University of Szeged
Department of Software Engineering

Modelling and Reverse
Engineering C++4 Source Code

Summary of the Ph.D. Thesis
of

Rudolf Ferenc

Supervisor:

Dr. Tibor Gyiméthy

Szeged
2004

Introduction

Software systems are rapidly growing and changing, so source code written today becomes legacy code
in a very short period of time. This is mainly due to the swiftly changing market requirements and also
to the ever-changing new technologies. The always tight deadlines often prevent the developers from
properly releasing a product with up-to-date documentation (like design descriptions and source code
comments). In such cases the only valid documentation is the source code itself. Some consequences
of the above include lots of clones in the source code, dead code and fault-prone code, to mention
only a few. Reengineering in general seeks to develop methods, techniques and tools to cure these
problems and make program comprehension and maintenance easier. The first part of a reengineering
process is called reverse engineering, which is defined as “the process of analyzing a subject system
to (a) identify the system’s components and their interrelationships and (b) create representations of
a system in another form or at a higher level of abstraction” [3].

The object-oriented paradigm has in recent years become the most popular one for designing and
implementing large software systems. By now, many object-oriented systems have reached a state
where they can be treated as legacy systems that need to be reengineered. In contrast with older
programming languages like COBOL, for instance, reengineering methods for object-oriented programs
are not yet fully elaborated. The really large and complex systems like telecom switching software and
office suites are generally written in the C++ programming language. This object-oriented language
is probably the most complex one and therefore, not surprisingly, it is least supported by reengineering
methods and tools. This language offers us reengineers the most exciting challenges and opportunities
for research.

To comprehend an unfamiliar software system we need to know many different things about it. We
refer to this information as facts about the source code. A fact is, for instance, the size of the code.
Another fact is whether a class has base classes. Actually any information that helps us understand
unknown source code is called a fact here. It is obvious that collecting facts by hand is only feasible
when relatively small source codes are being investigated. Real-world systems that contain several
million lines of source code can be only processed with the help of software tools.

In our approach tool-supported fact extraction is an automated process during which the subject
system is analyzed on a file by file basis with analyzer tools to identify the source code’s various
characteristics and their interrelationships and to create some kind of representation of the extracted
information. This information can afterwards be used by various reengineering tools like metrics cal-
culators and software visualizers. The format of the outputs of the analyzer tools is unfortunately not
standardized, almost every tool having its own format and this can lead to interoperability problems.
Every application that would like to use the information gathered by other tools has to implement
different convertors to gain access to the data.

This problematic situation was recognized by researchers and significant effort has been made to
tackle this problem. One of the fruits of this grand effort is GXL [20] (Graph eXchange Language),
which is a fine example of what can be achieved when we focus our energies. But using GXL itself is
not enough. It offers a common medium for exchanging graphs (i.e. nodes and edges) with the help of
XML, but does not describe how to represent various programming language-specific entities like C++
classes and functions. Researchers previously tackled this problem as well (e.g. [4-7; 16; 19; 22]), and
different solutions were proposed but none of these is widely accepted and used. Without a common

standard format (schema), smooth data exchange among different C++ reengineering tools is hard
to achieve. By schema we mean a description of the form of the data in terms of a set of entities
with attributes and relationships. A schema instance (in other words, a model) is an embodiment of
the schema which models a concrete software system. This concept is analogous to databases which
also have a schema (usually described by E-R diagrams) that is distinct from the concrete instance
data (data records). In this work we present among other things a schema for the C++ language.

Plenty of work has been done in the field of re- and reverse engineering, which make use of the
results of fact extraction. These include code measurements (different kinds of metrics), visualization,
documentation and code comprehension. But relatively few papers deal with the actual process of fact
extraction from C++ source code. We present methods with which automatic fact extraction can be
achieved from real-world software systems. We developed a framework called Columbus [8-12; 14; 15]
for supporting these methods and reverse engineering in general. The framework also takes care of
fact representation, filtering and conversion to various formats to achieve tool interoperability. It is
now used for research and education in many academic institutions around the world.

Going one step further in abstracting an analyzed software system we developed methods for
recognizing design patters in our schema instances; and, this way, in the source code as well. Design
patterns abstract practical solutions for frequently occurring design problems to an object-oriented
format and are the most natural means when recovering the architectural design and the underlying
design decisions from the software code.

To demonstrate that our methods could be used in practice we analyzed the source code of several
versions of the popular internet suite Mozilla [27] and calculated various metrics from it. We used
these metrics to predict the fault-proneness of the source code. We also compared the metrics of seven
versions of Mozilla and showed how the predicted fault-proneness of the software changed during its
development cycle.

| state four main results in the thesis, which are listed below:
1. Schema for the C++ programming language.
2. C++ fact extraction process and framework.
3. Design pattern recognition in C++ source code.
4. Analysis of the fault-proneness of open source software.

In the following sections | will briefly present these results and emphasize my own contributions at the
end of each section.

1 Schema for the C++ programming language

This work was motivated by the observation that successful data exchange among reengineering tools
is of crucial importance. This requires a common format so that the various tools (like front ends,
metrics tools and clone detectors) can “talk” to each other. We designed a schema, called the
Columbus Schema for C++ [7; 12; 16], which captures information about source code written in the
C++ programming language. The schema is modular, so it offers further flexibility for its extension or
modification. The schema is fine-grained, representing practically every relevant fact about the source
code so that logically equivalent source code can be generated from its instances. This schema seeks
to fill a gap that was present in the literature of reengineering science since the design of the C++
language. Nobody has published a C++ schema before in such detail as we have. The reason for this
is probably the extreme complexity of the C++ language. This first result of the thesis includes, in
addition to the design of the schema, its implementation (which is used by our C++ analyzer tool as
well) and algorithms for name resolution, type-checking, serialization, class diagram generation and
call graph creation, to name only a few.

The descriptions of the schema is given using standard UML class diagrams, which permits its
simple implementation and easy physical representation (e.g. using GXL). Despite the fact that it
is not suitable for formal descriptions, we chose UML because it is the de facto standard in object-
oriented design so the schema can be relatively easily comprehended by the users.

The structure of the schema

Owing to the great complexity of the C++ language, we decided to modularize our schema in a
similar way to that proposed in the discussion part of [16]. This also opens up the possibility for its
extension and modification. We divided the schema into six packages. These are the following:

e base: the package contains base classes and data types for the remaining parts of the schema.

struc: this package models the main program entities according to their scoping structure
(e.g. objects, functions and classes).

type: the classes in this package are used to represent the types of the entities.

templ: the package covers the representation of template parameter and argument lists.

statm: the package contains classes that model the statements.
e expr: the classes in this package represent every kind of expression.

In this summary we show only one of the diagrams, probably the most interesting one, that of the
struc package (see Figure 3). The explanation of the full schema can be found in the thesis.

We illustrate the use of the schema through an example instance of it. We will utilize the example
C++ source code given in Figure 1. The schema instance for the example is given in Figure 2. We use
an object diagram-like notation, where the object instances of the schema’s classes are represented
and the links that connect them clearly show the instances of various association and aggregation
relations. We have simplified the diagram for clarity by omitting attributes such as line numbers,
which are not necessary for comprehension.

template <typename T, int Size>
class Array {
T arr[Size];
public:
virtual const T& get(int idx) comnst {
return arr[idx];
};
virtual void set(int idx, const T& val) {
arr[idx] = val;
}
s

Figure 1: C4++ source code example.

1 strue:Namestac2
nzme : global namespace

sontains (1)
1. struezClassT smpl
hasParameterList name : Array
pl-Parameterl ist contains (1) centains (3) cantains (2)
el 1
cantains (1) contains (2)

15 gtrue::Object
name :arr
accessibility : ackPrivate

“8: strae:Function
name : get
constvolatile : evkConst
isvirtual : true
accessibliity : ackPublic

23 sfruc:Functien
name : set
hasBady costVoatie revkNone

isvirtual : tne
acoesshllity : ackPublic
18 statm: Block comains (1) contains (2)
V4 X

contais (1) (24 srue Parameter)

name : ldy

13 templ: ParameterType 14: templ: ParareterNonType
name : T name : Slze

contains (1)

hasBody

17 struc:Parameter
name : ldx
hasTypeR ep (19: statm :Retum
hasRetunvalue
hasTypeR hacTyseRep ™
asT ypeRes
hasTypeRep il 20: expr:ArraySubseript
)

25 stuc:Parameater
name : val

26 statm :Block

contains (1)

27: expr:Assignment

eontairs (Iaf) cantains (dght)

28: expArraySubscript

contains (left) ecntains (right)

hacTyoerep wforaToName

con:ains (ef) sontains (rignt;
hasTypeRep

3
tyoe:TypeRep
32 tyoe:TypeRey 38 typz_“vpeRep

contains (1) contains i1)

39: type TypeFormerFunc

hasRetumTyg eRep

hasParameterT ypeRep (1)

33: tupe TvpeFormerType

refersToName

refersToName

roforeToTypo hesTypeRop

2: type: SimrleType
kind - stkint

refergToName

hasParameterTypeRep (1)

43: type:TypeRep

contains (1)

44: tyne: TypeForme-Func

hasParameterTypeRer (2)
-~ =

refersToName

34 typeTypeRer

47 type:TypeRep
constolatile : evkCarst

contains (1) contains (2) contains (1) contains (2)
A

hasRoturnTypeRep
(35 type:T: oeFormerAT) (37 type: TypeFormerT pe) 41: type TvpeFormerPir | (42: type:TypeFermerType
knd - ptkR efsrence e TioeEs
pe_TypeRep
contains i1)

arravSize

refersToTyoe 46 type: TypaFormerType

rafereToType

refersToType 3 type SirpleType

kind stkVold

Figure 2: Schema instance (model) for the example.

Data exchange with other tools

Successful interchange of the data created by Columbus according to the Columbus Schema for C++
was achieved in several studies. The first application was created in cooperation with the Nokia
Research Center for Nokia's proprietary UML design environment TDE [31]. We used the Columbus
framework as the C4++ analyzer front end of TDE. The built-up schema instances were converted to
UML class diagrams and transferred to TDE though a COM interface. The Maisa [25; 26| project

0.1

‘bzse Nameu‘ ‘nase Pnsmcneu‘ ‘e pr \st‘ ‘expr Exp }

01 010710 1

hasAruments
. nasDpRva e
(orgerecy hesVa ue

contains Member . hasinifvialu ,
Faocessibiify Accessimity<md defraret hasConstruccorin tializer [Meminitializer] hesinifvalue Parameter
LetorageClass StorageClasskind -
refersToMember y TsETpsis - Boolean
String 0.1 ordsrod) ORY 1 osBitfols
Lnon SOSpec : String

pase: Positioned|
JANIIVAN

intializes| - {OR} - |initializes N
Z} Zﬁ T _T‘ ZF ‘ T4 {ordered}
| ! g

1

o] Scope | [NamespaceAllas] [Using | [Templinstance] [Enumeration | [Enumerator | Function ’ADbJe:t H [Tyeeder | [Asm
[\ [\ [«md uswngwrc\ [\ PsDefned Baa\eaﬂ [\ [mangladName : String [[\ }tex- String \
o Hkind : Furction nd 4 o "
derivesFrom ¢ [nasEnumerator |+ [isvirtusl Boolean conteins
Fecoessibility : Accessiollty<ind| R} gor HsPureVirtuel : Boolean
HsVirtual : Boolean gorvesFrom . {orderpd) Lisinine : Boolean 1 hasTypeRep
7 re‘ersToNgmaspace isEnumeratorot hasT ypeRep
isExplicit : Boolean
hisBaseSpecifer Class ‘ Name space 7~

hasTypeR
! Tind - Classking asTypeRep

hasFriendSpecif er gl sAbetrast Boolean e
. sDefined : Boolean naTemelArguments
arentsFridndship o
Friondspocifor—> grantsFrisndship instandares
|

‘ SRR G unctionTempl
ClassTempl

hasTemolParameters JAN
<pdvializes hasTemplParamezers
)) nstant ates [FunctionTemplSpec

[c1assTempispec

nsantatos %ﬁ‘
p Isf
nasTemplArguments — hasTemplAguments
_V'—‘_A

throweTyper g haeTyperep

hasBody atm Block
01
DR}
nasRody Comrryaioe
o 01 o Tosiocd
Pasldiabel statm:IdLabel

1

hasTemplArgum ents
hasTemplArguments

Tordered] ferderec}

Figure 3: Class diagram of the struc package, one of the six packages of the schema.

of the University of Helsinki for recognizing standard Design Patterns [18] in C++ programs also
successfully utilized the output created by Columbus. Another example of the schema’s use was in
a FAMOOS project with the Crocodile metrics tool [29]. An important application is the currently
ongoing work on the exchange of data between Columbus and the GUPRO tool [6], which uses GXL as
its input format. We also achieved a successful interchange with the rigi graph visualizer tool [24; 28].
Recently, we started a joint study with the University of Waterloo in Canada to visualize the Columbus
schema instances in PBS, the Portable Bookshelf [17].

Own contribution

This work was motivated by the observation that successful data exchange is crucial for re- and reverse
engineering tools. This requires a common format, one that can be used in various tools like front
ends and metrics tools. A standard schema still has to be found. In this work | propose an exchange
schema for the C++ language called the Columbus Schema for C++ for this purpose.

| designed the Columbus Schema for C++ and also implemented the schema which is part of
the reverse engineering framework called Columbus. The implementation also contains algorithms
for name resolution, type-checking, serialization, class diagram generation and call graph creation, to
name only a few.

2 C++ fact extraction process and framework

Extracting facts from small programs is simple enough and can be done even by hand. The real
challenge is to analyze real-world software systems that consist of several million lines of code. The
literature lacked methods and the community did not have tools with which such a complex task could
be efficiently performed. We present a process [15] that lists five key steps which have to be done to
successfully carry out a fact extraction task from C++ source code. The process deals with important
points such as handling configurations, linking the schema instances, filtering the data obtained and
converting it to other formats to facilitate data exchange. We also present the Columbus reverse
engineering framework [12] in detail, which readily supports the process. The framework is widely
used at universities across the world, and so far over 600 downloads of the framework have been
registered.

The fact extraction process

An outline of the process of fact extraction and presentation can be seen in Figure 4. The process
consists of five consecutive steps where each step uses the results of the previous one. In the following,
these steps will be specified in detail.

An important advantage of this approach is that the steps of the process can be performed
incrementally, that is, if the partial results of the certain steps are available and the input of the step
has not been altered, these results do not have to be regenerated.

Step 1: Acquiring project/configuration information

The source code of a software system is usually split into several files and these files are arranged into
folders and subfolders. In addition, different preprocessing configurations can apply to them. The
information on how these files are related to each other and what settings apply to them are usually
stored in makefiles (when building software with the make tool) or in different project files (when
using different IDEs — Integrated Development Environments). Acquiring this information from these
files is a non-trivial task as different IDEs use different (and in most cases undocumented) file formats.
Makefiles present additional difficulties: getting information out of them is extremely hard because
they are not just suitable for code compilation; they can perform any arbitrary task. We introduce a
so-called compiler wrapping method for using makefile information and two different approaches for
handling IDE project files: IDE integration and project file import.

Step 2: Analysis of the source codes — creation of schema instances

In this step the input files are processed one by one using the project/configuration information
acquired in the first step. First, the preprocessing and extraction of preprocessing-related information
are carried out by the preprocessor. Second, the preprocessed file is handed over to the C4++ analyzer,
which then analyzes the file and extracts C++ language-related information from it. Both tools create
the corresponding schema instance files.

Step 1 Step 2 Step 3 Step 4 Step 5

Acquiring
project /
configuration
information

project /
configuration
(\nformatio

CAN2Cppml

AN
[GER] | E0ERT

CAN2Metrics

makefiles
n.cpp
input for schema “?\ked ﬁlthered processed
analysis instances _schema _scnema output
instances instances

Figure 4: The fact extraction process.

Step 3: Linking of schema instances

After all the schema instance files have been created the linking (merging) of the related schema
instances is done. This way, similar to real compiler systems that create different files which contain
C++ entities that logically belong together (like libraries and executables), the related entities are
grouped together.

Step 4: Filtering the schema instances

In the case of large projects the previous steps can produce large schema instances which contain huge
amounts of extracted data. This is difficult to present in a useful way to the user. Different methods
can help in solving this problem, like selecting only a particular module for further processing.

Step 5: Processing the schema instances

Because different C++ re- and reverse engineering tools use different schemas for representing their
data, the (filtered) schema instances must be converted to different formats to be widely usable.

The Columbus framework

The fact extraction process is supported by our reverse engineering framework, which we present here.
We developed the Columbus Reverse Engineering Framework [8-12; 14; 15] in an R&D project with
the Nokia Research Center. The main motivation behind developing the framework was to create a
toolset which supports fact extraction and provides a common interface for other reverse engineering
tasks as well. The main tool is called Columbus REE (Reverse Engineering Environment), which is
the graphical user interface shell of the framework. The Columbus REE is not limited to the C++
language; all C++ specific tasks are performed by using different plug-in modules of it. Some of these
plug-in modules are present as basic parts, but the REE can be extended to support other languages

Visual shell

[PPV Exporter |+ [_CANZCEPmI_]
I \

[GXCExporter |« [CcAN2GxI |

[UML XM Exporter_|«—»[CAN2UmIXmi_|

[FAMIXXNI Exporter |«—» CANZFamixxmi |

Columbus | RSFExporter J«—»__CANZRst]

REE [VCGExporter |« _CAN2vVeg]
\ ’f-lf-thi:a"Eiiiodérf-' 1<—«>[CAN2Maisa |
[HTML Exporter \4—»[CAN2HtmI |
[DPM Exporter \4—»[CAN2Dpm _ |

[Metrics Exporter \«—»[CAN2Metrics |

CH++ Exlractoﬂ

Figure 5: The C++ specific configuration of Columbus REE.

and reverse engineering tasks as well. The actual analysis and fact processing is done by different
command line tools invoked by Columbus REE (these tools run on both Windows and GNU/Linux
operating systems). The Columbus framework currently includes the following tools, which are listed
and presented in the following:

e Columbus REE. The graphical user interface shell of the framework.

e Columbus IDE Add-ins. Graphical user interface shell functionality of the framework in IDEs.
o CANGccWrapper toolset. GCC compiler-wrapper tool with various helper scripts.

e CANPP. C/C++ preprocessor and preprocessing schema instance builder tool.

e CAN. C4++ analyzer and schema instance builder tool.

o CANLink. C++ schema instance linker tool.

o CANFilter. C4++ schema instance filter tool.

e CAN2* C++ schema instance converter and processor tools.

Columbus REE (Reverse Engineering Environment)

The Columbus REE is a general reverse engineering environment. All C++ specific tasks are performed
by its plug-in modules which are categorized as extractor-, linker- and exporter plug-ins. The reader
should look at Figure 5 for the actual C++ specific configuration.

Columbus IDE Add-ins

A significant part of the Columbus REE is engaged in managing the project (configuration) of the
files to be analyzed. This work is also done by the popular IDEs, so it was logical to package the
remaining part of the Columbus REE — the part that deals with the extraction process — into a separate
component called Columbus DLL, which communicates with different so-called Columbus Add-ins for
IDEs. These add-ins are basically plug-ins that extend the functionality of the IDEs.

8

Compiler wrapping

The make tool and the makefiles represent a powerful pair for configuring and building software
systems. Makefiles may contain not only references to files to be compiled and their settings, but also
various commands like those invoking external tools. These possibilities are a headache for reverse
engineers because every action in the makefile must be simulated in the reverse engineering tool.

We approached this problem from the other end and solved it by “wrapping” the compiler. This
means that we hide the original compiler by using a wrapper toolset. This toolset hides the original
compiler by changing the PATH environment variable to point to our scripts carrying the names of
the executable files of the compiler. If the original compiler should be invoked, one of our wrapper
scripts will start instead of it, which, after running the original compiler, also starts our analyzer
tools (through the program CANGccWrapper). We successfully used this approach with GCC for
extracting information from the open source real-world software system called Mozilla. This proves
the operability of this method.

Filtering

We offer tree methods in the CANFilter tool which help in filtering the schema instances: filtering
using C++ entity categories, by input source files and according to scopes.

Schema instance conversions

Because different C++ re- and reverse engineering tools use different schemas for representing their
data, the schema instances can be converted to other formats to achieve tool interoperability. We
can convert our schema instances to several formats. These formats are: CPPML, GXL, UML XMI,
FAMIX XM, RSF, VCG, Maisa and HTML.

Derived outputs

We also use our schema instances to prepare different derived outputs. This means applying further
computations on the instances. The following outputs are available: metrics, design pattern mining
and SourceAudit.

Own contribution

| created an approach that lists five steps which have to be done to successfully carry out a fact
extraction task. | developed some significant parts of the Columbus reverse engineering framework,
which supports the process (among others the parts which are filled with striped lines in Figure 5). The
framework contains various tools and extension mechanisms so it relieves researchers of the burden
of having to write parsers for different purposes and allows them to focus on their own particular
research topic.

| designed and implemented the following parts of the framework: Columbus REE, C++ linker
plug-in, CPPML/GXL/Maisa exporter plug-ins, Columbus IDE Add-ins, CANLink, CANFilter and
the CANGccWrapper toolset, not to mention the following conversion algorithms: CPPML — C++
Markup Language (including the design of the language), GXL — Graph eXchange Language and
Maisa (the algorithms were implemented within the CAN2Cppml, CAN2GxI and CAN2Maisa tools).
| also participated in the design of the Design Pattern Miner module.

9

3 Design pattern recognition in C++ source code

Existing reverse engineering tools and methods produce a wide variety of abstract software represen-
tations. A natural strategy of abstracting object-oriented programs is to represent them as a set of
UML diagrams. While the automatic generation of UML diagrams from software code is supported
by a number of reverse engineering tools, recognizing design patterns [18] is, currently, almost to-
tally without advanced tool support. Design patterns are the most natural and useful assets when
recovering the architectural design and the underlying design decisions from the software code. The
third main result of the thesis offers two methods for discovering design pattern instances in C++
source code. First, we present a method [13] and toolset for recognizing design patterns with the
integration of Columbus and Maisa [25; 26]. The method combines the fact extraction capabilities
of the Columbus framework with the pattern mining ability of Maisa. Second, we present a new so-
lution to the problem of pattern detection with a sophisticated, parameterizable, fast graph matching
algorithm that recognizes design patterns in our schema instances [1]. It includes the detection of call
delegations, object creations and operation redefinitions. These are the elements that identify pattern
occurrences more precisely. The pattern descriptions are stored in our new XML-based format, the
Design Pattern Markup Language (DPML). This gives the user the freedom to modify the patterns,
adapt them to his or her own needs, or create new pattern descriptions.

Integration of Columbus and Maisa

Maisa is a software tool for the analysis of software architectures, developed in a research project at
the University of Helsinki. The real purpose of Maisa is to analyze design level UML diagrams and
compute architectural metrics for early quality prediction of the software system. In addition, Maisa
looks for instances of design patterns in UML diagrams. The level of abstraction is crucial for the
success of the analysis: the more detailed the diagrams are, the more accurate the results will be.
Therefore design pattern mining at the detailed level of source code is a promising way of improving
the practical usability of Maisa.

Because Maisa is implemented entirely in Java, it cannot access the schema instance directly in
memory, so we have instead chosen a trivial way of connecting the two tools: an exporter plug-in in
Columbus creates a file in Maisa's input file format, which can then be loaded and further processed
by Maisa. The file created by Columbus contains the necessary reverse engineered information as
PROLOG facts about the main program entities (classes, attributes, etc.) and their relationships
(subclassing, composition, etc.).

Experiments

This design pattern recognition approach was tested with simple experiments. We implemented some
of the standard design patterns in C++ (Singleton, Visitor, Builder, Factory Method, Prototype,
Proxy and Memento) and afterwards used Columbus to analyze the code and to create the input files
for Maisa. Finally, Maisa was applied to recognize the design patterns, which succeeded in all these
cases. While our initial experiments show the potential capability of the pattern recognition approach,
more extensive experiments with real-world software must be carried out to verify the real power of
the method.

10

Pattern miner algorithm in Columbus

Most of the existing approaches of recognizing design patterns in source code only search for basic
pattern structures. We developed a new method which overcomes this problem by using as much
useful information from the source as possible. First, we analyze the C++ source code with the
Columbus framework, which then builds the appropriate schema instance. Next, we load our pattern
descriptions which are stored in DPML files. Finally, our algorithm binds classes found in the source
code to pattern classes that are part of the pattern description and checks whether they are related
in the way that is described in the pattern. Here we use composition, aggregation, association and
inheritance relationships for classes, and call delegation, object creation and operation redefinition
(overriding) relationships for operations. The results of the function-body analysis is what gives us
more precision compared to other approaches in detecting design pattern occurrences in the source
code.

Experiments

We performed experiments on four real-word, publicly available C++ projects listed below:

e Jikes [21]. Open source Java compiler system from IBM.
e LEDA [23]. Library of efficient data types and algorithms.

e StarOffice Calc [30]. The spreadsheet application of StarOffice, a large C++ project that consist
of 6,307 source files (more than 1.2 million non-preprocessed non-empty lines of code).

e StarOffice Writer [30]. The word processing application of StarOffice, a large C++ project that
consist of 6,794 source files (more than 1.5 million non-preprocessed non-empty lines of code).

Table 1 shows the number of different design pattern instances found in the test projects. For
most design patterns we also wrote their “soft” versions in which we slightly relaxed the original
specifications in [18] (for instance, we did not demand that some classes be abstract). Except for
LEDA, the other three are more recent projects, and it was noticed that there were many more patterns
in these projects than in LEDA.

Own contribution

| introduced two methods for discovering design pattern instances in C+-+ source code.

First, | presented a method and tool set for recognizing design patterns with the integration of
Columbus and Maisa. The method combines the fact extraction capabilities of the Columbus reverse
engineering framework with the clause-based pattern mining ability of Maisa. | analyzed the C++
code with Columbus, and | wrote the schema instance converter algorithm to export the collected
facts to a form understandable to Maisa. This form is a clause-based design notation in PROLOG.

Second, | gave a new solution to the problem of pattern detection which includes the detection
of call delegations, object creations and operation redefinitions. These are the elements that identify
pattern occurrences more precisely. The pattern descriptions are stored in an XML-based format
designed by me, the Design Pattern Markup Language (DPML). This gives the user the freedom to

11

Statistics | Jikes | LEDA | Calc [Writer

Abstract Factory - - - -
Builder - - 2 7
Builder soft - - 17 9
Factory Method - - - -
Factory Method soft - - 1 9
Prototype 1 - - 1
Prototype soft 1 - - 1
Singleton - - - -
Adapter Class - - - 16
Adapter Class soft - - 13 16
Adapter Object 54 - 27 62
Adapter Object soft 62 - | 153 135
Bridge - - - -
Bridge soft - - 73 80
Decorator - - - -
Decorator soft - - - -
Proxy 36 - - 4
Proxy soft 44 - - 5
Chain of Responsibility - - - -
Iterator - - - -
Iterator soft - 1 -
Strategy 4 1 10 5
Strategy soft 12 2 20 32
Template Method 5 - 94 101
Visitor - - - -
Visitor soft - - - 5
| Sum total | 235 | 6] 442 525 |

Table 1: Number of design pattern instances found.

modify the patterns, adapt them to his or her own needs, or create new pattern descriptions. Then
the method was tested on four public-domain projects.

12

4 Analysis of the fault-proneness of open source software

Open source software systems are becoming evermore important these days. Many large companies
are investing in open source projects and lots of them are also using this kind of software in their
own work. As a consequence, many of these projects are being developed rapidly and quickly become
very large. But because open source software is often developed by volunteers in their spare time, the
quality and reliability of the code may be uncertain. Various kinds of code measurements can be quite
helpful in obtaining information about the quality and fault-proneness of the code. We calculated the
object-oriented metrics validated in [2] for fault-proneness detection from the source code of the open
source internet suite Mozilla [27] with the help of our compiler wrapper toolset. We then compared
our results with those presented in [2]. One of our aims was to supplement their work with metrics
obtained from a real-world software system. We also compared the metrics of seven versions of Mozilla
(see Table 2 for some size metrics of the analyzed versions) to see how the predicted fault-proneness
of the software changed during its development cycle.

ver. NCL TLOC TNM TNA | Definition of the metrics
1.0 | 4,770 | 1,127,391 | 69,474 | 47,428
1.1 | 4,823 | 1,145,470 | 70,247 | 48,070 | NCL: Number of Classes.

1.2 | 4686 | 1,154,685 | 70,803 | 46,695 | TLOC: Total number of non-empty lines of code.
1.3 | 4,730 | 1,151,525 | 70,805 | 47,012 | TNM: Total Number of Methods in the system.
1.4 | 4,967 | 1,171,503 | 72,096 | 48,389 | TNA: Total Number of Attributes in the system.
1.5 | 5,007 | 1,169,537 | 72,458 | 47,436
1.6 | 4991 | 1,165,768 | 72,314 | 47,608

Table 2: System-level metrics of the analyzed Mozilla versions.

It should be mentioned here that we performed complete analyses of the seven versions of Mozilla
and built up the full schema instances of them, which can be used for any re- and reverse engineering
task like architecture recovery and visualization. Here we just used them for calculating metrics. We
did not classify the metrics according to their purpose or usability, instead we used the results of Basili
et al. and studied the metrics according to [2].

Basili et al. studied object-oriented systems written by students in C4++. They carried out an
experiment in which they set up eight project groups consisting of three students each. Each group
had the same task — to develop a small/medium-sized software system. Since all the necessary
documentation (for instance, reports about faults and their fixes) was available, they could search for
relationships between the fault density and metrics. They used a metrics suite that consisted of six
metrics and analyzed the distribution and correlations between them. Afterwards, they made use of
logistic regression to analyze the relationship between metrics and the fault-proneness of classes. We
refer to their projects as the reference project. In the following we list the six metrics they investigated.

o WMC — Weighted Methods per Class.

e DIT — Depth of Inheritance Tree.

e RFC — Response For a Class.

e NOC — Number Of Children.

LCOM - Lack of Cohesion on Methods.
e CBO - Coupling Between Object classes.

13

Comparison of reference project with Mozilla

0
0 11 22 33 4 5 66 77 8 99 110

RFC

0O 10 20 30 40 50 60 70 80 90 100

WMC

0 45 -E-J(-J 135 180 225 270 315 360 405 450
LCOM CBO

The X axes represent the values of the metrics. The Y axes represent the per-

centage of the number of classes having the corresponding metrics value.

The darker columns represent the original values of the reference project from [2],

while the brighter ones represent the values calculated for Mozilla 1.6.

Figure 6: Distribution of the metrics of the reference project and Mozilla.

Here we compare the metrics calculated for Mozilla 1.6 with those of the reference project. Figure 6
shows a comparison of the distribution of the metrics. It can be seen that the distributions of WMC,
RFC, NOC and LCOM are quite similar in both cases. On the other hand, the distributions of DIT
and CBO are quite different.

Ref. | Moz. WMC DIT RFC

Maximum 99.00 337.00 9.00 33.00 | 105.00 1,074.00
Minimum 1.00 0.00 0.00 0.00 0.00 0.00
Median 9.50 7.00 0.00 2.00 19.50 21.00
Mean 13.40 14.12 1.32 2.39 | 33.01 48.95
Standard deviation | 14.90 22.16 1.99 2.90 33.37 81.99
Ref. | Moz. NOC LCOM CBO

Maximum 13.00 1,213.00 | 426.00 55,198.00 30.00 70.00
Minimum 0.00 0.00 0.00 0.00 0.00 0.00
Median 0.00 0.00 0.00 15.00 5.00 2.00
Mean 0.23 1.06 9.70 273.82 6.80 5.11
Standard deviation 1.54 17.44 63.77 1,597.53 7.56 7.49

The bold numbers represent the values of Mozilla 1.6, while
the normal ones are the values of the reference project.

Table 3: Descriptive statistics of the classes in the reference project and Mozilla.

We also compared the statistical information we obtained with the measurements. Table 3 shows
basic statistical information about the two systems. The Minimum values here are almost the same
but the Maximum values have increased dramatically. This is not surprising because Mozilla has
about 30 times more classes than the reference project. Since LCOM is proportional to the square of

14

the size (number of methods) of a class, its very large value is to be expected. In Mozilla there are
about five thousand classes, so the extremely high value of NOC may seem surprising at first. But
the second biggest value of NOC is just 115, hence we think that the class with the largest value is
probably a common base class from which almost all other classes are inherited. Median and Mean
express “a kind of average” and they are more or less similar, except for the LCOM value (similar to
the Maximum value). Since in Mozilla there are many more classes and these are more variegated,
the metrics change over a wider range. The Standard Deviation values suggest this bigger variety of
the classes.

Reference | WMC DIT RFC NOC LCOM CBO
WMC 1 0.02 0.24 0 0.38 0.13
DIT 1 0 0 0.01 0
RFC 1 0 0.09 0.31
NOC 1 0 0
LCOM 1 0.01
CBO 1
Mozilla WMC DIT RFC NOC LCOM (CBO
WMC 1 0.16 053 0 0.64 0.39
DIT 1 054 0 0.08 0.23
RFC 1 0 0.31 0.51
NOC 1 0 0
LCOM 1 0.16
CBO 1

The bold numbers denote significant correlations.

Table 4: Correlations between the metrics of the reference project and Mozilla.

Basili et al. [2] also calculated the correlations of the metrics (see Table 4). They found that the
linear Pearson’s correlation between the object-oriented metrics studied are, in general, very weak.
Three coefficients of determination appear somewhat more significant, but they conclude that these
metrics are mostly statistically independent. We also calculated the same correlations in the case of
Mozilla 1.6 but we obtained different results. NOC is independent of the other metrics just like in
the reference project, but all the others have some correlation with each other. There are three very
weak correlations but the rest represent more or less significant correlations. What is more, there are
some very large values (for instance, between WMC and LCOM), so it follows that these metrics are
not totally independent and represent redundant information. This is surprising because Basili et al.
found that some of these metrics could be used for detecting fault-proneness while the others were
not significant.

Studying the changes in Mozilla’s metrics

Basili et al. drew up six hypotheses (one for each metric) that represent the expected connection
between the metrics and the fault-proneness of the code [2]. They tested these hypotheses and found
that some of the metrics were very good predictors, while others were not.

We present all the hypotheses and conclusions about the “goodness” of the metrics for detecting
fault-proneness as stated in [2] and examine the changes in Mozilla based on their conclusions.

15

WMC hypothesis: “A class with significantly more member functions than its peers is more
complex and, by consequence, tends to be more fault-prone.” The WMC was found to be somewhat
significant in [2]. In Mozilla the rate of classes with a large WMC value decreased slightly but not
significantly. We can only say that Mozilla did not get worse according to this metric.

DIT hypothesis: “A class located deeper in a class inheritance lattice is supposed to be more
fault-prone because the class inherits a large number of definitions from its ancestors.” The DIT was
found to be very significant in [2], which means that the larger the DIT, the larger the probability of
fault-proneness. In Mozilla the rate of classes with seven or more ancestors increased slightly, but the
number of these classes is tiny compared to the classes as a whole. On the other hand, the rate of
classes which have no ancestors or only one or two increased significantly, while the rate of classes
with more than two but fewer than seven ancestors decreased markedly. This suggests that in more
recent versions of Mozilla there might be fewer faults.

RFC hypothesis: “Classes with larger response sets implement more complex functionalities and
are, therefore, more fault-prone.” The RFC was shown to be very significant in [2]. The larger the
RFC, the larger the probability of fault-proneness. In Mozilla the rate of classes whose RFC value is
larger than ten decreased (more than 70% of the classes fall into this group), while the rate of the rest
of the classes increased. Overall, this suggests an improvement in quality (so it is less fault-prone).

NOC hypothesis: “We expect classes with large number of children to be more fault-prone.”
The NOC appeared to be very significant but the observed trend is contrary to what was stated by the
hypothesis. The larger the NOC the lower the probability of fault-proneness [2]. In Mozilla the number
of classes with three or more children is negligible and it did not change significantly. Hence, we only
examined the remaining classes. The rate of classes with no or two children decreased while the rate
of classes with one child increased. According to this, Mozilla slightly improved in this respect.

LCOM hypothesis: “Classes with low cohesion among its methods suggests an inappropriate
design which is likely to be more fault-prone.” The LCOM was stated to be insignificant in [2], but
according to the hypothesis Mozilla got slightly worse because the rate of classes with the value eleven
or more increased slightly while the rest remained about the same.

CBO hypothesis: “Highly coupled classes are more fault-prone than weakly coupled classes.”
The CBO was said to be significant in [2] but it is hard to say anything about Mozilla using this
metric. The rate of classes whose CBO value is one, two or three increased and the rate of classes
whose CBO value is four, five or six decreased, which is good and may suggest an increase in quality.
On the other hand, the rate of classes with large CBO values increased, which suggests more faults.

Own contribution

This work describes three key results, where the first one and the third one are my own contributions:
(1) I showed that my compiler wrapper toolset realizes the fact extraction process in practice on real-
world software; (2) using the collected facts, object-oriented metrics were calculated and a previous
work [2] was supplemented with measurements made on the real-world software package called Mozilla;
and (3) using the calculated metrics | studied how Mozilla's predicted fault-proneness changed over
seven versions covering one and a half years of development.

16

o.|[16] | [7]|[12] | [13]][1]|[15]

PP".’\’!—‘Z
°
°
°

Table 5: The relation between the thesis topics and the corresponding publications.

Conclusions

With the fact extraction process and framework | achieved it is now possible to reverse engineer the
source code of large, real-world software systems written in the C+-+ programming language. What
is more, this can be done without having to modify any source code, not even the makefiles or project
files.

During the fact extraction process our framework prepares a model of the analyzed C++ system
according to my well-defined schema. Having such a schema enables the community and industry to
improve existing reengineering tools and develop new ones that can seamlessly exchange information
about the software system being studied. | supplemented our framework with an application program-
ming interface based on the schema with which the extracted information can be easily accessed and
used. Output files in various formats can also be produced to promote tool interoperability.

Containing various algorithms for producing derived outputs — like object-oriented metrics — as
well, the framework provides a complete solution for reverse engineering C++ code so that it removes
the burden of having to write parsers for different purposes and permits researchers to focus on their
own research topic.

| have successfully utilized our fact extraction and representation technology to achieve two further
goals. First, | developed new methods for recognizing design pattern occurrences in C++ source code
and second, | analyzed several versions of the open-source internet suite Mozilla to study the changes
in its predicted fault-proneness and quality.

Lastly, Table 5 above summarizes which publications cover which results of the thesis.

Acknowledgements

First of all, | would like to thank my supervisor, Dr. Tibor Gyiméthy for supporting my work with useful
comments and letting me work at an inspiring department, the Department of Software Engineering.
| would also thank all my colleagues and friends Arpéd Beszédes, Ferenc Magyar, Laszlé Vidacs, Fedor
Szokody, Gabor Léki, Istvan Siket, Péter Siket, Zsolt Balanyi and LaszIé Miiller — who all participated
in developing and testing the Columbus framework — for striving so hard on this application. | would
also like to express my gratitude to David Curley for scrutinizing and correcting this thesis from a
linguistic point of view and Andras Kocsor for his useful advice.

Last, but not least, my heartfelt thanks goes to my wife Gyorgyi for providing a secure family
background during the time spent writing this work.

Rudolf Ferenc, November 20, 2004.

17

References

[1]

2]

3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Zsolt Balanyi and Rudolf Ferenc. Mining Design Patterns from C++ Source Code. In Proceedings
of the 19th International Conference on Software Maintenance (ICSM 2003), pages 305-314.
IEEE Computer Society, September 2003.

Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A Validation of Object-Oriented Design
Metrics as Quality Indicators. In /EEE Transactions on Software Engineering, volume 22, pages
751-761, October 1996.

E. J. Chikofsky and J. H. Cross Il. Reverse Engineering and Design Recovery: A Taxonomy. In
IEEE Software 7, pages 13-17, January 1990.

Thomas R. Dean, Andrew J. Malton, and Ric Holt. Union Schemas as a Basis for a C++
Extractor. In Proceedings of WCRE'01, pages 59-67, October 2001.

S. Demeyer, S. Ducasse, and M. Lanza. A Hybrid Reverse Engineering Platform Combining
Metrics and Program Visualization. In Proceedings of WCRE'99, 1999.

J Ebert, R Gimnich, H H Stasch, and A Winter. GUPRO — Generische Umgebung zum Program-
mverstehen, 1998.

Rudolf Ferenc and Arpad Beszédes. Data Exchange with the Columbus Schema for C++. In
Proceedings of the 6th European Conference on Software Maintenance and Reengineering (CSMR
2002), pages 59-66. IEEE Computer Society, March 2002.

Rudolf Ferenc and Arpad Beszédes. Az Objektumvezérelt Szoftverek Elemzése. In VIII. Orszagos

(Centendriumi) Neumann Kongresszus Elbéaddsok és Osszefoglalok, pages 463-474. Neumann
Janos Szamitégép-tudomanyi Tarsasdg, October 2003.

Rudolf Ferenc, Arpad Beszédes, and Tibor Gyiméthy. Extracting Facts with Columbus from
C++ Code. In Tool Demonstrations of the 8th European Conference on Software Maintenance
and Reengineering (CSMR 2004), pages 4-8, March 2004.

Rudolf Ferenc, Arpad Beszédes, and Tibor Gyiméthy. Fact Extraction and Code Auditing with
Columbus and SourceAudit. In Proceedings of the 20th International Conference on Software
Maintenance (ICSM 2004), page 513. IEEE Computer Society, September 2004.

Rudolf Ferenc, Arpéd Beszédes, and Tibor Gyiméthy. Tools for Software Maintenance and
Reengineering, chapter Extracting Facts with Columbus from C++ Code, pages 16—31. Franco
Angeli Milano, 2004.

Rudolf Ferenc, Arpdd Beszédes, Mikko Tarkiainen, and Tibor Gyiméthy. Columbus — Reverse
Engineering Tool and Schema for C++. In Proceedings of the 18th International Conference on
Software Maintenance (ICSM 2002), pages 172-181. IEEE Computer Society, October 2002.

Rudolf Ferenc, Juha Gustafsson, Laszlé Miiller, and Jukka Paakki. Recognizing Design Patterns
in C++ programs with the integration of Columbus and Maisa. Acta Cybernetica, 15:669-682,
2002.

Rudolf Ferenc, Ferenc Magyar, Arpéd Beszédes, Akos Kiss, and Mikko Tarkiainen. Columbus —
Tool for Reverse Engineering Large Object Oriented Software Systems. In Proceedings of the
7th Symposium on Programming Languages and Software Tools (SPLST 2001), pages 16-27.
University of Szeged, June 2001.

18

[15]

[16]

[17]

18]
[19]
[20]
[21]
[22]
23]
[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

Rudolf Ferenc, Istvan Siket, and Tibor Gyiméthy. Extracting Facts from Open Source Software.
In Proceedings of the 20th International Conference on Software Maintenance (ICSM 2004),
pages 60-69. IEEE Computer Society, September 2004.

Rudolf Ferenc, Susan Elliott Sim, Richard C Holt, Rainer Koschke, and Tibor Gyiméthy. Towards
a Standard Schema for C/C++. In Proceedings of the 8th Working Conference on Reverse
Engineering (WCRE 2001), pages 49-58. IEEE Computer Society, October 2001.

P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. Mueller, J. Mylopoulos, S. Perelgut,
M. Stanley, and K. Wong. The Software Bookshelf. In IBM Systems Journal, volume 36, pages
564-593, November 1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns : Elements of
Reusable Object-Oriented Software. Addison-Wesley Pub Co, 1995.

Ric Holt, Ahmed E. Hassan, Bruno Lagu, Sbastien Lapierre, and Charles Leduc. E/R Schema
for the Datrix C/C++/Java Exchange Format. In Proceedings of WCRE'00, November 2000.

Ric Holt, Andreas Winter, and Andy Schirr. GXL: Towards a Standard Exchange Format. In
Proceedings of WCRE'00, pages 162-171, November 2000.

IBM Jikes Project.

http://oss.software.ibm.com/developerworks/opensource/jikes.

E Mamas and K Kontogiannis. Towards Portable Source Code Representations Using XML. In
Proceedings of WCRE'00, pages 172-182, November 2000.

K. Mehlhorn and S. Naeher. LEDA: A Platform for Combinatorial and Geometric Computing. In
Cambridge University Press, 1997.

Hausi A Miiller, Kenny Wong, and Scott R Tilley. Understanding Software Systems Using Reverse
Engineering Technology. In Proceedings of ACFAS, 1994.

L. Nenonen, J. Gustafsson, J. Paakki, and A.l. Verkamo. Measuring Object-Oriented Software
Architectures from UML Diagrams. In Proceedings of the 4th International ECOOP Workshop
on Quantitative Approaches in Object-Oriented Software Engineering, pages 87-100, 2000.

J. Paakki, A. Karhinen, J. Gustafsson, L. Nenonen, and A.l. Verkamo. Software Metrics by
Architectural Pattern Mining. In Proceedings of he International Conference on Software: Theory
and Practice (16th IFIP World Computer Congress)., pages 325-332, 2000.

Christian Robottom Reis and Renata Pontin de Mattos Fortes. An Overview of the Software
Engineering Process and Tools in the Mozilla Project. In Proceedings of the Workshop on Open
Source Software Development, pages 155-175, February 2002.

The Rigi Homepage. http://www.rigi.csc.uvic.ca.

Claudio Riva, Michael Przybilski, and Kai Koskimies. Environment for Software Assessment. In
Proceedings of ECOOP’99, 1999.

The StarOffice Homepage.
http://www.sun.com/software/star/staroffice.

A Taivalsaari and S Vaaraniemi. TDE: Supporting Geographically Distributed Software Design
with Shared, Collaborative Workspaces. In Proceedings of CAISE'97, LNCS 1250, pages 389-408.
Springer Verlag, 1997.

19

