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Introduction

Software systems are rapidly growing and changing, so source code written today becomes legacy code

in a very short period of time. This is mainly due to the swiftly changing market requirements and also

to the ever-changing new technologies. The always tight deadlines often prevent the developers from

properly releasing a product with up-to-date documentation (like design descriptions and source code

comments). In such cases the only valid documentation is the source code itself. Some consequences

of the above include lots of clones in the source code, dead code and fault-prone code, to mention

only a few. Reengineering in general seeks to develop methods, techniques and tools to cure these

problems and make program comprehension and maintenance easier. The first part of a reengineering

process is called reverse engineering, which is defined as “the process of analyzing a subject system

to (a) identify the system’s components and their interrelationships and (b) create representations of

a system in another form or at a higher level of abstraction” [3].

The object-oriented paradigm has in recent years become the most popular one for designing and

implementing large software systems. By now, many object-oriented systems have reached a state

where they can be treated as legacy systems that need to be reengineered. In contrast with older

programming languages like COBOL, for instance, reengineering methods for object-oriented programs

are not yet fully elaborated. The really large and complex systems like telecom switching software and

office suites are generally written in the C++ programming language. This object-oriented language

is probably the most complex one and therefore, not surprisingly, it is least supported by reengineering

methods and tools. This language offers us reengineers the most exciting challenges and opportunities

for research.

To comprehend an unfamiliar software system we need to know many different things about it. We

refer to this information as facts about the source code. A fact is, for instance, the size of the code.

Another fact is whether a class has base classes. Actually any information that helps us understand

unknown source code is called a fact here. It is obvious that collecting facts by hand is only feasible

when relatively small source codes are being investigated. Real-world systems that contain several

million lines of source code can be only processed with the help of software tools.

In our approach tool-supported fact extraction is an automated process during which the subject

system is analyzed on a file by file basis with analyzer tools to identify the source code’s various

characteristics and their interrelationships and to create some kind of representation of the extracted

information. This information can afterwards be used by various reengineering tools like metrics cal-

culators and software visualizers. The format of the outputs of the analyzer tools is unfortunately not

standardized, almost every tool having its own format and this can lead to interoperability problems.

Every application that would like to use the information gathered by other tools has to implement

different convertors to gain access to the data.

This problematic situation was recognized by researchers and significant effort has been made to

tackle this problem. One of the fruits of this grand effort is GXL [20] (Graph eXchange Language),

which is a fine example of what can be achieved when we focus our energies. But using GXL itself is

not enough. It offers a common medium for exchanging graphs (i.e. nodes and edges) with the help of

XML, but does not describe how to represent various programming language-specific entities like C++

classes and functions. Researchers previously tackled this problem as well (e.g. [4–7; 16; 19; 22]), and

different solutions were proposed but none of these is widely accepted and used. Without a common
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standard format (schema), smooth data exchange among different C++ reengineering tools is hard

to achieve. By schema we mean a description of the form of the data in terms of a set of entities

with attributes and relationships. A schema instance (in other words, a model) is an embodiment of

the schema which models a concrete software system. This concept is analogous to databases which

also have a schema (usually described by E-R diagrams) that is distinct from the concrete instance

data (data records). In this work we present among other things a schema for the C++ language.

Plenty of work has been done in the field of re- and reverse engineering, which make use of the

results of fact extraction. These include code measurements (different kinds of metrics), visualization,

documentation and code comprehension. But relatively few papers deal with the actual process of fact

extraction from C++ source code. We present methods with which automatic fact extraction can be

achieved from real-world software systems. We developed a framework called Columbus [8–12; 14; 15]

for supporting these methods and reverse engineering in general. The framework also takes care of

fact representation, filtering and conversion to various formats to achieve tool interoperability. It is

now used for research and education in many academic institutions around the world.

Going one step further in abstracting an analyzed software system we developed methods for

recognizing design patters in our schema instances; and, this way, in the source code as well. Design

patterns abstract practical solutions for frequently occurring design problems to an object-oriented

format and are the most natural means when recovering the architectural design and the underlying

design decisions from the software code.

To demonstrate that our methods could be used in practice we analyzed the source code of several

versions of the popular internet suite Mozilla [27] and calculated various metrics from it. We used

these metrics to predict the fault-proneness of the source code. We also compared the metrics of seven

versions of Mozilla and showed how the predicted fault-proneness of the software changed during its

development cycle.

I state four main results in the thesis, which are listed below:

1. Schema for the C++ programming language.

2. C++ fact extraction process and framework.

3. Design pattern recognition in C++ source code.

4. Analysis of the fault-proneness of open source software.

In the following sections I will briefly present these results and emphasize my own contributions at the

end of each section.
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1 Schema for the C++ programming language

This work was motivated by the observation that successful data exchange among reengineering tools

is of crucial importance. This requires a common format so that the various tools (like front ends,

metrics tools and clone detectors) can “talk” to each other. We designed a schema, called the

Columbus Schema for C++ [7; 12; 16], which captures information about source code written in the

C++ programming language. The schema is modular, so it offers further flexibility for its extension or

modification. The schema is fine-grained, representing practically every relevant fact about the source

code so that logically equivalent source code can be generated from its instances. This schema seeks

to fill a gap that was present in the literature of reengineering science since the design of the C++

language. Nobody has published a C++ schema before in such detail as we have. The reason for this

is probably the extreme complexity of the C++ language. This first result of the thesis includes, in

addition to the design of the schema, its implementation (which is used by our C++ analyzer tool as

well) and algorithms for name resolution, type-checking, serialization, class diagram generation and

call graph creation, to name only a few.

The descriptions of the schema is given using standard UML class diagrams, which permits its

simple implementation and easy physical representation (e.g. using GXL). Despite the fact that it

is not suitable for formal descriptions, we chose UML because it is the de facto standard in object-

oriented design so the schema can be relatively easily comprehended by the users.

The structure of the schema

Owing to the great complexity of the C++ language, we decided to modularize our schema in a

similar way to that proposed in the discussion part of [16]. This also opens up the possibility for its

extension and modification. We divided the schema into six packages. These are the following:

• base: the package contains base classes and data types for the remaining parts of the schema.

• struc : this package models the main program entities according to their scoping structure

(e.g. objects, functions and classes).

• type: the classes in this package are used to represent the types of the entities.

• templ : the package covers the representation of template parameter and argument lists.

• statm: the package contains classes that model the statements.

• expr : the classes in this package represent every kind of expression.

In this summary we show only one of the diagrams, probably the most interesting one, that of the

struc package (see Figure 3). The explanation of the full schema can be found in the thesis.

We illustrate the use of the schema through an example instance of it. We will utilize the example

C++ source code given in Figure 1. The schema instance for the example is given in Figure 2. We use

an object diagram-like notation, where the object instances of the schema’s classes are represented

and the links that connect them clearly show the instances of various association and aggregation

relations. We have simplified the diagram for clarity by omitting attributes such as line numbers,

which are not necessary for comprehension.
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template <typename T, int Size>
class Array {

T arr[Size];
public:

virtual const T& get(int idx) const {
return arr[idx];

};
virtual void set(int idx, const T& val) {

arr[idx] = val;
}

};

Figure 1: C++ source code example.
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Figure 2: Schema instance (model) for the example.

Data exchange with other tools

Successful interchange of the data created by Columbus according to the Columbus Schema for C++

was achieved in several studies. The first application was created in cooperation with the Nokia

Research Center for Nokia’s proprietary UML design environment TDE [31]. We used the Columbus

framework as the C++ analyzer front end of TDE. The built-up schema instances were converted to

UML class diagrams and transferred to TDE though a COM interface. The Maisa [25; 26] project
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Figure 3: Class diagram of the struc package, one of the six packages of the schema.

of the University of Helsinki for recognizing standard Design Patterns [18] in C++ programs also

successfully utilized the output created by Columbus. Another example of the schema’s use was in

a FAMOOS project with the Crocodile metrics tool [29]. An important application is the currently

ongoing work on the exchange of data between Columbus and the GUPRO tool [6], which uses GXL as

its input format. We also achieved a successful interchange with the rigi graph visualizer tool [24; 28].

Recently, we started a joint study with the University of Waterloo in Canada to visualize the Columbus

schema instances in PBS, the Portable Bookshelf [17].

Own contribution

This work was motivated by the observation that successful data exchange is crucial for re- and reverse

engineering tools. This requires a common format, one that can be used in various tools like front

ends and metrics tools. A standard schema still has to be found. In this work I propose an exchange

schema for the C++ language called the Columbus Schema for C++ for this purpose.

I designed the Columbus Schema for C++ and also implemented the schema which is part of

the reverse engineering framework called Columbus. The implementation also contains algorithms

for name resolution, type-checking, serialization, class diagram generation and call graph creation, to

name only a few.
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2 C++ fact extraction process and framework

Extracting facts from small programs is simple enough and can be done even by hand. The real

challenge is to analyze real-world software systems that consist of several million lines of code. The

literature lacked methods and the community did not have tools with which such a complex task could

be efficiently performed. We present a process [15] that lists five key steps which have to be done to

successfully carry out a fact extraction task from C++ source code. The process deals with important

points such as handling configurations, linking the schema instances, filtering the data obtained and

converting it to other formats to facilitate data exchange. We also present the Columbus reverse

engineering framework [12] in detail, which readily supports the process. The framework is widely

used at universities across the world, and so far over 600 downloads of the framework have been

registered.

The fact extraction process

An outline of the process of fact extraction and presentation can be seen in Figure 4. The process

consists of five consecutive steps where each step uses the results of the previous one. In the following,

these steps will be specified in detail.

An important advantage of this approach is that the steps of the process can be performed

incrementally, that is, if the partial results of the certain steps are available and the input of the step

has not been altered, these results do not have to be regenerated.

Step 1: Acquiring project/configuration information

The source code of a software system is usually split into several files and these files are arranged into

folders and subfolders. In addition, different preprocessing configurations can apply to them. The

information on how these files are related to each other and what settings apply to them are usually

stored in makefiles (when building software with the make tool) or in different project files (when

using different IDEs – Integrated Development Environments). Acquiring this information from these

files is a non-trivial task as different IDEs use different (and in most cases undocumented) file formats.

Makefiles present additional difficulties: getting information out of them is extremely hard because

they are not just suitable for code compilation; they can perform any arbitrary task. We introduce a

so-called compiler wrapping method for using makefile information and two different approaches for

handling IDE project files: IDE integration and project file import.

Step 2: Analysis of the source codes – creation of schema instances

In this step the input files are processed one by one using the project/configuration information

acquired in the first step. First, the preprocessing and extraction of preprocessing-related information

are carried out by the preprocessor. Second, the preprocessed file is handed over to the C++ analyzer,

which then analyzes the file and extracts C++ language-related information from it. Both tools create

the corresponding schema instance files.

6
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Figure 4: The fact extraction process.

Step 3: Linking of schema instances

After all the schema instance files have been created the linking (merging) of the related schema

instances is done. This way, similar to real compiler systems that create different files which contain

C++ entities that logically belong together (like libraries and executables), the related entities are

grouped together.

Step 4: Filtering the schema instances

In the case of large projects the previous steps can produce large schema instances which contain huge

amounts of extracted data. This is difficult to present in a useful way to the user. Different methods

can help in solving this problem, like selecting only a particular module for further processing.

Step 5: Processing the schema instances

Because different C++ re- and reverse engineering tools use different schemas for representing their

data, the (filtered) schema instances must be converted to different formats to be widely usable.

The Columbus framework

The fact extraction process is supported by our reverse engineering framework, which we present here.

We developed the Columbus Reverse Engineering Framework [8–12; 14; 15] in an R&D project with

the Nokia Research Center. The main motivation behind developing the framework was to create a

toolset which supports fact extraction and provides a common interface for other reverse engineering

tasks as well. The main tool is called Columbus REE (Reverse Engineering Environment), which is

the graphical user interface shell of the framework. The Columbus REE is not limited to the C++

language; all C++ specific tasks are performed by using different plug-in modules of it. Some of these

plug-in modules are present as basic parts, but the REE can be extended to support other languages
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Figure 5: The C++ specific configuration of Columbus REE.

and reverse engineering tasks as well. The actual analysis and fact processing is done by different

command line tools invoked by Columbus REE (these tools run on both Windows and GNU/Linux

operating systems). The Columbus framework currently includes the following tools, which are listed

and presented in the following:

• Columbus REE. The graphical user interface shell of the framework.

• Columbus IDE Add-ins. Graphical user interface shell functionality of the framework in IDEs.

• CANGccWrapper toolset. GCC compiler-wrapper tool with various helper scripts.

• CANPP. C/C++ preprocessor and preprocessing schema instance builder tool.

• CAN. C++ analyzer and schema instance builder tool.

• CANLink. C++ schema instance linker tool.

• CANFilter. C++ schema instance filter tool.

• CAN2*. C++ schema instance converter and processor tools.

Columbus REE (Reverse Engineering Environment)

The Columbus REE is a general reverse engineering environment. All C++ specific tasks are performed

by its plug-in modules which are categorized as extractor-, linker- and exporter plug-ins. The reader

should look at Figure 5 for the actual C++ specific configuration.

Columbus IDE Add-ins

A significant part of the Columbus REE is engaged in managing the project (configuration) of the

files to be analyzed. This work is also done by the popular IDEs, so it was logical to package the

remaining part of the Columbus REE – the part that deals with the extraction process – into a separate

component called Columbus DLL, which communicates with different so-called Columbus Add-ins for

IDEs. These add-ins are basically plug-ins that extend the functionality of the IDEs.
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Compiler wrapping

The make tool and the makefiles represent a powerful pair for configuring and building software

systems. Makefiles may contain not only references to files to be compiled and their settings, but also

various commands like those invoking external tools. These possibilities are a headache for reverse

engineers because every action in the makefile must be simulated in the reverse engineering tool.

We approached this problem from the other end and solved it by “wrapping” the compiler. This

means that we hide the original compiler by using a wrapper toolset. This toolset hides the original

compiler by changing the PATH environment variable to point to our scripts carrying the names of

the executable files of the compiler. If the original compiler should be invoked, one of our wrapper

scripts will start instead of it, which, after running the original compiler, also starts our analyzer

tools (through the program CANGccWrapper). We successfully used this approach with GCC for

extracting information from the open source real-world software system called Mozilla. This proves

the operability of this method.

Filtering

We offer tree methods in the CANFilter tool which help in filtering the schema instances: filtering

using C++ entity categories, by input source files and according to scopes.

Schema instance conversions

Because different C++ re- and reverse engineering tools use different schemas for representing their

data, the schema instances can be converted to other formats to achieve tool interoperability. We

can convert our schema instances to several formats. These formats are: CPPML, GXL, UML XMI,

FAMIX XMI, RSF, VCG, Maisa and HTML.

Derived outputs

We also use our schema instances to prepare different derived outputs. This means applying further

computations on the instances. The following outputs are available: metrics, design pattern mining

and SourceAudit.

Own contribution

I created an approach that lists five steps which have to be done to successfully carry out a fact

extraction task. I developed some significant parts of the Columbus reverse engineering framework,

which supports the process (among others the parts which are filled with striped lines in Figure 5). The

framework contains various tools and extension mechanisms so it relieves researchers of the burden

of having to write parsers for different purposes and allows them to focus on their own particular

research topic.

I designed and implemented the following parts of the framework: Columbus REE, C++ linker

plug-in, CPPML/GXL/Maisa exporter plug-ins, Columbus IDE Add-ins, CANLink, CANFilter and

the CANGccWrapper toolset, not to mention the following conversion algorithms: CPPML – C++

Markup Language (including the design of the language), GXL – Graph eXchange Language and

Maisa (the algorithms were implemented within the CAN2Cppml, CAN2Gxl and CAN2Maisa tools).

I also participated in the design of the Design Pattern Miner module.
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3 Design pattern recognition in C++ source code

Existing reverse engineering tools and methods produce a wide variety of abstract software represen-

tations. A natural strategy of abstracting object-oriented programs is to represent them as a set of

UML diagrams. While the automatic generation of UML diagrams from software code is supported

by a number of reverse engineering tools, recognizing design patterns [18] is, currently, almost to-

tally without advanced tool support. Design patterns are the most natural and useful assets when

recovering the architectural design and the underlying design decisions from the software code. The

third main result of the thesis offers two methods for discovering design pattern instances in C++

source code. First, we present a method [13] and toolset for recognizing design patterns with the

integration of Columbus and Maisa [25; 26]. The method combines the fact extraction capabilities

of the Columbus framework with the pattern mining ability of Maisa. Second, we present a new so-

lution to the problem of pattern detection with a sophisticated, parameterizable, fast graph matching

algorithm that recognizes design patterns in our schema instances [1]. It includes the detection of call

delegations, object creations and operation redefinitions. These are the elements that identify pattern

occurrences more precisely. The pattern descriptions are stored in our new XML-based format, the

Design Pattern Markup Language (DPML). This gives the user the freedom to modify the patterns,

adapt them to his or her own needs, or create new pattern descriptions.

Integration of Columbus and Maisa

Maisa is a software tool for the analysis of software architectures, developed in a research project at

the University of Helsinki. The real purpose of Maisa is to analyze design level UML diagrams and

compute architectural metrics for early quality prediction of the software system. In addition, Maisa

looks for instances of design patterns in UML diagrams. The level of abstraction is crucial for the

success of the analysis: the more detailed the diagrams are, the more accurate the results will be.

Therefore design pattern mining at the detailed level of source code is a promising way of improving

the practical usability of Maisa.

Because Maisa is implemented entirely in Java, it cannot access the schema instance directly in

memory, so we have instead chosen a trivial way of connecting the two tools: an exporter plug-in in

Columbus creates a file in Maisa’s input file format, which can then be loaded and further processed

by Maisa. The file created by Columbus contains the necessary reverse engineered information as

PROLOG facts about the main program entities (classes, attributes, etc.) and their relationships

(subclassing, composition, etc.).

Experiments

This design pattern recognition approach was tested with simple experiments. We implemented some

of the standard design patterns in C++ (Singleton, Visitor, Builder, Factory Method, Prototype,

Proxy and Memento) and afterwards used Columbus to analyze the code and to create the input files

for Maisa. Finally, Maisa was applied to recognize the design patterns, which succeeded in all these

cases. While our initial experiments show the potential capability of the pattern recognition approach,

more extensive experiments with real-world software must be carried out to verify the real power of

the method.
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Pattern miner algorithm in Columbus

Most of the existing approaches of recognizing design patterns in source code only search for basic

pattern structures. We developed a new method which overcomes this problem by using as much

useful information from the source as possible. First, we analyze the C++ source code with the

Columbus framework, which then builds the appropriate schema instance. Next, we load our pattern

descriptions which are stored in DPML files. Finally, our algorithm binds classes found in the source

code to pattern classes that are part of the pattern description and checks whether they are related

in the way that is described in the pattern. Here we use composition, aggregation, association and

inheritance relationships for classes, and call delegation, object creation and operation redefinition

(overriding) relationships for operations. The results of the function-body analysis is what gives us

more precision compared to other approaches in detecting design pattern occurrences in the source

code.

Experiments

We performed experiments on four real-word, publicly available C++ projects listed below:

• Jikes [21]. Open source Java compiler system from IBM.

• LEDA [23]. Library of efficient data types and algorithms.

• StarOffice Calc [30]. The spreadsheet application of StarOffice, a large C++ project that consist

of 6,307 source files (more than 1.2 million non-preprocessed non-empty lines of code).

• StarOffice Writer [30]. The word processing application of StarOffice, a large C++ project that

consist of 6,794 source files (more than 1.5 million non-preprocessed non-empty lines of code).

Table 1 shows the number of different design pattern instances found in the test projects. For

most design patterns we also wrote their “soft” versions in which we slightly relaxed the original

specifications in [18] (for instance, we did not demand that some classes be abstract). Except for

LEDA, the other three are more recent projects, and it was noticed that there were many more patterns

in these projects than in LEDA.

Own contribution

I introduced two methods for discovering design pattern instances in C++ source code.

First, I presented a method and tool set for recognizing design patterns with the integration of

Columbus and Maisa. The method combines the fact extraction capabilities of the Columbus reverse

engineering framework with the clause-based pattern mining ability of Maisa. I analyzed the C++

code with Columbus, and I wrote the schema instance converter algorithm to export the collected

facts to a form understandable to Maisa. This form is a clause-based design notation in PROLOG.

Second, I gave a new solution to the problem of pattern detection which includes the detection

of call delegations, object creations and operation redefinitions. These are the elements that identify

pattern occurrences more precisely. The pattern descriptions are stored in an XML-based format

designed by me, the Design Pattern Markup Language (DPML). This gives the user the freedom to
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Statistics Jikes LEDA Calc Writer

Abstract Factory - - - -
Builder - - 2 7
Builder soft - - 17 9
Factory Method - - - -
Factory Method soft - - 1 9
Prototype 1 - - 1
Prototype soft 1 - - 1
Singleton - - - -

Adapter Class - - - 16
Adapter Class soft - - 13 16
Adapter Object 54 - 27 62
Adapter Object soft 62 - 153 135
Bridge - - - -
Bridge soft - - 73 80
Decorator - - - -
Decorator soft - - - -
Proxy 36 - - 4
Proxy soft 44 - - 5

Chain of Responsibility - - - -
Iterator - - - -
Iterator soft - - 1 -
Strategy 4 1 10 5
Strategy soft 12 2 20 32
Template Method 5 - 94 101
Visitor - - - -
Visitor soft - - - 5

Sum total 235 6 442 525

Table 1: Number of design pattern instances found.

modify the patterns, adapt them to his or her own needs, or create new pattern descriptions. Then

the method was tested on four public-domain projects.
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4 Analysis of the fault-proneness of open source software

Open source software systems are becoming evermore important these days. Many large companies

are investing in open source projects and lots of them are also using this kind of software in their

own work. As a consequence, many of these projects are being developed rapidly and quickly become

very large. But because open source software is often developed by volunteers in their spare time, the

quality and reliability of the code may be uncertain. Various kinds of code measurements can be quite

helpful in obtaining information about the quality and fault-proneness of the code. We calculated the

object-oriented metrics validated in [2] for fault-proneness detection from the source code of the open

source internet suite Mozilla [27] with the help of our compiler wrapper toolset. We then compared

our results with those presented in [2]. One of our aims was to supplement their work with metrics

obtained from a real-world software system. We also compared the metrics of seven versions of Mozilla

(see Table 2 for some size metrics of the analyzed versions) to see how the predicted fault-proneness

of the software changed during its development cycle.

ver. NCL TLOC TNM TNA Definition of the metrics
1.0 4,770 1,127,391 69,474 47,428
1.1 4,823 1,145,470 70,247 48,070 NCL: Number of Classes.
1.2 4,686 1,154,685 70,803 46,695 TLOC: Total number of non-empty lines of code.
1.3 4,730 1,151,525 70,805 47,012 TNM: Total Number of Methods in the system.
1.4 4,967 1,171,503 72,096 48,389 TNA: Total Number of Attributes in the system.
1.5 5,007 1,169,537 72,458 47,436
1.6 4,991 1,165,768 72,314 47,608

Table 2: System-level metrics of the analyzed Mozilla versions.

It should be mentioned here that we performed complete analyses of the seven versions of Mozilla

and built up the full schema instances of them, which can be used for any re- and reverse engineering

task like architecture recovery and visualization. Here we just used them for calculating metrics. We

did not classify the metrics according to their purpose or usability, instead we used the results of Basili

et al. and studied the metrics according to [2].

Basili et al. studied object-oriented systems written by students in C++. They carried out an

experiment in which they set up eight project groups consisting of three students each. Each group

had the same task – to develop a small/medium-sized software system. Since all the necessary

documentation (for instance, reports about faults and their fixes) was available, they could search for

relationships between the fault density and metrics. They used a metrics suite that consisted of six

metrics and analyzed the distribution and correlations between them. Afterwards, they made use of

logistic regression to analyze the relationship between metrics and the fault-proneness of classes. We

refer to their projects as the reference project. In the following we list the six metrics they investigated.

• WMC – Weighted Methods per Class.

• DIT – Depth of Inheritance Tree.

• RFC – Response For a Class.

• NOC – Number Of Children.

• LCOM – Lack of Cohesion on Methods.

• CBO – Coupling Between Object classes.
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The X axes represent the values of the metrics. The Y axes represent the per-
centage of the number of classes having the corresponding metrics value.
The darker columns represent the original values of the reference project from [2],
while the brighter ones represent the values calculated for Mozilla 1.6.

Figure 6: Distribution of the metrics of the reference project and Mozilla.

Here we compare the metrics calculated for Mozilla 1.6 with those of the reference project. Figure 6

shows a comparison of the distribution of the metrics. It can be seen that the distributions of WMC,

RFC, NOC and LCOM are quite similar in both cases. On the other hand, the distributions of DIT

and CBO are quite different.

Ref. | Moz. WMC DIT RFC
Maximum 99.00 337.00 9.00 33.00 105.00 1,074.00
Minimum 1.00 0.00 0.00 0.00 0.00 0.00
Median 9.50 7.00 0.00 2.00 19.50 21.00
Mean 13.40 14.12 1.32 2.39 33.91 48.95
Standard deviation 14.90 22.16 1.99 2.90 33.37 81.99

Ref. | Moz. NOC LCOM CBO
Maximum 13.00 1,213.00 426.00 55,198.00 30.00 70.00
Minimum 0.00 0.00 0.00 0.00 0.00 0.00
Median 0.00 0.00 0.00 15.00 5.00 2.00
Mean 0.23 1.06 9.70 273.82 6.80 5.11
Standard deviation 1.54 17.44 63.77 1,597.53 7.56 7.49

The bold numbers represent the values of Mozilla 1.6, while
the normal ones are the values of the reference project.

Table 3: Descriptive statistics of the classes in the reference project and Mozilla.

We also compared the statistical information we obtained with the measurements. Table 3 shows

basic statistical information about the two systems. The Minimum values here are almost the same

but the Maximum values have increased dramatically. This is not surprising because Mozilla has

about 30 times more classes than the reference project. Since LCOM is proportional to the square of
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the size (number of methods) of a class, its very large value is to be expected. In Mozilla there are

about five thousand classes, so the extremely high value of NOC may seem surprising at first. But

the second biggest value of NOC is just 115, hence we think that the class with the largest value is

probably a common base class from which almost all other classes are inherited. Median and Mean

express “a kind of average” and they are more or less similar, except for the LCOM value (similar to

the Maximum value). Since in Mozilla there are many more classes and these are more variegated,

the metrics change over a wider range. The Standard Deviation values suggest this bigger variety of

the classes.

Reference WMC DIT RFC NOC LCOM CBO
WMC 1 0.02 0.24 0 0.38 0.13
DIT 1 0 0 0.01 0
RFC 1 0 0.09 0.31
NOC 1 0 0
LCOM 1 0.01
CBO 1

Mozilla WMC DIT RFC NOC LCOM CBO
WMC 1 0.16 0.53 0 0.64 0.39
DIT 1 0.54 0 0.08 0.23
RFC 1 0 0.31 0.51
NOC 1 0 0
LCOM 1 0.16
CBO 1

The bold numbers denote significant correlations.

Table 4: Correlations between the metrics of the reference project and Mozilla.

Basili et al. [2] also calculated the correlations of the metrics (see Table 4). They found that the

linear Pearson’s correlation between the object-oriented metrics studied are, in general, very weak.

Three coefficients of determination appear somewhat more significant, but they conclude that these

metrics are mostly statistically independent. We also calculated the same correlations in the case of

Mozilla 1.6 but we obtained different results. NOC is independent of the other metrics just like in

the reference project, but all the others have some correlation with each other. There are three very

weak correlations but the rest represent more or less significant correlations. What is more, there are

some very large values (for instance, between WMC and LCOM), so it follows that these metrics are

not totally independent and represent redundant information. This is surprising because Basili et al.

found that some of these metrics could be used for detecting fault-proneness while the others were

not significant.

Studying the changes in Mozilla’s metrics

Basili et al. drew up six hypotheses (one for each metric) that represent the expected connection

between the metrics and the fault-proneness of the code [2]. They tested these hypotheses and found

that some of the metrics were very good predictors, while others were not.

We present all the hypotheses and conclusions about the “goodness” of the metrics for detecting

fault-proneness as stated in [2] and examine the changes in Mozilla based on their conclusions.
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WMC hypothesis: “A class with significantly more member functions than its peers is more

complex and, by consequence, tends to be more fault-prone.” The WMC was found to be somewhat

significant in [2]. In Mozilla the rate of classes with a large WMC value decreased slightly but not

significantly. We can only say that Mozilla did not get worse according to this metric.

DIT hypothesis: “A class located deeper in a class inheritance lattice is supposed to be more

fault-prone because the class inherits a large number of definitions from its ancestors.” The DIT was

found to be very significant in [2], which means that the larger the DIT, the larger the probability of

fault-proneness. In Mozilla the rate of classes with seven or more ancestors increased slightly, but the

number of these classes is tiny compared to the classes as a whole. On the other hand, the rate of

classes which have no ancestors or only one or two increased significantly, while the rate of classes

with more than two but fewer than seven ancestors decreased markedly. This suggests that in more

recent versions of Mozilla there might be fewer faults.

RFC hypothesis: “Classes with larger response sets implement more complex functionalities and

are, therefore, more fault-prone.” The RFC was shown to be very significant in [2]. The larger the

RFC, the larger the probability of fault-proneness. In Mozilla the rate of classes whose RFC value is

larger than ten decreased (more than 70% of the classes fall into this group), while the rate of the rest

of the classes increased. Overall, this suggests an improvement in quality (so it is less fault-prone).

NOC hypothesis: “We expect classes with large number of children to be more fault-prone.”

The NOC appeared to be very significant but the observed trend is contrary to what was stated by the

hypothesis. The larger the NOC the lower the probability of fault-proneness [2]. In Mozilla the number

of classes with three or more children is negligible and it did not change significantly. Hence, we only

examined the remaining classes. The rate of classes with no or two children decreased while the rate

of classes with one child increased. According to this, Mozilla slightly improved in this respect.

LCOM hypothesis: “Classes with low cohesion among its methods suggests an inappropriate

design which is likely to be more fault-prone.” The LCOM was stated to be insignificant in [2], but

according to the hypothesis Mozilla got slightly worse because the rate of classes with the value eleven

or more increased slightly while the rest remained about the same.

CBO hypothesis: “Highly coupled classes are more fault-prone than weakly coupled classes.”

The CBO was said to be significant in [2] but it is hard to say anything about Mozilla using this

metric. The rate of classes whose CBO value is one, two or three increased and the rate of classes

whose CBO value is four, five or six decreased, which is good and may suggest an increase in quality.

On the other hand, the rate of classes with large CBO values increased, which suggests more faults.

Own contribution

This work describes three key results, where the first one and the third one are my own contributions:

(1) I showed that my compiler wrapper toolset realizes the fact extraction process in practice on real-

world software; (2) using the collected facts, object-oriented metrics were calculated and a previous

work [2] was supplemented with measurements made on the real-world software package called Mozilla;

and (3) using the calculated metrics I studied how Mozilla’s predicted fault-proneness changed over

seven versions covering one and a half years of development.
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N o. [16] [7] [12] [13] [1] [15]
1. • • •
2. • •
3. • •
4. •

Table 5: The relation between the thesis topics and the corresponding publications.

Conclusions

With the fact extraction process and framework I achieved it is now possible to reverse engineer the

source code of large, real-world software systems written in the C++ programming language. What

is more, this can be done without having to modify any source code, not even the makefiles or project

files.

During the fact extraction process our framework prepares a model of the analyzed C++ system

according to my well-defined schema. Having such a schema enables the community and industry to

improve existing reengineering tools and develop new ones that can seamlessly exchange information

about the software system being studied. I supplemented our framework with an application program-

ming interface based on the schema with which the extracted information can be easily accessed and

used. Output files in various formats can also be produced to promote tool interoperability.

Containing various algorithms for producing derived outputs – like object-oriented metrics – as

well, the framework provides a complete solution for reverse engineering C++ code so that it removes

the burden of having to write parsers for different purposes and permits researchers to focus on their

own research topic.

I have successfully utilized our fact extraction and representation technology to achieve two further

goals. First, I developed new methods for recognizing design pattern occurrences in C++ source code

and second, I analyzed several versions of the open-source internet suite Mozilla to study the changes

in its predicted fault-proneness and quality.

Lastly, Table 5 above summarizes which publications cover which results of the thesis.
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