xe flash or by continuous illumination were detected by 

a home-constructed spectrophotometer (Maróti and Wraight 1988). The charge recombination 

was followed at wavelengths 430 nm or 860 nm, the first electron transfer at 402 nm and the 

second electron transfer at 450 nm.  

Steady-state absorption spectroscopy 

The steady-state near infrared absorption spectra of the cells during the growth were recorded 

at room temperature by a single beam spectrophotometer (Thermo Spectronic Helios). The 

baselines were corrected for light scattering, and the spectra were decomposed into Gaussian 

components by least square Marquardt procedure. 

Delayed fluorescence 
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The decay of the yield of delayed fluorescence of the BChl dimer after flash excitation was 

measured by a home-made kinetic fluorometer described earlier (Turzó et al. 2000; Filus et al. 

2004; Maróti and Wraight 2008; Asztalos and Maróti 2009). The free energy drop from P∗ to 

P+QA
−, ∆𝐺P∗QA

, was calculated by comparison of the delayed and prompt fluorescence yields, 

according to Arata and Parson (Arata and Parson 1981): 
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∫FDL(t)dt and ∫FPF(t)dt are the integrated intensities of delayed and prompt fluorescence, 

measured in the same sample but at very different excitation intensities (both in the linear 

region) to give similar emission intensities. Highly purified RC with negligible fluorescence 

from impurities is needed. The Boltzmann factor is kBT (25 meV at room temperature), kfl is 

the radiative rate constant of prompt fluorescence (8·107 s−1, (Arata and Parson 1981; 

McPherson et al. 1990)), kDL is the rate of decay of the delayed fluorescence, ηph is the quantum 

yield of photochemical trapping (≈1.0, (Wraight and Clayton 1974)), and ηfl is the quantum 

yield of the prompt fluorescence (4·10−4, (Woodbury et al. 1985)).  

Circular dichroism 

The circular dichroism (CD) spectra in the spectral range of 550–900 nm were recorded with a 

JASCO 815 spectropolarimeter. RC samples were solubilized in TL buffer (10 mM Tris and 

0.03% LDAO at pH 8). The measurements were performed in a standard UV quartz cell of 1-

cm optical path length at room temperature. 

Electrochemical redox titration.  

The redox midpoint potential of P/P+ of the RC was measured by a homebuilt electrochemical 

cell with three-electrode-arrangement (Mäntele 1993) equipped in a steady-state 

spectrophotometer. The working electrode was a fine gold mesh with 55% optical transparency, 

the counter electrode was a Pt wire ring and Ag/AgCl served as the reference electrode. The 

electric potentials of the working and reference electrodes were controlled by a PGSTAT10 

potentiostat/galvanostat at ambient temperature. The typical medium contained the following: 

1 mM 4,4’ Bipiridyl, 10 mM Tris, 0.03% LDAO and 150 M potassium ferricyanide. The 

relative amount of oxidized P at each potential was determined from the magnitude of the 

absorption maximum at 865 nm and 835 nm compared to the absorption maximum at 800 nm. 

The optical path and the volume of the cell were 50 µm and 200 µL, respectively.. 
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Thesis points 

1. Multiple modifications of the hydrogen bonding pattern to 𝐏 and near QA resulted in 

systematic changes of the free energy gap between the metastable charge separated 

state 𝐏+𝐐𝐀
− and the excited bacteriochlorophyll dimer 𝐏∗ [1]. 

The free energy level of charge separation is significantly altered by the mutation of amino 

acids at key sites both on the donor and acceptor sides of the RC. For demonstration, amino 

acid mutations were specifically targeted at different sites of the RC protein and the kinetic 

properties of the delayed fluorescence of the dimer of different mutants were measured. 
 

Figure 1. Kinetic traces of the DL of donor side 

mutants with increasing number of H-bonds in the 

vicinity of the dimer. The DL increases in single 

(LHL131), double (LHL131–LHM160) and triple (LHL131–

LHM160–FHM197) mutants relative to that of wild type 

(WT) RC. The introduction of histidine residue at the 

donor side reflects addition of one H-bond to the 

network around the dimer. Conditions: 2 μM RC, 100 

mM NaCl, 0,03% LDAO, 120 μM terbutryn, pH 8 and 

wavelength of fluorescence 915 ± 10 nm.  

Both the amplitude (area) and the rate constant of the delayed fluorescence were increased for 

all selected mutants (LHL131; HLM202; LHL131 - LHM160; LHL131 - HLM202; LHL131 - LHM160 - 

FHM197; ITM265; EHM234; ELM234; EAM234; ERM234) compared to the wild type RC. The increase 

of the number of hydrogen bonds increases the intensity of the DL and the increase is stepwise: 

the triple mutant shows about twice as large increase as the double mutant relative to that of the 

wild type. 

The quinone-side mutations modify the flash-induced uptake of H+ ions by an acidic cluster 

in anticooperative interaction near the QB. The similarity of the pH-dependence of the free 

energy gap between P∗ and P+QA
− of the ITM265 mutant and wild type is consistent with and 

suggestive that the extended hydrogen bond network between QA and the acidic cluster is not 

modified. The EXM234 (where X = H, L, A and R) mutants, however, have major impact on the 

iron ligand and the H-bond network and do not show any stabilization (rather slight 

destabilization) upon lowering the pH.  

   



7 

2. A significant drop of the yield of BChl fluorescence related to the monomeric BChl was 

experienced in the triple mutant (LHL131 - LHM160 - FHM197) of the RC from 

Rhodobacter sphaeroides, but the major (prompt) fluorescence properties of the 

dimeric BChl – the spectrum, the orientation and strength of the transition dipoles, the 

magnitude of the Stokes-shift – were hardly modified by the mutation [2]. 

As the mutations affected the energetics of the dimer, and the primary charge pair P+QA
− was 

destabilized, the interaction between the BChl monomer (B) and the BChl dimer (P) should 

also change. 

 

Figure 2. Spectral changes of fluorescence 

induction evoked by 808 nm laser diode 

excitation in wild-type and triple mutated 

(L131LH–M160LH–M197FH) reaction 

centers of Rba. sphaeroides. Fluorescence 

spectra of WT (black dots) and mutant (green 

dots) RCs in reduced and (chemically) oxidized 

states of the dimer (red dots). 

Using diode laser emitting at 808 nm, both B and the upper exciton state (P+) of the dimer 

in wild-type RC can be directly excited resulting in two well-defined fluorescence bands at 850 

and 910 nm corresponding to radiative transitions from 1B* and from 1P– (the lower exciton 

state of the dimer) to the ground state, respectively. The kinetics of fluorescence induction 

observed at these wavelengths show remarkable changes. The opposite shapes of fluorescence 

kinetics with identical fall and rise times at 910 and 850 nm, respectively, serve as clear cut 

evidence for the electronic excitation energy transfer from 1B* to the dimer. 

The anisotropy of the fluorescence excited at 865 nm (P–) was very close to the limiting 

value (0.4) across the whole spectral range. The excitation of both B and P– at 808 nm resulted 

in wavelength-dependent depolarization of the fluorescence from 0.35 to 0.24 in the wild type 

and from 0.30 to 0.24 in the reaction center of triple mutant. The additivity law of the 

anisotropies of the fluorescence species accounts for the wavelength dependence of the 

anisotropy. The measured fluorescence yields and anisotropies are interpreted in terms of very 

fast energy transfer from 1B* to 1P– (either directly or indirectly by internal conversion from 

1P+) and to the oxidized dimer.   
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3. The Hg2+ ion bound to the RC from Rhodobacter sphaeroides changes the pattern of 

hydrogen bond around the dimer but has no effect on cytochrome docking and inhibits 

the electron transfer and proton uptake on the RC acceptor side [3]. 

The steady-state absorption spectrum of the dimer band (at 865 nm) shows a clear blue shift 

by ~ 30 nm upon mercury(II) treatment up to [Hg2+]/[RC] = 100 without loss of the amplitude. 

While the positions and the amplitudes of the absorption bands of the monomeric BChl (at 800 

nm) and the BPheo (at 760 nm) remain unchanged, the shift of the dimer band is reversible and 

a clear isosbestic point is observable. This indicates that there is an interconversion of two 

components that absorb at 865 nm and 835 nm. 

 

 

 

Figure 3. Blue-shift of the steady-state absorption 

band of the RC dimer due to increase of Hg2+ 

concentration. Conditions: 1 µM RC, TL buffer and 

increase of [HgCl2] up to 100 [Hg2+]/[RC] 

 

 

 

 

The electrochemical redox titration of P/P+ follows single (Nernst) component of midpoint 

redox potential Em ~500 mV in the untreated RC and Em ~545 mV in the presence of 100 

[Hg2+]/[RC]. The electrostatic influence of bound Hg2+ ion in the vicinity of P causes an 

increase of Em by 47±12 mV. Taking into account the relevant energetic changes, the +47 meV 

increase in the P/P+ state obtained from electrochemical measurements accounts entirely for the 

+49 meV increase of the P/P* gap causing the observed 30 nm blue shift of the dimer absorption 

band of the mercury(II) treated RC. This donor side (electrostatic) effect does not modify the 

docking of the reduced cyt c to the RC nor the electron transfer from cyt c2+ to P+. 

The proton gate at the cytoplasmic side had the highest affinity for Hg2+ binding  

(K~0.2 (μM)-1) and blocked the proton uptake. Reduced affinity (K~0.05 (μM)-1) was measured 

for the Hg2+ binding site close to the secondary quinone that resulted in inhibition of the 

interquinone electron transfer.  

By measuring the free energy level of P/P* upon substitution of the native UQ by AQ 

(anthraquinone) at the QA site, we found that the free energy level of QA/QA
– was also 

insensitive to Hg2+. The independent energetic measurements clearly demonstrate that the 

mercury(II) ions exercise much larger energetic influence to the dimer side than to the primary 

acceptor side of the RC.   
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4. Triplet carotenoid quenching of the BChl fluorescence yield is observed during and not 

exclusively after the photochemical rise indicating that the charge separation in the RC 

and the carotenoid triplet formation are not consecutive but parallel and competitive 

processes [4,5]. 

The formation and lifetime of light-induced triplet carotenoid (3Car) were observed by 

measuring the yield and kinetics of bacteriochlorophyll fluorescence. The 3Car quenching is 

observed during and not exclusively after the photochemical rise indicating that the charge 

separation in the reaction center and the carotenoid triplet formation are competing processes. 

 

Figure 5. Simultaneous measurement of the rise 

of the normalized variable BChl fluorescence 

(induction) and carotenoid triplet (3Car) 

formation (triplet quenching) in whole cells of 

Rba. sphaeroides. Both kinetics saturate but the 

3Car suffers some delay relative to the 

fluorescence induction. The two kinetics are 

normalized to the same value. 

 

 

Based on the measurement of the BChl fluorescence, I developed 1) a sensitive method to detect 

the excited triplet states of carotenoid and bacteriochlorophyll and 2) a model to describe the 

generation and relaxation of light-induced carotenoid triplets in the antenna system of the 

pigments around the RC. The model is based on the observation that the photo-protective 

function of 3Car is not limited to the RC only but is distributed to the whole pigment bed. 
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5. The observed rate of relaxation of 3Car depends on the length of the conjugated double 

bonds and is the weighted average of those of the carotenoids with various numbers of 

conjugated double bonds in the bacterial strain [5]. 

The generation and relaxation of flash-induced carotenoid triplets (3Car) were studied by 

observation of the quenching of bacteriochlorophyll (BChl) fluorescence in different strains of 

photosynthetic bacteria including Rvx. gelatinosus (anaerobic and semianaerobic), Rsp. 

rubrum, Thio. roseopersicina, Rba. sphaeroides 2.4.1 and carotenoid and cytochrome deficient 

mutants Rba. sphaeroides Ga, R-26 and cycA, respectively. 

 

 
Figure 6. Triplet relaxation rate constants (kT) of carotenoids of different conjugation lengths (n) in 

intact cells of photosynthetic bacteria. Panel A: triplet rate constants for carotenoids determined 

from set of linear equations constructed from carotenoid components and from measured triplet 

lifetimes of the different strains (open squares). Triplet rate constants of the bacteria calculated from 

the weighted average of the corresponding carotenoids hosted by the different strains (black 

squares). Panel B: Comparison of measured and calculated carotenoid triplet relaxation rate 

constants in different strains.  

 

The rate of triplet relaxation was dependent on the length of the conjugated double bonds of 

the carotenoid: the longer was the chain, the faster was the decay. In appropriate representation, 

a linear dependence can be obtained.  

The observed rate of relaxation of 3Car in intact cells containing carotenoids with different 

numbers of conjugated double bonds is the weighted average of the rates of the constituting 

carotenoids in the bacterial strain. 
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