
Identification of Data Privacy Challenges
and Development of Solutions for the
Edge Components of the Telemedicine

Datapath

PhD Thesis

Zoltán Szabó
Supervisor: Dr. Vilmos Bilicki

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

OF THE UNIVERSITY OF SZEGED

Szeged
2023





1 Introduction

Integration of the healthcare sector and IT is increasing and escalating, but this accelera-
tion is creating new types of challenges and obstacles that can make it extremely difficult
to provide cutting-edge solutions that significantly improve patient care and the work of
healthcare professionals.
In the following dissertation, I present my findings from an analysis of the security and
accessibility of telemedicine applications. My work is divided into two parts, with the first
thesis focusing on the analysis of a heterogeneous data path integrating cloud and edge
computing, specifically on two largely neglected components of the edge, the processing
and storage edge types, which pose a unique challenge from the perspective of access
and authorization control, as they must enforce access control rules independently of the
cloud, with similar efficiency and minimal latency. I present formal definitions of my own
taxonomy used to distinguish between access control policy categories; a categorization of
the various edge types and an examination of smartphone-based peer-to-peer networks,
as a special type of the edge; a framework based on a customized concept of the Policy
Enforcement Point (PEP) framework that implements access control principles for both the
processing and the caching edges; my results with experimental implementations of the
PEP-based framework on processing and storage edges; and finally an open-source, pro-
prietary simulation tool designed to model patient pathways and generate the necessary
parameters to validate the access control framework’s results.
In my second thesis, I examine the security of frontend applications at the conclusion of
data paths. This is a challenging area from an analytical standpoint, as the nature of fron-
tend frameworks and the dynamic nature of navigation between components have made
static code analysis solutions exceedingly difficult to implement. For this reason, I have
devised a novel method for my own research using large language models (LLM) that can
identify, based on the static source code of an application, the sections where sensitive,
safety-critical data leakage may occur. To accomplish this, I first present my own catego-
rization to differentiate sensitive data, which consists of three categories based on the level
of possible harm caused by the disclosed data, and a second categorization to quantify the
safety levels of application components. Then, I demonstrate the validity of the taxonomy
used to quantify data sensitivity with the GPT-4 and GPT-3.5 APIs, using a list of variable
names and random sample applications for each. This is followed by the validation of the
second taxonomy on identifying the safety levels of components and the efficacy of detect-
ing problematic code segments by integrating the results of the two taxonomy evaluations.

2 Thesis Group I: Data Privacy at the Edge of the Telemedicine
Datapath

In the following thesis group, I examined the requirements of the telemedicine data path for
access management. I defined the conditions that must be met at each designated point of
the telemedicine data path in order to reconcile security requirements and responsiveness. I
defined a four-element taxonomy for the categories of policy enforcement to be implemented.
I presented the edge as a critical case for access control, its two primary categories for access
control, the processing edge and the storage edge, and our results on a special case of the

1



edge, the analysis of the stability of smartphone peer-to-peer networks. Then, I defined two
experimental environments, one for the processing edge and one for the storage edge, as well
as my experimental results in said environments using a practical implementation of the access
control framework in terms of latency. Lastly, I presented my patient flow simulator built with
open source libraries, which can simulate the throughput of patients treated in a hospital ward
and can be used to generate validation parameters for the developed access control framework
in order to validate the system’s delay tolerance.

Publications related to this thesis: [J1],[J2],[J3],[C5],[C6],[C7],[C8],[F9],[F10],[F11],
[F12]

2.1 Thesis I/1: Formal Definitions and Requirements of Telemedicine
Access Control

I explored the complex requirements of modern telemedicine applications in terms of access
control. I defined a taxonomy to formalize the different types of access control policies and
the TAPE requirements necessary to ensure that the implementation of the defined policies can
guarantee a balance between data privacy compliance and responsiveness at any point in the
telemedicine infrastructure.

Publications related to this thesis: [J1],[C6],[F9],[F10]

In the healthcare industry, patient data are progressively becoming digital. The most
significant challenge of this trend is that electronic health records (EHRs) must be easily
accessible, searchable, and intelligible as patients migrate through the healthcare ecosys-
tem. In addition, data must be structured and standardized to facilitate automated clinical
decision support and other forms of machine processing.

To achieve interoperability, a number of established standards have emerged over the
years, the most dominant and widely used being the Fast Healthcare Interoperability Re-
sources (FHIR) [16], which was developed by the Health Level 7 (HL7) standards organi-
zation and owes much of its popularity to its high level of customizability.

However, the official documentation of the FHIR standard [21] contains only guidance
on how the data structure could be extended to be compatible with traditional access man-
agement methods such as ABAC [33] and RBAC [24]. How precisely these access manage-
ment methods should be implemented in a complex telemedicine system, and how they
can be used to define competencies and meet the complex access management require-
ments of the healthcare industry, were not discussed or clearly established, emphasizing a
significant issue with the FHIR and other standards.

One of the starting points of my research in this area was to determine if it would
be possible to develop a solution that could be applied to any point along a complex,
heterogeneous data path, with the same tools, definitions, and configurations. I defined
the basic requirements that this solution had to meet as the TAPE requirements, which are
as follows:

• Transparency: The access control solution should have as little of an effect as feasi-
ble on the data path throughput and performance of telemedicine applications.

2



• Adaptability: To safeguard sensitive data, the field of telemedicine requires strin-
gent, very specific policies. ABAC and RBAC alone are insufficient because interoper-
ability and interchangeability requirements require a significantly more dynamic and
refined approach. The developed solution must also facilitate the formulation and
evaluation of the most specific requirements.

• Portability: The developed solution must be deployable anywhere in the infrastruc-
ture. Edge computing’s greatest asset is its ability to provide functionality even when
the cloud is unavailable. This also implies that it must be able to operate between
the edge and the cloud, between the edge and the endpoints, in the cloud, and in
certain scenarios, even on the endpoints if they have the required resources.

• Efficient: Since many elements of the infrastructure lack sufficient memory and CPU
capacity to execute the more complex transformations and data analysis, the devel-
oped implementation should spare them from more demanding operations.

I have defined the telemedicine access control principles based on the following taxon-
omy and requirements. The patient is the primary owner of the document, the physician
who wrote or contributed to its creation is the secondary owner, and other physicians and
family members have only partial access to the document. The system must also accommo-
date indirect access, in which the requester attempts to access the file as a group member.
These corresponding categories of access should be determined by a combination of user
roles, role groups, and document attribute information.

In certain instances, context-specific information is also required to ascertain the extent
of access. Furthermore, a key requirement in the healthcare industry is that access does
not imply complete access to all document elements. In many instances, access to informa-
tion that could enable a third party to reconstruct highly sensitive events and elements is
rigorously prohibited. The final requirement is also the most particular and difficult aspect
of healthcare safety. Break-the-glass necessitates an access-control paradigm that provides
immediate access to vital patient data to guarantee the delivery of life-saving care. When
life-saving intervention is required and neither the patient nor the physician recording and
processing their medical data is available to provide access, this is essentially what occurs.
Typically, only a few documents are required for the healthcare provider in such a scenario,
but in this instance, extremely complex transformations must be applied.

Based on this, I have defined the four categories of access control rules that follow:

• Role Evaluation: The policy has to determine whether based on the user’s role or
roles in the system, partial or full access should be provided;

• Contextual Evaluation: The policy has to determine whether the combination of the
user’s role, various attributes and contextual information form the basis for partial
or full access;

• Contextual Modification: Aside from providing access, the policy should also trans-
form the data, removing or altering specific fields;

• Break-the-Glass: A specific requirement of a healthcare application. In the case of
an emergency, the policy should provide immediate access, while also encrypting or
removing sensitive information.

3



2.2 Thesis I/2: Formal Definitions and Challenges of Access Control
Beyond the Telemedicine Cloud

I proposed special categories of edge instances beyond the cloud that represent a special cat-
egory of modern telemedicine infrastructure from the perspective of access management. I
formally defined a categorization of these into storage and processing edges. I then discuss the
increasingly prevalent smart device based peer-to-peer networks as an extreme case of edge
solutions, and analyse their potential and stability to function as stand-alone edge networks.

Publications related to this thesis: [J1],[J2],[C5],[C7],[C8],[F10],[F11]

In contemporary network topologies that incorporate IoT, smart devices, edge comput-
ing, the integration of private and public cloud platforms, such as the one showcased in
Figure 1, traditional access control methods are insufficient. To fulfill the requirements
defined in Thesis I/1., it is necessary to devise a hybrid strategy that combines the benefits
of the two traditional approaches, ABAC and RBAC. To manage the sensitive nature of the
data and its processing requirements, it is essential that the evaluation points of access
control have the ability be located anywhere within the infrastructure.

This portability includes cases where we have to treat the cloud as inaccessible or
at least as having limited availability. It is no coincidence that fog, or edge computing,
is proliferating, which attempts to reduce the data traffic between the cloud and the de-
vices by creating different, self-sufficient micro-networks at the endpoints of the data path,
which, by sharing responsibilities and aggregating functionality where they can, free up
the cloud’s capacity and communicate with it only for critical, absolutely necessary oper-
ations. However, while data collection, storage, and caching are already relatively solved
and covered topics within edge computing, implementing access control operations is a
significantly more challenging task.

Figure 1: An overview of a cloud- and edge integrated telemedicine infrastructure

In such endpoints, data availability and speed of access cannot be compromised, but
neither can the strict privilege management rules that must be followed in all other cases
with telemedicine data. In the case of edge cases, we must take into account their reduced

4



resources, which make it difficult to make certain functions more feasible.
Based on their capacities, we distinguish two major types of devices within the edge,

which I have formally defined in the thesis. These are:

• processing edge: the strongest, highest capacity elements on the edge, with suf-
ficient storage and processing capacity to process documents of up to 1000, and
capable of evaluating all four defined entitlement management principles.

• caching edge: elements with a lower capacity than processing, but still capable
of processing larger document volumes in the order of hundreds, and capable of
handling at least the most critical privilege management rules, role evaluation and
contextual evaluation.

Figure 2: Number of peer-to-peer connections with different NAT types.

Within the edge, peer-to-peer connections between smart devices are a special case, as
they mix many different types of devices in a dynamically changing environment. In order
to map their exact capacities, with a particular focus on stability, our research team partic-
ipated in a large-scale data collection and analysis campaign, during which we developed
a proprietary application called Stunner, which was installed on the phones of the users
participating in the campaign, and with their consent, performed various experiments to

5



establish peer-to-peer connections, the results of which were collected with the permis-
sion of the participating users, naturally removing their personal data information. The
key metrics included elements such as the type of network connection of the device at the
time of measurement, the type of NAT, its load, the success of the peer-to-peer connection
established and, if successful, its length. The dataset collected during the campaign was
eventually made available, creating one of the largest databases of its kind. One result of
the peer-to-peer analysis can be seen on Figure 2.

2.3 Thesis I/3: Policy Enforcement Implementations for the Process-
ing and the Caching Edge

I presented the implementation of the proposed access control solution, then I will set up test
environments to represent both edge types, and sample rules to validate the effectiveness of
the implementation under increasing data volumes. During the measurements, I examined
the resource requirements of the nodes performing the evaluation, as well as the latencies
measured for the data retrieval processes. I present the measured latencies which confirmed,
that for reasonable amounts of data at the various edge types my policy categories met the
requirements established in the previous theses.

Publications related to this thesis: [J1],[J2]

A popular concept for an enforcement point, which I hypthosized to be able to meet the
requirements is the concept of Policy Enforcement Point (PEP), developed by the standards
organization OASIS as part of its eXtensible Access Control Markup Language standard
[23], an extension of the classic ABAC model, also known as policy-based access control
or PBAC. While we were committed to developing a custom, fine-grained security solution
that is not subject to the strict limitations of the XACML standard, the concept of the PEP-
based architecture was found to be well suited to our needs.

To test our concept of policy enforcement, our research group chose a promising new
solution called Open Policy Agent (OPA) [18], available in Golang and WebAssembly,
which made it perfectly suitable to be placed at multiple points of the datapath - in the
cloud, in the various edge types or even in web applications. OPA also permit us to store
the information necessary for decision making in JSON format and define the various poli-
cies in its own scripting language, Rego, which can later be accessed via a well-defined
REST interface with an HTTP POST request containing the contextual information to be
filtered or evaluated (in our case, the medical records).

As for the evaluations, I created two types of testbeds for the concept: one simulated a
smaller infrastructure with a more capable processing edge module, while the other sim-
ulated a caching edge without a connection to the cloud, which had to evaluate access
to the locally stored data. Based on my assumptions regarding these edge types, for the
processing edge, simulated with the standalone OPA version, I assumed that all four evalu-
ation categories will cause acceptable latency even for document sizes on the order of one
thousand, whereas the capabilities of the caching edge, simulated with the WebAssembly
runtime will be significantly more limited, but should be able to evaluate policies in the
role evaluation and contextual evaluation categories efficiently. The experiments were con-
ducted on realistic FHIR Observation documents derived from a database of telemedicine

6



applications by the Inclouded Development Team of the University of Szeged’s Depart-
ment of Software Engineering. First, 10 documents were retrieved, then 20, 50, 100, 200,
etc., all the way up to 2,000, and each retrieval was performed multiple times, with the
averaged results being used for evaluations.

Figure 3: Comparison of System Latency and policy evaluation latency on a Break-the-Glass
policy.

Figure 3 shows the latency of the Break-the-Glass policy category, which is considered
the most complex, in relation to the total runtime of the document request within the
infrastructure used for testing. It can be clearly seen that even for 2000 documents, the
evaluation averaged less than 1000 ms, which is less than 40% of the total document
request runtime.

As far as the WebAssembly runtime is concerned, part of the investigation there was
to assess exactly what tools on the edge might be suitable to fulfil the role of caching
edge. To this end, the WebAssembly OPA implementation was configured with contextual
evaluation and role evaluation policies and run on different devices embedded in a web ap-
plication that performed local data retrieval and access evaluation before granting access.
The latencies have already been significantly greater here due to the limited resources of
the devices, and as shown in the comparison shown in Figure 4, while the version running
in the desktop PC Chrome browser produced relatively acceptable results even with larger
amounts of documents, the smartphone and tablet version has already begun to dramat-
ically increase the latency over 200 documents. Meaning that up to 100-200 documents
any of the devices could play the role of the caching edge, but based on the results, it is
possible that this edge type is unsuitable for the effective evaluation of larger document
sets.

The results confirmed that for a realistic data volume the extra latency due to access
control for processing nodes was mostly below 500 ms, which was on average less than
25% of the execution time of the whole process. For storage nodes, while the number of
implementable access control operations was limited and the execution times were higher,

7



Figure 4: Comparison of WebAssembly runtime latencies

the execution times averaged less than 1 second regardless of the capacity of the execution
environment.

2.4 Thesis I/3.1: An Open Source Patient Flow Simulation Tool for
Validation of Results

I developed a simulation tool using open source libraries and tools that can simulate the
distribution of patients and their waiting times in a hospital ward. The developed simulation
tool can be used to validate the extent to which the increased waiting times due to the access
control implementation from the previous theses might slow down the process based on the
amount of handled data, and the impact this can have on the telemedicine data path, the
patient flow churn and waiting times at crucial parts of the care process.

Publications related to this thesis: [J3],[F12]

Patient Flow [19] refers to the time a patient spends in the healthcare system from
arrival to departure. The basic objective is to minimize this time as much as possible in
order to ensure quality of care, and this principle has only been emphasized in recent years
by epidemiological measures, which have limited the number of patients staying in one
place at the same time, and to protect against the epidemic, many have made suggestions
and validation tools [26] about how much maximum waiting time a patient can spend in
one location, so as to minimise the chance of infection.

Although there are various tools available on the market that are suitable for defining
and running such simulations, their capabilities are mostly limited and their use requires
considerable learning time and energy investment, making it difficult for those who have
the most information on the subject and would be able to define the most accurate simu-
lation models. The aim of our research team was to create a simulation tool by creating
open source elements that run models that could be defined by external researchers or

8



even doctors using a simple visual descriptive language with an easy to customize simu-
lation. The tool is also crucial for validating the results of previous theses, as its use has
also offered the opportunity to check how the increased run times with authority manage-
ment evaluations have impacted waiting times and patient churn, in fact, even in different
scenarios and circumstances.

Figure 5: Structure of the Patient Flow Simulator

To run the tool, we used the open-source Python library called SpiffWorkflow [20],
which is suitable for defining and running business process models, and for modeling the
Camunda [15], one of the most popular business process modeling tools. The various
main components of the developed software are shown in Figure 5

For the evaluation of the finished simulation tool, we re-created the model of an Italian
research group [29], which depicted an Emergency Department (ED), whose structure
could be adapted with minimal changes to similar departments of Hungarian hospitals.
For the parameterization of the simulation we used the patient traffic data of Somogyi
Kaposi Mór Practicing Hospital [32] through various simulations. Based on the results,
our tool proved to be suitable for continued use in more complex evaluations and for the
production of validation parameters.

3 Thesis Group II: Potential Data Leak Detection of Pro-
gressive Web Applications with Large Language Models

In the subsequent group of theses, I focused on a crucial component of the telemedicine infras-
tructure, namely the front-end applications at the end of the data path. I defined a taxonomy
that defines and ranks sensitive data in applications based on the impact of data leaks, and
another taxonomy to determine the protection level of applications, in such a way that the
defined categories can be transferred to LLMs using prompt engineering techniques. Then,
I presented my results in classifying the elements of a variable-name dictionary and then in
detecting sensitive data from open-source front-end applications via the GPT-3.5 and GPT-4
APIs, with which I have validated the hypothesis that through the complex knowledge of the

9



LLMs at the level of the current GPT models, machine learning in the classical sense can in
some cases already be derived by passing the necessary knowledge in the form of well-written
prompts to the LLMs. Lastly, I discussed my results in static code-based detection of poten-
tial application vulnerabilities by evaluating the application protection level classification and
then combining it with the results of the sensitivity detection.

Publications related to this thesis: [J4]

3.1 Thesis II/1: Formal Categorization of Sensitivity and Protection
Levels

I defined a taxonomy of sensitive data in front-end applications, which categorises them into
three different categories based on the level of damage caused by their leakage and unau-
thorised access. I then presented another taxonomy, which divides the protection levels of
the application components into categories such that they are representative of the protection
required for the sensitivity categories.

Publications related to this thesis: [J4]

Due to the proliferation of large language models (LLMs) and their widespread use in
applications such as ChatGPT, there has been a significant increase in interest in AI over
the past year. Programming, and specifically the process of static interpretation, analysis,
and documentation program code, is one of the most promising fields due to the large
amount of data and sources the GPT models were trained on and their capabilities of
contextual interpretation and analysis. Due to these capabilities, I have hypothesized that
using models such as the GPT-3.5 and GPT-4, it could now be possible to tackle types of
static code analysis that proved to be too complex until now. One of these areas is the static
code analysis of progressive web applications at the end of the data path, which, due to
their complex modularity and navigational design, were claimed to be hard to analyze, and
the only methods so far that focused on their analysis were custom-developed frameworks
and tools [25], linting, and extensive unit testing.

These solutions, however, focused on the semantics and quality of the code, exclud-
ing possible problems and vulnerabilities that require a deeper understanding of how the
applications work and what kind of data they handle. In a frontend application, a vul-
nerability that fits into this description is the improper isolation or protection of sensitive
or critical elements—a variation of the CWE-653: Improper Isolation or Compartmental-
ization vulnerability from the Common Weakness Enumeration database [30]—meaning
that public or unprotected interfaces of the application have the capacity and authority to
access data and operations. If this gets combined with server-side errors, software bugs,
or malicious activity on the user’s part, it could lead to various degrees of data leakage
(identified as the CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
family in the database). To efficiently detect this type of vulnerability, the first crucial step
is to detect the data handled by the application that could be considered sensitive.

To achieve this, I have defined a categorization for both the sensitivity of the data and
the protection level of the software components in a way that is compatible with prompt
engineering techniques [22], such as ”few shot examples” and ”chain-of-thought”, to make

10



them not only logical but also compatible and usable with the interpretation capabilities
of LLMs. The basis for the sensitivity level categorization was the level of impact caused
by the leakage of the data and the amount of said data required to access crucial personal,
financial, healthcare, or other similar information about the users.

The categories are defined as follows::

• Level 1 (Low Sensitivity): The accumulation and compilation of large quantities
of data at this level is required to infer confidential information and create abuse
opportunities. Sensitive information includes, among other things, a user’s behavior
history, a list of websites visited, products and topics of interest on a website, and
search history.

• Level 2 (Medium Sensitivity): By obtaining data at this level, it is possible to re-
trieve and compile potentially exploitable information. Solutions such as two-factor
authentication, regular email and SMS notifications, and exhaustive logging in af-
fected applications can mitigate the effects of a potential breach. This is the largest
and most extensive group. It includes data such as, usernames, passwords, private
records, political views, sexual orientation, IP address, physical location, and hectic
schedules are examples of sensitive information.

• Level 3 (High Sensitivity): The data at this level is sensitive in and of itself, and
its acquisition or disclosure can have severe legal repercussions and cause extensive
harm. Examples include health information, medical history, social security number,
driver’s license, and credit card information.

And the scale of protection level is the following:

• Protection Level 0: The component has no protection at all.

• Protection Level 1: Bare-bones authentication: the application checks whether the
user trying to access the resource is logged in to the application.

• Protection Level 2: RBAC [24]: In addition to being logged in, the user has different
roles that define their scope of privileges within the application.

• Protection Level 3: ABAC [33]: In addition to the login and possible role scopes,
other attributes such as time, physical location, or type/id of device used are checked
before granting access.

3.2 Thesis II/2: Sensitivity Analysis of Web Application Data and Com-
ponents

I developed a GPT-enhanced methodology that uses the categorization defined in the previous
thesis to detect sensitive data in front-end applications and, based on this data, to tag the
code elements that focus on operations on such data. I validated the categorisation using an
artificial intelligence-based evaluation that classifies the elements of a 200-word collection of
variable names into one of the defined categories. I followed this by analyzing a total of 292
components from open source applications to detect sensitive data and based on that, identify
the services handling sensitive information in the application.

11



Publications related to this thesis: [J4]

To validate the categories developed and the analysis capabilities of the GPT-3.5 and
GPT-4 APIs, which at the time of writing were the most efficient GPT models available
and promptable via API, we compiled a dictionary of 200 variable names, equally divided
among the Non-Sensitive, Low Sensitivity, Medium Sensitivity, and High Sensitivity cat-
egories. In preparing the dictionary, we intentionally made it difficult for the models to
achieve perfect accuracy: some variant names had deliberate misspellings, others were in
foreign languages such as Hungarian, German, or Italian, and others contained a combi-
nation of a more sensitive word and a less sensitive ending.

Figure 6: Comparison of GPT-3.5 and GPT-4 on the variable name evaluation

The results of this validation can be seen in Figure 6. The GPT-3.5 API incorrectly
classified 45.5% of the dictionary, with the majority of cases being trivial. In contrast, GPT-
4 only made errors in 23.5% of the cases, and a deeper examination of the errors revealed
that it only failed on the explicitly difficult terms, and in more than half of the cases,
it correctly identified the errors as sensitive data but incorrectly categorized the exact
category. Although both models were used throughout our investigations, preliminary
results suggested that GPT-4 might be able to produce more accurate results by analyzing
codes, whereas GPT-3.5 appeared more prone to failure in all but the most straightforward
cases.

Due to our research team’s experience [27, 28] with the Angular framework [17] we
chose it for the following evaluations as well. Our methodology is predicated on the
notion that in Angular web applications, sensitive data is centralized in Services, which
are accessed and utilized as singletons by Angular framework classes via their methods. To
detect sensitivity levels and vulnerabilities based on static code, we had to first detect the
elements that appear to be sensitive in the Component classes using the context handling
capabilities of the GPTs and identify which of these elements are handled by Services.

Our research team collected thousands of public Angular projects from GitHub using
a crawler algorithm in order to conduct various source code analyses. We minified the

12



Figure 7: Comparing the performance of models in detecting sensitive data

TypeScript source files of the projects by labeling, removing whitespace characters, and
removing line breaks, and then randomly sampled 12 of the largest, most complex, and
largest projects, which yielded a sum of 292 Components to be analyzed with the sensitiv-
ity and protection level categories to detect vulnerabilities.

The first step was to iterate through the 292 Components via prompts, and identify
variables and objects that contain sensitive data. From the results seen in Figure 7 it is clear
that GPT-3.5 marked significantly more attributes wrongly as sensitive compared to GPT-4.
False counts cases where the detection was incorrect; perhaps a function or an unimportant
variable was marked as sensitive data instead of a variable or object; Duplicate counts
cases where the same sensitive data was marked more than once within the same file;
and Inconclusive counts cases where the sensitive data was correctly detected but the
justification for the sensitivity was incomplete or incorrect.

Figure 8: Proportions of sensitive services successfully and unsuccessfully detected by the
models

Next, based on these attributes, the Services that served as the source or target for the
sensitive data were identified. The results can be seen in Figure 8, and although GPT-

13



4 was clearly more efficient here, it made a significant number of errors in consistently
detecting sensitive Services. After an evaluation of the results, it turned out that it was
due to some particularly interesting bad practices on the part of the developers, which
included the design of monolithical Services handling multiple responsibilities, or various
circumventions of the injection principle of Angular.

3.3 Thesis II/3: Protection Level Analysis and Vulnerability Detection
for Web Applications

I defined a GPT-supported static source code analysis pipeline that uses the protection level
categorisation to identify the protection level of components in a frontend application and
then uses the results from the protection level and sensitivity level evaluations to detect vulner-
abilities where components are not protected or whose protection level is insufficient for the
sensitivity of the data they handle, in line with the CWE-653 type software vulnerability.

Publications related to this thesis: [J4]

The pipeline’s prompts were developed using the principles of prompt engineering
[31], a relatively new discipline, through multiple cycles of experimentation; the used
prompts are included in the Appendices of the dissertation. Criteria included plain word-
ing, the inclusion of rules prohibiting the reappearance of anomalies discovered during
initial testing, and the inclusion of examples pertinent to the expected response format. To
accomplish this, we used larger, more comprehensive prompts, which allowed us to avoid
both format errors and the inclusion of uptake prompt engineering techniques such as
”few shot example”, where each prompt was provided with at least one sample input and
a corresponding sample output, and chain-of-thought, where we provided the thought and
logic flow in the prompts in addition to simple rules, which helped to provide the correct
deductions and avoid various errors.

Figure 9: Comparison of errors made by the models while analyzing the Components

The complete analysis process consists of the following steps:

14



1. Minifying Code Base: The .ts source files of Angular applications have been mini-
fied, removing line breaks and whitespace characters.

2. Sensitive Element Detection: The minified Component files were passed one by
one to the GPT API. The analysis first identified the sensitive data, explaining how
it appears in the application, how it is used, and then an aggregation script used
this information to select the Services that were involved in read or write operations
on sensitive data in the project. For each occurrence of the tagged Services, the
sensitivity level of the data they handle is also determined.

3. JSON Mapping of Project Files: The minified Component files were passed one by
one to the GPT API. As a result of this step, a JSON file is created for each project,
in which the components of the application are reduced to JSON objects, contain-
ing only the information needed for the current (or planned future) tests, such as
the parent-child component relationships, the injected Services, and their used data
members and operations.

4. Protection Level Discovery: The JSONs resulting from the previous step, along
with the minified Router configurations and AuthGuards, were passed one by one
to the GPT API, which added the protection level corresponding to our scale. A
Python script then unified these protection levels, assigning the child components
the protection level of their parent components.

5. Vulnerability Detection: By aggregating the results of the Protection Level Discovery
and Sensitive Element Detection steps in an xlsx file, the vulnerabilities from the
tested projects are detected, the cases where a Component using a sensitive Service
does not have a high enough protection level.

The results of Component analysis steps are presented in Figure 9, with the majority
of Incorrect AuthGuard Detection issues for GPT-4 being caused by the nesting of parent
and offspring modules within an application, which made it difficult to detect AuthGuards
accurately. During the investigations, the maximum level of AuthGuard was detected in
the majority of cases, resulting in only four cases of inadequate protection level out of 292
investigated cases. When evaluating the results of GPT-3.5, we have found, that despite
employing prompt engineering techniques and setting the temperature of the models to
0, we encountered difficult-to-explain problems, including the appearance of non-existing
AuthGuards and inconsistent protection levels for the same AuthGuard.

As can be seen in Figure 10, our assumptions about GPT-3.5 have been confirmed,
accumulating the poor results of the previous steps and resulting in a total of only 1%
of vulnerabilities successfully detected. However, our initial naive assumption about the
identification of sensitive Services had very serious consequences for GPT-4 in the first
round. A significant part of the problem was identified to be caused by the monolithic
Services, where Services did not have one well-defined task and role but rather developers
crammed several similar procedures into them without any consideration that all levels
from Non-Sensitive to High Sensitivity data categories could appear within a single Service.
This problem caused the sensitivity level of the Services to vary enormously in many cases,
where a Service was identified as having either Medium or High Sensitivity in a single
Component, while in another it was declared irrelevant to sensitive data.

15



Figure 10: Success rates of the two models and the strictened detection rules

To improve the detection results somewhat and address these issues, a major strickten-
ing of vulnerability detection rules was applied to GPT-4. A very spectacular improvement
in the results can be seen as the GPT-4 Strict results.

4 Contributions of the thesis

In the first thesis group, I defined formal access control policy categories for telemedicine
applications; proposed a categorisation of the edge beyond the cloud based on their ca-
pabilities for access control; explored the capabilities of smartphones to form a stable
peer-to-peer network; and evaluated my policy categories using test environments sim-
ulating the various edge types. I developed an open source patient flow simulation tool,
which can be used to generate validational constraints for the developed solution. Detailed
discussion can be found in Chapter 3.

I / 1. I explored the complex requirements of modern telemedicine applications in terms
of access control. I defined a taxonomy to formalize the different types of access con-
trol policies and the TAPE requirements necessary to ensure that the implementation
of the defined policies can guarantee a balance between data privacy compliance and
responsiveness at any point in the telemedicine infrastructure.

I / 2. I proposed special categories of edge instances beyond the cloud that represent a
special category of modern telemedicine infrastructure from the perspective of access
management. I formally defined a categorization of these into storage and processing

16



edges. I then discuss the increasingly prevalent smart device based peer-to-peer net-
works as an extreme case of edge solutions, and analyse their potential and stability
to function as stand-alone edge networks.

I / 3. I presented the implementation of the proposed access control solution, then I will
set up test environments to represent both edge types, and sample rules to vali-
date the effectiveness of the implementation under increasing data volumes. During
the measurements, I examined the resource requirements of the nodes performing
the evaluation, as well as the latencies measured for the data retrieval processes. I
present the measured latencies which confirmed, that for reasonable amounts of data
at the various edge types my policy categories met the requirements established in
the previous theses.

I / 3.1. I developed a simulation tool using open source libraries and tools that can sim-
ulate the distribution of patients and their waiting times in a hospital ward. The
developed simulation tool can be used to validate the extent to which the increased
waiting times due to the access control implementation from the previous theses
might slow down the process based on the amount of handled data, and the impact
this can have on the telemedicine data path, the patient flow churn and waiting times
at crucial parts of the care process.

In the second thesis group, I explored the comprehensive and analytical capabilites
of the popular models GPT-3.5 and GPT-4 to detect vulnerabilities in complex frontend
applications using only static code analyis. I defined taxonomies of data senstivity and
application component protection, based on the impact of data leakage; evaluated said
categorizations using the GPT APIs first with a dictionary of variable names, then with a
set of open source Angular projects; and finally, based on the results I’ve showcased the
effectiveness of vulnerability detection using these definitions and techniques. Detailed
discussion can be found in Chapter 4.

II / 1. I defined a taxonomy of sensitive data in front-end applications, which categorises
them into three different categories based on the level of damage caused by their
leakage and unauthorised access. I then presented another taxonomy, which divides
the protection levels of the application components into categories such that they
are representative of the protection required for the sensitivity categories.

II / 2. I presented a GPT-enhanched methodology that uses the categorization defined in
the previous thesis to detect sensitive data in front-end applications and, based on
this data, to tag the code elements that focus on operations on such data. I validated
the categorisation using an artificial intelligence-based evaluation that classifies the
elements of a 200-word collection of variable names into one of the defined cat-
egories. I followed this by presenting the results obtained on the sensitive data
detection from a total of 292 components from open source applications.

II / 3. I defined a GPT-supported static source code analysis pipeline that uses the protec-
tion level categorisation to identify the protection level of components in a frontend
application and then uses the results from the protection level and sensitivity level

17



evaluations to detect vulnerabilities where components are not protected or whose
protection level is insufficient for the sensitivity of the data they handle, in line with
the CWE-653 type software vulnerability.

Table 1 summarizes the relation between the thesis points and the corresponding publica-
tions.

Table 1: Relation between the thesis points and the corresponding publications

Publication
Thesis point

Credit IF SJR I/1 I/2 I/3 I/3/1 II/1 II/2 II/3
[J1] 0.75 Q3 • • •
[J2] 1 Q3 • •
[J3] 0.60 Q4 •
[J4] - 3.4 Q1 • • •
[C5] 0.48 •
[C6] 0.48 •
[C7] 0.50 •
[C8] 0.60 •
[F9] - •

[F10] - • •
[F11] - •
[F12] - •

18



5 The author’s publications on the subjects of the thesis

Journal papers

[J1] Szabó, Z., Bilicki, V. (2021). Evaluation of EHR Access Control in a Heterogenous
Test Environment. Acta Cybernetica, 25, 485-516. SJR: Q3, 0.75 credits

[J2] Szabó, Z. (2021). Evaluation of a policy enforcement solution in telemedicine with
offline use cases. Pollack Periodica, 17(1), 12-17. SJR: Q3, 1 credits

[J3] Szabó, Z., Hompoth, E. A., Bilicki, V. (2023). Patient Flow Analysis with a Custom
Simulation Engine. Acta Cybernetica, – accepted, under publication SJR: Q4, 0.60
credits

[J4] Szabó, Z., Bilicki, V. (2023). A new Approach to Web Application Security: Utilizing
GPT Language Models for Source Code Inspection. In Future Internet MDPI. SJR: Q1,
-

Full papers in conference proceedings

[C5] Szabó, Z., Bilicki, V., Berta, Á., & Jánki, Z. R. (2017). Smartphone-based data
collection with stunner using crowdsourcing: lessons learnt while cleaning the data.
In the Proceedings of ICCGI17 0,48 credits

[C6] Jánki, Z. R., Szabó, Z., Bilicki, V., Fidrich, M. (2017, November). Authorization
solution for full stack FHIR HAPI access. In 2017 IEEE 30th Neumann Colloquium
(NC) (pp. 000121-000124). IEEE. 0,48 credits

[C7] Szabó, Z., Téglás, K., Berta, Á., Jelasity, M., & Bilicki, V. (2019). Stunner: A smart
phone trace for developing decentralized edge systems. In Distributed Applications
and Interoperable Systems: 19th IFIP WG 6.1 International Conference, DAIS 2019,
Held as Part of the 14th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17–21, 2019,
Proceedings 19 (pp. 108-115). Springer International Publishing. 0,50 credits

[C8] Berta, Á., Szabó, Z., & Jelasity, M. (2020, December). Modeling Peer-to-Peer Con-
nections over a Smartphone Network. In Proceedings of the 1st International Workshop
on Distributed Infrastructure for Common Good (pp. 43-48). 0,60 credits

19



Further related publications

[F9] Szabó, Z., Bilicki, V. (2018, June). A FHIR-based healthcare system backend with
deep cloud side security. In THE 11TH CONFERENCE OF PHD STUDENTS IN COM-
PUTER SCIENCE (p. 184).

[F10] Szabó, Z., Bilicki, V. (2020, June). EHR Data Protection with Filtering of Sen-
sitive Information in Native Cloud Systems. In THE 12TH CONFERENCE OF PHD
STUDENTS IN COMPUTER SCIENCE (p. 164).

[F11] Szabó, Z. Policy Enforcement in Telemedicine with the Deployment of Multiple
Enforcement Points. In The 16th Iványi Miklós International PhD & DLA Sympo-
sium,2020.

[F12] Szabó, Z., Hompoth, E. A., Bilicki, V. (2022, June). Evaluation of a Custom Patient
Flow Modeling Framework for Hospital Simulation. In THE 13TH CONFERENCE OF
PHD STUDENTS IN COMPUTER SCIENCE (p. 202)

Further publications

[13] Nagy, Á., Dombi, J., Fülep, M. P., Rudics, E., Hompoth, E. A., Szabó, Z., ... &
Szendi, I. (2023). The Actigraphy-Based Identification of Premorbid Latent Liability
of Schizophrenia and Bipolar Disorder. MDPI, Sensors, 23(2), 958.

[14] Rudics, E., Nagy, Á., Dombi, J., Hompoth, E. A., Szabó, Z., Horváth, R., ... & Szendi,
I. (2023). Photoplethysmograph Based Biofeedback for Stress Reduction under
Real-Life Conditions in Healthcare Frontline. MDPI, Applied Sciences, 13(2), 835.

Other references

[15] About Modeler — Camunda Platform 8 Docs — docs.camunda.io. https://docs.

camunda.io/docs/components/modeler/about-modeler/. [Accessed 15-Sep-2022].

[16] Index - fhir v4.0.1. https://www.hl7.org/fhir/. (Accessed on 09/16/2020).

[17] Introduction to the angular docs. https://angular.io/docs. Last accessed on 2023-
07-20.

[18] Open policy agent official site. https://www.openpolicyagent.org/. (Accessed on
09/16/2020).

[19] What Is Patient Flow? — catalyst.nejm.org. https://catalyst.nejm.org/doi/

full/10.1056/CAT.18.0289. [Accessed 29-Sep-2022].

20

https://docs.camunda.io/docs/components/modeler/about-modeler/
https://docs.camunda.io/docs/components/modeler/about-modeler/
https://www.hl7.org/fhir/
https://www.openpolicyagent.org/
https://catalyst.nejm.org/doi/full/10.1056/CAT.18.0289
https://catalyst.nejm.org/doi/full/10.1056/CAT.18.0289


[20] SpiffWorkflow 1.1.6 documentation — spiffworkflow.readthedocs.io. https://

spiffworkflow.readthedocs.io/en/latest/, 2014. [Accessed 22-Sep-2022].

[21] Marcus Andrew. Security in fhir at devdays redmond 2019. https://tinyurl.com/
ryk9zlu, 2019. (Accessed on 07/20/2020).

[22] Sidong Feng and Chunyang Chen. Prompting is all you need: Automated android
bug replay with large language models, 2023.

[23] David Ferraiolo, Ramaswamy Chandramouli, Rick Kuhn, and Vincent Hu. Extensible
access control markup language (xacml) and next generation access control (ngac).
In Proceedings of the 2016 ACM International Workshop on Attribute Based Access Con-
trol, pages 13–24, 2016.

[24] David Ferraiolo, Janet Cugini, D Richard Kuhn, et al. Role-based access control
(rbac): Features and motivations. In Proceedings of 11th annual computer security
application conference, pages 241–48, 1995.

[25] Md Rakib Hossain Misu and Kazi Sakib. Fantasia: A tool for automatically identifying
inconsistency in angularjs mvc applications. 10 2017.

[26] Jose L. Jimenez and Zhe Peng. Covid-19 airborne trans-
mission tool available. https://cires.colorado.edu/news/

covid-19-airborne-transmission-tool-available, Nov 2020.

[27] Zoltán Richárd Jánki and Vilmos Bilicki. Rule-based architectural design pattern
recognition with gpt models. Electronics, 12(15):3364, Aug 2023.

[28] Grácián Kokrehel and Vilmos Bilicki. The impact of the software architecture on the
developer productivity. Pollack Periodica, 17(1):7–11, Mar 2022.

[29] Di Leva and Emilio Sulis. A business process methodology to investigate organization
management: A hospital case study. WSEAS Transactions on Business and Economics,
14:100–109, 2017.

[30] Bob Martin, Mason Brown, Alan Paller, Dennis Kirby, and S Christey. Cwe. SANS top,
25, 2011.

[31] Shima Rahimi Moghaddam and Christopher J. Honey. Boosting theory-of-mind per-
formance in large language models via prompting, 2023.

[32] Csaba Varga, Zsuzsanna Lelovics, Viktor Soós, and Tibor Oláh. Betegforgalmi trendek
multidiszciplináris sürgősségi osztályon. Orvosi Hetilap, 158(21):811–822, 2017.

[33] E. Yuan and J. Tong. Attributed based access control (abac) for web services. IEEE
International Conference on Web Services (ICWS’05), 2005.

21

https://spiffworkflow.readthedocs.io/en/latest/
https://spiffworkflow.readthedocs.io/en/latest/
https://tinyurl.com/ryk9zlu
https://tinyurl.com/ryk9zlu
https://cires.colorado.edu/news/covid-19-airborne-transmission-tool-available
https://cires.colorado.edu/news/covid-19-airborne-transmission-tool-available


6 Összefoglalás

Az értekezés feltárja a modern telemedicina alkalmazások komplex jogosultságkezelési
igényei által generált kih́ıvásokat és problémákat, és különböző megoldásokat demonstrál,
amelyek teljeśıtik vagy megkönnýıtik az emĺıtett kih́ıvások megoldását.

A tudományos eredményeket két csoportra osztva mutattam be, melyek az értekezés
harmadik és negyedik fejezetében kerültek részletes bemutatásra.

Az első téziscsoport a telemedicina alkalmazások infrastuktúrájának komplex, het-
erogén elemekből álló adatútjára koncentrál. Bemutattam benne a követelményeket, ame-
lyeket egy jogosultságkezelési megoldásnak teljeśıtenie kell annak érdekében, hogy megfe-
lelően és hatékonyan, az ellátási folyamat akadályozása nélkül érvényeśıthesse a definiált
szabályokat. Felvázoltam a felhőn ḱıvül edge két, jogosultságkezelés szempontjából speci-
ális esetet jelentő t́ıpusát, a feldolgozó és tároló edge-t, illetve megvizsgáltam az okostele-
fon alapú peer-to-peer hálózatokat stabilitás és hatékonyság szempontjából egy alternat́ıv,
teljesen elosztott edge t́ıpusként. Bemutattam egy tervezett keretrendszert, mely a Pol-
icy Enforcement Point (PEP) koncepciójára éṕıtve implementál egy, az adatút számos
pontján elhelyezhető jogosultságkezelési pontot, mely képes a lekért adatok részleges el-
emzésére és azok szükségszerű részleges módośıtására vagy titkośıtására is a hozzáférés
biztośıtása előtt. A tervezett keretrendszert implementáltam az Open Policy Agent (OPA)
seǵıtségével, működését, hatékonyságát pedig kiértékeltem az két speciális edge t́ıpust sz-
imuláló tesztkörnyezetekben. További validáció érdekében kifejlesztettem egy nýılt forrás-
kódú szimulációs eszközt, mely alkalmas arra, hogy validációs paramétereket generáljon
a kidolgozott jogosultságkezelési megoldás számára.

A második téziscsoportban az adatút végén elhelyezkedő alkalmazások statikus el-
emzése támasztotta kih́ıvásokat vizsgáltam. Definiáltam két kategorizálást, az egyiket
az érzékeny adatok detektálása és rangsorolása, a másikat az alkalmazás komponensek
védettségi szintjének megállaṕıtására. A kategóriák használhatóságát validáltam előbb
egy 200 szavas változónév-gyűjtemény besorolásával, majd egy nýılt forráskódú Angular
projetekből kinyert, összesen 292 komponenst számláló teszthalmazon. Az ı́gy azonośıtott
érzékeny adatok alapján megvizsgáltam, mennyire eredményesen azonośıthatóak a stati-
kus forráskód alapján a szoftverek érzékeny elemekkel foglalkozó részei. Hasonlóan vali-
dáltam a védettségi szintek taxonómiáját is, szintén a 292 elemű komponenshalmazzal,
majd a két vizsgálat eredményének össześıtésével elemeztem, mennyire hatékonyan de-
tektálható a CWE-653-as sérülékenységként azonośıtott, kritikus részek nem megfelelő
izolációjaként definiálható sebezhetőség, mely érzékeny adatok kiszivárgását kockáztatja.
Az eredmények bemutatása mellett feltártam a problémákat okozó hibákat is, majd azok
alapján a detektálási elvek szigoŕıtásával elérhető javulást.

Mindkét terület rengeteg további kutatási lehetőséggel és kérdéssel kecsegtet, munkám
azonban kiválóan szemlélteti a bennük rejlő lehetőséget, és seǵıtheti a telemedicina alka-
lmazások fejlesztőit és tervezőit a jogosultságkezelési megoldások tervezésében és imple-
mentálásában és validálásában.

22












