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Introduction

In the world of modern computing, the need for speed, efficiency, and resource utilization
is ever-increasing. As a result, the importance of compiler optimizations is becoming in-
creasingly evident in the software development process. Compilers are essential tools that
convert human-readable source code into machine-executable binary code, thus bridging the
gap between the programmer’s intent and efficient execution. They are a set of techniques
that refine and improve the generated code and are essential for achieving optimal program
performance, resource efficiency, and code quality.

The complexity of software has been steadily increasing, as shown by the exponential
growth in the size of codebases and the requirements for software applications. This has
led to a change in the traditional view of compilers. Compiler optimizations are a range
of strategies used to reduce bottlenecks, improve algorithms, reduce memory usage, and
make the most of hardware resources. The changing requirements go beyond the usual
code generation, requiring the compiler toolchains to identify additional opportunities in the
codebases. Thus, the compiler technologies, used in optimizations become more valuable.

The use of compiler technologies is widespread in many areas of software development,
from aiding resource-hungry systems to improving software quality, and even helping with
software visualization. Its areas of use are also large, from embedded systems to scientific
simulations, from real-time applications to high-performance computing.

In the first part of this thesis, the main goal is to introduce efficient code size optimization
algorithms for one of the most well-known compilers, for the GCC, the GNU Compiler
Collection. In addition, a reliable code size measurement method and a stable benchmark
environment are presented.

In the second part, the main goal is to examine and validate JavaScript guidelines,
presented on various web pages, that can improve the efficiency of JavaScript runtime
performance. In addition, one approach of JavaScript’s source code analysis is presented
that can aid other optimizations or analyses to rely on call graph information.

Between these two main parts of the thesis, the author states four main results as listed
below:

1. Implementation and evaluation of different code factoring algorithms in GCC compiler.

2. Introduce binary code size measurement methods and benchmark for compiler’s code
size optimizations.

3. Collect, analyze, and evaluate JavaScript guidelines.

4. Introduce a dynamic JavaScript call graph generator and evaluate other call graph
generators.

In the rest of the booklet, we summarize the results for each thesis point.
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I. Executable Code Optimizations

In this thesis group, the main goal is to introduce efficient code size optimizing algorithms
for one of the most well-known compilers, for the GCC, the GNU Compiler Collection. In
addition, a reliable code size measurement method and a stable benchmark environment are
presented.

Code factoring is a class of useful optimization techniques that have been specifically
developed to reduce code size. These approaches are aimed at reducing size by redefining the
code. There are two main code factoring algorithms that are in the focus, one for individual
instructions and the other for longer instruction sequences.

1. Code Factoring Techniques in GCC Compiler

Local Code Factoring is the one that deals with individual instructions. The optimization
strategy of local factoring (also known as local code motion, code hoisting, and code sinking) is
to move identical instructions from the basic blocks to their common predecessor or successor
in the CFG, if they exist. Of course, the semantics of the program have to be preserved, so
only those instructions that do not invalidate any existing data dependencies or introduce
new ones can be moved. Figure 1a shows a control flow graph (CFG) with basic blocks
containing identical instructions. To achieve the best size reduction, some of the instructions
are moved upwards to the common predecessor, while others are moved downwards to the
common successor. Figure 1b shows the result of the transformation. It should be noted
that for the sake of simpler representation, the identical letters denote identical instructions,
and jump or branch instructions are omitted from these kinds of CFGs.
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Figure 1: The effect of local code factoring on the CFG

Although it is not frequent, it may happen that multiple basic blocks have multiple
predecessors, all of which are common. In this case, if the underlying basic blocks in question
have identical instructions and the number of predecessors is lower than the number of
examined blocks, then the instructions are moved to all the predecessors. A similar situation
occurs in which the basic blocks have more than one common successor. Furthermore, in
the case of sinking, even those instructions that are not present in all of the blocks can be
moved by creating a new successor block for them.
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Procedural Abstraction is a size optimization method that works with single-entry
single-exit code regions (like instruction sequences smaller than a basic block, complete
blocks, or even larger units) rather than single instructions only, unlike local factoring. The
main idea of this technique is to find such code regions that can be converted to procedures
and replace all occurrences with calls to newly created subroutines.

Existing solutions can only handle such code fragments that are identical or equivalent,
or can be converted to equivalent forms in some way (e.g. through register renaming).
However, these methods do not find an optimal solution for the cases where one sequence of
instructions is identical to the candidate sequence, while the third sequence is identical only
with its suffix (as shown in Figure 2a). These solutions can be used to abstract the longest
possible sequence into a function and leave the shorter sequence unabstracted (Figure 2b) or
to convert the common instructions in all sequences into a function and create another new
function from the rest of the common parts of the long sequence, introducing the overhead
of adding additional calls and return code (Figure 2c).
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Figure 2: Different kinds of procedural abstraction strategies

We proposed to create multiple entry subroutine that allows the abstraction of instruction
sequences of different lengths without the overhead of superfluous call/return code. The
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longest possible sequence shall be chosen as the body of the new function, and entry points
must be defined according to the length of the matching sequences. Figure 2d shows the
optimal solution to the problem indicated in Figure 2a.

Both of the new algorithms have been implemented in different intermediate languages (IL)
as new GCC optimization phases. First, it has been done in the Register Transfer Language
(RTL) IL, after the Tree-SSA (based on Static Single Assignment technique) version was
carried out. Finally, a more abstract approach was implemented on the GENERIC IL
level, introduced in the Interprocedural Abstraction Analysis (IPA) optimization phase. The
proposed code factoring algorithms are publicly available in the CFO branch.

Hash tables. One of the improvements that we introduced during the implementation of
these algorithms was the use of hash tables to compare instructions. Most GCC optimization
algorithms are subject to the calculation of O(n2) while comparing a candidate to another
one. Since they compare every candidate to all other ones to find an exact match or similarity.
Usually, developers come up with special filters and algorithm-related tricks to speed up
computation time. These solutions are also usable and can solve the slow compilation time
problem, but are designed and implemented at each algorithm level separately. Since we also
faced this problem in the implementation of our algorithms and had not found a general way
to solve them, we introduced a common way to compare instructions. Thus, we implemented
a hash table-based instruction cache. Our first public implementation of the instruction hash
table, or cache, proved to be very effective, although we did not provide any special solution
for the hash collisions. We introduced three hash functions, one for each intermediate level.
Thus, the complexity of our candidate search in algorithms became O(n log n). This was a
huge improvement, especially for large compilation units.

Results. When examining the size of the code generated by the compiler, we found that
the algorithms of code factoring had significant effects on several tests. We evaluated the
algorithms with the help of CSiBE, the GCC’s Code Size Benchmark Environment, on three
different targets (i686-elf, arm-elf, sh-elf ) and found that a maximum of 61.53% and an
average of 2.58% of extra code size savings could be achieved compared to the GCC flag
’-Os’. The detailed results are presented in Tables 1 and 2, where the binary size in bytes
and the relative improvement to ’-Os’ in percentage can be seen.

flags
i686-elf arm-elf sh-elf

size reduction size reduction size reduction
(byte) (rel. %) (byte) (rel. %) (byte) (rel. %)

-Os 2,900,177 3,636,462 3,184,258
-Os -ftree-lfact -frtl-lfact 2,892,432 0.27 3,627,070 0.26 3,176,494 0.24

-Os -frtl-lfact 2,894,531 0.19 3,632,454 0.11 3,180,186 0.13
-Os -ftree-lfact 2,897,382 0.10 3,630,378 0.17 3,179,622 0.15

-Os -ftree-seqabstr -frtl-seqabstr 2,855,823 1.53 3,580,846 1.53 3,149,822 1.08
-Os -frtl-seqabstr 2,856,816 1.50 3,599,862 1.01 3,162,678 0.68
-Os -ftree-seqabstr 2,888,833 0.39 3,610,002 0.73 3,166,054 0.57

-Os -fipa-procabstr 2,886,632 0.47 3,599,042 1.03 3,160,626 0.74
All 2,838,348 2.13 3,542,506 2.58 3,123,398 1.91

Table 1: Code-size reduction with code factoring algorithms.
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2. Binary Code Size Measurement Methods and Bench-

mark

The measurement of the size of the generated code (i.e. its compactness) is not always
trivial. Most of the compilers produce assembly code, after that the assembler tool provides
the executable binary. So, using the assembly code would be one option to measure the
generated code size, but we suggest a different approach. If we recall that the final goal is
to reduce the size of the entire software, we must examine several parts of the program that
the compiler might influence. The binary objects and executables are the trivial parts of
the software that the compiler has an effect on. In addition, it must be carefully examined
how the connected libraries can affect the code generation. Finally, the different parts of
the binaries (e.g. sections) should be analyzed in order to include or exclude them from the
measurements. Thus, it is a research question as to which part of the software should be
measured and how.

Binary objects and executables. The granularity of the code is an important aspect:
Should we measure the size of functions individually, the object code of a complete compilation
unit, or investigate the size of the linked executable? For the first option, it is possible
to compile one function at a time (compilers used to have a flag for such a case). This
approach is very similar to the second option of the previous question, but the function-
at-a-time compilation might miss possible optimizations because of this granularity. When
comparing the object sizes (compilation unit granularity), the effectiveness of a given compiler
is investigated, while in the last option, the entire compiler toolchain is evaluated, including
the compiler, linker, and libraries. This is because the size of the linked program also depends
on the size of the libraries and the way the linker processes them. Therefore, here we rely
mainly on comparing objects that are more informative concerning the optimization potential
of a compiler for space.

Standalone and Linux programs. Another dimension of the categorization we investi-
gated was two types of targets: standalone executables (i.e. without an operating system)
and executables built for a particular operating system (in our case GNU/Linux). Even
if the same compiler is used with the same settings, the resulting binaries usually contain
several notable differences: some for objects and some for executables. These are mainly due
to the different executable production and the different runtime libraries used in these cases
(GCC, newlib, and glibc).

flags
i686-elf arm-elf sh-elf

max. reduction (%) max. reduction (%) max. reduction (%)
-Os -ftree-lfact -frtl-lfact 6.13 10.98 10.29
-Os -frtl-lfact 4.31 3.51 4.35
-Os -ftree-lfact 5.75 10.34 8.78

-Os -ftree-seqabstr -frtl-seqabstr 36.81 56.92 43.89
-Os -frtl-seqabstr 30.67 45.69 42.45
-Os -ftree-seqabstr 30.60 41.60 44.72

-Os -fipa-procabstr 38.21 56.32 59.29
All 57.05 61.53 60.17

Table 2: Maximum code-size reduction results for CSiBE objects.
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Sections. Another problem was to determine which parts of the generated files to take
into account (e.g., the size of the binary file, printed by a file manager, is irrelevant due to
various file format headers). The generated program code consists of many parts, such as
instructions, data, etc., usually separated in a binary file (so-called in sections). However, in
many cases, these parts can be mixed (e.g. executable code can embed data). Furthermore,
other custom sections are usually placed in binary files and are not mature in terms of code
size. These include debug sections, symbol tables, etc.

Measurement tools. When assessing both objects and executable sizes, it was necessary
to investigate elf and coff files (they were the most important file formats in the 2000s). As
a consequence, different methods were used to extract section sizes due to different binary
formats. The program size (part of binutils) is an appropriate tool to extract the size of
specified sections from elf files. For coff files the coffdump tool can be used.

Execution and testing. Correctness and validation are also important features. In this
field, we should ensure that the compiled executable binaries provide the expected results.
Therefore, a measurement environment should be able to execute the built programs.

CSiBE. The fundamentals of measuring code size have led to the creation of a prototype
of a benchmark. During the discussions with compiler developers and the evaluation of this
prototype benchmark, we have released a useful benchmark that has become the official code
size benchmark of GCC. The benchmark is called CSiBE, the Code Size BEnchmark.

This benchmark has been developed and maintained by the Department of Software
Engineering at the University of Szeged in Hungary. Since its initial introduction, CSiBE
has been used by GCC developers in their daily work to help minimize the size of the
generated code. Moreover, the latest results are continuously monitored, and the GCC
developers are informed about any code size-related issues, should any occur.

Around the CSiBE benchmark, there is a complete framework, which was a variant of a
SaaS (Software as a Service) system. We simply call it the CSiBE system. The whole system
is designed, implemented, and maintained by us.

The CSiBE system consists of two main components. The front-end server is used to
download daily GCC snapshots and generate raw measurement data. The back-end server
acts as a data server by filling the relational database with measurement data and is also
responsible for transmitting data to the user via a web interface.

The core of the CSiBE system is the offline CSiBE benchmark, which consists of the
testbed and the required measurement scripts. The package can be downloaded from the
official website and can also be used independently of the online system. The testbed consists
of 18 projects and the source size is about 50 MB. When compiling, the total amount of binary
code is about 3.5 MB. Various types of programs, such as codecs (gsm, mpeg), compilers,
compressors, editor programs, and preprocessed units, have been adopted. Some projects
are also suitable for measuring performance and constitute about 40% of the testbed. We
have also added some Linux kernel sources to the v2.1.1 version of the testbed. Taking the
original goal into account, we started with the S390 platform and turned it into a so-called
test platform. On this platform, we replaced all assembly code with code stubs, leaving only
C code for important Linux modules (kernel, device, file system, etc.).
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Results. Since the start of the first code size measurement in 2003, the CSiBE benchmark
has made a lot of progress. It took less than a year and became the official code size benchmark
for GCC. Interest in code size has become a central issue in the world of compilers with new
vigor. This encouraged the improvement of CSiBE. From the first public version v1.0.1 on
2003-08-11 to the most well-known version v1.1.1 on 2004-02-20, the benchmark environment
took its present structure. As the years went by and software became more and more complex,
CSiBE adopted new projects to track various types of programs. The latest official version
is CSiBE v2.1.1, released on August 15, 2015, but the benchmark is constantly evolving.
Its Github page now contains even more complex tests, from the Common Microcontroller
Software Interface Standard (CMSIS) to Servo, the parallel browser engine. These projects
ensure that the importance of code size is taken into account in compilers.

In addition to the GCC compiler, another compiler, LLVM Compiler Infrastructure also
uses CSiBE in their development workflows. After presenting the advantages of CSiBE
to their developer community, they began demonstrating improvements in code size with
CSiBE.

The Author’s Contributions

The author had a decisive role in the design, implementation, improvement, and maintenance
of a significant proportion of the algorithms presented in the “Code Factoring Techniques in
GCC Compiler” section:

� Local Code Factoring: The author designed, implemented, and maintained the RTL
version while improving and maintaining the Tree-SSA version.

� Procedural Abstraction: The author designed, implemented, and maintained the Tree-
SSA version while improving and maintaining the RTL version of it. In addition, the
IPA version of it has been designed, improved, and maintained by the author.

� Hash tables: This technique was introduced for optimization algorithms by the author.
The author had a decisive role in the design, implementation, and improvement phases

of the code size measurement techniques and the evaluation environment for compilers’
binary code optimizations presented in the “Binary Code Size Measurement Methods and
Benchmark” section. Besides these, the author has been the main maintainer of the official
code size benchmark of GCC, CSiBE, since 2004.

The publications of the author, related to this thesis group, are the following:

[3] Árpád Beszédes, Tamás Gergely, Tibor Gyimóthy, Gábor Lóki, and László Vidács.
Optimizing for space: Measurements and possibilities for improvement. In Proceedings
of the 2003 GCC Developers’ Summit, pages 7–20, Ottawa, Canada, 2003

[2] Árpád Beszédes, Rudolf Ferenc, Tamás Gergely, Tibor Gyimóthy, Gábor Lóki, and
László Vidács. CSiBE benchmark: One year perspective and plans. In Proceedings of
the 2004 GCC Developers’ Summit, pages 7–15, Ottawa, Canada, 2004

[9] Gábor Lóki, Ákos Kiss, Judit Jász, and Árpád Beszédes. Code Factoring in GCC. In
Proceedings of the 2004 GCC Developers’ Summit, pages 79–84, Ottawa, Canada, 2004

[10] Csaba Nagy, Gábor Lóki, Árpád Beszédes, and Tibor Gyimóthy. Code factoring in
GCC on different intermediate languages. In Proceedings of the 10th Symposium on
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Programming Languages and Software Tools, pages 79–95, Dobogókő, Hungary, 2007.
Eötvös Loránd University Press

[11] Csaba Nagy, Gábor Lóki, Árpád Beszédes, and Tibor Gyimóthy. Code factoring in GCC
on different intermediate languages. Annales Universitatis Scientiarum Budapestinensis
De Rolando Eötvös Nominatae Sectio Computatorica, 30:79–95, 2009

II. Just-In-Time Compilers’ Optimizations and Analyses

In this thesis group, the main goal is to examine and validate JavaScript guidelines, presented
in various places on the Internet, that can improve the efficiency of JavaScript runtime
performance. In addition, one approach of JavaScript’s source code analyses is presented
that can aid other optimizations or analyses to rely on call graph information.

3. JavaScript Guidelines

Before the time of JIT engines, several guidelines were published on how to write efficient
JavaScript code. In this chapter, our research focuses on whether programmers should still
comply with these guidelines or can rely on JIT compilers to achieve good performance
results as they do with classical compilers to generate optimal code in static languages such
as C. We explore the effect of Just-In-Time compilation and programming guidelines on the
performance of JavaScript execution. In addition, not only one but two variants of JavaScript
standards have been evaluated to get a bigger picture of these guidelines.

Legacy Guidelines. In the early days of JavaScript, optimized ideas could only be found
in guidelines distributed in various places on the Internet. These proposals were made on
the basis of experience and dynamic measurements on small benchmarks. Furthermore, they
typically apply only to a single JavaScript engine and only a specific version of it. Therefore,
these optimization techniques are more of subjective experiences than objective analyses.
We collect guidelines that have been proposed over the years, for various JavaScript engines
and versions, to allow their systematic evaluation.

In our evaluation ECMAScript 5.1, the first high-impact version of JavaScript, and the
follow-up version, the ECMAScript 6 version are examined. The legacy guidelines give the
following suggestions:

� Use of local variables instead of global variables whenever possible.
� Globally initialized variables should be used, instead of constant-like complex local
variables.

� Use a cache for object members in variables.
� Avoid with construct.
� Use the JavaScript Object Notation (JSON) instead of a function to hold struct-like
data.

� Avoid eval construct.
� Do some function inlining which is a traditional compiler optimization technique.
� Do as many common subexpression eliminations (CSE) as possible. This is also a
performance-oriented compiler optimization technique.
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� Perform loop unrolling for short loop cycles.
� Replace post-increment and decrement operators of the loop index variable with the
pre-increment and decrement variants.

ECMAScript 6-based Guidelines. The ECMAScript 6 standard was introduced in 2015.
Since then, the main web browsers and JavaScript engines have adopted its features. This
is also true for JavaScript engines that target embedded domains. Today, we can see a
lot of support for ECMAScript 6 (and later) in the JavaScript engine world. The main
purpose of introducing ECMAScript 6 was to improve functionality, bring JavaScript closer
to other widespread languages, and facilitate the use of the language for every web developer.
To validate and introduce possible new guidelines, we analyzed and evaluated features and
components of ECMAScript 6. The goal is not only to introduce new guidelines that help
developers improve the performance of applications but also to show how new language
constructs affect performance compared to ECMAScript 5. Thus, the following ECMAScript
6 features have been examined:

� The arrow function is a shorter syntax of a function expression and does not have its
own this, arguments, or super constructs.

� In ECMAScript 5.1, a class is nothing but a somewhat specially written function. It
has the same syntax as the function expressions and declarations.

� Object literals are extended to support setting the prototype for constructions, short-
hand for assignments, defining methods, making super calls, and computing property
names with expressions.

� Template strings provide easy-to-use syntax for creating different strings from previously
defined templates.

� A more advanced form of template literals is the tagged templates. Tags allow one to
parse template literals with the help of a function.

� In the JavaScript world, destructuring objects is a fail-soft action to unbind values
from their container. In ECMAScript 6, this is the case when one unpacks values from
arrays or properties from objects into district variables.

� The spread operator, which spreads the elements of an iterable collection (such as arrays
or strings) into individual elements or function parameters.

� One of the most significant changes to ECMAScript 6 is that it is possible to create
constant values with const keyword.

� The standard supports the iterator protocol to generate a value sequence and provides
a convenient method to iterate all values of an iterable object.

� Many languages contain generators and yield constructions. The same functionality
has been added to the ECMAScript 6 feature set.

� In ECMAScript 6, some effective data structures were introduced for common algo-
rithms (e.g. Map, Set, WeakMap, WeakSet).

� In ECMAScript 6, there is a new feature called Symbol, a global symbol indexed by a
unique key.

� The new standard has added support for describing binary and an alternative syntax
for octal numbers with binary literals.

Static Optimization difficulties. It would be very convenient if these performance
acceleration techniques did not need to be applied manually but could be implemented as
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automatic code conversions, i.e. compiler optimizations. The experience with static languages
shows that optimization algorithms are worthwhile to apply, since the cost of the technology
is paid only during the compilation time, and the performance gains are considerable. Thus,
the need for optimization algorithms increases naturally for dynamic languages, and the
existing guidelines can serve as a natural starting point for the design of these techniques.
However, as we shall see below, the language features of JavaScript render most of the static
optimization techniques ineffective.

The main reason comes from the dynamic evaluation of JavaScript code, such as the eval
function. These kinds of language features can alter the actual context by evaluating a string
value as a JavaScript code runtime. In the view of static algorithms, these are unpredictable
changes. Because compiler optimizations always have to be safe, these language features
make the application of complex static optimization algorithms and automated programming
guidelines to JavaScript practically infeasible.

Result. Our target was to evaluate JavaScript guidelines to see how they are affecting the
different engines. For each language construct and feature the runtime was measured with
and without guidelines, and a resulting percentage was calculated.
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Figure 3: Performance improvement with legacy guidelines

Figure 3 shows the relative execution time changes when the guidelines have been applied
to the source code (smaller numbers are better; the runtime of modified code has been divided
by the original one). Thus, the legacy guidelines are still valid and it is worth using them in
terms of performance.

An evaluation of ECMAScript 6 has revealed some unexpected and noteworthy modifi-
cations to ECMAScript 5. We have divided the results into two categories; one in which
the previous standard performs better (Figure 4) on average and the other in which the new
standard has more efficient code paths in the engines (Figure 5).
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4. Dynamic Analysis of JavaScript’s Call Graphs

The fundamental area of understanding the structural blueprints of dynamic applications
and even further detecting harmful behavior is the analysis of software function calls. A form
of call information is the call graph, which is successfully used in mobile and non-mobile
systems to detect both known and unknown harmful code.

A call graph is a type of directed graph that illustrates the connections between functions
in a program. Nodes in the graph represent the called functions, and the edges between
them signify the function calls, with the direction of the edge pointing towards the callee.
Call graphs can be created without running the program (known as a static call graph) or
during execution (known as a dynamic call graph). First, we focus on the latter to enable
dynamic analysis of JavaScript programs.

A considerable amount of web applications and back-end services have been developed
using the Node.js framework. With more than 6.3 million websites using Node.js, it has
become the most widely used tool for web development before React. Consequently, if one is
looking to examine the structural designs of dynamic applications, Node.js-based applications
could be a great option. In this research, we also focused on this framework to unravel the
complexity of dynamic JavaScript language in the area of call chains and to provide useful and
precise experiences that can be used in other code analyses (for example to detect malicious
or fraudulent activities).

Dynamic Call Graph Generation. At the time of our analysis, there were no publicly
available tools that produced a dynamic call graph for Node.js applications. However,
some tools, with different goals, could be extended to generate call information for further
processing. In the following, we discuss three tools that use distinct approaches to create
call graphs.

The Jalangi2 framework is the first tool used to dynamically analyze the ECMAScript
5.1 code and is compatible with Node.js and multiple web browsers.

NodeProf is a dynamic program analysis tool for Node.js applications that is based on
the Graal-nodejs project. This project utilizes the Graal.js engine to interpret JavaScript
code and convert it into an abstract syntax tree (AST) representation that is then executed
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Figure 6: Number of call graph nodes and edges on SunSpider

by the GraalVM virtual machine. Instead of instrumenting the source code, NodeProf links
events to the program’s Abstract Syntax Tree (AST) representation and applies changes to
the AST to report events.

We have developed a customized version of Node.js, known as Nodejs-cg, which features
a modified V8 JavaScript engine. This engine is capable of producing an execution trace,
which is typically used to print information about functions that are entered or exited. We
have replaced this tracing mechanism with our call graph generator.

Node and Edge Identification. To compare multiple call graphs of the same program
generated by different tools, it is necessary to assign a unique identifier to each node, regardless
of the current execution of the program. This identifier can be created from the absolute path
of the file, in which the function is defined, and the source code location in which the function
starts. However, each tool interprets the file position of each language feature differently.
Therefore, these differences should be unified to do any kind of comparison. Identifying
the same edge is very straightforward if the nodes have already been unified. Thus, we can
compare call graphs.

Compare dynamic call graph generators. Two testbeds were used. The first one is
the SunSpider benchmark suite, which contains simple JavaScript files that test various parts
of the JavaScript engine. The other is based on various Node.js modules that represent
real-world applications.

Figure 6 shows a Venn diagram of the nodes and edges encountered during the running of
the SunSpider benchmark suite. The number of nodes and edges identified by each generator
tool is represented by a circle. The intersection of the two circles indicates the number of
nodes and edges found by both tools, which are referred to as common nodes and edges in
the rest of the research. The non-intersected regions of the circles represent the unique nodes
and edges that are only found by one tool. If the call graphs generated by both generators
had been identical, the number of unique nodes and edges would have been zero. However,
Figure 6 shows a large number of unique nodes and edges. The differences come from the
following three reasons.

JavaScript Built-ins : The ECMAScript standard outlines a variety of built-in functions
(e.g., sort()). A JavaScript engine may incorporate built-in functions that are written in
JavaScript or native functions that are not JavaScript-based. When a function is written
in JavaScript, the call graph generator may create its node, and the relevant edges may
be added to the call graph when the function is invoked or when it calls other functions.
However, native built-in functions are usually not included in the call graph, since these
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functions usually do not alert the engine when they are used.
Module initialization: The Node.js startup procedure, known as bootstrap, is partially

written in JavaScript. During bootstrap, Node.js runs a few core modules that set up the
module loading system, message queues, timers, and so on. These core modules are part of
the Node.js binary to guarantee that they cannot be changed and that Node.js can always
depend on them.

Module loading : SunSpider’s test driver loads the module by first wrapping the source
code into a function expression. Node.js’s JavaScript engine then evaluates the wrapped
code, creating internal functions, and executing them. This process is captured by the call
graph generator, which adds a new edge to the call graph. The internal function returns
with another function object, which is later called by Node.js, resulting in the addition of
another edge to the call graph. This explains why the module load group has so many edges.

Similar differences can be seen in Table 3 showing the number of nodes recorded for
each Node.js module as a second test after SunSpider. In this test, we have compared the
call graphs generated from 12 Node.js modules. The left side of the table contains all the
nodes that were identified, while the right side contains the nodes that remain after a filter
is applied. This filtering process is conducted during testing and causes the generators to
ignore the internal JavaScript functions of the JavaScript engine and Node.js.

Table 3 reveals that there are multiple distinct nodes in the call graphs when the filter
is not applied. However, this discrepancy is significantly reduced to a single digit when the
filter is used. This implies that the majority of the nodes in the side columns of the left
subtable are internal functions of both the JavaScript engine and Node.js. And, we got a
similar result when analyzing the edges.

The differences in the call graph (both nodes and edges) are mainly due to the version
of Node.js employed by the call graph generator and some test failures. Each module in our
benchmark set checks the versions of Node.js and its supported command line options, which
leads to different initialization steps depending on the version of Node.js. Additionally, there
are a few test failures that occur only with NodeProf. We have disabled these tests that
caused engine crashes, as the test systems cannot continue testing after a crash and a large
portion of the call graph would be missing.

Comparison of static and dynamic call graphs. Although dynamic call graph genera-
tors have many advantages, the classic static version of generators should not be overlooked.
Static approaches have the disadvantage of not being able to detect dynamic call edges
from nontrivial eval(), bind(), or apply() usages (i.e., reflection). Additionally, they may be
overly conservative, recognizing edges that are valid statically, but never realized in practice.
However, they are faster, and more memory-friendly than dynamic analysis techniques and
do not require a large testbed for the program being analyzed. Dynamic approaches, on
the other hand, only identify real call edges, but the completeness of their results is highly
dependent on the quality of the test cases for the program. Therefore, it is necessary to
learn more about the current static and dynamic JavaScript call graph-building techniques
to better understand their capabilities and limitations compared to each other (in terms of
tools and approaches).

We quantitatively evaluated five distinct static analysis-based tools (TAJS, ACG, Google
Closure Compiler, IBM WALA, and npm callgraph) and two dynamic tools (NodeProf and
Nodejs-cg) to determine the various calls each tool can detect and how the results of the static
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Name All call graph nodes Module call graph nodes

NodeProf common Nodejs-cg NodeProf common Nodejs-cg

bower 804 9604 996 1 9604 2
doctrine 372 1954 581 7 1954 1
eslint 571 15898 781 15 15898 17
express 727 5239 928 0 5239 1
hessian 437 2103 648 0 2103 1
hexo 541 10076 749 2 10076 1
jshint 412 2299 627 0 2299 1
karma 828 9363 1019 0 9363 1
mongoose 708 12508 890 2 12506 5
pencilblue 539 6265 745 1 6265 6
request 876 3675 1067 1 3675 3
shields 773 9544 976 0 9544 2

0% 20% 40% 60% 80% 100%

shields 
request 

pencilblue 
mongoose 

karma 
jshint 
hexo 

hessian 
express 

eslint 
doctrine 

bower 

nodeprof.js common nodejs-cg

0% 0.5% 99.5% 100%

Table 3: Number of call graph nodes found by NodeProf and Nodejs-cg

analysis-based tools compared to those of dynamic analysis-based tools. We also perform a
quality analysis of the results, which involves comparing and validating the identified call
edges and analyzing the discrepancies. Furthermore, we compare the results of the static
and dynamic tools to gain an understanding of the overall accuracy of static analysis.

Static and dynamic call graphs. We quantitatively evaluated the call graphs by com-
paring the number of nodes and edges, as well as the similarity of entire call graphs. We
conducted an analysis of the quality of the results by evaluating all 348 call edges found by
the five static and two dynamic tools on the 26 SunSpider benchmark programs. We manu-
ally examined the JavaScript sources to determine the validity of the edges in the merged
JSON files and added a new attribute (’valid’) to the edges of the call graph, which can be
either true or false. After evaluating the edges, we cross-reviewed the validation results and
resolved any discrepancies. The final validated JSON was created based on consensus.

To ensure the most precise information retrieval metrics, we only took into account edges
that were reported by the dynamic tools, that is, those that occurred during the execution of
the program. In the case of simple source files, like the SunSpider benchmark, we thoroughly
examined all 348 call edges by hand. In the case of Node.js modules, it would be very
challenging to examine all the nodes and edges by hand, thus, we rely on our tools (which
were validated on SunSpider’s results). Based on our findings we divided the identified edges
into three categories:

� true positive (TP): the edge that exists and is realized during execution.
� false positive (FP): edge that does not exist in the source code.
� pseudo-positive (PP): edge that could be a real call but remains unrealized due to lack
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of test input of the dynamic analysis.

Benchmark program

Static tools Dynamic tools
npm-cg ACG WALA Closure TAJS NodeProf Nodejs-cg
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SunSpider 169 192 217 261 134 146 197 284 163 186 176 195 176 195

Table 4: SunSpider analysis results

The quantitative analysis shows the number of nodes and edges found by the call graphs
generator tools (excluding built-in functions). In Table 4 we can see a static tool that
produces results similar to the dynamic tool in almost every case on SunSpider.

We evaluated the static analysis and discovered 184 true positive edges. We then added
all edges that could only be identified by dynamic tools as they are certain to occur during
program execution. This resulted in a total of 195 edges, which we used as a benchmark. For
each tool and all possible combinations of them, we were able to calculate the well-known
information retrieval metrics (precision and recall). The Table 5 contains a summarization
of these results in static tools.

Tool TP FP PP All Prec. Rec. F
ACG 182 6 73 261 70% 93% 80%
Closure 175 54 55 284 62% 90% 73%
npm-cg 125 18 49 192 65% 64% 65%
TAJS 181 4 1 186 97% 93% 95%
WALA 122 19 5 146 84% 63% 72%
ALL 184 91 73 348 53% 94% 68%

Table 5: Precision and recall measures for individual static tools

Testing and analyzing static call graph generators on real-world programs is a challenging
task. The npm callgraph and WALA were unable to analyze whole, multi-file projects
because they cannot resolve calls among different files (e.g., requiring a module). The
Closure Compiler can analyze complex programs as well, however, a manual evaluation of
it, on various Node.js modules, showed only 20% precision in the case of found edges. The
TAJS framework supports the required command, nonetheless, it was still unable to detect
call edges in multi-file Node.js projects. Therefore, we could apply only ACG as a static
tool to recognize call edges in Node.js modules. Thus, we used only this static and the two
dynamic tools to perform the analysis and comparison on the selected Node.js modules.

We calculated some basic statistics from the gathered data that is shown in Table 6.
The table displays the number of nodes (functions) and edges (possible calls between two
functions) found by the tools. As can be seen, the results show resemblance, the correlation
between these nodes and edges is high. Unsurprisingly, there are no exact matches in the
number of nodes and edges for such complex input programs. The two dynamic tools
produced almost identical results in terms of the number of nodes and edges. In this case,
Table 7 shows these estimated numbers for precision and recall, since it is not feasible to
double-check every edge by hand.

It is evident that dynamic approaches are highly precise, as they only report call edges
that take place. However, this is also their greatest drawback, as they require a very high
degree of test coverage to achieve the highest possible recall value. Furthermore, there may be
code that relies on the current operating system, environment variables, or even the presence
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Node module

Static tools Dynamic tools
ACG ONESHOT ACG DEMAND NodeProf Nodejs-cg
nodes edges nodes edges nodes edges nodes edges

Node.js modules 8475 36070 8981 79248 9183 14679 9183 14682

Table 6: Node.js analysis results

Tool(s) Prec. Rec. F
ACG ONESHOT 34.20% 58.40% 43.13%
ACG DEMAND 16.93% 63.53% 26.74%
Dynamic (NodeProf) 100.00% 69.50% 82.01%
Dynamic (Nodejs-cg) 100.00% 69.52% 82.02%
ALL 38.10% 100.00% 55.17%

Table 7: Precision and recall values on Node.js modules

of another service, for which traditional unit tests may not be adequate. In such cases, more
complex test cases may necessitate multiple environments with different configurations (or
even different interpreters), which can have a major impact on the accuracy of the call graph.

The Author’s Contributions

The author’s contribution was decisive in the search, formalization, implementation, testing,
and evaluation of a significant part of the JavaScript guidelines presented in the “JavaScript
Guidelines” section. The published guidelines and measurement methods are undivided joint
results with the co-authors.

The author had a decisive role in the design, implementation, and improvement of the
Nodejs-cg dynamic call graph generator presented in the “Dynamic Analysis of JavaScript’s
Call Graphs” section, and in the evaluation of the dynamic results included in the comparison.
In addition, in the comparison of different types of call graph generators, the author had a
decisive role in discovering and explaining the differences related to dynamic call graphs.

The publications related to this thesis point are the following:

[6] Zoltán Herczeg, Gábor Lóki, Tamás Szirbucz, and Ákos Kiss. Guidelines for JavaScript
Programs. Are They Still Necessary? In SPLST’09 & NW-MODE’09. Proceedings
of 11th Symposium on Programming Languages and Software Tools and 7th Nordic
Workshop on Model Driven Software Engineering, pages 59–71, Tampere, Finnland,
2009

[7] Zoltán Herczeg, Gábor Lóki, Tamás Szirbucz, and Ákos Kiss. Validating JavaScript
Guidelines Across Multiple Web Browsers. Nordic Journal of Computing, 15:18–31,
2013

[8] Gábor Lóki and Péter Gál. JavaScript Guidelines for JavaScript Programmers - A
Comprehensive Guide for Performance Critical JS Programs. In Proceedings of the 13th
International Conference on Software Technologies, pages 397–404, Porto, Portugal,
2018. SciTePress

[4] Zoltán Herczeg and Gábor Lóki. Evaluation and Comparison of Dynamic Call Graph
Generators for JavaScript. In Proceedings of the 14th International Conference on
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Evaluation of Novel Approaches to Software Engineering, pages 472–479, Heraklion,
Greece, 2019. SciTePress

[5] Zoltán Herczeg, Gábor Lóki, and Ákos Kiss. Towards the Efficient Use of Dynamic
Call Graph Generators of Node.js Applications. In Evaluation of Novel Approaches to
Software Engineering., volume 1172 of Communications in Computer and Information
Science, pages 286–302. Springer, 2020

[1] Gábor Antal, Péter Hegedűs, Zoltán Herczeg, Gábor Lóki, and Rudolf Ferenc. Is
JavaScript Call Graph Extraction Solved Yet? A Comparative Study of Static and
Dynamic Tools. IEEE Access, 11:25266–25284, 2023
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Summary

In this thesis, two main thesis groups have been discussed. Both of them were related to
compiler code optimizations and source code analysis. The first was in connection with
executable code size optimizations in the classic compiler, and the second was with the
Just-In-Time compilers, optimizing and analyzing the source code.

In the first thesis group, the main goal was to introduce efficient code size-optimizing
algorithms for one of the most well-known compilers for the GCC, the GNU Compiler
Collection. Code factoring is a class of useful optimization techniques that have been
specifically developed to reduce code size. These approaches are aimed at reducing size by
redefining the code. There were two main code factoring algorithms in focus. The first
was the local code factoring that deals with individual instructions. This algorithm moves
identical instructions from the basic blocks to their common predecessor or successor. The
second was procedural abstraction which works with single-entry single-exit code regions
rather than single instructions only, unlike local factoring. The main idea of this technique
is to find such code regions that can be converted to procedures and replace all occurrences
with calls to newly created subroutines. Both of the new algorithms have been implemented
in different intermediate languages (RTL, Tree-SSA, IPA’s GENERIC ) as new optimization
phases of GCC. The proposed code factoring algorithms are publicly available in the CFO
branch. The final result reveals that a maximum of 61.53% and an average of 2.58% of extra
code size savings can be achieved compared to the GCC flag ’-Os’. These results would not
have been achieved without a reliable code size measurement method and a stable benchmark
environment. Based on our research and a detailed discussion with community members the
official code size benchmark of GCC, the Code Size BEnchmark (CSiBE ) was born. The
testbed consists of 18 projects and the source size is about 50 MB. When compiling, the total
amount of binary code is about 3.5 MB. Various types of programs, such as codecs (gsm,
mpeg), compilers, compressors, editor programs, and preprocessed units, have been adopted.
The constantly evolving benchmark now contains even more complex tests, from the Common
Microcontroller Software Interface Standard (CMSIS) to Servo, the parallel browser engine.
In addition to the GCC compiler, another compiler, LLVM Compiler Infrastructure also uses
CSiBE in their development workflows.

The second thesis group discussed some parts of JavaScript’s software analysis, starting
with the JavaScript guidelines, that can improve the efficiency of JavaScript runtime perfor-
mance. However, the guidelines are not official rules, they contain very useful suggestions
to speed up the JavaScript code. The most important suggestions have been evaluated
and measured with dominant JavaScript engines. This revealed that the legacy guidelines
- suggested for ECMAScript 5.1 - are still valid and it is worth using them in terms of
performance. On the other hand, as the language evolved, the new standard ECMAScript 6
was released with effective JavaScript engines. This raised the question of whether the new
language features are getting better than the old simulated versions in terms of performance.
The result we obtained showed that some of the changes are better with the new engine, but
some are faster if the old simulated code snippets were used. As a follow-up research, the
structural analyses of JavaScript programs have been done. In this part, the fundamental
area of understanding the structural blueprints of dynamic applications was the focus with
the help of a call graph. Call graphs can be created without running the program (known as
a static call graph) or during execution (known as a dynamic call graph). To do that, a new
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dynamic call graph generator was created, called Nodejs-cg, which is a customized version
of Node.js with a modified V8 JavaScript engine. In our research, the newly created call
graph generator was compared against two other dynamic generators and later several static
ones. As a result, the Nodejs-cg performed better in detecting valid nodes and edges for
the call graph compared to the other dynamic solutions. Later, a filtering mechanism and
other constraints were added so that the output of dynamic call graphs could be compared
to the static ones. Thus, the final result stated that dynamic approaches are highly precise,
as they only report call edges that actually take place at runtime. However, this is also their
greatest drawback, as they require a very high degree of test coverage to achieve the highest
possible recall value. Furthermore, there may be code that relies on the current operating
system, environment variables, or even the presence of another service, for which traditional
unit tests may not be adequate. In such cases, more complex test cases may require multiple
environments with different configurations (or even different interpreters), which can have a
major impact on the accuracy of the call graph.

Finally, Table 8 summarizes the relation between the thesis points and the corresponding
publications.

[3] [9] [2] [10] [11] [6] [7] [8] [4] [5] [1]

I. • • • • •
II. • • • • • •

Table 8: Correspondence between the main thesis points and the corresponding publications
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Összefoglaló

Ebben a dolgozatban két fő téziscsoportot tárgyaltunk. Mindkettő a ford́ıtóprogramok opti-
malizálásához és a forráskód elemzéséhez kapcsolódott. Az első a klasszikus ford́ıtóprogramok
kódméret optimalizációjához kapcsolódik, a második pedig a ‘Just-In-Time’ ford́ıtók forráskód
optimalizálásával és elemzésével foglalkozik.

Az első téziscsoportban a fő cél az volt, hogy hatékony kódméret-optimalizáló algoritmu-
sok készüljenek az egyik legismertebb ford́ıtóhoz, a ‘GNU Compiler Collection’-hez (GCC).
A ‘code factoring’ algoritmusokat kifejezetten a kód méretének csökkentésére fejlesztették ki.
Ezek a bináris kód méretének csökkentését a kód újradefiniálásával oldják meg. Két fő algo-
ritmust különböztetünk meg. Az első a ‘local code factoring’, amely az egyedi utaśıtásokkal
foglalkozik. Ez az algoritmus azonos utaśıtásokat mozgat a tartalmazó un. ‘basic block’-
okból egy közös szülő (un. előd) vagy gyerek (un. utód) blokkba. A második algoritmus a
‘procedural abstraction’, amely a ‘local code factoring’-tól eltérően nem egyetlen utaśıtással,
hanem egy be- és kilépési ponttal rendelkező kódrégiókkal dolgozik (‘single-entry single-exit’).
Ennek a technikának az alapötlete az, hogy olyan kódrégiókat találjon, amelyeket eljárásokká
lehet konvertálni, és minden ilyen kódrégió előfordulást lecserélni az újonnan létrehozott
szubrutin h́ıvásra. Mindkét algoritmus különböző köztes nyelveken (RTL, Tree-SSA, IPA’s
GENERIC ) lett elkésźıtve a GCC egyes optimalizálási fázisaként. Az elkészült algoritmusok
nyilvánosan elérhetők a GCC-nek a CFO fejlesztői ágban. A végeredmény megmutatta, hogy
a GCC ’-Os’ kapcsolójához képest maximum 61,53% és átlagosan 2,58% extra kódméret
megtakaŕıtás érhető el az algoritmusok használatával. Ezeket az eredményeket nem lehetett
volna elérni egy megb́ızható kódméret mérési módszer és egy stabil benchmark környezet
nélkül. Ezen a területen végzett kutatásunknak és a ford́ıtóprogram közösség tagjaival
folytatott részletes megbeszélésnek köszönhetően megszületett a GCC hivatalos kódméret
benchmarkja, a Code Size BEnchmark (CSiBE ). A CSiBE 18 projektből áll, és a források
összmérete körülbelül 50 MB. Ford́ıtáskor a bináris kód teljes mérete körülbelül 3,5 MB.
A tesztrendszer különféle t́ıpusú projekteket tartalmaz, például kodekeket (gsm, mpeg),
ford́ıtókat, tömöŕıtőket, szerkesztőprogramokat és előfeldolgozó egységeket. A folyamatosan
fejlődő benchmark jelenleg még összetettebb teszteket tartalmaz, egészen az alacsonyszintű
‘Common Microcontroller Software Interface Standard’ (CMSIS) szabványtól a ‘Servo’, a
párhuzamos böngészőmotorig. A GCC ford́ıtó mellett egy másik ford́ıtóprogram, az ‘LLVM
Compiler Infrastructure’ is használja a CSiBE benchmarkot a fejlesztési munkafolyamataiban.

A második téziscsoport a JavaScript szoftverelemzésének néhány részét tárgyalta, kezdve
a JavaScript irányelvekkel, amelyek jav́ıthatják a JavaScript futásidejű teljeśıtményének
hatékonyságát. Ezek az irányelvek azonban nem hivatalos szabályok, de nagyon hasznos
javaslatokat tartalmaznak a JavaScript kód felgyorśıtására. A legfontosabb irányelveket a
népszerű JavaScript motorok seǵıtségével lettek lemérve és kiértékelve. Ebből kiderült,
hogy az ECMAScript 5.1-hez javasolt régi irányelvek továbbra is érvényesek, és a tel-
jeśıtménynövelés szempontjából érdemes ezeket alkalmazni. Másrészt, ahogy a nyelv fejlődött,
megjelentek az új szabványt, az ECMAScript 6-ot, követő hatékony JavaScript motorok. Ez
felvetette a kérdést, hogy az új nyelvi funkciók teljeśıtményben jobbak-e, mint a régi szimulált
verziók. A kapott eredmény azt mutatta, hogy egyes változtatások jobbak az új motorral, de
vannak olyanok, amelyek gyorsabbak, ha a régi szimulált kódrészleteket használták. A ku-
tatás következő fázisaként a JavaScript programok szerkezeti elemzése is megtörtént. Ebben
a részben a dinamikus JavaScript alkalmazások, h́ıvási gráf anaĺızis seǵıtségével történő, szer-
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kezeti struktúrájának megértésének területe állt a fókuszban. Hı́vási gráfok hozhatók létre
a program futtatása nélkül (statikus h́ıvási gráfként) vagy végrehajtás közben (dinamikus
h́ıvási gráfként). Ehhez egy új dinamikus h́ıvási gráf generátort késźıtettünk el, Nodejs-cg
néven, amely a Node.js testreszabott változata egy módośıtott V8 JavaScript motorral. Ku-
tatásunkban az újonnan létrehozott h́ıvási gráf generátort két másik dinamikus generátorral,
majd később több statikus generátorral hasonĺıtottuk össze. Az eredmények szerint a Nodejs-
cg jobban teljeśıtett a h́ıvási gráf csomópontjainak és éleinek helyes észlelésében, mint a többi
dinamikus megoldás. Később olyan szűrőmechanizmus és más megszoŕıtások lettek bevezetve,
hogy a dinamikus h́ıvási grafikonok kimenete összehasonĺıtható legyen a statikus gráfokéval.
Így a végeredmény rámutatott arra, hogy a dinamikus megközeĺıtések rendḱıvül pontosak,
mivel csak azokat a h́ıvás éleket regisztrálják, amelyek ténylegesen futásidőben zajlanak le. Ez
azonban a legnagyobb hátrányuk is, hiszen nagyon magas fokú tesztlefedettséget igényelnek
ehhez a magasabb ‘recall’ érték eléréséhez. Azt is meg kell emĺıteni, hogy előfordulhatnak
olyan kódok, amelyek az aktuális operációs rendszerre, környezeti változókra, vagy akár más
szolgáltatás jelenlétére támaszkodnak, amihez a hagyományos egységtesztek nem biztos, hogy
megfelelőek. Ilyen esetekben javasolt több különböző h́ıvási gráf generátor használata, ami
nagy hatással lehet a h́ıvási gráf pontosságára.
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