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Introduction

The human brain’s powerful ability to constantly pick up patterns and regularities in the
environment is known as statistical learning (SL). This broad mechanism enables individuals
to extract probabilistic structures from sensory input (Schapiro, Kustner & Turk-Browne,
2012), shaping perception, cognition, and behavior. At its core, SL involves tracking the
frequency and co-occurrence of elements over time to predict future events. A key concept in
this process is transitional probabilities (TPs)—the likelihood that one element (such as a
sound, visual shape, or movement) will be followed by another based on past patterns (Saffran,
Newport & Aslin, 1996). Recent definitions further emphasize key attributes of SL, such as its
implicit nature (operating without conscious awareness) and its incidental nature (occurring
effortlessly in everyday life) (Obeid, Brooks, Powers, Gillespie-Lynch & Lum, 2016; Arciuli,
2017).

Throughout the course of our lives and across various domains, we engage in SL without being
consciously aware of it. A well-known example comes from language learning: infants as
young as eight months old can pick up word boundaries in continuous speech by detecting TPs
between syllables (e.g., ba and by in “baby”) rather than between words (Saffran, Aslin &
Newport, 1996). Beyond language, SL also underlies motor skill acquisition—for instance,
when learning a new sport or musical instrument, individuals unconsciously recognize
recurring movement sequences, allowing for smoother and more efficient performance over
time (Hunt & Aslin, 2001). Social skills also require the involvement of SL. People naturally
track patterns in others’ behaviors, such as facial expressions, gestures, or tone of voice, to
predict emotions and social intentions (Parks, Griffith, Armstrong & Stevenson, 2020). This
helps us navigate social interactions smoothly, for example, by anticipating how someone
might react in a conversation. SL has also been linked to higher-level cognitive processes, such
as reasoning and decision-making. Studies suggest that individuals who are better at detecting
statistical regularities also perform better on tasks requiring cognitive flexibility and problem-
solving, as they can more efficiently extract relevant patterns from their environment (Sherman,

Graves & Turk-Browne, 2020).

Acquiring various cognitive and motor skills enables us to navigate the world efficiently.
However, several medical conditions can impair these skills. In Parkinson’s disease, patients

often experience impairments in language or visuospatial skills (Papagno & Trojano, 2018).



Similarly, stroke survivors often experience motor deficits, particularly in fine motor skills,
which hinder daily activities (Wessel, Zimerman & Hummel, 2015). Furthermore, individuals
with spatial neglect—a condition affecting spatial awareness post-stroke—may struggle with
representational updating, a process reliant on SL. Targeted interventions that promote SL
could improve their ability to adapt to changing environments (Shagqiri, Anderson & Danckert,
2013). Given that SL is fundamental to acquiring and refining cognitive and motor skills,
developing interventions to enhance this learning process is crucial in rehabilitation. In this
thesis, I will present two studies that explore how different phases of SL—specifically
consolidation (how learned patterns are stabilized and stored) and retrieval (how stored
knowledge is accessed and applied)—can be modulated through brain stimulation and
behavioral interventions. The first study investigates how transcranial magnetic stimulation
(TMS) of the dorsolateral prefrontal cortex (DLPFC) influences the retrieval of learned
statistical patterns. The second study examines how manipulating the temporal structure of the
learning process—specifically, the duration of breaks between learning blocks—affects the
consolidation of statistical knowledge. By investigating these approaches, these studies aim to
provide insights into effective strategies for enhancing SL in healthy individuals, which can

later be applied to clinical populations as well.

Statistical learning in contemporary cognitive frameworks

SL is now understood as a fundamental cognitive process that allows individuals to extract
regularities from their environment (Frost, Armstrong, Siegelman & Christiansen, 2015).
However, its precise relationship with broader cognitive systems—particularly implicit

learning, procedural memory, and the habitual system—has been an area of active debate.

Firstly, SL is often classified as a type of implicit learning—a form of learning that occurs
without conscious intention or awareness (Reber, 1967). Although both implicit learning and
SL refer to an incidental learning mechanism, SL is thought to operate through statistical
computations, whereas implicit learning is suggested to rely on chunk formations (Perruchet &
Pacton, 2006). Additionally, SL has been linked to procedural memory—a component of long-
term memory responsible for learning skills and habits (Ullman, 2004). SL and procedural
memory both rely on gradual, experience-dependent learning and involve automatized
processes that improve with practice. However, SL is not exclusively motor-based, while

procedural memory is often tied to motor and cognitive skill acquisition. Finally, SL is also



thought to involve the habitual system, which refers to automatic, stimulus-driven behaviors
that are reinforced through repeated exposure (Ashby & Crossley, 2012). This notion is
supported by studies showing that divided attention does not disrupt SL, indicating that the
acquired regularities can indeed become habitual and automatic (Horvath, Torok, Pesthy,

Nemeth & Janacsek, 2020; Nemeth et al., 2011).

To sum up, SL can be seen as a subtype of implicit learning, operating without conscious
awareness to extract probabilistic regularities. It shares characteristics with procedural
memory, particularly in its gradual, experience-driven nature, but it is not exclusively motor-
based. Last but not least, it is linked most strongly to the habitual system, as repeated exposure

to statistical regularities can lead to automaticity in behavioral responses.

The rise of non-linguistic statistical learning

Initially conceptualized within the framework of implicit learning (Reber, 1967), SL became
widely recognized in linguistic research during the 1990s. Pioneering studies provided
evidence that infants could extract regularities from speech without explicit instruction (Saffran
etal., 1996a). Following this discovery, researchers explored the role of SL in various linguistic
domains (e.g., phonotactic learning and syntactic structure acquisition). While initial research
on SL was predominantly language-focused, as evidence accumulated, it became clear that SL
extends beyond language, influencing perception, motor learning, and cognitive processing.
Accordingly, research in the 2000s began expanding beyond linguistic contexts in exploring
how SL operates across multiple sensory modalities, including auditory, visual, and motor
systems. For example, early studies of high importance have demonstrated that adults and
infants could extract regularities from visual scenes, suggesting that SL is not limited to
language but also applies to visual perception and revealing the concept of visual statistical
learning (VSL) (Fiser & Aslin, 2001, 2002). Another cornerstone in SL research was the
introduction of the Serial Reaction Time (SRT) task (Nissen & Bullemer, 1987), along with its
more advanced versions, such as the Alternating Serial Reaction Time (ASRT) task (Howard

& Howard, 1997, 2004), which enable the measurement of SL within the visuomotor domain.

Due to the development of non-linguistic paradigms, it has been suggested that SL is a
fundamental, domain-general cognitive ability, meaning that the brain applies similar learning

principles across different perceptual and cognitive domains (Conway & Christiansen, 2005).



The latest frameworks, however, debate whether SL functions as a single, fully unified
mechanism, proposing instead that it operates as a collection of domain-general principles with
specific characteristics that may vary across different modalities (Frost et al., 2015; Siegelman,

Bogaerts & Frost, 2018).

Measuring statistical learning in the visuomotor domain

The emergence of sequence learning tasks has significantly advanced our ability to study SL
mechanisms, particularly in scenarios where multiple modalities (e.g., visual and motor) work
in concert (Pedraza, Vékony & Nemeth, 2023). The SRT task is a four-choice reaction time
task that typically involves presenting participants with visual stimuli on a screen, where they
are required to respond as fast as possible to these stimuli using motor actions, such as pressing
a button (Nissen & Bullemer, 1987). Participants are usually not informed that the sequence of
visual stimuli follows a regular pattern. In the SRT task, learning is typically inferred by
comparing reaction times (RTs) for sequence-based trials and randomly inserted trials. When a
random sequence is introduced, RTs tend to slow down, indicating a disruption in learned
patterns. This task has been widely used to investigate implicit learning processes, including
the acquisition of non-conscious statistical regularities, such as TPs between successive stimuli,

particularly in the domain of motor skills.

The SRT task has been a cornerstone in studying implicit learning, but it also has notable
limitations. One key drawback is that learning can only be assessed intermittently by inserting
blocks of random stimuli. Another limitation stems from the deterministic nature of the
sequence used in the traditional SRT task. In most versions, the task relies on first-order
conditional sequences, meaning that each element in the sequence can be predicted with 100%
certainty based on the preceding one (Robertson, 2007). This deterministic structure increases
the likelihood that participants will consciously recognize the pattern, shifting the task from
measuring implicit SL to capturing explicit learning processes. Consequently, the SRT task
may not provide a pure measure of SL, as participants might rely on explicit memory rather
than unconsciously extracting regularities from the environment, which is, as previously

discussed, a key attribute of SL.

In response to these limitations, more advanced versions of the SRT task, such as the ASRT

task, were introduced. The ASRT task (Howard & Howard, 1997; Howard et al., 2004) builds



on the SRT task by incorporating a probabilistic sequence structure in which pattern and
random elements alternate, giving rise to its name (Howard & Howard, 1997). Due to this
probabilistic sequence structure, some stimuli appear with higher probability than others
(Janacsek, Fiser & Nemeth, 2012). Participants, without explicit awareness, become sensitive
to the second-order statistical regularities, responding faster to high-probability stimuli
(Janacsek et al., 2012). This design offers several advantages that make it particularly useful
for studying SL. One key advantage of the ASRT task is its strong reliability: test-retest
reliability is higher than in the traditional SRT task (Stark-Inbar, Raza, Taylor & Ivry, 2016),
and its internal consistency is also well-supported (Farkas, Krajcsi, Janacsek & Nemeth, 2023).
A second advantage is that, unlike the SRT task, the ASRT design allows for continuous
assessment of the learning process without the need to interrupt it with inserted random
sequences. This is particularly important when investigating different phases of learning, such
as consolidation and retrieval. The third advantage lies in the probabilistic nature of the
sequence itself, where the pattern is embedded within noise. This makes it less likely that
participants will become explicitly aware of the sequence, preserving the implicit nature of SL
(Howard et al., 2004; Song, Howard & Howard, 2007). Finally, the ASRT task, unlike its
deterministic counterpart, allows researchers to distinguish between distinct learning
processes, such as general skill learning and SL (Szegedi-Hallgato, Janacsek & Nemeth, 2019).
General skill learning refers to the overall RT improvement throughout task performance that
occurs as a result of practice. On the other hand, SL refers to the implicit acquisition of

regularities within the task structure.

As presented in the section The rise of non-linguistic statistical learning, SL is a general
learning mechanism that can be measured across various modalities. Since the studies
discussed in this dissertation focused on implicit SL in the visuomotor domain, the following
sections will specifically review research examining the learning dynamics, neural background,
and modulation of SL within this domain, while findings from other modalities will only be

mentioned briefly when relevant.

The dynamics of statistical learning: From acquisition to retrieval

Learning is the process by which individuals acquire knowledge or skills through repeated
exposure, practice, or experience. However, the development of knowledge is not confined to

the period of active learning; it can continue to evolve between sessions, either during



wakefulness or sleep. The progress of SL can be examined through behavioral measures such
as RTs or accuracy, which indicate how learning unfolds over time (Howard et al., 2004;

Nemeth, Janacsek & Fiser, 2013).

The acquisition phase marks the initial stage of learning, where individuals begin to detect and
respond to patterns in a sequence. Research suggests that probability-based SL occurs rapidly,
with the participants demonstrating sensitivity to statistical patterns within the very first block
of trials (Simor et al., 2019). This indicates that even minimal exposure—only a few repetitions
of a pattern—is sufficient for learning to take place (Kobor et al., 2018; Szegedi-Hallgato et
al., 2017). However, additional practice strengthens this statistical knowledge, suggesting that
learning continues to be refined over time (Simor et al., 2019). Since SL is evident after a single
training session, this type of learning is indicated to be a fundamental mechanism by which
individuals automatically adapt to environmental regularities (Song et al., 2007; Nemeth et al.,
2013a; Kobor et al., 2018). Although SL predominantly occurs without conscious awareness,
some researchers argue that attention to stimuli may play a role in the effectiveness of SL (Toro,
Sinnett & Soto-Faraco, 2005; Turk-Browne, Jungé & Scholl, 2005). Nevertheless, findings
indicate that SL can persist over long periods, even with brief exposure (Kim, Seitz, Feenstra

& Shams, 2009).

Once SL occurs, consolidation stabilizes and strengthens the acquired knowledge, allowing it
to be retained over time. Although some studies suggest that auditory SL may benefit from
sleep (Durrant, Cairney & Lewis, 2013; Durrant, Taylor, Cairney & Lewis, 2011), evidence
within the visuomotor domain remains scarce. Studies investigating the consolidation of
probabilistic sequence learning (i.e., measured by the ASRT task) suggest that, unlike
deterministic sequences (i.e., measured by the SRT task) (King, Hoedlmoser, Hirschauer,
Dolfen & Albouy, 2017; Robertson, Pascual-Leone & Press, 2004), learning probabilistic
patterns does not seem to benefit from post-learning sleep in terms of behavioral performance
(Song et al., 2007; Nemeth et al., 2010). One study reported that SL remained intact regardless
of whether participants remained awake, rested quietly, or slept after learning (Simor et al.,
2019). This finding aligns with prior research showing no clear sleep-related consolidation
effects for probabilistic sequence learning tasks (Peigneux et al., 2003, 2006; Song et al., 2007,
Nemeth et al., 2010). A new avenue of consolidation research is rapid consolidation, which
involves the stabilization and enhancement of just-learned statistical knowledge during short

offline rest periods (Bonstrup et al., 2019). Studies investigating the role of such rapid



consolidation in SL have found that SL occurs exclusively online and does not benefit from

short offline rest periods (Fanuel et al., 2022; Quentin et al., 2021).

Retrieval refers to the ability to access and utilize previously learned information. Although
studies specifically focusing on the retrieval phase in visuomotor SL are limited, evidence
suggests that once statistical knowledge is consolidated, it can be accessed and utilized even
after extended delays (Kobor, Janacsek, Takdcs & Nemeth, 2017; Téth-Faber, Nemeth &
Janacsek, 2023). Previous findings have demonstrated stable retention of statistical knowledge
across various time intervals, ranging from several hours to one year (Kobor et al., 2017;
Nemeth & Janacsek, 2011; Meier & Cock, 2014). The resilience of SL over time suggests that
the acquired knowledge remains well-preserved, showing resistance to forgetting and
interference (Kobor et al., 2017). These results align with everyday experiences, such as
maintaining skills in language or motor activities, which persist long after they are first learned

(Kébor et al., 2017).

Overall, the dynamic nature of SL involves a rapid acquisition phase, a consolidation phase
where knowledge remains stable over time, and a retrieval phase where learned statistical
patterns can be accessed and applied even after long delays. These findings highlight the
robustness of SL, raising the question of how this resilient mechanism can be influenced

through behavioral and brain stimulation interventions.

Neural background of statistical learning

Early research primarily attributed SL to sensory-specific brain regions. According to this view,
SL is computed within the sensory areas associated with specific modalities (Frost et al., 2015).
In VSL, for example, the occipital cortex and inferior temporal cortex are primarily engaged
(Turk-Browne, Scholl, Chun & Johnson, 2009). Motor-based SL, on the other hand, involves
interactions between the primary motor cortex (M1) and the premotor cortex (Wymbs et al.,
2012). However, statistical regularities do not solely activate modality-specific sensory
regions; they also recruit broader cortical structures. The left inferior frontal gyrus, for instance,
has been implicated in processing statistical patterns not only in speech (Karuza et al., 2013)
but also in visual stimuli (Turk-Browne et al., 2009). This suggests that SL involves both

domain-specific and domain-general mechanisms.
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While SL relies on a widespread cortical network, subcortical structures—including the
hippocampus, basal ganglia, and cerebellum—are also critically involved. The basal ganglia
play a fundamental role in the procedural, non-declarative memory system (Ullman, 2004),
whose connection to SL has already been outlined in the section on Statistical learning in
contemporary cognitive frameworks. Basal ganglia are shown to be responsible for extracting
predictable patterns through repeated exposure (Berns, McClure, Pagnoni & Montague, 2001).
Evidence from neuropsychological studies supports this role: individuals with Parkinson’s
disease, which affects basal ganglia function, exhibit deficits in SL (Wilkinson, Khan &
Jahanshahi, 2009). Furthermore, the hippocampus and medial temporal lobe, traditionally
associated with declarative memory (Squire, 2004), also contribute to SL. The hippocampus is
particularly involved in extracting temporal relationships between sequence elements
(Schapiro, Gregory, Landau, McCloskey & Turk-Browne, 2014) and facilitating pattern
integration over time, which aids in generalization (Schuck & Niv, 2019). Empirical findings
further highlight its role since fMRI studies reveal hippocampal activation during VSL
(Schapiro et al., 2012).

Importantly, a growing body of research suggests that SL relies on interaction between multiple
cognitive systems and diffuse neural networks rather than a single unified process and separate
brain regions (Schapiro, Turk-Browne & Botvinick, 2017). The prefrontal cortex (PFC) seems
to play a crucial role in the top-down regulation of SL-associated subcortical structures. Firstly,
the frontostriatal network, which links the PFC and basal ganglia, plays a key role in balancing
habitual and goal-directed learning mechanisms (Doyon et al., 2009; Naismith et al., 2010;
Janacsek et al., 2012, 2020). However, a PET study found that the interaction between the PFC
and basal ganglia may depend on the intentionality of learning: during implicit learning, the
caudate nucleus exhibits significantly higher activity, which is decoupled from the activity of
the PFC. In contrast, when participants acquire explicit knowledge, the PFC becomes more
active, exerting control over the striatum (Destrebecqz & Cleeremans, 2005). This finding is
in line with those fMRI studies that found that reduced PFC engagement favors implicit SL
performance (Park, Janacsek, Nemeth & Jeon, 2022; Toéth et al., 2017).

The hippocampus also interacts with both the prefrontal and striatal systems to support the
encoding and consolidation processes of auditory and visual regularities (Henin et al., 2021).
A diffusion tensor imaging study revealed that probabilistic SL is associated with the integrity

of the tracts connecting the caudate nucleus to the DLPFC and the hippocampus to the DLPFC
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(Bennett, Madden, Vaidya, Howard & Howard, 2011). Moreover, the PFC exerts inhibitory
control over hippocampal activity, which influences memory functions, including retrieval
(Benoit, Hulbert, Huddleston & Anderson, 2015; Woodcock, White & Diwadkar, 2015; Oehrn
et al., 2018). The dual-process perspective further posits that SL arises from a combination of

bottom-up statistical computations and top-down cognitive control mechanisms (Conway,

2020).

The neural substrates of SL involve an intricate, dynamic network of cortical and subcortical
structures, highlighting the integration of various learning and memory systems in the
extraction and application of statistical regularities. Establishing a unified cognitive model of

SL, along with such a diffuse neural network, is a major challenge.

Modulating statistical learning through non-invasive brain stimulation

TMS is a type of non-invasive brain stimulation (NIBS) that modulates neural activity by
delivering magnetic pulses to targeted brain regions. By placing a coil against the scalp, TMS
generates magnetic fields that induce electrical currents in the underlying cortical tissue,
thereby influencing neuronal communication and excitability. TMS is a powerful tool for
studying cognitive functions because it allows researchers to casually manipulate neural
activity in specific brain regions, providing insights into their role in learning and memory
while maintaining high temporal precision (Bergmann & Hartwigsen, 2021; Pascual-Leone,
Gates & Dhuna, 1991). The latter property is particularly important when studying different

phases of learning mechanisms.

The effect of TMS on SL depends on several factors. A review study identified six key factors
that influence the behavioral effects of TMS: TMS protocol, targeted brain area and
hemisphere, timing of the stimulation, complexity of the sequence, and methodological details
(Sziics-Bencze et al., 2023). Regarding the protocol, repetitive TMS (rTMS) is performed by
repeatedly applying magnetic pulses, which can have either facilitatory or inhibitory effects on
the cortex, depending on the frequency of the delivered pulses (Huang et al., 2017; Polania,
Nitsche & Ruff, 2018). Typically, high-frequency rTMS is thought to have a facilitatory effect,
while low-frequency rTMS is considered to be inhibitory. The patterned form of TMS, known
as theta burst stimulation (TBS), also has faciliatory and inhibitory protocols depending on
whether the pulse bursts are delivered intermittently (iTBS) or continuously (¢cTBS) (Huang,

12



Edwards, Rounis, Bhatia & Rothwell et al., 2005). The TMS protocols can interact with the
role of a specific brain area. The activity of the targeted brain area can either support or
counteract the function of a specific cognitive process; thus, even with an inhibitory protocol,
a facilitatory effect can still be achieved (Ambrus et al., 2020; Smalle, Daikoku, Szmalec,
Duyck & Moéttonen, 2022). Additional factors include which hemisphere is being stimulated:
hemispheric lateralization can be explored (Galea, Albert, Ditye & Miall, 2010), or bilateral
stimulation can maximize TMS effects by preventing compensatory mechanisms of the
hemispheres (Andoh & Martinot, 2008). Timing is also a crucial factor in determining the
effects, as the phase of the learning process (acquisition, consolidation, or retrieval) during
which the stimulation is applied influences the outcome (Veldman et al., 2018). The complexity
of the sequence is another important consideration, as different brain areas may be involved in
simpler deterministic versus more complex probabilistic sequences (Clark et al., 2019).
Furthermore, methodological details, such as the control group used (e.g., active control or
sham) and the determination of stimulation intensity, can be critical in shaping the effects of

TMS on SL.

The impact of TMS during the initial learning phase has been examined in several studies. TMS
can be administered either simultaneously with task performance or between learning blocks.
For example, facilitatory TMS over the DLPFC administered during sequence learning on the
SRT task led to a decline in task performance (Pascual-Leone, Wassermann, Grafman &
Hallett, 1996). In contrast, a more recent study found that inhibitory TMS over the DLPFC
applied between learning blocks resulted in improved performance on the ASRT task (Ambrus
et al., 2020). The majority of research, however, has focused on so-called ‘off-line stimulation’,
where TMS is delivered before the task, with most studies reporting impaired learning of SL

(Clark et al., 2019; Clerget, Poncin, Fadiga & Olivier., 2012; Wilkinson et al., 2015).

Beyond the learning phase, TMS has also been applied to investigate its influence on the
consolidation of statistical knowledge. For example, continuous theta burst stimulation
(cTBS)—a patterned form of TMS—over the DLPFC has been shown to enhance performance
on a deterministic sequence after an eight-hour offline period (Galea et al., 2010). Conversely,
studies applying inhibitory TMS over the M1 have found that it interferes with offline
improvement in implicit SL during the day (Robertson, Press & Pascual-Leone, 2005), as well

as in explicit learning after sleep (Breton & Robertson, 2017). These findings suggest that
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TMS over both the DLPFC and M1 can significantly influence the consolidation of memory

traces by modulating the processes underlying memory stabilization.

Despite substantial research on the effects of TMS during the learning and consolidation
phases, little attention has been paid to its potential role in the retrieval phase of SL. To date,
no studies have investigated the impact of TMS immediately before or during the access of
well-acquired statistical knowledge. Given the lack of evidence in this area, one of the primary
aims of the current thesis is to fill this gap and present my own results on the TMS effects as

applied over the DLPFC on SL retrieval.

Modulating statistical learning through behavioral approaches

Applying various behavioral interventions in SL can help us understand the different phases of
this fundamental and complex mechanism. Which behavioral methods can be used to test the
acquisition phase of SL? The impact of instructions on SL has been explored using the ASRT
task. Vékony, Pleche, Pesthy, Janacsek and Nemeth (2022) examined whether prioritizing
speed or accuracy during learning influenced different aspects of SL. Their results indicated
that emphasizing speed enhanced probability-based learning. However, after a retention period
where participants focused equally on speed and accuracy, both groups demonstrated
comparable acquired knowledge. Stress is another crucial factor in learning and memory. T6th-
Féber, Janacsek, Sz6116si, Kéri and Nemeth (2021) investigated its effects on different aspects
of SL using the ASRT task. Contrary to intuition, results demonstrated that acute stress, far
from impairing, actually enhanced the acquisition of probability-based regularities in the early
learning phase. The role of attention in SL, on the other hand, remains a topic of debate.
Horvéth and colleagues (2020) explored whether dividing attention during learning affects the
acquisition of statistical regularities. Results indicated that divided attention had no effect on
the acquisition of probabilistic sequences. These findings suggest that SL is robust to
attentional manipulations, reinforcing the idea that minimal attentional resources are required
for learning statistical regularities. This notion is further supported by the findings of Nemeth,
Janacsek, Polner and Kovacs (2013), who compared SL in a hypnotic state to an alert state.
Their results indicated that hypnosis facilitated the acquisition of non-adjacent regularities.
These findings highlight that the cognitive control-dependent system is not necessary for
effective SL. In fact, its disengagement may be beneficial for learning. These insights provide

valuable implications for optimizing strategies in various settings.
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The consolidation of SL is influenced by multiple factors, including awareness, attentional
conditions, and the nature of the learned sequence (Janacsek & Nemeth, 2012). Regarding
awareness, it has been proposed that the consolidation of explicit and implicit learning follows
distinct pathways (Robertson, 2009). Findings suggest that sleep-dependent consolidation
occurs only when participants possess explicit sequence knowledge (Fischer, Hallschmid,
Elsner & Born, 2002; Robertson et al., 2009; Walker & Stickgold, 2004). In contrast, implicit
SL consolidation appears to be time-dependent rather than sleep-dependent. Furthermore, sleep
benefits simple, explicit sequence structures but does not enhance the consolidation of
complex, probabilistic sequences (Nemeth et al., 2010; Robertson et al., 2004; Song et al.,
2007). Thus, awareness and sequence structure modulate the role of sleep in consolidation.
Horvath and colleagues (2020) demonstrated that statistical knowledge remains preserved even
when acquired under divided attention, suggesting that the consolidation process of implicit SL
is as robust as acquisition. Most consolidation studies have examined time frames spanning
hours. However, recent research has begun investigating rapid consolidation, which occurs
within seconds (Bonstrup et al., 2019). Previous findings indicated that both deterministic and
probabilistic sequence learning benefits from extended two-minute rest periods (Du, Prashad,
Schoenbrun & Clark, 2016) and even shorter ten-second rest periods (Bonstrup et al., 2019).
However, the latest studies suggest that consolidation occurs exclusively online and does not
benefit from short offline periods (Fanuel et al., 2022; Quentin et al., 2021). The current thesis
aims to provide a more comprehensive approach to test rapid consolidation’s role in implicit

visuomotor SL.

Compared to acquisition and consolidation, retrieval remains the least studied phase of SL. A
study explored whether the retrieval of well-established probabilistic sequence knowledge is
affected by a concurrent secondary task (Vékony et al., 2020). The findings suggest that while
dual-task conditions slow response execution, they do not hinder the retrieval of learned
statistical knowledge. Understanding the robustness of SL under different retrieval conditions
can provide valuable insights into real-world scenarios where people must apply previously

learned statistical knowledge while simultaneously managing other cognitive demands.
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Aims

This thesis presents two studies that aim to address gaps in the literature related to the
modulation of SL consolidation and retrieval (Table 1). While prior research has largely
converged on the idea that inhibitory TMS over the DLPFC facilitates SL and its consolidation
(e.g., Ambrus et al., 2020; Galea et al., 2010), no study has yet explored its effects on the
retrieval of well-established statistical knowledge. To address this gap, Study I examined how
inhibitory stimulation over the DLPFC affects the retrieval of previously acquired implicit
probabilistic sequences. Participants first learned the ASRT sequence, and after a 24-hour
offline period—allowing consolidation to occur—they were asked to perform the same
sequence again. Before this retrieval phase, inhibitory TMS was applied over the DLPFC. A
novel aspect of this study is its comprehensive investigation of hemispheric contributions to
retrieval: participants were divided into separate groups receiving stimulation over the left
DLPFC, right DLPFC, or both hemispheres (bilateral stimulation). To assess the effects of TMS
on access to implicit statistical knowledge, the performance of the experimental groups was

compared to that of a sham stimulation group, which did not receive real stimulation.

Previous research has yielded conflicting findings regarding whether rapid consolidation
occurs during short rest periods introduced in SL. Some studies suggest that SL of probabilistic
sequences benefits from such brief rest periods (Du et al., 2016), while others report no
observable improvement (Quentin et al., 2021), and some even indicate that SL performance
deteriorates during these rest periods (Fanuel et al., 2022). However, these studies either used
fixed-duration rest periods or did not control for break length. Based on these inconsistencies,
Study II investigated whether different rest period durations differentially affect SL. In this
study, participants completed the ASRT task and were randomly assigned to one of three
between-subject conditions regarding the length of the short rest periods: (1) 15-second breaks,
(2) 30-second breaks, or (3) a self-paced condition in which they determined the duration of
their own breaks. Given that the ASRT task allows for the dissociation of parallel learning
processes, we examined whether rest period duration had distinct effects on SL performance
(implicit acquisition of probability-based sequence structure) and general skill learning
performance (reaction time improvement irrespective of the statistical probabilities). Beyond
assessing overall performance, we also compared how the three groups’ learning evolved both
online (within learning blocks) and offline (between learning blocks) for these two distinct

learning processes.
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Table 1. The literature gaps and main research questions to fill them

Literature gap to be filled

Research questions

Study I

Study II

The role of the DLPFC in the

retrieval of statistical knowledge

The role of rapid consolidation in

SL

Does inhibitory TMS over the DLPFC modulate
the retrieval phase of SL?

Does the effect of DLPFC inhibition on retrieval
differ based on hemispheric lateralization (left,

right, or bilateral stimulation)?

How does short rest periods of different length

affect SL performance?

Does rest period length influences SL differently
in online (within-block) and offline (between-

block) phases?
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Materials and methods
Study I — Brain stimulation intervention to SL retrieval
Participants

Actotal of 104 healthy adult volunteers participated in this study. Two individuals were excluded
due to a reported history of neurological or psychiatric disorders, and one participant did not
complete the study. As a result, the final sample included 101 participants, all of whom had
normal or corrected-to-normal vision and no contraindications for TMS (such as metal implants
or pacemakers). At the beginning of the first session, after completing a TMS contraindication
questionnaire, participants were randomly assigned to one of four groups: Left DLPFC, Right
DLPFC, Bilateral DLPFC, or Sham, with no significant differences in sex, age, education,
handedness, or working memory performance between groups (Table 2). Each participant
provided written informed consent before taking part in the study. The study was approved by
the Regional Scientific and Research Ethics Committee of the Albert Szent-Gydrgyi Clinical

Center, University of Szeged, following the Declaration of Helsinki.

Table 2. Descriptive statistics of the four experimental groups

Left DLPFC Right DLPFC  Bilateral DLPFC Sham
(n=25) (n=26) (n=25) (n=25)
Gender (f/m) 14/11 18/8 13/12 17/8
Age (years) 23.76 + 5.15 26.11 +£7.26 22.40 +4.27 25.88 +6.02
Education (years) 15.40 +£2.70 15.73 £2.82 14.40 +2.50 16.08 +3.53
Handedness (1/1/a) 24/1/0 23/1/2 21/4/0 21/2/2
Counting Span Task  4.41 + 0.62 428 +0.52 3.96 +0.76 398 +0.76

Notes. Mean and SD values for age years of education and Counting Span Task are presented. For
gender (f = female, m = male) and handedness (r = right, | = left, a = ambidextrous), case numbers are
presented.

Stimuli

Implicit visuomotor SL was measured using the ASRT task. The task was implemented and
executed in the E-Prime 3.0 software environment. During the ASRT task, a visual stimulus (a
Dalmatian dog’s head) appeared in one of the four horizontally arranged locations on the

screen. Participants were required to press the corresponding key (Z, C, B, or M on an external
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QWERTY keyboard, corresponding to the four locations from left to right) as quickly and
accurately as possible. Participants used their left middle and index fingers to press the Z and
C keys, while their right middle and index fingers were used to press the B and M keys. The
stimulus remained on the screen until a response was made, followed by a 120-millisecond
(ms) response-to-stimulus interval before the next stimulus appeared. Unbeknownst to the
participants, the sequence of stimuli followed a predetermined probabilistic pattern: an eight-
element sequence in which pattern-defined positions alternated with randomly determined
positions (e.g., 2-R—4-R-3-R—-1-R, where numbers denote specific positions and “R”
represents a randomly selected location). This eight-element sequence was repeated 10 times
within a learning block, resulting in 80 trials per block (Fig. 1a). Due to this alternating
sequence structure, certain three-element stimulus sequences (triplets) appeared with different
probabilities. Trials of high-probability triplets, where the third element was more predictable
based on the first element, occurred in 62.5% of trials, while trials of low-probability triplets,
where the third element was less predictable, appeared in 37.5% of trials (Fig. 2b). SL was
measured as the increasing RT difference between trials containing the third element of a high-

probability versus a low-probability triplet.

a Repeating 8-element probabilistic sequence b Formation of high- and low-probability triplets

37.5% ; bility tri y ¢
D) High-probability triplet High-probability triplet Low-probability triplet

(P-R-P) (R-P-R) (R-P-R)

Structure P-R-P StructureR-P-R

(e.g,2-R-4) (e.g,R-3-R)

High-probability triplets o o
(62.5% of all trials) 2-3-4(50%) 2-3-4(12.5%)
Low-probability triplets Not possible S
(37.5% of all trials) (always high) 2_1-4 (12:5% )

Figure 1. The ASRT task. (a) Without the participants’ awareness, the visual stimuli presented in the
task followed an 8-element probabilistic sequence, where pattern elements alternated with randomly
inserted elements. This 8-element sequence was repeated 10 times within a learning block. (b) The
probabilistic sequence structure resulted in certain three-stimulus combinations occurring more
frequently (high-probability triplets) than others (low-probability triplets). Trials were classified based
on whether they represented the final element of a high- or low-probability triplet. The RT difference
between these trial types reflects implicit visuomotor SL.

To ensure that the effect of DLPFC stimulation was specific to SL and did not extend to explicit
learning, we included a control memory task measuring declarative/episodic learning and

memory. The Paired-Associate Learning Task (PALT) (Nagy, Konya & Kiraly, 2013) was used
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for this purpose and was administered via E-Prime 3.0. In the learning phase, participants were
shown 23 pairs of schematic images, each containing one object and one animal, displayed side
by side. Participants were instructed to name the images but were not informed that they needed
to memorize them. During the retrieval session, participants were presented with 32 image
pairs and had to determine whether (i) the pair had been shown in the learning phase and, if so,
(i1) whether the images were presented together or rearranged. The 32 pairs were categorized
into four conditions (eight pairs each): (1) Old-Old original (both images were originally paired
together), (2) Old-Old rearranged (both images were from the learning phase but paired
differently), (3) Old-New or New-Old (one image was from the learning phase, the other was
new), and (4) New-New (neither image was shown previously). Participants’ responses were
recorded by the experimenter, who pressed a corresponding button (1-5) to log the answer and

present the next pair. A 500 ms fixation cross was displayed between trials.

Repetitive transcranial magnetic stimulation (rTMS)

rTMS was applied using a Magstim Rapid? Stimulator and a D702 70 mm figure-of-eight coil
(The Magstim Company Ltd, Whitland, Wales, UK). Magnetic pulses were delivered at a
frequency of 1 Hz for 10 minutes, totaling 600 pulses. The stimulation intensity was
consistently set at 55% of the maximum stimulator output for all participants. The stimulation
intensity setting was chosen instead of the traditional motor threshold-based method, as
evidence suggests that using motor thresholds is unsuitable for regions outside the motor cortex
(Antal, Nitsche, Kincses, Lampe & Paulus, 2004; Turi et al., 2022; Wassermann, McShane,
Hallett, & Cohen, 1992). Furthermore, the use of a uniform intensity setting has already proven
to be effective in modulating SL in a previous study (Ambrus et al., 2020). Coil positioning
followed the international 10-20 EEG system using an EEG cap, providing 90% accuracy in
targeting the desired area (Herwig, Satrapi & Schonfeldt-Lecuona, 2003). The coil was placed
over the F3 electrode for left DLPFC stimulation and the F4 electrode for right DLPFC
stimulation (Brodmann 9) throughout the stimulation period. For bilateral DLPFC stimulation,
the coil was positioned over the F3 for the first half (5 minutes, 300 pulses) and then moved to
F4 for the second half (Fig. 1b). The stimulation order for each hemisphere was
counterbalanced across participants in the Bilateral DLPFC group. During sham stimulation,
the coil was tilted 90° away from the skull, ensuring that participants heard the machine’s noise

without any impact on brain activity.
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Experimental design

The experiment took place over two consecutive days, with participants completing tasks in a
well-lit, quiet environment. On the first day, participants performed the ASRT task across 25
blocks, taking around 25 to 30 minutes to learn an 8-element probabilistic sequence, followed
by the learning phase of the PALT, which lasted about 10 minutes (Learning Session). On the
same day, participants also completed the Counting Span Task to ensure that the four
experimental groups were comparable in baseline cognitive functions (Table 2). After a 24-
hour offline period, the second day included rTMS administration and a retest of participants’
statistical and declarative knowledge (Retrieval Session). The rTMS lasted 10 minutes,
followed by the ASRT task, which consisted of 5 blocks using the same probabilistic sequence
practiced on day one, or the recall phase of the PALT. The order of the statistical and declarative
learning tasks was counterbalanced across participants and sessions (Fig. 2a).

a Experimental procedure

Randomized order Randomized order

24 h
ASRT Control ASRT Control
15 ] 15 ]
- memory task c - memory task
25 blocks } 5 blocks

LEARNING OFFLINE rTMS RETRIEVAL

b Stimulation sites

10 min ¥
A N
o s LN
/Fo0e® fol-YoXo)o) 9000@
ef6-0-6-0-00 6-0-6-0-6 6-0-6-0-60
\'@‘O@Gy '@@@@y QO@@V
Sham Left DLPFC Right DLPFC Bilateral DLPFC

Figure 2. Study design. (a) The study took place over two consecutive days. On day one (Learning
Session), participants completed 25 blocks of the ASRT task and the learning phase of the PALT,
followed by a 24-hour offline period. On day two (Retrieval Session), participants received 10 minutes
of 1 Hz rTMS and then performed 5 blocks of the ASRT task and the recall phase of the PALT. The
order of the tasks was counterbalanced across participants on both days. (b) Stimulation sites for the
four groups: The coil was tilted 90° in the Sham group, F3 was stimulated for 10 minutes in the Left
DLPFC group, F4 for 10 minutes in the Right DLPFC group, and both F3 and F4 were sequentially
stimulated for 5 minutes each in the Bilateral DLPFC group.

Data processing

In the case of the ASRT task, trials involving trills (e.g., 1-2—1) and repetitions (e.g., 1-1-1)

were excluded from the analysis as participants may have inherent response patterns for these
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trial types. Additionally, trials with RTs below 100 ms or exceeding three SDs above the mean
RT were removed, as these were considered invalid responses. Trials with incorrect responses

(misses) were also excluded.

Regarding the PALT, three learning indices were derived from participants’ responses. Item
memory index was calculated by subtracting the ratio of incorrect Old-Old responses to New-
New pair (false alarms) from the ratio of correct Old-Old rearranged pair responses (hit rate).
Association learning index was quantified by subtracting the ratio of correct Old-Old
rearranged pair responses (hit rate) from the ratio of correct original Old-Old responses (hit
rate). Recollection index was defined by subtracting the ratio of incorrect Old-Old original
responses to Old-Old rearranged pairs (false alarms) from the ratio of correct Old-Old original

responses (hit rate).

Statistical analysis

Statistical analysis on block-wise mean RT data from the ASRT task was conducted in R using
linear mixed models (LMMs) with the afex package, applied separately to the Learning and
Retrieval Sessions. Fixed factors included Trial Type (high- vs. low-probability), Group (Left,
Right, Bilateral, Sham), and Block (Learning Session: blocks 1-25; Retrieval session: blocks
26-30). Subject was included as a random intercept, with by-participant correlated slopes for
the Block factor. To evaluate the factors influencing model quality, a likelihood ratio test was
performed using the anova function in R. This test compared model likelihoods, based on
Akaike Information Criterion (AIC), with the model showing the lowest AIC indicating the
best fit (Bozdogan, 1987). Estimated marginal means were calculated using the emmeans
package. On the other hand, comparing the three PALT learning indices across the four groups,
ANOVAs were conducted. A significant level of 0.05 was used for all analyses, with Bonferroni

correction applied to post hoc comparison where necessary.
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Study II — Behavioral intervention to SL consolidation
Participants

This online study initially included 361 university students who participated in an exchange
for course credit. After rigorous quality control of data (for details, see “Data processing”), the
final sample comprised 268 participants (Mace = 21.46 years, SDace = 2.20 years; 77.61%
female). Participants were randomly assigned to one of three groups (15-second, 30-second, or
self-paced), with no significant differences in age, education, sex, handedness, or working
memory performance between groups (Table 3). All participants had normal or corrected-to-
normal vision and no history of neurological or psychiatric conditions. Informed consent was
obtained, and the study was approved by the Research Ethics Committee of E6tvos Lordnd
University (Budapest, Hungary), following the Declaration of Helsinki.

Table 3. Descriptive statistics of the three experimental groups

Self-paced 15-second 30-second Comparison

group (n=88) group (mn=90) group (n=90)

Age (years) 21.89 +2.07 21.24+2.23 21.27+2.26 p=.09
Education (sec/BA/MA)  68/17/3 67/22/1 73/16/1 p=.56
Gender (m/f) 18/70 20/70 22/68 p=.82
Handedness (1/1/a) 8/80/0 8/80/2 10/78/2 p=.68
2-back task (d’) 1.57+0.95 1.49 +0.87 1.52+0.89 p=.82

Notes. Mean and SD values for age and 2-back task are presented. For education (sec = secondary
education or lower, BA = bachelor’s level or equivalent, MA = master’s level or equivalent), gender (m
= male, f = female), and handedness (1 = left, r = right, a = ambidextrous), case numbers are presented.

Stimuli

The ASRT task enabled us to assess both implicit SL and general skill learning separately. The
task has already been described above. Participants were required to respond to a stream of
visual stimuli (a Dalmatian’s dog head) where pattern elements alternated with random ones
(Fig. 3A) without the participants being aware. High- and low-probability triplets emerged
from this probabilistic sequence (Fig. 3B). However, there are some differences between the
versions of the task used in the two studies. The fundamental distinction is that the task was
performed online in the participants’ own environment rather than in a research laboratory. The

task was programmed in JavaScript using the jsPsych framework (de Leeuw, 2015). Second,
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due to the online, unsupervised environment, practice blocks preceded the learning phase.
Third, the four response keys corresponding to the four locations were S, F, J, and L on the
participants’ own computer keyboard. Finally, while in Study I, all participants proceeded in a
self-paced manner, break durations were manipulated in this version (see in Experimental
design). In all other respects, the task structure was identical to the previously described

version.

Experimental design

The experiment was conducted online using the Gorilla Experiment Builder, ensuring precise
stimulus presentation and response timing. Participants were randomly assigned to one of three
task versions, differing only in the duration of between-block rest periods: (1) 15-second
breaks, (2) 30-second breaks, or (3) self-paced breaks, allowing participants to proceed when
they were ready (Fig. 3C). The task began with two practice blocks, followed by 25 learning
blocks, each containing 80 trials, and took approximately 25-30 minutes to complete. Accuracy
and RTs were recorded for each trial. After completing the ASRT task, participants’ awareness
of the sequence structure was assessed using a brief questionnaire and a task based on the
process dissociation procedure, which differentiates explicit and implicit memory processes.
The results of these tests showed that statistical knowledge remained equally implicit across
all three groups. Lastly, participants completed 0-back and 2-back tasks to assess working

memory.

Data processing

Before analysis, we applied exclusion criteria to ensure data reliability. Participants were
excluded if they (1) had an accuracy below 80% on the ASRT task (34 participants), (2) scored
below 60% on the 0-back task (eight participants), (3) failed to respond in the n-back tasks (16
participants), (4) restarted the experiment after quitting (four participants), (5) had prior ASRT
experience (eight participants), or (6) delayed response after rest periods in at least five blocks
(21 participants). Additionally, participants with an average RT over 1000 ms for the first trials
of blocks were removed (nine from the 15-second group and 12 from the 30-second group).
Since age distribution varied across groups, those older than 35 years were also excluded (11

participants).
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Figure 3. The ASRT task and the study design. (A) A visual stimulus (a Dalmatian dog’s head)
appeared in one of four horizontally arranged locations. The stimuli followed an eight-element
probabilistic sequence, where fixed and pattern elements alternated with randomly assigned positions.
(B) Each trial was classified as the third element of a three-item sequence (triplet). Due to the
probabilistic structure, high-probability trials occurred more frequently (62.5% of trials), than low-
probability trials (37.5%). (C) Each learning block contained 80 trials, repeating the sequence 10 times.
Participants were divided into three groups based on the length of the between-block breaks: 15-second,
30-second, or self-paced.

After ensuring data quality, we removed inaccurate responses (misses), trills (e.g., 1-2—1),
repetitions (e.g., |-1-1), and trials with RTs over 1000 ms, excluding a total of 20.22% of trials.
To smooth the data, ASRT blocks were grouped into units of five consecutive blocks. SL scores
for each learning unit were measured by subtracting the median RT of high-probability trials
from low-probability trials of the unit, then standardizing by dividing by mean RT. General
skill learning was assessed using median RTs for each learning unit, independent of trial

probability.

To analyze within-block (online) and between-block (offline) changes, each block of 80 trials
was divided into five bins (16 trials each). SL scores based on the RT difference between high-
probability and low-probability trials were calculated for each bin. Online SL was calculated
as the change in learning scores from the first to the last bin within a block (change scores),
averaged across all 25 blocks. Offline SL was measured as the difference between the last bin

of one block and the first bin of the next (change scores), averaged across all 25 blocks. The
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same approach was used for general skill learning but based on median RTs regardless of trial

type.

Statistical analysis

We conducted statistical analyses using JASP 0.16. Before the main statistical analyses, we
calculated the average and median rest durations for the self-paced group. The mean was 16.67
s (SD =25.48) and the median was 10.58 s. One-sample t-tests showed no significant difference
from the 15-second group (#(87) = 0.62, p = .54) but a significant difference from the 30-second
group (#(87) =-4.91, p <.001). To analyze the ASRT task, learning blocks were grouped into
five larger units: blocks 1-5, blocks 610, blocks 11-15, blocks 16-20, and blocks 21-25. To
compare SL across groups, we conducted a mixed-design one-way analysis of variance
(ANOVA) with the within-subject factor of Blocks (block 1-5 vs. block 6-10 vs. block 11-15
vs. block vs. 16-20 vs. block 21-25) and the between-subjects factor of Group (self-paced, 15-
second, 30-second), with SL scores as dependent variable. To test whether general skill learning
(i.e., the overall speedup on the task) differed between groups, a similar mixed-design ANOVA
was conducted but with median RT as the dependent variable. Additionally, mixed-design
ANOVAs were used to analyze offline and online changes separately for both SL and general
skill learning with the within-subjects factor of the Learning Phase (offline vs. online) and the
between-subjects factor of Group (self-paced, 15-second, 30-second), with change scores as
the dependent variable. A significant level of 0.05 was used for all analyses, with Bonferroni

correction applied to post hoc comparison where necessary.
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Results
Study I — Brain stimulation intervention to SL retrieval
Comparable SL performance in the four groups before rTMS

The optimal model included Trial Type, Block, and Group as fixed factors, with Block also
serving as a by-participant random slope factor. A main effect of Trial Type was observed, with
high-probability trials yielding faster RTs than low-probability trials, confirming that SL
occurred across all participants (£(1,4840) = 278.76, p < .001). The Trial Type x Block
interaction indicated a progressive enhancement in SL, as the difference between high- and
low-probability triplets increased over time (F(1,4840) = 33.62, p <.001). However, there was
no evidence of SL differences between the four groups, as neither the Group x Trial Type
interaction (F(3,4840) = 0.45, p = .714) nor the Group x Block interaction (£(3,4840) = 0.32,
p = .814) reached significance before stimulation (Fig. 4a, b). The main effect of Block showed
decreasing RTs throughout the task, reflecting gradual general skill learning (£(1,97) =321.79,
p <.001). However, no group differences in general skills were found, as neither the main effect
of Group (F(3,97) = 0.05, p = 0.987) nor the Group x Block interaction (£(3,97) = 2.09, p =

.106) was significant.

Enhanced retrieval capacity of statistical knowledge after bilateral DLPFC inhibition

The optimal model for the Retrieval session included Trial Type and Group as fixed factors,
along with their interaction, while Block was treated as a by-participant random slope factor.
SL remained intact, as indicated by a significant main effect of Trial Type, with faster responses
to high-probability trials compared to low-probability ones (F(1,804) = 199.10, p <.001). The
absence of a main effect of Group suggested no significant differences in general skills between
the four groups (F(3,97) = 0.41, p = .743). However, the Group % Trial Type interaction
indicated a variation in SL performance among the groups (F(3,804) = 3.62, p = .013). Post
hoc Welch’s t-tests revealed that two stimulation groups outperformed the Sham group in SL:
the Bilateral DLPFC group (#(44.835) =3.04, p <.01) and the Left DLPFC group (#47.839) =
2.32, p <.05). However, after correcting for multiple comparisons, only the Bilateral DLPFC

group maintained significance (Fig. 4c, d).
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Figure 4. Statistical knowledge before and after rTMS. The y-axis represents the mean SL scores
(RT difference between high- and low-probability trials in ms) for the four groups, where higher values
indicate greater sensitivity to the underlying statistical structure. This measure reflects the extent to
which participants responded faster to high-probability trials. Error bars indicate the standard error of
the mean. (a) No significant differences in SL were found between the DLPFC groups and the Sham
group in the Learning session. (b) Individual SL scores for each of the four groups. (c) The Bilateral
DLPFC group showed significantly better retrieval of statistical knowledge than the Sham group (p <
.01). (d) Individual SL scores for each of the four groups.

Comparable recall capacity of declarative knowledge after rTMS

The four groups exhibited similar declarative memory performance in the Retrieval Session,
with no significant differences observed in the item memory index (F(3, 97) = 0.85, p = .46,
n’p = 0.02), association learning index (£(3, 97) = 0.50, p = .67, n°p = 0.01), or recollection
index (F(3,97)=0.34, p = .79, n°p = 0.01).
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Study II — Behavioral intervention to SL consolidation
Did rest period duration influence SL?

The ANOVA showed a gradual increase in learning scores across all participants, regardless of
the rest period duration (main effect of Blocks: F(4,1060) = 25.68, p < .001, #p? = 0.09).
Pairwise comparisons revealed no significant differences in learning between blocks 6—10 and
blocks 11-15 (p = .82), between blocks 6—10 and blocks 16-20 (p = .06), between blocks 11—
15 and blocks 1620 (p <.99), or between blocks 1620 and blocks 21-25 (p =.19). However,
all other comparisons between block arrays were significant (all p < .01). This indicates that
consecutive learning units did not differ significantly, but learning was observed between more
temporally distant sections of the task. Importantly, there were no differences in SL between
the three experimental groups (main effect of Group: F(2,265) = 0.65,
p = .53, np? < 0.01). The Blocks x Group interaction was also non-significant (#(8,1060) =
0.28, p = .97, np? < 0.01), indicating that the three groups did not differ in the time course of
SL either (Fig. 5A, C).

Did rest period duration influence general skill learning?

We observed a gradual decrease in RTs across the task (effect of Blocks: F(2.73,723.72) =
275.21, p < .001, np? = 0.51). Pairwise comparisons indicated that each epoch significantly
differed from the others (all p <.01), reflecting continuous learning throughout the blocks. The
three groups showed significant differences in response times (main effect of Group: F(2,265)
=8.69, p < .001, np? = 0.06), with the self-paced group responding more slowly than the 15-
second and 30-second groups. The Blocks % Group interaction was also significant (F(8,1060)
=2.33, p=.04, np?= 0.02). Pairwise comparisons revealed that RTs were significantly higher
in the self-paced group compared to the 30-second group in blocks 610, 11-15, 1620, and
21-25 (all p < .01). The self-paced group also showed significantly higher RTs compared to
the 15-second group in these blocks (all p < .01). Thus, while all three groups had similar
speeds in the first learning unit, the self-paced group began to slow down relative to the other

two groups starting from the second learning unit (Fig. 5B, D).
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Figure 5. The effect of rest period duration on SL and general skill learning. Error bars represent
the standard error of the mean. The x-axes show the experiment blocks or groups, while the y-axes show
SL scores or RTs. (A) The temporal progression of SL scores across the three groups. All groups
exhibited significant learning, but learning rates did not differ. (B) The temporal progression of general
skill learning in the three groups. RTs decreased across all groups, with the self-paced group showing
slower RTs than the 15-second and 30-second groups. (C) Individual SL scores (dots represent
participant means). Boxplots and violin plots display the distribution of SL scores across the three
groups. (D) Individual general RT scores (dots represent participant means). Boxplots and violin plots
display the distribution of median RTs across the three groups.

How did rest period duration affect offline and online SL?

The ANOVA revealed a significant interaction between the Learning Phase and Group factors
(F(2,265)=3.51, p=.03, np? = 0.03). Bonferroni-corrected post hoc comparisons showed that
online and offline changes differed in the 15-second group (p = .04), with offline changes being
significantly smaller than online changes. However, no main effect of Group (£(2,265) = 1.60,
p = .20, yp? = 0.01) or Learning Phase (F(2,265) = 2.50, p = .12, np? < 0.001) was observed
(Fig. 6A). To determine whether online and offline learning occurred in the full sample and
within each group, one-sample t-tests were conducted. In the full sample, online learning scores
were significantly different from zero (#267) = 2.05, p <.05), whereas offline learning scores
were not (#(267) = 1.11, p = .27). In the self-paced group, neither online (#(87) =-0.17, p = .86)
nor offline learning scores (#(87) = 0.92, p = .36) differed from zero. Similarly, in the 30-second
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group, neither online (#(89) = 0.61, p = .55) nor offline scores (#89) = -0.05, p = .96) were
significantly different from zero. However, in the 15-second group, both learning scores
significantly deviated from zero: online learning scores were positive (#(89) = 3.50, p <.001),
while offline learning scores were negative (#(89) = -3.39, p < .01). This suggests that
participants in this group exhibited online learning but experienced forgetting offline. The
absence of significant online and offline learning effects in the other two groups may be due to
a balanced distribution of positive and negative learning scores within those groups (Fig. 7A—
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Figure 6. Offline vs. online changes in SL and general skills. The x-axes represent the three groups,
and the y-axes show mean offline/online changes in ms. The violin plots display both offline changes
(filled halves) and online changes (striped halves). (A) In the 15-second group, online changes were
significantly greater than offline changes in SL. Online learning showed improvement, while offline
changes indicated forgetting in this group. (B) General skill changes followed a similar pattern across
groups, with acceleration after rest periods and deceleration during learning.

How did rest period duration affect offline and online general skill learning?

We observed a significant main effect of Learning Phase (F(2,265) = 920.49, p < .001, np? =
0.77), with RTs slowing down during the blocks but speeding up following rest periods. No
main effect of Group was detected (£(2,265) = 0.02, p = .98, yp? < .001). However, the
interaction between Learning Phase and Group was significant (F(2,265) = 4.38, p = .01, np?
=0.03). Despite this interaction, none of the between-group comparisons for online and offline
changes remained significant after Bonferroni correction (all p > 0.17; Fig. 6B). One-sample t-

tests confirmed that participants exhibited online learning (#(267) =29.14, p <.001) but showed
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a decline in general skill performance during offline periods (#(267) = -30.60, p < .001) across
the entire sample. This pattern was consistent across all three groups. Online general skill
learning was observed in the self-paced group (#(87) = 15.87, p <.001), the 15-second group
(#(89) = 16.35, p < .001), and the 30-second group (#89) = 19.18, p < .001). During offline
periods, performance declined in the self-paced group (#(87) =-17.16, p <.001), the 15-second
group (#(89) =-16.78, p <.001), and the 30-second group (#(89) =-20.21, p <.001) (Fig. 7D-
F).
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Figure 7. The dynamics of offline/online learning and forgetting in the four groups. The y-axes
represent offline and online learning in ms, while the x-axes show individual mean learning scores. (A—
C) Individual offline and online SL change scores for the self-paced (A), 15-second (B), and 30-second
(C) groups. (D-F) Individual offline and online general skill change scores for the self-paced (D), 15-
second (E), and 30-second (F) groups.
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Discussion

This thesis summarizes the findings of two studies that aimed to modulate SL in its different
phases through neuromodulation and behavioral interventions. Specifically, Study I (Brain
stimulation study) addressed a gap in the literature on SL modulation through TMS. To our
knowledge, no prior study has investigated the effect of TMS on access to statistical
knowledge. We applied inhibitory rTMS over the left, right, or bilateral DLPFC (Brodmann 9)
immediately before retesting participants’ statistical knowledge acquired the day before and
compared the performance of these real stimulation groups to a Sham group. Our findings
revealed that bilateral DLPFC inhibition enhanced SL retrieval, as this group outperformed the
Sham group. This effect was specific to SL retrieval, as rTMS over the DLPFC did not impact

recall performance on a declarative memory task.

If we read a textbook on memory consolidation, we find that consolidation requires at least
several hours to take place (Squire, Genzel, Wixted & Morris, 2015). However, it seems that,
in some cases, even a few seconds may be sufficient. Study II (Behavioral study) investigated
the role of this rapid consolidation in SL. We manipulated the length of short rest periods
intervening in SL using a between-subjects design, comparing SL performance across three
groups: 15-second, 30-second, and self-paced. While the length of these rest periods did not
influence overall SL performance, it did affect an unrelated learning process, namely general
skill learning. Participants in the self-paced group exhibited slower performance compared to
the fixed-duration groups. We also examined whether offline and online SL differed between
the three groups. Our results indicated that shorter rest periods (i.e., 15 seconds) led to SL
occurring exclusively online, diminishing offline learning, while longer rest periods (i.e., 30

seconds) did not induce this learning pattern.

Enhancing the retrieval capacity of statistical learning through brain stimulation

intervention

Our findings of Study I indicate that disrupting the DLPFC (Brodmann 9) enhances the
retrieval capacity of SL, particularly when both hemispheres are inhibited. Importantly, this
effect appears to be specific to SL, as general skills (i.e., the overall response speed) and
performance on the control memory task remained unaffected. This specificity aligns with prior
research suggesting that the DLPFC plays a pivotal role in modulating SL, although the exact

nature of its influence remains debated (Sziics-Bencze et al., 2023). Earlier studies have yielded
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mixed results regarding DLPFC stimulation and SL outcomes. Some studies reported decreased
SL following DLPFC stimulation (Pascual et al., 1996; Robertson, Tormos, Maeda & Pascual-
Leone, 2001), while others observed improved learning after DLPFC disruption (Ambrus et
al., 2020; Galea et al., 2010). This inconsistency likely stems from differences in stimulation
protocols and timing. Notably, studies reporting reduced learning often employed excitatory
rTMS (Pascuel-Leone et al., 1996) or inhibitory protocols applied before the learning phase
(Robertson et al., 2001). Conversely, studies demonstrating enhanced learning typically applied
inhibitory stimulation after the learning phase, facilitating consolidation and subsequent

knowledge retention (Ambrus et al., 2020; Galea et al., 2010).

Our findings extend prior findings by demonstrating that DLPFC inhibition not only enhances
the acquisition and consolidation of statistical regularities but also facilitates their retrieval.
This conclusion is supported by previous work showing improved linguistic SL performance
following DLPFC suppression through ¢TBS (Smalle et al., 2022; Smalle, Panouilleres,
Szmalec & Mottonen, 2017). Additionally, Galea and colleagues (2010) found that post-
training cTBS over the DLPFC improved non-linguistic motor sequence learning, particularly
when the right hemisphere was targeted. Similarly, another study reported offline
improvements in SL after right DLPFC inhibition (Tunovic, Press & Robertson, 2014).

In our study, only bilateral DLPFC inhibition significantly enhanced retrieval, suggesting that
simultaneous modulation of both hemispheres is necessary to overcome potential
compensatory mechanisms (Ambrus et al., 2020). Interestingly, while left DLPFC inhibition
also improved retrieval compared to the Sham group, this effect did not reach statistical
significance after correcting for multiple comparisons. This may be due to interhemispheric
compensation, where the unstimulated hemisphere counteracts the effects of unilateral
inhibition. Additionally, differences in task complexity may influence the effectiveness of
lateralized stimulation. In our study, inhibition of the right DLPFC was the least effective in
enhancing retrieval, which contrasts with findings from studies using simpler, deterministic
sequences (Galea et al., 2010; Tunovic et al., 2014). The more complex probabilistic sequences
in our study likely engage broader neural circuits, with a stronger reliance on the left
hemisphere. This hypothesis is further supported by those studies where the acquisition of
complex linguistic sequences was successfully improved by left DLPFC inhibition (Smalle et

al., 2017, 2022).
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One possible framework for interpreting our findings is the competition theory, which posits
that different cognitive systems compete for shared neural resources (Borragan, Slama,
Destrebecqz & Peigneux, 2016; Gillan et al., 2011; Poldrack & Packard, 2003). Within this
model, the DLPFC serves as a regulatory hub, balancing the competition between executive
control processes and habitual learning mechanisms. The PFC primarily supports goal-directed
behavior, including working memory and executive functions, while simultaneously inhibiting
automatic, associative learning (Juhasz, Nemeth & Janacsek, 2019; Smalle & Méttonen, 2023).
During SL, being linked to the habitual system, repeated exposure can lead to automaticity,
transitioning from goal-directed learning (involving the PFC) to habit-based processing
(dominated by the striatum). Consequently, reducing DLPFC involvement allows greater
cognitive resources to be allocated toward SL processes. This competitive dynamic has been
consistently observed across various experimental manipulations. For instance, interventions
that suppress PFC activity—such as hypnosis (Nemeth et al., 2013b), TMS (Ambrus et al.,
2020), or cognitive overload (Smalle et al., 2022)—have been shown to enhance SL
performance. Neuroimaging studies further support this model, indicating that diminished PFC
engagement promotes habitual, bottom-up learning processes (Toth et al., 2017; Park et al.,

2022).

Competition may also manifest within the hippocampal system, where both episodic memory
and SL rely on overlapping neural circuits (Sherman, Turk-Browne & Goldfarb, 2024). The
DLPFC exerts inhibitory control over the hippocampus, modulating retrieval processes (Benoit
etal., 2015; Oehrn et al., 2018; Woodcock et al., 2015). However, if the DLPFC functions as a
domain-general controller, its inhibition should theoretically affect both statistical and episodic
retrieval. Our study did not observe such an effect in the control memory task. This discrepancy
may be attributed to the nature of the episodic task, which involved incidental learning with
intentional retrieval. Prior research suggests that DLPFC engagement during episodic retrieval
is strategy-dependent (Kim, 2010; Manenti, Cotelli, Calabria, Maioli & Miniussi, 2010),
implying that tasks requiring minimal strategic processing may not engage DLPFC-dependent
mechanisms robustly. Future research should employ more complex and strategically
demanding episodic tasks to further explore the interaction between these memory systems and

the role of the PFC in mediating their competition.

Alternatively, our results may reflect the strengthening of the frontostriatal network rather than

direct competition between cognitive systems. Cognitive processes are supported by extensive
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neural networks, and neuromodulation techniques like rTMS may induce broad changes
beyond the targeted brain regions (Bergmann & Gartwigsen, 2021; Beynel, Powers &
Appelbaum, 2020). SL, in particular, relies on the functional interplay between the PFC and
the basal ganglia—a network collectively known as the frontostriatal system (Janacsek et al.,
2020; Naismith et al., 2010; Reber, 2013). Reduced DLPFC engagement may optimize
conditions within the frontostriatal network, facilitating more efficient SL and its retrieval
processes (Park et al., 2020; Téth et al., 2017). This perspective suggests that the observed
effects result from enhanced network dynamics rather than direct competition between memory

systems.

Enhancing the consolidation capacity of statistical learning through behavioral intervention

The main finding of Study II concerns the differential effects of rest period length on the offline
and online phases of SL. We found evidence for the beneficial effect of longer rest periods
compared to shorter ones, as learning deteriorated during the offline phases in the latter case,
while with longer breaks, learning remained balanced during both the offline and online phases.
Our findings on SL dynamics only partially replicated previous research. Prior studies indicated
that SL occurs primarily online, while forgetting happens offline during rest periods (Fanuel et
al., 2022; Quentin et al., 2021). We found evidence for this pattern only in the 15-second group,
where SL was confined to online periods with little to no offline improvement. However, this

clear dissociation was not observed in the 30-second and self-paced groups.

One possible explanation stems from the role of neural replay in rapid consolidation (Buch,
Claudino, Quentin, Bonstrup & Cohen, 2021). It is plausible that the longer rest periods in the
30-second and self-paced groups allowed for sufficient time for neural replay, facilitating both
online learning and rapid consolidation. Conversely, the 15-second rest period may have been
too brief to permit effective neural replay, thereby limiting offline gains. This interpretation is
supported by a study that found offline improvement in probabilistic sequence learning with
rest periods of two minutes between blocks (Prashad, Du & Clark, 2021), suggesting that a
longer rest period may be necessary to observe offline benefits. An alternative explanation for
the absence of clear offline learning effects in the 30-second and self-paced groups may be
related to the experimental context. Participants completed the task in their own environments
rather than in a laboratory setting. This may have reduced stress levels compared to in-lab

testing. However, the limited rest period in the 15-second group may have increased stress
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levels, mimicking laboratory conditions. Given that stress can modulate SL (To6th-Faber et al.,
2021a), participants in the 15-second group may have been more motivated to optimize

performance during the task itself rather than relying on offline consolidation.

In general skill learning, we observed that performance improved online (i.e., during practice
within blocks) and deteriorated offline (i.e., during rest periods between blocks). This pattern
was consistent regardless of rest period length. This result regarding the dynamics of general
skills (whether it occurs offline vs. online) aligns with previous studies (Fanuel et al., 2022;
Quentin et al., 2021) and suggests that the dynamics of general skill acquisition are not

influenced by the length of brief rest periods.

On the other hand, our findings of Study II suggest that the length of short rest periods
influences SL and general skill learning in distinct ways. Our results indicate that the duration
of these rest periods does not have a significant effect on overall SL performance across the
task. This finding contrasts with the results of previous studies showing that short, 10-second
rest periods facilitated motor skill learning and that even shorter rest periods continued to
enhance performance (Bonstrup et al., 2019; Bonstrup, Iturrate, Hebart, Censor & Cohen,
2020). However, their task did not separate the subprocesses of learning, such as SL and general
skill learning, making it difficult to determine which aspect was primarily affected. However,
our findings are consistent with those of Fanuel and colleagues (2022), who also measured SL
and found no significant effect of rest period length on overall performance. This discrepancy
highlights the importance of distinguishing between SL and general skill learning when

interpreting the impact of rapid consolidation.

Regarding general skill learning, participants in the self-paced condition, where they controlled
the duration of their rest periods, exhibited slower RTs compared to the 15-second and 30-
second fixed-duration groups. This suggests that the voluntary nature of the self-paced
condition, rather than the actual rest duration, may be responsible for the observed differences
in general skill performance. Although the average rest period length in the self-paced group
was similar to that of the 15-second group, the two groups still differed significantly in their
overall speed. The substantial variability in rest duration, reflected by the high SD in the self-
paced group, further supports the notion that the critical factor may be whether the rest period

is voluntary or compulsory. We propose that participants in the fixed-duration groups may have
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experienced a greater sense of urgency due to the imposed time limit, leading to faster RTs

compared to the self-paced group.

Nevertheless, the lack of significant differences in overall SL outcomes between the three
groups suggests that the rest period length primarily influences the dynamics of learning (i.e.,

whether it occurs offline or online) rather than the final level of statistical knowledge acquired.

Table 4. The main research questions and summary of findings

Research question Results

StudyI a. Does inhibitory TMS over the DLPFC modulate DLPFC inhibition leads to enhanced

the retrieval phase of SL? retrieval of statistical knowledge

b. Does the effect of DLPFC inhibition on retrieval Bilateral stimulation reaches the most
differ based on hemispheric lateralization (left, pronounced effect on SL retrieval

right, or bilateral stimulation)?

Study II

&

How does short rest periods of different length The length of short rest periods does

affect SL performance? not impact overall SL performance

b. Does rest period length influence SL differently Shorter rest periods shift SL to the
in online (within-block) and offline (between- online phase

block) phases?

Theoretical and methodological significance of the two studies

The field of SL research is currently facing a crisis characterized by the coexistence of multiple
competing theories without a unified framework to explain the underlying neurocognitive
mechanisms. This crisis can be attributed to three primary factors: the lack of robust
phenomena, the instability of construct validity, and the difficulty of establishing casual
relationships (Jenkins, Conway, Singh, Milne & Wilson, 2025). The present studies address all

three problematic factors, providing important contributions to the field.

First, the demonstration of robust phenomena requires replicability—the ability to observe
consistent effects over time and across different methodologies. Study I showed that SL can
be reliably modulated through inhibitory stimulation of the DLPFC, independent of the
learning modality (linguistic vs. non-linguistic) and the TMS protocol (rTMS vs. cTBS)
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(Ambrus et al., 2020; Smalle et al., 2022). This replicability across experimental contexts
strengthens the claim that the DLPFC plays a critical role in regulating SL processes. However,
our research went one step further than replicating previous observations by examining an
overlooked phase, namely retrieval. That is, we simultaneously confirmed the antagonistic role
of the DLPFC in SL and, as a new result, showed that this is true not only for the acquisition
and consolidation phase but also for the retrieval phase. Furthermore, Study II contributed to
the robustness of the psychological phenomenon of rapid consolidation. Consolidation theories
traditionally emphasize that consolidation takes hours, sometimes days, to occur (Squire et al.,
2015). However, thanks to a discovery, consolidation research has taken a new direction in
recent years, showing that consolidation can occur in seconds (Bonstrup et al., 2019). Our study
adds to the evidence by revealing that such rapid consolidation occurs online. However, it also
adds new knowledge to this area, as we have shown that the length of the rest periods influences
which phases of learning benefit from this rapid consolidation: if the break is long enough,
rapid consolidation occurs not only online but also offline, during the short breaks between the

blocks.

Second, the studies address the issue of construct validity by disentangling SL and general skill
learning. Prior research often conflates these processes, making it difficult to ascertain whether
observed effects pertain specifically to SL mechanisms. In Study I, the finding that DLPFC
inhibition selectively enhances SL while leaving general skill performance unchanged supports
the notion that these have distinct cognitive constructs. Similarly, control memory task
measuring declarative recall remained intact after rTMS, suggesting distinct neurocognitive
mechanisms behind the two constructs. Furthermore, Study II demonstrated that rest period
length differentially impacts SL and general skills, reinforcing the validity of treating these
processes as separate entities. However, these results need to be replicable even when
performing other SL paradigms. Different SL paradigms in different modalities or complexity
are likely to require different neural networks and thus underlying cognitive processes, so it is
conceivable that other paradigms would respond differently to DLPFC inhibition or to rest
period manipulation. Nevertheless, it is important to distinguish between measuring different

processes or simply not being replicable (i.e., not being robust).

Third, the difficulty of establishing causal relationships is a major obstacle in cognitive
neuroscience. Both studies employ experimental manipulations (brain stimulation and rest

period duration) that allow for causal inferences. Study I provides causal evidence that the
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DLPFC directly modulates the retrieval capacity of SL. By showing the causal role of the
DLPFC, an indirect relationship between SL and DLPFC-supported executive functions and
working memory was demonstrated. This further supports studies reporting an antagonistic
relationship between the two cognitive processes (Nemeth et al., 2013b; Pedraza et al., 2024;
Virag et al., 2015). On the other hand, Study II demonstrates that altering rest period length
can causally influence the dynamics of SL. These findings not only clarify the mechanisms of
SL but also provide a foundation for future research aimed at further elucidating these causal

pathways.

When discussing the ‘theoretical crisis’ in SL research, our findings provide critical insights
into how DLPFC modulates memory systems. Specifically, our results align with predictive
coding frameworks, which propose that the brain constantly generates and updates internal
models of the environment based on sensory input. By inhibiting the DLPFC, we may reduce
the brain’s reliance on top-down predictions, thereby facilitating the retrieval of statistical
regularities without interference from higher-order cognitive processes. Furthermore, our
findings challenge classical dual-process theories, which often posit a clear distinction between

implicit and explicit learning systems.

The methodologies employed in the presented studies offer innovative approaches to
investigating the neurocognitive mechanisms underlying SL and provide new tools for
addressing long-standing questions in the field. TMS studies often stimulate only one
hemisphere or both hemispheres in separate groups (Sziics-Bencze et al., 2023). Bilateral
stimulation—simultaneous or sequential stimulation of both hemispheres—is quite rare in the
literature. The main strength of Study I is that it used both unilateral and bilateral approaches
within a single research design. By comparing bilateral, left, and right DLPFC inhibition
conditions, the study provides nuanced insights into hemispheric contributions to SL processes.
Bilateral stimulation can be particularly useful when using SL paradigms that require the use
of both hands. Another advantage is that it may eliminate compensatory mechanisms from the
non-stimulated hemisphere. Additionally, the use of a control memory task ensures that the
observed effects are specific to SL rather than general cognitive functions, enhancing the

specificity and interpretability of the results.

In Study II, we employed a behavioral intervention manipulating rest period duration to

investigate the temporal dynamics of SL and general skill acquisition. On the one hand,
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compared to Study I, we introduced a much more refined and sophisticated level of analysis
that allows for distinguishing between offline and online learning phases. In addition, by
systematically comparing fixed and self-paced conditions, the study provides a more
comprehensive view of how rest duration influences learning dynamics. Since the effect of rest
period duration was not shown on the overall learning index but was shown on the dynamics
of learning (offline vs. online), it seems particularly important to include in analyses not only
overall learning outcomes but also indicators measuring the active dynamics of learning, in

order to be able to detect subtle effects.

Applied significance of the two studies

Although the studies presented in this thesis are primarily basic or fundamental research,
investigating the processes and neural mechanisms of SL in healthy individuals, they also have
implications for enhancing learning and memory processes, with potential application in

clinical interventions, education settings and cognitive enhancement strategies.

Clinically, the findings of Study I indicate that targeted neuromodulation of the DLPFC may
serve as a potential intervention for individuals with learning and memory deficits. TMS is
already recognized and approved by the US Food and Drug Administration as a therapeutic
tool, particularly for psychiatric conditions where well-defined neural alterations underlie the
symptoms (e.g., depression, obsessive-compulsive disorder). Ongoing research explores the
potential of TMS to alleviate cognitive symptoms of post-stroke conditions as well, with
varying success (Shen, Hu, Feng, Li, & Wang, 2022). Our study highlights the importance of
bilateral stimulation for achieving maximal effects, which could guide the development of
more effective brain stimulation protocols in clinical practice. Compared to the standard TMS
protocol for depression, which facilitates the left DLPFC due to its reduced activity, bilateral
stimulation may be more beneficial in post-stroke or trauma-related rehabilitation for restoring

cognitive and motor skills.

In an educational context, the results of Study II suggest that optimizing rest period length can
improve learning outcomes. Specifically, longer rest intervals facilitate the rapid consolidation
of statistical knowledge, which may inform the design of more effective learning schedules.
This has practical relevance for educational programs aimed at enhancing procedural learning,

such as language acquisition and skill training.
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From a broader perspective, these studies contribute to the growing field of cognitive
enhancement. The demonstration that both neural and behavioral interventions can modulate
SL provides a foundation for developing novel strategies to improve cognitive performance.
This is particularly relevant in populations with compromised cognitive functions, where
enhancing SL could improve adaptive behavior and overall cognitive functioning. Some
theories presume SL is an age-invariant cognitive mechanism; however, some think that SL
deteriorates with age. In our aging society, it is predominantly important to keep our elderly in
good cognitive shape, enabling them to rest in their environment as long as possible and

postpone the need for hospitalization.

Limitations and future directions

While our findings of Study I provide compelling evidence that DLPFC inhibition enhances
the retrieval of statistical knowledge, the underlying cognitive and neural mechanisms remain
unclear. One crucial area for future exploration is the relationship between task complexity,
lateralization, and DLPFC involvement. Our study suggests that bilateral DLPFC inhibition is
more effective than unilateral stimulation, although left DLPFC inhibition also seemed to be
beneficial. Precise mechanisms driving this lateralized effect require further investigation.
Studies that manipulate task complexity systematically (e.g., deterministic vs. probabilistic
sequences) while varying stimulation protocols across hemispheres may clarify how the
DLPFC’s lateralized functions contribute to the retrieval of SL. Additionally, while the
competition model offers a plausible explanation for our findings, its applicability across
different memory systems remains uncertain since recall capacity on a control memory task
measuring declarative recall remained unaffected by DLPFC inhibition. Future studies should
examine whether more cognitively demanding episodic memory tasks elicit DLPFC-mediated

competitive interactions.

Another promising avenue involves the integration of functional neuroimaging with
neuromodulation techniques to further explore the dynamics of the frontostriatal network. By
combining these methodologies, future studies could map the specific neural circuits affected
by DLPFC inhibition and how these changes influence the acquisition and retrieval of statistical
knowledge. Such work could also identify whether the observed enhancement stems from

altered connectivity patterns or direct effects on cognitive resource allocation.
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A key limitation of Study II is that we measured SL during a single session. It remains unclear
whether the effects of rest period duration on SL would become more pronounced over an
extended learning period. Future research should investigate how rest period length influences
SL across multiple sessions to capture potential long-term effects. Moreover, during an
extended learning period, the effect of short rest periods on higher-order cognitive processes,
such as higher-order sequence learning, could be examined (Nemeth et al., 2013a; Téth-Faber
et al., 2021b; Kébor et al., 2018). Additionally, our study only utilized brief rest periods of 15
and 30 seconds, while previous research demonstrating offline improvements in SL used much
longer rest periods (e.g., two minutes; Prashad et al., 2021). Future studies should employ a
broader range of rest period durations to determine the minimum time required to facilitate
rapid consolidation and offline improvement. Directly manipulating the number of neural
replays during these rest periods could provide a more comprehensive understanding of how

brief breaks influence learning and memory processes.

Future studies should also tackle the role of individual characteristics in the dynamics of SL.
In two groups (self-paced and 30-second) in our research, we found that the number of
participants who learned or forgot during the offline and online phases was balanced. Future
research could further investigate which psychological factors (e.g., stress, working memory)

determine whether an individual primarily learns during the offline or online phases.

The combinations of Study I and Study II could further deepen our knowledge of the
consolidation and retrieval processes of SL. On the one hand, extending the analysis of the
brain stimulation study and examining the effect of rTMS not only to the aggregate learning
output but also to the fine-grained offline and online phases would add a more nuanced picture
of the role of the DLPFC in SL retrieval. On the other hand, it would be noteworthy to examine

whether rest periods of different lengths would result in different retrieval efficiencies.
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Conclusion

The studies presented here hold theoretical, methodological, and applied significance. From a
theoretical perspective, our findings contributed to a deeper understanding of the less-explored
phases of SL—namely, consolidation and retrieval. Regarding methodology, we introduced
approaches that can grasp these processes more comprehensively. Regarding their applied
significance, different methods are outlined to optimize SL processes in both healthy and

clinical populations.

Study I (Brain stimulation study) has theoretical implications by demonstrating the functional
role of the DLPFC in the retrieval of SL. Methodologically, it highlights that bilateral
stimulation of brain regions may yield a greater effect than unilateral stimulation. In terms of
applied relevance, these findings contribute to the development of strategies for facilitating SL

processes in concerned clinical populations.

Study II’s (Behavioral study) theoretical implication is that the length of short rest intervals
differentially affects the distinct yet parallel processes of learning and consolidation,
specifically SL and general skill learning. While the overall SL outcome was not influenced by
the duration of rest intervals, these intervals had differential effects on the online and offline
phases of SL. Methodologically, this implies that measuring the temporal dynamics of learning
provides more nuanced insights than relying solely on an aggregate learning score. From an
applied perspective, our findings can inform the design of task structures that effectively

support both the online and offline phases of learning.

Together, these studies advance our understanding of the neurocognitive mechanisms
underlying different phases of SL and offer valuable insights for optimizing the process of SL
through interventions like task design manipulation and the application of neuromodulation

techniques.
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Supplementary Table 1. Results of model comparison of the Learning session

Model Description k AIC  log-likelihood
M1 FE(Group x Block x Trial Type) + RE(1|Subject) 18 44951 -22458
M2 FE(Group x Block x Trial Type) + RE(Block|Subject) 20 44497 -22228
M3 FE(Block x Trial Type) + RE(1|Subject) 6 44992 -22490
M4 FE(Block x Trial Type) + RE(Block|Subject) 8 44505 -22244
M5 FE(Group x Trial Type) + RE(1|Subject) 10 46873 -23426
M6 FE(Group x Trial Type) + RE(Block|Subject) 12 44671 -22324

FE = fixed effects, RE = random effects, k = number of parameters, AIC = Akaike Information Criterion,

BIC = Bayesian Information Criterion



Supplementary Table 2. Linear mixed model analysis of mean RTs of the Learning session

Fixed effects b SE b 95% CI t p
(Intercept) 359.62 397 [351.83,367.41] 90.52 <.001
Bilateral DLPFC 0.67 6.90 [-12.86, 14.20] 0.09 92
Left DLPFC 1.57 6.90 [-11.95,15.11] 0.22 81
Right DLPFC 0.08 6.90 [-13.44,-13.61] 0.01 .99
Block -13.26  0.73  [-14.71,-11.81]  -17.93 <.001
Trial Type -4.32 0.25  [-4.83,-3.81] -16.69 <.001
Bilateral DLPFC x Block 1.91 1.28 [-0.60, 4.43] 1.49 13
Left DLPFC x Block -2.67 1.28  [-5.19,-0.15] -2.08 .03
Right DLPFC x Block -0.77 1.28 [-3.29, 1.74] -0.60 54
Bilateral DLPFC x Trial Type 0.34 0.45 [-0.53, 1.23] 0.77 44
Left DLPFC x Trial Type -0.35 0.45 [-1.23,0.53] -0.78 43
Right DLPFC x Trial Type 0.24 0.45 [-0.63, 1.13] 0.55 58
Block x Trial Type -1.50 0.25  [-2.01,-0.99] -5.79 <.001
Bilateral DLPFC x Block x Trial Type 0.05 0.45 [-0.82, 0.93] 0.12 .90
Left DLPFC x Block x Trial Type 0.34 0.45 [-0.53, 1.22] 0.76 44
Right DLPFC x Block x Trial Type -0.04 0.45 [-0.92, 0.83] -0.10 91
Random effects

o? 338.86

T00Ssubject 1586.93

T11 subject.Block 48.42

PO subject -0.38

ICC 0.83

Nsubject 101

Observations 5050

Marginal R?/Conditional R? 0.93/0.84




Supplementary Table 3. Results of model comparison of the Retrieval session

Model Description k AIC  log-likelihood
Ml FE(Group x Block x Trial Type) + RE(1|Subject) 18 8455.6 -4209.8
M2 FE(Group x Block x Trial Type) + RE(Block|Subject) 20 8419.2 -4189.6
M3 FE(Block x Trial Type) + RE(1|Subject) 6 8477.2 -4232.6
M4 FE(Block x Trial Type) + RE(Block|Subject) 8 8438.6 -4211.3
M5 FE(Group x Trial Type) + RE(1|Subject) 10 8457.7 -4218.9
Meé FE(Group x Trial Type) + RE(Block|Subject) 12 8418.4 -4197.2

FE = fixed effects, RE = random effects, k = number of parameters, AIC = Akaike Information Criterion, BIC =

Bayesian Information Criterion



Supplementary Table 4. Linear mixed model analysis of mean RTs of the Retrieval session

Fixed effects b SE b 95% CI t P
(Intercept) 319.02  3.06 [313.00,325.04] 104.03 <.001
Bilateral DLPFC 5.34 532 [-5.11, 15.80] 1.00 31
Left DLPFC -3.51 532 [-13.97,6.93] -0.66 .50
Right DLPFC 0.71 532 [-9.74,11.17] -0.13 .89
Trial Type -5.41 038  [-6.16,-4.60] -14.11 <.001
Bilateral DLPFC x Trial Type 2.01 0.66 [0.70, 3.32] 3.02 .003
Left DLPFC x Trial Type -1.26 0.66 [-2.57, 0.04] -1.89 .058
Right DLPFC x Trial Type -0.88 0.66 [-2.19, 0.42] -1.32 18
Random effects

o? 148.73

T00subject 967.99

T11 subject.Block 19.88

PO subject -0.25

ICC 0.87

Nsubject 101

Observations 1010

Marginal R?/Conditional R~ 0.03/0.87
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Supplementary Figure 1. Mean reaction times (RTs) of high-probability triplets (solid line with circle) and
low-probability triplets (dashed line with triangle) are presented on the y-axis across all blocks (x-axis). A
greater difference between the two triplet types indicates better statistical learning performance. Blocks 1-
25 represent the Learning session, while Blocks 26-30 correspond to the Retrieval session. The performance

of the four groups is shown with different colors. Error bars denote the standard error of the mean (SEM).
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Process Dissociation Procedures Task

Structure of the task

To determine whether learning of statistical regularities occurred implicitly, we
administered a task based on the Process Dissociation Procedures (Jacoby, 1991), which is a
widely used method to disentangle the explicit-implicit processes in memory tasks
(Destrebecqz et al., 2005; Destrebecqz and Cleeremans, 2001; Fu et al., 2010; Jiménez et al.,
2006). In the first part of the task, we asked participants to try to produce a sequence using the
same four response keys used during the ASRT task (inclusion instruction). After that, we asked
participants to try to generate new sequences that were different from the learned sequence
(exclusion condition). Both parts consisted of four runs, and each run lasted up to 24 button
presses, equal to 3 rounds of the eight-element alternating sequence (Horvath et al., 2020;
Kobor et al., 2017). Participants were instructed to create sequences that could have been used
in the task (i.e., sequences that are not entirely repetitive). Accordingly, they were asked to
avoid including repetitions (repeating key presses such as 3-3-3) or trills (alternating key
presses such as 1-2-1) in their answers as much as possible. The reason was that producing
repeating or alternating key presses could be a strategy to create a sequence that was not used
during the task (exclusion condition) since long repetitions and alternations did not occur
during the task. This strategy can be used to create sequences that match the exclusion
instruction but contain only low-probability triplets (because repetitions and trills are always
the last elements of low-probability triplets), which makes implicit estimation inefficient. The
runs where more than 50% of participants’ key presses were either repetitions or trills were
removed from the analysis. As a result, seven participants from the self-paced group, 3
participants from the 15-sec group, and 3 participants from the 30-sec group were removed
entirely from the analysis, as their answers only contained trills and repetitions in the exclusion

condition.



We assessed the implicitness of the participants’ knowledge by calculating the ratio of
high-probability triplets in the sequence of responses. The chance level of generating high-
probability triplets was considered 25% because, after two consecutive button presses, the
chance for the third button press to form a high-probability triplet with the two preceding button
presses is 1/4 =25%. We also compared the percentages of the high-probability triplets across
conditions (inclusion and exclusion condition) and groups (self-paced, 15-sec, 30-sec).

If the ratio of high-probability triplets is above the chance level in the inclusion
condition, we can conclude that participants successfully learned the sequence. Although the
above-chance level ratio of high-probability triplets in the inclusion condition can be achieved
solely by implicit knowledge, explicit knowledge can also boost performance. On the contrary,
above-chance level ratio of high-probability triplets in the exclusion condition (i.e., when trying
to generate a new sequence that is different from the learned one) indicates that the participant
relies on their implicit knowledge, as it cannot be controlled consciously.

Results

First, we compared the percentage of the high-probability triplets to the chance level
(25%) separately for the three groups. Participants in the self-paced group generated 31.5% +
0.8 SD high-probability triplets in the inclusion condition, significantly higher than the chance
level, #80)=7.79, p <.001, BFo1 =0.001. In the exclusion condition, they generated 29.2% +
1 SD high-probability triplets, which is significantly above the chance level, #(80)=3.06, p
<.001, BF01<0.001. In the 15-sec group, participants generated 31.1% + 0.8 SD high-
probability triplets in the inclusion condition, significantly above the chance
level, #86)=7.54, p=.001, BFo1 <0.001. They also generated more high-probability triplets
than expected by chance in the exclusion condition, 27.5% + 1 SD, #80)=2.62, p=.001,
BFo1<0.001. In the 30-sec group, participants generated 30.3% =+ 0.7 SD high-probability

triplets in the inclusion condition, significantly above the chance level, #(86)=6.57, p <.001,



BFy1<0.001. They also generated more high-probability triplets than expected by chance in
the exclusion condition, 29.0% = 1 SD, #80)=3.30, p=.001, BFo1<0.001. Thus, we can

conclude that in all groups, the learning is deemed to be implicit.

Furthermore, we explored the potential differences between groups with a two
(condition: inclusion vs. exclusion) x three (group: self-paced vs. 15-sec vs. 30-sec) ANOVA.
The main effect of the condition was significant, F(1, 252)=15.027, p=.001, 5,%>= .06,
BFexcusion = 0.01, indicating that participants performed better in the inclusion condition. The
group main effect did not reach significance, F(2, 252)=0.13, p=.88, 7,°=.001, BF exclusion =
28.02, indicating that the three groups performed equally on the tasks. The interaction of the
condition and group factors were also not significant, F(2, 252)=1.03, p=0.36, 1,2=0.01,
BF exclusion = 9.35, revealing that the lack of difference between groups was not influenced by
the task condition. Taken together, the results indicate that the knowledge of the three groups

was equally implicit.



Results without age-based exclusion

We have excluded 11 participants from the main analyses to equalize the mean age
between groups in order to ensure that age-related differences have no effect on our results.
Here, we present the results including the participants that were excluded based on their age.
Results of statistical learning

To test whether the duration of rest periods between learning blocks affected statistical
learning, we conducted a mixed-design ANOVA with the within-subjects factor of Blocks
(Blocks 1-5 vs. Blocks 6-10 vs. Blocks 11-15 vs. Blocks 16-20 vs. Blocks 21-25) and the
between-subjects factor of Group (self-paced, 15-sec breaks, 30-sec breaks) on the learning
scores. The analyses revealed a gradual increase of learning scores in each group, irrespective
of the rest period duration [main effect of Blocks, F(4, 1104) = 25.00, p < .001, n,* = .08,
BFexclusion < 0.001]. According to pairwise comparisons, there was no significant increase in
learning between Blocks 6-10 and Blocks 11-15 (p = .61), between Blocks 6-10 and Blocks
16-20 (p = .07), between Blocks 11-15 and Blocks 16-20 (p <.99), and between Blocks 16-20
and Blocks 21-25 (p = .12). All other paired comparisons of block arrays were significant (all
p < .01). Thus, the consecutive learning units did not significantly differ from each other,
learning could be discovered between temporally more distant parts of the task. Importantly,
the three experimental groups did not differ in statistical learning [main effect of Group, F(2,
276) = 0.32, p = .73, Np? < .01, BFexclusion = 64.46. The Blocks x Group interaction was also
non-significant, F(8, 1104) = 0.28, p = .97, 1> < .01, BFexclusion = 40 229.19, thus the three
groups did not differ in the time course of statistical learning either.

Results of general skill learning

To test whether the overall speed-up on the task differed between groups (i.e., whether

the duration of rest periods between learning blocks affected general skill learning), we

conducted a mixed-design ANOVA with the within-subjects factor of Blocks (Blocks 1-5 vs.



Blocks 6-10 vs. Blocks 11-15 vs. Blocks 16-20 vs. Blocks 21-25) and the between-subjects
factor of Group (self-paced, 15-sec breaks, 30-sec breaks) with median RT as the dependent
variable. We found a gradual decrease in RTs throughout the task [main effect of Blocks,
F(2.76, 760.79) = 290.75, p < .001, n,> = .51, BFexciusion < 0.001]. Based on pairwise
comparisons, every epoch significantly differed from each other (all p < .01), with increasing
learning through all blocks. The three groups significantly differed in response times [main
effect of Group, F(2, 276) = 9.77, p < .001, 1> = .07, BFexclusion = 0.01], with the self-paced
group being slower than the 15-sec and 30-sec groups. The Blocks x Group interaction was
also significant, F(8, 1104) = 2.36, p = .04, np> = .02, BF exclusion = 1.18]. Pairwise comparisons
revealed significantly higher RTs in the self-paced compared to the 30-sec group in Blocks 6-
10, Blocks 11-15, Blocks 16-20 and Blocks 21-25 (all p < .01). The self-paced group also
showed significantly higher RTs compared to the 15-sec group in Blocks 6-10, Blocks 11-15,
Blocks 16-20, and Blocks 21-25 (all p <.01). Thus, the three groups showed a similar speed in
the first learning unit, but the self-paced group began to slow down compared to the other two
groups starting from the second learning unit.
Results of offline vs. online learning

We ran a mixed design ANOVA with the within-subjects factor of Learning Phase
(offline vs. online) and the between-subject factor of Group (self-paced, 15-sec breaks, 30-sec
breaks) on the change scores of statistical learning. The ANOVA revealed an interaction
between Learning Phase and Group factors, F(2, 276) = 3.17, p = .04, > = .02, BF exclusion =
0.09. Bonferroni-corrected post-hoc comparisons revealed that online and offline changes
differed in the 15-sec break group (p = .04): the offline changes were significantly smaller than
the online changes. No main effect of Group [F(2, 276) = 1.09, p = .34, 1> = .01, BF exclusion =

45.90] or Learning Phase was found [F(2, 276) = 3.51, p = .06, > = .01, BFexclusion = 0.44].



We ran a mixed design ANOVA on the change scores of general skill learning, with the
within-subjects factor of Learning Phase (oftline vs. online) and the between-subject factor of
Group (self-paced, 15-sec breaks, 30-sec breaks). We found the main effect of Learning Phase
[F(2,276)=645.95, p <.001,n,* = 0.70, BF exciusion < 0.001], with a slowing down of RT during
the blocks, while an acceleration of RTs occurred after the rests. No main effect of Group was
found [F(2, 276) = 0.17, p = .85, > < .001, BFexclusion = 45.35]. The interaction between the
Learning Phase and Group factors were significant [F(2, 276) = 3.75, p = .03, n,> = .03,
BFexclusion = 0.03]. However, no differences survived Bonferroni-corrected between-group

comparisons for online and offline changes (all comparisons between groups revealed p > .17).



Performance of high- and low-probability triplets in the three groups

In the Supplementary Figure 1, we depicted the original high- and low-probability

triplet variables can in each group.
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Supplementary Figure 1. Performance of high-probability (empty circles) and low-probability (filled circles) triplets in the
three groups. The y-axes indicates the median RT. The x-axes shows the blocks grouped by five. The error bars represent 95%

confidence interval.



Offline and online changes in statistical learning across all blocks

To see how offline and online statistical learning dynamically change across all blocks
in the separate groups, we conducted three ANOVAs with the offline and online statistical
learning scores of all blocks separately for each group.

In the self-paced group, there was not significant neither the main effect of Blocks
(F(10.56, 401.26) = 0.85, p = .59, n,> = .02), nor the main effect of Learning Phase (F(1, 38) =
0.88, p = .35, np? = .02). The Blocks x Learning Phase interaction was also not significant
(F(12.82, 487.30) = 0.69, p = .77, n,* = .02).

In the 15-sec group, the main effect of Blocks was also not significant (F(9.98, 468.87)
=0.46, p = .92, n,> = .01). The main effect of Learning Phase was significant only in this group
(F(1,47)=17.57, p < .01, n,* = .14). However, the Blocks x Learning Phase interaction was not
significant F(13.71, 644.47) = 0.97, p = .48, > = .02).

In the 30-sec group, there was not significant neither the main effect of Blocks (#(10.82,
486.66) = 0.77, p = .67, 1> = .02), nor the main effect of Learning Phase (F(1, 45)=0.01,p =
.94, n,? <.001). The Blocks x Learning Phase interaction was also not significant (#(13.51,
607.93) = 1.02, p = .43, 0,2 = .02).

We also depict the dynamic change of offline and online statistical learning across all
blocks in the different groups. We can see in the Supplementary Figure 2 that the 15-sec group
is the only one where online learning scores are consistently higher than offline learning scores

throughout the task, which is also supported by the results of the ANOVA.
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Supplementary Figure 2. Dynamic change of offline and online learning scores across the 24 blocks in each group. The y-

axis indicates the mean learning score. The x-axis shows the blocks. The error bars represent 95% confidence interval.



Dynamics of offline/online statistical learning and forgetting in the different
groups

As offline and online statistical learning in the self-paced and 30-sec groups were not different
from zero at a group level, we have checked whether there is a difference within the groups
between the numbers of online and offline learning and forgetting scores. In Supplementary
Table 1, we compared the distribution of those who had high positive (<5) or high negative (>-
5) offline learning scores in the three groups.

Supplementary Table 1. The distribution of positive and negative offline learning scores in the groups

Group
Self-paced 15-sec 30-sec Total
Learn offline 38 25 27 90
Forget offline 31 49 34 114
Total 69 74 61 204

Chi-square test: ¥*(2) = 6.57, p <0.05

As we can see, the distribution of those who learned or forgot offline is in balance in
the self-paced and the 30-sec group, which could be resulted in no offline learning at group
level. However, in the 15-sec group, more participants forgot than learned offline, which
resulted in offline forgetting at a group level. The chi-square test was significant (y*(2) = 6.57,
p <0.05).

Distributions in high positive and high negative learning scores were also tested for
online learning (see Supplementary Table 2). Similarly to offline learning, in the self-paced and
the 30-sec group the proportion of those who learned or forgot online is similar, while in the
15-sec group, almost twice as many participants learned as forgot online. The chi-square test
was significant at a trend level (¥*(2) = 5.67, p = 0.06).

Supplementary Table 2. The distribution of positive and negative online learning scores in the groups

Group
Self-paced 15-sec 30-sec Total
Learn online 34 50 34 118
Forget online 38 25 26 &9
Total 72 75 60 207

Chi-square test: *(2) =5.67, p = 0.06
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