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Introduction 

The human brain’s powerful ability to constantly pick up patterns and regularities in the 

environment is known as statistical learning (SL). This broad mechanism enables individuals 

to extract probabilistic structures from sensory input (Schapiro, Kustner & Turk-Browne, 

2012), shaping perception, cognition, and behavior. At its core, SL involves tracking the 

frequency and co-occurrence of elements over time to predict future events. A key concept in 

this process is transitional probabilities (TPs)—the likelihood that one element (such as a 

sound, visual shape, or movement) will be followed by another based on past patterns (Saffran, 

Newport & Aslin, 1996). Recent definitions further emphasize key attributes of SL, such as its 

implicit nature (operating without conscious awareness) and its incidental nature (occurring 

effortlessly in everyday life) (Obeid, Brooks, Powers, Gillespie-Lynch & Lum, 2016; Arciuli, 

2017). 

Throughout the course of our lives and across various domains, we engage in SL without being 

consciously aware of it. A well-known example comes from language learning: infants as 

young as eight months old can pick up word boundaries in continuous speech by detecting TPs 

between syllables (e.g., ba and by in “baby”) rather than between words (Saffran, Aslin & 

Newport, 1996). Beyond language, SL also underlies motor skill acquisition—for instance, 

when learning a new sport or musical instrument, individuals unconsciously recognize 

recurring movement sequences, allowing for smoother and more efficient performance over 

time (Hunt & Aslin, 2001). Social skills also require the involvement of SL. People naturally 

track patterns in others’ behaviors, such as facial expressions, gestures, or tone of voice, to 

predict emotions and social intentions (Parks, Griffith, Armstrong & Stevenson, 2020). This 

helps us navigate social interactions smoothly, for example, by anticipating how someone 

might react in a conversation. SL has also been linked to higher-level cognitive processes, such 

as reasoning and decision-making. Studies suggest that individuals who are better at detecting 

statistical regularities also perform better on tasks requiring cognitive flexibility and problem-

solving, as they can more efficiently extract relevant patterns from their environment (Sherman, 

Graves & Turk-Browne, 2020).  

Acquiring various cognitive and motor skills enables us to navigate the world efficiently. 

However, several medical conditions can impair these skills. In Parkinson’s disease, patients 

often experience impairments in language or visuospatial skills (Papagno & Trojano, 2018). 
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Similarly, stroke survivors often experience motor deficits, particularly in fine motor skills, 

which hinder daily activities (Wessel, Zimerman & Hummel, 2015). Furthermore, individuals 

with spatial neglect—a condition affecting spatial awareness post-stroke—may struggle with 

representational updating, a process reliant on SL. Targeted interventions that promote SL 

could improve their ability to adapt to changing environments (Shaqiri, Anderson & Danckert, 

2013). Given that SL is fundamental to acquiring and refining cognitive and motor skills, 

developing interventions to enhance this learning process is crucial in rehabilitation. In this 

thesis, I will present two studies that explore how different phases of SL—specifically 

consolidation (how learned patterns are stabilized and stored) and retrieval (how stored 

knowledge is accessed and applied)—can be modulated through brain stimulation and 

behavioral interventions. The first study investigates how transcranial magnetic stimulation 

(TMS) of the dorsolateral prefrontal cortex (DLPFC) influences the retrieval of learned 

statistical patterns. The second study examines how manipulating the temporal structure of the 

learning process—specifically, the duration of breaks between learning blocks—affects the 

consolidation of statistical knowledge. By investigating these approaches, these studies aim to 

provide insights into effective strategies for enhancing SL in healthy individuals, which can 

later be applied to clinical populations as well. 

Statistical learning in contemporary cognitive frameworks 

SL is now understood as a fundamental cognitive process that allows individuals to extract 

regularities from their environment (Frost, Armstrong, Siegelman & Christiansen, 2015). 

However, its precise relationship with broader cognitive systems—particularly implicit 

learning, procedural memory, and the habitual system—has been an area of active debate. 

Firstly, SL is often classified as a type of implicit learning—a form of learning that occurs 

without conscious intention or awareness (Reber, 1967). Although both implicit learning and 

SL refer to an incidental learning mechanism, SL is thought to operate through statistical 

computations, whereas implicit learning is suggested to rely on chunk formations (Perruchet & 

Pacton, 2006). Additionally, SL has been linked to procedural memory—a component of long-

term memory responsible for learning skills and habits (Ullman, 2004). SL and procedural 

memory both rely on gradual, experience-dependent learning and involve automatized 

processes that improve with practice. However, SL is not exclusively motor-based, while 

procedural memory is often tied to motor and cognitive skill acquisition. Finally, SL is also 
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thought to involve the habitual system, which refers to automatic, stimulus-driven behaviors 

that are reinforced through repeated exposure (Ashby & Crossley, 2012). This notion is 

supported by studies showing that divided attention does not disrupt SL, indicating that the 

acquired regularities can indeed become habitual and automatic (Horváth, Török, Pesthy, 

Nemeth & Janacsek, 2020; Nemeth et al., 2011). 

 

To sum up, SL can be seen as a subtype of implicit learning, operating without conscious 

awareness to extract probabilistic regularities. It shares characteristics with procedural 

memory, particularly in its gradual, experience-driven nature, but it is not exclusively motor-

based. Last but not least, it is linked most strongly to the habitual system, as repeated exposure 

to statistical regularities can lead to automaticity in behavioral responses. 

The rise of non-linguistic statistical learning 

Initially conceptualized within the framework of implicit learning (Reber, 1967), SL became 

widely recognized in linguistic research during the 1990s. Pioneering studies provided 

evidence that infants could extract regularities from speech without explicit instruction (Saffran 

et al., 1996a). Following this discovery, researchers explored the role of SL in various linguistic 

domains (e.g., phonotactic learning and syntactic structure acquisition). While initial research 

on SL was predominantly language-focused, as evidence accumulated, it became clear that SL 

extends beyond language, influencing perception, motor learning, and cognitive processing. 

Accordingly, research in the 2000s began expanding beyond linguistic contexts in exploring 

how SL operates across multiple sensory modalities, including auditory, visual, and motor 

systems.  For example, early studies of high importance have demonstrated that adults and 

infants could extract regularities from visual scenes, suggesting that SL is not limited to 

language but also applies to visual perception and revealing the concept of visual statistical 

learning (VSL) (Fiser & Aslin, 2001, 2002). Another cornerstone in SL research was the 

introduction of the Serial Reaction Time (SRT) task (Nissen & Bullemer, 1987), along with its 

more advanced versions, such as the Alternating Serial Reaction Time (ASRT) task (Howard 

& Howard, 1997, 2004), which enable the measurement of SL within the visuomotor domain. 

Due to the development of non-linguistic paradigms, it has been suggested that SL is a 

fundamental, domain-general cognitive ability, meaning that the brain applies similar learning 

principles across different perceptual and cognitive domains (Conway & Christiansen, 2005). 



 7 

The latest frameworks, however, debate whether SL functions as a single, fully unified 

mechanism, proposing instead that it operates as a collection of domain-general principles with 

specific characteristics that may vary across different modalities (Frost et al., 2015; Siegelman, 

Bogaerts & Frost, 2018).  

Measuring statistical learning in the visuomotor domain 

The emergence of sequence learning tasks has significantly advanced our ability to study SL 

mechanisms, particularly in scenarios where multiple modalities (e.g., visual and motor) work 

in concert (Pedraza, Vékony & Nemeth, 2023). The SRT task is a four-choice reaction time 

task that typically involves presenting participants with visual stimuli on a screen, where they 

are required to respond as fast as possible to these stimuli using motor actions, such as pressing 

a button (Nissen & Bullemer, 1987). Participants are usually not informed that the sequence of 

visual stimuli follows a regular pattern. In the SRT task, learning is typically inferred by 

comparing reaction times (RTs) for sequence-based trials and randomly inserted trials. When a 

random sequence is introduced, RTs tend to slow down, indicating a disruption in learned 

patterns.  This task has been widely used to investigate implicit learning processes, including 

the acquisition of non-conscious statistical regularities, such as TPs between successive stimuli, 

particularly in the domain of motor skills. 

The SRT task has been a cornerstone in studying implicit learning, but it also has notable 

limitations. One key drawback is that learning can only be assessed intermittently by inserting 

blocks of random stimuli. Another limitation stems from the deterministic nature of the 

sequence used in the traditional SRT task. In most versions, the task relies on first-order 

conditional sequences, meaning that each element in the sequence can be predicted with 100% 

certainty based on the preceding one (Robertson, 2007). This deterministic structure increases 

the likelihood that participants will consciously recognize the pattern, shifting the task from 

measuring implicit SL to capturing explicit learning processes. Consequently, the SRT task 

may not provide a pure measure of SL, as participants might rely on explicit memory rather 

than unconsciously extracting regularities from the environment, which is, as previously 

discussed, a key attribute of SL. 

In response to these limitations, more advanced versions of the SRT task, such as the ASRT 

task, were introduced. The ASRT task (Howard & Howard, 1997; Howard et al., 2004) builds 



 8 

on the SRT task by incorporating a probabilistic sequence structure in which pattern and 

random elements alternate, giving rise to its name (Howard & Howard, 1997). Due to this 

probabilistic sequence structure, some stimuli appear with higher probability than others 

(Janacsek, Fiser & Nemeth, 2012). Participants, without explicit awareness, become sensitive 

to the second-order statistical regularities, responding faster to high-probability stimuli 

(Janacsek et al., 2012). This design offers several advantages that make it particularly useful 

for studying SL. One key advantage of the ASRT task is its strong reliability: test-retest 

reliability is higher than in the traditional SRT task (Stark-Inbar, Raza, Taylor & Ivry, 2016), 

and its internal consistency is also well-supported (Farkas, Krajcsi, Janacsek & Nemeth, 2023). 

A second advantage is that, unlike the SRT task, the ASRT design allows for continuous 

assessment of the learning process without the need to interrupt it with inserted random 

sequences. This is particularly important when investigating different phases of learning, such 

as consolidation and retrieval. The third advantage lies in the probabilistic nature of the 

sequence itself, where the pattern is embedded within noise. This makes it less likely that 

participants will become explicitly aware of the sequence, preserving the implicit nature of SL 

(Howard et al., 2004; Song, Howard & Howard, 2007). Finally, the ASRT task, unlike its 

deterministic counterpart, allows researchers to distinguish between distinct learning 

processes, such as general skill learning and SL (Szegedi-Hallgató, Janacsek & Nemeth, 2019). 

General skill learning refers to the overall RT improvement throughout task performance that 

occurs as a result of practice. On the other hand, SL refers to the implicit acquisition of 

regularities within the task structure.  

As presented in the section The rise of non-linguistic statistical learning, SL is a general 

learning mechanism that can be measured across various modalities. Since the studies 

discussed in this dissertation focused on implicit SL in the visuomotor domain, the following 

sections will specifically review research examining the learning dynamics, neural background, 

and modulation of SL within this domain, while findings from other modalities will only be 

mentioned briefly when relevant. 

The dynamics of statistical learning: From acquisition to retrieval 

Learning is the process by which individuals acquire knowledge or skills through repeated 

exposure, practice, or experience. However, the development of knowledge is not confined to 

the period of active learning; it can continue to evolve between sessions, either during 
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wakefulness or sleep. The progress of SL can be examined through behavioral measures such 

as RTs or accuracy, which indicate how learning unfolds over time (Howard et al., 2004; 

Nemeth, Janacsek & Fiser, 2013).  

The acquisition phase marks the initial stage of learning, where individuals begin to detect and 

respond to patterns in a sequence. Research suggests that probability-based SL occurs rapidly, 

with the participants demonstrating sensitivity to statistical patterns within the very first block 

of trials (Simor et al., 2019). This indicates that even minimal exposure—only a few repetitions 

of a pattern—is sufficient for learning to take place (Kóbor et al., 2018; Szegedi-Hallgató et 

al., 2017). However, additional practice strengthens this statistical knowledge, suggesting that 

learning continues to be refined over time (Simor et al., 2019). Since SL is evident after a single 

training session, this type of learning is indicated to be a fundamental mechanism by which 

individuals automatically adapt to environmental regularities (Song et al., 2007; Nemeth et al., 

2013a; Kóbor et al., 2018). Although SL predominantly occurs without conscious awareness, 

some researchers argue that attention to stimuli may play a role in the effectiveness of SL (Toro, 

Sinnett & Soto-Faraco, 2005; Turk-Browne, Jungé & Scholl, 2005). Nevertheless, findings 

indicate that SL can persist over long periods, even with brief exposure (Kim, Seitz, Feenstra 

& Shams, 2009). 

Once SL occurs, consolidation stabilizes and strengthens the acquired knowledge, allowing it 

to be retained over time. Although some studies suggest that auditory SL may benefit from 

sleep (Durrant, Cairney & Lewis, 2013; Durrant, Taylor, Cairney & Lewis, 2011), evidence 

within the visuomotor domain remains scarce. Studies investigating the consolidation of 

probabilistic sequence learning (i.e., measured by the ASRT task) suggest that, unlike 

deterministic sequences (i.e., measured by the SRT task) (King, Hoedlmoser, Hirschauer, 

Dolfen & Albouy, 2017; Robertson, Pascual-Leone & Press, 2004), learning probabilistic 

patterns does not seem to benefit from post-learning sleep in terms of behavioral performance 

(Song et al., 2007; Nemeth et al., 2010). One study reported that SL remained intact regardless 

of whether participants remained awake, rested quietly, or slept after learning (Simor et al., 

2019). This finding aligns with prior research showing no clear sleep-related consolidation 

effects for probabilistic sequence learning tasks (Peigneux et al., 2003, 2006; Song et al., 2007; 

Nemeth et al., 2010). A new avenue of consolidation research is rapid consolidation, which 

involves the stabilization and enhancement of just-learned statistical knowledge during short 

offline rest periods (Bönstrup et al., 2019). Studies investigating the role of such rapid 
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consolidation in SL have found that SL occurs exclusively online and does not benefit from 

short offline rest periods (Fanuel et al., 2022; Quentin et al., 2021).  

Retrieval refers to the ability to access and utilize previously learned information. Although 

studies specifically focusing on the retrieval phase in visuomotor SL are limited, evidence 

suggests that once statistical knowledge is consolidated, it can be accessed and utilized even 

after extended delays (Kóbor, Janacsek, Takács & Nemeth, 2017; Tóth-Fáber, Nemeth & 

Janacsek, 2023). Previous findings have demonstrated stable retention of statistical knowledge 

across various time intervals, ranging from several hours to one year (Kóbor et al., 2017; 

Nemeth & Janacsek, 2011; Meier & Cock, 2014). The resilience of SL over time suggests that 

the acquired knowledge remains well-preserved, showing resistance to forgetting and 

interference (Kóbor et al., 2017). These results align with everyday experiences, such as 

maintaining skills in language or motor activities, which persist long after they are first learned 

(Kóbor et al., 2017).  

Overall, the dynamic nature of SL involves a rapid acquisition phase, a consolidation phase 

where knowledge remains stable over time, and a retrieval phase where learned statistical 

patterns can be accessed and applied even after long delays. These findings highlight the 

robustness of SL, raising the question of how this resilient mechanism can be influenced 

through behavioral and brain stimulation interventions. 

Neural background of statistical learning 

Early research primarily attributed SL to sensory-specific brain regions. According to this view, 

SL is computed within the sensory areas associated with specific modalities (Frost et al., 2015). 

In VSL, for example, the occipital cortex and inferior temporal cortex are primarily engaged 

(Turk-Browne, Scholl, Chun & Johnson, 2009). Motor-based SL, on the other hand, involves 

interactions between the primary motor cortex (M1) and the premotor cortex (Wymbs et al., 

2012). However, statistical regularities do not solely activate modality-specific sensory 

regions; they also recruit broader cortical structures. The left inferior frontal gyrus, for instance, 

has been implicated in processing statistical patterns not only in speech (Karuza et al., 2013) 

but also in visual stimuli (Turk-Browne et al., 2009). This suggests that SL involves both 

domain-specific and domain-general mechanisms.  
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While SL relies on a widespread cortical network, subcortical structures—including the 

hippocampus, basal ganglia, and cerebellum—are also critically involved. The basal ganglia 

play a fundamental role in the procedural, non-declarative memory system (Ullman, 2004), 

whose connection to SL has already been outlined in the section on Statistical learning in 

contemporary cognitive frameworks. Basal ganglia are shown to be responsible for extracting 

predictable patterns through repeated exposure (Berns, McClure, Pagnoni & Montague, 2001). 

Evidence from neuropsychological studies supports this role: individuals with Parkinson’s 

disease, which affects basal ganglia function, exhibit deficits in SL (Wilkinson, Khan & 

Jahanshahi, 2009). Furthermore, the hippocampus and medial temporal lobe, traditionally 

associated with declarative memory (Squire, 2004), also contribute to SL. The hippocampus is 

particularly involved in extracting temporal relationships between sequence elements 

(Schapiro, Gregory, Landau, McCloskey & Turk-Browne, 2014) and facilitating pattern 

integration over time, which aids in generalization (Schuck & Niv, 2019). Empirical findings 

further highlight its role since fMRI studies reveal hippocampal activation during VSL 

(Schapiro et al., 2012).  

Importantly, a growing body of research suggests that SL relies on interaction between multiple 

cognitive systems and diffuse neural networks rather than a single unified process and separate 

brain regions (Schapiro, Turk-Browne & Botvinick, 2017). The prefrontal cortex (PFC) seems 

to play a crucial role in the top-down regulation of SL-associated subcortical structures. Firstly, 

the frontostriatal network, which links the PFC and basal ganglia, plays a key role in balancing 

habitual and goal-directed learning mechanisms (Doyon et al., 2009; Naismith et al., 2010; 

Janacsek et al., 2012, 2020). However, a PET study found that the interaction between the PFC 

and basal ganglia may depend on the intentionality of learning: during implicit learning, the 

caudate nucleus exhibits significantly higher activity, which is decoupled from the activity of 

the PFC. In contrast, when participants acquire explicit knowledge, the PFC becomes more 

active, exerting control over the striatum (Destrebecqz & Cleeremans, 2005). This finding is 

in line with those fMRI studies that found that reduced PFC engagement favors implicit SL 

performance (Park, Janacsek, Nemeth & Jeon, 2022; Tóth et al., 2017). 

The hippocampus also interacts with both the prefrontal and striatal systems to support the 

encoding and consolidation processes of auditory and visual regularities (Henin et al., 2021). 

A diffusion tensor imaging study revealed that probabilistic SL is associated with the integrity 

of the tracts connecting the caudate nucleus to the DLPFC and the hippocampus to the DLPFC 



 12 

(Bennett, Madden, Vaidya, Howard & Howard, 2011). Moreover, the PFC exerts inhibitory 

control over hippocampal activity, which influences memory functions, including retrieval 

(Benoit, Hulbert, Huddleston & Anderson, 2015; Woodcock, White & Diwadkar, 2015; Oehrn 

et al., 2018). The dual-process perspective further posits that SL arises from a combination of 

bottom-up statistical computations and top-down cognitive control mechanisms (Conway, 

2020). 

The neural substrates of SL involve an intricate, dynamic network of cortical and subcortical 

structures, highlighting the integration of various learning and memory systems in the 

extraction and application of statistical regularities. Establishing a unified cognitive model of 

SL, along with such a diffuse neural network, is a major challenge. 

Modulating statistical learning through non-invasive brain stimulation 

TMS is a type of non-invasive brain stimulation (NIBS) that modulates neural activity by 

delivering magnetic pulses to targeted brain regions. By placing a coil against the scalp, TMS 

generates magnetic fields that induce electrical currents in the underlying cortical tissue, 

thereby influencing neuronal communication and excitability. TMS is a powerful tool for 

studying cognitive functions because it allows researchers to casually manipulate neural 

activity in specific brain regions, providing insights into their role in learning and memory 

while maintaining high temporal precision (Bergmann & Hartwigsen, 2021; Pascual-Leone, 

Gates & Dhuna, 1991). The latter property is particularly important when studying different 

phases of learning mechanisms.  

The effect of TMS on SL depends on several factors. A review study identified six key factors 

that influence the behavioral effects of TMS: TMS protocol, targeted brain area and 

hemisphere, timing of the stimulation, complexity of the sequence, and methodological details 

(Szücs-Bencze et al., 2023). Regarding the protocol, repetitive TMS (rTMS) is performed by 

repeatedly applying magnetic pulses, which can have either facilitatory or inhibitory effects on 

the cortex, depending on the frequency of the delivered pulses (Huang et al., 2017; Polanía, 

Nitsche & Ruff, 2018). Typically, high-frequency rTMS is thought to have a facilitatory effect, 

while low-frequency rTMS is considered to be inhibitory. The patterned form of TMS, known 

as theta burst stimulation (TBS), also has faciliatory and inhibitory protocols depending on 

whether the pulse bursts are delivered intermittently (iTBS) or continuously (cTBS) (Huang, 
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Edwards, Rounis, Bhatia & Rothwell et al., 2005). The TMS protocols can interact with the 

role of a specific brain area. The activity of the targeted brain area can either support or 

counteract the function of a specific cognitive process; thus, even with an inhibitory protocol, 

a facilitatory effect can still be achieved (Ambrus et al., 2020; Smalle, Daikoku, Szmalec, 

Duyck & Möttönen, 2022). Additional factors include which hemisphere is being stimulated: 

hemispheric lateralization can be explored (Galea, Albert, Ditye & Miall, 2010), or bilateral 

stimulation can maximize TMS effects by preventing compensatory mechanisms of the 

hemispheres (Andoh & Martinot, 2008). Timing is also a crucial factor in determining the 

effects, as the phase of the learning process (acquisition, consolidation, or retrieval) during 

which the stimulation is applied influences the outcome (Veldman et al., 2018). The complexity 

of the sequence is another important consideration, as different brain areas may be involved in 

simpler deterministic versus more complex probabilistic sequences (Clark et al., 2019). 

Furthermore, methodological details, such as the control group used (e.g., active control or 

sham) and the determination of stimulation intensity, can be critical in shaping the effects of 

TMS on SL.  

The impact of TMS during the initial learning phase has been examined in several studies. TMS 

can be administered either simultaneously with task performance or between learning blocks. 

For example, facilitatory TMS over the DLPFC administered during sequence learning on the 

SRT task led to a decline in task performance (Pascual-Leone, Wassermann, Grafman & 

Hallett, 1996). In contrast, a more recent study found that inhibitory TMS over the DLPFC 

applied between learning blocks resulted in improved performance on the ASRT task (Ambrus 

et al., 2020). The majority of research, however, has focused on so-called ‘off-line stimulation’, 

where TMS is delivered before the task, with most studies reporting impaired learning of SL 

(Clark et al., 2019; Clerget, Poncin, Fadiga & Olivier., 2012; Wilkinson et al., 2015). 

Beyond the learning phase, TMS has also been applied to investigate its influence on the 

consolidation of statistical knowledge. For example, continuous theta burst stimulation 

(cTBS)—a patterned form of TMS—over the DLPFC has been shown to enhance performance 

on a deterministic sequence after an eight-hour offline period (Galea et al., 2010). Conversely, 

studies applying inhibitory TMS over the M1 have found that it interferes with offline 

improvement in implicit SL during the day (Robertson, Press & Pascual-Leone, 2005), as well 

as in explicit learning after sleep (Breton & Robertson, 2017). These findings suggest that 
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rTMS over both the DLPFC and M1 can significantly influence the consolidation of memory 

traces by modulating the processes underlying memory stabilization. 

Despite substantial research on the effects of TMS during the learning and consolidation 

phases, little attention has been paid to its potential role in the retrieval phase of SL. To date, 

no studies have investigated the impact of TMS immediately before or during the access of 

well-acquired statistical knowledge. Given the lack of evidence in this area, one of the primary 

aims of the current thesis is to fill this gap and present my own results on the TMS effects as 

applied over the DLPFC on SL retrieval. 

Modulating statistical learning through behavioral approaches 

Applying various behavioral interventions in SL can help us understand the different phases of 

this fundamental and complex mechanism. Which behavioral methods can be used to test the 

acquisition phase of SL? The impact of instructions on SL has been explored using the ASRT 

task. Vékony, Pleche, Pesthy, Janacsek and Nemeth (2022) examined whether prioritizing 

speed or accuracy during learning influenced different aspects of SL. Their results indicated 

that emphasizing speed enhanced probability-based learning. However, after a retention period 

where participants focused equally on speed and accuracy, both groups demonstrated 

comparable acquired knowledge. Stress is another crucial factor in learning and memory. Tóth-

Fáber, Janacsek, Szőllősi, Kéri and Nemeth (2021) investigated its effects on different aspects 

of SL using the ASRT task. Contrary to intuition, results demonstrated that acute stress, far 

from impairing, actually enhanced the acquisition of probability-based regularities in the early 

learning phase. The role of attention in SL, on the other hand, remains a topic of debate. 

Horváth and colleagues (2020) explored whether dividing attention during learning affects the 

acquisition of statistical regularities. Results indicated that divided attention had no effect on 

the acquisition of probabilistic sequences. These findings suggest that SL is robust to 

attentional manipulations, reinforcing the idea that minimal attentional resources are required 

for learning statistical regularities. This notion is further supported by the findings of Nemeth, 

Janacsek, Polner and Kovacs (2013), who compared SL in a hypnotic state to an alert state. 

Their results indicated that hypnosis facilitated the acquisition of non-adjacent regularities. 

These findings highlight that the cognitive control-dependent system is not necessary for 

effective SL. In fact, its disengagement may be beneficial for learning. These insights provide 

valuable implications for optimizing strategies in various settings. 
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The consolidation of SL is influenced by multiple factors, including awareness, attentional 

conditions, and the nature of the learned sequence (Janacsek & Nemeth, 2012). Regarding 

awareness, it has been proposed that the consolidation of explicit and implicit learning follows 

distinct pathways (Robertson, 2009). Findings suggest that sleep-dependent consolidation 

occurs only when participants possess explicit sequence knowledge (Fischer, Hallschmid, 

Elsner & Born, 2002; Robertson et al., 2009; Walker & Stickgold, 2004). In contrast, implicit 

SL consolidation appears to be time-dependent rather than sleep-dependent. Furthermore, sleep 

benefits simple, explicit sequence structures but does not enhance the consolidation of 

complex, probabilistic sequences (Nemeth et al., 2010; Robertson et al., 2004; Song et al., 

2007). Thus, awareness and sequence structure modulate the role of sleep in consolidation. 

Horváth and colleagues (2020) demonstrated that statistical knowledge remains preserved even 

when acquired under divided attention, suggesting that the consolidation process of implicit SL 

is as robust as acquisition. Most consolidation studies have examined time frames spanning 

hours. However, recent research has begun investigating rapid consolidation, which occurs 

within seconds (Bönstrup et al., 2019). Previous findings indicated that both deterministic and 

probabilistic sequence learning benefits from extended two-minute rest periods (Du, Prashad, 

Schoenbrun & Clark, 2016) and even shorter ten-second rest periods (Bönstrup et al., 2019). 

However, the latest studies suggest that consolidation occurs exclusively online and does not 

benefit from short offline periods (Fanuel et al., 2022; Quentin et al., 2021). The current thesis 

aims to provide a more comprehensive approach to test rapid consolidation’s role in implicit 

visuomotor SL. 

Compared to acquisition and consolidation, retrieval remains the least studied phase of SL. A 

study explored whether the retrieval of well-established probabilistic sequence knowledge is 

affected by a concurrent secondary task (Vékony et al., 2020). The findings suggest that while 

dual-task conditions slow response execution, they do not hinder the retrieval of learned 

statistical knowledge. Understanding the robustness of SL under different retrieval conditions 

can provide valuable insights into real-world scenarios where people must apply previously 

learned statistical knowledge while simultaneously managing other cognitive demands. 
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Aims 

This thesis presents two studies that aim to address gaps in the literature related to the 

modulation of SL consolidation and retrieval (Table 1). While prior research has largely 

converged on the idea that inhibitory TMS over the DLPFC facilitates SL and its consolidation 

(e.g., Ambrus et al., 2020; Galea et al., 2010), no study has yet explored its effects on the 

retrieval of well-established statistical knowledge. To address this gap, Study I examined how 

inhibitory stimulation over the DLPFC affects the retrieval of previously acquired implicit 

probabilistic sequences. Participants first learned the ASRT sequence, and after a 24-hour 

offline period—allowing consolidation to occur—they were asked to perform the same 

sequence again. Before this retrieval phase, inhibitory TMS was applied over the DLPFC. A 

novel aspect of this study is its comprehensive investigation of hemispheric contributions to 

retrieval: participants were divided into separate groups receiving stimulation over the left 

DLPFC, right DLPFC, or both hemispheres (bilateral stimulation). To assess the effects of TMS 

on access to implicit statistical knowledge, the performance of the experimental groups was 

compared to that of a sham stimulation group, which did not receive real stimulation. 

Previous research has yielded conflicting findings regarding whether rapid consolidation 

occurs during short rest periods introduced in SL. Some studies suggest that SL of probabilistic 

sequences benefits from such brief rest periods (Du et al., 2016), while others report no 

observable improvement (Quentin et al., 2021), and some even indicate that SL performance 

deteriorates during these rest periods (Fanuel et al., 2022). However, these studies either used 

fixed-duration rest periods or did not control for break length. Based on these inconsistencies, 

Study II investigated whether different rest period durations differentially affect SL. In this 

study, participants completed the ASRT task and were randomly assigned to one of three 

between-subject conditions regarding the length of the short rest periods: (1) 15-second breaks, 

(2) 30-second breaks, or (3) a self-paced condition in which they determined the duration of 

their own breaks. Given that the ASRT task allows for the dissociation of parallel learning 

processes, we examined whether rest period duration had distinct effects on SL performance 

(implicit acquisition of probability-based sequence structure) and general skill learning 

performance (reaction time improvement irrespective of the statistical probabilities). Beyond 

assessing overall performance, we also compared how the three groups’ learning evolved both 

online (within learning blocks) and offline (between learning blocks) for these two distinct 

learning processes.  
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Table 1. The literature gaps and main research questions to fill them 

 Literature gap to be filled Research questions 

Study I  The role of the DLPFC in the 

retrieval of statistical knowledge 

a. Does inhibitory TMS over the DLPFC modulate 

the retrieval phase of SL? 

  b. Does the effect of DLPFC inhibition on retrieval 

differ based on hemispheric lateralization (left, 

right, or bilateral stimulation)? 

Study II The role of rapid consolidation in 

SL 

a. How does short rest periods of different length 

affect SL performance? 

  b. Does rest period length influences SL differently 

in online (within-block) and offline (between-

block) phases? 
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Materials and methods 

Study I – Brain stimulation intervention to SL retrieval 

Participants 

A total of 104 healthy adult volunteers participated in this study. Two individuals were excluded 

due to a reported history of neurological or psychiatric disorders, and one participant did not 

complete the study. As a result, the final sample included 101 participants, all of whom had 

normal or corrected-to-normal vision and no contraindications for TMS (such as metal implants 

or pacemakers). At the beginning of the first session, after completing a TMS contraindication 

questionnaire, participants were randomly assigned to one of four groups: Left DLPFC, Right 

DLPFC, Bilateral DLPFC, or Sham, with no significant differences in sex, age, education, 

handedness, or working memory performance between groups (Table 2). Each participant 

provided written informed consent before taking part in the study. The study was approved by 

the Regional Scientific and Research Ethics Committee of the Albert Szent-Györgyi Clinical 

Center, University of Szeged, following the Declaration of Helsinki. 

Table 2. Descriptive statistics of the four experimental groups 

 
Notes. Mean and SD values for age years of education and Counting Span Task are presented. For 
gender (f = female, m = male) and handedness (r = right, l = left, a = ambidextrous), case numbers are 
presented. 

Stimuli 

Implicit visuomotor SL was measured using the ASRT task. The task was implemented and 

executed in the E-Prime 3.0 software environment. During the ASRT task, a visual stimulus (a 

Dalmatian dog’s head) appeared in one of the four horizontally arranged locations on the 

screen. Participants were required to press the corresponding key (Z, C, B, or M on an external 

 Left DLPFC 

(n = 25) 

Right DLPFC 

(n = 26) 

Bilateral DLPFC 

(n = 25) 

Sham 

(n = 25) 

Gender (f/m) 14/11 18/8 13/12 17/8 

Age (years) 23.76 + 5.15 26.11 + 7.26 22.40 + 4.27 25.88 + 6.02 

Education (years) 15.40 + 2.70 15.73 + 2.82 14.40 + 2.50 16.08 + 3.53 

Handedness (r/l/a) 24/1/0 23/1/2 21/4/0 21/2/2 

Counting Span Task 4.41 + 0.62 4.28 + 0.52 3.96 + 0.76 3.98 + 0.76 
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b Formation of high- and low-probability triplets  

QWERTY keyboard, corresponding to the four locations from left to right) as quickly and 

accurately as possible. Participants used their left middle and index fingers to press the Z and 

C keys, while their right middle and index fingers were used to press the B and M keys. The 

stimulus remained on the screen until a response was made, followed by a 120-millisecond 

(ms) response-to-stimulus interval before the next stimulus appeared. Unbeknownst to the 

participants, the sequence of stimuli followed a predetermined probabilistic pattern: an eight-

element sequence in which pattern-defined positions alternated with randomly determined 

positions (e.g., 2–R–4–R–3–R–1–R, where numbers denote specific positions and “R” 

represents a randomly selected location). This eight-element sequence was repeated 10 times 

within a learning block, resulting in 80 trials per block (Fig. 1a). Due to this alternating 

sequence structure, certain three-element stimulus sequences (triplets) appeared with different 

probabilities. Trials of high-probability triplets, where the third element was more predictable 

based on the first element, occurred in 62.5% of trials, while trials of low-probability triplets, 

where the third element was less predictable, appeared in 37.5% of trials (Fig. 2b). SL was 

measured as the increasing RT difference between trials containing the third element of a high-

probability versus a low-probability triplet. 

 
Figure 1. The ASRT task. (a) Without the participants’ awareness, the visual stimuli presented in the 
task followed an 8-element probabilistic sequence, where pattern elements alternated with randomly 
inserted elements. This 8-element sequence was repeated 10 times within a learning block. (b) The 
probabilistic sequence structure resulted in certain three-stimulus combinations occurring more 
frequently (high-probability triplets) than others (low-probability triplets). Trials were classified based 
on whether they represented the final element of a high- or low-probability triplet. The RT difference 
between these trial types reflects implicit visuomotor SL. 

To ensure that the effect of DLPFC stimulation was specific to SL and did not extend to explicit 

learning, we included a control memory task measuring declarative/episodic learning and 

memory. The Paired-Associate Learning Task (PALT) (Nagy, Kónya & Király, 2013) was used 

a Repeating 8-element probabilistic sequence  
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for this purpose and was administered via E-Prime 3.0. In the learning phase, participants were 

shown 23 pairs of schematic images, each containing one object and one animal, displayed side 

by side. Participants were instructed to name the images but were not informed that they needed 

to memorize them. During the retrieval session, participants were presented with 32 image 

pairs and had to determine whether (i) the pair had been shown in the learning phase and, if so, 

(ii) whether the images were presented together or rearranged. The 32 pairs were categorized 

into four conditions (eight pairs each): (1) Old-Old original (both images were originally paired 

together), (2) Old-Old rearranged (both images were from the learning phase but paired 

differently), (3) Old-New or New-Old (one image was from the learning phase, the other was 

new), and (4) New-New (neither image was shown previously). Participants’ responses were 

recorded by the experimenter, who pressed a corresponding button (1–5) to log the answer and 

present the next pair. A 500 ms fixation cross was displayed between trials. 

Repetitive transcranial magnetic stimulation (rTMS) 

rTMS was applied using a Magstim Rapid2 Stimulator and a D702 70 mm figure-of-eight coil 

(The Magstim Company Ltd, Whitland, Wales, UK). Magnetic pulses were delivered at a 

frequency of 1 Hz for 10 minutes, totaling 600 pulses. The stimulation intensity was 

consistently set at 55% of the maximum stimulator output for all participants. The stimulation 

intensity setting was chosen instead of the traditional motor threshold-based method, as 

evidence suggests that using motor thresholds is unsuitable for regions outside the motor cortex 

(Antal, Nitsche, Kincses, Lampe & Paulus, 2004; Turi et al., 2022; Wassermann, McShane, 

Hallett, & Cohen, 1992). Furthermore, the use of a uniform intensity setting has already proven 

to be effective in modulating SL in a previous study (Ambrus et al., 2020). Coil positioning 

followed the international 10-20 EEG system using an EEG cap, providing 90% accuracy in 

targeting the desired area (Herwig, Satrapi & Schönfeldt-Lecuona, 2003). The coil was placed 

over the F3 electrode for left DLPFC stimulation and the F4 electrode for right DLPFC 

stimulation (Brodmann 9) throughout the stimulation period. For bilateral DLPFC stimulation, 

the coil was positioned over the F3 for the first half (5 minutes, 300 pulses) and then moved to 

F4 for the second half (Fig. 1b). The stimulation order for each hemisphere was 

counterbalanced across participants in the Bilateral DLPFC group. During sham stimulation, 

the coil was tilted 90° away from the skull, ensuring that participants heard the machine’s noise 

without any impact on brain activity. 
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Experimental design 

The experiment took place over two consecutive days, with participants completing tasks in a 

well-lit, quiet environment. On the first day, participants performed the ASRT task across 25 

blocks, taking around 25 to 30 minutes to learn an 8-element probabilistic sequence, followed 

by the learning phase of the PALT, which lasted about 10 minutes (Learning Session). On the 

same day, participants also completed the Counting Span Task to ensure that the four 

experimental groups were comparable in baseline cognitive functions (Table 2). After a 24-

hour offline period, the second day included rTMS administration and a retest of participants’ 

statistical and declarative knowledge (Retrieval Session). The rTMS lasted 10 minutes, 

followed by the ASRT task, which consisted of 5 blocks using the same probabilistic sequence 

practiced on day one, or the recall phase of the PALT. The order of the statistical and declarative 

learning tasks was counterbalanced across participants and sessions (Fig. 2a).  

 
Figure 2. Study design. (a) The study took place over two consecutive days. On day one (Learning 
Session), participants completed 25 blocks of the ASRT task and the learning phase of the PALT, 
followed by a 24-hour offline period. On day two (Retrieval Session), participants received 10 minutes 
of 1 Hz rTMS and then performed 5 blocks of the ASRT task and the recall phase of the PALT. The 
order of the tasks was counterbalanced across participants on both days. (b) Stimulation sites for the 
four groups: The coil was tilted 90° in the Sham group, F3 was stimulated for 10 minutes in the Left 
DLPFC group, F4 for 10 minutes in the Right DLPFC group, and both F3 and F4 were sequentially 
stimulated for 5 minutes each in the Bilateral DLPFC group. 

Data processing 

In the case of the ASRT task, trials involving trills (e.g., 1–2–1) and repetitions (e.g., 1–1–1) 

were excluded from the analysis as participants may have inherent response patterns for these 



 22 

trial types. Additionally, trials with RTs below 100 ms or exceeding three SDs above the mean 

RT were removed, as these were considered invalid responses. Trials with incorrect responses 

(misses) were also excluded.  

Regarding the PALT, three learning indices were derived from participants’ responses. Item 

memory index was calculated by subtracting the ratio of incorrect Old-Old responses to New-

New pair (false alarms) from the ratio of correct Old-Old rearranged pair responses (hit rate). 

Association learning index was quantified by subtracting the ratio of correct Old-Old 

rearranged pair responses (hit rate) from the ratio of correct original Old-Old responses (hit 

rate). Recollection index was defined by subtracting the ratio of incorrect Old-Old original 

responses to Old-Old rearranged pairs (false alarms) from the ratio of correct Old-Old original 

responses (hit rate).  

Statistical analysis 

Statistical analysis on block-wise mean RT data from the ASRT task was conducted in R using 

linear mixed models (LMMs) with the afex package, applied separately to the Learning and 

Retrieval Sessions. Fixed factors included Trial Type (high- vs. low-probability), Group (Left, 

Right, Bilateral, Sham), and Block (Learning Session: blocks 1–25; Retrieval session: blocks 

26–30). Subject was included as a random intercept, with by-participant correlated slopes for 

the Block factor. To evaluate the factors influencing model quality, a likelihood ratio test was 

performed using the anova function in R. This test compared model likelihoods, based on 

Akaike Information Criterion (AIC), with the model showing the lowest AIC indicating the 

best fit (Bozdogan, 1987). Estimated marginal means were calculated using the emmeans 

package. On the other hand, comparing the three PALT learning indices across the four groups, 

ANOVAs were conducted. A significant level of 0.05 was used for all analyses, with Bonferroni 

correction applied to post hoc comparison where necessary. 

  



 23 

Study II – Behavioral intervention to SL consolidation 

Participants  

This online study initially included 361 university students who participated in an exchange 

for course credit. After rigorous quality control of data (for details, see “Data processing”), the 

final sample comprised 268 participants (MAGE = 21.46 years, SDAGE = 2.20 years; 77.61% 

female). Participants were randomly assigned to one of three groups (15-second, 30-second, or 

self-paced), with no significant differences in age, education, sex, handedness, or working 

memory performance between groups (Table 3). All participants had normal or corrected-to-

normal vision and no history of neurological or psychiatric conditions. Informed consent was 

obtained, and the study was approved by the Research Ethics Committee of Eötvös Loránd 

University (Budapest, Hungary), following the Declaration of Helsinki. 

Table 3. Descriptive statistics of the three experimental groups 
 Self-paced 

group (n = 88) 

15-second 

group (n = 90) 

30-second 

group (n = 90) 

Comparison 

Age (years) 21.89 + 2.07 21.24 + 2.23 21.27 + 2.26 p = .09 

Education (sec/BA/MA) 68/17/3 67/22/1 73/16/1 p = .56 

Gender (m/f) 18/70 20/70 22/68 p = .82 

Handedness (l/r/a) 8/80/0 8/80/2 10/78/2 p = .68 

2-back task (d’) 1.57 + 0.95 1.49 + 0.87 1.52 + 0.89 p = .82 

Notes. Mean and SD values for age and 2-back task are presented. For education (sec = secondary 
education or lower, BA = bachelor’s level or equivalent, MA = master’s level or equivalent), gender (m 
= male, f = female), and handedness (l = left, r = right, a = ambidextrous), case numbers are presented.  

Stimuli 

The ASRT task enabled us to assess both implicit SL and general skill learning separately. The 

task has already been described above. Participants were required to respond to a stream of 

visual stimuli (a Dalmatian’s dog head) where pattern elements alternated with random ones 

(Fig. 3A) without the participants being aware. High- and low-probability triplets emerged 

from this probabilistic sequence (Fig. 3B). However, there are some differences between the 

versions of the task used in the two studies. The fundamental distinction is that the task was 

performed online in the participants’ own environment rather than in a research laboratory. The 

task was programmed in JavaScript using the jsPsych framework (de Leeuw, 2015). Second, 
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due to the online, unsupervised environment, practice blocks preceded the learning phase. 

Third, the four response keys corresponding to the four locations were S, F, J, and L on the 

participants’ own computer keyboard. Finally, while in Study I, all participants proceeded in a 

self-paced manner, break durations were manipulated in this version (see in Experimental 

design). In all other respects, the task structure was identical to the previously described 

version. 

Experimental design 

The experiment was conducted online using the Gorilla Experiment Builder, ensuring precise 

stimulus presentation and response timing. Participants were randomly assigned to one of three 

task versions, differing only in the duration of between-block rest periods: (1) 15-second 

breaks, (2) 30-second breaks, or (3) self-paced breaks, allowing participants to proceed when 

they were ready (Fig. 3C). The task began with two practice blocks, followed by 25 learning 

blocks, each containing 80 trials, and took approximately 25-30 minutes to complete. Accuracy 

and RTs were recorded for each trial. After completing the ASRT task, participants’ awareness 

of the sequence structure was assessed using a brief questionnaire and a task based on the 

process dissociation procedure, which differentiates explicit and implicit memory processes. 

The results of these tests showed that statistical knowledge remained equally implicit across 

all three groups. Lastly, participants completed 0-back and 2-back tasks to assess working 

memory. 

Data processing 

Before analysis, we applied exclusion criteria to ensure data reliability. Participants were 

excluded if they (1) had an accuracy below 80% on the ASRT task (34 participants), (2) scored 

below 60% on the 0-back task (eight participants), (3) failed to respond in the n-back tasks (16 

participants), (4) restarted the experiment after quitting (four participants), (5) had prior ASRT 

experience (eight participants), or (6) delayed response after rest periods in at least five blocks 

(21 participants). Additionally, participants with an average RT over 1000 ms for the first trials 

of blocks were removed (nine from the 15-second group and 12 from the 30-second group). 

Since age distribution varied across groups, those older than 35 years were also excluded (11 

participants).  
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Figure 3. The ASRT task and the study design. (A) A visual stimulus (a Dalmatian dog’s head) 
appeared in one of four horizontally arranged locations. The stimuli followed an eight-element 
probabilistic sequence, where fixed and pattern elements alternated with randomly assigned positions. 
(B) Each trial was classified as the third element of a three-item sequence (triplet). Due to the 
probabilistic structure, high-probability trials occurred more frequently (62.5% of trials), than low-
probability trials (37.5%). (C) Each learning block contained 80 trials, repeating the sequence 10 times. 
Participants were divided into three groups based on the length of the between-block breaks: 15-second, 
30-second, or self-paced.  

After ensuring data quality, we removed inaccurate responses (misses), trills (e.g., 1–2–1), 

repetitions (e.g., 1–1–1), and trials with RTs over 1000 ms, excluding a total of 20.22% of trials. 

To smooth the data, ASRT blocks were grouped into units of five consecutive blocks. SL scores 

for each learning unit were measured by subtracting the median RT of high-probability trials 

from low-probability trials of the unit, then standardizing by dividing by mean RT. General 

skill learning was assessed using median RTs for each learning unit, independent of trial 

probability. 

To analyze within-block (online) and between-block (offline) changes, each block of 80 trials 

was divided into five bins (16 trials each). SL scores based on the RT difference between high-

probability and low-probability trials were calculated for each bin. Online SL was calculated 

as the change in learning scores from the first to the last bin within a block (change scores), 

averaged across all 25 blocks. Offline SL was measured as the difference between the last bin 

of one block and the first bin of the next (change scores), averaged across all 25 blocks. The 
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same approach was used for general skill learning but based on median RTs regardless of trial 

type. 

Statistical analysis 

We conducted statistical analyses using JASP 0.16. Before the main statistical analyses, we 

calculated the average and median rest durations for the self-paced group. The mean was 16.67 

s (SD = 25.48) and the median was 10.58 s. One-sample t-tests showed no significant difference 

from the 15-second group (t(87) = 0.62, p = .54) but a significant difference from the 30-second 

group (t(87) = -4.91, p < .001). To analyze the ASRT task, learning blocks were grouped into 

five larger units: blocks 1–5, blocks 6–10, blocks 11–15, blocks 16–20, and blocks 21–25. To 

compare SL across groups, we conducted a mixed-design one-way analysis of variance 

(ANOVA) with the within-subject factor of Blocks (block 1–5 vs. block 6–10 vs. block 11–15 

vs. block vs. 16–20 vs. block 21–25) and the between-subjects factor of Group (self-paced, 15-

second, 30-second), with SL scores as dependent variable. To test whether general skill learning 

(i.e., the overall speedup on the task) differed between groups, a similar mixed-design ANOVA 

was conducted but with median RT as the dependent variable.  Additionally, mixed-design 

ANOVAs were used to analyze offline and online changes separately for both SL and general 

skill learning with the within-subjects factor of the Learning Phase (offline vs. online) and the 

between-subjects factor of Group (self-paced, 15-second, 30-second), with change scores as 

the dependent variable. A significant level of 0.05 was used for all analyses, with Bonferroni 

correction applied to post hoc comparison where necessary. 
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Results 

Study I – Brain stimulation intervention to SL retrieval 

Comparable SL performance in the four groups before rTMS 

The optimal model included Trial Type, Block, and Group as fixed factors, with Block also 

serving as a by-participant random slope factor. A main effect of Trial Type was observed, with 

high-probability trials yielding faster RTs than low-probability trials, confirming that SL 

occurred across all participants (F(1,4840) = 278.76, p < .001). The Trial Type × Block 

interaction indicated a progressive enhancement in SL, as the difference between high- and 

low-probability triplets increased over time (F(1,4840) = 33.62, p < .001). However, there was 

no evidence of SL differences between the four groups, as neither the Group × Trial Type 

interaction (F(3,4840) = 0.45, p = .714) nor the Group × Block interaction (F(3,4840) = 0.32, 

p = .814) reached significance before stimulation (Fig. 4a, b). The main effect of Block showed 

decreasing RTs throughout the task, reflecting gradual general skill learning (F(1,97) = 321.79, 

p < .001). However, no group differences in general skills were found, as neither the main effect 

of Group (F(3,97) = 0.05, p = 0.987) nor the Group × Block interaction (F(3,97) = 2.09, p = 

.106) was significant. 

Enhanced retrieval capacity of statistical knowledge after bilateral DLPFC inhibition 

The optimal model for the Retrieval session included Trial Type and Group as fixed factors, 

along with their interaction, while Block was treated as a by-participant random slope factor. 

SL remained intact, as indicated by a significant main effect of Trial Type, with faster responses 

to high-probability trials compared to low-probability ones (F(1,804) = 199.10, p < .001). The 

absence of a main effect of Group suggested no significant differences in general skills between 

the four groups (F(3,97) = 0.41, p = .743). However, the Group × Trial Type interaction 

indicated a variation in SL performance among the groups (F(3,804) = 3.62, p = .013). Post 

hoc Welch’s t-tests revealed that two stimulation groups outperformed the Sham group in SL: 

the Bilateral DLPFC group (t(44.835) = 3.04, p < .01) and the Left DLPFC group (t(47.839) = 

2.32, p < .05). However, after correcting for multiple comparisons, only the Bilateral DLPFC 

group maintained significance (Fig. 4c, d).  
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Figure 4. Statistical knowledge before and after rTMS. The y-axis represents the mean SL scores 
(RT difference between high- and low-probability trials in ms) for the four groups, where higher values 
indicate greater sensitivity to the underlying statistical structure. This measure reflects the extent to 
which participants responded faster to high-probability trials. Error bars indicate the standard error of 
the mean. (a) No significant differences in SL were found between the DLPFC groups and the Sham 
group in the Learning session. (b) Individual SL scores for each of the four groups. (c) The Bilateral 
DLPFC group showed significantly better retrieval of statistical knowledge than the Sham group (p < 
.01). (d) Individual SL scores for each of the four groups. 

Comparable recall capacity of declarative knowledge after rTMS 

The four groups exhibited similar declarative memory performance in the Retrieval Session, 

with no significant differences observed in the item memory index (F(3, 97) = 0.85, p = .46, 

η²p = 0.02), association learning index (F(3, 97) = 0.50, p = .67, η²p = 0.01), or recollection 

index (F(3, 97) = 0.34, p = .79, η²p = 0.01). 
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Study II – Behavioral intervention to SL consolidation 

Did rest period duration influence SL? 

The ANOVA showed a gradual increase in learning scores across all participants, regardless of 

the rest period duration (main effect of Blocks: F(4,1060) = 25.68, p < .001, ηp² = 0.09). 

Pairwise comparisons revealed no significant differences in learning between blocks 6–10 and 

blocks 11–15 (p = .82), between blocks 6–10 and blocks 16–20 (p = .06), between blocks 11–

15 and blocks 16–20 (p < .99), or between blocks 16–20 and blocks 21–25 (p = .19). However, 

all other comparisons between block arrays were significant (all p < .01). This indicates that 

consecutive learning units did not differ significantly, but learning was observed between more 

temporally distant sections of the task. Importantly, there were no differences in SL between 

the three experimental groups (main effect of Group: F(2,265) = 0.65, 

p = .53, ηp² < 0.01). The Blocks × Group interaction was also non-significant (F(8,1060) = 

0.28, p = .97, ηp² < 0.01), indicating that the three groups did not differ in the time course of 

SL either (Fig. 5A, C).  

Did rest period duration influence general skill learning? 

We observed a gradual decrease in RTs across the task (effect of Blocks: F(2.73,723.72) = 

275.21, p < .001, ηp² = 0.51). Pairwise comparisons indicated that each epoch significantly 

differed from the others (all p < .01), reflecting continuous learning throughout the blocks. The 

three groups showed significant differences in response times (main effect of Group: F(2,265) 

= 8.69, p < .001, ηp² = 0.06), with the self-paced group responding more slowly than the 15-

second and 30-second groups. The Blocks × Group interaction was also significant (F(8,1060) 

= 2.33, p = .04, ηp² = 0.02). Pairwise comparisons revealed that RTs were significantly higher 

in the self-paced group compared to the 30-second group in blocks 6–10, 11–15, 16–20, and 

21–25 (all p < .01). The self-paced group also showed significantly higher RTs compared to 

the 15-second group in these blocks (all p < .01). Thus, while all three groups had similar 

speeds in the first learning unit, the self-paced group began to slow down relative to the other 

two groups starting from the second learning unit (Fig. 5B, D). 



 30 

 
Figure 5. The effect of rest period duration on SL and general skill learning. Error bars represent 
the standard error of the mean. The x-axes show the experiment blocks or groups, while the y-axes show 
SL scores or RTs. (A) The temporal progression of SL scores across the three groups. All groups 
exhibited significant learning, but learning rates did not differ. (B) The temporal progression of general 
skill learning in the three groups. RTs decreased across all groups, with the self-paced group showing 
slower RTs than the 15-second and 30-second groups. (C) Individual SL scores (dots represent 
participant means). Boxplots and violin plots display the distribution of SL scores across the three 
groups. (D) Individual general RT scores (dots represent participant means). Boxplots and violin plots 
display the distribution of median RTs across the three groups. 

How did rest period duration affect offline and online SL? 

The ANOVA revealed a significant interaction between the Learning Phase and Group factors 

(F(2,265) = 3.51, p = .03, ηp² = 0.03). Bonferroni-corrected post hoc comparisons showed that 

online and offline changes differed in the 15-second group (p = .04), with offline changes being 

significantly smaller than online changes. However, no main effect of Group (F(2,265) = 1.60, 

p = .20, ηp² = 0.01) or Learning Phase (F(2,265) = 2.50, p = .12, ηp² < 0.001) was observed 

(Fig. 6A). To determine whether online and offline learning occurred in the full sample and 

within each group, one-sample t-tests were conducted. In the full sample, online learning scores 

were significantly different from zero (t(267) = 2.05, p < .05), whereas offline learning scores 

were not (t(267) = 1.11, p = .27). In the self-paced group, neither online (t(87) = -0.17, p = .86) 

nor offline learning scores (t(87) = 0.92, p = .36) differed from zero. Similarly, in the 30-second 
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group, neither online (t(89) = 0.61, p = .55) nor offline scores (t(89) = -0.05, p = .96) were 

significantly different from zero. However, in the 15-second group, both learning scores 

significantly deviated from zero: online learning scores were positive (t(89) = 3.50, p < .001), 

while offline learning scores were negative (t(89) = -3.39, p < .01). This suggests that 

participants in this group exhibited online learning but experienced forgetting offline. The 

absence of significant online and offline learning effects in the other two groups may be due to 

a balanced distribution of positive and negative learning scores within those groups (Fig. 7A–

C). 

 
Figure 6. Offline vs. online changes in SL and general skills. The x-axes represent the three groups, 
and the y-axes show mean offline/online changes in ms. The violin plots display both offline changes 
(filled halves) and online changes (striped halves). (A) In the 15-second group, online changes were 
significantly greater than offline changes in SL. Online learning showed improvement, while offline 
changes indicated forgetting in this group. (B) General skill changes followed a similar pattern across 
groups, with acceleration after rest periods and deceleration during learning. 

How did rest period duration affect offline and online general skill learning? 

We observed a significant main effect of Learning Phase (F(2,265) = 920.49, p < .001, ηp² = 

0.77), with RTs slowing down during the blocks but speeding up following rest periods. No 

main effect of Group was detected (F(2,265) = 0.02, p = .98, ηp² < .001). However, the 

interaction between Learning Phase and Group was significant (F(2,265) = 4.38, p = .01, ηp² 

= 0.03). Despite this interaction, none of the between-group comparisons for online and offline 

changes remained significant after Bonferroni correction (all p > 0.17; Fig. 6B). One-sample t-

tests confirmed that participants exhibited online learning (t(267) = 29.14, p < .001) but showed 
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a decline in general skill performance during offline periods (t(267) = -30.60, p < .001) across 

the entire sample. This pattern was consistent across all three groups. Online general skill 

learning was observed in the self-paced group (t(87) = 15.87, p < .001), the 15-second group 

(t(89) = 16.35, p < .001), and the 30-second group (t(89) = 19.18, p < .001). During offline 

periods, performance declined in the self-paced group (t(87) = -17.16, p < .001), the 15-second 

group (t(89) = -16.78, p < .001), and the 30-second group (t(89) = -20.21, p < .001) (Fig. 7D–

F). 

 

Figure 7. The dynamics of offline/online learning and forgetting in the four groups. The y-axes 
represent offline and online learning in ms, while the x-axes show individual mean learning scores. (A–
C) Individual offline and online SL change scores for the self-paced (A), 15-second (B), and 30-second 
(C) groups. (D–F) Individual offline and online general skill change scores for the self-paced (D), 15-
second (E), and 30-second (F) groups. 
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Discussion 

This thesis summarizes the findings of two studies that aimed to modulate SL in its different 

phases through neuromodulation and behavioral interventions. Specifically, Study I (Brain 

stimulation study) addressed a gap in the literature on SL modulation through TMS. To our 

knowledge, no prior study has investigated the effect of TMS on access to statistical 

knowledge. We applied inhibitory rTMS over the left, right, or bilateral DLPFC (Brodmann 9) 

immediately before retesting participants’ statistical knowledge acquired the day before and 

compared the performance of these real stimulation groups to a Sham group. Our findings 

revealed that bilateral DLPFC inhibition enhanced SL retrieval, as this group outperformed the 

Sham group. This effect was specific to SL retrieval, as rTMS over the DLPFC did not impact 

recall performance on a declarative memory task. 

If we read a textbook on memory consolidation, we find that consolidation requires at least 

several hours to take place (Squire, Genzel, Wixted & Morris, 2015). However, it seems that, 

in some cases, even a few seconds may be sufficient. Study II (Behavioral study) investigated 

the role of this rapid consolidation in SL. We manipulated the length of short rest periods 

intervening in SL using a between-subjects design, comparing SL performance across three 

groups: 15-second, 30-second, and self-paced. While the length of these rest periods did not 

influence overall SL performance, it did affect an unrelated learning process, namely general 

skill learning. Participants in the self-paced group exhibited slower performance compared to 

the fixed-duration groups. We also examined whether offline and online SL differed between 

the three groups. Our results indicated that shorter rest periods (i.e., 15 seconds) led to SL 

occurring exclusively online, diminishing offline learning, while longer rest periods (i.e., 30 

seconds) did not induce this learning pattern. 

Enhancing the retrieval capacity of statistical learning through brain stimulation 

intervention 

Our findings of Study I indicate that disrupting the DLPFC (Brodmann 9) enhances the 

retrieval capacity of SL, particularly when both hemispheres are inhibited. Importantly, this 

effect appears to be specific to SL, as general skills (i.e., the overall response speed) and 

performance on the control memory task remained unaffected. This specificity aligns with prior 

research suggesting that the DLPFC plays a pivotal role in modulating SL, although the exact 

nature of its influence remains debated (Szücs-Bencze et al., 2023). Earlier studies have yielded 
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mixed results regarding DLPFC stimulation and SL outcomes. Some studies reported decreased 

SL following DLPFC stimulation (Pascual et al., 1996; Robertson, Tormos, Maeda & Pascual-

Leone, 2001), while others observed improved learning after DLPFC disruption (Ambrus et 

al., 2020; Galea et al., 2010). This inconsistency likely stems from differences in stimulation 

protocols and timing. Notably, studies reporting reduced learning often employed excitatory 

rTMS (Pascuel-Leone et al., 1996) or inhibitory protocols applied before the learning phase 

(Robertson et al., 2001). Conversely, studies demonstrating enhanced learning typically applied 

inhibitory stimulation after the learning phase, facilitating consolidation and subsequent 

knowledge retention (Ambrus et al., 2020; Galea et al., 2010).  

Our findings extend prior findings by demonstrating that DLPFC inhibition not only enhances 

the acquisition and consolidation of statistical regularities but also facilitates their retrieval. 

This conclusion is supported by previous work showing improved linguistic SL performance 

following DLPFC suppression through cTBS (Smalle et al., 2022; Smalle, Panouilleres, 

Szmalec & Möttönen, 2017). Additionally, Galea and colleagues (2010) found that post-

training cTBS over the DLPFC improved non-linguistic motor sequence learning, particularly 

when the right hemisphere was targeted. Similarly, another study reported offline 

improvements in SL after right DLPFC inhibition (Tunovic, Press & Robertson, 2014).  

In our study, only bilateral DLPFC inhibition significantly enhanced retrieval, suggesting that 

simultaneous modulation of both hemispheres is necessary to overcome potential 

compensatory mechanisms (Ambrus et al., 2020). Interestingly, while left DLPFC inhibition 

also improved retrieval compared to the Sham group, this effect did not reach statistical 

significance after correcting for multiple comparisons. This may be due to interhemispheric 

compensation, where the unstimulated hemisphere counteracts the effects of unilateral 

inhibition. Additionally, differences in task complexity may influence the effectiveness of 

lateralized stimulation. In our study, inhibition of the right DLPFC was the least effective in 

enhancing retrieval, which contrasts with findings from studies using simpler, deterministic 

sequences (Galea et al., 2010; Tunovic et al., 2014). The more complex probabilistic sequences 

in our study likely engage broader neural circuits, with a stronger reliance on the left 

hemisphere. This hypothesis is further supported by those studies where the acquisition of 

complex linguistic sequences was successfully improved by left DLPFC inhibition (Smalle et 

al., 2017, 2022).  
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One possible framework for interpreting our findings is the competition theory, which posits 

that different cognitive systems compete for shared neural resources (Borragán, Slama, 

Destrebecqz & Peigneux, 2016; Gillan et al., 2011; Poldrack & Packard, 2003). Within this 

model, the DLPFC serves as a regulatory hub, balancing the competition between executive 

control processes and habitual learning mechanisms. The PFC primarily supports goal-directed 

behavior, including working memory and executive functions, while simultaneously inhibiting 

automatic, associative learning (Juhasz, Nemeth & Janacsek, 2019; Smalle & Möttönen, 2023). 

During SL, being linked to the habitual system, repeated exposure can lead to automaticity, 

transitioning from goal-directed learning (involving the PFC) to habit-based processing 

(dominated by the striatum). Consequently, reducing DLPFC involvement allows greater 

cognitive resources to be allocated toward SL processes. This competitive dynamic has been 

consistently observed across various experimental manipulations. For instance, interventions 

that suppress PFC activity—such as hypnosis (Nemeth et al., 2013b), TMS (Ambrus et al., 

2020), or cognitive overload (Smalle et al., 2022)—have been shown to enhance SL 

performance. Neuroimaging studies further support this model, indicating that diminished PFC 

engagement promotes habitual, bottom-up learning processes (Tóth et al., 2017; Park et al., 

2022).  

Competition may also manifest within the hippocampal system, where both episodic memory 

and SL rely on overlapping neural circuits (Sherman, Turk-Browne & Goldfarb, 2024). The 

DLPFC exerts inhibitory control over the hippocampus, modulating retrieval processes (Benoit 

et al., 2015; Oehrn et al., 2018; Woodcock et al., 2015). However, if the DLPFC functions as a 

domain-general controller, its inhibition should theoretically affect both statistical and episodic 

retrieval. Our study did not observe such an effect in the control memory task. This discrepancy 

may be attributed to the nature of the episodic task, which involved incidental learning with 

intentional retrieval. Prior research suggests that DLPFC engagement during episodic retrieval 

is strategy-dependent (Kim, 2010; Manenti, Cotelli, Calabria, Maioli & Miniussi, 2010), 

implying that tasks requiring minimal strategic processing may not engage DLPFC-dependent 

mechanisms robustly. Future research should employ more complex and strategically 

demanding episodic tasks to further explore the interaction between these memory systems and 

the role of the PFC in mediating their competition.  

Alternatively, our results may reflect the strengthening of the frontostriatal network rather than 

direct competition between cognitive systems. Cognitive processes are supported by extensive 
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neural networks, and neuromodulation techniques like rTMS may induce broad changes 

beyond the targeted brain regions (Bergmann & Gartwigsen, 2021; Beynel, Powers & 

Appelbaum, 2020). SL, in particular, relies on the functional interplay between the PFC and 

the basal ganglia—a network collectively known as the frontostriatal system (Janacsek et al., 

2020; Naismith et al., 2010; Reber, 2013). Reduced DLPFC engagement may optimize 

conditions within the frontostriatal network, facilitating more efficient SL and its retrieval 

processes (Park et al., 2020; Tóth et al., 2017). This perspective suggests that the observed 

effects result from enhanced network dynamics rather than direct competition between memory 

systems.  

Enhancing the consolidation capacity of statistical learning through behavioral intervention 

The main finding of Study II concerns the differential effects of rest period length on the offline 

and online phases of SL. We found evidence for the beneficial effect of longer rest periods 

compared to shorter ones, as learning deteriorated during the offline phases in the latter case, 

while with longer breaks, learning remained balanced during both the offline and online phases. 

Our findings on SL dynamics only partially replicated previous research. Prior studies indicated 

that SL occurs primarily online, while forgetting happens offline during rest periods (Fanuel et 

al., 2022; Quentin et al., 2021). We found evidence for this pattern only in the 15-second group, 

where SL was confined to online periods with little to no offline improvement. However, this 

clear dissociation was not observed in the 30-second and self-paced groups. 

One possible explanation stems from the role of neural replay in rapid consolidation (Buch, 

Claudino, Quentin, Bönstrup & Cohen, 2021). It is plausible that the longer rest periods in the 

30-second and self-paced groups allowed for sufficient time for neural replay, facilitating both 

online learning and rapid consolidation. Conversely, the 15-second rest period may have been 

too brief to permit effective neural replay, thereby limiting offline gains. This interpretation is 

supported by a study that found offline improvement in probabilistic sequence learning with 

rest periods of two minutes between blocks (Prashad, Du & Clark, 2021), suggesting that a 

longer rest period may be necessary to observe offline benefits. An alternative explanation for 

the absence of clear offline learning effects in the 30-second and self-paced groups may be 

related to the experimental context. Participants completed the task in their own environments 

rather than in a laboratory setting. This may have reduced stress levels compared to in-lab 

testing. However, the limited rest period in the 15-second group may have increased stress 
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levels, mimicking laboratory conditions. Given that stress can modulate SL (Tóth-Fáber et al., 

2021a), participants in the 15-second group may have been more motivated to optimize 

performance during the task itself rather than relying on offline consolidation. 

In general skill learning, we observed that performance improved online (i.e., during practice 

within blocks) and deteriorated offline (i.e., during rest periods between blocks). This pattern 

was consistent regardless of rest period length. This result regarding the dynamics of general 

skills (whether it occurs offline vs. online) aligns with previous studies (Fanuel et al., 2022; 

Quentin et al., 2021) and suggests that the dynamics of general skill acquisition are not 

influenced by the length of brief rest periods. 

On the other hand, our findings of Study II suggest that the length of short rest periods 

influences SL and general skill learning in distinct ways. Our results indicate that the duration 

of these rest periods does not have a significant effect on overall SL performance across the 

task. This finding contrasts with the results of previous studies showing that short, 10-second 

rest periods facilitated motor skill learning and that even shorter rest periods continued to 

enhance performance (Bönstrup et al., 2019; Bönstrup, Iturrate, Hebart, Censor & Cohen, 

2020). However, their task did not separate the subprocesses of learning, such as SL and general 

skill learning, making it difficult to determine which aspect was primarily affected. However, 

our findings are consistent with those of Fanuel and colleagues (2022), who also measured SL 

and found no significant effect of rest period length on overall performance. This discrepancy 

highlights the importance of distinguishing between SL and general skill learning when 

interpreting the impact of rapid consolidation.  

Regarding general skill learning, participants in the self-paced condition, where they controlled 

the duration of their rest periods, exhibited slower RTs compared to the 15-second and 30-

second fixed-duration groups. This suggests that the voluntary nature of the self-paced 

condition, rather than the actual rest duration, may be responsible for the observed differences 

in general skill performance. Although the average rest period length in the self-paced group 

was similar to that of the 15-second group, the two groups still differed significantly in their 

overall speed. The substantial variability in rest duration, reflected by the high SD in the self-

paced group, further supports the notion that the critical factor may be whether the rest period 

is voluntary or compulsory. We propose that participants in the fixed-duration groups may have 
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experienced a greater sense of urgency due to the imposed time limit, leading to faster RTs 

compared to the self-paced group. 

Nevertheless, the lack of significant differences in overall SL outcomes between the three 

groups suggests that the rest period length primarily influences the dynamics of learning (i.e., 

whether it occurs offline or online) rather than the final level of statistical knowledge acquired. 

Table 4. The main research questions and summary of findings 

 Research question Results 

Study I  a. Does inhibitory TMS over the DLPFC modulate 

the retrieval phase of SL? 

DLPFC inhibition leads to enhanced 

retrieval of statistical knowledge 

 b. Does the effect of DLPFC inhibition on retrieval 

differ based on hemispheric lateralization (left, 

right, or bilateral stimulation)? 

Bilateral stimulation reaches the most 

pronounced effect on SL retrieval 

Study II a. How does short rest periods of different length 

affect SL performance? 

The length of short rest periods does 

not impact overall SL performance 

 b. Does rest period length influence SL differently 

in online (within-block) and offline (between-

block) phases? 

Shorter rest periods shift SL to the 

online phase 

 

Theoretical and methodological significance of the two studies 

The field of SL research is currently facing a crisis characterized by the coexistence of multiple 

competing theories without a unified framework to explain the underlying neurocognitive 

mechanisms. This crisis can be attributed to three primary factors: the lack of robust 

phenomena, the instability of construct validity, and the difficulty of establishing casual 

relationships (Jenkins, Conway, Singh, Milne & Wilson, 2025). The present studies address all 

three problematic factors, providing important contributions to the field. 

First, the demonstration of robust phenomena requires replicability—the ability to observe 

consistent effects over time and across different methodologies. Study I showed that SL can 

be reliably modulated through inhibitory stimulation of the DLPFC, independent of the 

learning modality (linguistic vs. non-linguistic) and the TMS protocol (rTMS vs. cTBS) 
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(Ambrus et al., 2020; Smalle et al., 2022). This replicability across experimental contexts 

strengthens the claim that the DLPFC plays a critical role in regulating SL processes. However, 

our research went one step further than replicating previous observations by examining an 

overlooked phase, namely retrieval. That is, we simultaneously confirmed the antagonistic role 

of the DLPFC in SL and, as a new result, showed that this is true not only for the acquisition 

and consolidation phase but also for the retrieval phase. Furthermore, Study II contributed to 

the robustness of the psychological phenomenon of rapid consolidation. Consolidation theories 

traditionally emphasize that consolidation takes hours, sometimes days, to occur (Squire et al., 

2015). However, thanks to a discovery, consolidation research has taken a new direction in 

recent years, showing that consolidation can occur in seconds (Bönstrup et al., 2019). Our study 

adds to the evidence by revealing that such rapid consolidation occurs online. However, it also 

adds new knowledge to this area, as we have shown that the length of the rest periods influences 

which phases of learning benefit from this rapid consolidation: if the break is long enough, 

rapid consolidation occurs not only online but also offline, during the short breaks between the 

blocks. 

Second, the studies address the issue of construct validity by disentangling SL and general skill 

learning. Prior research often conflates these processes, making it difficult to ascertain whether 

observed effects pertain specifically to SL mechanisms. In Study I, the finding that DLPFC 

inhibition selectively enhances SL while leaving general skill performance unchanged supports 

the notion that these have distinct cognitive constructs. Similarly, control memory task 

measuring declarative recall remained intact after rTMS, suggesting distinct neurocognitive 

mechanisms behind the two constructs.  Furthermore, Study II demonstrated that rest period 

length differentially impacts SL and general skills, reinforcing the validity of treating these 

processes as separate entities. However, these results need to be replicable even when 

performing other SL paradigms. Different SL paradigms in different modalities or complexity 

are likely to require different neural networks and thus underlying cognitive processes, so it is 

conceivable that other paradigms would respond differently to DLPFC inhibition or to rest 

period manipulation. Nevertheless, it is important to distinguish between measuring different 

processes or simply not being replicable (i.e., not being robust). 

Third, the difficulty of establishing causal relationships is a major obstacle in cognitive 

neuroscience. Both studies employ experimental manipulations (brain stimulation and rest 

period duration) that allow for causal inferences. Study I provides causal evidence that the 
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DLPFC directly modulates the retrieval capacity of SL. By showing the causal role of the 

DLPFC, an indirect relationship between SL and DLPFC-supported executive functions and 

working memory was demonstrated. This further supports studies reporting an antagonistic 

relationship between the two cognitive processes (Nemeth et al., 2013b; Pedraza et al., 2024; 

Virag et al., 2015). On the other hand, Study II demonstrates that altering rest period length 

can causally influence the dynamics of SL. These findings not only clarify the mechanisms of 

SL but also provide a foundation for future research aimed at further elucidating these causal 

pathways. 

When discussing the ‘theoretical crisis’ in SL research, our findings provide critical insights 

into how DLPFC modulates memory systems. Specifically, our results align with predictive 

coding frameworks, which propose that the brain constantly generates and updates internal 

models of the environment based on sensory input. By inhibiting the DLPFC, we may reduce 

the brain’s reliance on top-down predictions, thereby facilitating the retrieval of statistical 

regularities without interference from higher-order cognitive processes. Furthermore, our 

findings challenge classical dual-process theories, which often posit a clear distinction between 

implicit and explicit learning systems. 

The methodologies employed in the presented studies offer innovative approaches to 

investigating the neurocognitive mechanisms underlying SL and provide new tools for 

addressing long-standing questions in the field. TMS studies often stimulate only one 

hemisphere or both hemispheres in separate groups (Szücs-Bencze et al., 2023). Bilateral 

stimulation—simultaneous or sequential stimulation of both hemispheres—is quite rare in the 

literature. The main strength of Study I is that it used both unilateral and bilateral approaches 

within a single research design. By comparing bilateral, left, and right DLPFC inhibition 

conditions, the study provides nuanced insights into hemispheric contributions to SL processes. 

Bilateral stimulation can be particularly useful when using SL paradigms that require the use 

of both hands. Another advantage is that it may eliminate compensatory mechanisms from the 

non-stimulated hemisphere. Additionally, the use of a control memory task ensures that the 

observed effects are specific to SL rather than general cognitive functions, enhancing the 

specificity and interpretability of the results. 

In Study II, we employed a behavioral intervention manipulating rest period duration to 

investigate the temporal dynamics of SL and general skill acquisition. On the one hand, 
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compared to Study I, we introduced a much more refined and sophisticated level of analysis 

that allows for distinguishing between offline and online learning phases. In addition, by 

systematically comparing fixed and self-paced conditions, the study provides a more 

comprehensive view of how rest duration influences learning dynamics. Since the effect of rest 

period duration was not shown on the overall learning index but was shown on the dynamics 

of learning (offline vs. online), it seems particularly important to include in analyses not only 

overall learning outcomes but also indicators measuring the active dynamics of learning, in 

order to be able to detect subtle effects. 

Applied significance of the two studies 

Although the studies presented in this thesis are primarily basic or fundamental research, 

investigating the processes and neural mechanisms of SL in healthy individuals, they also have 

implications for enhancing learning and memory processes, with potential application in 

clinical interventions, education settings and cognitive enhancement strategies.  

Clinically, the findings of Study I indicate that targeted neuromodulation of the DLPFC may 

serve as a potential intervention for individuals with learning and memory deficits. TMS is 

already recognized and approved by the US Food and Drug Administration as a therapeutic 

tool, particularly for psychiatric conditions where well-defined neural alterations underlie the 

symptoms (e.g., depression, obsessive-compulsive disorder). Ongoing research explores the 

potential of TMS to alleviate cognitive symptoms of post-stroke conditions as well, with 

varying success (Shen, Hu, Feng, Li, & Wang, 2022). Our study highlights the importance of 

bilateral stimulation for achieving maximal effects, which could guide the development of 

more effective brain stimulation protocols in clinical practice. Compared to the standard TMS 

protocol for depression, which facilitates the left DLPFC due to its reduced activity, bilateral 

stimulation may be more beneficial in post-stroke or trauma-related rehabilitation for restoring 

cognitive and motor skills. 

In an educational context, the results of Study II suggest that optimizing rest period length can 

improve learning outcomes. Specifically, longer rest intervals facilitate the rapid consolidation 

of statistical knowledge, which may inform the design of more effective learning schedules. 

This has practical relevance for educational programs aimed at enhancing procedural learning, 

such as language acquisition and skill training. 
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From a broader perspective, these studies contribute to the growing field of cognitive 

enhancement. The demonstration that both neural and behavioral interventions can modulate 

SL provides a foundation for developing novel strategies to improve cognitive performance. 

This is particularly relevant in populations with compromised cognitive functions, where 

enhancing SL could improve adaptive behavior and overall cognitive functioning. Some 

theories presume SL is an age-invariant cognitive mechanism; however, some think that SL 

deteriorates with age. In our aging society, it is predominantly important to keep our elderly in 

good cognitive shape, enabling them to rest in their environment as long as possible and 

postpone the need for hospitalization. 

Limitations and future directions 

While our findings of Study I provide compelling evidence that DLPFC inhibition enhances 

the retrieval of statistical knowledge, the underlying cognitive and neural mechanisms remain 

unclear. One crucial area for future exploration is the relationship between task complexity, 

lateralization, and DLPFC involvement.  Our study suggests that bilateral DLPFC inhibition is 

more effective than unilateral stimulation, although left DLPFC inhibition also seemed to be 

beneficial. Precise mechanisms driving this lateralized effect require further investigation. 

Studies that manipulate task complexity systematically (e.g., deterministic vs. probabilistic 

sequences) while varying stimulation protocols across hemispheres may clarify how the 

DLPFC’s lateralized functions contribute to the retrieval of SL. Additionally, while the 

competition model offers a plausible explanation for our findings, its applicability across 

different memory systems remains uncertain since recall capacity on a control memory task 

measuring declarative recall remained unaffected by DLPFC inhibition. Future studies should 

examine whether more cognitively demanding episodic memory tasks elicit DLPFC-mediated 

competitive interactions.  

Another promising avenue involves the integration of functional neuroimaging with 

neuromodulation techniques to further explore the dynamics of the frontostriatal network. By 

combining these methodologies, future studies could map the specific neural circuits affected 

by DLPFC inhibition and how these changes influence the acquisition and retrieval of statistical 

knowledge. Such work could also identify whether the observed enhancement stems from 

altered connectivity patterns or direct effects on cognitive resource allocation. 
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A key limitation of Study II is that we measured SL during a single session. It remains unclear 

whether the effects of rest period duration on SL would become more pronounced over an 

extended learning period. Future research should investigate how rest period length influences 

SL across multiple sessions to capture potential long-term effects. Moreover, during an 

extended learning period, the effect of short rest periods on higher-order cognitive processes, 

such as higher-order sequence learning, could be examined (Nemeth et al., 2013a; Tóth-Fáber 

et al., 2021b; Kóbor et al., 2018).  Additionally, our study only utilized brief rest periods of 15 

and 30 seconds, while previous research demonstrating offline improvements in SL used much 

longer rest periods (e.g., two minutes; Prashad et al., 2021). Future studies should employ a 

broader range of rest period durations to determine the minimum time required to facilitate 

rapid consolidation and offline improvement. Directly manipulating the number of neural 

replays during these rest periods could provide a more comprehensive understanding of how 

brief breaks influence learning and memory processes. 

Future studies should also tackle the role of individual characteristics in the dynamics of SL. 

In two groups (self-paced and 30-second) in our research, we found that the number of 

participants who learned or forgot during the offline and online phases was balanced. Future 

research could further investigate which psychological factors (e.g., stress, working memory) 

determine whether an individual primarily learns during the offline or online phases. 

The combinations of Study I and Study II could further deepen our knowledge of the 

consolidation and retrieval processes of SL. On the one hand, extending the analysis of the 

brain stimulation study and examining the effect of rTMS not only to the aggregate learning 

output but also to the fine-grained offline and online phases would add a more nuanced picture 

of the role of the DLPFC in SL retrieval. On the other hand, it would be noteworthy to examine 

whether rest periods of different lengths would result in different retrieval efficiencies. 
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Conclusion 

The studies presented here hold theoretical, methodological, and applied significance. From a 

theoretical perspective, our findings contributed to a deeper understanding of the less-explored 

phases of SL—namely, consolidation and retrieval. Regarding methodology, we introduced 

approaches that can grasp these processes more comprehensively. Regarding their applied 

significance, different methods are outlined to optimize SL processes in both healthy and 

clinical populations. 

Study I (Brain stimulation study) has theoretical implications by demonstrating the functional 

role of the DLPFC in the retrieval of SL. Methodologically, it highlights that bilateral 

stimulation of brain regions may yield a greater effect than unilateral stimulation. In terms of 

applied relevance, these findings contribute to the development of strategies for facilitating SL 

processes in concerned clinical populations. 

Study II’s (Behavioral study) theoretical implication is that the length of short rest intervals 

differentially affects the distinct yet parallel processes of learning and consolidation, 

specifically SL and general skill learning. While the overall SL outcome was not influenced by 

the duration of rest intervals, these intervals had differential effects on the online and offline 

phases of SL. Methodologically, this implies that measuring the temporal dynamics of learning 

provides more nuanced insights than relying solely on an aggregate learning score. From an 

applied perspective, our findings can inform the design of task structures that effectively 

support both the online and offline phases of learning. 

Together, these studies advance our understanding of the neurocognitive mechanisms 

underlying different phases of SL and offer valuable insights for optimizing the process of SL 

through interventions like task design manipulation and the application of neuromodulation 

techniques. 
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Supplementary Table 1. Results of model comparison of the Learning session 

Model Description k AIC log-likelihood 

M1 FE(Group × Block × Trial Type) + RE(1|Subject) 18 44951 -22458 

M2 FE(Group × Block × Trial Type) + RE(Block|Subject) 20 44497 -22228 

M3 FE(Block × Trial Type) + RE(1|Subject) 6 44992 -22490 

M4 FE(Block × Trial Type) + RE(Block|Subject) 8 44505 -22244 

M5 FE(Group × Trial Type) + RE(1|Subject) 10 46873 -23426 

M6 FE(Group × Trial Type) + RE(Block|Subject) 12 44671 -22324 
 

FE = fixed effects, RE = random effects, k = number of parameters, AIC = Akaike Information Criterion, 

BIC = Bayesian Information Criterion 

 



 

Supplementary Table 2. Linear mixed model analysis of mean RTs of the Learning session 

 
 
 
  

Fixed effects b SE b 95% CI t p 

(Intercept) 359.62 3.97 [351.83, 367.41] 90.52 < .001 

Bilateral DLPFC 0.67 6.90 [-12.86, 14.20] 0.09 .92 

Left DLPFC 1.57 6.90 [-11.95, 15.11] 0.22 .81 

Right DLPFC 0.08 6.90 [-13.44, -13.61] 0.01 .99 

Block -13.26 0.73 [-14.71, -11.81] -17.93 < .001 

Trial Type -4.32 0.25 [-4.83, -3.81] -16.69 < .001 

Bilateral DLPFC × Block 1.91 1.28 [-0.60, 4.43] 1.49 .13 

Left DLPFC × Block -2.67 1.28 [-5.19, -0.15] -2.08 .03 

Right DLPFC × Block -0.77 1.28 [-3.29, 1.74] -0.60 .54 

Bilateral DLPFC × Trial Type 0.34 0.45 [-0.53, 1.23] 0.77 .44 

Left DLPFC × Trial Type -0.35 0.45 [-1.23, 0.53] -0.78 .43 

Right DLPFC × Trial Type 0.24 0.45 [-0.63, 1.13] 0.55 .58 

Block × Trial Type -1.50 0.25 [-2.01, -0.99] -5.79 < .001 

Bilateral DLPFC × Block × Trial Type 0.05 0.45 [-0.82, 0.93] 0.12 .90 

Left DLPFC × Block × Trial Type 0.34 0.45 [-0.53, 1.22] 0.76 .44 

Right DLPFC × Block × Trial Type -0.04 0.45 [-0.92, 0.83] -0.10 .91 

Random effects      

σ2 338.86     

τ00Subject 1586.93     

τ11Subject.Block 48.42     

ρ01Subject -0.38     

ICC 0.83     

NSubject 101     

Observations 5050     

Marginal R2/Conditional R2 0.93/0.84     



 

Supplementary Table 3. Results of model comparison of the Retrieval session 
 

Model Description k AIC log-likelihood 

M1 FE(Group × Block × Trial Type) + RE(1|Subject) 18 8455.6 -4209.8 

M2 FE(Group × Block × Trial Type) + RE(Block|Subject) 20 8419.2 -4189.6 

M3 FE(Block × Trial Type) + RE(1|Subject) 6 8477.2 -4232.6 

M4 FE(Block × Trial Type) + RE(Block|Subject) 8 8438.6 -4211.3 

M5 FE(Group × Trial Type) + RE(1|Subject) 10 8457.7 -4218.9 

M6 FE(Group × Trial Type) + RE(Block|Subject) 12 8418.4 -4197.2 
 

FE = fixed effects, RE = random effects, k = number of parameters, AIC = Akaike Information Criterion, BIC = 

Bayesian Information Criterion 

  



 

Supplementary Table 4. Linear mixed model analysis of mean RTs of the Retrieval session 

 
  

Fixed effects b SE b 95% CI t p 

(Intercept) 319.02 3.06 [313.00, 325.04] 104.03 < .001 

Bilateral DLPFC 5.34 5.32 [-5.11, 15.80] 1.00 .31 

Left DLPFC -3.51 5.32 [-13.97, 6.93] -0.66 .50 

Right DLPFC 0.71 5.32 [-9.74, 11.17] -0.13 .89 

Trial Type -5.41 0.38 [-6.16, -4.66] -14.11 < .001 

Bilateral DLPFC × Trial Type 2.01 0.66 [0.70, 3.32] 3.02 .003 

Left DLPFC × Trial Type -1.26 0.66 [-2.57, 0.04] -1.89 .058 

Right DLPFC × Trial Type -0.88 0.66 [-2.19, 0.42] -1.32 .18 

Random effects      

σ2 148.73     

τ00Subject 967.99     

τ11Subject.Block 19.88     

ρ01Subject -0.25     

ICC 0.87     

NSubject 101     

Observations 1010     

Marginal R2/Conditional R2 0.03/0.87     



 

 
Supplementary Figure 1. Mean reaction times (RTs) of high-probability triplets (solid line with circle) and 

low-probability triplets (dashed line with triangle) are presented on the y-axis across all blocks (x-axis). A 

greater difference between the two triplet types indicates better statistical learning performance. Blocks 1-

25 represent the Learning session, while Blocks 26-30 correspond to the Retrieval session. The performance 

of the four groups is shown with different colors. Error bars denote the standard error of the mean (SEM).  
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Process Dissociation Procedures Task 

Structure of the task 

To determine whether learning of statistical regularities occurred implicitly, we 

administered a task based on the Process Dissociation Procedures (Jacoby, 1991), which is a 

widely used method to disentangle the explicit–implicit processes in memory tasks 

(Destrebecqz et al., 2005; Destrebecqz and Cleeremans, 2001; Fu et al., 2010; Jiménez et al., 

2006). In the first part of the task, we asked participants to try to produce a sequence using the 

same four response keys used during the ASRT task (inclusion instruction). After that, we asked 

participants to try to generate new sequences that were different from the learned sequence 

(exclusion condition). Both parts consisted of four runs, and each run lasted up to 24 button 

presses, equal to 3 rounds of the eight-element alternating sequence (Horváth et al., 2020; 

Kóbor et al., 2017). Participants were instructed to create sequences that could have been used 

in the task (i.e., sequences that are not entirely repetitive). Accordingly, they were asked to 

avoid including repetitions (repeating key presses such as 3-3-3) or trills (alternating key 

presses such as 1-2-1) in their answers as much as possible. The reason was that producing 

repeating or alternating key presses could be a strategy to create a sequence that was not used 

during the task (exclusion condition) since long repetitions and alternations did not occur 

during the task. This strategy can be used to create sequences that match the exclusion 

instruction but contain only low-probability triplets (because repetitions and trills are always 

the last elements of low-probability triplets), which makes implicit estimation inefficient. The 

runs where more than 50% of participants’ key presses were either repetitions or trills were 

removed from the analysis. As a result, seven participants from the self-paced group, 3 

participants from the 15-sec group, and 3 participants from the 30-sec group were removed 

entirely from the analysis, as their answers only contained trills and repetitions in the exclusion 

condition. 



 

We assessed the implicitness of the participants’ knowledge by calculating the ratio of 

high-probability triplets in the sequence of responses. The chance level of generating high-

probability triplets was considered 25% because, after two consecutive button presses, the 

chance for the third button press to form a high-probability triplet with the two preceding button 

presses is 1/4 = 25%. We also compared the percentages of the high-probability triplets across 

conditions (inclusion and exclusion condition) and groups (self-paced, 15-sec, 30-sec). 

If the ratio of high-probability triplets is above the chance level in the inclusion 

condition, we can conclude that participants successfully learned the sequence. Although the 

above-chance level ratio of high-probability triplets in the inclusion condition can be achieved 

solely by implicit knowledge, explicit knowledge can also boost performance. On the contrary, 

above-chance level ratio of high-probability triplets in the exclusion condition (i.e., when trying 

to generate a new sequence that is different from the learned one) indicates that the participant 

relies on their implicit knowledge, as it cannot be controlled consciously. 

Results 

First, we compared the percentage of the high-probability triplets to the chance level 

(25%) separately for the three groups. Participants in the self-paced group generated 31.5% ± 

0.8 SD high-probability triplets in the inclusion condition, significantly higher than the chance 

level, t(80) = 7.79, p < .001, BF01 = 0.001. In the exclusion condition, they generated 29.2% ± 

1 SD high-probability triplets, which is significantly above the chance level, t(80) = 3.06, p 

 < .001, BF01 < 0.001. In the 15-sec group, participants generated 31.1% ± 0.8 SD high-

probability triplets in the inclusion condition, significantly above the chance 

level, t(86) = 7.54, p = .001, BF01 < 0.001. They also generated more high-probability triplets 

than expected by chance in the exclusion condition, 27.5% ± 1 SD, t(80) = 2.62, p = .001, 

BF01 < 0.001. In the 30-sec group, participants generated 30.3% ± 0.7 SD high-probability 

triplets in the inclusion condition, significantly above the chance level, t(86) = 6.57, p < .001, 



 

BF01 < 0.001. They also generated more high-probability triplets than expected by chance in 

the exclusion condition, 29.0% ± 1 SD, t(80) = 3.30, p = .001, BF01 < 0.001. Thus, we can 

conclude that in all groups, the learning is deemed to be implicit. 

Furthermore, we explored the potential differences between groups with a two 

(condition: inclusion vs. exclusion) × three (group: self-paced vs. 15-sec vs. 30-sec) ANOVA. 

The main effect of the condition was significant, F(1, 252) = 15.027, p = .001, ηp2 = .06, 

BFexclusion = 0.01, indicating that participants performed better in the inclusion condition. The 

group main effect did not reach significance, F(2, 252) = 0.13, p = .88, ηp2 = .001, BFexclusion = 

28.02, indicating that the three groups performed equally on the tasks. The interaction of the 

condition and group factors were also not significant, F(2, 252) = 1.03, p = 0.36, ηp2 = 0.01, 

BFexclusion = 9.35, revealing that the lack of difference between groups was not influenced by 

the task condition. Taken together, the results indicate that the knowledge of the three groups 

was equally implicit. 

  



 

Results without age-based exclusion 

We have excluded 11 participants from the main analyses to equalize the mean age 

between groups in order to ensure that age-related differences have no effect on our results. 

Here, we present the results including the participants that were excluded based on their age. 

Results of statistical learning 

To test whether the duration of rest periods between learning blocks affected statistical 

learning, we conducted a mixed-design ANOVA with the within-subjects factor of Blocks 

(Blocks 1-5 vs. Blocks 6-10 vs. Blocks 11-15 vs. Blocks 16-20 vs. Blocks 21-25) and the 

between-subjects factor of Group (self-paced, 15-sec breaks, 30-sec breaks) on the learning 

scores. The analyses revealed a gradual increase of learning scores in each group, irrespective 

of the rest period duration [main effect of Blocks, F(4, 1104) = 25.00, p < .001, ηp2 = .08, 

BFexclusion < 0.001]. According to pairwise comparisons, there was no significant increase in 

learning between Blocks 6-10 and Blocks 11-15 (p = .61), between Blocks 6-10 and Blocks 

16-20 (p = .07), between Blocks 11-15 and Blocks 16-20 (p < .99), and between Blocks 16-20 

and Blocks 21-25 (p = .12). All other paired comparisons of block arrays were significant (all 

p < .01). Thus, the consecutive learning units did not significantly differ from each other, 

learning could be discovered between temporally more distant parts of the task. Importantly, 

the three experimental groups did not differ in statistical learning [main effect of Group, F(2, 

276) = 0.32, p = .73, ηp2 < .01, BFexclusion = 64.46. The Blocks × Group interaction was also 

non-significant, F(8, 1104) = 0.28, p = .97, ηp2 < .01, BFexclusion = 40 229.19, thus the three 

groups did not differ in the time course of statistical learning either. 

Results of general skill learning 

To test whether the overall speed-up on the task differed between groups (i.e., whether 

the duration of rest periods between learning blocks affected general skill learning), we 

conducted a mixed-design ANOVA with the within-subjects factor of Blocks (Blocks 1-5 vs. 



 

Blocks 6-10 vs. Blocks 11-15 vs. Blocks 16-20 vs. Blocks 21-25) and the between-subjects 

factor of Group (self-paced, 15-sec breaks, 30-sec breaks) with median RT as the dependent 

variable. We found a gradual decrease in RTs throughout the task [main effect of Blocks, 

F(2.76, 760.79) = 290.75, p < .001, ηp2 = .51, BFexclusion < 0.001]. Based on pairwise 

comparisons, every epoch significantly differed from each other (all p < .01), with increasing 

learning through all blocks. The three groups significantly differed in response times [main 

effect of Group, F(2, 276) = 9.77, p < .001, ηp2 = .07, BFexclusion = 0.01], with the self-paced 

group being slower than the 15-sec and 30-sec groups. The Blocks × Group interaction was 

also significant, F(8, 1104) = 2.36, p = .04, ηp2 = .02, BFexclusion = 1.18]. Pairwise comparisons 

revealed significantly higher RTs in the self-paced compared to the 30-sec group in Blocks 6-

10, Blocks 11-15, Blocks 16-20 and Blocks 21-25 (all p < .01). The self-paced group also 

showed significantly higher RTs compared to the 15-sec group in Blocks 6-10, Blocks 11-15, 

Blocks 16-20, and Blocks 21-25 (all p < .01). Thus, the three groups showed a similar speed in 

the first learning unit, but the self-paced group began to slow down compared to the other two 

groups starting from the second learning unit. 

Results of offline vs. online learning 

 We ran a mixed design ANOVA with the within-subjects factor of Learning Phase 

(offline vs. online) and the between-subject factor of Group (self-paced, 15-sec breaks, 30-sec 

breaks) on the change scores of statistical learning. The ANOVA revealed an interaction 

between Learning Phase and Group factors, F(2, 276) = 3.17, p = .04, ηp2 = .02, BFexclusion = 

0.09. Bonferroni-corrected post-hoc comparisons revealed that online and offline changes 

differed in the 15-sec break group (p = .04): the offline changes were significantly smaller than 

the online changes. No main effect of Group [F(2, 276) = 1.09, p = .34, ηp2 = .01, BFexclusion = 

45.90] or Learning Phase was found [F(2, 276) = 3.51, p = .06, ηp2 = .01, BFexclusion = 0.44]. 



 

We ran a mixed design ANOVA on the change scores of general skill learning, with the 

within-subjects factor of Learning Phase (offline vs. online) and the between-subject factor of 

Group (self-paced, 15-sec breaks, 30-sec breaks). We found the main effect of Learning Phase 

[F(2, 276) = 645.95, p < .001, ηp2 = 0.70, BFexclusion < 0.001], with a slowing down of RT during 

the blocks, while an acceleration of RTs occurred after the rests. No main effect of Group was 

found [F(2, 276) = 0.17, p = .85, ηp2 < .001, BFexclusion = 45.35]. The interaction between the 

Learning Phase and Group factors were significant [F(2, 276) = 3.75, p = .03, ηp2 = .03, 

BFexclusion = 0.03]. However, no differences survived Bonferroni-corrected between-group 

comparisons for online and offline changes  (all comparisons between groups revealed p > .17). 

  



 

Performance of high- and low-probability triplets in the three groups 

In the Supplementary Figure 1, we depicted the original high- and low-probability 

triplet variables can in each group. 

 

Supplementary Figure 1. Performance of high-probability (empty circles) and low-probability (filled circles) triplets in the 

three groups. The y-axes indicates the median RT. The x-axes shows the blocks grouped by five. The error bars represent 95% 

confidence interval. 

  



 

Offline and online changes in statistical learning across all blocks 

To see how offline and online statistical learning dynamically change across all blocks 

in the separate groups, we conducted three ANOVAs with the offline and online statistical 

learning scores of all blocks separately for each group.  

In the self-paced group, there was not significant neither the main effect of Blocks 

(F(10.56, 401.26) = 0.85, p = .59, ηp2 = .02), nor the main effect of Learning Phase (F(1, 38) = 

0.88, p = .35, ηp2 = .02). The Blocks × Learning Phase interaction was also not significant 

(F(12.82, 487.30) = 0.69, p = .77, ηp2 = .02). 

In the 15-sec group, the main effect of Blocks was also not significant (F(9.98, 468.87) 

= 0.46, p = .92, ηp2 = .01). The main effect of Learning Phase was significant only in this group 

(F(1, 47) = 7.57, p < .01, ηp2 = .14). However, the Blocks × Learning Phase interaction was not 

significant F(13.71, 644.47) = 0.97, p = .48, ηp2 = .02). 

In the 30-sec group, there was not significant neither the main effect of Blocks (F(10.82, 

486.66) = 0.77, p = .67, ηp2 = .02), nor the main effect of Learning Phase (F(1, 45) = 0.01, p = 

.94, ηp2 < .001). The Blocks × Learning Phase interaction was also not significant (F(13.51, 

607.93) = 1.02, p = .43, ηp2 = .02). 

We also depict the dynamic change of offline and online statistical learning across all 

blocks in the different groups. We can see in the Supplementary Figure 2 that the 15-sec group 

is the only one where online learning scores are consistently higher than offline learning scores 

throughout the task, which is also supported by the results of the ANOVA. 



 

 

Supplementary Figure 2.  Dynamic change of offline and online learning scores across the 24 blocks in each group. The y-

axis indicates the mean learning score. The x-axis shows the blocks. The error bars represent 95% confidence interval. 

  



 

Dynamics of offline/online statistical learning and forgetting in the different 

groups 

As offline and online statistical learning in the self-paced and 30-sec groups were not different 

from zero at a group level, we have checked whether there is a difference within the groups 

between the numbers of online and offline learning and forgetting scores. In Supplementary 

Table 1, we compared the distribution of those who had high positive (≤5) or high negative (≥-

5) offline learning scores in the three groups. 

Supplementary Table 1. The distribution of  positive and negative offline learning scores in the groups 
 Group  

 Self-paced    15-sec     30-sec Total 
Learn offline  38  25  27  90  
Forget offline  31  49  34  114  
Total  69  74  61  204  

Chi-square test: χ²(2) = 6.57, p < 0.05 

As we can see, the distribution of those who learned or forgot offline is in balance in 

the self-paced and the 30-sec group, which could be resulted in no offline learning at group 

level. However, in the 15-sec group, more participants forgot than learned offline, which 

resulted in offline forgetting at a group level. The chi-square test was significant (χ²(2) = 6.57, 

p < 0.05). 

Distributions in high positive and high negative learning scores were also tested for 

online learning (see Supplementary Table 2). Similarly to offline learning, in the self-paced and 

the 30-sec group the proportion of those who learned or forgot online is similar, while in the 

15-sec group, almost twice as many participants learned as forgot online. The chi-square test 

was significant at a trend level (χ²(2) = 5.67, p = 0.06). 

Supplementary Table 2. The distribution of positive and negative online learning scores in the groups 
 Group  

 Self-paced      15-sec      30-sec Total 
Learn online  34  50  34  118  
Forget online  38  25  26  89  
Total  72  75  60  207  
Chi-square test: χ²(2) = 5.67, p = 0.06 
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