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Preface

I have vague memories about that time when my father brought home our first com-
puter. I might have been around 3 or 4 years old. It was a frightening device, with
its constant noise, weird text flashing on its enormous monitor, and numerous ways
it could go wrong. Still, as the years went by and new operating systems came
along—not to mention more programs, video games and later, internet access—I
started to use it more and more and finally accepted that it was the ultimate tool for
human creativity—a device that can be used to realize and try out ideas, concepts,
and theories, to communicate and cooperate with people all around the world, to ac-
cess vast databases full of information, and to improve productivity. I became a sort
of black sheep in my family; with my father being a doctor, my mother a pharmacist,
and my sister a biologist, I chose IT and software development as my calling.

It is no small irony that when I started working for the Department of Software
Engineering at the University of Szeged, I found myself working on medical appli-
cations and discovered the vast and challenging field of e-health that offers many
opportunities to improve traditional health care, the quality of patient care, and fa-
cilitate and relieve the work of healthcare workers. However, as I worked, I was
gradually faced with challenges and problems: with every major step forward and
advancement in e-health, came a new difficulty or problem to solve. And none of
these was as prominent as the issue of privacy and access control, guaranteeing the
protection of health data on increasingly dynamic infrastructures while meeting ev-
ery requirement of the given use case scenario. When the idea of working towards
a PhD degree came up, the opportunity to do this almost presented itself as my field
of research: to assess the needs of healthcare applications for access control and to
develop solutions that might one day result in a generic, standardized answer to the
problem. In the six years since then, the research has been sometimes easier, some-
times harder, while the need for it has been demonstrated by the growing number
and impact of telemedicine applications as well as by unfortunate events such as the
COVID-19 epidemic. Sometimes I hit a dead end, sometimes I was stuck on a prob-
lem for weeks or months, and sometimes I worked long nights and weekends without
any significant progress or results, but I never gave up.

However, it is not only my own merit, and I can consider myself lucky since many
people have helped me along the way over the years. First and foremost, I would like
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to thank my supervisor, Dr. Vilmos Bilicki, for his mentoring and support over the
years, for always providing me with good ideas, helping me overcome difficulties,
and steering my research in the right direction. This dissertation would not have
been possible without the support of my partner, Szilvia Lovai, who has supported
and encouraged me with endless dedication, patience, and love throughout the years.
I would also like to thank my parents and my sister for being there for me and en-
couraging me, as well as my relatives and friends for helping me overcome problems
and never letting failures or difficulties discourage me. I owe a debt of gratitude to
Zsombor Hunyadi, Zoltán Richárd Jánki, Péter Seffer, and all the current and former
members of the Inclouded team, who either are or were the best colleagues I could
have wished for over the years.

Zoltán Szabó, August 2023.



Chapter 1

Introduction

In recent decades, the integration of healthcare and informatics has evolved rapidly.
With smart devices, IoT sensors, and widely accessible databases and information, it
is simpler than ever before for patients and healthcare professionals to monitor and
analyze the various therapies, procedures, and biological functions, as well as collect
data from these areas.

To support these tendencies, there has been a growing interest in defining a gen-
eral standard format for the storage and handling of healthcare data, with the Fast
Healthcare Interoperability Resources (FHIR) standard from the Health Level 7 (HL7)
organization representing the pinnacle of this effort. Nonetheless, as a result of this
rapid evolution and the growing popularity of the FHIR standard, a significant issue
has become increasingly prominent in the domain: the lack of generalized, appro-
priate access control and privacy management that can complement and support
these standards and the applications that use them. While the creators of the FHIR
standard only provided suggestions based on traditional access control methodolo-
gies, such as Attribute-Based Access Control (ABAC) and Role-Based Access Control
(RBAC), the challenges and requirements of the telemedicine domain have proven to
be more complex and demanding. Multiple researchers began developing methods
for a secure, dependable, and dynamic solution for telemedicine access control, and
we have seen numerous possibilities. However, these solutions typically only support
a singular aspect of the domain’s infrastructure, which includes the various stations
of the telemedicine data path.

In the following dissertation, I present my research, methods, and findings regard-
ing the design of a solution that can offer to meet some of these challenges and assist
developers and researchers in designing more standardized, optimal, and effective
implementations.

In Chapter 2, I present the background of my research and an overview of the
various tools, standards, and concepts I have used during my work. Following this
is Chapter 3, where I introduce my findings concerning the nature and requirements
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8 Introduction

of the telemedicine data privacy domain; a formal definition of the policy categories
required to cover the use cases; an analysis of the role and importance of the edge
networks of the cloud-integrated infrastructures and the unique challenges they add
to the problem; a formal categorization of the edge types based on their capacity
for data handling and access control; an examination of smartphone based peer-
to-peer networks as special cases of the edge; my design and implementation of a
framework to meet the established requirements, and an analysis of the results I
have obtained after running several evaluations on test environments simulating the
processing edge and caching edge. At the end of the chapter, I also introduce an
open-source simulation tool for patient flow to simulate the various scenarios in the
health care system and analyze the possible impact of the latencies my access control
solution has on the process.

The focus of Chapter 4 shifts to frontend applications at the end of this telemedicine
data path. I introduce a novel, Large Language Model (LLM)-based methodology to
identify vulnerabilities where leakage of sensitive, confidential data might occur due
to improper compartmentalization of functionality and bad developer practices. This
domain has proven to be exceptionally challenging so far, as this type of detection
not only requires the semantic analysis and interpretation of the static source code,
which is already a challenge on its own due to the complex nature of current fron-
tend frameworks, but also requires the proper detection of sensitive data elements
in the application and an assessment of how well they are handled or protected with
the available tools of the framework. To address this, I introduce formal taxonomies
for both data sensitivity and component protection based on the impact a potential
leakage of the data might have. I introduce a series of prompts, implement these cat-
egorizations using techniques of prompt engineering, and form an analysis pipeline.
I then present the results of the sensitivity detection using models of the Generative
Pre-Trained Transformer (GPT) model, namely the GPT-3.5 and GPT-4, via API calls
and prompts. The subject of the first evaluation is a preliminary on a dictionary con-
taining variable names, followed by a second set of 292 web application components
obtained from open source Angular projects. This is followed by the results of a sim-
ilar experiment on the 292 components to detect protectivity levels, and then, based
on the results of the two evaluation sets, the results of the full vulnerability detection
for possible data leakage, with the GPT-4 achieving an overall success rate of 88%.

Finally, Chapter 5 includes the Conclusion of my work, and the summary of my
results.
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1.1 Contributions

The ideas, figures, tables and results included in this thesis were published in sci-
entific papers (listed at the end of the thesis). I am responsible for the following
contributions:

Chapter 3.: I examined the structure of a cloud-integrated telemedicine infrastruc-
ture and analyzed the privacy and access control requirements of the domain. Based
on these requirements, a taxonomy of the required access control policy types was
formally defined. I explored the capabilities of the edge networks beyond the cloud
and identified two types of edge infrastructure where access control policies need to
be enforced: the processing edge and the caching edge. I participated in a research
group concerning the peer-to-peer capabilities of smartphones, in which he has ex-
amined state-of-the art solutions and helped with the debugging and error analysis of
the application used in the data collection campaign. Testing environments simulat-
ing the processing edge and an offline, separated caching edge were established, and
test policies based on the defined categories were evaluated on them by me, observ-
ing latencies and resource requirements. Finally, I have developed a unique simula-
tion tool based on open source libraries to simulate the patient flow in a healthcare
environment that can be used to validate the latencies caused by the access control
solutions. I assisted in the validation of the simulation tool using publicly available
statistics from hospitals.

Chapter 4.: I examined the various vulnerabilities concerning frontend applications
and the difficulties of detecting them using only static code analysis. I defined a for-
mal categorization of data sensitivity and component protection based on the impact
of an eventual data leakage. I developed a series of prompts based on these catego-
rizations for large language models in an attempt to detect the CWE-653 vulnerabil-
ity, where improper isolation of the code handling sensitive information might lead
to unauthorized access and usage of said data. I validated the sensitivity categoriza-
tion and the analytical capabilities of the GPT-3.5 and GPT-4 models by establishing
a variable-name dictionary that has been analyzed and categorized by the models.
I sampled a number of open source Angular projects, which were then analyzed by
the developed prompts for occurrences of the CWE-653 vulnerability. I examined the
results and analyzed the errors and anomalies at each step.
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Chapter 2

Background

In the following Chapter, I present the background and motivations for the research
that has served as the basis for the dissertation.

2.1 Data Privacy Challenges of the Telemedicine Do-
main

2.1.1 The Telemedicine Domain

In recent years, the healthcare industry has undergone a transformational evolution,
fueled in part by technological advancements and the proliferation of cloud-based
solutions. Telemedicine, which utilizes the power of the internet to provide medical
services and information at a distance, is a particularly significant innovation. The ex-
pansion of e-health and telemedicine services offers numerous advantages, including
the elimination of geographical barriers to care, the improvement of patient engage-
ment, and the potential reduction of costs. However, as with many innovations, the
potential benefits are accompanied by obstacles.

Providing secure and controlled access to patient data stored in the cloud is one
of the most pressing issues associated with telemedicine. Given their sensitivity,
the confidentiality and integrity of medical records are of the utmost importance.
Years ago, traditional access control mechanisms such as Role-Based Access Control
(RBAC) and Attribute-Based Access Control (ABAC) were used to manage informa-
tion access. However, in the context of telemedicine, these solutions disclose certain
deficiencies.

Before discussing the obstacles, it is essential to comprehend what e-health en-
tails. E-health is an umbrella term for all digital health tools and services, including
electronic health records (EHR), mobile health applications, and telemedicine ser-
vices. When we say ’e-health’ we are referring to the tools, applications, online plat-
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12 Background

forms and infrastructures that host, manage, and deliver these digital health services.

Telemedicine, a subset of e-health, refers specifically to the remote delivery of
healthcare services. Utilizing video conferencing tools, online messaging systems,
and other forms of digital communication, it permits patients to consult and share
medical records with healthcare providers without the need for physical visits.

The sensitive nature of the data managed in the e-health cloud is inherent. The
stored information, including personal identifiers, medical histories, prescriptions,
and diagnostic results, could be harmful if it fell into the wrong hands. Unauthorized
access or data intrusions may result in violations of privacy, financial misconduct,
and even potential injury to patients.

Given the implications, it is evident that access control mechanisms must be ro-
bust. They must ensure that only authorized personnel have access to the required
data, and even then, only to the data relevant to their role.

RBAC

RBAC [46] is one of the most popular access control techniques. It functions by
designating users to roles and associating permissions with these roles. A user’s role
determines the resources or data to which they have access. Nevertheless, the health-
care industry is dynamic. Patients are transferred from one healthcare provider to an-
other, physicians may consult with specialists from other departments or institutions
and specific roles might change in the context of time and location. In such situa-
tions, the rigid structure of RBAC can become a bottleneck, since constant adaption
might be too slow and error-prone. Also, a common critique of RBAC is the tendency
to give more permissions than necessary for certain roles to ensure smooth opera-
tions. In an environment that is as sensitive as e-health, this could lead to potential
security risks.

ABAC

ABAC [122] determines access based on attributes. These attributes may be associ-
ated with the user, the resource, or the environment. Compared to RBAC, it provides
more granular control, allowing for more nuanced access decisions. However, ABAC
is not devoid of obstacles. The flexibility is obtained at the expense of complex-
ity. Installation, management, and maintenance of ABAC systems require specialized
knowledge and can be resource-intensive. Moreover, due to the dynamic nature of
attributes and the requirement for real-time evaluations, ABAC systems can occasion-
ally experience performance issues.
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The Challenge

Due to the inherent limitations of RBAC and ABAC, an integrated and comprehensive
approach to access control in the e-health cloud is unquestionably required. Health-
care frequently necessitates contextual access. During an emergency, a doctor may
require access to a patient’s medical history, regardless of their allocated function
or attributes. Patients frequently consult multiple healthcare providers and special-
ists, necessitating the integration and communication of systems. Additionally, the
healthcare industry is constantly evolving. Access control systems must be adapt-
able enough to accommodate these alterations without jeopardizing security. Before
we can progress further, it is essential to investigate and implement comprehensive
access control solutions that can address the unique challenges posed by the digital
healthcare environment. Only then will we be able to maximize the potential of the
e-health cloud while maintaining the security and confidentiality of patient data.

2.1.2 The Telemedicine Datapath

The Telemedicine Data Path incorporates a variety of components, including hybrid
databases, user applications, the Internet of Things (IoT), and periphery computing,
among others. While integral to the seamless administration of healthcare services,
each element presents its own set of challenges.

Hybrid Cloud

Adoption of hybrid clouds in telemedicine denotes a combination of both public and
private cloud structures. This combination enables healthcare organizations to take
advantage of the scalability and cost-effectiveness of public clouds while also lever-
aging the enhanced security features of a private cloud for more sensitive data. The
agility of the hybrid cloud model enables healthcare institutions to scale resources
flexibly in response to fluctuating demand. Managing both public and private cloud
environments can be complicated due to their dual character. Moreover, the trans-
mission of data between these platforms can introduce latency, a major concern in
the healthcare industry, where time is frequently of the essence.

User Applications

User applications serve as the initial point of patient contact. From simple appoint-
ment scheduling interfaces to complex teleconsultation systems, these digital plat-
forms bridge the divide between patients and healthcare providers. Their rise has
democratized healthcare access, allowing patients to gain access to medical services
from virtually anywhere. However, as the number of digital touchpoints grows, so
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do the obstacles. Today’s plethora of user applications necessitates a high level of in-
teroperability to ensure seamless data exchange. In addition, given the sensitivity of
medical information, these applications must adhere to stringent security standards
to prevent data breaches and unauthorized access.

Internet of Things

The Internet of Things (IoT) is woven into the fabric of contemporary telemedicine.
Patient care has been revolutionized by the proliferation of interconnected devices,
such as wearable health monitors and intelligent medical apparatus. These devices
facilitate real-time monitoring of health, paving the way for preventative medical
interventions. But with this data deluge comes the difficulty of effective data man-
agement. In addition, the always-connected nature of these devices makes them
vulnerable to cyber threats, highlighting the need for stringent security measures.

Edge Computing

Edge computing is perhaps one of the most intriguing components of the Telemedicine
Data Path. Edge computing concentrates on processing data closer to its source, such
as an Internet of Things (IoT) device, as opposed to immediately routing it to a
centralized cloud. This proximity processing significantly reduces latency, allowing
time-sensitive medical decisions to be made in real-time. Additionally, it optimizes
bandwidth utilization, relieving the strain on central servers. However, edge comput-
ing’s decentralization is not without its challenges. It can be difficult to ensure data
consistency between peripheral devices and centralized servers. Due to the limited
character of the computational resources at the periphery, they may not always be
suitable for sophisticated analytical tasks. Additionally, the distributed nature of pe-
riphery computing heightens security concerns. And most importantly, edge devices
typically lack comprehensive security protocols, making them susceptible to potential
breaches.

2.1.3 The FHIR Standard

Interoperability was mentioned several times as a recurring requirement of the e-
health domain in previous chapters. The prominent Fast Healthcare Interoperability
Resources (FHIR) [3] standard has been touted as a possible remedy to this problem.
FHIR was developed by Health Level Seven (HL7) organization as a standard for the
exchange of healthcare data. FHIR, unlike its predecessors, employs the most recent
web standards and prioritizes simplicity and ease of implementation. It seeks to strike
a balance by providing detailed clinical models and assuring that systems can read
and write to its specifications without difficulty. By utilizing a modular approach,
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FHIR enables the consistent representation of clinical concepts, making it simpler for
systems to comprehend shared data.

The optimism surrounding FHIR derives primarily from its design philosophy. By
adopting modern internet conventions and ensuring compatibility with a variety of
platforms, including EHR systems, mobile applications, and cloud services, FHIR has
made significant strides in promoting interoperability. Its structure, which is based on
resources, which are data elements with a standardized method of definition and rep-
resentation, ensures that different systems can interpret these resources uniformly.
Additionally, this design ensures that the addition of new resources or modifications
to existing ones will not disrupt existing systems.

However, as with any ambitious undertaking, the standard faces obstacles. One
of the most significant problems is the misconception that FHIR can address all in-
teroperability issues by itself. While it provides a comprehensive framework for data
exchange, its practical implementation must take workflows, user interfaces, and lo-
cal requirements into account. Institutions must invest in training, development, and
testing to ensure that the integration of FHIR yields significant operational benefits.

In addition, despite FHIR’s vow to simplify data exchange, many healthcare in-
stitutions continue to utilize legacy systems due to the sector’s complex landscape.
Transitioning to FHIR necessitates both technological and organizational adjustments,
which is easier said than done. Although the standard is robust, it is still evolving,
and organizations may be hesitant to adopt a framework that may be subject to sig-
nificant changes in the future.

The absence of an access control standard is a particularly conspicuous omission
in the FHIR design. While FHIR provides a comprehensive framework for data ex-
change, it does not dictate who should access the data and under what circumstances.
Given the sensitivity of healthcare data, access control is of the utmost importance.
As previously discussed, traditional mechanisms such as Role-Based Access Control
(RBAC) and Attribute-Based Access Control (ABAC) have their limitations, particu-
larly in the dynamic world of telemedicine. Because FHIR lacks a standardized access
control mechanism, and only provide room for ABAC and RBAC-based integrations,
institutions must rely on external systems or custom solutions to ensure data secu-
rity. This not only adds layers of complexity, but also risks fragmenting access control
implementations across institutions, paradoxically exacerbating the interoperability
problem.

Moreover, despite the fact that FHIR is designed to be adaptable and flexible, this
adaptability can occasionally be a double-edged sword. Different institutions may
implement FHIR in slightly different ways, resulting in variances that may impede
the exchange of data in a seamless manner. Despite the fact that the standard pro-
vides guidelines, the complexity of healthcare data, coupled with varying regional
regulations and requirements, can result in disparate FHIR implementations.
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2.2 Static Detection of Potential Data Leaks

2.2.1 Software Vulnerabilities and the CWE database

Web applications have become the cornerstone of enterprises, governments, and in-
stitutions worldwide in the digital age. As the complexity of these applications in-
creases, so do the vulnerabilities associated with them. If left unchecked, these vul-
nerabilities can expose systems to a variety of malicious activities, including data
breaches and unauthorized system access. To ensure the security of digital assets,
it is essential to comprehend the nature of these vulnerabilities and the instruments
available to detect and mitigate them.

The Common Weakness Enumeration (CWE) [76] database is one of the most
important resources pertaining to software vulnerabilities. The CWE, created and
maintained by the MITRE Corporation, provides a standardized language for describ-
ing software security vulnerabilities. It provides an exhaustive taxonomy of known
vulnerabilities, facilitating communication and collaboration between developers,
testers, and security professionals on security issues. The CWE database functions
as both a reference and a guide, assisting organizations in identifying potential code
vulnerabilities and implementing best practices to prevent exploitation.

The CWE database is a valuable resource, but it also highlights the extensive and
complex landscape of software vulnerabilities. Common vulnerabilities, such as SQL
injection and cross-site scripting, are cataloged in the database alongside esoteric
and subtle flaws that may not be immediately apparent. Those tasked with ensuring
software security face a formidable challenge posed by this scope and variety.

Static code analysis is one of the primary methods for identifying vulnerabilities
in software. This procedure involves scrutinizing the application’s source code with-
out executing it, in quest of problematic patterns or constructs. The allure of static
code analysis lies in its capacity to rapidly scan large codebases and identify poten-
tial vulnerabilities before the software is executed. Nevertheless, as effective as this
technique may be, it has limitations.

Static analysis lacks the runtime context by its very nature. Certain vulnerabil-
ities, particularly those involving comparisons or dynamic data, may only manifest
themselves under particular runtime conditions. Without the context provided by
actual execution, such vulnerabilities may be missed by static analysis. Cases, where
a deeper understanding of the functionality of the software, the context of its usage
and the contents of its data are required, complicate the matter even further.

In addition to being a set of instructions, software code is a representation of
logic and intent. Although static analysis tools are proficient at identifying patterns,
they may grapple with subtleties and complexities that require a comprehension of
the developer’s intent. In the case of insufficient comparisons, the logic underlying
why certain comparisons are made or not made may be profoundly ingrained in the
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functionality of the application. A tool that scans lines of code may not completely
comprehend this intent, resulting in potential omissions.

In addition, the flexibility and diversity of contemporary programming languages,
while a benefit for programmers, add an additional layer of complexity. Constructs,
syntax, and semantics are distinct between languages. The manifestation of a vul-
nerability in one language may vary in another. While the CWE database provides a
generalized description of vulnerabilities, it is a monumental undertaking to translate
these descriptions into specific patterns for each language.

Also, the dynamic nature of software development practices and the constant
introduction of new frameworks and libraries result in a constantly altering landscape
of potential vulnerabilities. To remain pertinent, static code analysis tools require
consistent updates. However, even with regular revisions, the overwhelming rate of
change in the software industry can cause detection capabilities to become deficient.

Due to these difficulties, several vulnerability types could have been detected
manually or via intensive testing until recently. However, the outlook for this domain
changed radically with the arrival of Large Language Models (LLM).

2.2.2 LLM capabilities

Large Language Models (LLMs) are the most recent and significant innovation in
the expansive field of artificial intelligence. The enormous scale and complexity of
these models represent a paradigm shift in how machines process, generate, and
comprehend human language, including programming code. Their development has
not only widened the scope of natural language processing (NLP), but it has also
paved the way for advanced vulnerability detection in software code, illuminating
potential security flaws that might have gone unnoticed otherwise.

LLMs date back to the beginnings of machine learning and natural language pro-
cessing. Initial models were small and had limited capabilities, but they laid the
groundwork for what would follow. In terms of both complexity and capabilities,
these models began to evolve as computational power and data sets multiplied. The
advent of neural networks, and deep learning in particular, marked a turning point.
Instead of relying on manually constructed features, models can now directly learn
representations from data, resulting in a more accurate and nuanced understanding
of language.

As these models grew, so did their ability to comprehend context, semantics, and
the complexities of language. OpenAI’s GPT series and Google’s BERT and Bard
demonstrated the potential of LLMs. They were able to produce coherent text, re-
spond to queries, and even engage in simple conversations. Beyond these applica-
tions, however, a more substantial possibility was emerging: the capacity of LLMs to
comprehend and generate programming code.
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While structured and logical, programming code is also a form of language. It
communicates purpose, functionality, and logic. With the proper training (or prompt-
ing in case of models such as GPT-3.5, GPT-4 and ChatGPT), the same models that
could comprehend human language narratives could decipher the semantics of code.
This aptitude created an abundance of opportunities. LLMs could assist developers
by suggesting optimizations, documentation, and even generating code fragments
in response to natural language queries. In addition to these applications, however,
a potentially significant application might be the ability to detect vulnerabilities in
static code.

As discussed previously, static code analysis entails scrutinizing software code
without executing it. While traditional static analysis tools look for known problem-
atic patterns or constructs on a semantic level, they frequently lack a deeper under-
standing of context and developer intent. This is where LLMs become relevant. With
their comprehension of both semantics and context, LLMs can delve deeper into the
code and comprehend its logic and intent. This enhanced knowledge enables them to
recognize vulnerabilities that may not be readily apparent based on patterns alone.

For example, whereas a traditional static analysis tool could identify a potential
SQL injection vulnerability based on a specific pattern, an LLM could comprehend the
context as a whole. It could determine if user inputs are being sanitized, if the code
segment in question is part of a larger authentication mechanism, or if it is part of a
deprecated function that is no longer in use. This analysis can result in more accurate
detection of vulnerabilities, reducing false positives and illuminating potential issues
that may have been neglected.

In addition, LLMs can be trained on massive datasets containing known vulnera-
bilities, remedies, and associated discussions. This training enables them to remain
current on the most recent vulnerability trends, patterns, and mitigation techniques.
When analyzing code, they can utilize this extensive knowledge base to identify not
only known vulnerabilities, but also potential zero-day dangers that share similarities
with known issues.

However, the application of LLMs in static code vulnerability detection is not de-
void of obstacles. The interpretability of these models is among the primary concerns.
Given their size and complexity, it can be difficult to comprehend why an LLM flagged
a particular code segment as vulnerable. Developers and security professionals may
require a rationale for any issues that are identified, which LLMs in their current
guise may struggle to provide.

Moreover, although LLMs are adept at comprehending context and semantics,
they are not perfect. There is a possibility of false negatives, in which the model
overlooks a real vulnerability. Vulnerability detection gaps may result from relying
solely on LLMs without human oversight or without supplementing them with tradi-
tional analysis tools.
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Nevertheless, their potential and complexity make them ideal research instru-
ments for exploring new domain aspects, such as vulnerability detection, to deter-
mine whether we might be able to solve problems that were previously considered
to be virtually insurmountable.
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Chapter 3

Thesis Group I: Data Privacy at the
Edge of the Telemedicine Datapath

In the following thesis group, I examined the requirements of the telemedicine data path
for access management. I defined the conditions that must be met at each designated
point of the telemedicine data path in order to reconcile security requirements and re-
sponsiveness. I defined a four-element taxonomy for the categories of policy enforcement
to be implemented. I presented the edge as a critical case for access control, its two
primary categories for access control, the processing edge and the storage edge, and our
results on a special case of the edge, the analysis of the stability of smartphone peer-to-
peer networks. Then, I defined two experimental environments, one for the processing
edge and one for the storage edge, as well as my experimental results in said environ-
ments using a practical implementation of the access control framework in terms of
latency. Lastly, I presented my patient flow simulator built with open source libraries,
which can simulate the throughput of patients treated in a hospital ward and can be
used to generate validation parameters for the developed access control framework in
order to validate the system’s delay tolerance.

Publications related to this thesis: [J1], [J2], [J3], [C5], [C6], [C7], [C8], [F9],
[F10],[F11], [F12]

3.1 Introduction

In the mid-2010s with the emergence of the Fast Healthcare Interoperability Re-
sources (FHIR) standard from HL7 [3], it seemed that we finally had the necessary
tools to create e-health applications and databases that not only meet their respec-
tive institutional requirements, but also conform to international standards, making
a networked health infrastructure more feasible. FHIR achieved this by defining a
set of over 90 document templates that can be implemented in both JSON and XML
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formats and used to describe the entire healthcare workflow from administration to
the daily events that a general practitioner or nurse is confronted with. FHIR has also
made these documents customizable to meet specific requirements and cover specific
areas. These attractive aspects have made FHIR the most popular and widely used
healthcare communications standard from HL7 to date.

However, the FHIR standard had some alarming shortcomings [17] [27]. Al-
though some of these have been addressed in the course of the various updates to
the standard, one of the most pressing is still an open problem - namely the lack of
clearly defined access control and security. While FHIR generally accepts custom ex-
tensions and adaptations of its standardized document types, it provides only a light
template and some minor guidelines for security policy enforcement. This has led
to a ”free-for-all” problem in the development of e-Health applications, with almost
everyone developing their own solutions, which greatly corrupts the original concept
of interoperability. With the introduction of the GDPR [34], the increasing integra-
tion of IoT and intelligent devices into the healthcare workflow [55] and in some
cases the decision to use a heterogeneous backend [103] for handling accessibility
and sensitive data, the complexity of this issue has increased. Another complicating
factor is that the most popular current technologies for the backend are serverless
and native cloud infrastructures. These present two main problems: with the advent
of fog/edge computing, data processing takes place much closer to the end devices
and user locations, and in these cases a large amount of sensitive data is stored in a
public cloud.

The two main approaches recommended by the official documentation of the
FHIR standard for these challenges are the attribute- or role-based policy controls,
ABAC[123] and RBAC [45], respectively. With RBAC, the developer is able to assign
specific roles to users that determine the level of access and possible operations in
the system. Some typical roles in a medical system would be those of a doctor, nurse,
patient, family member, and so on. In contrast, ABAC uses specific attributes of the
user or the requested data to determine whether access should be granted.

However, in the current network topology, which combines IoT, intelligent de-
vices, edge computing, private and public clouds, these methods in themselves are
far from sufficient. To meet these needs, it is essential to develop a hybrid approach
that combines the strengths of these two classical methods. Furthermore, it is impor-
tant that these enforcement points can be placed at any part of the infrastructure to
deal with the sensitive nature and processing requirements of the data. For example,
while fog endpoints require a complete FHIR object, the connecting IoT devices may
not be able to handle such complex data structures. In the case of a hybrid cloud
solution, the data could also pass through a public cloud between the private cloud
and end users, where naturally stricter policies and encryption are required than for
the isolated, private parts of the infrastructure, as shown in Figure 3.2.



3.1 Introduction 23

Figure 3.1: The Policy Enforcement Flow between end users and the cloud

A popular concept for such enforcement points is the concept of Policy Enforce-
ment Point (PEP), developed by the standards organization OASIS as part of its eX-
tensible Access Control Markup Language standard [44], an extension of the classic
ABAC model, also known as policy-based access control or PBAC. While we are com-
mitted to developing a custom, fine-grained security solution that is not subject to
the strict limitations of the XACML standard, the concept of the PEP-based archi-
tecture is well suited to our needs. In the complete model shown in Figure 3.1,
the responsibilities for access control and security enforcement are distributed across
several components. The Policy Enforcement Point (PEP) is the key to the model that
enforces policies and allows or denies access to resources. Administrators can de-
fine given policies at the Policy Administration Point (PAP), which are evaluated and
stored by the Policy Decision Point, based on the user’s identity or multiple identities,
and recognized by the Policy Identification Point (PIP). The PDP’s decision is handled
and enforced by a PEP. This model also provides some room for customization, be-
cause the exact structure of these nodes can be defined by the developers, and the
nodes have the ability to fuse multiple elements of the infrastructure into one.

My research aimed to combine these approaches while separating the access con-
trol process from the backend and frontend and putting it on the path of the data
between the cloud and the end users.
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Figure 3.2: A hybrid edge computing infrastructure with a public and a private cloud

3.2 Related Works

While the authors of a 2013 comparative study based on 775 reviewed articles found
that RBAC [43] was the most popular approach to manage access control in health-
care, this trend changed significantly with FHIR, and the preference between ABAC
and RBAC became the de facto choice of the development team rather than industry
standards.

For example, the developers of the application atHealth [98] succeeded in imple-
menting a role-based methodology for their mobile application in 2017, recognising
the lack of security in FHIR. However, there also were implementations of the ABAC
model for access control to health records [82] in the same year.

To further complicate the issue of these two models, as early as 2008 [87] there
were critics who noted that access control in healthcare systems is sufficiently com-
plex to justify situation-based decisions, with the classical concept of roles and at-
tributes oversimplifying the issue. When we conducted our first experiments in 2018
in this area [106], we also found that neither ABAC nor RBAC as such is sufficient to
meet the needs of practitioners and clinical applications, because even though roles
are important elements of security, they cannot cover every situation without specific,
contextual information.

Although there are platforms, such as the popular SMART project [28], which
offer a solution in the form of a full OAuth2 integration into their FHIR database, the
use of such frameworks usually comes at the expense of a certain degree of freedom
in the choice of health infrastructure components. There have been several attempts
to define hybrid solutions both in healthcare [88] and more generally in multi-modal,
heterogeneous environments [20]. A key concept of the domain is the requirement to
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control access not only to entire documents, but also to specific fields and attributes
in documents. The proposed architecture by Rezaeibagha, F. et al [92] is specifically
designed to move sensitive data from a secure private cloud to a public one, while
maintaining security.

In 2016, Pusselwalage H. S. G. et al. [89] published their approach for an ABAC
methodology that bases its policies not only on the attributes of the data but also
on the attributes of the user, treating the different levels of access and the classical
roles in healthcare as attributes. They combined the two models to some extent,
while also highlighting special cases such as unregistered users or registered users
without a specific role. In 2018 Joshi M. et al. [62] used a similar approach with
roles treated as attributes, but instead of granting full access, their solution also
transformed the requested data to match the requester’s access level. The developers
of the SOCIAL platform [94] also discussed some interesting ideas about treating the
requesting device as an important component of ABAC with a combination of the
user attributes.

During our review we also found some studies that appeared to combine elements
of the RBAC and ABAC models without clearly categorizing their methodology as a
hybrid. The developers of the [90] H-Plane Framework, which follows the terminol-
ogy of the ABAC model, also apply several attributes in a way that is almost identical
to some aspects of RBAC. In their publication they also pointed out the importance
of the IoT in this domain. In 2019, Alnefaie, S. et al. [16] after reviewing the possi-
ble alternatives for access control they thought ABAC was much better suited to the
needs of healthcare in combination with edge computing, but also suggested modi-
fying the infrastructure of the methodology to bring the point of evaluation closer to
the edge and place more emphasis on the identity of the IoT device itself. Tasali Q.
et al. [108] extended this concept by covering not only medical data, but also the
authorization process for real-time communication between IoT devices.

The solution proposed by the developers of the mHealth application [85] is also
quite similar to ours, the main differences being that its policy engine is deployed
as part of the cloud services and the engine is an implementation of the NIST NGAC
framework, with the evaluation process based on traversing a Neo4j graph database.
The infrastructure and principle designed by Ray, I et al. [91] also have similar
features, with policy enforcement based on the XACML format.

To summarize the state-of-the-art based on these sources:

• A modern solution should either extend the traditional access control ABAC
model or develop a custom hybrid solution to meet the needs of the domain;

• Heterogeneous storage should be taken into account and the sensitive docu-
ments must be transformed before they enter the public cloud;

• The IoT raises brand new challenges. The security solution must be able to han-
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dle the different capabilities and requirements of these tools when evaluating
and converting the healthcare data.

It is clear that the approach of our research group is only one of many proposals
that seek to resolve the security issue of EHR. Our goal was to combine the best ideas
and elements of the domain - combining RBAC and ABAC, establishing the enforce-
ment points as a middle layers between the various actors of the infrastructure - and
also to improve and extend them, to provide support for every database and appli-
cation that uses FHIR, and to provide users and developers with a trusted, verified
solution to the security problem.

Azeez and Van der Vyver [21] collected the various approaches towards e-health
security, and from their work, it is clear how isolated and partial the majority of these
solutions are. My approach, instead of focusing on a smaller detail of the e-health
data path, aims to be applicable at any given point of the infrastructure—in the
cloud, between the cloud and the user, on the edge, in the user applications, etc.—to
provide the best and most precise access control solution possible while having as
minimal a latency impact on the data path as possible.

3.3 Thesis I/1: Formal Definitions and Requirements
of Telemedicine Access Control

I explored the complex requirements of modern telemedicine applications in terms of
access control. I defined a taxonomy to formalize the different types of access control
policies and the TAPE requirements necessary to ensure that the implementation of the
defined policies can guarantee a balance between data privacy compliance and respon-
siveness at any point in the telemedicine infrastructure.

Publications related to this thesis: [J1],[C6],[F9],[F10]

One of the starting points of my research in this area was to determine if it would
be possible to develop a solution that could act as a dynamic, portable PEP, having
the capability to be deployed to any point along a complex, heterogeneous data path,
with the same tools, definitions, and configurations. I defined the basic requirements
that this solution had to meet as the TAPE requirements, which are as follows:

• Transparency: The access control solution should have as little of an effect as
feasible on the data path throughput and performance of telemedicine applica-
tions.

• Adaptability: To safeguard sensitive data, the field of telemedicine requires
stringent, very specific policies. ABAC and RBAC alone are insufficient be-
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cause interoperability and interchangeability requirements require a signifi-
cantly more dynamic and refined approach. The developed solution must also
facilitate the formulation and evaluation of the most specific requirements.

• Portability: The developed solution must be deployable anywhere in the infras-
tructure. Edge computing’s greatest asset is its ability to provide functionality
even when the cloud is unavailable. This also implies that it must be able to
operate between the edge and the cloud, between the edge and the endpoints,
in the cloud, and in certain scenarios, even on the endpoints if they have the
required resources.

• Efficiency: Since many elements of the infrastructure lack sufficient memory
and CPU capacity to execute the more complex transformations and data anal-
ysis, the developed implementation should spare them from more demanding
operations.

I have defined the telemedicine access control principles based on the following
taxonomy and requirements. The patient is the primary owner, the physician who
wrote the document or assisted in its creation is the secondary, while other prac-
titioners and relatives can have access to it to some extent. The system must also
handle indirect access when the applicant, as a member of a group, tries to access
the file. These respective types of access must be identified based on a combination
of user roles, role groups and the attributes of the FHIR documents.

In some cases, contextual information is also required to determine the degree
of access. For example, while a general practitioner should be able to access patient
records at any time (logging the exact time and nature of such access), a nurse or as-
sistant should not allowed to exceed the prescribed office hours. For some especially
sensitive information, other contextual information such as the physical location of
the requester, the ID of the device from which the request originates, should also be
used in the evaluation, and expanding this set compared to a simple role definition
is enough to justify a separate category.

A key requirement in the field of healthcare is that access does not mean full ac-
cess to every element of the given document. In many cases it is strictly forbidden
to grant access to such information from which a third party might be able to re-
construct very sensitive events and elements. For example, if one receives a list of a
patient’s medicines from a certain period of time, it is easy to infer vital information
that would otherwise be prohibited for that particular third party. The evaluation
process in a healthcare environment should be able to determine access at a very fine
granularity, essentially at the field-by-field level, and to mark or even remove certain
fields that should not be available at that security level. This is also the reason why
the standard security solutions of several large cloud providers and databases fails,
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as they can only provide this functionality by including lambda functions, trigger
functions, and the like.

The last requirement is also the most unique and difficult aspect of healthcare
security. The break-the-glass case requires an access control model that provides
immediate access to key patient information to ensure the receiving of the necessary,
possibly life-saving care. This is essentially what happens in an emergency, when
life-saving surgery is required and neither the patient nor the doctor recording and
processing their health data is available to grant access. In a break-the-glass situation
usually only a few records are required, but in that case it is important to use very
complex transformations. Only vital information should be accessed, while every
other element of the document must be either removed or encrypted. Without the
effective implementation of break-the-glass, no healthcare security system can be
used in real-life situations.

Based on this, I have defined the four categories of access control rules that follow:

• Role Evaluation: The policy has to determine whether based on the user’s role
or roles in the system, partial or full access should be provided;

• Contextual Evaluation: The policy has to determine whether the combination
of the user’s role, various attributes and contextual information form the basis
for partial or full access;

• Contextual Modification: Aside from providing access, the policy should also
transform the data, removing or altering specific fields;

• Break-the-Glass: A specific requirement of a healthcare application. In the
case of an emergency, the policy should provide immediate access, while also
encrypting or removing sensitive information.

With the formal definitions being:

• F := {f1, ..., fk} marks the telemedicine record in question, where each fx is a
valid key-value pair of the record.
For example:
F := {(′subject′,′ PAT/1′), (′systolic bloodpress′, 120), ...}

• UR := {r1, ..., rl} where UR ⊆ F is a subset containing the key-value pairs
describing various primary or secondary owners of the record
For example:
UR := {(′subject′,′ PAT/1′), (′practitioner′,′ PR/A013′), ...}

• EX := {e1, ..., em} marks the external context of the system at the time of the
policy evaluation as key-value pairs
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For example:
EX := {(′datetime′,′ 2020− 09− 12T12 : 20 : 33′), (′ip addr′,′ 223.134.22.1′), ...}

• CX := {c1, ..., ck} is a set of conditional functions, which take an atomic value as
an argument and transform it to a boolean value. Each function is represented
as an (op, val) pair where op is a conditional operation, op ∈ {<,>,≤,≥,=

} and ci(n) := n opi vali
For example:
c1 := (>, 12), x := 5 =⇒ c1(x) := 5 > 12 =⇒ c1(x) := false
c2 := (=,′ bloodpressure′), x :=′ bodyweight′ =⇒
c2(x) := ’bodyweight’ = ’bloodpressure’ =⇒ c2(x) := false

• P(n) is a function describing a policy to be enforced by a PEP engine, where
fx ∈ F and P(fx) = Allow|Modify|Deny produces the decision regarding the
evaluated key and P(F) := {P(f1), ...,P(fk)}

Formal Definition of the Role Evaluation Policy

P(n) describes a Role Evaluation policy, if UR ̸= ∅ and for a given user identifier
∃key(key, id) ∈ UR, then P(n) := ∀fi ∈ F P(fi) := Allow, else P(n) := ∀fi ∈
F P(fi) := Deny

Formal Definition of the Contextual Evaluation Policy

P(n) describes a Contextual Evaluation policy if G := F ∪ EX, CE := {ce1, ..., cex}
is a set of contextual conditions where 0 ≤ i ≤ x, cei := (keyi, ci), ci ∈ CX and ∃x :

(keyi, valuei) ∈ G and P(n) := ∀fi ∈ F P(fi) := Allow, if ∀x : (keyi, ci) ∈ CE :

∃(keyi, valuei) ∈ G and ci(valuei) := true, else ∀fi ∈ F P(fi) := Deny

Formal Definition of the Contextual Modification Policy

P(n) describes a Contextual Modification policy if similarly to the Contextual Eval-
uation policy, G := F ∪ EX, CE := {ce1, ..., cex} is a set of contextual conditions
where 0 ≤ i ≤ x, cei := (keyi, ci), ci ∈ CX and ∃x : (keyi, valuei) ∈ G but there
is also a FX mapping, which FX : CE =⇒ F′ ⊆ F, with ∩0≤i≤x FX(cei) := ∅.
If0 ≤ i ≤ x cex(gx) := false then
∀f ′

i ∈ FX(cei) P(f ′
i) := Deny, else ∀f ′

i ∈ FX(cei) P(f ′
i) := Allow

Formal Definition of the Break-the-Glass Policy

P(n) describes a Break-the-Glass policy if P(n) satisfies the requirements of the Con-
textual Modification with the further addition of a TX mapping, identifying the at-
tributes which have to be encrypted or modified TX : CE =⇒ F′′ ⊆ F, with ∩0≤i≤x
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TX(cei) := ∅ and ∪0≤i≤x FX(cei) ∩ ∪0≤i≤xTX(cei) := ∅. If0 ≤ i ≤ x cex(gx) :=

false then ∀f ′′
i ∈ FX(cei) P(f ′′

i ) := Deny, else ∀f ′′
i ∈ FX(cei) P(f ′′

i ) := Modify

3.4 Thesis I/2: Formal Definitions and Challenges of
Access Control Beyond the Telemedicine Cloud

I proposed special categories of edge instances beyond the cloud that represent a special
category of modern telemedicine infrastructure from the perspective of access manage-
ment. I formally defined a categorization of these into storage and processing edges. I
then discuss the increasingly prevalent smart device based peer-to-peer networks as an
extreme case of edge solutions, and analyse their potential and stability to function as
stand-alone edge networks.

Publications related to this thesis: [J1],[J2],[C5],[C7],[C8],[F10],[F11]

The transformation of the healthcare landscape is increasingly influenced by the
expanding disciplines of edge and fog computing [19, 29, 35, 114]. The perva-
siveness of e-health applications necessitates a shift from centralized to distributed
computing paradigms.

Edge computing is the paradigm of bringing computation closer to the data source,
which may be IoT devices, sensors, or other data-generating terminals. In contrast to
the traditional cloud-centric paradigm, where data is sent to centralized data centers
for processing, this transition involves sending data directly to the cloud. Edge com-
puting addresses several challenges posed by bandwidth limitations, latency, and the
shear volume of data generated by modern devices by bringing computation closer
to the data source.

Fog computing, which frequently accompanies edge computing, seeks to intro-
duce intelligence to the local level. Fog computing operates between edge devices
and the central cloud, offering a more distributed approach to data, storage, and
application services. While edge computing concentrates on immediate, real-time
actions close to data sources, fog computing operates between these edge devices
and the central cloud.

These computing paradigms provide numerous advantages in the context of e-
health and telemedicine. They can facilitate real-time patient monitoring, improve
the responsiveness of medical applications, and protect the privacy and security of
patient data. Imagine a scenario in which the vital signs of a patient are monitored
remotely. Instead of transmitting all data to a central server, preliminary analysis can
be performed at the periphery, near the patient. Only pertinent information, possibly
indicative of an anomaly, would be transmitted to the cloud or central server for
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further analysis. This not only reduces the burden on central resources, but also
ensures timely intervention when necessary.

3.4.1 Processing Edge

The infrastructure component that I refer to as the processing edge represents a
pivotal evolution in the architecture of edge computing. It is capable of imitating a
variety of cloud-typical functions. Two of its most distinguishing characteristics are
its advanced access control and robust data storage capabilities.

The processing edge functions as an intermediary element in the e-health infras-
tructure, ensuring that data is not only effectively stored but also accessible in a con-
trolled manner. Its architecture is intended to span the distance between the cloud’s
vast storage and processing capabilities and the periphery devices’ immediacy and
responsiveness.

Consider a telemedicine application that requires a patient’s data spanning multi-
ple years for a comprehensive analysis. While real-time processing of imminent data
from sensors and devices is possible at the periphery, historical data may reside in the
cloud. With its cloud-like capabilities, the processing edge can seamlessly integrate
these datasets, ensuring that the entire medical history of the patient is available for
analysis without significant delays.

In addition, the enhanced access control mechanisms at the processing edge are
crucial for guaranteeing data privacy and security, which are of paramount impor-
tance in the healthcare industry. It provides granular control over who can access the
data, under what conditions, and for what purpose, thereby protecting the data path
from unauthorized access and potential intrusions.

3.4.2 Caching Edge

The caching edge is a distinct portion of the edge in terms of storage and computa-
tional capacity. It may not possess the same computational prowess as the processing
edge, but its strength rests in its enhanced storage capabilities, distinguishing it as a
layer that is more sophisticated than basic edge endpoints but less complex than the
processing edge.

In situations where continuous access to the cloud or processing edge is impracti-
cal or momentarily lost, the true value of the caching edge becomes apparent. Con-
sider a scenario in which remote healthcare interventions are carried out in regions
with intermittent or no connectivity. Wearable devices or other medical equipment
may not always have the luxury of transmitting vital patient data in real-time to cen-
tralized servers or even the processing periphery, despite the fact that they generate
such data.
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In these instances, the caching edge functions as a safe haven for these data. By
providing extensive offline storage, it ensures that no data is lost even if connectivity
is compromised. Once the devices regain access to more robust networks or the
processing edge, the stored data can be synchronized to ensure that every piece of
data is recorded and available for subsequent analysis.

Moreover, when immediate processing is not essential but data retention is, the
offline storage of the caching edge becomes invaluable. Real-time analysis may not be
required, for instance, if a healthcare provider is monitoring non-critical parameters
of a patient over an extended period. However, in order to provide comprehensive
care, it is necessary to store this data for days or even weeks. With offline storage ca-
pabilities, the caching edge becomes the primary repository for such data, preserving
it until it is processed or analyzed.

Additionally, the offline capabilities of the caching edge play a crucial role in
disaster recovery scenarios. In the event of unanticipated disruptions or system mal-
functions, data may be compromised. Nonetheless, data consistency is maintained
because the caching edge functions as a temporary storage space. Once systems are
restored, cached data can be retrieved and integrated back into the primary flow,
minimizing data loss and ensuring uninterrupted patient care.

With its enhanced offline storage capabilities, the caching edge serves as a safety
net in the e-health infrastructure. Whether it’s to ensure data retention in connectivity-
challenged areas, function as a buffer during non-critical monitoring, or play a crucial
role in calamity recovery, the caching edge is essential for bolstering the telemedicine
data path.

3.4.3 Formal Definition

Let us denote the entire e-health cloud-based system as E . This system is a tuple com-
prising various components, such as devices, edge nodes, storage units, processing
units, and communication links.

E = (D,N, S, P, L)

Where:

• D represents the set of all devices or endpoints in the system.

D = {d1, d2, . . . , dn}

• N represents the set of all edge nodes in the system.

N = {n1, n2, . . . , nm}
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• S represents the storage units available at different layers, including the caching
and processing edge.

S = {s1, s2, . . . , so}

• P represents the set of processing units or capabilities at different layers.

P = {p1, p2, . . . , pp}

• L represents the set of communication links connecting various components.

L = {l1, l2, . . . , lq}

The caching edge, denoted as C, is a subset of the e-health system E focusing
primarily on storage capabilities, especially during offline scenarios.

C = (Dc, Nc, Sc, Pc, Lc)

Where:

• Dc ⊆ D is the set of devices that interact directly with the caching edge.

• Nc ⊆ N is the set of edge nodes specifically designated for caching purposes.

• Sc ⊆ S is the predominant component, representing the enhanced storage ca-
pabilities of the caching edge.

• Pc ⊆ P signifies limited processing capabilities, mostly to manage the storage
and retrieval of data.

• Lc ⊆ L represents communication links pertinent to the caching edge.

The processing edge, denoted as PE , is another subset of E , characterized by its
processing prowess and ability to mimic cloud functionalities.

PE = (Dp, Np, Sp, Pp, Lp)

Where:

• Dp ⊆ D is the set of devices directly interacting with the processing edge.

• Np ⊆ N is the set of edge nodes designated for processing tasks.

• Sp ⊆ S represents storage units at the processing edge, more advanced than
the caching edge but not as vast as the cloud.
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• Pp ⊆ P is the predominant component, symbolizing the significant processing
capabilities of the processing edge.

• Lp ⊆ L denotes communication links associated with the processing edge.

1. Storage Capabilities: The cloud has the highest storage capability, followed by
the processing edge and then the caching edge.

Scloud > SPE > SC

2. Processing Power: The cloud possesses the maximum processing power, fol-
lowed closely by the processing edge. The caching edge has the least processing
capability.

Pcloud > PPE > PC

3. Access Control Capabilities: The cloud and the processing edge possess ad-
vanced access control mechanisms, allowing for granular permissions and ac-
cess restrictions. The caching edge has limited access control capabilities and
can only grant or deny access based on its current storage state.

ACcloud = ACPE > ACC

Where AC denotes access control capabilities.

4. Data Retrieval Rule: If a device queries data on the e-health edge:

(a) The caching edge will first check its storage. If the data is available, it
will provide it; if not, and it cannot evaluate the access, it will deny the
request.

(b) If the data is not available at the caching edge, or if the caching edge
cannot evaluate access rights, the request is forwarded to the processing
edge.

(c) The processing edge will check its storage and access control mechanisms.
If the data is available and access is permitted, it will provide the data;
otherwise, the request is directed to the cloud.

Consider a scenario where a healthcare provider wants to retrieve a patient’s med-
ical history. The request is initiated from a device d2. The medical history comprises
recent data (stored at the caching edge), intermediate data (stored at the processing
edge), and older data (stored in the cloud).

1. The device d2 sends a query to the nearest node n3 of the caching edge.
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2. n3 checks its storage. It finds the recent data but doesn’t have the entire medi-
cal history. Let’s hypothesize that this particular request requires more complex
access control solutions than simple role or contextual evalution. In this case,
given its limited access control abilities, the edge node sends the available re-
cent data to d2 and forwards the query to the processing edge node n4 for the
documents requiring more complex evaluations.

3. n4 at the processing edge checks its storage. It locates the intermediate data
and, after evaluating its advanced access control mechanisms, determines that
d2 has permission to access the data. It sends the intermediate data to d2.

4. For the older data, n4 forwards the request to the cloud. The cloud evaluates
the request, accesses the older data, and after verifying the access rights, sends
the data to d2.

In this example, the device d2 successfully retrieves the entire medical history
of the patient, navigating through the different layers of the e-health cloud-based
system. The process showcases the layered storage, processing, and access control
mechanisms in place across the caching edge, processing edge, and the cloud.

3.4.4 Smartphone-based Peer-to-Peer Edge

Distributed computing over the edge as part of various smart systems is becoming a
popular research topic [47]. Research into algorithms that are suitable to such en-
vironments often involves actual deployments, because realistic conditions are non-
trivial to model, yet they are crucial for finding an optimally efficient and robust
solution. Still, this severely limits the possibilities of exploratory research.

One important domain is smartphone applications that can form a part of many
smart systems such as smart city or e-health solutions [116]. In this domain, it is
important to fully understand the capabilities and limitations of the devices and their
network access as well. This includes battery charging patterns, network availability
(churn) and network attributes (for example, NAT type).

Our team started to develop the smartphone app Stunner in 2013 to collect data
concerning the NAT properties of smartphones using the STUN protocol [23], as
well as many other attributes such as battery level and network availability. Since
then, we have collected a large trace involving millions of individual measurements.
Recently, we also updated the application to collect data concerning direct peer-to-
peer capabilities based on a basic WebRTC implementation.

There have been many data collection campaigns targeting smartphones. This
included the famous Mobile Data Challenge (MDC) [67], which aimed to collect
large amounts of data from smartphones for various research studies, including sen-
sory data, cell towers, calls, etc. and ran between 2009 and 2011, resulting in the
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largest and most widely known dataset yet. After this, the most prominent project to
achieve similar results was the Device Analyzer Experiment. started in 2011 by the
University of Cambridge, aiming to not only record similar attributes to the MDC, but
also system-level information such as phone types, OS versions, energy and charg-
ing [31, 115]. This trace has been used, for example, to determine the most energy
consuming Android APIs [70] or to reconstruct the states of battery levels on the
monitored smartphones [48]. Our dataset is unique in that, apart from being five
years long, it contains all the necessary attributes to simulate decentralized applica-
tions.

Another set of projects are concerned with measuring the network (e.g., detecting
NAT boxes) as opposed to collecting a full trace from the devices, which is our main
goal. For instance, in 2014 a study was initiated to analyze the deployment rate of
carrier-grade NATs that can hide entire areas behind a single public IP address [93].
The measurement was based on Netalyzr, as well as on crawls of BitTorrent DHT
tables to detect possible leaked internal addresses due to hairpin NAT traversal. In
another study across Europe, an application called NAT Revelio was developed [75].
Yet another data collection campaign attempted to collect traceroute sessions from
smartphones using the custom TraceboxAndroid application [112]. The application
detects the exact number of middleboxes and NAT translations encountered between
the device and a specified test target. In a similar two-week campaign, the Netpicular
application was deployed [117]. Also, a mobile application called Mobil Tracebox
was deployed to carry out traceroute measurements [125]. This campaign ran for an
entire year. A summary of these NAT studies can be found in Table 3.1.

While our NAT measurements were simply based on STUN server feedback [74],
thus underestimating the complexity of the network, our P2P measurements indi-
cated that our NAT type data is a good basis for predicting connection success, thus
measuring the capabilities of a peer-to-peer network.

The results of our research team was fourfold:

1. our application Stunner had been collecting data for a much longer time than
any of these applications, which allowed us to observe historic trends;

2. with an updated version of the application, we measured direct P2P connec-
tions allowing us to collect NAT traversal statistics;

3. we collected a wide range of properties simultaneously, including NAT type,
battery level, network availability, and so on, to be able to fully model decen-
tralized protocols; and

4. we made our trace publicly available at http://www.inf.u-szeged.hu/stunner.

http://www.inf.u-szeged.hu/stunner
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Table 3.1: Comparison between various NAT measurement campaigns

Source Collected Attributes Length Public Tools
[93] local, external and

public IP addresses
2014-
2016

No Netalyzr

[75] external IP, mapped
port, traceroute re-
sults, UPnP query re-
sults

2016 May
and Au-
gust

No NAT Revelio

[125] traceroute results 2016 Feb -
2017 Feb

No Mobile Tracebox

[117] traceroute results,
number of detected
middleboxes

2011
Jan.,
2 weeks

No Netpiculet

[112] traceroute results,
number of detected
middleboxes

2014 May
- Sep

No TraceboxAndroid

Data collection methodology

The functionality of our Android app Stunner was to provide the user with infor-
mation about the current network environment of the phone: private and public IP,
NAT type, MAC address, and some other network related details [23]. At the same
time, the app collects data about the phone and logs it to our servers. The app was
launched in April 2014, when it was simply made public without much advertising.
Since then, at any point in time we had a user base of a few hundred to a few thou-
sand users, and over 40 million measurements have been collected from all over the
world.

In the original version measurements were triggered either by the user (when
the app is used) or by specific events that signal the change of some of the proper-
ties we measure: battery charging status, network availability. There was periodic
measurement as well every 10 minutes, if no other events occurred.

The version used for the peer-to-peer stability measurements was completely re-
designed. This was necessary because Android has become very hostile to back-
ground processes when the phone is not on a charger, in an effort to save energy. For
this reason, we collected data only when the phone is on a charger. This, however,
was not a real issue, because for decentralized applications these are the most useful
intervals, when it is much cheaper to communicate and to perform computing tasks
in the background. Android event handlers have also became more restricted, so we
could use them only under limited circumstances or on early Androids. The events
raised by connecting to a charger or a network can still be caught by the Android job
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scheduler, but the timing of these events was not very reliable.
For this reason, instead of relying on event handlers, the new version checked

the state of the phone every minute, and if there was a change in any important
locally available networking parameter or in charging availability, it performed a full
measurement. A measurement was still triggered if the user explicitly requests one,
and it was also triggered by an incoming P2P measurement request. Also, if there
was no measurement for at least 10 minutes, a full measurement is performed.

P2P connection measurements are also a new feature in the latest version that are
performed every time a measurement is carried out. They are based on the WebRTC
protocol [15], with Firebase as a signaling server [81], and a STUN server [74].
We built and measured only direct connections, the TURN protocol for relaying was
not used. Every node that was online (had network access and was on a charger)
attempted to connect to a peer. To do this, the node sent a request to the Firebase
server after collecting its own network data. The server attempted to find a random
online peer and managed the information exchange using the Session Description
Protocol (SDP) to help create a two-way P2P connection over UDP. If the two-way
channel was successfully opened then a tiny data massage is exchanged. The channel
was always closed at the end of the measurement. One connection was allowed at a
time, every additional offer was rejected by default.

Measurements

Connection open failedConnection open but transport error

Connection lost
Timed out after successful signaling

Timed out without peer

Offer rejected

Timed out with peer

Unsuccessful connection or transport (40%)
Successful connection and transport (34%)
Signaling related error (26%)

Figure 3.3: Proportions of the possible outcomes of P2P connection attempts.

Figure 3.3 shows the proportions of the outcomes of 63184 P2P connection at-
tempts. Out of all the attempts, 34% was completed successfully. While analyzing
the results, we attempted to investigate the various reasons why some of the sessions
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Figure 3.4: Statistics over successful connections as a function of NAT type. The area
of a disk is proportional to its observed frequency, the color signifies the success rate.
Examined NAT types: OA - Open Access, FC - Full Cone, RC - Restricted Cone, PRC -
Port Restricted Cone, SC - Symmetric Cone, SF - Symmetric UDP Firewall, FB - Firewall
blocks, N/A-missing type

failed. First, signaling related error means that the SDP data exchange via the signal-
ing server failed. This can happen, if the server contacts a possible peer but the peer
replies with a reject message (offer rejected), or it does not reply in time (timed out
with peer), or we cannot see proof in the trace that any peer was actually contacted
(timed out without peer). Note that a peer rejects a connection if it has an ongoing
connection attempt of its own.

If the signaling phase succeeds, we have a pair of nodes ready to connect. The
most frequent error in these scenarios is failing to open the channel, most likely due
to incompatible NAT types. After the channel is open, transporting the test message
is still not guaranteed to succeed (transport error). Participant nodes may discon-
nect with an open connection (connection lost). In some rare cases a timeout also
occurred after successful signaling, that is, the WebRTC call did not return in time.

Figure 3.4 shows statistics over successful connections as a function of NAT type.
The signaling related errors are not included here. Note that NAT type discovery is
an independent process executed in parallel with the P2P connection test. Therefore,
there are some cases where the NAT type information is missing but the signaling
process is completed nevertheless.

The dynamics of the NAT distribution over the years are shown in Figure 3.5



40 Thesis Group I: Data Privacy at the Edge of the Telemedicine Datapath

201
4-0

4
201

4-1
0

201
5-0

4
201

5-1
0

201
6-0

4
201

6-1
0

201
7-0

4
201

7-1
0

201
8-0

4
201

8-1
0

201
9-0

4
0.0

0.2

0.4

0.6

0.8

1.0

<=0 1 2 3 4 5 6
session length (ln)

0

5000

10000

15000

20000

25000

nu
m
be
r

SC
PRC
RC
FC
SF
FB
OA

Figure 3.5: (1) NAT distribution per day over 5 years (2) Session length distribution

(left). The distribution is based on continuous sessions of online users. These con-
tinuous sessions of homogeneous network conditions were determined based on the
measurement records. A session has a start time, a duration, and a NAT type. The
distribution is calculated based on the number of aggregated milliseconds of session
durations falling on the given day. The distribution of online time per day is near 8%
almost every time. Recall, that here the online state is meant to imply that the phone
is on a charger.

The plot has gaps because in 2015 the data collector server was down, when the
project was temporarily neglected. In addition, the first version of our P2P connection
measurement implementation caused lots of downtime in 2018. Also, some of the
STUN servers that were initially wired in to the clients disappeared over the years.
As a result, the Firewall blocked NAT type is not reliable, so we exclude that category
from the figure. Note that the distribution is surprisingly stable over the years.

The session length distributions are presented in Figure 3.5 (right). Session length
is in minutes, the bins for the histogram are defined on a logarithmic scale. Sessions
shorter than one minute are not always measured accurately due to our one minute
period of observation, so we grouped such sessions in one bin (<= 0).

Figure 3.6 contains stacked bar charts illustrating the distribution of different
NAT types in the 6 continents and in the networks of the top 10 most represented
providers in 4 different years. The most common NAT type is the Port Restricted Cone
except in Africa where the Symmetric Cone has a relatively larger share. According
to the chart the rarest NAT type is Open Access everywhere. Interestingly, the NAT
type distribution is very different among the different providers, unlike in the case of
the distributions based on geographic location.

Discussion

The development and significance of distributed computation at the periphery, par-
ticularly in smartphone applications, cannot be denied. Our investigation via the
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Figure 3.6: NAT type distribution by continent in 4 different years (top) and NAT type
distribution by the top 10 providers in 4 different years (bottom). Colors represent types
as defined in Figure 3.5.

Stunner application yielded an exhaustive data set regarding the NAT properties
and direct peer-to-peer capabilities of mobile devices. With data spanning multiple
years, we were able to observe historical trends, providing us with a unique perspec-
tive. The results of our P2P connection attempts, particularly the 34% success rate,
demonstrate the complexities and difficulties inherent to such environments. Dis-
crepancies in connection success, coupled with variations in NAT type distributions
across regions and service providers, emphasize the complexities of devising robust
and efficient algorithms for such networks.

Nevertheless, given the complexity and variance of our results, it is evident that
deploying an access control solution on smartphone-based peer-to-peer networks is
not simple. Diverse NAT types, diverse connection outcomes, and regional variations
in network characteristics necessitate a more nuanced approach. Despite the fact
that our research has provided a firm foundation and comprehension of the terrain,
additional exploration and possibly simulations are essential. We can only assure the
successful deployment and evaluation of an access control solution on smartphone-
based peer-to-peer networks with this level of preparation.
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3.5 Thesis I/3: Policy Enforcement Implementations
for the Processing and the Caching Edge

I presented the implementation of the proposed access control solution, then I will set up
test environments to represent both edge types, and sample rules to validate the effective-
ness of the implementation under increasing data volumes. During the measurements,
I examined the resource requirements of the nodes performing the evaluation, as well
as the latencies measured for the data retrieval processes. I present the measured laten-
cies which confirmed, that for reasonable amounts of data at the various edge types my
policy categories met the requirements established in the previous theses.

Publications related to this thesis: [J1],[J2]

After defining the requirements and investigating the environments in which the
solution had to be implemented, the next step was to construct test configurations,
model the various edge types, and evaluate the effectiveness and usability of the
proposed framework using a set of test policies.

The goal of my research was to create a solution that is able to support several
different storage providers and, at the same time, make the exact implementation
of access control transparent to the end users. While the use of such heterogeneous
backends is recommended in various use cases, the field of telemedicine is a prime
example of how the strengths of this model can be brought to bear. To test the
concept, we chose a promising new solution called Open Policy Agent [7], available
in Go and WebAssembly, which could play every role in the enforcement process
(PEP, PDP, PIP, and PAP). In its standalone form, OPA is able to act as an expansion
of the processing edge, while its WebAssembly runtime has the opportunity to run
completely offline and be integrated into the applications themselves or the caching
edge. OPA also permits us to store the information necessary for decision-making
in JSON format and define the various policies in its own scripting language, Rego,
which can later be accessed via a well-defined REST interface with an HTTP POST
request containing the contextual information to be filtered or evaluated (in our case,
the medical records).

3.5.1 Policy Test Set

Using OPA, I defined a test set of policies based on the taxonomy introduced in Chap-
ter 3.3. I created two policies for each of the four categories - one simpler and one
more complex, the latter containing more operations or more resource-intensive op-
erations, or both. All algorithms run on multiple Observations received as part of the
input, but only returned those in their original or modified state which were allowed
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by the policy.
The two policies of the Role Evaluation category included in the Appendix in

Figures A.1 and A.2 both focus on the identity of the practitioner. However, while
role simple only checks to see that the specified role identifier matches the practi-
tioner’s identifier in the document, role complex checks the care teams responsible
for the patient and only grants access if the requester is a member of those teams.

The main difference between the policies of the Contextual Evaluation category,
shown in algorithms A.3 and ??, is the nature of the contextual attribute.

In context simple we check a high-level attribute, the status of the Observation
and an external attribute, the hour. Here context complex requires the PEP iterating
through the component array of each Observation, finding each medical value based
on the defined LOINC identification code, and checking to see if the exact value is
greater than the threshold.

A key aspect to be evaluated was the efficiency of the PEP when iterating and
handling arrays, since in the current version of the OPA, the developers noted in the
official documentation [6] that the performance of such an evaluation engine is the
most efficient when it works with objects, and weakest when it must iterate through
non-indexed arrays.

The majority of the documents in the FHIR standard use the array structure very
often, and if the performance of array operations is significantly worse than in any
other case, this would provide a strong argument against adapting our concept. The
modification operation in a PEP node is very demanding in itself, since the engine
treats every variable as a constant due to their non-imperative behavior. For this
reason, if we need to modify or redefine a particular field, we must first create a copy
of the original object without the value, then create a new value, and finally create
the response by adding the new value to the filtered object copy. The Contextual
Modification policies are shown in algorithms A.4 and A.5. Here modif simple simply
removes the patient data from the Observation and the encapsulating shell, while
modif complex must create a new component array for each Observation that does
not contain urls pointing to sensitive patient documents.

The Break-the-Glass Policies shown in algorithms A.6 and A.7, are the most com-
plex. These policies are expected to be fast, accurate, and effective, because they are
most commonly used in emergency scenarios when a doctor or nurse needs to access
limited patient information to provide the necessary care.

In these scenarios, the system must remove or encrypt everything else that goes
beyond the most necessary attributes, and with two policies we tested how resource
consumption varies when we wish to encrypt a single attribute that is deeply em-
bedded in the document and requires filtering in break simple and in break complex
when we wish to encrypt every identifier in the document that could later be used to
identify users in the system.
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3.5.2 Results from the Processing Edge

To capture the core characteristics and capabilities of the processing edge in its en-
tirety, I meticulously designed and assembled a compact, multi-node test environ-
ment. This environment is a miniature version of a vast network, designed to imitate
the distinctive characteristics of the processing edge without requiring extensive re-
sources or infrastructure. At the core of this test environment is a WiFi-connected,
well-structured local network. This network is purposefully tiny, functioning as a
microcosm of the processing edge that is manageable and readily observable. The
incorporation of a database into this network allows us to simulate the robust data
storage capabilities intrinsic to the processing edge, allowing us to observe data ac-
cumulation, retrieval, and integration processes in real-time and on a manageable,
yet representative scale.

The presence of an intermediary node is required because it depicts the ”interme-
diary element” that the processing edge exemplifies. This node functions as a bridge,
transmitting data between the database (similar to a cloud storage or the cache of
the edge) and the user application, simulating the seamless integration of current
and historical data, as seen in applications such as telemedicine. By running the user
application on a separate node, it is possible to closely monitor the responsiveness
and immediacy typical of peripheral devices in real-world situations. This configu-
ration guarantees the user receives timely and accurate information, allowing us to
evaluate the performance and efficacy of data retrieval and processing.

Our compact test environment aims to depict the delicate equilibrium maintained
by the processing edge between the vastness of the cloud and the immediacy of end
users. This equilibrium is reflected in the testbed’s design, which necessitates only
periodic interactions with the cloud as opposed to a continuous connection. This
design choice not only conserves resources but also mirrors the operational efficacy
of the processing edge, which can manage immense quantities of data without being
permanently connected to the cloud. By distinguishing agents for storage, processing,
and access control within the testbed, we can hone in on the specifics of how each
function operates. This division enables us to independently modify, optimize, and
refine each component, ensuring that every aspect of the processing edge is finely
refined.

In this environment, I chose a Squid proxy-like [95] implementation for the OPA,
deploying it on a separate node, connecting it to the intermediary node and config-
ured it to forward each request from the user applications towards the database, but
upon receiving the response containing FHIR structures from the storage, send it to
the PEP for filtering and (if necessary) transforming before forwarding it to the end
user. This provides a necessary middle layer, unlike most solutions that existed in the
domain when we conducted our research. In this way, policy enforcement can take
place outside the cloud, which allows the use of a heterogeneous storage solution
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(provided that it uses the FHIR standard as the format of the stored documents), but
it also relieves the burden on the end systems. This approach is not only better opti-
mized in terms of efficiency and capacity, as the elements of the processing cloud are
very likely to have the required capabilities, but it also ensures that sensitive infor-
mation never reaches the end users without prior assessment and filtering. It should
be added that with such a proxy, developers are also able to log in detail the various
operations on the telemedicine records in order to comply with the GDPR.

The components of the test environment were the following:

• A desktop PC running Windows 10 on an AMD Ryzen 5 processor at 3.59 GHz
speed and 16 GB DDR4 memory ran the client application on a Kingston SSD-
Now V300 SSD with 120 GB capacity and 450 MB/s reading speed, acting as
the controller node of the environment;

• A laptop running Windows 10 on an Intel i5 processor at 2.49 GHz speed with 8
GB DDR4 and a 120 GB SSD with a reading speed of 423 MB/s memory hosted
the MongoDB v3.2.1 [5]-based backend along with a lightweight REST API that
handled the requests and query parameters;

• A secondary laptop with similar attributes hosted the Squid proxy written in
NodeJS 10.14;

• An iMac running macOS Catalina with an Intel i5 processor at 2.9 GHz speed
and 20 GB DDR3 memory hosted the OPA v0.23.2 runtime with a hard disk of
size 1 TB and reading speed of 210 MB/s.

The database was loaded with over 500,000 different FHIR Observation docu-
ments, based on properties from the MIMIC3 database [61], involving 200 patients,
30 doctors and 12 nursing teams, all signed with a different time stamp between
2015 and 2020. The template and structure of these Observations were taken from
one of our industry projects to simulate the size and complexity of healthcare docu-
ments in a real system. The measurements were performed by a monitoring host that
issued the restarts and reinitializations of each element of the architecture between
measurements. During the experiment, each component was configured so that its
output was logged in separate files that were collected and evaluated by the monitor
at the end of a round. Each rule ran on 8 different input sizes: 10, 20, 50, 100, 200,
500, 1000 and 2000 data sets. The PEP engine received exactly the same amount
of data in each round, but of course the size of the output varied from case to case,
depending on the selected policy and the content of the input.
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Figure 3.7: Average Delay on PEP by Categories

Performance between Categories

After evaluating the average performance of the various categories, we observed sev-
eral interesting trends, compared to what we originally expected. The most notable
of these is the relatively faster evaluation time of the Contextual Evaluation policies
compared to the Role Evaluation category, as seen in Figure 3.7.

Figure 3.8: Average CPU Load of OPA by Categories



3.5 Thesis I/3: Policy Enforcement Implementations for the Processing and the
Caching Edge 47

While the CE policies are more complex in nature, it seems that if the contextual
information sets the result as true or false, the evaluation is significantly quicker than
the cases when an internal examination of the input documents is required.

We observed a similar trend with the average CPU load of the categories, shown in
Figure 3.8 with the Contextual Evaluation policies demanding slightly less percentage
of the CPU time compared to the Role Evaluation policies, while the Break-the-Glass
policies remain the most demanding ones. However, the overall difference between
the first two and latter two categories is not as big as on the response delay. Another
key observation is that while the size of the input was below 1000 documents (which
is already an unrealistically large query size for a real-life application), not even the
Break-the-Glass policies required more than 50% of the CPU.

Figure 3.9: Average Memory Usage of OPA by Categories

The memory usage of the categories, shown in Figure 3.9 on the other hand,
while still showing the trends of the previous figures and requiring only manageable
amount of memory when evaluation smaller inputs (not even Break-the-Glass poli-
cies demanding more than 50-60 MB while the input size is around 50 documents),
this demand shows a sudden jump after the input size reaches 1000 documents, with
even the Role Evaluation policies requiring around 100 - 150 MB to evaluate inputs
between sizes 1000 and 2000.

The measurements were taken with the PEP solution restarted and reinitialized
between each measurement, since, as we have shown in our previous paper, OPA
employs a very lazy approach towards garbage collecting, cleaning the memory only
when it is required by the system or an especially large evaluation. This fact makes
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these sizes even more alarming for a real-life scenario, since the size of OPA in the
memory can grow significantly during a series of evaluations.

Based on these results, while the CPU load and the response delay seem to be man-
ageable requirements, the memory demand, combined with the experienced lazy garbage
collecting process of OPA might requires a custom build or external process that manages
and frees the memory after the evaluations are finished to optimize this aspect of the PEP
nodes.

Performance in Categories

We ran each policy with each size at least 30-50 different times to collect the raw data
for the statistics shown in the tables below, and these group the policies belonging
to the same category. For each policy, we calculated from the collected data sets the
mean value of CPU load, memory usage and response delay on the PEP (OPA) node.

Although the question of whether to use the same constant inputs for each eval-
uation, or use HTTP(S) requests that simulate a real-world application is a complex
element for this phase of our research, we decided to use dynamic inputs to get more
precise, realistic results.

Figure 3.10: Average PEP Latency in Role Evaluation category

A comparison between Role Evaluation policies is shown in Figure 3.10. While,
as we have assumed, the complexity of role complex induces a higher latency, the
total difference between the two policies is not very significant. Even with an input
of 2000 records the PEP was able to filter out the restricted ones in half a second.
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Figure 3.11: Average CPU load in Role Evaluation category

The effects on CPU and memory, as shown in figures 3.11 and 3.12, are somewhat
more demanding - when 2000 documents are sent, 70% of the processor is required
to evaluate the policy and about 140 MB of the memory - a clear indication of how
costly it is to perform subqueries in isolated structures, such as the list of careteams
and their members.

Figure 3.12: Average Memory usage in Role Evaluation category
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Based on these results, it is evident that the proposed solution is capable of handling
more complex Role Evaluation policies without difficulty, but it is advisable to store the
teams, groups, institutions in indexed objects rather than in arrays.

Figure 3.13: Average PEP Latency in Contextual Evaluation category

A comparison of the two Context Evaluation policies also produced some interest-
ing results, which are presented in figures 3.13, 3.14 and 3.15. Our main objective
here was to determine what kind of contextual evaluation is more demanding, and
on the basis of the data it is clear that array-based evaluations are generally more
complex, but in small evaluations they are actually cheaper than collecting and com-
paring external information such as dates.

This calls into question some notable architectural aspects of the infrastructure,
such as whether this context information should be collected and forwarded by the
proxy as part of the input data. Seeing that in some cases it is possible on a larger
scale that the PEP deployment can handle traffic from end nodes in different time
zones, it might be a good idea to omit such internal queries as a general design
pattern of the policies.

Moreover, it is interesting to note that after some minor differences, besides inputs
with more than 20 documents, the metric values start to converge, since after a
certain point in the measurement set a significant portion of the documents is rejected
during the evaluation of context1 due to their inactive status, thus the value is set
false, before the engine starts evaluating the relational conditionals.

Our interpretation of these results can be summarized as follows: It is clear that
policies with contextual evaluation may be as effective as simple Role Evaluation policies,
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Figure 3.14: Average CPU load in Contextual Evaluation category

Figure 3.15: Average Memory usage in Contextual Evaluation category
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but where possible, contextual information must be provided as part of the input, rather
than being queried on the PEP node.

Figure 3.16: Average PEP Latency in Contextual Modification category

The results of the Contextual Modification policies are included in figures 3.16,
3.17 and 3.18. These results showcased another important aspect of the evaluation
engine that could be one of the pillars of the design patterns for defining the policies.
It was expected that modif complex would be the more complex of the two.

Instead of this expected result, the measurements clearly indicate that neither is
significantly more demanding. In some cases modif complex consumes more CPU,
and it has slightly more latency than modif simple due to the demanding array copy
and filter mechanisms, while modif simple requires slightly more memory.

Modification policies are much more demanding than simple access evaluations. Nev-
ertheless, they can be implemented effectively if we take into account the increased costs.
We also wish to investigate the possible patterns and anti-patterns in order to write more
effective policies for this type.

Based on the results of our previous evaluations, we assume that Break-the-Glass
policies will be the most resource-intensive portion of our evaluation set, and the
results (see figures 3.19, 3.20 and 3.21) were as we thought they would be, but
again with some minor differences from our original expectations.

While the CPU load and memory usage of the two policies are almost identical,
it actually takes a little longer to evaluate break simple than break complex, although
based on the sheer number of operations (especially the number of encryption opera-
tions) in break complex, it should have been a much more expensive policy compared
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Figure 3.17: Average CPU load in Contextual Modification category

Figure 3.18: Average Memory usage in Contextual Modification category
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Figure 3.19: Average PEP Latency in Break-the-Glass category

Figure 3.20: Average CPU load in Break-the-Glass category
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to break simple. The answer lies in the nature of operations that the policy executes:
It filters an array, then creates a new array to store an encrypted value, and then
concatenates two arrays to be embedded in an object. Apparently, these array op-
erations, with the emphasis on the concatenation operation, which is unique in our
evaluation set for this policy, is just as resource-demanding as its pair.

Figure 3.21: Average Memory usage in Break-the-Glass category

Just as we expected, the Break-the-Glass policies are the most demanding ones that
can be evaluated on the PEP node, but even with the increased cost they can achieve
the expected results. While the essence of these policies is to transform and encrypt the
data, it is important to avoid array operations as much as possible, as they only further
increase the cost when potentially cheaper workarounds might be available.

Performance in Infrastructure

It is interesting to see how the latency of the PEP node affects the latency of the entire
infrastructure. From each policy pair we took the one with the greater response delay
and compared it with the system latency in figures 3.22, 3.23, 3.24, and 3.25.

Based on these results, we may conclude that when the data set is increased,
the increase in system-wide latency, PEP latency and the relative latency of the two
components are all nonlinear.

The difference between the complexity of the various policy categories, on the
other hand, is not always as clear as we initially assumed. The results of role complex
and context simple, for example, are almost identical, and the care team identifying
role complex even turns out to be somewhat more demanding than context1, which
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Figure 3.22: System Latency and PEP Latency on role complex

Figure 3.23: System Latency and PEP Latency on context1
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Figure 3.24: System Latency and PEP Latency on modif simple

has to iterate and filter the contents of an embedded array, and with an input of
size 2000 on context simple, the PEP only provides the 21.4370% of the full system
latency and 25.9672% on role complex.

However, most of our expectations were confirmed by the results we obtained. Al-
though it is clear that the identification of good practices, patterns and anti-patterns
is necessary in the next phase of our research to further optimize the use of the PEP,
the relative complexity and cost of the different categories were as expected. There is
an overall latency and efficiency of the prototype infrastructure - a barely noticeable
increase when we consider that the majority of healthcare applications, including our
client application in its unmodified state. This requests 100 or 200 documents in a
single operation, and we found the PEP (and OPA as its implementation) to be a very
effective component of our security solution.

Discussion

The meticulous evaluation of the simulation of the processing edge has yielded a
wealth of insights, particularly concerning the performance of policies within dis-
tinct categories. The unexpected speed with which Contextual Evaluation (CE) poli-
cies operated in comparison to Role Evaluation policies stood out dramatically. This
suggests that when contextual information determines the outcome directly, the eval-
uation becomes significantly quicker, obviating the need for an exhaustive internal
examination of input parameters. In addition, the observed average CPU usage
reflected these findings. Break-the-Glass policies emerged as the most resource-
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Figure 3.25: System Latency and PEP Latency on break simple

intensive, while CE policies were marginally more efficient. However, the perfor-
mance disparity between these categories was not as pronounced as with response
time.

As we dug deeper, our data analysis, which included multiple runs for each pol-
icy, confirmed that the solution could manage complex Role Evaluation policies with
ease. Nonetheless, the results support storing entities such as teams and institu-
tions as indexed objects as opposed to arrays. Moreover, because array-based evalu-
ations proved to be more difficult, we were compelled to reevaluate the architectural
framework, particularly in terms of how context information is provided. In situa-
tions where the PEP may serve end nodes in different time zones, omitting internal
queries appears to be a prudent design decision.

Moreover, our evaluations revealed that after a certain threshold, the metric val-
ues tend to converge, indicating the efficacy of contextual evaluations for policies. To
improve this efficacy, it is recommended that the necessary contextual information
be included explicitly in the input. Intriguingly, our assumptions about the complex-
ity of particular policies were debunked. The performance differences between these
policies were negligible, and each had distinct resource requirements. These nuances
highlight the need for a more nuanced comprehension of policy categorization and
its effects on performance.

In conclusion, while the results primarily supported our initial hypotheses, they
also highlighted potential improvement areas. During the upcoming investigation
phase, it will be crucial to identify best practices and patterns. Despite these obsta-
cles, the overall efficacy and latency of our prototype infrastructure meet the needs
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of the vast majority of healthcare applications. Consequently, the PEP, with OPA as
its foundation, has proved to be an indispensable component of our security solution
in the processing edge, exhibiting great promise for future deployments.

3.5.3 Results from the Caching Edge

The caching edge, with its emphasis on offline storage capabilities, is exemplified
precisely in environments where nodes may occasionally be offline but still operate
user applications. Such situations highlight the significance of the caching edge be-
cause they frequently characterize situations in which data storage is essential, even
when immediate processing or data transmission is not feasible. Here, the caching
edge becomes indispensable, preserving data until it can be synchronized or analyzed
later. Nodes executing user applications in potentially offline scenarios encapsulate
the substance of the caching edge: they serve as both the data collection point and
impermanent storage, bridging the distance between data acquisition and eventual
processing.

Given the proliferation of devices and platforms, it is essential to comprehend
how the caching interface functions in different environments. Web browsers have
evolved substantially and now offer a variety of features, including service work-
ers that enable web applications to function offline. By evaluating the caching edge
across multiple browsers, we can gain insight into compatibility, performance varia-
tions, and possible optimization opportunities. In addition, the proliferation of hy-
brid smartphone applications – those developed using web technologies but encased
in a native application container using frameworks, using tools such as Cordova [25]
or the popular framework Ionic [124], integrating the Angular framework and Cor-
dova – adds an additional layer of complexity. These applications frequently utilize
device-specific features while striving to deliver a consistent user experience across
platforms. Measuring the efficacy of the caching edge within these hybrid applica-
tions can cast light on how effectively they cache data, particularly when compared
to native applications or traditional web applications.

To gain a deeper understanding of these offline use cases, particularly with regard
to the average user workload, I undertook an exhaustive benchmarking exercise. By
evaluating our industrial progressive web applications (PWAs), some of which were
beginning their clinical trials at the time these experiments took place, we aimed to
ascertain their offline capabilities and storage needs. The results of this benchmark-
ing effort are presented in Table 3.2. In conclusion, by grounding our research in
real-world applications and encompassing multiple platforms – ranging from various
web browsers to hybrid smartphone applications – we intend to develop a compre-
hensive understanding of the caching edge. This multifaceted investigation not only
highlights its significance in the telemedicine domain, but also provides actionable
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insights for its optimal implementation and use.

Table 3.2: Summary of various telemedicine applications and daily data traffic

Project Name
Average Patients
per Doctor

Maximum Daily
Uploads per Patient

FOG 100 3
CAPD 10 4
SZIVE 100 5
SPIRO 25 3
METSZI 60 8
INZULIN 60 8
PERIFERB 23 5
STRESSZ 80 2

While the MIMIC database contains, among other records, 27,854,055 laboratory
measurements and 17,527,935 care values collected from 46,520 patients, it is clear
from the summary that in a general, real-world application covering a single subset
of telemedicine, the amount of data to be processed by a single practitioner is much
more manageable, increasing the feasibility of offline use cases. Based on this, I
defined the abstract use case for evaluating the offline access control solution as
follows:

1. A single practitioner handles 50-100 patients in an application.

2. A single patient generates 3-8 measurements on average during a single day

3. A practitioner requires access to 75 - 500 documents during the course of a
single day.

4. All of these applications utilize paging methodologies, listing only 100-200 doc-
uments at a time.

What I wanted to check was whether evaluating these policies in an application
on a set of documents with 100-500 entries is feasible and efficient for users. I ran
my measurements multiple times in the following environments:

• PWA application on an iPad Air 2 tablet

• PWA application on a Samsung Galaxy S6 Edge smartphone

• Chrome 87.0.4280.88, Microsoft Edge 87.0.664.66 and Firefox 83.0 on a desk-
top PC with Ryzen 5 3600 CPU and 16 GB DDR4 RAM
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I integrated the WebAssembly runtime of OPA in a custom developed PWA which
handles Observation documents, and included the two most critical policy categories
the requirements of which must be met by the caching edge - Role Evaluation and
Contextual Evaluation - in their config. In the following evaluations, role1 is the
same as role simple, role2 is the the exact copy of role complex and context1 and
context2 are likewise context simple and context complex.

Performance in WebAssembly Runtime

Figure 3.26: Latency (ms) comparison between standalone OPA server and WebAssem-
bly runtime in Chrome

On the basis of the evaluations I was able to establish the following results. First
and foremost, it became clear that the latency of WebAssembly-based policy enforce-
ment in the application was significantly slower than with the standalone OPA server,
as shown in Figure 3.26 especially after the document query size reached 500 en-
tries. In some cases, as with 1000 entries on role1, the evaluation in WebAssembly
proved to be over 10 times slower than the standalone version. Also, after the query
limit exceeded 500 documents, the latency of the WebAssembly evaluations began to
converge to a linear increase, instead of the nonlinear pattern we discovered in the
standalone OPA deployment.

However, as long as I stayed below 500 documents, the latency was below 1
second even in the worst case scenario, as can be seen in Figure 3.27. This proves that
if we combine the evaluation process with the paging mechanisms of the applications,
they can solve access control in of line situations. However, the policy role2 proved
to be the slowest due to the breadth-first search algorithm in the array structure
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Figure 3.27: Latency (ms) comparison between the four policies in Chrome browser

containing the connections between care teams and handlers, which could lead to
marking these types of policies as anti-patterns in the WebAssembly runtime.

Figure 3.28: Latency (ms) comparison on role1 between browsers on the desktop PC
test environment

In addition, latency can improve or worsen depending on the exact operating
environment, as shown in Figure 3.28. On the desktop PC, the Edge and Chrome-
based evaluations were very similar, but Firefox’s results proved to be different, less
efficient, due to a possible difference in the handling of heap memory, which warrants
further measurements and a deeper investigation of the possible optimizations in this
browser.
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Figure 3.29: Latency (ms) comparison on role1 between Chrome on desktop PC and
mobile devices

Before the measurements, I assumed that due to CPU and memory constraints,
latency would be highest on mobile devices. This assumption was confirmed by the
results shown in Figure 3.29. even though the process was slightly more efficient
on Samsung Galaxy S6. With the paging mechanism, the process can still work
efficiently with a load of 100-300 documents, but even in these cases the latency is
higher than on PC with the same dataset.

Finally, I was also able to confirm a conjecture from our previous work, where
the results suggested that the policy category Contextual Evaluation might be more
efficient than the category Role Evaluation, as shown in Fig. 3.30. In the current set,
I provided the contextual attributes externally to the OPA runtime, and I observed
significantly better results in the category that we originally assumed to be more
complex and challenging.

The atomic check of whether the status of a document is active or not was nat-
urally faster than the breadth-first search in an array containing the links between
care teams and handlers This leads to better latency with the increase in document
volume.

Discussion

My exhaustive investigation into the potential Caching Edge nodes yielded a wealth
of insights, especially concerning the nuances of policy enforcement and their effects
on latency. The difference in latency between WebAssembly-based policy enforce-
ment within the application and the isolated OPA server is a noteworthy observation.
Once the document query size exceeds 500 entries, the WebAssembly implementa-
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Figure 3.30: Latency (ms) comparison between role1 and context1 on desktop PC
Chrome environment

tion experiences a significant increase in latency, sometimes exceeding tenfold. No-
tably, after 500 documents, the growth pattern of latency changes from nonlinear in
standalone OPA to linear in WebAssembly. However, for document sizes less than 500
bytes, the latency is still manageable, even in more demanding circumstances. This
highlights the potential viability of coupling evaluation processes with application
paging mechanisms to effectively address inactive access control.

My evaluations also revealed that the operating environment influences latency.
Firefox lagged behind Edge and Chrome in desktop performance evaluations, pre-
sumably due to its unique heap memory management strategy at the time of the
experiments. The initial hypothesis, which predicted increased latency on mobile
devices due to their CPU and memory limitations, was confirmed. While integrating
paging mechanisms does provide some respite, mobile latencies for identical datasets
are inherently higher than their desktop counterparts.

Lastly, my evaluations confirmed a prior hypothesis from the Processing Edge,
which suggested that the Contextual Evaluation policy category may be more efficient
than the Role Evaluation policy category. Externally supplied contextual attributes to
the OPA runtime also improved performance in the Caching Edge. Evidently, discrete
tests, like determining the status of a document, are more time-efficient than complex
breadth-first queries in data arrays.

In conclusion, the in-depth examination of evaluations in Caching Edge environ-
ments highlights the complex interaction between policy types, enforcement mecha-
nisms, and operating environments. While some patterns emerge as optimal, others
present difficulties, highlighting the need for ongoing refinement and optimization
in the swiftly evolving landscape of telemedicine.



3.6 Thesis I/3.1: An Open Source Patient Flow Simulation Tool for Validation
of Results 65

3.6 Thesis I/3.1: An Open Source Patient Flow Simu-
lation Tool for Validation of Results

I developed a simulation tool using open source libraries and tools that can simulate
the distribution of patients and their waiting times in a hospital ward. The developed
simulation tool can be used to validate the extent to which the increased waiting times
due to the access control implementation from the previous theses might slow down the
process based on the amount of handled data, and the impact this can have on the
telemedicine data path, the patient flow churn and waiting times at crucial parts of the
care process.

Publications related to this thesis: [J3],[F12]

3.6.1 Motivation

As can be read in the NEJM Catalyst short article [12], patient flow technically de-
fines the total time frame that patients spend in and move through the healthcare
system from arrival to discharge. In general, we want this time to be as minimal as
possible, apart from the time required for the actual examination, diagnosis, and care
processes, without compromising patient and provider quality and satisfaction. Im-
proving the flow is essential as it can reduce the workload of medical staff and patient
waiting times, but otherwise overcrowding can occur, patient health can deteriorate,
while readmission and mortality rates can increase. [12, 52]. Improving patient flow
was also an area of research in the 1990s. The World Health Organization (WHO)
published a study using patient flow analysis (PFA), which helps researchers exam-
ine staff utilization, key patient flow characteristics, resource and financial needs,
and emerging problems [8]. Another approach has been variability analysis, which
involves dividing variables into groups and then determining how to measure them
(e.g., severity of illness can be described as the deviation from a perfectly healthy
state). The next step is to reduce or even eliminate any variability that is artificial,
as it usually arises from dysfunctional processes. This should already lead to an im-
provement in patient flow. Further progress can be expected if natural variability is
also measured and optimally managed. [72]. Our approach was to create a patient
flow simulation framework that could account for different variables to calculate and
measure potential patient flow. With this tool we hoped to gain the opportunity to
generate validational parameters for our access control framework, by measuring the
exact impact its latencies might have on the throughput of various departments based
on the patient throughput and data quantities. To do this, we collected information
on commonly used patient flow measures and the variables that may affect patient
numbers in the Emergency Department (ED).
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As the first step, our research group performed an in-depth literature review of the
patient flow and analysis domain to understand the exact requirements and current
state of the technology, which our custom solution had to meet.

According to the literature, different patient flow patterns occur under different
circumstances. Kang and Park [63] studied the hourly visit pattern and found a bi-
modal distribution: the peak flow was from 10:00 to 11:00 and from 20:00 to 21:00.
The lowest number of visits was between 02:00 and 08:00. In one Hungarian hos-
pital, patient volumes increase from 8:00 and peak around 12:00. Late night hours
are the least visited times, but the workload for staff is fairly constant [113]. When
daily visit patterns were the focus, Hitzek et. al. [52] found that the peak in patient
numbers occurred on weekends (starting on Fridays, with the highest numbers on
Saturdays), holidays, and school vacations. The authors suggest that the explana-
tion may be that people tend to engage in risky activities at these times. Varga et
al. [113] also examined the difference between patient numbers on weekdays and
weekends: They found similar trends, except that weekend nights were slightly more
demanding.

There are also seasonal patterns of visits: Hitzek et. al [52] found the highest
numbers of patients in spring and the lowest in fall. In contrast, Won, Hwang, Roh,
and Chung [119] found the highest number of asthma patients in the fall, especially
in September and October, and the lowest from June to August. They also found that
more patients visit the ED in spring from year to year.

Linked to seasonality, but with more focus on the actual temperature Otsuki,
Murakami, Fujino, Matsumura and Eguchi [84] found that during cold winters less
non-urgent patients visited the ED, suggesting that people are less active in the cold
weather. In contrast the warmer summer weather raised the patient numbers.

Heat waves can also impact visits to ED. Schramm et. al [101] published a study
of the likely impact of a June 25-30, 2021 heat wave, affecting 10 regions of the U.S.
that contain 4% of the population but accounted for 15% of heat-related ED visits.
From May to June, there were 3,504 heat-related cases at the ED, 79% of which
occurred during the heat wave. The peak was on June 28, when 1,038 patients
arrived. In comparison, 2 years earlier on the same day, 9 patients had heat-related
problems at the ED.

The usual measures of patient flow are bed occupancy rate (it is also suggested
to consider the number of outgoing and incoming patients) [50, 64], transfer time
(i.e., the time to prepare the bed for a new patient), and patient transfer (how many
patients had to be transferred, how much time and phone calls were required to
transfer, etc.). Other ED related measures may include: the time a patient spends in
the department from admission to discharge, the actual time it takes to discharge a
patient and/or refer them to another department, how many patients were treated
in a given time interval, the wait time to see a physician or receive treatment, the
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number of ambulances transferred to another ED, etc. [50].
For example, Varga et. al. [113] measured how much time elapsed before medical

care was initiated between different triage levels. The results showed 3.6 ± 5.8
minutes at the first triage level, 7.0 ± 11.8 and 23.2 ± 26.1 minutes at the second
and third triage levels, and 37.8 ± 38.3 and 44.2 ± 43.5 minutes at the fourth and
fifth triage levels.

Patient flow analysis has also been used as the basis for many research projects
using genetic algorithms and in some cases, machine learning, to solve or optimize
scheduling issues at various parts of the hospital process.

Yousefi et al. [121] conducted an evaluation of 38 simulation-based optimization
experiments for the ED, published between 2007 and 2019. They have given a bib-
liographic foundation on the topics discussed, compiled data on the methodologies
and tools used, and identified significant trends in the area of simulation-based op-
timization. They have stated that future research should concentrate on improving
the effectiveness of multi-objective optimization problems by reducing their time and
labor requirements.

In their study, Yang-Kuei Lin and Yin-Yi Chou [71] examined the difficulty of allo-
cating a set of surgical procedures to many multipurpose operating rooms. They have
suggested a redesigned mathematical model and four simple heuristics that ensure
the efficient discovery of viable solutions to the examined issue. In addition, they
provided four local search processes that may greatly enhance a given solution and
used a hybrid genetic algorithm (HGA) that combines initial solutions, local search
procedures, and an elite search technique to the examined issue.

El-Bouri et al. [41] conducted a literature study on the use of Artificial Intel-
ligence (AI) to hospital patient scheduling. They addressed the many AI strategies
described in the literature, such as rule-based systems, decision trees, artificial neural
networks, and evolutionary algorithms. In addition, they have examined the many
sorts of patient scheduling challenges that have been investigated, including surgery
scheduling, appointment scheduling, and emergency department scheduling.

Seunghoon Lee and Young Hoon Lee [68] have suggested using reinforcement
learning (RL) to schedule emergency department (ED) patients. They have de-
veloped a mathematical model and a Markov decision process (MDP). Then, they
developed an RL algorithm based on deep Q-networks (DQN) to identify the ideal
scheduling strategy for patients. In the provided cases, they have shown that deep
RL outperforms dispatching rules in terms of reducing the weighted waiting time of
patients and the penalty score for emergency patients.

Haya Salaha and Sharan Srinivas [97] investigated the usage of a hybrid artifi-
cial intelligence system to solve the issue of hospital patient scheduling. To enhance
patient scheduling, they have presented a mix of genetic algorithms and an Artificial
Neural Network (ANN). They have shown that their hybrid approach can find supe-
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rior schedules than either Generic Algorithm (GA) or ANN alone, and it has been
applied to actual hospital data.
An unfortunate circumstance presented our team with an opportunity, while develop-
ing this simulation tool, namely the COVID-19 epidemic. While various impacts and
metrics of the pandemic itself were still being researched and evaluated by various
research teams, another very active area was focused on preparing existing systems
to work better and more efficiently in the event of another pandemic.
One need that most research teams agree on was the need for modeling and sim-
ulation tools. Currie et. al [37] in their work emphasized the importance of sim-
ulations to reduce the impact and severity of the epidemic COVID. They identified
the following decision areas as appropriate for optimizing their effectiveness through
simulations: the selection of quarantine and isolation strategies, the development of
social distancing rules, the construction of lockdown release scenarios, the appropri-
ate method for test distribution and transport, the identification of the most critical
demographic groups for vaccine distribution, and the appropriate expansion and al-
location of hospital resources.
Similar comments were made by Dieckmann et al. [39], whose work focused on
the resources needed for effective simulation and how they can be used. In their
view, simulations should focus on three main areas: educating workers about the
epidemic, optimising the process of care at the system level, and assessing the needs
and mental health workload of health care workers.
Improving hospital systems and patient flow to provide faster patient treatment, ef-
ficient resource allocation, and the development of techniques to avoid future in-
fections lies at the junction of the two fields of study. Tavakoli et al.[109] recently
published their results on a simulation methodology similar to ours. Although the
model and triage levels are much simpler than they should be to prove accurate in
simulations of Hungarian hospitals, the metrics and principles established can serve
as a model for similar simulations. Terning et al.[110] had similar elements in mind,
and although the simulation from their published work is still relatively rudimentary,
the formulas and conditions used to evaluate their results provide a very good basis
for initial validation of a similar simulation.
One of these key parameters, perhaps the easiest to follow in simulations, is to avoid
overcrowding, i.e., to avoid the kind of patient flow where many patients are waiting
in an area at the same time. Dinh et al. [40] specifically focused on this impor-
tance in their work, attempting to establish principles and rules to avoid unnecessary
hospitalizations during an epidemic and to reduce the length of stay in the hospi-
tal. In their brief review, Janbabai et al. [56] focused on protecting hospital staff
in addition to patients, focusing on preoperative, intraoperative, and postoperative
processes within the patient flow. Of course, other approaches have been explored in
addition to simulation-based patient flow study and analysis. For example, Arnaud
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et al, [18] have attempted to use machine learning based on patient flow metrics
to determine how to optimise the number of hospital beds and expedite the triage
process, to name a few examples.
To investigate and design the appropriate scenarios, our team also relied on the work
of Prof. Jose L. Jimenez & Dr. Zhe Peng [60] who, based on various peer-reviewed
research, developed an easy-to-use tool to measure the likelihood of COVID infection
in different environments based on the size and type of the area in question, as well
as the number, behaviour, and condition of the people in it. Based on these results,
and taking into account the fact that patients and staff wear masks in the hospital
and hospitals use various distancing measures and restrictions, including a strong
emphasis on ventilation, our team calculated that the probability of infection for a
number of 10 to 20 patients in the area was only 4.39 % after one hour, and even
after six hours it only increased to 5.96 %. This means that one of the most impor-
tant aspects of optimising patient flow for COVID prevention is to keep the number
of patients in a given range around or below 10 while trying to speed up the flow
itself to avoid congestion.

3.6.2 Methodology

Introduction of the ED

During the early phases of our research, we used the ED model of Leva and Sulis
[69], as it proved to be the model most similar to the Hungarian ones based on
comparisons between this model and our team’s experience and knowledge of the
structure and functioning of the ED. Differences include minor changes in terms of
which station is served by which staff member, and the introduction of an additional
fifth triage level as mandated in the Hungarian system. The model includes 7 dif-
ferent lanes and a sub-process for handling the complex visit process if required by
the patient’s condition. The first lane is the registration process, where patients are
admitted to the hospital and treated according to the severity of their condition upon
arrival. They are then admitted to the triage lane where they await initial assess-
ment. For less urgent cases, they may voluntarily leave the process at this stage if
they wait too long.
After leaving triage, the triage nurse may decide to refer the patient to an internal
clinic; otherwise, the visit process takes place, where the nurse or physician takes a
history, takes blood, performs a radiology referral, and then decides the patient’s fate
based on the results. The outcome of the process may be referral to an internal clinic,
admission to the emergency department, referral to an outside facility, discharge, or
in a small percentage of cases, death of the patient.
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Modeling and Simulation Tools

To create the hospital simulation, we chose the open-source Camunda Modeler [1],
which allows us to create arbitrary processes in a parameterizable, editable, and ex-
ecutable format. The output of Camunda modelling is the BPMN (Business Process
Model and Notation) file [2], a text file based on the XML standard that is displayed
by Camunda-compatible tools and execution environments with a visual representa-
tion.
However, Camunda and BPMN modelling do not always prove suitable. In our var-
ious healthcare projects, the issue of clarity and complexity of modelling has often
arisen in similar cases, especially when some clinicians and researchers wanted to
model and describe processes in a way that was transparent to them, but the Ca-
munda elements were considered too broad and complex. Our goal, therefore, was
not only to accurately model the model we created, but also to make it understand-
able to researchers outside of IT and be able to create similarly simple processes,
leaving the more complex parts to scripts and programmers running in the back-
ground.

Figure 3.31: Flowchart of the simulation framework

While developing the simulation, I considered using the official Camunda simulation
tools and Visual Paradigm, among others. However, we ultimately decided to create
our own simulation environment using open source tools to ensure that the simula-
tion settings, configurations, and types of metrics collected were customizable for us.
Our custom simulation is based on the Python library SpiffWorkflow [14], which can
process and run bpmn models created with Camunda, among many other inputs.
Scalability and robustness were key elements of the hospital workload modelling op-
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erating environment. The principle is based on the idea that each patient is a parallel
running SpiffWorkflow thread sharing common resources for which we implemented
waiting, handover and reservation using semaphores. The measurement and logging
of wait and turnaround times in the system is differential, with each thread regularly
logging its timestamps as it arrives at and departs from the stations. Our approach
was initially based on the naive assumption that the bottleneck is the availability of
staff in the ED, and that if the required physician, nurse, or nursing staff is available
to perform the task, then the space and equipment are available as well.

Figure 3.31 illustrates the components of the framework and their precise rela-
tionships. The model defining the ED is provided in two bpmn files: Visit.bpmn for
the visit subprocess and EDAsIs.bpmn for the ED architecture, which references Visit
in the correct place. The framework’s starting point is runner.py, which specifies how
many patients must be allowed into the system for the simulation, what stop condi-
tion must be satisfied to terminate the simulation, and also manages the extraction of
the various metrics at the conclusion of the simulation (the latter activity is expected
to be handled by a separate module in a future version). The runner.py parses the
contents of the bpmn files and utilizes them to generate runner threads for each
patient that will execute the steps specified in the bpmn files. The simulations em-
ploy playbook.py to execute the simulation of each step and simulation.py to indicate
when a shared resource (e.g., doctor, nurse) is required, lock it using semaphore, or
set a triage level-based queue if there are no available instances of that resource.

Modeling

The following section presents the model and elements of the Camunda workflow
based on the combination of the Leva and Sulis paper with elements from the Hun-
garian hospital system. Table A.1 in the Appendix shows the content of the first two
lanes, registration and triage, the first stations that are the same for every patient
in the hospital. The elements of the simulation script are handled either as events,
where patients must acquire a shared resource and then perform some processing
before proceeding, or as end states, which, when reached, terminate the patient’s
simulation thread. The required resource in the simulation is a member of the ED
staff: Generic Nurse (GN), Hospital Employee (HE), Specialized Nurse (SN), Doctor
(DR) and Generic Operator (GO).
Note that due to the deterministic nature of the simulation, these stations and steps
model how a patient is admitted to the hospital and then treated, with the envi-
ronment assigning almost the entire pathway to the patient at the beginning of the
simulation with all the important attributes. Our research team had two main rea-
sons for this: On the one hand, the methodology gives researchers who might use our
tools in the future the ability to analyze and debug the expected runtime of the sim-
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ulation without having to wait for the entire simulation to run. On the other hand, it
also gives us the ability to manually enter patients into tables in order of arrival with
their severity, and even to examine specific cases in minute detail using the tools.
The modeling of these pathways raised a serious research question at the beginning,
as the international literature and the original source of this model indicated that the
necessary personnel for these pathways are the general nurses, and in order to keep
the simulation accurate, we decided to stick with this version. However, in Hungar-
ian hospitals it is much more common to have at least one physician present during
these phases. In our further research, collecting more specific information from Hun-
garian hospitals, including those we have conducted research with, we want to test
different modifications of this trace and see how they might change some of the re-
sults and trends we have obtained during our previous research. The next major step
is the Visit, which is modeled as a separate subprocess. The elements of the Visit
model can be seen in Table A.2. The main difference from the main lanes is the need
for specialized nurses and doctors, and the many optional pathways depending on
whether blood tests or radiological examinations are required.

After the Visit subprocess, the only step left in the simulation is the processing
of the outcome, which is usually performed by a specialised nurse (SN). There are
five possible outcomes defined both in the paper containing the basic version of this
model and in the papers analysing Hungarian hospitals: Death, Hospitalisation on
Ward, Discharge, Transfer to External Facility, or Transfer to Internal Clinique.
We also achieved the desired simplification in modelling. Since the model was not
overly complex, we used only four elements that were visually and practically com-
prehensible: the start point, the end point, the event, and the decision point. These
were simply augmented during design with information about which event gave the
patient which additional attributes, and the decision points were then used to select
exactly what criteria the patient should use to choose the direction of travel in the
simulation. The entire modelling process thus consisted of a total of four elements,
plus a few lines of pseudocode description for the events, which is not only simple,
but also compatible and interoperable with many other modelling tools. The timer
event was considered as a fifth element type, but it was ultimately ruled out due
to the system’s standardized time management. All wait periods are supplied to the
framework as arguments or thresholds with defined values. SpiffWorkflow’s scripting
and customisation options are restricted in this domain, and the timer event would
be conducted in real time regardless of the simulation’s time format.

3.6.3 Simulation

Our goal was to study how an emergency department ideally operates and how un-
expected events can occur, using this operating environment and the modelled emer-
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gency department with the number of patients arriving, the severity of their cases, the
probabilities and rates for each branch from real data. Or in the case of an epidemic,
how to optimise turnaround and wait times (since similar studies in many cases have
only looked at similar models in terms of staff time or budget): Is it clearly a good
idea to increase staff and the number of rooms and equipment needed to perform
each activity?

Scenarios

To be able to create different situations and scenarios to analyze how small changes
in patient flow, staffing, or processing time of the different stages affect the simula-
tion throughput and metrics, we first created a baseline scenario based on real data
from the ED of Somogyi Kaposi Mór Practicing Hospital [113] to estimate the rates
of patient arrival and distribution between the five triage levels (i.e., the urgency of
each case) to model. According to their data from 2015 statistics, the ED sees approx-
imately 90 patients per day. In terms of triage levels, 0.67% of patients had triage
level 1, 1.24% had triage level 2, 23.35% had triage level 3, 40.17% had triage level
4, and 34.54% had triage level 5. Triage levels 1 and 2 require immediate treatment,
level 3 can tolerate waiting times up to 30 minutes, level 4 up to 60 minutes while
level 5 even up to 2 hours.
As for the fate of the incoming patients after treatment: 20.9% were hospitalised,
2.7% voluntarily discharged, 1.5% were referred for triage, 0.4% were transferred to
another inpatient facility, 0.4% died and 73.5% were discharged to their home.
The baseline scenario was based on the work of Leva and Sulis and was run with 3
doctors, 2 generic nurses, 3 specialist nurses, 2 clinical staff and 4 generic operators,
with a 20% chance of a new patient arriving every minute - this resulted in the most
even distribution, the element of the simulation to handle increasing or decreasing
patient arrival density at given times is currently being tested and will be included in
a next pilot phase. The turnaround times at each station, which depend on the triage
level, follow the one-to-one model of Leva and Sulis, considering triage level 3 as
the dividing line between urgent and less urgent cases. For all other scenarios, these
original distributions and proportions were shifted through a type of exacerbated
bias. In some cases, we increased the severity of incoming patient cases, in others
we reduced the number of emergency department staff, and in still other scenarios,
to approximate the impact of COVID, we used estimations of the need for and dura-
tion of decontamination to increase wait and turnaround times at each station in the
simulation. The type and number of staff in the emergency department was based
on the paper by Leva and Sulis. This base scenario is referenced as SC0. Another sce-
nario, SC3, showcases a test scenario which tried to simulate the estimated patient
load of and increased waiting times (due to disinfection and other procedures) of a
pandemic scenario.
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• SC0: This is the basis of comparison made by merging of the Somogyi Hospital
and the Italian sample. Patients are rarely admitted for urgent triage 1 or 2. The
time spent at each station follows the original pattern drawn from the papers.
Specification: 3 doctors, 3 generic nurses, 2 specialized nurses, 2 clinical staff,
4 generic operators; regular processing times; triage distribution: l1-0.00673,
l2-0.01241, l3-0.23359, l4-0.40175, l5-0.34549; 20% patient arrival chance.
Expectation: Patients with lower triage levels have to wait longer at common
stations (registration, triage), where congestion and waiting times increase, but
the time spent in the system remains within acceptable limits.

• SC3: An epidemic-inspired scenario. With only urgent patients coming to the
hospital (less urgent cases are not even admitted), the number of staff in the
Emergency Department has been increased, but also the minimum waiting and
turnaround times due to disinfection procedures. Specification: 6 doctors, 4
generic nurses, 6 specialized nurses, 8 clinical staff, 4 generic operators; pro-
cessing times are increased with a few minutes to simulate disinfection; triage
distribution: l1-0.1873, l2-0.2241, l3-0.13359, l4-0.00417, l5-0.00345 ; 20%
patient arrival chance. Expectation: Barely any patients from lower triage
levels, but significantly increased times for higher levels.

3.6.4 Results

Each scenario was run with a load of 90 patients (the daily average based on Somogyi
Hospital data) and was intended to fill a 7-8 hour shift in the emergency department.

SC0 - Base Scenario

At SC0 we immediately noticed some interesting differences compared to our first
hypothesis. As seen in Figure 3.32, the pre-visit phase had the longest combined
times (i.e., waiting and execution combined), while other elements of the first two
lanes, such as registration and urgency assessment, were relatively short.

Similarly, the maximum number of patients either waited or were studied at the
same stage of their simulation. As shown in Figure 3.33, the longest queues were in
radiology, diagnosis, and outcomes management after the visit.

A smoothed trend using the LOESS method can be seen in Figure 3.34, which
shows how the number of patients at a given station has changed over time in the
simulation. This also justifies that while the registration and triage processes began to
congest early in the simulation, they never experienced as high a number of waiting
patients as outcome management, radiology, and diagnosis establishment.
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Figure 3.32: Longest combined times in SC0

Figure 3.33: Maximum number of waiting patients in SC0

As for the comparison between the various triage levels, these values can be seen
on Figures 3.35 and 3.36.

Based on the distributions and probabilities of the Hungarian hospital, not a single
triage level 1 patient was admitted to ED during the simulated day. Triage stage 2,
of course, had the shortest average time, while others had significantly longer times,
with a bottleneck in the outcome management phase after the visit process.
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Figure 3.34: Patient number trends in SC0

Figure 3.35: Average times spent in the simulation per triage level in SC0

SC3 - Pandemic Scenario

Scenario 3 was the most critical simulation and the most important for our further
research, as we attempted to create a patient flow whose points and biases reflected
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Figure 3.36: Distribution of times spent at the various stations per triage level in SC0

Figure 3.37: Longest combined times in SC3

the characteristics of an actual epidemic compared to the base case. In this case, the
emergency department was visited only by urgent patients, typically with a triage
level of 3 or higher, and the flow was slowed by the fact that although the number
of staff was increased, the passage through the phases was much slower because of
mandatory decontamination. Figure 3.37 shows the primary consequence: average
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wait and turnaround times per station are significantly longer than for the original
cases (especially considering that the majority of cases here required urgent care).
The number of patients waiting at the same time has also increased significantly, as

Figure 3.38: Maximum number of waiting patients in SC3

can be seen in Figure 3.38. In addition to the bottlenecks defined so far, the one
that stands out is the hypothesis diagnosis, the step in the visit process where the
patient is first seen by a physician in our model rather than by various nurses and
generic operators. This increase can also be seen in the weighted trends in Figure
3.39, which are not only much higher than the results in the previous scenarios, but
the peak is not a breakout point, but an extended phase that takes up a significant
portion of the simulation runtime. In other words, the congestion problem started
much earlier, and as the later phases slowed, the number of patients in the backlog
did not start to decline as much as in the earlier cases, even though there should have
been more staff available and the patients would have warranted a faster process due
to the high triage levels.

Figures 3.40 and 3.41 also confirm that, as expected, almost exclusively patients
with a triage level of 3 or more were admitted to the emergency department. On
average, levels 1 and 2 were completed within an hour. As for the time distribution,
it is interesting to note that it is quite similar for the three triage levels, with a signif-
icant proportion still managing the outcome of the visit in each case.
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Figure 3.39: Patient number trends in SC3

Figure 3.40: Average times spent in the simulation per triage level in SC3
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Figure 3.41: Distribution of times spent at the various stations per triage level in SC3

3.6.5 Discussion

In reviewing the simulation results, we found the following. First, the expectations
for each scenario were either met or deviations occurred that can be interpreted
based on the simulation run. Thus, despite the fact that the modelling toolbox itself
has been simplified in line with our original objective, the model functions with the
same accuracy. For example, with input from Hungarian and Italian hospital sources,
the results of Scenario0 meet all specifications, from patient waiting times through
triage level prioritisation to the maximum number of patients waiting at any one lo-
cation. For the additional scenarios, the biases also yielded the expected results, so
we can say that the reduced modelling toolkit, supported by scripts based on the
SpiffWorkflow library, met our expectations and can be used for further simula-
tions.

Examination of the trend plots also confirmed our theory, that in a scenario such
as SC3, overcrowding becomes much more continuous due to the time gained from
decontamination, with the peak typically occurring in the middle of the Emergency
Department simulation, typically at points where throughput was already more crit-
ical. In both scenarios, it has been shown that the most problematic phases in the
patient flow are determining therapy and waiting for the visit to be evaluated. If the
goal is to comply with COVID recommendations and reduce potential infection rates,
these might be the stages of patient flow where it is worth either reducing the time
spent in the waiting room or, if this is not possible, providing patients with more
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separate, well-ventilated waiting rooms where they can wait for results without
risking an extended stay that could reduce the effectiveness of infection preven-
tion.

Moreover, unlike many commercial solutions such as Visual Paradigm [11], Sim-
cad Pro Health Simulation Software [9], or Simul8 [10], our solution is a significant
improvement in that it provides both free modeling and model execution, the source
code of the modules used can be modified freely, as can the simulation’s exact ele-
ments and output. In addition, the simplified modelling toolset and the BPMN file
format do not restrict the usage of the created model, so if a research team has access
to alternative simulation systems, the generated model may be utilized as-is or with
minor modification. And its usage in its current form, maybe with minor enhance-
ments, enables it to be utilized in conjunction with other simulation and assessment
tools or by other processes. For instance, the data may be automatically merged with
the hospital’s measurements, which can then be run through Jimenez and Peng’s tool
[60] to create an accurate picture of the possibility of COVID spreading in a particular
department or institution. Since the output is customizable, it may be used to study
a broad variety of optimisation tasks, answering the demand mentioned by Yousefi et
al [121]. The output and Python-based framework will presumably be of great value
for reinforcement learning.

The patient flow within the healthcare system is a crucial factor that can impact
both patient outcomes and the effectiveness of healthcare delivery. In this study,
a comprehensive simulation framework was implemented to determine the effects
of various scenarios on patient flow, with a particular emphasis on the Emergency
Department (ED). The primary objective of this investigation was to create a tool that
can determine the impact of the latencies introduced by our access control solution
from the previous theses on overall patient throughput and data volumes.

Our method distinguishes itself from commercial solutions by providing free mod-
eling and execution. Due to the adaptability of the BPMN file format and the adapt-
ability of our solution, the generated model can be seamlessly integrated into al-
ternative simulation systems. Its compatibility with other assessment tools provides
opportunities for future research and practical applications, such as predicting the
spread of infectious diseases in a hospital setting.

In conclusion, our simulation framework has proved to be a valuable instrument
for comprehending the dynamics of patient flow in various scenarios. The results not
only validate the delays introduced by our access control framework, but they also
provide a road map for optimizing patient flow in healthcare contexts. As healthcare
systems around the world contend with the dual challenges of delivering efficient
care and managing infections, our tools will be indispensable for molding the future
of patient care.

The latest version of the developed tool is available at:
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https://github.com/szaboz/ActaPatientFlow

3.7 Chapter conclusion

Proper authorization management in the domain of telemedicine and e-health presents
a number of challenges that classical authorization management methods are insuf-
ficient to cover due to the countless contextual factors affecting the level of access,
the dynamic scope of authorization for roles, and the lack of industry-wide agreed
procedures. The problem is especially severe on the periphery of the telemedicine
data path, where the various computing and storage capacities of different types of
nodes must also be taken into consideration in order to satisfy the requirements so
that there can be no significant delay in the duration of the services. During this
chapter, I defined a taxonomy by which I distinguished the four policy categories
that together can encompass the access control requirements that arise along the
e-health data path. Based on their capabilities and abilities, I have separated two
types of edge nodes: processing edge, which can almost simulate cloud performance
in terms of local data requirements, and caching edge, which has lesser computing
but still robust storage capacity. As a member of a research team, I have also exam-
ined the stability of smartphone-based peer-to-peer networks, but I have come to the
conclusion that further testing and simulations are required to determine whether
they can implement a local e-health infrastructure as well. I defined two example
rules for each policy category, one more simple and one more complex, and then
developed two test environments, one for the processing and one for the caching
edge. With the aid of the Open Policy Agent (OPA), I implemented my proposed ac-
cess control solution based on the Policy Enforcement Point (PEP) principle, whose
performance I evaluated in both test environments with an ever-increasing volume
of documents. Although some of my hypotheses regarding the relative complexity
of the rights management categories were disproved, the results showed that the la-
tency caused by my solution accounted for less than 35% of the total runtime on the
processing edge, even with the largest amount of queried data, while the proportion
was less than 30% on smaller amounts; while on the caching edge the delays were
much more significant, but as long as only a few hundred documents were handled,
the method proved to be effective on both desktop PCs, smartphones, and tablets.
To measure the exact effects of the delays caused, I have also been involved in the
development of an open-source patient flow simulator that makes it possible to con-
struct scenarios, parameters, and thresholds that enable more accurate validation of
these access control implementations. Although the results of my years of research
and experimentation can still only cover a portion of the domain, I believe my solu-
tions and findings provide a great basis for both practical solutions to the problem
and further research on the domain. It is also worth noting that, due to the e-health
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developments of the team I am part of, a significant portion of these results were,
are, or will be used in applications and real-life scenarios. The author of this PhD
thesis is responsible for the following contributions presented in this chapter:

I / 1. I explored the complex requirements of modern telemedicine applications in
terms of access control. I defined a taxonomy to formalize the different types
of access control policies and the TAPE requirements necessary to ensure that
the implementation of the defined policies can guarantee a balance between
data privacy compliance and responsiveness at any point in the telemedicine
infrastructure.

I / 2. I proposed special categories of edge instances beyond the cloud that represent
a special category of modern telemedicine infrastructure from the perspective
of access management. I formally defined a categorization of these into storage
and processing edges. I then discuss the increasingly prevalent smart device
based peer-to-peer networks as an extreme case of edge solutions, and analyse
their potential and stability to function as stand-alone edge networks.

I / 3. I presented the implementation of the proposed access control solution, then
I will set up test environments to represent both edge types, and sample rules
to validate the effectiveness of the implementation under increasing data vol-
umes. During the measurements, I examined the resource requirements of the
nodes performing the evaluation, as well as the latencies measured for the data
retrieval processes. I present the measured latencies which confirmed, that for
reasonable amounts of data at the various edge types my policy categories met
the requirements established in the previous theses.

I / 3.1. I developed a simulation tool using open source libraries and tools that can
simulate the distribution of patients and their waiting times in a hospital ward.
The developed simulation tool can be used to validate the extent to which the
increased waiting times due to the access control implementation might slow
down the process, and the impact this can have on the patient flow churn and
waiting times at crucial parts of the care process.
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Chapter 4

Thesis Group II: Potential Data Leak
Detection of Progressive Web
Applications with Large Language
Models

In the subsequent group of theses, I focused on a crucial component of the telemedicine
infrastructure, namely the front-end applications at the end of the data path. I de-
fined a taxonomy that defines and ranks sensitive data in applications based on the
impact of data leaks, and another taxonomy to determine the protection level of ap-
plications, in such a way that the defined categories can be transferred to LLMs using
prompt engineering techniques. Then, I presented my results in classifying the elements
of a variable-name dictionary and then in detecting sensitive data from open-source
front-end applications via the GPT-3.5 and GPT-4 APIs, with which I have validated the
hypothesis that through the complex knowledge of the LLMs at the level of the current
GPT models, machine learning in the classical sense can in some cases already be de-
rived by passing the necessary knowledge in the form of well-written prompts to the
LLMs. Lastly, I discussed my results in static code-based detection of potential applica-
tion vulnerabilities by evaluating the application protection level classification and then
combining it with the results of the sensitivity detection.

Publications related to this thesis: [J4]

4.1 Introduction

In recent years, the development of Large Language Models (LLMs) has accelerated
substantially, and in the past year, both their popularity and adoption have attained
new heights due to popular services such as ChatGPT [38] and its competitors. Nu-
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merous research groups are currently investigating the precise impact of the use of
these models in various fields and the extent to which they can be used for process
optimization and decision support improvements, with a particular focus on the IT
sector and programming, in addition to education, healthcare, administration, and
business. While more research is focused on the goodness and optimality of the
code generated by Generative Pre-Trained Transformers (GPTs), as long as adequate
prompting has been used to avoid so-called ”hallucinations”, ie. estimated but nonex-
istent libraries and function calls [57] - the limitations of the models remain unclear.
There is a similar challenge with regard to interpretability, or the depth to which a
large language model can comprehend the function and purpose of the code in order
to test, debug, or even enhance it with minimal developer intervention.

This kind of AI-assisted debugging and code interpretation also seems to be a par-
ticularly interesting area because, with the right semantic and logical knowledge, it is
likely to be able to detect potential sources of errors and problems in the code, which
could only be discovered through extensive testing. Trends in recent years suggest
that testing itself is becoming an area where AI-enabled tools are becoming increas-
ingly popular [54]. The significance of aggregating and making the code base more
transparent and manageable for large, complex code bases in order to effectively
manage configurations such as vulnerability analysis and security configuration en-
forcement is not a new concept. Heydon et al. [51] introduced Miró, a set of visual
description languages, in 1990 to make security configurations of software systems
more straightforward and transparent. A similar motivation led Giordano and Polese
[49] to introduce the Vicoms framework, which allowed developers to administer
fine-grained, role-based access control settings for their Java applications in a man-
ner that was distinct from the source code but still readily comprehended. However,
the implementation and utilization of such an instrument, as well as its testing, are
invariably subject to the aforementioned code interpretation.

The architecture of modern web frameworks, such as Angular [4], makes it sig-
nificantly more challenging to build a DOM structure in line with the call graph and
dependency graph for single-page applications due to elements such as modular nest-
ing and partial navigation of components. Even the very first version of Angular was
challenging from an analytical standpoint. Misu et al. [53], for instance, created
FANTASIA, an AST-based utility for analyzing AngularJS MVCs, to aid developers
in detecting inconsistencies in static source code. While innovations such as high
modularity, the introduction of typology, and object-oriented paradigms, which are
highly valuable for debugging and design using TypeScript, have helped developers,
the increased modularity, more complex call and dependency graphs, and difficult-
to-understand navigations have made it very difficult for both static and manual
analysis, similar to other emerging modern front-end frameworks.

In the past, our research team has investigated the issues of access management
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and data security [107] in the design of healthcare applications, with an emphasis
on optimizing the access control implementation with the goal of obtaining the nec-
essary information from the databases as quickly and efficiently as possible, without
any improper use, and ensuring that only authorized entities have access to the infor-
mation. However, there were limitations at the end of the data path for the front-end
applications, as quantifying the security of the applications or web applications lo-
cated there would be required to evaluate their security, while this information is
necessary to evaluate the security of the entire data path.

With the outstanding contextual interpretation capabilities of the GPT-3.5 and
GPT-4 models [99] demonstrated, we decided to open in this direction and assess,
with appropriate prompting and subtasking, how much deep and accurate informa-
tion can be extracted from Angular-based web applications by simply examining the
source code. Another branch of our research team has obtained promising results
with GPT-assisted static code analysis of Angular applications [? ], achieving better
results on the problem set under investigation than with BERT, using only prompting
and no additional training of models. Consequently, we investigated whether anal-
ogous advances could be made in a problem domain where a deeper understanding
of the source code and the data handled by the program is required beyond semantic
analysis. It is important to note that, although we chose Angular, the methodology
presented in this paper should be easily adaptable to other frameworks to solve simi-
lar problems, as the basic pillars of the idea—mapping the code base, breaking down
the vulnerability detection into steps and prompts, and then aggregating the partial
results—are essentially programming language-agnostic steps that can be equally ap-
plicable to arbitrary backend and frontend frameworks.

The ”Improper Isolation of Compartmentalization” vulnerability, identified as CWE-
653 in the Common Weakness Enumeration (CWE) database [76], is prevalent in
frontend applications. This vulnerability for web applications means that certain
critical processes or operations are implemented in the code with improper isolation;
consequently, if the same piece of code is equally responsible for handling critical,
sensitive data and less relevant data, there is a risk of significant data leakage or
unauthorized use due to developer inattention or malicious user activity, as defined
in CWE members of the CWE-200 (”Exposure of Sensitive Information”) category,
with members that are easy to encounter in front-end applications such as CWE-203
(”Observable Discrepancy”), CWE-359 (”Exposure of Private Personal Information to
an Unauthorized Actor”) and CWE-497 (”Exposure of Sensitive System Information
to an Unauthorized Control Sphere”). The foundation of our approach was the iden-
tification of sensitive data, which should be accorded a high level of importance in the
source code with appropriate isolation, protection, and access control; failure to do so
can indeed result in significant misuse. In the case of progressive web applications,
we have assumed that such data originates from a server or database connection,
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through which it is passed to the web application; therefore, the key to protecting
it is the proper protection of the entities that manage these operations, in the case
of the Angular framework, the Service classes, which in many cases implement the
classic Data Object Access (DAO) pattern.

Such Services operate as singletons within the Angular framework and are ac-
cessed and invoked via injection from Component classes responsible for each ele-
ment of the user interface or from each other. This paper’s research questions evolved
from the question of whether the Component classes that invoke these Services have
appropriate access control, which in the instance of the Angular framework is con-
trolled via the AuthGuards, classes implementing the CanActivate interface, which,
when attached to the navigation rules within the application, can prevent or redirect
a user from accessing user interfaces they are not authorized to access.

We were confronted with a significant problem when investigating this issue: can
sensitive data be categorized, and can we quantify how sensitive the data and in-
formation are? It is indisputable that the technological advancements of the past
decade, not to mention the various scandalous violations of personal data by large
technology companies against their users, have raised an entirely new set of concerns
regarding how we comprehend, handle, and expect our personal data to be handled.
In the past few years, numerous studies have examined issues such as how we un-
derstand the concept of sensitive data in different domains [30], how the concept of
personal sensitive data has evolved in the first place, and its various degrees [22].

Data collection parsimony, which sets a metric for machine learning algorithms on
how little data they require for efficient learning and operation [66], has become a
dominant trend, as have categorizing and quantifying the sensitivity of data [33, 96]
and the automated recognition of sensitive data [26]. In the categorization we de-
vised, the details of which are explained in greater detail in the Methodology section,
we categorized the sensitive data into three categories based on the potential dam-
age of a disclosure. While at the bottom of the scale we can only speak of potential
damage through the accumulation of a large volume of leaked data, the data at the
top of the scale is vital information of its own. Although the categorization of such
a method set can be arbitrary for a given development team, we wanted to create a
scale for large language models that is easily defined and can be described using the
chain-of-thought principle.

The primary findings of this paper are as follows:

• Defining a proprietary classification to quantify the sensitivity and immunity of
the data, and evaluating it on a test set of 200 variable names using the GPT
API.

• Demonstration of prompts generated using prompt engineering for the GPT API
for static analysis of the code of a complex web application, taking the larger
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context and deeper context into account.

• Evaluation of the efficacy of the GPT-3.5 and GPT-4 models in detecting sensi-
tive data in an application via static code analysis.

• Evaluation of the ability of the GPT-3.5 and GPT-4 models to determine the
protection levels of front-end application elements.

• Evaluation of the effectiveness of the GPT-3.5 and GPT-4 models in detecting
when sensitive data handling in a web application is not adequately isolated
and protected, thus producing a possible vulnerability.

We begin with a literature review in the Related Works section. Then, in the
Methodology section, we present our methodology, in which we attempted to iden-
tify parts of the code handling sensitive data, categorize their sensitivity, determine
their protection levels, and detect when the sensitivity level and protection level are
inconsistent by executing an analysis pipe supported by GPT API calls on a set of
open source Angular applications randomly selected from Github. In the Results and
Discussion section, following the presentation of our results, we discuss the interpre-
tation of the errors and anomalies found in the analysis as well as the improvements
obtained by optimizing our method. In the Threats to Validity section, we discuss
potential issues that threaten the validity of our results. Lastly, in the Conclusion
section, we discuss the future research potential of our developed method.

4.2 Related Works

4.2.1 The impact of artificial intelligence on software develop-
ment

The rapid growth in the use of artificial intelligence in programming did not follow
the rise in prominence of GPT, but its potential was recognized by a large number of
people long before that. In their 2019 paper, Jiang et al. [58] investigated how, for
instance, they could enhance the readability of program code using machine learning
to suggest method names based on their root.

Another research project, [59], CURE, strengthens the category of automatic pro-
gram repair (APR), which aims to automatically detect, patch, and debug errors
based on static program code. It has significantly exceeded the capabilities of similar
existing solutions.

In the comprehensive review by Sharma et al. [102] in addition to categories
such as program interpretation and classification of code quality, the identification of
vulnerabilities, which corresponds to our research area, was highlighted.
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Moment et al. [80] used machine learning to detect vulnerabilities and bugs in
smart contracts used on the Ethereum chain, achieving 95% accuracy in their exper-
iments in detecting a total of 16 different types of bugs and analyzing their results
to demonstrate how much faster, more efficient, and simpler to use the resulting
method was in comparison to other static parsers.

Mhawish and Gupta [78] concentrated on detecting code smells, and with the
various machine algorithms evaluated and validated, they obtained over 90% accu-
racy in detection rate, which has tremendous potential for enhancing code quality
and AI-based programming. Using artificial intelligence, Cui et al. [36] and Park
and Choi [86] have studied the protection of Android-based systems in the IoT and
self-driving vehicle domains, with the latter employing real-time scanning of network
traffic to detect malware in the network in order to protect critical elements.

4.2.2 The code interpretation capabilities of GPT

The emergence and dissemination of GPT and other transformer-based neural net-
works, large language models, which have demonstrated exceptional results in code
generation, code interpretation, documentation, and automated debugging, marked
a turning point in this research domain.

Liu et al. [73] aimed to provide a comprehensive overview of researchers’ use
of ChatGPT and GPT-4 in their work. They based their analysis on a total of 194
papers found in the arXiv database. In their summary, they highlighted the potential
of using the models and Reinforced Learning from Human Feedback (RLHF), as well
as the numerous concerns regarding the ethical use of the models, their potential for
producing detrimental content, and their potential privacy violations.

A comprehensive evaluation by Sarkar et al. [100] examined the efficacy of var-
ious LLMs for programming. They concluded that AI-assisted programming is an
entirely new form of programming with its own challenges and complexities, and
as part of their research, they considered, among other things, how proficiently a
neophyte developer could program with the assistance of these tools.

Wei et al. [118] focused their research on the evaluation of the capabilities of
LLMs, which surprised the research community as their emergence did not result
from the scaling of the capabilities of lesser language models. According to them,
one of the primary directions of NLP research is to determine how these emergent
abilities will continue to change and evolve as the models continue to scale.

The research of Surameery and Shakor [105] has already centered on evaluat-
ing ChatGPT’s ability to effectively repair flaws in response to prompts. While they
believe that the effectiveness and limitations of ChatGPT will largely depend on the
quality of the training data and the types of bugs to be fixed, ChatGPT will undoubt-
edly be a very important and relevant tool in this regard, and its strength will be
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bolstered by the use of other debugging and analysis tools as support.
Using predefined queries, Borji and Mohammadian [24] benchmarked the largest

LLMs, such as GPT-4 and Bard, in their work. Based on their findings, the GPT-4
model appeared to be the most reliable for tasks centered on software development,
code generation, and code comprehension, with great potential for usage in more
complex scenarios.

4.2.3 Vulnerability detection with Large Language Models

Naturally, we are not the first to attempt to use the interpretive capacity of large
language models to examine program code vulnerabilities.

In their 2021 literature review [120], Wu presented research on software vulner-
ability detection based on BERT and GPT. Common among the presented efforts was
the segmentation of source code, followed by the extraction of features, and the fact
that the introduction of specific vulnerabilities was one of the final fine-tuning steps.
Thapa et al. [111] and Omar [83] attempted to detect vulnerabilities in C/C++
codebases using further training of GPT models and a similar methodology. The lat-
ter’s detector, VulDetect, outperformed state-of-the-art tools on the tested datasets,
which is an excellent illustration of the performance of large language models.

However, Sun et al. [104] pointed out in their own study that attempts such
as the ones described above do not even attempt to exploit the ability of GPT-type
models to interpret and evaluate domain-specific information and instead concen-
trate on vulnerabilities inferred from control and data flow analysis. However, they
presented GPTScan, which searched the source code of smart contracts for logical
inconsistencies with 90% accuracy.

Cheshkov et al. [32] have attempted to detect the most prevalent CWE vulner-
abilities in open-source Java applications in a manner similar to ours by prompting
GPT-3.5 and ChatGPT. However, their work was based on rather naive assumptions
about the existing knowledge set of GPT; they only mentioned prompt engineering
techniques in their conclusions, and their results were not particularly convincing,
performing essentially on par with their benchmarking dummy classifier. They also
assumed that the ChatGPT temperature level could be adjusted by prompts, but this
has not been demonstrated to work, as it can be overridden by the system prompt
used by ChatGPT alone, which is responsible for configuring the model’s responses
towards a more human-like interaction feel.

Feng and Chen [42] attempted a similar experiment with ChatGPT, although
they have improved their approach by using chain-of-thought and few-shot example
prompt engineering techniques, showing promising results in creating an Android
Bug Replay automation tool supported by ChatGPT.

A comparison of the mentioned works with our own approach is given in the
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Appendix, in Table B.1.
All of these studies demonstrate the potential of artificial intelligence in program-

ming, specifically for detecting vulnerabilities and enhancing the quality and security
of code.

4.3 Thesis II/1: Formal Categorization of Sensitivity
and Protection Levels

I defined a taxonomy of sensitive data in front-end applications, which categorises them
into three different categories based on the level of damage caused by their leakage and
unauthorised access. I then presented another taxonomy, which divides the protection
levels of the application components into categories such that they are representative of
the protection required for the sensitivity categories.

Publications related to this thesis: [J4]

Our methodology is predicated on the notion that in Angular web applications,
sensitive data is centralized in Services, which are accessed and utilized as singletons
by Angular framework classes via their methods. To detect sensitivity levels and
vulnerabilities based on static code, we had to first detect the elements that appear
to be sensitive in the Component classes using the context handling capabilities of
the GPTs and identify which of these elements are handled by Services.

To classify the sensitivity level of the data, we considered the attempts to catego-
rize the data [33, 96] mentioned in the Introduction, but the relevant metric was the
damage to the user in the event of a leak if unauthorized persons gained access to
the data. Based on this, we divided the sensitive data into three levels. Motivated
by the need to provide a categorization whose levels build upon one another, the
classification of data follows a logical reasoning that allows us to debug the thought
process of the large language model under consideration and improve or validate it
in accordance with the chain-of-thought principle.

The categories are defined as follows::

• Level 1 (Low Sensitivity): The accumulation and compilation of large quanti-
ties of data at this level is required to infer confidential information and create
abuse opportunities. Sensitive information includes, among other things, a
user’s behavior history, a list of websites visited, products and topics of interest
on a website, and search history.

• Level 2 (Medium Sensitivity): By obtaining data at this level, it is possible to
retrieve and compile potentially exploitable information. Solutions such as two-
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factor authentication, regular email and SMS notifications, and exhaustive log-
ging in affected applications can mitigate the effects of a potential breach. This
is the largest and most extensive group. It includes data such as, usernames,
passwords, private records, political views, sexual orientation, IP address, phys-
ical location, and hectic schedules are examples of sensitive information.

• Level 3 (High Sensitivity): The data at this level is sensitive in and of itself,
and its acquisition or disclosure can have severe legal repercussions and cause
extensive harm. Examples include health information, medical history, social
security number, driver’s license, and credit card information.

A formal definition of the categories is as follows:

• C marks the superset of all sensitivity levels. C = {L1, L2, L3}

• E marks the various types of data, while D is the set of sensitive data D = {e ∈
E : if e ∈ DL1 or e ∈ DL2 or e ∈ DL3}

• O is the superset of the operations which can leverage sensitive data O = { A,
R, I }

• For the operation A on E: e ∈ DL1 if A(e) = e′ ∈ DL2

• For the operation R on E: e ∈ DL2 if R(e) = e′ ∈ DL3

• For the operation I on E: e ∈ DL3 if I(e) = data leak

As stated in the Introduction, this categorization, which is based on a rationale
for the level of data sensitivity for large language models, is anticipated to function
well in arbitrary applications but may not be ideal for all development teams. In
certain instances, it may require some refinement, perhaps by providing more specific
examples for each level in the prompts. However, we anticipate that such fine-tuning
will not be a challenge for GPT’s capacity if our method proves to be functional and
can efficiently detect and classify various sensitive data with appropriate justification.

Additionally, we have attempted to define the application’s protection scale in a
manner compatible with the three-level sensitivity scale. While the scale is based on
the naive assumption that the data path to the frontend application is also equipped
with various privilege management and unauthorized access prevention solutions,
such as two-factor authentication, frontend applications are theoretically capable of
integrating solutions that can prevent or at least reduce the likelihood of unautho-
rized access even if server-side and data path protection capabilities are insufficient.

The scale presented is as follows:

• PL0: The component has no protection at all.
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• PL1: Bare-bones authentication: the application checks whether the user trying
to access the resource is logged in to the application.

– U represents a user.

– SU represents the session of user U .

– PL1(U) is satisfied if and only if SU is valid.

• PL2: RBAC [46]: In addition to being logged in, the user has different roles
that define their scope of privileges within the application.

– RU represents the set of roles assigned to user U .

– PR represents the set of privileges associated with a role R.

– PL2(U,R) is satisfied if and only if PL1(U) is satisfied and RU has the
necessary roles to access the resource.

• PL3: ABAC [122]: In addition to the login and possible role scopes, other
attributes such as time, physical location, or type/id of device used are checked
before granting access.

– T represents the time of access.

– L represents the physical location of the user.

– D represents the type or ID of the device used.

– AU represents the set of attributes associated with user U which could
include elements from T , L, and D.

– PL3(U,R,A) is satisfied if and only if PL2(U,R) is satisfied and AU meets
the required attributes for access.

In our experiments, we attempted to identify instances in which the AI-based
analysis of the source code produced pairings in which these two values did not
match, i.e., in accordance with the definition of CWE-653 failure, a Service dealing
with sensitive data could be accessed and called by a Component with a protection
level lower than the sensitivity level of the data due to a lack of proper isolation.

4.4 Thesis II/2: Sensitivity Analysis of Web Applica-
tion Data and Components

I developed a GPT-enhanced methodology that uses the categorization defined in the pre-
vious thesis to detect sensitive data in front-end applications and, based on this data, to
tag the code elements that focus on operations on such data. I validated the categori-
sation using an artificial intelligence-based evaluation that classifies the elements of a
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200-word collection of variable names into one of the defined categories. I followed this
by analyzing a total of 292 components from open source applications to detect sensi-
tive data and based on that, identify the services handling sensitive information in the
application.

Publications related to this thesis: [J4]

4.4.1 Variable Dictionary Evaluation

To validate the categories developed and the analysis capabilities of the GPT-3.5 and
GPT-4 APIs, which at the time of writing were the most efficient GPT models available
and promptable via API, we compiled a dictionary of 200 variable names, equally di-
vided among the Non-Sensitive, Low Sensitivity, Medium Sensitivity, and High Sensi-
tivity categories. In preparing the dictionary, we intentionally made it difficult for the
models to achieve perfect accuracy: some variant names had deliberate misspellings,
others were in foreign languages such as Hungarian, German, or Italian, and others
contained a combination of a more sensitive word and a less sensitive ending.

The GPT-3.5 API incorrectly classified 45.5% of the dictionary, with the majority
of cases being trivial. In contrast, GPT-4 only made errors in 23.5% of the cases,
and a deeper examination of the errors revealed that it only failed on the explicitly
difficult terms, and in more than half of the cases, it correctly identified the errors as
sensitive data but incorrectly categorized the exact category. Although both models
were used throughout our investigations, preliminary results suggested that GPT-4
might be able to produce more accurate results by analyzing codes, whereas GPT-3.5
appeared more prone to failure in all but the most straightforward cases.

Our research team collected thousands of public Angular projects from GitHub
using a crawler algorithm in order to conduct various source code analyses. We
minified the TypeScript source files of the projects by labeling, removing whites-
pace characters, and removing line breaks, and then randomly sampled 12 of the
largest, most complex, and largest projects that include 292 Components with mixed
complexity and sensitivity. If the methodology proves effective on such large and
complex codebases, we anticipate that fine-tuning the prompts may be sufficient to
handle potential anomalies, while the preparation of the codebase, the validity of our
methodology, the outlined steps, and the ability of the GPT models to interpret static
code will remain unchanged while being able to handle specific cases. The random
selection was modified with the constraint that the 12 selected projects must con-
tain non-English terms, variable names, and class names to support the hypothesis,
confirmed during the dictionary evaluations, that GPT can effectively detect sensitive
information regardless of its language, given the appropriate context. The follow-
ing evaluation concerned the effectiveness of the detection of sensitive Services from
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these test projects. The results of GPT-4 and GPT-3.5 are shown in Table 4.2. From
the results, it is clear that although GPT-3.5 marked significantly more data as sensi-
tive in the source codes tested, it did so incorrectly in many more cases compared to
GPT-4. Incorrect Detections counts cases where the detection was incorrect; perhaps
a function or the Service itself was marked as sensitive data instead of a variable or
object; Duplicate Detection counts cases where the same sensitive data was marked
more than once within the same file; and Insufficient Detection counts cases where
the sensitive data was correctly detected but the justification for the sensitivity was
incomplete or incorrect. Next, the Services that served as the source or target for
the sensitive data and objects were identified. The results can be seen in Table 4.1,
and although GPT-4 was clearly more efficient here, it made a significant number of
errors in consistently detecting sensitive Services. In the table, Undetected Sensitive
Services is the number of Services that, although using sensitive data, were not de-
tected, Incorrect Sensitivity Levels is the number of Services that were not assigned a
correct sensitivity level even once, and Missing Information is the number of Services
that were detected, for which some key information, such as the exact name of the
Service, was not detected but its presence was, while the Insufficient Detection Count
is the number of Services that were successfully detected but not as many times as
they occurred in the Components of the application.

4.4.2 Sensitivity Detection of the Test Suite

Table 4.1: Results of sensitive Service identification by the two GPT models

GPT-4 GPT-3.5
Detected Sensitive

Services
37 28

Undetected Sensitive
Services

17 26

Incorrect Sensitivity
Levels

2 17

Insufficient Detection
Count

23 24

Missing Information 3 5

A very common example during the analysis of errors was the violation of the SOLID
principle [77] defined by Robert C. Martin and interpreted in programming lan-
guages based on an object-oriented paradigm: instead of being responsible for man-
aging a single well-defined resource, Services often managed a multitude of similar
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operations. For example, it was a common phenomenon in selected projects that all
database operations, regardless of the tables or collections manipulated, were per-
formed by a single Service, which could then make a single ill-parameterized or insuf-
ficiently tested function call to attempt to retrieve data that a significant proportion
of users would not have had access to on a relatively unprotected interface. Another
part of our research team has demonstrated, through the development of a library
[65], how a more precise, resource-based allocation can have additional productivity
benefits. Such a lack of resource isolation is in fact a direct practical implementation
of the CWE-653 vulnerability, as illustrated by the fact that the Insufficient Detection
Count for GPT-4 and GPT-3.5 is almost identical.

Table 4.2: Results of sensitive data detection by the two GPT models

GPT-4 GPT-3.5
Sensitive elements 363 375
Incorrect detection 7 128
Duplicate detection 25 23

Insufficient detection 0 29

The three most common types of bad development practices that occurred most
frequently during the evaluation and led to errors were:

• Injection Circumvention: Although Angular formally documents the exact role
and intended use of Services, a recurring problem in debugging has been that
developers have circumvented the development pattern of injecting and then
invoking methods. There were cases where Services saved sensitive data in
localStorage and the Components of the application later read it from there,
and one case where Services used EventEmitters to pass sensitive values. This
resulted in Missing Information cases in which the presence of Services was
detected but not their precise identities because they were not used in a con-
ventional manner.

• Monolith Service: The most common issue was the lack of isolation mentioned
above, a textbook example of the CWE-653 vulnerability, where Services are not
organized around a resource but around a type of operation. For example, there
is an entity called DbService, which is responsible for the database operations of
registration, login, shopping, commenting, and private messaging at the same
time. This flaw led to very high Insufficient Detection Count values, where the
Service was identified either as sensitive or not, depending on which of the
many resources it was currently managing.
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• Delegated Responsibility: This issue refers to instances in which a Service was
initially used correctly, but then the data it handles was stored and transmitted
in the application differently, such as by passing parameters between parent
and child components or by creating a separate Component or other object that
acted as a session database.

These error possibilities, while to some extent mitigatable, have also led to more
severe issues later in the evaluation process.

4.5 Thesis II/3: Protection Level Analysis and Vulner-
ability Detection for Web Applications

I defined a GPT-supported static source code analysis pipeline that uses the protection
level categorisation to identify the protection level of components in a frontend applica-
tion and then uses the results from the protection level and sensitivity level evaluations
to detect vulnerabilities where components are not protected or whose protection level
is insufficient for the sensitivity of the data they handle, in line with the CWE-653 type
software vulnerability.

Publications related to this thesis: [J4]

4.5.1 Evaluation of the Protection Level Prompt

As far as the detection of the Components’ protection level is concerned, the GPT’s
task here was more of an aggregation operation than an operation requiring deep
interpretation. The results of the JSON Mapping and Protection Level Discovery
steps for the total of 292 Components examined are shown in Table 4.3.

Table 4.3: Results of sensitive Service identification by the two GPT models

GPT-4 GPT-3.5
Components with
Incorrect Service

Detection

0 23

Components with
Incorrect AuthGuard

Detection

14 96

Components with
Incorrect Protection Level

4 112
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In addition to the results presented in the table, the majority of Incorrect Auth-
Guard Detection issues for GPT-4 were caused by the nesting of parent and offspring
modules within an application, which made it difficult to detect AuthGuards accu-
rately. During the investigations, the maximum level of AuthGuard was detected in
the majority of cases, resulting in only four cases of inadequate protection level out
of 292 investigated cases. When evaluating the results of GPT-3.5, we had to confirm
the findings of Cheshkov et al. [32] because, despite employing prompt engineering
techniques and setting the temperature of the models to 0, we encountered difficult-
to-explain problems. In the case of Incorrect Service Detection, errors occurred where
interfaces and elements not acting as Services, such as elements of the Angular Mate-
rial library or the Observable interface, were marked as Services; during AuthGuard
Detection, despite a temperature of 0, hallucinations occurred and generated Auth-
Guards that did not exist in the application and either left their associated protection
level at 0 or changed it to 1 or 2, causing 38% of the Components to have incorrect
protection levels.

Thus, although we used the GPT-3.5 models for completeness in the rest of the
evaluation, it was guaranteed that the aggregate results of Vulnerability Detection
would not be adequate for errors of this magnitude, and the errors it made would be
difficult to correct even with prompt engineering.

4.5.2 Definition of the Detection Pipeline

With the evaluations of the individual prompts complete, it is now time I introduce
the pipeline which integrates their results to complete the evaluation of the projects
from the test set. The pipeline’s prompts were developed using the principles of
prompt engineering [79], a relatively new discipline, through multiple cycles of ex-
perimentation; the used prompts are included in the Appendices of this paper. Cri-
teria included plain wording, the inclusion of rules prohibiting the reappearance of
anomalies discovered during initial testing, and the inclusion of examples pertinent
to the expected response format. To accomplish this, we used larger, more compre-
hensive prompts, which allowed us to avoid both format errors and the inclusion
of uptake prompt engineering techniques such as ”few shot example”, where each
prompt was provided with at least one sample input and a corresponding sample
output, and chain-of-thought, where we provided the thought and logic flow in the
prompts in addition to simple rules, which helped to provide the correct deductions
and avoid various errors. Although this significantly increased the size of the prompts
and we were initially concerned about exceeding the 8096 token limit of GPT-4 (in
the case of GPT-3.5, we were not at risk of exceeding it due to the 16,384 token limit
of gpt-3.5-turbo-16k), a survey conducted prior to the actual evaluations to measure
the maximum size of the prompts and input files dispelled such concerns. The results
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are shown in Table 4.4, and the prompts and precise methodology are described in
the sections that follow.

Table 4.4: The token counts of the various prompt parts used in the GPT API requests

Prompt Type Token Count
Senstivity Detection Prompt (Appendix

B.2.1)
905 tokens

Feature Extraction Prompt (Appendix
B.2.2,B.2.3)

1564 tokens

AuthGuard and Protection Level
Evaluation Prompt (Appendix B.2.4)

2354 tokens

Average token count of the largest files
from the largest projects

3560 tokens

Average token count of the largest
mapped json

1145 tokens

In addition, it is important to note that, at the time of writing, GPT-4 has already
begun to implement its extended model with 32,000 tokens, which will permit the
delivery of significantly larger code segments or even more complex prompts than
those under consideration, thereby mitigating this risk. [13]

The complete analysis process consists of the following steps:

1. Minifying Code Base: The .ts source files of Angular applications have been
minified, removing line breaks and whitespace characters.

2. Sensitive Element Detection: The minified Component files were passed one
by one to the GPT API, embedded in the Sensitivity Detection Prompt included
in the Appendix B.2.1. The analysis first identified the sensitive data, explaining
how it appears in the application, how it is used, and then an aggregation script
used this information to select the Services that were involved in read or write
operations on sensitive data in the project. For each occurrence of the tagged
Services, the sensitivity level of the data they handle is also determined.

3. JSON Mapping of Project Files: The minified Component files were passed
one by one to the GPT API, embedded in the Feature Extraction Prompt (Ap-
pendix B.2.2,B.2.3). As a result of this step, a JSON file is created for each
project, in which the components of the application are reduced to JSON ob-
jects, containing only the information needed for the current (or planned fu-
ture) tests, such as the parent-child component relationships, the injected Ser-
vices, and their used data members and operations.
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4. Protection Level Discovery: The JSONs resulting from the previous step, along
with the minified Router configurations and AuthGuards, were passed one by
one to the GPT API embedded in the AuthGuard and Protection Level Evalua-
tion Prompt (Appendix B.2.4), which added the protection level corresponding
to our scale. A Python script then unified these protection levels, assigning the
child components the protection level of their parent components.

5. Vulnerability Detection: By aggregating the results of the Protection Level Dis-
covery and Sensitive Element Detection steps in an xlsx file, the vulnerabilities
from the tested projects are detected, the cases where a Component using a
sensitive Service does not have a high enough protection level.

The results were then checked manually. More detailed explanations and outputs
of the steps are presented in the following subsections.

JSON Mapping of Project Files and Protection Level Discovery

The purpose of this step is to reduce the source code of the projects under inves-
tigation to the most relevant elements for the investigations, thereby reducing the
number of tokens used in subsequent operations and enhancing the quality of the
evaluation by passing only the most pertinent information from the files to the sub-
sequent prompts. The step is essentially equivalent to the code reduction/feature
extraction phase [83, 104, 111], which has been referenced numerous times in the
literature, with the output format described in the Appendix, in Table B.2.

During the JSON Mapping of Project Files phase, the Guarded, Guards, and
GuardLevel fields continue to be populated with empty values. During the Protec-
tion Level Discovery step, the already mapped json files are passed along with the
AuthGuards and routing configurations to the GPT API in order to determine the
protection levels based on the interpretation of the AuthGuards functionality and
mappings.

Our goal with the format was also to ensure that if we were to take our research
beyond security risk analysis into other directions with static analysis in the future,
the methodology could be used for further studies and experiments and ultimately
form the basis of a different type of schematic representation of the codebase, for
example, a visual representation including dependencies, possible navigations, and
security configurations, similar to the visual description languages [49, 51] men-
tioned in the Introduction chapter.

Code 4.5.2 is an example result of the json mapping operation.

{
” type ” : ”Component ” ,
” s e l e c t o r ” : ” p r o f i l e −comp” ,
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”name ” : ” Profi leComponent ” ,
” f i l e ” : ” p r o f i l e . component . t s ” ,
” path ” : [ ”/ p r o f i l e ” ] ,
” guarded ” : 0 ,
” guards ” : [ ] ,
” guardLevel ” : 0 ,
” nav iga t i ons ” : [ ’ / dashboard ’ ] ,
” i n j e c t i o n s ” : {

’ OAuthService ’ :
{ ’ Funct ions ’ : [ ’ checkAuth ’ ] ,
’ Var iab le s ’ : [ ] ,
’ Asynchrons ’ : [ ’ token ’ ] } ,

’ LoggerServ ice ’ :
{ ’ Function ’ : [ ’ log In fo ’ , ’ logError ’ ] ,
Var iab le ’ : [ ’ log ’ ] ,
Asynchron ’ : []}

} ,
” parents ” : [ ] ,
” ch i l d r en ” : []

}

Sensitive Element Detection

As input, the step also receives the component’s minified source code, which is em-
bedded in the corresponding prompt. The intent was for the GPT API to mark in
the received source code the variables and objects that it identified as sensitive, clas-
sify them according to the sensitivity level identified, and provide explanations for
tracing back the findings in the event of a problem. The output format, shown in
the Appendix, in Table B.3, which this time used csv format to simplify manual val-
idation, provided a way to do this by using the Type field, where GPT could write
a short, few-word category identifying exactly what type of data the information
marked as sensitive was (e.g. Confidential User Data, Company Information, Finan-
cial Information), and the Function field, where a much more detailed description
could be provided explaining the reasons for marking the information as sensitive
(e.g. ”This is the device data collected for payment processing”, ”Array of Materia
objects containing educational records”).

Vulnerability Detection

A simple aggregating Python script that read the json files containing the protection
letters and the csv file containing the list of sensitive Services identified the vulner-
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abilities based on these files. In the output, it enumerated all of the application’s
Components, their protection level, the sensitive services detected, and the maxi-
mum level of sensitivity among them. If a Component’s protection level was lower
than its sensitivity level, it was marked as potentially vulnerable. The results were
then manually inspected.

4.5.3 Evaluation of the Vulnerability Detection Results

The Vulnerability Detection step was performed based on the aggregation of the two
sub-results, and the success of this step is shown in Table 4.5.

Table 4.5: Results of the Vulnerabitily Detection.

GPT-4 GPT-3.5
Detected Vulnerability 40 17

False Vulnerability 0 8
Undetected Vulnerability 49 80

Undetected High
Sensitivity Vulnerability

10 16

Undetected Medium
Sensitivity Vulnerability

31 56

Undetected Low
Sensitivity Vulnerability

8 8

As can be seen, our assumptions about GPT-3.5 have been confirmed, accumu-
lating the poor results of the previous steps and resulting in a total of only 1% of
vulnerabilities successfully detected. However, our initial naive assumption about
the identification of sensitive Services had very serious consequences for GPT-4 in
the first round. Of the total number of errors that should have been identified, only
less than 45% were successfully detected, and 20% of the errors (i.e., cases where
a vulnerability should have been detected but was not) were in the High Sensitivity
category, meaning that attempts to retrieve or manipulate highly sensitive health,
financial, or other personal data could theoretically be made through the frontend
from code in an interface that was not nearly strong enough to handle such data. A
significant part of the problem was identified in the RQ1 investigation as the Mono-
lith Service, where Services did not have one well-defined task and role but rather
developers crammed several similar procedures into them without any consideration
that all levels from Non-Sensitive to High Sensitivity data categories could appear
within a single Service. This problem caused the sensitivity level of the Services
to vary enormously in many cases, where a Service was identified as having either
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Medium or High Sensitivity in a single Component, while in another it was declared
irrelevant to sensitive data.

To improve the detection results somewhat and address these issues, a major
strengthening of vulnerability detection was applied to GPT-4, whereby if a Service
was categorized as handling sensitive data based on its behavior in any Component
of the application, it was treated as sensitive in the scope of the whole application
and assigned the highest sensitivity level from any affected Component. A very spec-
tacular improvement in the results can be seen in Table 4.6.

Table 4.6: Comparison of the original and more strict Vulnerability Detection rules.

GPT-4 Original GPT-4 Strict
Detected Vulnerability 40 79

False Vulnerability 0 0
Undetected Vulnerability 49 10

Undetected High
Sensitivity Vulnerability

10 0

Undetected Medium
Sensitivity Vulnerability

31 3

Undetected Low
Sensitivity Vulnerability

8 7

The detection success rate has jumped from 45% to 88.76%, and the High Sensi-
tivity category misses have completely disappeared. In other words, with this tight-
ening, which could have been done in the Sensitive Element Detection step as a post-
processing step, we achieved an improvement of 44%. The remaining anomaly is
expected to be overcome by further refining the data and Service sensitivity prompts
in light of these results, and the increased token limit will allow GPT-4 to exam-
ine the different data used in an even wider context. In the case of GPT-3.5, al-
though some improvement may occur with similar tightening and further refinement
of the prompts, misinterpretations and anomalies such as hallucinated AuthGuards
and high misinterpretation in the detection of sensitive data strongly question the
usefulness of the model for such purposes and are in line with the observations of
Cheshkov et al. al. [32], who obtained better results even with a dummy categorizer
than with GPT-3.5. While the results obtained with GPT-4 support the conclusion of
Borji and Mohammadian [24] that GPT-4 is possibly the most promising LLM cur-
rently available for software development and source code interpretation tasks.
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4.6 Threats to Validity

Conclusion Validity: Although we have attempted to select 12 of the largest and
most complex available projects, there may be others whose structure and unique
solutions pose new challenges. However, since our results demonstrate that large
language models—GPT-4 especially—are capable of interpreting code at a sufficient
level by following the examples and thought processes defined in the prompts, we hy-
pothesize that these individual challenges can be overcome using the same method-
ology and by fine-tuning the rules defined in the prompts.

Internal Validity: We have not identified any threat to internal validity.

Construct Validity: As pointed out during evaluations, if the developers of the
evaluated project significantly deviated from the Angular framework’s development
conventions, for example by using monolithic Services or other questionable code
quality solutions or by overcomplicating parent-child relationships, the likelihood of
GPT-4 misinterpreting or having trouble detecting contextual relationships may also
increase. The 44% improvement obtained by refining the criteria at the conclusion of
the Vulnerability Detection phase demonstrates that such problems can be mitigated
by augmentation and data cleansing steps following the static source code feature
extraction step. On the other hand, the problems identified in the RQ1 evaluation
would most likely be considered code smells or vulnerabilities of a type that cannot be
detected without a deeper understanding of the code base. Their mere presence has
a negative impact on code quality, code interpretability, and code security, so their
detection alone could be useful to development teams interested in static analysis
and evaluation of their source code.

External Validity: Although, when defining the categories of data sensitivity
and protection, we attempted to create a general taxonomy centered on the poten-
tial damage caused by data leakage, which we assumed would be easy to interpret
and follow by AI, which we achieved while also revealing more complex problems
through the investigation of the vulnerabilities in the source code, there may be in-
stances in which a specific sensitive data type needs to be detected, requiring a differ-
ent scale. Nevertheless, as we suggested in the Conclusion Validity threat assessment,
since our methodology with the GPT-4 API performed well overall in the evaluations,
according to our hypothesis based on the results so far, these assumptions require
mere modifications to the content of the prompts.

In the future, we plan to both further validate our work, either with the C/C++
datasets [83, 111] discussed in the survey literature - after all, the underlying con-
cept of our methodology does not depend on the specific source code and framework
- or fine-tune it to explore further areas of research, such as navigation, as a re-
sult of which we might at some point even enable a new kind of dynamic, artificial
intelligence-based visual description language for code bases where this has so far
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proved impossible.

4.7 Chapter conclusion

Our team has provided an overview of the primary directions in which artificial in-
telligence is increasingly being used in programming. I defined a categorization for
determining both the nature of sensitive data and the application’s vulnerability, and
developed a process based on the GPT API to detect the CWE-653 vulnerability and
its consequences, the data leakage types of the CWE-200 family. Although GPT-3.5
underperformed in the model evaluation, GPT-4 obtained 88.76% accuracy, confirm-
ing our hypotheses regarding the static code analysis and interpretation capabilities
of large language models. We hope that our research has contributed to a deeper
understanding of the potential of artificial intelligence in software engineering and
that the methodology presented here can facilitate the design and implementation
of code analysis techniques that can significantly contribute to the analysis of more
complex source code, to improve its quality and vulnerability detection for develop-
ment teams, and to the promotion of similar directions for fellow research groups.

The author of this PhD thesis is responsible for the following contributions pre-
sented in this chapter:

II / 1. I defined a categorisation of sensitive data in front-end applications, which
categorises them into three different categories based on the level of damage
caused by their leakage and unauthorised access. I presented a further cate-
gorization, which divides the protection levels of the application components
into categories such that they are representative of the protection required for
the sensitivity categories.

II / 2. I presented a GPT-enhanched methodology that uses the categorization de-
fined in the previous thesis to detect sensitive data in front-end applications
and, based on this data, to tag the code elements that focus on operations on
such data. The author validated the categorisation using an artificial intelligence-
based evaluation that classifies the elements of a 200-word collection of vari-
able names into one of the defined categories. The author followed this by
presenting the results obtained on the sensitive data detection from a total of
292 components from open source applications.

II / 3. I defined a GPT-supported static source code analysis pipeline that uses the
results of the previous thesis to detect vulnerabilities where components are
not protected or whose protection level is insufficient for the sensitivity of the
data they handle, in line with the CWE-653 type software vulnerability.



Chapter 5

Conclusions

5.1 Results

While the data privacy requirements of the e-health data path are complex and de-
manding, during my years of research I have managed to explore and analyze several
aspects of it, and propose significant results and solutions for several of its challenges.
I defined a taxonomy distinguishing the four policy categories that together can en-
compass the access control requirements; I have separated two types of edge nodes
based on their capabilities: processing edge and caching edge. As a member of a
research team, I have examined the stability of smartphone-based peer-to-peer net-
works, and came to the conclusion that further testing and simulations are required
to determine whether they can implement a local e-health infrastructure as well. I
defined test rules for each policy category, established test environments for the edge
types. With the aid of the Open Policy Agent (OPA), I implemented my proposed
access control solution based on the Policy Enforcement Point (PEP) principle, whose
performance I evaluated in both test environments with an ever-increasing volume
of documents. The results showed that the latencies caused by my access control
solution accounted for less than 35% of the total runtime on the processing edge,
even with the largest amount of data, while the proportion was less than 30% on
smaller data amounts; on the caching edge the delays were much more significant,
as long as only a few hundred documents were handled, the method proved to be
effective on both desktop PCs, smartphones, and tablets. To measure the exact ef-
fects of the delays caused, I have developed an open-source patient flow simulator
that makes it possible to construct scenarios, parameters, and thresholds that enable
more accurate validation of access control implementations.

Building upon the recent breakthroughs in the domains of artificial intelligence
and natural language processing (NLP), I have also tackled the challenge of static
code analysis of the web applications at the ends of the data path, whose dynamic and
complex nature has made several types of vulnerability analysis nearly impossible
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until now. I defined taxonomies for determining both the nature of sensitive data and
the application’s protection levels and developed a process based on the GPT API to
detect possible points of data leakage using techniques of prompt engineering instead
of classical training. I demonstrated the potential of the GPT models in classifying
the sensitivity levels of a dictionary of variable names and then in detecting sensitive
data elements and critical services in open source web application projects using
their ability to interpret and analyze the meaning and context of the program code.
After evaluating the protection level of said services, I have also demonstrated the
effectiveness of my methodology in detecting points of potential data leakage—points
in the source code where the sensitivity of the handled data is unmatched by the
protection level.

5.2 Future Work

It goes without saying that the results of my years of research only encompass a
portion of the telemedicine data path, which only demonstrates the complexity of the
data privacy issues in e-health. To support the ever-evolving e-health technologies,
we must, however, establish comprehensive solutions and address the entire scope of
the problem.

Implementing the OPA-based access control solution at even more locations along
the data path in order to determine where and what kind of access control evalua-
tions are most effective is the next step in my research. If these results are vali-
dated with simulations, I may be able to define a set of established patterns and
anti-patterns of access control along the telemedicine data path in the near future.
This would be a significant step towards a standardized security approach in the
modern e-health domain.

In order to accomplish this, I also intend to enhance the patient flow simulation
tool by adding even more detail, options, and detailed logging options, and by adapt-
ing it to even more intricate scenarios. In the future, it will be necessary to combine
it with a network simulation tool utilizing peer-to-peer data from our Stunner re-
search project in order to evaluate the applicability of smartphone-based serverless
peer-to-peer networks in specific scenarios.

At the conclusion of the data path, we intend to evaluate additional projects us-
ing my GPT-based data leakage detection methodology. Experimenting with smaller,
less-demanding models trained specifically for this problem; providing increasingly
detailed evaluation context with the GPT models’ ever-expanding token limits; and
experimenting with other vulnerabilities from the CWE database that, like CWE-653,
require contextual information to evaluate and, as a result, were not detectable using
only traditional static code analysis tools.



Appendix A

Supplementary Algorithms and Tables
for Vulnerability Detection

A.1 Algorithms

Figure A.1: A Role Evaluation policy in Rego returning only the Observations where the
current user is the Practitioner

Figure A.2: A Role Evaluation policy in Rego returning only the Observations where the
current user is member of one of the CareTeams, who received access from the Patient
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Figure A.3: A Contextual Evaluation policy where access is granted only if the status of
the Observation is active and the time of access takes places between 8:00 and 19:00

Figure A.4: A Contextual Modification policy where we remove the Patient identifiers
from Observation

Figure A.5: A Contextual Modification policy where we remove a specific nested compo-
nent from every Observation
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Figure A.6: A Break-the-Glass policy where we hash the identifier of the CareTeam in
the Observations
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Figure A.7: A Break-the-Glass policy where we hash every identifier for Patients, Prac-
titioners and CareTeams
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A.2 Tables

Table A.1: Major events of the main ED flow

Name ID Description Type Req
Patient
Registra-
tion

register patient Admitting the patient to the hos-
pital

event HE

Evaluate
Urgency

evaluate urgency The urgency, as a binary infor-
mation is determined for the pa-
tient. Urgent cases are immedi-
ately forwarded to pre-visit

event GN

Abandon abandon The patient decides to leave the
hospital before pre-visit

end state-

Pre-visit pre visit Quick measurements and exam-
ination by a nurse to determine
the triage level and severity of
the case.

event GN

Assign ESI assign esi Emergency severity index is as-
signed to the patient, who is ei-
ther transferred to internal clinic
or sent to the full visit process

event GN

Manage
outcome

manage outcome Management of results and out-
comes resulting from the visit
process.

event SN

Table A.2: Elements of the Visit subprocess

Name ID Description Type Req
Collect
History

collect history The nurse collects and orga-
nizes the healthcare history of
the patients via direct interview
with the patient and/or database
queries

event SN
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Table A.2: Elements of the Visit subprocess

Name ID Description Type Req
Hypothesize
Diagnosis

hyp diag The doctor evaluates the results
so far, examines the patient and
either establishes a diagnosis or
may require further tests (blood
tests and X-rays) before doing so.

event DR

Take
Blood
Sample

take blood Taking a blood sample as pre-
scribed by the doctor.

event SN

Laboratory laboratory The blood sample is transferred
to laboratory examinations. If
there is any information avail-
able quickly, it is sent back to the
doctor.

event DR

Transfer to
radiology

trans rad The patient is transferred to radi-
ology and prepared for the X-ray
recordings.

event GO

Radiology radiology Usage of diagnostic imaging pro-
cedures, such as ultrasound, CT,
MR.

event SN

Establish
diagnosis

estab diag Based on the results and the
information, diagnosis is estab-
lished

event DR

Define
therapy

def therap If possible, therapy is defined by
the doctor

event DR



Appendix B

Supplementary Algorithms, Prompts
and Tables for Vulnerability Detection

B.1 Tables

Table B.1: The list of the related works with the most relatable solutions to our own
research, and the differences with our planned methodology.

Work Comparison with our research
Wu [120] Our approach is predicated on the premise that for

models such as GPT-3.5 and GPT-4, due to the large
number of diverse resources used in their training and
their contextual interpretation capabilities, teaching is
not required; rather, it is sufficient to refine and trans-
fer the additional knowledge required to complete the
task during prompting. In our case, pre-processing and
extraction of the code base serve as a comparable start-
ing point.

Thapa et. al.
[111] & Omar
[83]

Both studies searched for vulnerabilities in C/C++
source code using GPT models with a similar process-
ing principle to ours, with the exception that we rely
on prompting rather than further training and focus on
a problem that requires a deeper comprehension of the
code’s meaning.
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Table B.1: The list of the related works with the most relatable solutions to our own
research, and the differences with our planned methodology.

Work Comparison with our research
Sun et. al.
[104]

They were searching for vulnerabilities in smart con-
tracts and, consistent with our ideas, understood that
GPT has tremendous potential to address problems
that require deeper meaning and context interpreta-
tion than semantic and logical interpretation of the
control and data flow.

Cheshkov et. al.
[32]

The prompts were based on ChatGPT, which, at the
time of writing our paper, did not provide a formal
method to set the temperature and accomplish deter-
minism in responses. The presented prompts are rudi-
mentary, and the use of prompt engineering techniques
is only mentioned as a potential direction for future re-
search at the conclusion of the paper.

Feng & Chen
[42]

They have also attempted to fine-tune a previously
trained model solely through prompting, and due to
the prompt engineering techniques that we have also
used to develop our own prompts, they have achieved
quite encouraging results.

Table B.2: The output structure of the json mapping operation.

Name Content
Type The type of the analyzed file, Component, Service, etc.
Selector If the type is Component, this field contains selector string

specified in the decorator method of the class, which in-
dicates the rendering locations in the html template codes
which are handled by the Component..

Name The name of the analyzed class.
File The name of the analyzed file.
Path If the parsed file type is Component, the string of the appli-

cation’s routing configuration to access it; empty string for
embedded child components only.

Guarded Boolean value indicating the presence of an AuthGuard or
AuthGuards protecting the class if it is a Component.



B.1 Tables 117

Table B.2: The output structure of the json mapping operation.

Name Content
GuardLevel A numeric value in the 0 - 3 interval according to the security

levels defined in the previous section.
Guards The names of the AuthGuard classes protecting this class if

it is a Component.
Navigations A list containing the names of the Components to which we

can navigate forward from this class.
Injections A list of injected Services in the class, also containing the

exact interactions with them which might be Asynchrons,
Attributes or Functions-

Parents The list of Components, which contain the selector of this
class (if it is a Component) in their html template-

Children If the analyzed file is a Component, then a list of the Com-
ponents, that are contained in its html template by their se-
lectors.

Table B.3: The output structure of the sensitivity detection operation.

Name Content
Element The name of the sensitive object or variable.
Type The type of the sensitive element, following a conviction

similar to the list in prompt B.2.1.
Level The sensitivity level of the detected element.
Origin UserInput, Service or LocalStorage, the three most common

sources of sensitive data in a web application.
ServiceNameIf the Origin is Service, then the name of the Service which

is the source of the sensitive element.
Function The role of the sensitive element in the Component where it

was detected.
Goal The fate of the sensitive element after its usage: Stored,

Read or Service.
GoalName If the value of the Goal field was Service, then the name of

the Service to which the sensitive element is passed to.
Classname The name of the class in which the sensitive element was

detected.
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B.2 Prompts

B.2.1 The prompt for detecting sensitive elements in the Compo-
nent code

Inspect the following Angular code, list all variables or attributes that could contain
sensitive information for the user (Usernames, Passwords, Email Addresses, Phys-
ical Addresses, Phone Numbers, Birthdates, Social Security Numbers, Credit Card
Numbers, Bank Account Numbers, Routing Numbers, Driver’s License Numbers, Pass-
port Numbers, Health Insurance Numbers, Medical Records, IP Addresses, Biomet-
ric Data, Purchase History, Tax IDs, Company Confidential Information, Employee
IDs, Salary Information, Private Messages or Chats, Security Questions and Answers,
Location Data, Photographs, Educational Records, Cookies, Browser History, User
Behavior Data, Web Server Logs, API Keys, Encryption Keys, Cloud Storage Keys,
OAuth Tokens, Cryptocurrency Wallets, Session IDs, Device IDs, Personal Identifica-
tion Numbers (PINs), Legal Documents, Employment History, Marital Status, Family
Information, Religious Affiliation, Sexual Orientation, Political Views, Racial or Eth-
nic Origin, Trade Union Membership), their origin (meaning, how it is retrieved -
user input, database, service or storage - in the latter case you must include the exact
name of the service or storage), and function in a CSV format. In the function try to
include what happens with the attribute in the code, how it is stored, where it is for-
warded Be conceise! Avoid redundancy, for example if an object containts sensitive
attributes, you don’t need to include them individually, just include the object and
in its function mention that it contains email address, password, etc. The code is as
follows, separated by three backticks:
“‘{text}“‘
In your answer, use this CSV format:
Element;Type;Level;Origin;ServiceName;Function;Goal;GoalName;Classname
Where the Element is the name of the sensitive element, the Type is its type based
on the list above i.e. Username,Password,Email Address, etc. the reason why this
element is identified as sensitive. The Level is a numberic value from 1 - 3, signifying
how sensitive this information is. 1 means Low Severity, such as browser history, user
behaviour, cookies or the identifiers of such information, 2 means Medium Severity
such as username, email, password, birthdate, ip address, location data, political/re-
ligious views, sexual orientation, etc., 3 means High Severity, information that might
lead to identity theft, financial loss, or significant privacy invasion such as social se-
curity number, health insurance, drivers license, legal documents, passport, medical
information, credit card data, encryption keys, tax ids. The Origin is one of the fol-
lowing values: (’UserInput’, ’LocalStorage’, ’Service’) The ServiceName is the name
of the Service from where the element came if the value of the Origin is ’Service’, else
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its empty string. The Function is a description of what the given element is used for
The Goal is where the element is forwarded, stored, what happens to it, it must be
one of the following values: (’Read’, ’Stored’, ’Service’) The GoalName is the name
of the Service the element is forwarded to if the value of the Goal field was ’Service’.
The Classname is the name of the Angular class where the element was detected. For
example:
“‘
customersArrayData; CustomerInformation;2; Service; DbServiceService;Array of Cus-
tomer objects containing sensitive information about the customers; Read; ; Cus-
tomersComponent
id;User Identifier; 1; UserInput; Id to query a Customer object from the database;Used
to call the GetCustomer function of the DbServiceService; Service, DbServiceService;
CustomersComponent
“‘
Your answer must include only the CSV format and nothing else! If there are no
sensitive elements in the file, your answer must be exactly ’There are no sensitive el-
ements in the file!’ The element and variable names in the files might not be English!
Even if parts of the source code is in Spanish, German, Italian, Hungarian or other
languages, etc. you must correctly identify the sensitive elements!

B.2.2 The definition of the mapping JSON, to be used my multiple
prompts

{ ”type”: ”type of the analyzed file, for example, Component, Service, Guard, etc.”,
”selector”: ”if the type of the analyzed file is a Componet, this field should contain
its selector string from its class decorator.
If the file is not a Component, the value should be an empty string”, ”name”: ”name
of the class in the analyzed file, for example AppComponent, LoginService, etc.”,
”file”: ”the name of the analyzed file. If you received multiple files for a component
- the .ts and the .html, this should be the name of the .ts file”,
”path”: ”the path of the component - if there is any - from the navigation modules.
In this step, the value of this should remain an empty list”,
”guarded”: ”if the class is a component, and it is protected by an AuthGuard, the
value should be 1, the default value is 0”,
”guardLevel”: ”The value of this should be 0”,
”guards”: ”The names of the guard classes that protect the class in the analyzed file.
The default value is an empty list []. If the analyzed class is not an Angular Compo-
nent, it must remain an empty list.”,
”navigations”: ”A list of possible navigations from the file by class names. If you
cannot find out the class name of the component
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targeted by the navigation, you should include it’s path. An optimal value of this field
would be: [’LoginComponent’, ’DashboardComponent’]
an acceptable value would be [’/login’, ’/dashboard’]. If there are no possible navi-
gations from the analyzed class, the list should be empty.
You also need to take into account navigations that can possibly happen via a service,
such as this.superService.navigate(’home’) or this.tereloService.menj(’/profile’)
If the analyzed file was an Angular Module, the value should be an empty list ([])!”,
”injections”: ”A dict, where the keys are the names of the services and other injecta-
bles that were injected into the analyzed class via the constructor. The values of the
keys is a dict, containing and organizing the calls when said injectable was used in
the file. The keys of this inner dict are Asynchrons, Functions and Variables. Asyn-
chron refers to Promises and Observables used by the analyzed file, Functions to the
names of functions called by the analyzed file, Variables to the various variables of
the injected accessed directly by the analyzed file. The values of this inner dict are
lists which are either empty, if that type of interaction with the injectable did not
happen, or the names of said interaction. An example value for this field would be:
{’LoginService’: ’Functions’: [’login’, ’forgotPassword’], ’Variables’: [], ’Asynchrons:
[’currentUser’]’, ’LoggerService: ’Functions’: [’logInfo’, ’logError’], ’Variables’: [’log’],
’Asynchrons’: []’} If there are no injectables in the file, the value should be an empty
dict!”,
”parents”: ”If the analyzed file is a Component and it has parent Components, this
should be a list that contains the names of those components, like [’ProfileCompo-
nent’], or [’LoginComponent’, ’RegisterComponent’]. The default value is an empty
list.”,
”children”: ”If the type of the analyzed file is a Component, this list should contain
the names - or if the names cannot be determined from the context, then the selec-
tor strings of every child Component that are contained by the HTML template of the
Component. For example: [’SpinnerComponent’, ’alert-component’]. If the type of
the file is not Component or it doesn’t have any children, then the value of this field
should be an empty list. The router-outlet should also be considered to be a child,
so if the .html template contains it, it should be included here!”
}

B.2.3 The mapping prompt that converts the minified TypeScript
files into JSONs

You will receive a minified version of a TypeScript file from an Angular web applica-
tion, separated by three backticks, describing either a Component or a Service of an
Angular project. Your goal is to create JSON from said file, which contains the ser-
vices that were injected into it via the constructor, the names of the functions called
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from said services, the possible navigation operations, and in case of components,
the names of the children components in a list. If any of the mentioned elements are
missing, its place in the JSON should contain the key, but only an empty list as its
value. The JSON should follow this format:
{firstResultFormat}
A short example of a correct output:
{firstResultFormatExample}
The file to be analyzed is the following:
“‘
{section}
“‘
Your answer should only contain the JSON and nothing else, as your answer will be
instantly parsed as a JSON by the receiver! Use double quotation marks (”) and no
single quotation mark (’) under any circumstance!

B.2.4 The access control evalution prompt

You will receive a JSON object, which is describing a Component from an Angular
project and their relations to each other. The JSON object will follow this format:
{firstResultFormat} With this JSON you will also receive minified versions of the An-
gular files, that will contain information concerning the routing and the authguard
configurations of the web application. Based on these files you will need to extend
the JSON representing the Component with the following steps.
1. Modify the path value if their ’path’ is an empty list. If there is no path defined
in any of the Route[] arrays in the received files that contain a path value for that
particular Component, then the value of its path should remain an empty list in the
JSON. There is a good chance for example, that Components that are children to
another Component should not have any paths, because they are most likely to be
accessible through their parent Component. For example: If there is {{ path: ’regis-
ter’, component: RegisterComponent }} in one of the routing modules Then in the
JSON, where type: ’Component’ and name: ’RegisterComponent’, ’path’ should be
[’/register’] Make sure that even if there’s already a value in the path field, it has a
unified format, such as ’/register’, ’/home’, ’/profile/:id’ The reason why the path is a
list and not a string is because you also need to include the default/home path to the
appropriate JSON (’/’) and the wildcard path (’**’) to the appropriate JSON if they
exist in the route definitions. The paths might be also stored in multiple files if there
is a module-submodule relationship. For example, if one routing module contains
the following:
{{path: ’users/:id’,loadChildren: () = import(”./users-module/users.module”).then(m
= m.UsersModule)}}, then the UsersModule imports another routing module, for
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example a UsersRoutingModule, where there is a line such as:
{{path: ’addition’, component: AddUserComponent}},
then the path for the AddUserComponent is ’/users/:id/adddition’ if there is
{{path: ”, redirectTo: ’profile’}}
in that module, then the component with the ’/users/:id/profile’ path should also get
the ’/users/:id/’ route in their paths array. Do not under any circumstance mix the
paths and the possible navigations from that given Component! - only Components
have paths! - most Component only have one path. If the Component is used as the
child Component of another, it is very likely that it doesn’t have a path in the routing
information, therefore its path list should remain empty. - the only exceptions are
usually the default routes: ”, ’/’ and the wildcard route: ’**’
2. List every ’Guard’ by their class names in the ’guards’ list of the JSON that are
protecting the Component based on the canActivate parts of the routing information.
For example:
if there is a configuration like this in one of the module files {{path: ’profile’, compo-
nent: ProfileComponent, canActivate: [AuthguardGuard]}} then in the JSON, where
’type’: ’Component’ and ’name’: ’ProfileComponent’, ’guarded’ should be set to 1, and
the ’guards’ should be: [’AuthguardGuard’] Again, take into account the module level
imports: if there is a {{path: ’users/:id’, canActivate: [RoleGuard], loadChildren: ()
= import(”./users-module/users.module”).then(m = m.UsersModule)}} then every
route/component that is imported by the UsersModule already has the RoleGuard, in
addition to any other they might have individually! for example a {{path: ’addition’,
component: AddUserComponent}} in the UsersModule’s imported routes would give
the AddUserComponent’s JSON the [’RoleGuard’] as its guard, while a {{path: ’dele-
tion’, component: DeletionUserComponent, canActivate: [AdminGuard]}} would
give the DeletionUserComponent’s JSON the [’RoleGuard’, ’AdminGuard’] list as its
’guards’.
3. As a final step, you need to calculate the guardLevel if the JSON has ’Component’
as its type, based on the following rules:
- if the ’guarded’ value is 0 and their ’guards’ list is still empty after the previous steps,
the ’guardLevel’ is 0 - if it has at least one Guard in their ’guards’ list, but based on
the implementation of it, that Guard only checks whether the user is logged in in
or not, the ’guardLevel’ should be 1. - if the implementation of Guard or Guards in
the ’guards’ list not only check whether they are logged in, but they also check for
access level - admin or normal user; patient, relative, nurse or practitioner; buyer
or seller - the ’guardLevel’ should be 2. - if the implementation of the Guards con-
tain everything necessary for guardLevel 2, but go beyond them and check for extra
information, for example, location, IP address, timezone, device/browser type, the
guardLevel should be 3.
Your answer should contain the full version of the modified JSON, it will have to
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include every object which was in the input in the same format and contain every
modification you have made to it.
This is the input JSON file, separated by three backticks:
“‘
{firstResult}
“‘
And these are the minified files containing the routing and guard information, also
separated by three backticks:
“‘
{filteredGuards}
“‘
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[25] Stefan Bosnic, Ǐstvan Papp, and Sebastian Novak. The development of hybrid
mobile applications with apache cordova. In 2016 24th Telecommunications
Forum (TELFOR), pages 1–4. IEEE, 2016.
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Summary in English

This dissertation explores the challenges and problems generated by the complex
access control requirements of modern telemedicine applications and demonstrates
different solutions that meet or facilitate the resolution of these challenges.

The scientific results are presented in two groups, which are detailed in the third
and fourth chapters of the thesis.

The first group of theses focuses on the complex data path of heterogeneous el-
ements in the infrastructure of e-health applications. In it, I have presented the
requirements that an access control solution must meet in order to properly and ef-
ficiently enforce the defined rules without impeding the care process, and I have
defined a taxonomy for the policy categories. I have defined two types of edge out-
side the cloud that are special cases for privilege management, the processing and
caching edge, and examined smartphone-based peer-to-peer networks as an alterna-
tive, fully distributed edge type from a stability and efficiency perspective. I have
presented a proposed framework that builds on the concept of a Policy Enforcement
Point (PEP) to implement an entitlement management point that can be placed at
multiple points in the data path, capable of partial analysis of the retrieved data and
also partial modification or encryption of the data as necessary before granting ac-
cess. I implemented the proposed framework using the Open Policy Agent (OPA) and
evaluated its operation and efficiency in test environments simulating two specific
edge types.

In the second group of theses, I investigated the challenges posed by static anal-
ysis of applications at the end of the data path. I defined two taxonomies: one for
detecting and ranking sensitive data and the other for determining the level of pro-
tection of application components. I validated the usability of the categories first by
classifying a 200-word collection of variant names and then on a test set of 292 com-
ponents extracted from an open-source Angular project. The resulting sensitive data
was used to investigate the effectiveness of the static source code in identifying the
sensitive parts of the software. Similarly, I validated the taxonomy of vulnerability
levels, also with the component set of 292 components, and then analyzed the effec-
tiveness of detecting vulnerabilities defined as inadequate isolation of critical parts
identified as vulnerabilities in CWE-653, which risk leaking sensitive data, by com-
bining the results of the two tests. In addition to presenting the results, I have also
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identified the flaws that cause the problems and, based on these, the improvements
that can be achieved by tightening the detection principles.

Contributions of the thesis

Thesis Group I. In the following thesis group, I examined the requirements of the
telemedicine data pathway for access management. I defined the conditions that
must be met at each designated points of the telemedicine data path in order to rec-
oncile security requirements and responsiveness. I defined a four-element taxonomy
for the categories of policy enforcement to be implemented. I presented the edge as
a critical case for access control, its two primary categories for access control, the
processing edge and the storage edge, and our results on a special case of the edge,
the analysis of the stability of smartphone peer-to-peer networks. Then, I defined
two experimental environments, one for the processing edge and one for the storage
edge, as well as my experimental results in said environments using a practical im-
plementation of the access control framework in terms of latency. Lastly, I presented
my patient flow simulator built with open source libraries, which can simulate the
throughput of patients treated in a hospital ward and can be used to generate valida-
tion parameters for the developed access control framework in order to validate the
system’s delay tolerance.

• Thesis I/1. I explored the complex requirements of modern telemedicine ap-
plications in terms of access control. I defined a taxonomy to formalize the
different types of access control policies and the TAPE requirements necessary
to ensure that the implementation of the defined policies can guarantee a bal-
ance between data privacy compliance and responsiveness at any point in the
telemedicine infrastructure.

• Thesis I/2. I proposed special categories of edge instances beyond the cloud
that represent a special category of modern telemedicine infrastructure from
the perspective of access management. I formally defined a categorization of
these into storage and processing edges. I then discuss the increasingly preva-
lent smart device based peer-to-peer networks as an extreme case of edge solu-
tions, and analyse their potential and stability to function as stand-alone edge
networks.

• Thesis I/3. I presented the implementation of the proposed access control
solution, then I will set up test environments to represent both edge types,
and sample rules to validate the effectiveness of the implementation under in-
creasing data volumes. During the measurements, I examined the resource
requirements of the nodes performing the evaluation, as well as the latencies
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measured for the data retrieval processes. I present the measured latencies
which confirmed, that for reasonable amounts of data at the various edge types
my policy categories met the requirements established in the previous theses.

• Thesis I/3.1. I developed a simulation tool using open source libraries and
tools that can simulate the distribution of patients and their waiting times in a
hospital ward. The developed simulation tool can be used to validate the extent
to which the increased waiting times due to the access control implementation
from the previous theses might slow down the process based on the amount of
handled data, and the impact this can have on the telemedicine data path, the
patient flow churn and waiting times at crucial parts of the care process.

Related publications

[J1] Szabó, Z., Bilicki, V. (2021). Evaluation of EHR Access Control in a Heteroge-
nous Test Environment. Acta Cybernetica, 25, 485-516. SJR: Q3, 0.75 credits

[J2] Szabó, Z. (2021). Evaluation of a policy enforcement solution in telemedicine
with offline use cases. Pollack Periodica, 17(1), 12-17. SJR: Q3, 1 credits

[J3] Szabó, Z., Hompoth, E. A., Bilicki, V. (2023). Patient Flow Analysis with a
Custom Simulation Engine. Acta Cybernetica, – accepted, under publication
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[C5] Szabó, Z., Bilicki, V., Berta, Á., & Jánki, Z. R. (2017). Smartphone-based data
collection with stunner using crowdsourcing: lessons learnt while cleaning the
data. In the Proceedings of ICCGI17 0,48 credits

[C6] Jánki, Z. R., Szabó, Z., Bilicki, V., Fidrich, M. (2017, November). Authoriza-
tion solution for full stack FHIR HAPI access. In 2017 IEEE 30th Neumann
Colloquium (NC) (pp. 000121-000124). IEEE. 0,48 credits

[C7] Szabó, Z., Téglás, K., Berta, Á., Jelasity, M., & Bilicki, V. (2019). Stunner: A
smart phone trace for developing decentralized edge systems. In Distributed
Applications and Interoperable Systems: 19th IFIP WG 6.1 International Confer-
ence, DAIS 2019, Held as Part of the 14th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby, Den-
mark, June 17–21, 2019, Proceedings 19 (pp. 108-115). Springer International
Publishing. 0,50 credits

[C8] Berta, Á., Szabó, Z., & Jelasity, M. (2020, December). Modeling Peer-to-Peer
Connections over a Smartphone Network. In Proceedings of the 1st International
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[F9] Szabó, Z., Bilicki, V. (2018, June). A FHIR-based healthcare system backend
with deep cloud side security. In THE 11TH CONFERENCE OF PHD STUDENTS
IN COMPUTER SCIENCE (p. 184).

[F10] Szabó, Z., Bilicki, V. (2020, June). EHR Data Protection with Filtering of
Sensitive Information in Native Cloud Systems. In THE 12TH CONFERENCE OF
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Symposium,2020.
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Patient Flow Modeling Framework for Hospital Simulation. In THE 13TH CON-
FERENCE OF PHD STUDENTS IN COMPUTER SCIENCE (p. 202)

Thesis Group II. In the second group of theses, I focused on a crucial component
of the telemedicine infrastructure, namely the front-end applications at the end of the
data path. I defined a taxonomy that defines and ranks sensitive data in applications
based on the impact of data leaks, and another taxonomy to determine the protection
level of applications, in such a way that the defined categories can be transferred to
LLMs using prompt engineering techniques. Then, I presented my results in classify-
ing the elements of a variable-name dictionary and then in detecting sensitive data
from open-source front-end applications via the GPT-3.5 and GPT-4 APIs, with which
I have validated the hypothesis that through the complex knowledge of the LLMs at
the level of the current GPT models, machine learning in the classical sense can in
some cases already be derived by passing the necessary knowledge in the form of
well-written prompts to the LLMs. Lastly, I discussed my results in static code-based
detection of potential application vulnerabilities by evaluating the application pro-
tection level classification and then combining it with the results of the sensitivity
detection.

• Thesis II/1. I defined a taxonomy of sensitive data in front-end applications,
which categorises them into three different categories based on the level of
damage caused by their leakage and unauthorised access. I then presented
another taxonomy, which divides the protection levels of the application com-
ponents into categories such that they are representative of the protection re-
quired for the sensitivity categories.

• Thesis II/2. I developed a GPT-enhanced methodology that uses the categoriza-
tion defined in the previous thesis to detect sensitive data in front-end applica-
tions and, based on this data, to tag the code elements that focus on operations
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on such data. I validated the categorisation using an artificial intelligence-
based evaluation that classifies the elements of a 200-word collection of vari-
able names into one of the defined categories. I followed this by analyzing a
total of 292 components from open source applications to detect sensitive data
and based on that, identify the services handling sensitive information in the
application.

• Thesis II/3. I defined a GPT-supported static source code analysis pipeline
that uses the protection level categorisation to identify the protection level of
components in a frontend application and then uses the results from the pro-
tection level and sensitivity level evaluations to detect vulnerabilities where
components are not protected or whose protection level is insufficient for the
sensitivity of the data they handle, in line with the CWE-653 type software
vulnerability.

Related publications

[J4] Szabó, Z., Bilicki, V. (2023). A new Approach to Web Application Security:
Utilizing GPT Language Models for Source Code Inspection. In Future Internet
MDPI., – under publication SJR: Q1, 0.75 credits

Table B.4: Relation between the thesis points and the corresponding publications

Publication
Thesis point

Credit IF SJR I/1 I/2 I/3 I/3/1 II/1 II/2 II/3
[J1] 0.75 Q3 • • •
[J2] 1 Q3 • •
[J3] 0.60 Q4 •
[J4] 0.75 3.4 Q1 • • •
[C5] 0.48 •
[C6] 0.48 •
[C7] 0.50 •
[C8] 0.60 •
[F9] - •

[F10] - • •
[F11] - •
[F12] - •
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Magyar nyelvű összefoglaló

A disszertáció feltárja a modern telemedicina alkalmazások komplex jogosultságkeze-
lési igényei által generált kih́ıvásokat és problémákat, és különböző megoldásokat
demonstrál, amelyek teljeśıtik vagy megkönnýıtik az emĺıtett kih́ıvások megoldását.

A tudományos eredményeket két csoportra osztva mutattam be, melyek az érteke-
zés harmadik és negyedik fejezetében kerültek részletes bemutatásra.

Az első téziscsoport a telemedicina alkalmazások infrastuktúrájának komplex,
heterogén elemekből álló adatútjára koncentrál. Bemutattam benne a követelménye-
ket, amelyeket egy jogosultságkezelési megoldásnak teljeśıtenie kell annak érdeké-
ben, hogy megfelelően és hatékonyan, az ellátási folyamat akadályozása nélkül érvé-
nyeśıthesse a definiált szabályokat. Felvázoltam a felhőn ḱıvül edge két, jogosultság-
kezelés szempontjából speciális esetet jelentő t́ıpusát, a feldolgozó és tároló edge-
t, illetve megvizsgáltam az okostelefon alapú peer-to-peer hálózatokat stabilitás és
hatékonyság szempontjából egy alternat́ıv, teljesen elosztott edge t́ıpusként. Bemu-
tattam egy tervezett keretrendszert, mely a Policy Enforcement Point (PEP) kon-
cepciójára éṕıtve implementál egy, az adatút számos pontján elhelyezhető jogosult-
ságkezelési pontot, mely képes a lekért adatok részleges elemzésére és azok szükség-
szerű részleges módośıtására vagy titkośıtására is a hozzáférés biztośıtása előtt. A
tervezett keretrendszert implementáltam az Open Policy Agent (OPA) seǵıtségével,
működését, hatékonyságát pedig kiértékeltem az két speciális edge t́ıpust szimuláló
tesztkörnyezetekben.

A második téziscsoportban az adatút végén elhelyezkedő alkalmazások statikus
elemzése támasztotta kih́ıvásokat vizsgáltam. Definiáltam két kategorizálást, az egyi-
ket az érzékeny adatok detektálása és rangsorolása, a másikat az alkalmazás kompo-
nensek védettségi szintjének megállaṕıtására. A kategóriák használhatóságát validál-
tam előbb egy 200 szavas változónév-gyűjtemény besorolásával, majd egy nýılt forrás-
kódú Angular projetekből kinyert, összesen 292 komponenst számláló teszthalma-
zon. Az ı́gy azonośıtott érzékeny adatok alapján megvizsgáltam, mennyire eredmé-
nyesen azonośıthatóak a statikus forráskód alapján a szoftverek érzékeny elemekkel
foglalkozó részei. Hasonlóan validáltam a védettségi szintek taxonómiáját is, szintén
a 292 elemű komponenshalmazzal, majd a két vizsgálat eredményének össześıtésével
elemeztem, mennyire hatékonyan detektálható a CWE-653-as sérülékenységként azo-
nośıtott, kritikus részek nem megfelelő izolációjaként definiálható sebezhetőség, mely
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érzékeny adatok kiszivárgását kockáztatja. Az eredmények bemutatása mellett feltár-
tam a problémákat okozó hibákat is, majd azok alapján a detektálási elvek szigoŕı-
tásával elérhető javulást.

A tézis eredményei

I. téziscsoport Az alábbi téziscsoportban megvizsgáltam telemedicina adatút követel-
ményeit jogosultságkezelés tekintetében. Meghatároztam azokat a feltételeket, ame-
lyeket az adatút minden pontján teljeśıteni kell a biztonsági elő́ırások és a válaszidő
összeegyeztetése érdekében. Definiáltam egy négyelemű taxonómiát a szükséges jo-
gosultságkezelési kategóriák számára. Bemutattam az edge-t, mint a jogosultságke-
zelés kritikus eseteit, meghatároztam két különleges t́ıpusát, a feldolgozó edge-t és
a tároló edge-t, valamint bemutattam eredményeinket egy speciális edge esetről,
az okostelefon alapú peer-to-peer hálózatok stabilitásának elemzéséről. Ezután két
ḱısérleti környezetet hoztam létre, egyet a feldolgozó edge és egyet a tároló edge
modellezésére, valamint teszt szabályokat az emĺıtett környezetekben a jogosultságke-
zelési keretrendszer gyakorlati megvalóśıtásának validációjához késleltetés szempont-
jából. Végül bemutattam a nýılt forráskódú betegfolyam szimulátoromat, amely sz-
imulálja a kórházi osztályokon kezelt betegek áramlását, és felhasználható a kife-
jlesztett jogosultságkezelési keretrendszer validálási paramétereinek generálására.

• I/1. tézis Megvizsgáltam a modern telemedicina alkalmazások komplex köve-
telményeit jogosultságkezelés tekintetében. Definiáltam egy taxonómiát a kü-
lönböző t́ıpusú jogosultságkezelési szabályok és az általam meghatározott TAPE-
követelmények formalizálására, amelyek szükségesek annak biztośıtásához, hogy
az implementált jogosultságkezelési megoldás garantálja az infrastruktúra bár-
mely pontján a megfelelő adatvédelem és sebesség közötti egyensúlyt.

• I/2. tézis Speciális kategóriákat definiáltam a felhőn ḱıvüli edge t́ıpusainak
megkülönböztetésére, amelyek jogosultságkezelés szempontjából a modern tele-
medicina infrastruktúra különleges kategóriáját képviselik. Formálisan definiál-
tam ezeknek a kategóriákat feldolgozó és tároló edge-ként. Ezután megvizsgál-
tam az egyre elterjedtebb okostelefonokon alapuló peer-to-peer hálózatokat,
mint a szélsőséges megoldások eseteit, és elemeztem azok potenciálját és sta-
bilitását, hogy önálló edge hálózatokként működhessenek az adatúton.

• I/3. tézis Bemutattam a javasolt jogosultságkezelési megoldásom gyakorlati
implementációját, majd tesztkörnyezeteket álĺıtottam fel az edge t́ıpusok számá-
ra a négy kategóriához tartozó tesztszabályokkal, és ezekben a környezetekben
mértem a végrehajtás hatékonyságát növekvő adatmennyiség mellett. A méré-
sek során megvizsgáltam az értékelést végző csomópontok erőforrásigényeit,
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valamint az adatútra mért késleltetéseket. Az altézisben bemutatom a mért
késleltetéseket, amelyek megerőśıtették, hogy a különböző edge t́ıpusokban
észszerű mennyiségű adat esetében az általam felvázolt megoldás megfelel az
előző tézisekben meghatározott követelményeknek.

• I/3.1. tézis Kifejlesztettem egy nýılt forráskódú szimulációs eszközt, amely
nýılt forráskódú könyvtárakat és eszközöket használ a betegek eloszlásának és
várakozási idejüknek - a betegfolyamnak - a modellezésére a kórházi osztályo-
kon. A kifejlesztett szimulációs eszköz felhasználható annak validálására, hogy
az előző altézisben mért megnövekedett átfutási idő milyen mértékben lasśıthat-
ja a folyamatot a kezelt adatok mennyisége alapján, és ez milyen hatással lehet
a telemedicina adatútra, a betegfolyamra és a várakozási időkre az ellátási
folyamat kulcsfontosságú pontjain.
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[J3] Szabó, Z., Hompoth, E. A., Bilicki, V. (2023). Patient Flow Analysis with a
Custom Simulation Engine. Acta Cybernetica, – accepted, under publication
SJR: Q4, 0.60 credits
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[C6] Jánki, Z. R., Szabó, Z., Bilicki, V., Fidrich, M. (2017, November). Authoriza-
tion solution for full stack FHIR HAPI access. In 2017 IEEE 30th Neumann
Colloquium (NC) (pp. 000121-000124). IEEE. 0,48 credits
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alkalmazásokat. Olyan taxonómiát definiáltam, amely az adatok szivárgásának hatása
alapján határozza meg és rangsorolja az alkalmazásokban az érzékeny adatokat, il-
letve egy másikat, amely meghatározza a alkalmazások komponenseinek védelmi
szintjét, oly módon, hogy a meghatározott kategóriák prompt engineering technikák
seǵıtségével átadhatóak legyenek LLM-eknek is. Ezután bemutattam eredményeimet
előbb egy változónevekből álló szótár elemeinek osztályozásával, majd a nýılt forrás-
kódú frontend alkalmazások érzékeny adatainak detektálásával a GPT-3.5 és GPT-4
API-k seǵıtségével, amellyel megerőśıtettem azt a hipotézist, hogy az LLM-ek összetett
ismerete révén a jelenlegi GPT modellek szintjén a klasszikus értelemben vett tańıtás
bizonyos esetekben már kiváltható a szükséges tudás prompt alapú átadásával is.
Végül összeálĺıtottam egy metodológiát, mellyel elemeztem a válogatott nýılt forrás-
kódú alkalmazásokat az érzékeny adatok, majd a védettségi szintek detektálásával, a
két eredmény kombinációjával pedig a potenciális adatszivárgási pontok azonośıtásá-
val.

• II/1. tézis Definiáltam a frontend alkalmazásokban található érzékeny adatok
taxonómiáját, amely három különböző kategóriába sorolja őket a kiszivárgásuk
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és illetéktelen hozzáférésük által okozott kár mértéke alapján. Ezt követő-
en bemutattam egy további kategorizálást, amely az alkalmazáskomponensek
védelmi szintjeit úgy osztja szintekre, hogy azok reprezentálják az érzékenységi
kategóriák alapján szükséges védelmet.

• II/2. tézis Kidolgoztam egy GPT API alapú módszertant, amely az előző tézis-
ben meghatározott taxonómiát használja a frontend alkalmazásokban talál-
ható érzékeny adatok felismerésére, és az ilyen adatokon végzett műveletekre
összpontośıtó kódelemek megjelölésére. A kategorizálást egy kiértékeléssel
validáltam, amely egy 200 szavas változónév-gyűjtemény elemeit a meghatáro-
zott kategóriák egyikébe sorolja. Ezt követően lefuttattam ezt a módszert nýılt
forráskódú alkalmazásokból származó, összesen 292 komponensre, hogy azono-
śıtsam bennük az érzékeny adatokat, ezáltal pedig az azok kezelésével foglalko-
zó serviceket.

• II/3. tézis Felvázoltam egy GPT alapú statikus forráskód-elemző pipelinet,
amely a védelmi szintek taxonomiáját használja a frontend-alkalmazás összete-
vőinek védelmi szintjének azonośıtására, majd a védelmi szint és az érzékenysé-
gi szint kiértékelésének eredményeit felhasználja a sebezhetőségek, potenciális
adatszivárgások feldeŕıtésére, ahol a komponensek nem védettek, vagy ame-
lyek védelmi szintje nem elegendő az általuk kezelt adatok érzékenységéhez
képest, összhangban a CWE-653 t́ıpusú szoftver sebezhetőséggel.
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