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Bernstein and Markov type inequalities are important tools in
approximation theory. Since the original two article [3] and [2], many
generalizations have appeared. The aim of this dissertation is to
extend Bernstein’s inequality onto a wider class of sets and explain
the ”geometrical” factor with potential theory. It consists of three
parts corresponding to the articles [4], [6] and [5]. For an introduction
to potential theory, we refer to [8] or [7].

Remark.
The numbering of the theorems and formulas here and in the disser-
tation coincide for easier reading.

Preliminaries

The well-known (complex) Bernstein’s inequality states that
∣∣P ′

n(z0)
∣∣ ≤ n||Pn||D , (1.1)

where Pn is arbitrary complex polynomial with degree n and ||Pn||D
denotes its supremum norm over the unit disk D = {z ∈ C : |z| ≤ 1}.
By a simple substitution, one can obtain another inequality which
now involves the interval I = [−1, 1]

∣∣P ′
n(t)

∣∣ ≤ n
1√

1 − t2
||Pn||I . (1.2)

This is also called as Bernstein’s inequality.
The factor (1− t2)−1/2 is closely related to the ”geometry” of [−1, 1],
and with potential theory, it can be expressed as (1 − t2)−1/2 =
πωI(t) where ωI(t) is the density function of the equilibrium measure
of I (with respect to the Lebesgue measure). Using this potential
theoretical approach, the following generalization has been recently
proved in [9] and in [1]

Theorem. ∣∣P ′
n(t)

∣∣ ≤ nπωK(t)||Pn||K (1.3)
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where K ⊂ C is a compact set, ωK(t) is the density function of the
equilibrium measure νK , ωK(t)dt = dνK(t) and t ∈ IntK (so that
ωK(t) be finite), and ||Pn||K is the supremum norm of Pn over K.

We also use the notion of the Green’s function and for K ⊂ C
compact set, the gK(z) = g(K, z) denotes the Green’s function of
the (unbounded) component of C \ K with pole at infinity.

It is worth to mention that the density function ωK(t) is closely
related to the (outward) normal derivative of Green’s function, more
precisely:

Theorem. If K ⊂ C is a compact set such that ∂K is a union
of finitely many C1+δ smooth curves (δ > 0), then the equilibrium
measure is absolutely continuous with respect to arc length measure,
furthermore,

dνK(z)
ds

=
1
2π

∂

∂nz
gK(z)

where ds denotes the arc-length measure on ∂K and ∂/∂nz denotes
differentation at z in the direction of the outer normal nz.

Main result

The proof of the inequality (1.3) uses an exhaustion technique which
turned out to be quite useful tool in one (complex or real) dimension
and also appears in higher dimension in some form. The following
notion describes the generality.

A compact set K ⊂ C is called Jordan fat, if the boundary of
every connected component of its interior Int(K) is a Jordan curve
and K is the closure of its interior: K = Int(K).

This dissertation uses this idea to extend Bernstein’s inequality
to the following level of generality

Theorem (9). Let K be a Jordan fat compact set on the plane with
connected complement. Let z0 be a point on the boundary of K and
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let us suppose that this boundary is a twice continuously differentiable
Jordan arc in a neighborhood of z0. Then

|P ′
n(z0)| ≤ n(1 + o(1))

∂g(K, z0)
∂n

‖Pn‖K , (3.3)

where the o(1) tends to 0 uniformly in the polynomials Pn of degree
at most n as n → ∞.

The sharpness of this inequality is also discussed.
The proof of this inequality consists of several steps, proving (3.3)

in higher and higher generality.

The (3.3) on lemniscates

Let us recall a notion which describes the class of sets for which
inequality (3.3) is proved first.

Denote the unit disk by D, D = {z ∈ C : |z| ≤ 1}.
Definition (1). The set L ⊂ C is a lemniscate if for some complex
polynomial r, L = r−1[∂D], that is, z ∈ L ⇔ |r(z)| = 1. The set
r−1[D] = {z ∈ C : |r(z)| ≤ 1} is called the interior of the lemniscate
L.

Note that the interior of a lemniscate is not the topological inte-
rior of the lemniscate (which is actually {z ∈ C : |r(z)| < 1}).

A lemniscate usually behaves nicely near one of its points. More
precisely, a lemniscate is a system of finitely many closed Jordan
curves. They are not necessarily simple curves, so we distinguish its
points. If z ∈ L = r−1[∂D] is a point from the lemniscate L with
r′(z) 	= 0, then we say z is a simple point (of the lemniscate L). In
other words, z is not a critical point of r. It is also equivalent to the
fact that L is a simple curve near z0 (does not cross itself). Moreover,
if r′(z) 	= 0, then L = r−1[∂D] is a smooth (actually, analytic) curve
near z. First, it is proved on special sets, namely, on lemniscates in
[4].
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The following lemma shows how much the notion of lemniscates
fits in this setting.

Lemma (4). Let K := r−1[D] = {z ∈ C : |r(z)| ≤ 1}. Denote the
Green function of the unbounded component of the complement of K
by gK . If z0 ∈ ∂K and r′(z0) 	= 0, then

∂

∂nz0

gK(z0) =
1

deg r
|r′(z0)| . (2.2)

Another important tool in this step is the following symmetriza-
tion trick. For a given z ∈ r−1[∂D], we denote by z(j), j = 0, . . . , deg r−
1 those places which r(z) = r(z(j)) for all j. In other words, these
points are ”associated” to z on the branches of r−1[∂D] and for some
j0, z = z(j0).

We consider the ”periodic extension” of Pn which is defined as

P ∗(z) :=
deg r−1∑

j=0

Pn(z(j)) · Q(z0; z(j)). (2.8)

Using this symmetrization and Lemma 4, we obtain that (3.3) holds
on lemniscates, that is,

Theorem (2). Let K ⊂ C be the interior of a lemniscate of some
polynomial r, that is, K = r−1[D] and let z0 ∈ ∂K be fixed. Assume
that z0 is a simple point of ∂K. Denote the Green’s function of
the unbounded component of C∞ \ K by gK(z). Then, for every
polynomial Pn with deg Pn = n we have

|P ′
n(z0)| ≤

(
1 + o(1)

) · n · ∂

∂nz0

gK(z0) · ||Pn||K , (1)

where the term o(1) is to be understood as n → ∞ and depends only
on K and z0 and is independent of Pn.

The result is sharp in the following two senses.
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Theorem (3). i) For a given fixed n, the factor 1 + o(1) can be
arbitrarily large, if we choose the set K and the polynomial Pn

appropriately.

ii) For every lemniscate K there exists a sequence of nonzero poly-
nomials {Pn} with degrees tending to infinity such that

∣∣P ′
n(z0)

∣∣ = n||Pn||K ∂

∂nz0

gK(z0)

where deg Pn = n, z0 ∈ K and z0 is a simple point of K.

In other words, the 1+ o(1) factor cannot be left out if we choose
the compact set and the polynomial suitably, and the constant (the
factor ∂

∂nz0
gK(z0) on the right hand side) cannot be replaced by

anything smaller.

The (3.3) in general

We use the following notion and two theorems.
Let γ∗ and Γ∗ be twice continuously differentiable in a neighbor-

hood of P and touching each other at P . We say that they K-touch
each other if their (signed) curvature at P is different (signed curva-
ture is seen from the outside of Γ∗). Equivalently we can say that in
a neighborhood of P the two curves are separated by two circles one
of them lying in the interior of the other one.

Theorem (7). Let γ∗ = ∪m
j=1γj and Γ∗ = ∪m

j=1Γj be as above, and
let γ∗ K-touch Γ∗ in finitely many points P1, . . . , Pk in a neighbor-
hood of which both curves are twice continuously differentiable. Then
there is a lemniscate σ that separates γ∗ and Γ∗ and K-touches both
γ∗ and Γ∗ at each Pj.

Furthermore, σ lies strictly in between γ∗ and Γ∗ except for the
points P1, . . . , Pk, and has precisely one connected component in be-
tween each γj and Γj, j = 1, . . . , m, and these m components are
Jordan curves.
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Its proof is fairly technical, the outline is as follows. For a simpler
notation, we leave out here the index j and denote K0 the compact
set γ∗ encloses.

• First we remove a small part of the closed inner domain K0

around the point P , the rest will be denoted by K1.

• The removed part will be replaced by a rotated and shifted
copy T θ,δ(S) of a lens shaped region S for which the bounding
circular arcs have curvature lying in between the curvatures of
Γ and γ at the point P .

• The Green line will be for some small τ the τ -level curve of
Green’s function g(K1 ∪ T θ,δ(S), z) of C∞ \ (K1 ∪ T θ,δ(S))
with pole at infinity.

• To analyze these τ -level lines close to the boundary of T θ,δ(S)
we use the reflection principle to continue the Green’s functions
g(K1∪T θ,δ(S), z) over the circular arc ∂T θ,δ(S), and complete
these continued harmonic functions to analytic functions. This
way the τ -level line of g(K1 ∪ T θ,δ(S), z) coincides with the
image of a line segment under the inverse of these analytic
functions, and simple analytic properties can be used for the
analysis (Lemma 11).

• We shall use the Brouwer fixed point theorem to prove that for
appropriate (and small) rotation (by angle θ) and shift (by δ),
the τ -level line will pass through the point P and will have the
same tangent line there as Γ (and γ).

• For small τ this τ -level line will lie very close to K1 ∪ T θ,δ(S),
hence it will separate each γj from Γj , and along the boundary
of T θ,δ(S) it will have curvature very close to that of ∂T θ,δ(S),
which is the same as the curvature of ∂S.

• As a consequence, in the neighborhood of P we are working in,
the curvature of the τ -level line will lie in between the curva-
tures of γ and Γ and at the same time it touches both of these
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curves at P . Hence, by a variant of Blaschke’s rolling theorem
(given in Lemma 13) the level line will lie in between these two
curves in a smaller neighborhood.

• Elsewhere the τ -level line follows closely the boundary of K1 ∪
T θ,δ(S), hence it lies outside γ∗ but inside Γ∗.

Furthermore, we relate the normal derivative at P of the Green’s
function of the original compact set K and of the exhausting lemnis-
cate σ with the following

Theorem (8). Let Γ∗, γ∗ and P1, . . . , Pk ∈ Γ∗ be as in the Theorem
7. Then for every ε > 0 there is a lemniscate σ as in the Theorem 7
such that for each Pj we have

∂g(L, Pj)
∂n

≤ ∂g(K, Pj)
∂n

+ ε, (3.1)

where ∂(·)/∂n denotes (outward) normal derivative.
In a similar manner, for every ε > 0 there is a lemniscate σ as

in the Theorem 7 such that for each Pj we have

∂g(K0, Pj)
∂n

≤ ∂g(L, Pj)
∂n

+ ε. (3.2)

Sharpness

We mention that Theorem 9 is sharp in the following two senses.
First, in general the inequality

|P ′
n(z0)| ≤ n

∂g(K, z0)
∂n

‖Pn‖K

i.e. (3.3) without the term 1 + o(1) is not true.
Second, the ”geometrical” constant can not be replaced by smaller,
as the following theorem shows:
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Theorem (10). Let K and z0 be as in Theorem 9. Then for every
n there is a polynomial Pn of degree at most n such that

|P ′
n(z0)| > n(1 − o(1))

∂g(K, z0)
∂n

‖Pn‖K . (3.4)

Furthermore, the generalized Hilbert’s lemniscate theorem is sharp
in the sense that the C2 smoothness condition can not be dropped.
That is, in the proof of Theorem 7 we actually used the fact that
the derivates (of the curves up to order 1) coincide and they have
derivatives of order 2 which are different.
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[6] Béla Nagy and Vilmos Totik. Sharpening Hilbert’s lemniscate
theorem. to appear in J. Anal. Math.

8



[7] Thomas Ransford. Potential theory in the complex plane, vol-
ume 28 of London Mathematical Society Student Texts. Cam-
bridge University Press, Cambridge, 1995.

[8] Edward B. Saff and Vilmos Totik. Logarithmic potentials with
external fields, volume 316 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, 1997. Appendix B by Thomas
Bloom.

[9] Vilmos Totik. Polynomial inverse images and polynomial inequal-
ities. Acta Math., 187(1):139–160, 2001.

9


