Selective N-alkylation/ α -arylation of N-heterocycles

Ph.D. Thesis

Judit Sas

Supervisors:

Prof. Dr. Ferenc Fülöp

Dr. István Szatmári

Institute of Pharmaceutical Chemistry
University of Szeged

"Research is to see what everybody else has	s seen, and to think what nobody else has thoug	ht."
	Albert Szent-Györg	gyi
	Albert Szent-Györg	ryi
	Albert Szent-Györg	yyi
	Albert Szent-Györg	yyi
	Albert Szent-Györg	ryi

CONTENTS

CONTENTS	3
PUBLICATIONS	4
1. INTRODUCTION AND AIMS	6
2. LITERATURE BACKGROUND	8
2.1. Aza-Friedel–Crafts alkylation of naphthol derivatives	8
2.2. C-3 substitution of indole derivatives	11
2.2.1. Oxidative coupling of indole derivatives with cyclic amines	11
2.2.2. Miscellaneous synthetic pathways	24
3. RESULTS AND DISCUSSION	26
3.1. N-Alkylation of cyclic amines with 2- or 1-naphthol	26
3.2. Aza–Friedel Crafts alkylation of partially saturated cyclic imines with electron-rich and compounds	
3.2.1. α-Arylation of 3,4-dihydroisoquinoline with indole derivatives	39
3.2.2. α -Arylation of 6,7-dihydrothieno[2,3- c]pyridine and 4,6-dihydro-3 H -benz[c]azer with indole derivatives	-
3.2.3. α -Arylation of 4,9-dihydro-3 <i>H</i> - β -carboline with indole or naphthol derivatives	44
3.2.3.1. α -Arylation of 4,9-dihydro-3 <i>H</i> - β -carboline with indole derivatives	44
3.2.3.2. α -Arylation of 4,9-dihydro-3 <i>H</i> - β -carboline with naphthol analogues	45
4. SUMMARY	50
5. ACKNOWLEDGEMENTS	52
6. REFERENCES	53
7 ANNIEW	57

PUBLICATIONS

Papers related to the thesis

I. István Szatmári, Judit Sas, Ferenc Fülöp

Catalyst-free coupling of indole derivatives with 3,4-dihydroisoquinoline and related compounds

Tetrahedron Lett., 2013, 54, 5069-5071. DOI: 10.1016/j.tetlet.2013.07.039

IF: 2.391

II. Judit Sas, István Szatmári, Ferenc Fülöp

Selective *N*-alkylation of isoquinolines, benzazepines and thienopyridines with aromatic aldehydes and naphthols

Tetrahedron, 2015, 71, 7216-7221. DOI: 10.1016/j.tet.2015.03.011

IF: 2.641

III. Judit Sas, István Szatmári, Ferenc Fülöp

One-pot $\alpha\text{-arylation}$ of $\beta\text{-carboline}$ with indole and naphthol derivatives

Curr. Org. Synth., in press

IF: 2.117

IV. István Szatmári, Judit Sas, Ferenc Fülöp

C-3 functionalization of indole derivatives with isoquinolines

Curr. Org. Chem., submitted

Conference lectures

V. Sas Judit

Új indolilizokinolin- és indolilbenzazepin-származékok szintézise

XXXV. Kémiai Előadói Napok

Szeged, 2012. október 29-31. Absztr.: 205.

VI. Sas Judit, István Szatmári and Ferenc Fülöp

Új indolilizokinolin-, indolilbenzazepin- és indoliltienopiridin-származékok szintézise MTA Heterociklusos és Elemorganikus Kémiai Munkabizottság ülése Balatonszemes, 2013. június 5-7.

VII. Judit Sas, István Szatmári and Ferenc Fülöp

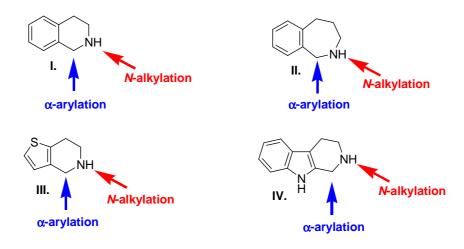
Catalyst-free coupling of indole derivatives with 3,4-dihydroisoquinoline and related compounds

15th Blue Danube Symposium on Heterocyclic Chemistry

1-5th September, 2013 Olomouc, Czech Republic, Abstr.: PO-1

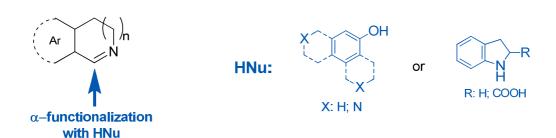
VIII. Judit Sas, István Szatmári and Ferenc Fülöp

Catalyst-free coupling of partially unsaturated β -carboline with indole and naphthol derivatives


15th Tetrahedron Symposium, Challenges in Bioorganic and Organic Medicinal Chemistry 24-27th June, 2014 London, UK, Abstr.: P2.35

1. INTRODUCTION AND AIMS

The Mannich reaction¹ is an important reaction involving C–C bond formation that is widely used in the syntheses of secondary and tertiary amine derivatives and as a key step in the syntheses of many bioactive molecules and complex natural products.^{2,3} More than one hundred years ago, Mario Betti reported a straightforward synthesis of 1-(α-aminobenzyl)-2-naphthol (the Betti base),⁴⁻⁸ starting from 2-naphthol, benzaldehyde and ammonia. The Betti procedure can be interpreted as a modified Mannich reaction (mMR). The reaction conditions and the method for the isolation of the synthesized Mannich products are determined to a considerable extent by the character of the nitrogen source used (NH₃ or amine).⁸


The importance of the aminonaphthols prepared via mMRs has recently increased because they have proved to be excellent model compounds for study of the α -arylation/N-alkylation of cyclic amines. ⁹⁻¹¹ When pyrrolidine was aminoalkylated with electron-rich aromatic compounds in the presence of aromatic aldehydes, the two possible main products, i.e. α -arylated or N-alkylated, could be isolated only if the aldehyde component was added extremely slowly to the reaction mixture containing acid as catalyst. It was also demonstrated that 2-naphthol can be sufficiently acidic to promote the required tautomerization that determines the possibility of formation of the α -arylated/N-alkylated products. ¹⁰

The primary aim of my PhD work was to investigate the application of 1,2,3,4-tetrahydroisoquinoline (**I**) and analogous secondary amines such as 2,3,4,5-tetrahydro-1*H*-benz[c]azepine (**II**), 4,5,6,7-tetrahydrothieno[3,2-c]pyridine (**III**) and 2,3,4,9-tetrahydro-1*H*-pyrido[3,4-b]indole (**IV**) in mMRs. A further aim was a systematic investigation of the α -arylation/N-alkylation process starting from tetrahydroisoquinoline, tetrahydrobenzazepine, tetrahydrothieno[3,2-c]pyridine or 2,3,4,9-tetrahydropyrido[3,4-b]indole by using 2- or 1-naphthol as nucleophile in the presence of benzaldehyde.

The reactions between electron-rich aromatic compounds such as 1- or 2-naphthol^{8,12-14} and quinolinol or isoquinolinol¹⁵ with 3,4-dihydroisoquinoline, first described by our group, can be interpreted as the aza-Friedel–Crafts alkylation of electron-rich aromatic compounds with cyclic amines containing a polarized double bond (C=N). Through the use of different reagents and/or substrates, the reactions were subsequently extended to the synthesis of 1-hydroxynaphthyl-substituted tetrahydroisoquinoline derivatives. ¹⁶⁻¹⁸ The modifications were mostly restricted to the use of 3,4-dihydroisoquinoline as cyclic imine, and the aim of my PhD work was therefore to investigate the possibility of the application of other partially saturated cyclic imines such as 4,6-dihydro-3*H*-benz[c]azepine, 6,7-dihydrothieno[2,3-c]pyridine and 4,9-dihydro-3*H*- β -carboline.

Another goal was to test the scope and limitations of this aza-Friedel–Crafts reaction starting from the above-mentioned cyclic imines and indole and its derivatives as electron-rich aromatic compounds.

2. LITERATURE BACKGROUND

2.1. Aza-Friedel-Crafts alkylation of naphthol derivatives

Fülöp *et al.* reported the first syntheses of 1-(hydroxynaphthyl)-substituted 1,2,3,4-tetrahydroisoquinolines (**4a-c** and **5**, Table 1) in which 1- or 2-naphthol was reacted with 3,4-dihydroisoquinolines. The moderate yields of the reactions performed at ambient temperature were significantly increased by applying solvent-free microwave (MW) heating (Table 1, entries 1, 3, 16, 18 and 19). The naphthol additions of 3-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline proved to be highly diastereoselective processes, resulting in the *cis* isomers as the main or the only products (Table 1, entries 4 and 19). The reported to the first syntheses of 1-(hydroxynaphthyl)-substituted 1, entries 4 and 19).

A Canadian research group later published the syntheses of some 1-(hydroxynaphthyl)-substituted 1,2,3,4-tetrahydroisoquinoline derivatives by the same route, but with some modifications (Table 1, entries 2, 5-9 and 17). 19-21

Table 1. Aza-Friedel–Crafts reaction between naphthols and dihydroisoquinolines

$$R^1$$
 R^2
 R^3
 R^4
 R^4
 R^4
 R^5
 R^4
 R^5
 R^4
 R^4
 R^5
 R^4
 R^4
 R^4
 R^4
 R^4
 R^5
 R^4
 R^4

Entry	Product	R ¹⁻⁶	Conditions	Isolated yield (%)	References
1	4 a	1	Neat, MW, 90 °C, 20 min \rightarrow 70 °C, 30 min	65	12
2	4a	-	Neat, 70 °C, 16 h	87	14, 21
3	4b	$R^1 = OMe$	Neat, MW, 90 °C, 20 min \rightarrow 70 °C, 30 min	56	12
4	4c	$R^1 = OMe$ $R^2 = Me$	Neat, MW, 90 °C, 10 min \rightarrow 70 °C, 30 min	61	12
5	4c	$R^5 = OMe$	Neat, 80 °C, overnight	89	14, 20, 21
6	4e	$R^3 = OMe$	Neat, 80 °C, overnight	100	14, 20, 21
7	4f	$R^6 = OMe$	Neat, 80 °C, overnight	95	14, 20, 21

8	4g	R ⁵ = COPh	Neat, 80 °C, overnight	75	14, 20, 21
9	4h	$R^5 = Br$	Neat, 80 °C, overnight	85	14, 20, 21
10	4i	$R^3 = COOH$	Neat, 80 °C, overnight	83	20
11	4j	$R^3 = $ CH_2OH	Neat, 80 °C, overnight	90	20
12	4k	$R^3 = OH$	Neat, 80 °C, overnight 2 equiv. DHI	89	20
13	41	$R^6 = OH$	Neat, 80 °C, overnight	72	20
14	4m	$R^4 = OH$	Neat, 80 °C, overnight	86	20
15	4n	$R^3 = Ph$	Neat, 80 °C, overnight	71	20
16	5a	-	Neat, MW, 90 °C, 20 min →70 °C, 30 min	85	12
17	5a	-	Neat, 80 °C, overnight	96	14, 20, 21
18	5b	$R^1 = OMe$	Neat, MW, 100 °C, 20 min →80 °C, 40 min	72	12
19	5c	$R^1 = OMe$ $R^2 = Me$	Neat, MW, 90 °C, 20 min →70 °C, 40 min	84	12

MacLeod *et al.* published the synthesis of **8a-g** in enantiomerically pure form, starting from 2-naphthol analogues and (R)-3-phenyl-3,4-dihydroisoquinoline. The arrangement of the naphthyl and phenyl substituents in **8a-g** was found to be *cis* (Table 2). The isolated compounds were used as catalyst in the asymmetric addition of diethylzinc to aldehydes, but only modified enantiomeric excesses were found (57-92%). The isolated yields and optimum conditions are shown in Table 2.

Table 2. Synthesis of non-racemic 1-(hydroxynaphthyl)-substituted 1,2,3,4-tetrahydroiso-quinoline

$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
Product	R	Conditions	Yield (%)					
(1S,3R)-8a	Н	H ₂ O, 80 °C, overnight	52					
(1S,3R)-8b	-СН ₂ - ОН	H ₂ O, 80 °C, overnight	40					

(1S,3R)-8c		H ₂ O, 80 °C, overnight	48
(1S,3R)-8d	OMe	H ₂ O, 80 °C, overnight	69
(1S,3R)-8e	OMe	H ₂ O, 80 °C, overnight	48
(1S,3R)-8f	X	H ₂ O, 80 °C, overnight	56
(1S,3R)-8g		H ₂ O, 80 °C, overnight	54

The solvent-free syntheses of 1-hydroxyquinolyl- and 1-hydroxyisoquinolyl-1,2,3,4-tetrahydroisoquinoline derivatives (**10** and **11**, Scheme 1) from *N*-containing 1-naphthol or 2-naphthol derivatives and 3,4-dihydroisoquinolines (**9**) were achieved through classical heating at 80-100 °C and MW agitation at the same temperature. Both reaction conditions yielded the products in good yields (57-92%), but the use of MW conditions allowed a decrease of the reaction time from 10-50 h to 1.5-3.5 h.¹⁵

Scheme 1

Palmieri *et. al* published the aza-Friedel–Crafts reactions by using nitrogen-containing naphthol derivatives as starting compounds. The reaction was extended by starting from five- and six-membered cyclic imines (**12a** or **12b**) and 1- or 2-naphthol analogues to give **13a,b-15a,b**, or from 3,4-dihydroisoquinoline (**12c**) and 4-methoxy-1-naphthol or 2-naphthol to give **14c** and **15c** (Scheme 2).¹⁸

As an extension of the reaction, Palmieri *et al.* published the preparation of **13a,b-15a,b** from five- and six-membered cyclic imines (**12a, 12b**) and 1- or 2-naphthol, and the synthesis of **14c** and **15c** by the reaction of 3,4-dihydroisoquinoline (**12c**) and 4-methoxy-1-naphthol or 2-naphthol (Scheme 2). The absolute configurations of **13a** and **13b** were ascertained by X-ray analysis and chiroptical methods (ECD) after resolution of the corresponding racemates with

(*R*,*R*)-tartaric acid. Additionally, all the prepared racemic compounds (**13-15**) were transformed to their *N*-methylated derivatives (**16-18**) by using formaldehyde, followed by reduction with NaBH₄.¹⁸

Scheme 2

2.2. C-3 substitution of indole derivatives

2.2.1. Oxidative coupling of indole derivatives with cyclic amines

Cross-dehydrogenative coupling (CDC) is one of the most powerful C-H activation processes for the construction of C-C bonds under oxidative conditions. In general, the oxidative protocol involves metal catalysts in the presence of oxygen or an organic oxidant. In essence, the oxidative coupling produces a new C-X bond from C-H and X-H fragments in the presence of a catalyst and a sacrificial oxidant. In contrast with traditional metal catalyst cross-coupling reactions, in the case of CDC the coupling partners do not require prefunctionalization, which helps to reduce waste and to streamline the synthesis (Fig. 1).

$$\begin{array}{c}
R \\
R \rightarrow C - H + H - X \\
R
\end{array}$$

$$\begin{array}{c}
CDC \longrightarrow R \rightarrow C - X \\
R
\end{array}$$

$$\begin{array}{c}
R \rightarrow C - X \\
C \rightarrow X
\end{array}$$

Fig. 1. Overall outline of CDC

Li *et al.* first synthesized **21aa** via the CuBr-catalysed indolation of tetrahydroisoquinoline. The highest yield was attained under neat conditions at 50 °C overnight with *tert*-butyl hydroperoxide (TBHP, 5-6 mol/L in *n*-decane) as oxidant. In this case, **21aa** was the only product and the intermediate 1-*tert*-butylperoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline was not detected (Table 3, entry 1).^{22,23} Similar yields were observed by Chua and Quing with CuBr as catalyst and benzoyl peroxide (BPO) as oxidant (Table 3, entry 2).²⁴

Wu *et al.* described the process of cross-dehydrogenative hydrogen evolution, in which no oxidant was used and only hydrogen was generated as a side-product. A combined eosin Y and graphene-supported RuO₂ nanocomposite (G-RuO₂) was applied as catalyst and photosensitizer (Table 3, entry 3).²⁵ Eosin Y was combined with Co(dmgH)₂Cl₂ (dmgH = dimethyilglyoximate) by Wu *et al*,²⁶ and **21aa** was isolated in similar yield. In this case, a mixture of MeCN and H₂O was used as solvent, the reaction mixture was deaerated by the bubbling of N₂ through it, and it was then irradiated by green LEDs (Table 3, entry 4).

Some research groups have used different gold catalysts to transform *N*-substituted 1,2,3,4-tetrahydroisoquinolines (Table 3, entries 6 and 7).^{28,29} Feng *et al.* achieved an excellent yield for the preparation of **21aa** (92%) by using NaAuCl₄ as catalyst with TBHP as oxidant at room temperature (Table 3, entry 7).²⁹

The reaction time was dramatically decreased (30 min) when Su *et al.* made use of high-speed ball-milling in the presence of 2,3-dichloro-5,6-dicyanoquinone (DDQ) as oxidant. The reaction was catalysed efficiently by the application of two recoverable copper balls without any additional metal catalyst (Table 3, entry 9).³¹

The oxidative coupling of *N*-phenyltetrahydroisoquinoline with indole in the presence of catalytic amounts of a triarylaminium salt was reported by Huo *et al*. The highest yield (82%) was achieved with tris(4-bromophenyl)aminium hexachloroantimonate (TBPA⁺•SbCl₆⁻) as catalyst at room temperature in THF (Table 3, entry 11). However, when 2,2,6,6-tetramethylpiperidin-1-yloxyl was used as catalyst, only a low yield (25%) was observed.³³

Iron(III) has been applied as another class of catalysts. Ratnikov *et al.* used iron(III) chloride catalysis in the aerobic oxidation of **19a** with 1*H*-indole (**20a**) as nucleophile to obtain **21aa** under mild conditions (without TBHP as oxidant), though after a relatively long reaction time (5 days) (Table 3, entry 14)³⁶, while Che *et al.* applied an SBA-15-supported iron terpyridyl complex as catalyst ([Fe(terpy)₂]²⁺ (terpy = 2,2':6',2''-terpyridine)) with different oxidants for the synthesis of **21aa**. The optimum conditions are given in Table 3, entry 15.³⁷

Table 3. Reaction conditions for the synthesis of 1-(3a,7a-dihydro-1*H*-indol-3-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (**21aa**)

Entry	Catalyst and/or oxidant, conditions	Yield (%)	Ref.	Entry	Catalyst and/or oxidant, conditions	Yield (%)	Ref.
1	CuBr, TBHP neat, 50 °C, overnight	79ª	22,23	10	V ₂ O ₅ , O ₂ H ₂ O, 100 °C, 24 h	71 ^a	32
2	CuBr, BPO DCM, reflux, 5-10 h	79ª	24	11	TBPA ⁺ •SbCl ₆ ⁻ THF, air, rt, 6 h	82ª	33
3	eosin Y, G-RuO ₂ irradiated by visible light (hv > 450nm), N ₂ , rt, 20 h	80ª	25	12	2ClAQN, O ₂ irradiated by visible light (hv > 450nm), MeOH, 40 h	31 ^a	34
4	eosin Y, Co(dmgH) ₂ Cl ₂ irradiated by green LEDs (hv = 525nm), N ₂ , H ₂ O:MeCN (4:1), 16-22 h	83ª	26	13	Ru(bpy) ₃ Cl ₂ irradiated by blue LEDs (hv = 435 nm), BrCCl ₃ , DMF, KOtBu, 3 h	83ª	35

5	platinum(II) terpyridyl complex, FeSO ₄ irradiated by blue LEDs (hv = 450nm), DMF, ambient air, 4 h	81ª	27	14	FeCl ₃ ·6H ₂ O, O ₂ EtOH, 40 °C, 5 days	56ª	36
6	CoCl ₂ ,dmgH irradiated by blue LEDs ($hv = 450$ nm), H ₂ O, air, 24 h	83ª	28	15	SBA-15 (mesoporous molecular sieves) supported, [Fe(terpy) ₂] ²⁺ complex, TBHP toluene, reflux, 12 h	80 ^b	37
7	NaAuCl ₄ , TBHP rt, 5 h	92ª	29	16	Fe(NO ₃) ₃ ·9H ₂ O, TBHP rt, 20 h	43ª	38
8	AuNPs/C, O ₂ bubbling toluene, 110 °C, 1 d	70 ^b	30	17	Fe(NO ₃) ₃ ·9H ₂ O, TBHP 50 °C, 15 h	65 ^a	38
9	DDQ, ball-milling, copper balls silica gel, 30 min	77ª	31	18	CuCl ₂ ·2H ₂ O, O ₂ MeOH, rt, 22 h	86ª	39

^a isolated yield;

1-(1-Methyl-3a,7a-dihydro-*1H*-indol-3-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (**21ab**) has been produced by various research groups through the use of different catalysts and different reaction conditions (Scheme 3). ^{22,23,25-28,30,31,33,36,37,39-43} As an example, Tokuyama *et al.* reported the synthesis of **21ab** under metal-free conditions in an oxygen atmosphere in the presence of AcOH, which accelerated the reaction (78%). ⁴¹ Hou *et al.* applied TBPA+•SbCl₆- for the synthesis of 1-(1-benzyl-3a,7a-dihydro-1*H*-indol-3-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (**21ac**) in a yield of 83% from 2-phenyl-1,2,3,4-tetrahydroisoquinoline (**19a**) and 1-benzyl-1H-indole (**20c**) in THF at only 40 °C. ³³

Che *et al.* published the functionalization of **19a** with 1-*p*-tolyl-1*H*-indole (**20d**) or 1-(4-methoxyphenyl)-1*H*-indole (**20e**) by the application of various ruthenium catalysts. The reaction was extended to the synthesis of indolyl tetrahydroisoquinoline derivatives bearing various aryl substituents on the indole skeleton nitrogen. The conditions included relatively high-temperature heating (110 $^{\circ}$ C) of the reaction mixture. The reaction usually needed a long reaction time (6 h) and resulted in the target compounds (**21ad** and **21ae**) in moderate yields (73-79%).

^b yield based on conversion

The synthesis of 1-(2-methyl-3a,7a-dihydro-1*H*-indol-3-yl)-2-phenyl-1,2,3,4-tetrahydro-isoquinoline (**21af**) has been reported independently by different research groups. ^{22,23,25-28,31-33,37} Wu *et al.* applied eosin Y and a graphene-supported RuO₂ nanocomposite²⁵ or eosin Y with Co(dmgH)₂Cl₂,²⁶ these conditions furnishing the desired product (**21af**) in excellent isolated yields (81% and 82%, respectively). ^{25,26} Huo *et al.* achieved a similarly high yield in the presence of TBPA+•SbCl₆-. They also investigated the reaction between **19a** and **20g** bearing an OH group at position 4 of the indole skeleton, when the target compound (**21ag**) was isolated in moderate yield (58%). ³³

 $R = Me: \textbf{20b}, \textbf{21ab}^{22,23,25-28,30,31,33,36,37,39-43}; Bn: \textbf{20c}, \textbf{21ac}^{33}; 4-MeC_6H_4: \textbf{20d}, \textbf{21ad}^{44}; 4-MeOC_6H_4: \textbf{20e}, \textbf{21ae}^{44}$

Scheme 3

1-(5-Methyl-3a,7a-dihydro-1*H*-indol-3-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (**21ah**) has been prepared by many research groups. ^{25-29,33} The best yield (86%) was attained by Feng *et al.* with a catalyst combination of NaAuCl₄ and TBHP (Table 4). ²⁹

Among the synthetic methods used to prepare **21ai**, the highest yield (87%; Table 4) was reported by Xie *et al.*, who applied TBPA+•SbCl₆- as catalyst.³³ It should be mentioned that TBPA+•SbCl₆- also proved most effective for the synthesis of 1-(5-bromo-3a,7a-dihydro-1*H*-indol-3-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (**21aj**).³³

It is noteworthy that, when the starting indole contained an electron-withdrawing substituent such as -COOMe (**20k**) or -NO₂ (**20l**), the desired methyl 3-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-3a,7a-dihydro-1*H*-indole-5-carboxylate acid (**21ak**) and 1-(5-nitro-3a,7a-dihydro-1*H*-indol-3-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (**21al**) could be isolated in only moderate yields (Table 4).^{22,23,26-28,37}

Table 4. Reaction conditions for the synthesis of 1-(3a,7a-dihydro-1*H*-indol-3-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinolines (**21 af-al**)

R = 2-Me: **20f**, **21af**; 4-OH: **20g**, **21ag**; 5-Me: **20h**, **21ah**; 5-OMe: **20i**, **21ai**; 5-Br: **20j**, **21aj**; 5-COOMe: **20k**, **21ak**; 5-NO₂: **20l**, **21al**

Product	Catalyst and/or oxidant, conditions	Yield (%)	Ref.	Product	Catalyst and/or oxidant, conditions	Yield (%)	Ref.
21af	CuBr, TBPH neat, 50 °C, overnight	61ª	22, 23	21ai	DDQ, ball- milling, copper balls silica gel, 20 min	70ª	31
21af	SBA-15-supported [Fe(terpy) ₂] ²⁺ , TBHP toluene, reflux, 12 h	73 ^b	37	21ai	V ₂ O ₅ , O ₂ H ₂ O, 100 °C, 24 h	50 ^a	32
21af	DDQ, ball-milling, copper balls silica gel, 40 min	75ª	31	21ai	[Pt(terpy) ₂] ²⁺ , FeSO ₄ irradiated by blue LEDs (hv = 450 nm) DMF, ambient air , 12 h	76ª	27
21af	V ₂ O ₅ , O ₂ 100 °C , H ₂ O, 24 h	50ª	32	21ai	eosin Y, Co(dmgH) ₂ Cl ₂ irradiated by green LEDs (hv = 525 nm), N ₂ , H ₂ O:MeCN (4:1), 16-22 h	80ª	26
21af	eosin Y, G-RuO ₂ irradiated by visible light (hv > 450 nm), N ₂ , rt, 20 h	81ª	25	21ai	TBPA ⁺ •SbCl ₆ ⁻ THF, ambient air, rt, 6-12 h	87ª	33
21af	[Pt(terpy) ₂] ²⁺ , FeSO ₄ irradiated by blue LEDs (hv = 450 nm), DMF, ambient air, 24 h	74ª	27	21ai	CoCl ₂ , dmgH in H_2O irradiated by blue LEDs (hv = 450 nm), H_2O , air, 24 h	75ª	28

			ı		1		I
21af	eosin Y, Co(dmgH) ₂ Cl ₂ irradiated by green LEDs (hv = 525 nm) H ₂ O:MeCN, (4:1), N ₂ , 16-22 h	82ª	26	21aj	DDQ, ball- milling, copper balls silica gel, 30 min	70ª	31
21af	TBPA+•SbCl ₆ - THF, ambient air, rt, 6-12 h	81ª	33	21aj	V ₂ O ₅ , O ₂ H ₂ O, 100 °C, 24 h	44ª	32
21af	CoCl ₂ , dmgH in H_2O irradiated by blue LEDs (hv = 450 nm), air, H_2O , 24 h	80ª	28	21aj	TBPA ⁺ •SbCl ₆ ⁻ ambient air, 40 °C, 6-12 h	82ª	33
21ag	TBPA ⁺ •SbCl ₆ ⁻ THF, ambient air, 40 °C, 6-12 h	58ª	33	21aj	eosin Y, Co(dmgH) ₂ Cl ₂ irradiated by green LEDs (hv = 525 nm), N ₂ , H ₂ O:MeCN (4:1), 16-22 h	77 ^a	26
21ah	NaAuCl ₄ , TBHP rt, 5-8 h	86ª	29	21aj	CoCl ₂ , dmgH in H_2O irradiated by blue LEDs (hv = 450 nm), H_2O , air, 24 h	70ª	28
21ah	eosin Y in H ₂ O, G- RuO ₂ irradiated by blue LEDs (hv = 450 nm), N ₂ , rt, 20 h	78ª	25	21ak	CuBr, TBPH neat, 50 °C, overnight	63ª	22, 23
21ah	[Pt(terpy) ₂] ²⁺ , FeSO ₄ irradiated by blue LEDs (hv = 450 nm), DMF, ambient air , 6 h	76ª	27	21ak	[Pt(terpy) ₂] ²⁺ , FeSO ₄ irradiated by blue LEDs (hv = 450 nm), DMF, ambient air, 6 h	63ª	27
21ah	eosin Y, Co(dmgH) ₂ Cl ₂ irradiated by green LEDs (hv = 525 nm), H ₂ O: MeCN (4:1), N ₂ , 16-22 h	73ª	26	21ak	eosin Y, Co(dmgH) ₂ Cl ₂ irradiated by green LEDs (hv = 525 nm), N ₂ , H ₂ O:MeCN (4:1), 16-22 h	52ª	26

21ah	TBPA+•SbCl ₆ - THF, ambient air, rt, 6-12 h	84ª	33	21ak	CoCl ₂ , dmgH in H_2O irradiated by blue LEDs $(hv = 450 \text{ nm})$, H_2O air, 24 h	60ª	28
21ah	CoCl ₂ , dmgH in H_2O irradiated by blue LEDs (hv = 450 nm), air, H_2O , 24 h	82ª	28	21al	CuBr, TBHP neat, 50 °C, overnight	85ª	22, 23
21ai	CuBr, TBHP neat, 50 °C, overnight	57ª	22, 23	21al	SBA-15- supported [Fe(terpy) ₂] ²⁺ ,T BHP toluene, reflux, 12 h	69 ^b	37
21ai	SBA-15-supported [Fe(terpy) ₂] ²⁺ , TBHP toluene, reflux, 12 h	72 ^b	37	21al	$[Pt(terpy)_2]^{2+}$ $FeSO_4$ $LEDs (hv = 450$ $nm)$ $DMF, ambient$ $air, 12 h$	56ª	27

^a isolated yield;

The couplings between 2-aryltetrahydroisoquinolines and indole are shown in Scheme 4.

When 2-(2-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline was used as starting compound, the isolated yields were only moderate (56-78%) regardless of the conditions applied.²⁵⁻²⁸

Many research groups have reported the reactions of 1-*H*-indole with tetrahydroisoquinolines containing halogenophenyl substituents at position 2. Feng *et al.* achieved the syntheses of **21fa** and **21ga** in excellent yields by applying NaAuCl₄ as catalyst at rt in a reaction time of 5-8 h.²⁹

The syntheses of 1-(3a,7a-dihydro-1H-indol-3-yl)-2-(4-cyanophenyl)-1,2,3,4-tetrahydro-isoquinoline (**21ha**)²⁷ and 1-(3a,7a-dihydro-1H-indol-3-yl)-2-(4-nitrophenyl)-1,2,3,4-tetrahydro-isoquinoline (**21ia**)²⁸ have been described by only one research group. The yields were lowest when the phenyl group in the starting isoquinoline contained an electron-withdrawing substituent e.g. a nitrile or a nitro group.

^b yield based on conversion

X = 4-Me: **19b**, **21ba**; 4-OMe: **19c**, **21ca**; 2-OMe: **19d**, **21da**; 4-F: **19e**, **21ea**; 4-Cl: **19f**, **21fa**; 4-Br: **19g**, **21ga**; 4-CN: **19h**, **21ha**; 4-NO₂: **19i**, **21ia**

Scheme 4

The scope and limitations of the reaction have been investigated by varying the substituents on the phenyl group in the starting isoquinoline and at positions 1, 2, 4 and 5 of the indole. The products, reaction conditions and yields are listed in Table 5. Schnürch *et al.* reported the synthesis of 1-(3a,7a-dihydro-1*H*-indol-3-yl)-2-(pyridin-2-yl)-1,2,3,4-tetrahydroisoquinoline from 2-pyridin-2-yl-1,2,3,4-tetrahydroisoquinoline and indole with Cu(NO₃)₂·3H₂O or CuBr as catalyst at 50 °C. In spite of the relatively long reaction time (15 h), the desired products could be isolated in only moderate yields.⁴⁶

Table 5. Reaction conditions for the synthesis of substituted 1-(3a,7a-dihydro-1*H*-indol-3-yl)-2-aryl-1,2,3,4-tetrahydroisoquinolines (**21**)

5	OMe (19c)	2-Me (20f)	21cf	DDQ ball-milling,	silica gel, 40 min	70 ^a	31
6	OMe (19c)	2-Me (20f)	21cf	copper balls V ₂ O ₅ O ₂	H ₂ O, 100 °C, 24 h	50 ^a	32
7	Cl (1f)	2-Cl (20m)	21fm	NaAuCl ₄ TBHP	rt, 5-8 h	92ª	29
8	Br (19g)	2-Cl (20m)	3gm	NaAuCl ₄ TBHP	rt, 5-8 h	93ª	29
9	Me (19b)	2-Cl (20m)	21bm	NaAuCl ₄ TBHP	rt, 5-8 h	75ª	29
10	OMe (19c)	2- OMe (20i)	21ci	CuBr TBHP	neat, 50 °C, overnight	65 ^a	22, 23
11	OMe (19c)	5- OMe (20i)	21ci	DDQ ball-milling, copper balls	silica gel, 40 min	65 ^a	31
12	OMe (19c)	5-NO ₂ (201)	21cl	CuBr TBHP	neat, 50 °C, overnight	50 ^a	22, 23
13	OMe (19c)	5-NO ₂ (20l)	21cl	V_2O_5 O_2	H ₂ O, 100 °C, 24 h	58ª	32
14	Cl (19f)	5-Me (20h)	21fh	NaAuCl ₄ TBHP	rt, 5-8 h	90 ^a	29
15	Br (19g)	5-Me (20h)	21gh	NaAuCl ₄ TBHP	rt, 5-8 h	93ª	29
16	Me (19b)	5-Me (20h)	21bh	NaAuCl ₄ TBHP	rt, 5-8 h	79 ^a	29
17	OMe (19c)	5-Me (20h)	21ch	NaAuCl ₄ TBHP	rt, 5-8 h	80 ^a	29
18	OMe (19c)	5-Br (20k)	21ck	V_2O_5 O_2	H ₂ O, 100 °C, 24 h	83ª	32

^a isolated yield;

1-(3a,7a-Dihydro-1*H*-indol-3-yl)-1,2,3,4-tetrahydroisoquinoline derivatives have also benn synthesized from *N*-protected 1,2,3,4-tetrahydroisoquinoline. In one group of products, the nitrogen of the isoquinoline skeleton forms amide bonds. Table 6 contains the reaction conditions and yields. Schnürch *et al.* investigated the syntheses of **25-27** on compounds of iron³⁸ or copper⁴⁵ as catalyst. In all cases, the reported yields were rather low (10-54%). When 2-(toluene-4-sulfonyl)-1,2,3,4-tetrahydroisoquinoline was used as starting compound, the desired product was detected only in traces.⁴⁵

^b conversion

Table 6. Reaction conditions for the synthesis of *N*-acyl 1-(3a,7a-dihydro-1*H*-indol-3-yl)-1,2,3,4-tetrahydroisoquinoline derivatives (**25-27**)

X = Ac: 22, 25; Piv: 23, 26; Bz: 24, 27

Entry	X	Product	Catalyst and/or oxidant	Conditions	Isolated yield (%)	Ref.
1	Ac	25	Cu(NO ₃) ₂ ·3H ₂ O TBHP	50 °C, 15 h	54	45
2	Ac	25	CuBr TBHP	50 °C, 15 h	47	45
3	Piv	26	Cu(NO ₃) ₂ ·3H ₂ O TBHP	50 °C, 15 h	26	45
4	Piv	26	CuBr TBHP	50 °C, 15 h	21	45
5	Bz	27	Fe(NO ₃) ₃ ·9H ₂ O TBHP	50 °C, 15 h	22	38
6	Bz	27	Cu(NO ₃) ₂ ·3H ₂ O TBHP	50 °C, 15 h	40	45
7	Bz	27	CuBr TBHP	50 °C, 15 h	10	45

Ac: acetyl; Piv: pivaloyl; Bz: benzoyl

Syntheses from 2-carbamato-1,2,3,4-tetrahydroisoquinolines have also been investigated. Schnürch *et al.* studied the reactions of indole derivatives and Boc-protected 1,2,3,4-tetrahydroisoquinoline with numerous catalysts. The conditions and isolated yields are listed in Table 7 (entries 1-13).³⁸ The coupling of Boc-protected isoquinolines with various substituted indole derivatives was reported by the same research group, who used a number of transition metal salts as catalysts. The lowest yields were obtained when the indole contained a methyl ester or amino function at position 5³⁸ or a 4-methoxyphenyl substituent at position 2⁴⁶ (Table 7, entries 7, 10 and 17).

In most cases, the Boc group could be removed by using TMSCl in MeOH at room temperature (30, 30f, 30i, 30l, 30p, 30q and 30r). In the case of 30b, the removal was achieved by MW heating at 250 $^{\circ}$ C in ethyleneglycol for 30 s. 38

When Cbz-protected 1,2,3,4-tetrahydroisoquinoline was applied as starting compound, the desired product (**31**) could be isolated in only moderate yields.^{38,45,47,48} The best yield (69%) was reported by Lou *et al.* when triphenylcarbenium perchlorate (Ph₃CClO₄) was used as catalyst.⁴⁸

Table 7. Reaction conditions for the synthesis of *N*-protected 1-(3a,7a-dihydro-1*H*-indol-3-yl)-1,2,3,4-tetrahydroisoquinolines (**30,31**)

PG = Boc: 28, 30; Cbz: 29, 31

Entry	R	Boc- protected products	Catalyst and/or oxidant	Conditions	Isolated yield (%)	Ref.
1	-	30	Fe(NO ₃) ₃ ·9H ₂ O TBHP	50 °C, 15 h	54	38
2	-	30	FeCl ₂ ·4H ₂ O TBHP	50 °C, 15 h	53	38
3	-	30	FeCl₃·6H₂O TBHP	50 °C, 15 h	50	38
4	-	30	FeBr ₃ TBHP	50 °C, 15 h	36	38
5	1-Me (20b)	30b	Fe(NO ₃) ₃ ·9H ₂ O TBHP	50 °C, 15 h	65	38
6	2-Me (20f)	30f	Fe(NO ₃) ₃ ·9H ₂ O TBHP	50 °C, 15 h	23	38
7	5-NH ₂ (20o)	30 o	Fe(NO ₃) ₃ ·9H ₂ O TBHP	50 °C, 15 h	16	38
8	5-OMe (20i)	30i	Fe(NO ₃) ₃ ·9H ₂ O TBHP	50 °C, 15 h	43	38
9	5-NO ₂ (20l)	301	Fe(NO ₃) ₃ ·9H ₂ O TBHP	50 °C, 15 h	66	38
10	5-COOMe (20j)	30j	Fe(NO ₃) ₃ ·9H ₂ O TBHP	50 °C, 15 h	5	38
11	5-Cl (20p)	30p	Fe(NO ₃) ₃ ·9H ₂ O TBHP	50 °C, 15 h	72	38
12	6-Cl (20q)	30q	Fe(NO ₃) ₃ ·9H ₂ O TBHP	50 °C, 15 h	56	38
13	7-NO ₂ (20r)	30r	Fe(NO ₃) ₃ ·9H ₂ O TBHP	50 °C, 15 h	70	38
14	2-Ph (20s)	30s	Cu(NO ₃) ₂ TBHP	50 °C, 48 h	44	46
15	2-Ph	30s	Fe(NO ₃) ₃	50 °C, 48 h	56	46

	(20s)		TBHP			
16	2-(4-MeC ₆ H ₄) (20t)	30t	Fe(NO ₃) ₃ TBHP	50 °C, 48 h	20	46
17	2-(4- MeOC ₆ H ₄) (20u)	30u	Fe(NO ₃) ₃ TBHP	50 °C, 48 h	14	46
18	1-Ph (20v)	30v	Cu(NO ₃) ₂ TBHP	50 °C, 24 h	83	46
19	1-Ph (20v)	30v	Fe(NO ₃) ₃ TBHP	50 °C, 24 h	49	46
20	1-(4- MeOC ₆ H ₄) (20w)	30w	Cu(NO ₃) ₂ TBHP	50 °C, 24 h	69	46
21	1-(4- MeOC ₆ H ₄) (20w)	30w	Fe(NO ₃) ₃ TBHP	50 °C, 24 h	40	46
22	1-(2-thienyl) (20x)	30x	Cu(NO ₃) ₂ TBHP	50 °C, 24 h	78	46
23	1-(4-FC ₆ H ₄) (20y)	30y	Cu(NO ₃) ₂ TBHP	50 °C, 24 h	65	46
24	1-(4- NO ₂ C ₆ H ₄) (20z)	30z	Cu(NO ₃) ₂ TBHP	80 °C, 2d	45	46
25	-	30	$Cu(NO_3)_2 \cdot 3H_2O$	50 °C, 15 h	79	45
26	-	30	CuBr	50 °C, 15 h	72	45

Klussmann and Schweitzer-Chaput reported the synthesis of **31** in good yields (86-95%). Moreover, the previously postulated intermediate amino *tert*-butyl peroxide (**33**) was isolated and transformed in the presence of methanesulfonic acid (MsOH) to Cbz-protected isoquinoline derivatives **31a-i** (Scheme 5).⁴⁹

R = H: **31a**; 1-Me: **31b**; 2-Me: **31f**; 5-Br: **31k**; 5-CN: **31n**; 5-NO₂: **31l**; 5-OMe: **31i**

Scheme 5

Diarylindoles have been found to be oestrogen receptor ligands with potential in the treatment of Alzheimer's disease, and Schnürch *et al.* reported the synthesis of **37** via different pathways: arylation of the indole skeleton with arylboronic acids, and *N*-arylation of intermediate **34** with different iodobenzenes, leading to the diarylindole derivative **37**; in the inverse arylation

protocol, the first step led to the desired *N*-arylated compound **35**, but insertion of an additional aryl group at position 2 of the indole skeleton failed; as a third method, direct coupling of diarylindoles **36** with **28** led to the desired diarylated **37** (Scheme 6).⁴⁶

N-Boc
$$(i)$$
 R^2
 N -Boc
 (iii)
 $R^2 = Ph$
 R^2
 N -Boc
 (iii)
 $R^2 = Ph$
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^3
 R^4
 R^2
 R^3
 R^4
 R^2
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^5
 R^6
 R^6

 R^1 = Ph; 4-MeOC₆H₄; 2-thienyl; 4-FC₆H₄;4-NO₂C₆H₄; 2-fluoropyridin-3-yl R^2 = Ph; 4-MeC₆H₄; 4-MeOC₆H₄; 4-NO₂C₆H₄; 1-naphthyl

Reagents and conditions: (i) $R^2B(OH)_2$, $Pd(OAc)_2$, $Cu(OAc)_2$ AcOH, O_2 , rt, 24 h; (ii) R^1I , CuI, dimethylethylenediamine, K_3PO_4 , toluene, 135 °C, 24 h; (iii) R^1I , dimethylethylenediamine, $FeCl_3$, K_3PO_4 , toluene, 135 °C; (iv) $PhB(OH)_2$, $Pd(OAc)_2$, $Cu(OAc)_2$ AcOH, O_2 , rt, 24 h; (v) $Cu(NO_3)_2$, TBHP, 50 °C, 2 d.

Scheme 6

Despite the large numbers of compounds and/or reaction conditions employed, few examples are to be found where the starting saturated isoquinoline has no substituent on the nitrogen. Schnürch *et al.* described the functionalization of unprotected 1,2,3,4-tetrahydroisoquinoline with substituted indole derivatives, using Cu(NO₃)₂ as catalyst.⁴⁵ In view of the wide-ranging yields, clear-cut conclusions concerning a generalization of the synthesis of unsubstituted 1-(1*H*-indol-3-yl)-1,2,3,4-tetrahydroisoquinoline derivatives are not possible.

2.2.2. Miscellaneous synthetic pathways

Sterner *et al.* developed a protocol for Pictet–Spengler condensation between the methyl ester of L-DOPA (**38**) and various *N*-Boc-protected 1*H*-indole-3-carbaldehydes (**39a-c**) that gave C-1 indolyl-substituted tetrahydroisoquinolines **40a-c** and **41a-c** in moderate isolated yields (66-

72%). In all cases the cis epimer was found to be the major product. The ratios are given in Scheme 7.50

X = H: **a**; Cl: **b**; OMe: **c**

Scheme 7

Chamberlin *et al.* devised a stereoselective route for the synthesis of optically pure *N*-benzylsulfonylindol-3-yltetrahydroisoquinoline as a new type of IBR2 analogue (Scheme 8). The pathway involved contained indol-3-yltetrahydroisoquinoline (47) in enantiopure form as intermediate. 2-(2-Bromophenyl)ethanol (42) was transformed to the sulfinimine diastereomers 43 and 44, which were then separated. Through 5 steps, 43 led to the orthogonally protected mesylate derivative 45. The isoquinoline ring (46) was formed by catalytic (Pd/C) reduction (H₂, 1 atm., EtOH, rt). On removal of the protecting group, the desired indol-3-yltetrahydroisoqinoline (47) was obtained in non-racemic form.⁵¹

Scheme 8

3. RESULTS AND DISCUSSION

3.1. N-Alkylation of cyclic amines with 2-, or 1-naphthol [II], [III]

The importance of the aminonaphthols prepared via the mMR has recently increased because they have proved to be excellent model compounds for studies of the α -arylation/N-alkylation of cyclic amines. ⁹⁻¹¹ It was pointed out by Seidel's group that, through the aminoalkylation of pyrrolidine with electron-rich aromatic compounds in the presence of aromatic aldehydes, the two possible main products i.e. α -arylated or N-alkylated, could be isolated only on the extremely slow addition of the aldehyde component to the reaction mixture containing acids as catalysts. It was also proved that 2-naphthol can be sufficiently acidic to promote the required tautomerization. ¹⁰ This process, starting from 1,2,3,4-tetrahydroisoquinoline as substrate, can theoretically lead to the formation of the regioisomeric tertiary aminonaphthols (A or B) according to Scheme 9, where HNu is an electron-rich aromatic compound such as 2- or 1-naphthol. The direct functionalization of 1,2,3,4-tetrahydroisoquinolines with indoles in the presence of aromatic aldehydes was recently developed. It was concluded that, under CuBr and acid catalysis, the α -arylation took place and aminoindole type A was isolated as a single product. ⁵²

Our present main aim was to develop the possibility of the application of 1,2,3,4-tetrahydroisoquinoline and analogue secondary amines such as 2,3,4,5-tetrahydro-1H-benz[c]azepine and 4,5,6,7-tetrahydrothieno[3,2-c]pyridine in the mMR. A further aim was the systematic investigation of the α -arylation/N-alkylation process starting from tetrahydroisoquinoline, tetrahydrobenzazepine and tetrahydrothieno[3,2-c]pyridine by using 2- or 1-naphthol as nucleophile in the presence of benzaldehyde.

In our first experiment, 1,2,3,4-tetrahydroisoquinoline (**48**), 2-naphthol (**49**) and benzaldehyde were reacted under neat conditions at 80 °C. After a reaction time of 4 h, the desired 1-[(3,4-dihydro-1*H*-isoquinolin-2-yl)phenylmethyl]naphthalen-2-ol (**51**) was isolated by crystallization with MeOH. Since the yield of the reaction was only 28%, the reaction was repeated under MW irradiation at 65 °C. Siurprisingly, after a relatively long reaction time (1.5 h), the ¹H NMR spectra of the crude reaction mixture did not reveal the formation of **51**. The synthesis of **51** was earlier performed by refluxing **49**, 1,2,3,4-tetrahydroisoquinoline (**48**) and benzaldehyde in ethanol for 12 h. Under these conditions, **51** was isolated as a "yellow gummy" in a yield of 78%.⁵³ When we attempted to repeat this under the same reaction conditions, the ¹H NMR spectra of the crude product indicated that the desired product **51** was formed in only trace amounts.

In the above experiments, the possibility of formation of the α-arylated product **52** was not taken into account. For a systematic investigation of this reaction, **52** was synthetized from 1-(1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-2-ol (**53**)¹² and benzyl bromide on the basis of the literature process. ¹⁶ 2-Naphthol (**49**), 1,2,3,4-tetrahydroisoquinoline (**48**) and benzaldehyde were reacted under neat conditions at 65 °C. The formation of the possible products (**51** and **52**) and the conversion of the reaction were followed by ¹H NMR spectroscopy for different reaction times up to 20 h. The ratio of the products formed, **51**:**52**, was determined by comparing the relative intensities of the characteristic signals of 2-naphthol (9.73 ppm), **51** (5.51 ppm) and **52** (5.75 ppm). Under the optimum conditions (65 °C, neat), an average ratio of 4:1 for **51**:**52** could be assumed (Table 8, entries 1-7). After a relatively long (20 h) reaction time, the conversion was only 85% (which could not be increased even by using a longer reaction time).

Scheme 10

To extend this mMR, 1-naphthol (**50**) was reacted with 1,2,3,4-tetrahydroisoquinoline (**48**) in the presence of benzaldehyde, where the possible products obtained by α -arylation/*N*-alkylation of **48** were **54** and **55** (Scheme 10). For a systematic study of this reaction, the *N*-alkylated product 2-(2-benzyl-1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-1-ol (**55**) was synthesized from 2-(1,2,3,4-tetrahydroisoquinolin-1-yl)naphthalen-1-ol (**56**)¹² and benzyl bromide. 1-Naphthol (**50**), 1,2,3,4-tetrahydroisoquinoline (**48**) and benzaldehyde were reacted under neat conditions by heating at 65 °C or under MW irradiation at the same temperature. The presence of the possible products (**54** and **55**) was followed by comparing the relative intensities of the characteristic signals of benzaldehyde (10.03 ppm), **54** (s, 5.00 ppm) and **55** (s 5.07 ppm) from the crude product. The characteristic singlets of the CH₂ in **54** and **55** were found to be near each other: at 3.77 ppm (2H, dd, J = 14.8; 47.3 Hz) in **54** and at 3.71 ppm (2H, dd, J = 13.7; 200 Hz) in **55** (Table 8, entries 8-11).

Table 8. Systematic study of the formation of products 51, 52 and 54, 55

Entry	Products	Reaction conditions	Reaction time	Ratios of 51 ^a :52 ^b or 54 ^a :55 ^b	Conversion (%)
1	51; 52	Classical heating; 65 °C	0.5 h	78:22	42
2	51; 52	Classical heating; 65 °C	1h	81:19	45
3	51; 52	Classical heating; 65 °C	1.5 h	71:29	55
4	51; 52	Classical heating; 65 °C	2 h	82:18	56
5	51; 52	Classical heating; 65 °C	5 h	80:20	57
6	51; 52	Classical heating; 65 °C	10 h	82:18	60
7	51; 52	Classical heating; 65 °C	20 h	81:19	85
8	54; 55	Classical heating; 65 °C	0.5 h	100:0	91
9	54; 55	Classical heating; 65 °C	1.5 h	100:0	96
10	54; 55	MW; 65 °C	0.5 h	100:0	98
11	54; 55	MW; 65 °C	1 h	100:0	100

^a *N*-alkylated product;

Interestingly, in contrast with our expectations, the signals of the crude product indicated only the formation of **54** when classical heating was applied at 65 °C (Table 8, entries 8 and 9). This tendency seemed to be independent of the reaction conditions (classical or MW heating): even after relatively short reaction times (1.5 h under classical heating or 0.5 h under MW; Table 8, entries 8-11), both conditions led to the formation of **54** in excellent yields.

The series of 2-substituted 1-naphthol analogues was extended by using different 4-substituted benzaldehydes such as 4-methoxybenzaldehyde or 4-chlorobenzaldehyde, leading to **58a** and **58b** (Scheme 11), while 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (**57**) was tested as substrate with 1-naphthol and benzaldehyde or 4-substituted benzaldehydes, leading to **59a-c** (Scheme 11). The reaction conditions and yields are listed in Table 9.

^b α-arylated product

Scheme 11

To test the scope and limitations of the reaction, 1-naphthol was reacted with other secondary cyclic amines, such as 2,3,4,5-tetrahydro-1H-benz[c]azepine (**62**), 2,3,4,5-tetrahydro-1H-benz[d]azepine (**64**) and 4,5,6,7-tetrahydrothieno[3,2-c]pyridine (**66**). Compound **64** is a commercially available secondary amine, while **62** was prepared from α -tetralone with NaN₃ in HCl medium followed by the reduction of cyclic amide (**61**) with LiAlH₄ (Scheme 12).⁵⁴

Scheme 12

In the case of **66**, the known Pictet–Spengler cyclization⁵⁵ was applied and optimized as follows to obtain the desired cyclic amine **66**. Thiophen-2-yl-ethylamine was mixed with formalin to obtain the imine intermediate. The second ring closure was performed in the presence of HCl/EtOH at 100 °C under MW conditions. These conditions led to the formation of **66** in a yield of 63%.

Scheme 13

As the next step, 1-naphthol was reacted with secondary cyclic amines **62**, **64** and **66** in the presence of benzaldehyde, leading to the formation of 2-((4,5-dihydro-1*H*-benz[*c*]azepin-2(3*H*)-yl)(phenyl)methyl)naphthalen-1-ol (**63**), 2-((4,5-dihydro-1*H*-benz[*d*]azepin-3(2*H*)-yl)(phenyl)methyl)naphthalen-1-ol (**65**) and 2-((6,7-dihydrothieno[3,2-*c*]pyridin-5(4*H*)-yl)(phenyl)methyl)naphthalen-1-ol (**67**) (Schemes 13 and 14). The reaction conditions and yields are given in Table 9.

Scheme 14

As concerns the aldehyde substrates, the highest yields were obtained with 4-chlorobenzaldehyde, when shorter reaction times too were needed (Table 9). The yields of the 1-naphthol derivatives pointed to the lower reactivity of 4,5,6,7-tetrahydrothieno[3,2-c]pyridine (66) vs. the 1,2,3,4-tetrahydroisoquinolines (48 and 57) or the 2,3,4,5-tetrahydro-1*H*-benzazepines (62 and 64). When MW irradiation was applied, the reaction times were in all cases shorter, while the yields were improved.

Since the solvent-free heating of 1-naphthol with different cyclic amine substrates in the presence of the above aldehydes (either by classical heating or by MW agitation) led to the formation of the desired aminonaphthols (51, 68a-b, 69a-c, 70, 71 and 72) in good yields, our attention turned back to the aminoalkylation of 2-naphthol (Table 10). Thus, tetrahydroisoquinoline (48) was reacted with 2-naphthol (49) and 4-methoxybenzaldehyde or 4-chlorobenzaldehyde under neat conditions. The reaction was then extended by applying the above cyclic amines, such as 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (57), 2,3,4,5-tetrahydro-1*H*-benz[*c*]azepine (62), 2,3,4,5-tetrahydro-1*H*-benz[*d*]azepine (64) and 4,5,6,7-tetrahydrothieno[3,2-*c*]pyridine (66).

Product	Classical heating	Yield (%)	MW agitation	Yield (%)
54	70 °C, 12 h	58 ^a	65 °C, 0.5 h	78ª
58a	70 °C, 8 h	53 ^a	65 °C, 0.5 h	72ª
58b	70 °C, 5 h	57ª	65 °C, 0.5 h	74 ^a
59a	70 °C, 12 h	52 ^b	65 °C, 1 h	73 ^b
59b	70 °C, 7 h	60 ^b	65 °C, 0.5 h	77 ^b
59c	70 °C, 5 h	61 ^b	65 °C, 0.5 h	81 ^b
63	60 °C, 64 h	53°	55 °C, 1.5 h	57°
65	60 °C, 64 h	45°	55 °C, 1.5 h	55°
67	65 °C, 45 h	37 ^d	60 °C, 1,5 h	48 ^d

Table 9. Optimized reaction conditions for the syntheses of 54, 58, 59, 63, 65 and 67

On the use of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (57), the aldehyde substrates were benzaldehyde, 4-methoxybenzaldehyde and 4-chlorobenzaldehyde. The structures of the tertiary aminonaphthol products 68a-b, 69a-c and 70-72 are shown in Scheme 15, while the reaction conditions and yields are listed in Table 10.

Scheme 15

^a recrystallized from *i*Pr₂O:MeOH (1:1);

^b recrystallized from MeOH;

^c recrystallized from *i*Pr₂O:MeOH (2:1);

^d recrystallized from *i*Pr₂O:MeOH (4:1)

When tetrahydroisoquinoline **48** was reacted with 2-naphthol in the presence of 4-methoxybenzaldehyde or 4-chlorobenzaldehyde, relatively long reaction times (classical heating: 20 h, MW agitation: 2.5 h) were needed. In all cases, the isolated yields were sufficiently high to allow the conclusion that other α -arylated by-products were absent. When 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (**57**) was applied as starting material, a higher temperature (75 $^{\circ}$ C) was needed; a faster reaction as compared with **51** and **68a-b** can be assumed.

Table 10. Optimized reaction conditions for the syntheses of 51 and 68-72

Product	Classical heating	Yield (%)	MW agitation	Yield (%)
51	80 °C, 4 h	46 ^a	65 °C, 1.5 h	-
68a	70 °C, 5 h	48 ^c	65 °C, 0.5 h	71°
68b	70 °C, 5 h	50°	65 °C, 0.5 h	77°
69a	75 °C, 8 h	55 ^b	70 °C, 1 h	82 ^b
69b	75 °C, 8 h	57 ^b	70 °C, 1 h	84 ^b
69c	75 °C, 3.5 h	65 ^b	70 °C, 0.5 h	87 ^b
70	60 °C, 56 h	62 ^d	60 °C, 1.5 h	70 ^d
71	60 °C, 64h	58ª	60 °C, 2 h	67 ^a
72	75 °C, 56 h	28ª	70 °C, 1.5 h	41 ^a

^a recrystallized from *i*Pr₂O:MeOH (4:1);

A consideration of the yields of all the product aminonaphthols (except 51 and 52) revealed the lowest yields for those whose synthesis started from 2,3,4,5-tetrahydro-1H-benz[c]azepine (62). This might be due to the lower stability of the benzazepine ring system at higher temperature, or to the formation of two regioisomers (N-alkylation or α -substitution) during the reaction. To check on this, the syntheses of 63 and 70 were repeated and the conversion of the starting compounds was systematically followed via the NMR spectra of the crude products (Table 11). The desired aminonaphthols 63 and 70 were found to be single products, independently of the reaction conditions (classical or MW heating), suggesting that the lower yields observed for 63 and 70 were due to the lower stability of the starting benzazepine (62).

^b recrystallized from MeOH;

^c recrystallized from *i*Pr₂O:MeOH (1:1);

^d recrystallized from *i*Pr₂O:MeOH (2:1)

Table 11. Systematic study of the formation of products 63^a and 70^a

Entry	Product	Reaction conditions	Reaction time	Conversion (%)
1	63 ^b	Classical heating; 65 °C	0.5 h	80
2	63 ^b	Classical heating; 65 °C	2 h	95
3	63 ^b	MW; 65 °C	0.5 h	100
4	70 ^b	Classical heating; 65 °C	0.5 h	32
5	70 ^b	Classical heating; 65 °C	1 h	44
6	70 ^b	Classical heating; 65 °C	2 h	54
7	70 ^b	Classical heating; 65 °C	5 h	63
8	70 ^b	Classical heating; 65 °C	10 h	66
9	70 ^b	Classical heating; 65 °C	20 h	58
10	70 ^b	MW; 65 °C	0.5 h	37
11	70 ^b	MW; 65 °C	1 h	38
12	70 ^b	MW; 65 °C	2 h	48
13	70 ^b	MW; 65 °C	3 h	50
14	70 ^b	MW; 65 °C	4 h	71
15	70 ^b	MW; 65 °C	6h	69

^a *N*-alkylated product;

The β -carboline skeleton is present in numerous naturally occurring alkaloids, which often exhibit biological activity. Natural β -carboline-containing compounds, such as the harman family, have attracted interest because of their potent psychoactive and hallucinogenic abilities. ⁵⁶⁻⁵⁸ Moreover, synthetic β -carbolines display antimalarial ⁵⁹, antiparasitic ⁵⁹ and antineoplasic ⁶⁰ activity, while certain β -carbolines inhibit TNF- α ⁶¹ or MK2. ⁶² Tricyclic β -carboline derivatives have been found to be mGluR₁ antagonists ⁶³, and bromo-substituted tetrahydro- β -carbolines have been described as neurotoxic agents. ⁶⁴ The production of these compounds demands efficient synthetic methodologies, for the construction of the heterocyclic system and its functionalization. The strategies for the synthesis of condensed β -carbolines mainly start from the partially saturated β -carbolines through 1,3-dipolar cycloaddition, ⁶⁵ coupling with isatoic anhydride ⁶⁶, reaction with Mannich bases ⁶⁷, the inverse-electron-demand imino Diels–Alder reaction with chromone-derived dienes ⁶⁸, or reaction with salicyl chloride. ⁶⁹⁻⁷¹

^b single product

Our results on the aminoalkylation of 2-naphthol with 1,2,3,4-tetrahydroisoquinoline in the presence of benzaldehyde showed that it led to the parallel N-alkylation and redox α -arylation of the tetrahydroisoquinoline in a ratio of 4:1. Hence, our attention focused on the possibility of aminoalkylation of 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (73) as cyclic secondary amine with 1- or 2-naphthol as nucleophile in the presence of benzaldehyde.

Reaction conditions: i) 60 °C, neat; ii) 80 °C, neat; iii) 60°C, neat, MW; iv) 80 °C, neat, MW

Scheme 16

The selected starting amine **73** was synthesized according to a literature process, via Pictet–Spengler cyclization of tryptamine. ^{72,73}

2,3,4,9-Tetrahydro-1*H*-pyrido[3,4-*b*]indole (**73**), 2-naphthol (**49**) and benzaldehyde were reacted (Scheme 15) neat under different reaction conditions (*i*: 60 °C, classical heating; *ii*: 80 °C, classical heating; *iii*: 60 °C, MW; *iv*: 80 °C, MW). For the systematic investigation of this reaction, the possible α-arylated product **76** was synthesized from 1-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)naphthalen-2-ol and benzyl bromide. The formation of the possible products (**75** and **76**) and the conversions of the reactions (*i-iv*) were followed by NMR spectroscopy, comparing the relative intensities of the characteristic signals of 2-naphthol (9.73 ppm), **75** (5.70) and **76** (5.85 ppm). The reactions were found to be complete after 7 h (*i*), 5 h (*ii*) and 3 h (*iii* and *iv*), respectively. The crude reaction mixture in all cases indicated the presence of both possible

products **75** and **76**. The ratio **75**:**76** was found to be 4:1 for i and iii, and 2:1 for ii. In the case of iv (80 °C, MW), the ratio was not constant during the reaction. After 0.5 h it was 1:0.8, and at the end of the reaction (3 h) a ratio of 1:2.5 was assumed. This means that the formation of **74a** is more preferable at 80 °C than at 60 °C. It can also be assumed that the product ratio depends on the heating technique: classical heating or MW agitation.

To examine the behaviour of 1-naphthol in this reaction, **50** was reacted with 2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole (**73**) in the presence of benzaldehyde, when the possible products obtained through the α -arylation/*N*-alkylation of **73** were **77** and **78** (Scheme 16). For a systematic study of this reaction, the α -arylated product was prepared by the reaction of 2-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)naphthalen-1-ol and benzyl bromide.

By using reaction conditions i-iv, 1-naphthol (**50**), 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (**73**) and benzaldehyde were reacted. Interestingly, the signals of the crude products indicated only the formation of **77**. This was found to be independent of the temperature (60 °C or 80 °C) and of the reaction conditions (classical or MW heating).

Table 12. Characteristic NMR chemical shifts (Nph-C*H*-Ph or Nph-CH-Ph) and melting points of the synthesized tertiary aminonaphthol derivatives presented in this chapter

Products	Structures	δ _{C-H} (ppm)	δ _{C-H} (ppm)	М.р.
51	OH	5.57	70.2	151-152
54	OH N	5.00	74.0	138-140
55	OH	5.07	67.1	148-149
58a	OH N OMe	4.92	73.6	178-179
58b	OH N	5.05	72.6	180-182

59a	OMe OMe OH N	4.96	74.3	164-166
59b	OMe OH N OMe	4.90	73.8	121-123
59c	OMe OMe OH N	5.01	73.0	132-133
63	OH N	4.89	71.6	79-81
65	OH N	5.13	74.3	153-155
67		5.05	73.4	161-162
68a	MeO N OH	5.51	69.6	176-178
68b	CION	5.61	69.1	180-181
69a	OMe OMe OH	5.54	70.3	193-195
69b	MeO OMe OMe	5.48	69.7	207-209
69c	CI OMe OMe	5.59	69.3	209-211

70	OH OH	5.56	69.9	158-160
71	OH	5.45	68.1	201-203
72	S OH	5.62	69.7	142-143
75	N NH OH	5.70	69.7	203-205
76	NH NOH	5.85	58.1	198-199
77	OH N	5.12	73.6	196-198
78	NH NOH	5.22	63.5	179-181

3.2. Aza-Friedel Crafts alkylation of partially saturated cyclic imines with electron-rich aromatic compounds [I], [III]

3.2.1. & Arylation of 3,4-dihydroisoquinoline with indole derivatives [I]

In previous works, the aza-Friedel–Crafts alkylations of electron-rich aromatic compounds such as 2- or 1-naphthol¹² and quinolinol or isoquinolinol¹⁵ with 3,4-dihydroisoquinoline were achieved, and were extended by using different reagents and/or substrates to the synthesis of 1-substituted tetrahydroisoquinoline derivatives.^{8,18-20} Our aim was to develop a new approach for the preparation of 1-(3-indolyl)-1,2,3,4-tetrahydroisoquinolines from 3,4-dihydroisoquinoline and indole as electron-rich aromatic compound, and as a further aim to examine the scope and limitations of this reaction by using different cyclic imines and/or different indole derivatives.

Scheme 17

The reaction between indole (**20a**) and 3,4-dihydroisoquinoline (**1**) in MeCN at 80 °C was examined first (Table 13, entry 1), the conversion of the reactants being monitored by TLC analysis. After a reaction time of 6 h, TLC showed only the presence of the starting materials. Thus, the reaction was repeated by using MW agitation (Table 13, entry 2). Even after a reaction time of 4 h reaction time TLC showed only the unreacted starting compounds (Scheme 17). The reaction was then repeated under neat conditions, first by using classical heating. At 60 °C, after a relative long reaction time (10 h) the desired product **80**⁷⁴ was isolated in a yield of 37% as a yellow oil, and column chromatography was needed for the purification (Table 13, entry 3). When the temperature was increased (85 °C), a somewhat shorter reaction time was needed (8 h), and the yield was still only 48%. Even on the use of MW agitation the yield could not be improved (43% and 40%, respectively); only the reaction times were decreased (3 h and 2 h, respectively, Table 13, entries 5 and 6). The reaction was then repeated from 3,4-dihydroisoquinoline-hydrochloride (**1.HCl**). After a reaction time of 12 h at 80 °C, on the addition of DCM, beige crystals started to

separate out. After filtration and recrystallization, these were identified as the hydrochloride of the desired 3-tetrahydroisoquinolylindole (80). This was surprising, because 2 equiv. of Et₃N was used for the *in situ* basification of the starting 3,4-dihydroisoquinoline. In spite of this, 80.HCl was isolated, which can be explained by the stronger basicity of 80 than Et₃N. The yield was found to be 62% (Table 13, entry 7). Similar yields were obtained by increasing the temperature to 100 °C or by using MW heating at 80 °C (Table 13, entries 8 and 9). To test the role of HCl, the reaction was repeated by starting from 1.HCl and indole (20a) in DCM and 2 drops of EtOH:HCl were used as additive. The reaction was performed at 100 °C under MW conditions. After a reaction time of 1.5 h the separated crystals were filtered off. The yield excellent (94%, Table 13, entry 10).

To examine the possibility of the extension possibility of this reaction, 6,7-dimethoxy-3,4-dihydroisoquinoline (2) was tested as substrate. We started our experiments by applying the best conditions for the synthesis of 80. 2.HCl and indole (20a) were reacted in DCM by using EtOH:HCl as additive, under MW agitation. Unfortunately, the TLC showed only the decomposition of the starting 6,7-dimethoxy-3,4-dihydroisoquinoline (2.HCl) (Table 13, entry 11). When 2.HCl was reacted with 20a under neat conditions, using classical heating and 2 equiv. of Et₃N for *in situ* basification, the hydrochloride of the desired product (81.HCl) was isolated in only 40% yield (Table 13, entry 12). Increase of the temperature by using either classical heating or MW irradiation led to the decomposition of 2.HCl (Table 13, entries 13 and 14). We therefore decided to start the reaction from the free base (2). By classical heating at 80 °C, after a long reaction time (55 h) the desired 3-(6,7-dimethoxy-tetrahydroisoquinolyl)indole (81) was isolated in a yield of 70% (Table 13, entry 15). The yield was improved to 73% and the reaction time decreased (4 h + 2.5 h) by using a two-step MW reaction (Table 13, entry 16). Further increase of the temperature (110 °C) under MW conditions led to the formation of 81 in a yield of only 45% (Table 13, entry 17).

Table 13. Reaction conditions for the synthesis of 1-(indol-3-yl)-1,2,3,4-tetrahydroisoquinolines **80** and **81**.

Entry	Reagent/solvent/ additive	Products	Conditions	Yields (%)
1	1/MeCN/-	80	80 °C, 6 h ^a	С
2	1/MeCN/-	80	80 °C, 4 h ^b	С
3	1/neat/-	80	60 °C, 10 h ^a	37
4	1/neat/-	80	85 °C, 8 h ^a	48

5	1/neat/-	80	60 °C, 3 h ^b	43
6	1/neat/-	80	85 °C, 2 h ^b	40
7	1-HCl/neat/2 equiv. Et ₃ N	80.HCl	80 °C, 12 h ^a	62
8	1-HCl/neat/2 equiv. Et ₃ N	80.HCl	100 °C, 4 h ^a	68
9	1-HCl/neat/2 equiv. Et ₃ N	80.HCl	80 °C, 2 h ^b	60
10	1-HCl/DCM/EtOH:HCl	80.HCl	100 °C, 1.5 h ^b	94
11	2-HCI/DCM/EtOH:HCl	80.HCl	100 °C, 1.5 h ^b	d
12	2-HCl /neat/2 equiv. Et ₃ N	81	80 °C, 4 h ^a	40
13	2-HCl /neat/2 equiv. Et ₃ N	81	120 °C, 2 h ^a	d
14	2-HCl /neat/2 equiv. Et ₃ N	81	100 °C, 4 h ^b	d
15	2/neat/-	81	80 °C, 55 h ^a	70
16	2/neat/-	81	80 °C, 4 h→100 °C, 2.5 h ^b	73
17	2/neat/-	81	110 °C, 5 h ^b	45

^a classical heating;

To test the scope and limitations of this aza-Friedel–Crafts aminoalkylation of indole, indole-2-carboxylic acid (79) was reacted with 3,4-dihydroisoquinoline-hydrochloride (1.HCl). In our first experiment, DCM was used as solvent and 2 drops of EtOH:HCl as additive. By using MW heating, after a reaction time of 1.5 h only the presence of the starting compounds could be detected by TLC (Table 14, entry 1). Change of the solvent (DCM \rightarrow EtOH) and the use of 2 equiv. of Et₃N for *in situ* basification did not lead to the formation of the desired product. Thus, the reaction was repeated under neat conditions, and by using 8 equiv. of Et₃N under MW agitation. A relatively high amount of Et₃N was needed to support the homogeneous medium of the reaction. The synthesized new γ -aminoacid (82) was isolated by crystallization with DCM (Table 14, entry 3). These reaction conditions could be successfully applied for the preparation of 3-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)indole-2-carboxylic acid (83). It should be mentioned that a somewhat higher temperature and a somewhat longer reaction time were needed for the synthesis of 83 as compared with 82 (Table 14, entry 4).

^b MW agitation;

^c no reaction;

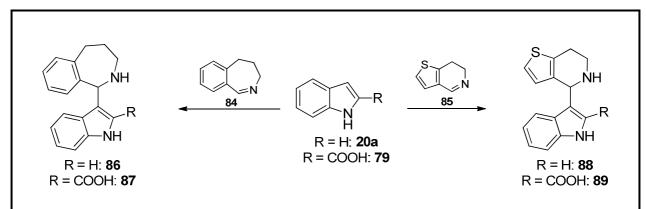
^d decomposition

Reagent/solvent/ **Conditions Entry Products** (%)additive

Table 14. Reaction conditions for the syntheses of 82 and 83

Yields b 100 °C, 1.5 h^a 1 1/DCM/EtOH:HCl 82 2 110 °C, 8 h^a 1/EtOH/2 equiv. Et₃N 82 3 100 °C, 1 h^a 1/neat/8 equiv. Et₃N 82 79 4 2/neat/8 equiv. Et₃N 83 110 °C, 3 h^a 77

3.2.2. & Arylation of 6,7-dihydrothieno[2,3-c]pyridine and 4,6-dihydro-3H-benz[c]azepine with indole derivatives [I]


The possibility of extentsion of the reaction was tested by applying different other cyclic imines. These partially saturated heterocycles were selected to have characteristic differences as compared with the dihydroisoquinoline skeleton. Our attention therefore focused on the application of 4,6-dihydro-3*H*-benz[*c*]azepine (84) and 6,7-dihydrothieno[2,3-*c*]pyridine (85). Two synthetic pathways were applied to achieve the desired starting compounds. In the case of 84, **62** was reacted with N-chlorosuccinimide followed by elimination promoted by KOH. 75,76 6,7-Dihydrothieno[2,3-c]pyridine (85) was prepared by a literature process, via Bischler–Napieralski cyclization of 2-(thiophen-2-yl)ethanamine.⁷⁷

When the unsaturated benz[c]azepine (84) was reacted with indole (20a) at 80 °C for a relatively long reaction time, the desired 3-benzazepinylindole (86) was isolated in a yield of 62% after purification by column chromatography (Table 15, entry 1). Possibly because of the decomposition of 84, increase of the temperature (110 °C) led to the formation of 86 in lower yield (37%, Table 15, entry 2). The best conditions for the synthesis of **86** were found to be 85 °C under MW condition, but it should be mentioned that a relatively long reaction time (5 h) was needed (Table 15, entry 3). On further increase of the temperature under MW conditions, the yields could not be improved (Table 15, entries 4 and 5).

MW agitation;

^b no reaction

Table 15. Reaction conditions for the synthesis of 3-substituted-indole (86, 88) and 3-substituted-indole-2-carboxylic acid (87, 89) derivatives.

Entry	R	Products	Conditions	Yields (%)
1	Н	86	80 °C, 34 h ^a	62
2	Н	86	110 °C, 2.5 h ^a	37
3	Н	86	85 °C, 5 h ^b	76
4	Н	86	100°C, 1.5 h ^b	40
5	Н	86	120 °C, 0.5 h ^b	_c
6	СООН	87	80 °C, 44 h ^a	65
7	СООН	87	80 °C, 6 h→90 °C, 2 h ^b	78
8	Н	88	80 °C, 7 h ^a	57
9	Н	88	80 °C, 2 h ^b	68
10	СООН	89	80 °C, 1.5 h ^a	65
11	СООН	89	80 °C, 0.5 h→90 °C, 0.5 h ^b	72

^a classical heating;

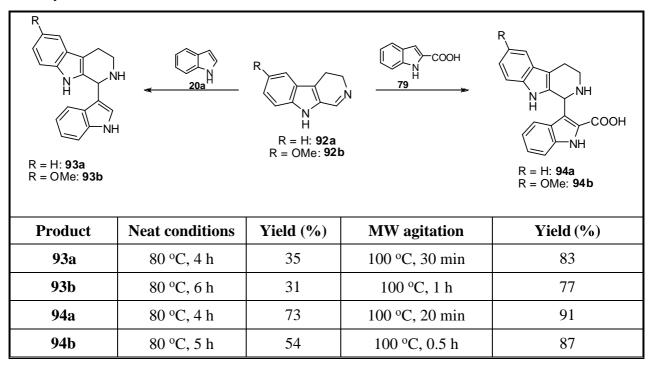
For the synthesis of 3-(2,3,4,5-tetrahydro-1H-benz[c]azepin-1-yl)indole-2-carboxylic acid (87), both classical heating and MW agitation were tested. Table 15 shows that by applying two-step MW conditions, the final product (87) was isolated in somewhat higher yield (Table 15, entries 6 and 7), when 6,7-dihydrothieno[3,2-c]pyridine (85) was reacted either with 20a or with 79. From the results in Table 15 (entries 8-11), it can be concluded that 85 has a higher reactivity with indolederivatives as compared with 4,6-dihydro-3H-benz[c]azepine (84).

^b MW agitation;

^c decomposition

3.2.3. α-Arylation of 4,9-dihydro-3H-β-carboline with indole or naphthol derivatives [III]

3.2.3.1. α-Arylation of 4,9-dihydro-3H-β-carboline with indole derivatives


A vast number of natural and synthetic indoles have found applications as pharmaceuticals, 78 *e.g.* through the catalyst-free coupling of indoles and cyclic imines we have prepared numerous 3-substituted indoles and our attention focused on the reactions between the previously applied indoles and β -carboline derivatives.

The selected starting imines **92a,b** were synthesized from tryptamine (**90a**) or 5-methoxytryptamine (**90b**) by Bischler–Napieralski cyclization (Scheme 18).⁷⁹⁻⁸¹

Scheme 18

When indole (20a) was reacted under solvent-free conditions with the partially unsaturated β-carboline (92a) at 80 °C, 3-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)indole (93a) was isolated in a yield of 35%. When the reaction was repeated under MW agitation at 100 °C, the reaction time could be decreased from 4 h to 30 min (Table 16). The synthesis of 93a was earlier achieved⁸²⁻⁸⁴ from 1*H*-indole-3-ethanamine and 1*H*-indole-3-carboxaldehyde via Pictet–Spengler condensation. The main advantage of our method is the application of indole derivatives instead of indole-3-carboxaldehyde, the direct α -arylation of partially saturated β -carbolines with electronrich aromatic compounds opening up new areas of diversity for this reaction. To prove this, the reaction between 92a and indole-2-carboxylic acid (79) was examined. In this case the optimum reaction conditions were found to be 80 °C with 4 h classical heating, or 100 °C with 20 min under MW irradiation. The desired new indole-γ-amino acid 94a was isolated in a yield of 73% (classical heating) or 91% (MW agitation). The reaction was then extended by using 92b as cyclic imine and indole (20a) or indole-2-carboxylic acid (79) as electron-rich aromatic compound, leading desired 3-(6-methoxy-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)indole derivatives (93b and 94b) in good yields (see Table 16).

Table 16. Reaction conditions for the synthesis of **93a**, **93b**, **94a**, and **94b** from indole or indole-2-carboxylic acid

3.2.3.2. α-Arylation of 4,9-dihydro-3H-β-carboline with naphthol analogues

In our first experiments, the reaction between 4,9-dihydro-3*H*-β-carboline (**92a**) and 2-naphthol (**49**) was examined under neat conditions at 80 °C. After 10 h, the desired product **95a** was isolated in a yield of 48% (Table 17). When the temperature was increased (100 °C) and/or a longer reaction time was applied, decomposition of the starting compounds was assumed. Thus, the reaction was then repeated by using MW agitation. In this case after 2 h at 100 °C, the addition of diethylether led to the isolation of 1-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)naphthalen-2-ol (**95aa**) in a yield of 75% (Table 17).

To test the scope and limitations of the reaction, **92a** was reacted with 1-naphthol (**50**). After 8 h at 80 °C, the desired 2-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)naphthalen-1-ol (**96a**) was isolated in a yield of 61%. By using MW irradiation, the reaction could be accelerated (reaction time 1.5 h), while the yield at 100 °C was improved to 80% (Table 17).

Scheme 19

Recent developments highlighted that *N*-containing naphthol analogues can be successfully applied as electron-rich aromatic compounds in the mMR⁸ and in the aza-Friedel–Crafts reaction.¹⁵ Two representative *N*-containing naphthol analogues (6-hydroxyquinoline as 2-naphthol, and 5-hydroxyisoquinoline as 1-naphthol analogue) were selected to examine their reactivities toward 4,9-dihydro-3*H*-β-carboline (92a). When 92a and 6-hydroxyquinoline (97b) or 5-hydroxyisoquinoline (98b) were subjected to classical heating under neat conditions, the desired 5-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)quinolin-6-ol (99a) and 6-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)isoquinolin-5-ol (100a) were isolated in moderate yields (57% for 99a, 43% for 100a, Table 17). On the use of MW agitation, the reaction times were decreased, but the yields could not be improved significantly (68% for 99a, 63% for 100a, Table 17).

Scheme 20

To generalize the application of β -carboline in this reaction, 6-methoxy- β -carboline (92b) was examined. When naphthol derivatives (49, 50, 97 and 98) were reacted with 92b the desired

aminonaphthols (95b, 96b, 99b, 100b) were isolated. The reaction conditions and yields are given in Table 17.

Table 17. Reaction conditions for the synthesis of **95a**, **95b**, **96a**, **96b**, **99a**, **99b**, **100a** and **100b** from 1- or 2-naphthol or their *N*-containing analogues.

Product	Neat conditions	Yield (%)	MW agitation	Yield (%)
95a	80 °C, 10 h	48	100 °C, 2 h	75
95b	80 °C, 12 h	39	100 °C, 3 h	65
96a	80 °C, 5 h	57	100 °C, 0.5 h	68
96b	80 °C, 10 h	43	100 °C, 2 h	56
99a	80 °C, 8 h	61	100 °C, 1.5 h	80
99b	80 °C, 12 h	41	100 °C, 2 h	64
100a	80 °C, 6 h	43	100 °C, 1.5 h	63
100b	80 °C, 4 h	63	100 °C, 1 h	82

The formation of the α -arylated products was followed by comparing the NMR chemical shifts of the α -protons and/or α -carbons, the characteristic values of which are presented in Table 18.

Table 18. Characteristic NMR chemical shifts (NH-C*H*-Ar or NH-*C*H-Ar) and melting points of the synthesized α -arylated cyclic amines presented in this chapter.

Products	Structures	δ _{C-H} (ppm)	δ _{C-H} (ppm)	M.p.
80	NH NH	5.30	54.7	oil
80.HCl	NH.HCI	6.07	52.4	245-247
81	MeO NH	5.23	56.4	142-143
81.HCl	MeO NH.HCI	5.98	56.5	188-189

82	NH COOH	5.96	53.5	247-248
83	MeO NH COOH	5.87	56.4	241-243
86	NH	5.34	60.3	137-139
87	NH COOH	6.10	55.6	272-273
88	S NH	5.25	52.7	148-149
89	S NH COOH	5.89	50.6	282-284
93a	NH NH	5.97	49.9	145-147
93b	MeO NH	5.39	56.3	224-225
94a	NH NH COOH	6.07	49.1	276-277
94b	MeO NH NH COOH	6.14	56.3	230-231
95a	NH H OH	6.17	52.6	191-192

95b	MeO N NH NH OH	6.13	55.4	175-176
96a	NH HOH	5.49	56.8	200-201
96b	MeO NH OH	6.89	55.4	189-190
99a	NH H OH	6.14	52.2	239-240
99b	MeO NH H OH	6.91	56.2	221-222
100a	NH OH	5.55	56.6	229-230
100b	MeO N NH H OH	5.54	56.7	222-223

4. SUMMARY

- 1. Selective *N*-alkylations of tetrahydroisoquinolines, tetrahydrobenz[d]azepine, tetrahydrobenz[c]azepine and tetrahydrothieno[3,2-c]pyridine were achieved by using 1-naphthol and aromatic aldehydes under neat conditions to obtain tertiary aminonaphthols 54, 58a, 58b, 59a-c, 63, **65** and **67**. The reactions were extended to the synthesis of 1-aminoalkylated 2-naphthol derivatives (51, 68a, 68b, 69a-c, and 70-72) by mixing 2-naphthol, aromatic aldehydes and the corresponding cyclic amines 48, 57, 62, 64 and 66. The yields were found to be good with the exception of 51, where it was only 46%. We conceived that the moderate yield for 51 can be explained by parallel Nalkylation and redox α-arylation, and to prove this a systematic investigation was performed with the reaction of 2-naphthol with 1,2,3,4-tetrahydroisoguinoline in the presence of benzaldehyde at 65 °C. The reaction was followed by comparing the characteristic singlets from the ¹H NMR, and it was found that the ratio of 51:52 is 4:1 during the reaction time (10 h) is 4:1. In contrast, the reaction of 1-naphthol with 1,2,3,4-tetrahydroisoquinoline led to the formation of the N-alkylated compound (54) as a single product. Starting from 2,3,4,5-tetrahydro-1*H*-benz[*c*]azepine, benzaldehyde and 2or 1-naphthol at 65 °C, formation of the N-alkylated product was assumed in each case.
- 2. The reaction of 2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole as secondary cyclic amine with 2- or 1-naphthol as nucleophile in the presence of benzaldehyde led to the formation of 1-((3,4-dihydro-1*H*-pyrido[3,4-*b*]indol-2(9*H*)-yl)(phenyl)methyl)naphthalen-2-ol (75) and 2-((3,4-dihydro-1*H*-pyrido[3,4-*b*]indol-2(9*H*)-yl)(phenyl)methyl)naphthalen-1-ol (77). The reaction of 2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole with 1-naphthol as nucleophile in the presence of benzaldehyde proved to be regioselective for the formation of the *N*-alkylated derivative 77 as a single product. With 2-naphthol as nucleophile, both of the possible *N*-alkylated and α-arylated products 75 and 76 were detected; the ratio was found to depend on the temperature and the heating technique.
- 3. A simple synthesis of 3-(1,2,3,4-tetrahydroisoquinolin-1-yl)indole (80) and 3-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)indole (81) has been developed, involving the reaction of 3,4-dihydroisoquinoline or 6,7-dimethoxy-3,4-dihydroisoquinoline and indole. The reaction was tested by starting from the latter cyclic imines and indole-2-carboxylic acid. The new γ-amino acids (82, 83) prepared in this way were obtained in good yields.

- 4. The synthetic applicability of this aza-Friedel–Crafts reaction was extended to the preparation of 3-(2,3,4,5-tetrahydro-1*H*-benz[*c*]azepin-1-yl)indole (**86**), 3-(4,5,6,7-tetrahydrothieno[3,2-*c*]pyridin-4-yl)indole (**88**), 3-(2,3,4,5-tetrahydro-1*H*-benz[*c*]azepin-1-yl)indole-2-carboxylic acid (**87**) and 3-(4,5,6,7-tetrahydrothieno[3,2-*c*]pyridin-4-yl)indole-2-carboxylic acid (**89**) from cyclic imines such as 4,6-dihydro-3*H*-benz[*c*]azepine and 6,7-dihydrothieno[2,3-*c*]pyridine. All the reactions could be accelerated dramatically by using microwave irradiation.
- 5. 4,9-Dihydro-3*H*-β-carboline and 6-methoxy-4,9-dihydro-3*H*-β-carboline were subjected to catalyst-free one-pot α-arylation with indole or indole-2-carboxylic acid to prepare 1-(1*H*-indol-3-yl)-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indole (**93a**), 1-(1*H*-indol-3-yl)-6-methoxy-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)-1*H*-indole-2-carboxylic acid (**94a**) and 3-(6-methoxy-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)-1*H*-indole-2-carboxylic acid (**94b**) in good yields. The reactions were performed under neat conditions, using microwave agitation.
- 6. A simple synthesis of 1-hydroxynaphthyl-2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indoles (**95a**, **95b**, **96a** and **96b**) has been developed, involving the reaction of **92a**, **92b** and 2- or 1-naphthol. The synthetic pathway was extended to the preparation of 5-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)quinolin-6-ol and 6-(2,3,4,9-tetrahydro-1*H*-pyrido[3,4-*b*]indol-1-yl)isoquinolin-5-ol derivatives (**99a**, **99b**, **100a** and **100b**) from *N*-containing naphthol analogues (6-quinolinol or 5-isoquinolinol). The yields of the reactions were improved by the use of microwave irradiation, and the reactions were accelerated.

5. ACKNOWLEDGEMENTS

This work was carried out in the Institute of Pharmaceutical Chemistry, University of Szeged, during the years 2011-2015.

I would like to express my deepest thanks to my supervisor, Professor Ferenc Fülöp, head of the Institute, for his guidance of my work, his inspiring ideas, his useful advice and his constructive criticism.

My warmest thanks are due to my co-supervisor Dr. István Szatmári, for his continuous support and interest in my activities. His advice and help have been invaluable during all stages of my work.

I would like to thank all members of Research Laboratory 3 at the Institute of Pharmaceutical Chemistry for their help and friendship. I feel very fortunate to be able to work in such a collaborative environment.

Finally, I would like to give my special thanks to my family for their love and support during my Ph.D. studies.

6. REFERENCES

- 1. Bur, S. K.; Martin, S. F. Tetrahedron 2001, 57, 3221.
- 2. Speckamp, W. N.; Moolenaar, M. J *Tetrahedron* **2000**, *56*, 3817.
- 3. Betti, M. Gazz. Chim. Ital. 1900, 30 II, 310.
- 4. Betti, M. Gazz. Chim. Ital. 1901, 31 II, 377.
- 5. Betti, M. Gazz. Chim. Ital. 1901, 31 II, 170.
- 6. Betti, M. Gazz. Chim. Ital. 1901, 31 II, 191.
- 7. Betti, M. Org. Synth. Coll. Vol. 1941, 1, 381.
- 8. Szatmári, I.; Fülöp, F. Tetrahedron, 2013, 69, 1255.
- 9. Chen, W.; Kang, Y-K.; Wilde, R. G.; Seidel, D. Angew. Chem., Int. Ed. 2014, 53, 5179.
- 10. Chen, W.; Wilde, R. G.; Seidel, D. Org. Lett. 2014, 16, 730.
- 11. Chen, W.; Seidel, D. Org. Lett. 2014, 16, 3158.
- 12. Szatmári, I.; Lázár, L.; Fülöp, F. Tetrahedron Lett. 2006, 47, 3881.
- 13. Szatmári, I.; Fülöp, F. Curr. Org. Synth., 2004, 1, 155.
- 14. MacLeod, P.D.; Li, Z.; Feng, J.; Li, C.-J. Tetrahedron Lett., 2006, 47, 6791.
- 15. Szatmári, I.; Fülöp, F. Synthesis, 2011, 745.
- 16. MacLeod, P.D.; Reckling, A.; Li, C.-J. Heterocycles, 2010, 80, 1319.
- 17. MacLeod, P.D.; Li, Z; Li, C.-J. Tetrahedron, 2010, 66, 1045.
- 18. Cimarelli, C.; Fratoni, D.; Mazzanti, A.; Palmieri, G. Eur. J. Org. Chem., 2011, 2094.
- 19. MacLeod, P. D.; Li, Z.; Feng, J.; Li, C-J. Tetrahedron Lett. 2006, 47, 6791.
- 20. MacLeod, P. D.; Li, Z.; Li, C-J. Tetrahedron, 2010, 66, 1045.
- 21. Li, C-J.; MacLeod, P. D.; Li, Z.; Feng, J. WO 2007/098608, **2007**
- 22. Li, Z.; Li, C-J. J. Am. Chem. Soc., 2005, 127, 6968.
- 23. Li, Z.; Bohle, D. S.; L, C-J. PNAS, **2006**, 103, 8928.
- 24. Chua, L.; Qing F-L. Chem. Commun., 2010, 46, 6285.
- 25. Meng, Q-Y.; Zhong, J-J.; Liu, Q.; Gao, X-W.; Zhang, H-H.; Lei, T.; Li, Z-J.; Feng, K.; Chen, B.; Tung, C-H.; Wu, L-Z. *J. Am. Chem. Soc.*, **2013**, *135*, 19052.
- 26. Zhong, J-J.; Meng, Q-Y.; Liu, B.; Li, X-B.; Gao, X-W.; Lei, T.; Wu, C-J; Li, Z-J.; Tung, C-H.; Wu, L-Z. *Org. Lett.*, **2014**, *16*, 1988.
- 27. Zhong, J-J.; Meng, Q-Y.; Wang, G-X.; Liu, Q.; Chen, C.; Ke Feng, K.; Tung, C-H.; Wu, L-Z. *Chem.* Eur. J. **2013**, *19*, 6443.
- 28. Wu, C-J.; Zhong, J-J.; Meng, Q-Y.; Lei, T.; Gao, X-W.; Tung, C-H.; Wu, L-Z. *Org. Lett.*, **2015**, *17*, 884.

- 29. Zhang, Y; Luo, S.; Feng, B.; Zhu, C. Chin. J. Chem., 2012, 30, 2741.
- 30. So, M-H.; Liu, Y.; Ho, C-M.; Che, C-M. Chem. Asian J., 2009, 4, 1551.
- 31. Su, W.; Yu, J.; Li, Z.; Jiang, Z. J. Org. Chem. 2011, 76, 9144.
- 32. Alagiri, K.; Kumara, G.S.R; Prabhu, K.R. Chem. Commun., 2011, 47, 11787.
- 33. Huo, C.; Wang, C.; Wu, M.; Jia, X.; Wang, X.; Yuan, Y.; Xie, H. *Org. Biomol. Chem.*, **2014**, *12*, 3123.
- 34. Yamaguchi, T.; Nobuta, T.; Tada, N.; Miura, T., Nakayama, T.; Uno, B.; Itoh, A. *Synlett*, **2014**, *25*, 1453.
- 35. Freeman, D. B.; Furst, L.; Condie, A.G; Corey R.J. Stephenson, C.R.J. *Org. Lett.*, **2012**, *14*, 94.
- 36. Ratnikov, M.O.; Xu, X.; Doyle, M. P. J. Am. Chem. Soc., 2013, 135, 9475.
- 37. Liu, P.; Zhou, C.-Y.; Xiang, S.; Che, C.-M. Chem. Commun., 2010, 46, 2739.
- 38. Ghobrial, M.; Harhammer, K.; Mihovilovic, M.D.; Schnürch, M. Chem. Commun., 2010, 46, 8836.
- 39. Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc., 2012, 134, 5317.
- 40. Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K.R. Org. Lett., 2013, 15, 1092.
- 41. Ueda, H.; Yoshida, K.; Tokuyama, H. Org. Lett., 2014, 16, 4194.
- 42. Tanoue, A.; Yoo, W.-J.; Kobayashia, S. Adv. Synth. Catal., 2013, 355, 269.
- 43. Shirakawa, E.; Yoneda, T.; Moriya, K.; Ota, K.; Uchiyama, N.; Nishikawa, R.; Hayashi, T. *Chem. Lett.*, **2011**, *40*, 1041.
- 44. Wang, M.-Z.; Zhou, C.-Y.; Wong, M.-K.; Che, C.-M. Chem. Eur. J., 2010, 16, 5723.
- 45. Ghobrial, M.; Schnürch, M.; Mihovilovic, M.D. J. Org. Chem., 2011, 76, 8781.
- 46. Ghobrial, M.; Mihovilovic, M.D.; Schnürch, M. Beilstein J. Org. Chem., 2014, 10, 2186.
- 47. Chen, W.; Zheng, H.; Pan, X.; Xie, Z.; Zan, X.; Sun, B.; Liu, L.; Lou, H. *Tetrahedron Lett.*, **2014**, *55*, 2879.
- 48. Xie, Z.; Liu, L.; Chen, W.; Zheng, H.; Xu, Q.; Yuan, H.; Lou, H. Angew. Chem. Int. Ed., **2014**, 126, 3985.
- 49. Schweitzer-Chaput, B.; Klussmann, M. Eur. J. Org. Chem., 2013, 666.
- 50. Larsson, R.; Blanco, N.; Johansson, M.; Sterner, O. Tetrahedron Lett., 2012, 53, 4966.
- 51. Xiao-Long Qiu, X.-L.; Zhu, J.; Wu, G.; Lee, W.-H.; Chamberlin, A.R. *J. Org. Chem.*, **2009**, *74*, 2018.
- 52. Yi, F.; Su, J.; Zhang, S.; Yi, W.; Zhang, L. Eur. J. Org. Chem. 2015, 7360.
- 53. Deb, M. L.; Dey, S. S.; Bento, I.; Barros, M. T.; Maycock, C. D. *Angew. Chem. Int. Ed.* **2013**, *52*, 9791.

- 54. Meyers, A. I.; Hutchings, R. H. Tetrahedron, 1993, 49, 1807.
- 55. Cheng, D.; Liu, D. K.; Liu, M.; Liu, Y.; Xu, W. R.; Liu, C. X. Chin. Chem. Lett. **2008**, *19*, 689.
- 56. Hesse, M. *Alkaloids: Nature's Curse or Blessing*; Verlag Helvetica Chimica Acta, Wiley-VCH: Zurich, 2002
- 57. Lounasmaa, M.; Hanhinen, P.; Westersund, m.; The Alkaloids. In *The Sarpagine Group of Indole Alkaloids*; Cordell, G. A., Ed.; Academic: San Diego, CA, 1999; Vol. 52
- 58. González-Gómez, A.; Domínguez, G.; Pérez-Cástells, J. Tetrahedron 2009, 65, 3378.
- 59. Gupta, L.; Srivastava, K.; Singh, S.; Puri, S. K.; Chauhan, P. M. S. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 3306.
- 60. Hassani, M.; Cai, W.; Koelsh, K. H.; Holley, D. C.; Rose, A. S.; Olang, F.; Lineswala, J. P.; Holloway, W. G; Gerdes, J. M.; Behforouz, M.; Beall, h. D. *J. Med. Chem.* **2008**, *51*, 3104.
- 61. Trujillo, J. I.; Meyers, M. J.; Anderson, D. R.; Hegde, S.; Mahoney, M. W.; Vernier, W. F.; Buchler, I. P.; Wu, K. K.; Yang, S.; Hartmann, S. J.; Reitz, D. B. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 4657.
- 62. Gautschi, E.; Goldberg, D. R.; Kashem, M. A.; Lukas, S.; Mao, W.; Martin, L.; Morwick, T.; Moss, N.; Pargellis, C.; Patel, U. R.; Patnaude, L.; Peet, G. W.; Skow, D.; Snow, R. J.; Ward, Y.; Werneburg, B; White, A. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 4664.
- 63. Di Fabio, R.; Micheli, F.; Alvaro, G.; Cavanni, P.; Donati, D.; Gagliardi, T.; Fontana, G.; Giovannini, R.; Maffeis, M.; Mingardi, A.; Tranquillini, M. E.; Vitulli, G. Bioorg. Med. *Chem. Lett.* **2007**, *17*, 2254.
- 64. Bringmann, G.; Feines, D.; Brückner, B.; Blank, M.; Peters, K.; Peters, E. M.; Reichmann, H.; Janetzky, B.; Grote, C.; Clement, H.-W.; Wesemann, W. *Bioorg. Med. Chem. Lett.* **2000**, *8*, 1467.
- 65. Bertrand, M.; Poissonnent, G.; Théret-Bettiol, M.-H.; Gaspard, C.; Werner, G., H., Pfeiffer, B.; Renard, P.; Léonce, S.; Dodd, R., H. *Bioorg. Med. Chem.* **2001**, 2155.
- 66. Dong, G.; Wang, s.; Miao, Z.; Yao, J.; Zhang, Y.; Guo, Z.; Zhang, W.; Sheng, C. *J. Med. Chem.* **2012**, *55*, 7593.
- 67. Osyanin, V. A.; Ivleva, E. A.; Klimochkin, Y. N. Chem. Het. Comp. 2012, 48, 795.
- 68. Eschenbrenner-Lux, V.; Küchler, P.; Ziegler, S.; Kumar, K.; Waldmann, H. *Angew. Chem. Int. Ed.* **2014**, *53*, 2134.
- 69. Chen, Z.; Hu, G.; Li, D.; Chen, J.; Li, Y.; Zhou, H.; Xie, Y. *Bioorg. Med. Chem.* **2009**, *17*, 2351.

- 70. Gonzalez-Gomez, Á.; Dominguez, G.; Pérez-Castells, Tetrahedron 2009, 3378.
- 71. Neipp, C. E.; Martin, S. F. J. Org. Chem. **2003**, 68, 8867.
- 72. Li, Y.; Prakash, S. R. J. Label. Compd. Radiopharm. 2005; 48, 323.
- 73. Cochrane, E. J.; Hassall, L. A.; Coldham, I. J. Org. Chem. 2015, 80, 5964.
- 74. Thesing, J.; Klüssendorf, S.; Ballach, P.; Mayer, H. Chem. Ber., 1955, 88, 1295.
- 75. Meyers, A. I.; Hutchings, R. H. Tetrahedron, 1993, 49, 1807.
- 76. Jakubec, P.; Helliwell, M.; Dixon, D. J. Org. Lett., 2008, 10, 4267.
- 77. Herz, W. I.; Tsai, L. J. Am. Chem. Soc., 1955, 77, 3529.
- 78. Sundberg, R.J. Indoles. Academic Press: London, 1996.
- 79. Huang, G.; Roos, D.; Stadtmuller, P.; Decker, M. Tetrahedron Lett., 2014, 55, 3607.
- 80. Dong, G.; Wang, S.; Miao, Z.; Yao, J.; Zhang, Y.; Guo, Z.; Zhang, W.; Sheng, C. *J. Med. Chem.* **2012**, *55*, 7593.
- 81. Chen, Z.; Hu, G.; Li, D.; Chen, J.; Li, Y.; Zhou, H.; Xie, Y. *Bioorg. Med. Chem.* **2009**, *17*, 2351.
- 82. Liew, L. P. P.; Fleming, J. M.; Longeon, A.; Mouray, E.; Florent, I.; Bourget-Kondracki, M.L.; Copp, B.R. *Tetrahedron*, **2014**, *70*, 4910.
- 83. Wendlandt, A. E.; Stahl S. S. J. Am. Chem. Soc. 2014, 136, 506
- 84. Zheng, J.; Zhang, Z.; Zhao, L.; Sha, X.; Dong, X.; Wen, R. Pharm. Biol., 2008, 46, 273.

ANNEX