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Gábor Lóki
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Firstly, I want to thank Ákos Kiss, my supervisor, for guiding and help-
ing me as a researcher and for always presenting interesting and challenging
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Dusnoki, Balázs Nagy, Csaba Nagy, Dániel Vince, Edit Szűcs, Gábor Antal,
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1
Introduction

In the world of modern computing, the need for speed, efficiency, and resource
utilization is ever-increasing. As a result, the importance of compiler optimiza-
tions is becoming increasingly evident in the software development process.
Compilers are essential tools that convert human-readable source code into
machine-executable binary code, thus bridging the gap between the program-
mer’s intent and efficient execution. They are a set of techniques that refine and
improve the generated code and are essential for achieving optimal program
performance, resource efficiency, and code quality.

The complexity of software has been steadily increasing, as shown by the
exponential growth in the size of codebases and the requirements for software
applications. This has led to a change in the traditional view of compilers. Com-
piler optimizations [47, 61, 65, 69, 95] are a range of strategies used to reduce
bottlenecks, improve algorithms, reduce memory usage, and make the most
of hardware resources. The changing requirements go beyond the usual code
generation, requiring the compiler toolchains to identify additional opportuni-
ties in the codebases. Thus, the compiler technologies, used in optimizations
become more valuable.

The use of compiler technologies is widespread in many areas of software
development, from aiding resource-hungry systems to improving software qual-
ity, and even helping with software visualization. Its areas of use are also large,
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1. Introduction

from embedded systems to scientific simulations, from real-time applications
to high-performance computing.

This thesis aims to explore some parts of this diverse area of software and to
discuss some other compiler optimizations and technologies that can be useful
for the users of compilers. Part I explores binary optimizations of compilers
that are designed to aid resource consumption, especially the ones that can
reduce code size. Part II presents how optimization techniques can be used in
Just-In-Time compilers, focusing on the search for improved performance and
code analysis.

2



Part I

Executable Code Optimizations
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2
Overview

Software optimization is a key element in improving the overall performance
and efficiency of computer programs. As computer architectures evolve and the
demand for faster and more robust software applications increases, the role of
code compilers is increasingly important. A code compiler is a fundamental tool
for translating human-readable source code into machine-readable binary code,
facilitating software execution on the target computer system. The optimized
binary code, achieved through advanced compiler technology, plays a key role
in meeting the challenges of today’s computer landscape.

The importance of optimizing binary code cannot be overstated. Optimized
binary code allows software to run faster and consume fewer storage resources,
thus increasing the overall performance of computer programs. In today’s
computing environment, software efficiency can be a decisive factor in improving
competitiveness.

Optimization techniques use a wide range of strategies during the compi-
lation process, including, but not limited to, loop transformations, register
allocations, instruction scheduling, inter- and intra-procedural analysis, and
code transformations. Together, these technologies are designed to reduce
execution time, memory consumption, energy consumption, and executable
code size, which have real benefits in various areas, such as real-time systems,
embedded devices, scientific simulations, and high-performance computing.

5



I. 2. Overview

Among the many code compilers available, the GNU Compiler Collec-
tion (GCC) [29] is one of the most prominent and widely used open-source
compilers, known for its versatility. It supports many programming languages
and targets a wide range of hardware platforms. Its open-source nature has
encouraged a vibrant community of developers and researchers who have been
continuously working to improve its optimization capabilities for decades. This
part of the thesis aims to present some effective code size optimization tech-
niques used by code compilers, with a particular focus on the GCC compiler.

GCC supports many architectures and is also widely used in mobile phones
and other embedded devices. When compiling software for devices such as
mobile phones, embedded computers, and routers where storage capacity is
limited, compilers have a very important feature: providing the smallest binary
code. GCC already contains code size reduction algorithms, but in special
cases, the amount of free space saved is very important, so further optimiza-
tion techniques can be very useful and affect our daily lives. And from the
industrial’s point of view, it can also mean huge savings in costs.

This part of the thesis will give an overview of the code factoring algorithms
in the different intermediate language (IL) representations of GCC in Chapter 3.
Chapter 4 will then give a detailed description of how to calculate the code
size of a compiled application. As a result of the presented method, the official
GCC code size benchmark environment was born. These chapters are based on
the results of our previously published papers [10, 11, 55, 67, 68]. The results
and the conclusions of this part are summarized in Chapter 6.
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3
Code Factoring Techniques

in the GCC Compiler

Code factoring is a class of useful optimization techniques that have been
specifically developed to reduce code size [13, 14, 16, 18]. These approaches
are aimed at reducing size by redefining the code. The following sections will
discuss two ideas and mechanisms related to code factoring, one for individual
instructions and the other for longer instruction sequences. Next, we present
the implementation details of them in GCC. Finally, the evaluation of their
result and the efficiency of these optimization techniques will be shown.

A common characteristic of these algorithms is that they operate on the
control flow graph [64] (CFG). The CFG is a directed graph, its primary
purpose is to model the program’s control flow. In short, it shows how a
program’s control structures, such as loops, conditionals, and function calls,
affect the order of execution. The key components of a control flow graph are:

Basic blocks (or nodes). In a control flow graph, nodes represent basic
blocks of code. A basic block is a sequence of instructions that are guaranteed
to be executed sequentially without any jumps or jump targets. There are
two special basic blocks : the entry block, through which control enters into the
CFG, and the exit block, through which all control flow leaves.

7



I. 3. Code Factoring Techniques in the GCC Compiler

Edges. Edges in the control flow graph connect two nodes and indicate the
flow of control between them. There are several special edges. A back edge is
an edge that points to a block that has already been met during a depth-first
traversal of the graph. The back edges are typical of loops. An abnormal edge
is an edge whose destination is unknown. The exception-handling constructs
can produce them. These edges tend to inhibit optimization. There are two
more: critical and impossible edges. The first needs to be split which also
requires changes in the CFG. The latter is the fake or technical edge which is
used in the domination relationship calculation [64].

The other important feature that these algorithms rely on is the Data Flow
Graph [64] (DFG). It is also a directed graph where nodes represent operations
or computations, and edges represent the flow of data between these operations.
The data flow graph shows the data dependencies and relationships between
various operations in a program.

3.1 Local Code Factoring

The optimization strategy of local factoring (also known as local code motion,
code hoisting, and code sinking) is to move identical instructions from the
basic blocks to their common predecessor or successor in the CFG, if they exist.
Of course, the semantics of the program have to be preserved, so only those
instructions that do not invalidate any existing data dependencies or introduce
new ones can be moved. Figure 3.1a shows a control flow graph (CFG) with
basic blocks containing identical instructions. To achieve the best size reduction,
some of the instructions are moved upwards to the common predecessor, while
others are moved downwards to the common successor. Figure 3.1b shows the
result of the transformation. It should be noted that for the sake of simpler
representation, the identical letters denote identical instructions, and jump or
branch instructions are omitted from these kinds of CFGs.

Now, let us examine some more complex cases. Although it is not frequent,
it may happen that multiple basic blocks have multiple predecessors, all of
which are common. In this case, if the underlying basic blocks in question have
identical instructions and the number of predecessors is lower than the number
of examined blocks, then the instructions are moved to all the predecessors.
Figure 3.2 shows this case. A similar situation occurs in which the basic blocks
have more than one common successor (see Figure 3.3). Furthermore, in the
case of sinking, even those instructions that are not present in all of the blocks

8
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can be moved by creating a new successor block for them. Figure 3.4 shows an
example of a CFG for this case.

Except for this last case, which involves the creation of a new basic block,
local factoring also has the additional advantage of being good for runtime
performance. For example, shorter basic blocks can help to use a shorter form
of jumps, or improve the instruction scheduling algorithm by moving the data
definition close to its usage or vice versa.
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3.2 Procedural Abstraction

Procedural abstraction is a size optimization method that works with single-
entry single-exit code regions (like instruction sequences smaller than a basic
block, complete blocks, or even larger units) rather than single instructions
only, unlike local factoring. The main idea of this technique is to find such
code regions that can be converted to procedures and replace all occurrences
with calls to newly created subroutines.

Existing solutions [14, 18] can only handle such code fragments that are
identical or equivalent, or can be converted to equivalent forms in some way
(e.g. through register renaming). However, these methods do not find an
optimal solution for the cases where one sequence of instructions is identical to
the candidate sequence, while the third sequence is identical only with its suffix
(as shown in Figure 3.5a). These solutions can be used to abstract the longest
possible sequence into a function and leave the shorter sequence unabstracted
(Figure 3.5b) or to convert the common instructions in all sequences into a
function and create another new function from the rest of the common parts
of the long sequence, introducing the overhead of adding additional calls and
return code (Figure 3.5c).

Here, we propose to create multiple entry subroutine in the cases described
above to allow the abstraction of instruction sequences of different lengths
without the overhead of superfluous call/return code. The longest possible
sequence shall be chosen as the body of the new function, and entry points
must be defined according to the length of the matching sequences. Each
matching sequence must be replaced with a call to the appropriate entry point
of the new function. Figure 3.5d shows the optimal solution to the problem
indicated in Figure 3.5a.

Needless to say, procedural abstraction can lead to a decrease in runtime
performance due to the insertion of call and return code. Furthermore, the
size overhead of the inserted code must also be taken into account when look-
ing for candidate sequences to perform the procedural abstraction. Thus, the
abstraction shall only be performed if the gain resulting from the elimina-
tion of duplicates exceeds the loss resulting from the insertion of additional
instructions.
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3.3 Implementation Details

GCC already contains some algorithms similar to those discussed in Section 3.1
and Section 3.2, but they usually reduce code size only if the transformation
does not introduce a (significant) performance overhead. In addition, they
generally have fewer potential than the ones described above. The cross-
jumping [64] algorithm combines the identical tails of basic blocks, but this
approach can only handle very limited subsets of the general problems of
procedural abstraction. Another algorithm, called if-conversion [58], has a
similar effect on the code to local factoring when followed by a combine phase.
In contrast to local factoring, if-conversion is bound to conditional jumps only.

Both of the new algorithms have been implemented on different intermediate
languages as new optimization phases of GCC. First, it was implemented in
the Register Transfer Language (RTL) [30], then Tree-SSA [70, 71] (which is
based on Static Single Assignment, or SSA technique [15]). Finally, a more
abstract approach was implemented on the GENERIC IL level, introduced in
the Interprocedural Abstraction Analysis [44] (IPA) optimization phase.

The implementation of these algorithms is publicly available. They are part
of the GCC codebase.

3.3.1 Implementations in RTL

Local Code Factoring. The local factoring algorithm is divided into two
parts and is implemented as two individual optimization phases in GCC. One
algorithm executes the hoisting of instructions, i.e. to move them upward to
their predecessor blocks, while the other one is responsible for the sinking of
the instructions, i.e. to move them downward to their successor basic blocks. A
central problem for both algorithms is to decide whether an instruction may be
freely moved out of its block. An instruction cannot be moved across others that
use parameters defined by the instruction itself, or define parameters used or
defined by the candidate instruction. GCC provides methods for collecting the
required definition/use information for the whole processed function. However,
from the local factoring point of view, these methods are too expensive, as only a
small part of the calculated information is used. Therefore, the implementation
contains a light version of the definition/use calculation code. As we are also
sensitive to the compilation time in the implementation, we have made it
possible to parameterize the maximum number of instructions that algorithms
should analyze starting from the top or bottom of the basic blocks when

13
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searching for candidates of motion.

Procedural Abstraction. Using the RTL representation algorithms can
optimize only one function at a time. Although procedural abstraction is
essentially an interprocedural optimization technique, it can be adapted to an
intraprocedural working environment. Instead of creating a new function from
the identical code fragments, one representative instance of them has to be
kept in the body of the processed function and all the other occurrences will be
replaced by code transferring control to the retained instance. However, in order
to retain the original program’s semantics, the code location where the control
should return to after executing the retained instance must be remembered in
some way, so the subroutine call/return mechanism must be mimed. In the
current implementation, we use labels to mark the return addresses, registers
to store references to them, and jumps on registers to transfer control back to
mimed callers.

3.3.2 Implementations in Tree-SSA

As a general rule in compilers, the higher the abstraction level of an interme-
diate language is the more architecture-specific instructions are represented
by a single IL instruction. In some sense, this can ease our work, since some
architecture-specific information is hidden, but it may also make the optimiza-
tions less efficient by removing several possible candidates.

The biggest challenge in implementing any kind of optimization algorithm
on the higher abstraction level is that later optimization phases might change
the effect of the original algorithm, usually not in our favor. This is one of the
focus areas of the research topics that try to find the best order of optimization
algorithms [96].

Local Code Factoring. In the case of local factoring, when moving state-
ments from one basic block to another, we have to pay careful attention to
phi nodes, virtual operators, and immediate uses. A phi node is a special kind
of assignment in basic blocks with multiple predecessors that indicate which
definitions (or assignments) to the given variable reach the current join point
of the CFG 1. The virtual operands are for non-scalar variables (e.g. arrays).
The compiler stores references to the non-scalar’s base object within the virtual

1The concept of phi nodes is inherent to the SSA representation [15] and not specific to
GCC internals.
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operand. In this way, the definition and use dependencies can be tracked on
this node as well.

For example, a variable of the movable assign statement’s left hand appears
inside a phi node (e.g. Figure 3.6). In these cases, after copying the statement
to the children or parents’ blocks, we must recalculate the phi node. Later, in
both sinking and hoisting cases, we must walk through the immediate uses of
the moved statements and replace the defined variables with the new definitions.

i f ( a>100) {
a=b+a ;
c=a *10 ;
a=a=c ;

} e l s e {
a=a+b ;
c=a *12 ;
a=a=c ;

}
re turn a ;

i n t D. 1 7 7 0 ;
<bb 0>:

i f ( a 2 > 100) goto <L0>;
e l s e goto <L1>;

<L0> : ;
a 9 = b 5 + a 2 ;
c 10 = a 9 * 10 ;
a 11 = a 9 = c 10 ;
goto <bb 3> (<L2>);

<L1> : ;
a 6 = a 2 + b 5 ;
c 7 = a 6 * 12 ;
a 8 = a 6 = c 7 ;
# a 1 = PHI <a 11 (1 ) , a 8 (2)> ;

<L2> : ;
D.1770 3 = a 1 ;
re turn D.1770 3 ;

(a) Original source C code (b) Tree-SSA representation

Figure 3.6: An example code for Tree-SSA form with moveable statements.

Procedural Abstraction. The Tree-SSA IL is much closer to the original
programming language than the RTL, so it is likely to detect similar sequences
to code clones which the developers tend to introduce [46]. Our idea was that
if the procedural abstraction algorithm finds similar sequences at a higher IL,
it might lead to a better code size reduction than in a lower IL since no other
optimization algorithm can change any candidate of the procedural abstraction.

In Tree-SSA, the implementation of this algorithm has fewer restrictions
than in RTL. For example, we do not have to worry about register representa-
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tions. Thus, the algorithm is able to find more sequences as good candidates for
abstraction, while in RTL we have to make sure that all references to registers
are the same in every subsequence.

There is one great challenge in implementing the algorithm in Tree-SSA,
which is that it is in the very early stages of the GCC optimization pipeline.
Many other optimizations follow the Tree-SSA algorithms. This can simply
result in other algorithms, followed by abstraction, simply destroying the initial
result of the algorithm. For example, there are some cases where the abstraction
does a merge, which is not really useful as one or more sequences are later
deleted (e.g. they are dead code), or there are other batches of algorithms that
could have applied different, more efficient transformations to the candidate
sequences. This last case occurs mainly when the algorithm attempts to merge
short sequences.

In general, it can be said that the implementation of any algorithm in
Tree-SSA IL is much more straightforward than in RTL IL. The support of
SSA may facilitate work, and the target-independent IL makes our algorithm
more universal across platforms and helps to avoid additional attention to
hardware constraints (e.g. register allocations, and supported operators). The
main disadvantage is that the optimization algorithms are not as powerful
compared to an implementation in a hardware-aware IL. However, other follow-
up optimization algorithms can change the modified code so drastically that
this removes the advantages of our algorithm.

3.3.3 Implementations in IPA

The main idea of interprocedural analysis (IPA) optimization is to support
algorithms that work throughout the entire program: either across procedures
of a compilation unit or even across file boundaries. For a long time, open-
source GCC had no powerful interprocedural methods because its structure
was optimized to compile functions as units. In the initial development of this
optimization pipeline, the new IPA framework and passes were introduced by
the IPA branch [44]. After some time, and of course, during the development
phases of stabilization, the framework landed in GCC’s main branch, and now
it is part of the GCC optimization passes officially.

Procedural Abstraction. We implemented the inter-process version of our
algorithm in the first stage of the development of the IPA framework. This
implementation is very similar to that used in Tree-SSA, but with a major
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difference: we can merge sequences from any function into a new real function,
not a mimed one.

With this approach, we have to deal with more code size overhead com-
ing from the function call API than the other two cases described above. In
addition, we can also merge sequences using different variables and addresses
because it is possible to pass variables as parameters to the newly created
function. The procedural abstraction identifies and compares the structure of
sequences to find good candidates for abstractions, and with this method, we
can merge sequences more effectively than previously discussed implementa-
tions.

Despite these advantages, there are also disadvantages. IPA is also very
early in the compilation process, earlier than Tree-SSA, so other algorithms can
likely optimize candidates better than procedural abstraction (the same way as
in the procedural abstraction case on Tree-SSA). Another disadvantage is that
real function calls may require a lot of instructions at the machine code level,
and it is difficult to estimate the cost of them at this early stage. This means
that we can only use heuristics to estimate the gain of a given abstraction
because it is not possible to determine how many assembly instructions are in
a GENERIC statement.

3.3.4 Hash Tables

One of the improvements that we introduced during the implementation of
these algorithms was the use of hash tables to compare instructions. Most
GCC optimization algorithms are subject to the calculation of O(n2) while
comparing a candidate to another one. Since they compare every candidate to
all other ones to find an exact match or similarity. Usually, developers come
up with special filters and algorithm-related tricks to speed up computation
time. These solutions are also usable and can solve the slow compilation time
problem, but are designed and implemented at each algorithm level separately.
Since we also faced this problem in the implementation of our algorithms and
had not found a general way to solve them, we introduced a common way to
compare instructions. Thus, we implemented a hash table-based instruction
cache.

In general, the hash table can be described as a data structure that im-
plements an associated array, mapping keys to the corresponding values. The
key is transformed by a hash function into an array index or address, called
the hash code. These hash codes determine where the corresponding values
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are stored in the table. The advantages of hash tables are well-known: fast
access time, efficient insertion, deletion, and flexibility. Of course, the greatest
disadvantage is also well-known: hash collisions.

When we implemented it, GCC also contained structures based on hash
tables (e.g. string tables) but had not been used on instructions before. It was
strange to us that GCC’s developers did not use this quite well-known technique
to compare instructions. Our first public implementation of the instruction
hash table, or cache, proved to be very effective, although we did not provide
any special solution for the hash collisions. The main reason why we do not
need to take care of hash collisions is that we are looking for a sequence of hash
codes in case of procedural abstraction. This will highlight those sequences
which should be compared against each other to identify the real candidates
for the abstraction. This way the search space for candidates is much smaller
compared to the case of the mentioned in the beginning of this section. We
introduced three hash functions, one for each intermediate level. Thus, the
complexity of our candidate search in algorithms became O(n log n) [60]. This
was a huge improvement, especially for large compilation units. It was strange
to see how an old but elegant solution could mitigate one of the general issues
of GCC if it was used in the right way and place.

3.4 Results

When examining the size of the code generated by the compiler, we found that
the algorithms of code factoring had significant effects on several tests. We
evaluated the algorithms with the help of CSiBE [10], the GCC’s Code Size
Benchmark Environment, on three different targets (i686-elf, arm-elf, sh-elf )
and found that a maximum of 61.53% and an average of 2.58% of extra code
size savings could be achieved compared to the GCC flag ’-Os’. The detailed
results are presented in Tables 3.1 and 3.2, where the binary size in bytes and
the relative improvement to ’-Os’ in percentage can be seen.

The results show (in Tables 3.1 and 3.2) that these algorithms are really
effective methods for the optimization of code size, but further improvements
may be needed in higher-level intermediate language representations due to
the problems already mentioned to get better efficiency. For the target i686-elf,
by running all algorithms implemented in addition to the ’-Os’ flag, we can
achieve a maximum saving of 57.05% and 2.13% of average code size.

On the other hand, running all implemented algorithms together gives us
a lower percentage of code savings than the sum of percentages for individual
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algorithms. This difference arises because algorithms work on the same source
code (function, compilation unit, or program), and previous passes can optimize
the same cases that would also be modified by later methods. For i686-elf
targets, running local factoring at RTL level and Tree-SSA allowed us to save
0.19% and 0.10% of the average code at CSiBE, while running these two
algorithms only gave us 0.27%. This difference also proved that the same
optimization method on different ILs may find different optimizable cases,
and running the same algorithm on more than one IL will lead to better
performance.

flags
i686-elf arm-elf sh-elf

size reduction size reduction size reduction
(byte) (rel. %) (byte) (rel. %) (byte) (rel. %)

-Os 2,900,177 3,636,462 3,184,258
-Os -ftree-lfact -frtl-lfact 2,892,432 0.27 3,627,070 0.26 3,176,494 0.24

-Os -frtl-lfact 2,894,531 0.19 3,632,454 0.11 3,180,186 0.13
-Os -ftree-lfact 2,897,382 0.10 3,630,378 0.17 3,179,622 0.15

-Os -ftree-seqabstr -frtl-seqabstr 2,855,823 1.53 3,580,846 1.53 3,149,822 1.08
-Os -frtl-seqabstr 2,856,816 1.50 3,599,862 1.01 3,162,678 0.68
-Os -ftree-seqabstr 2,888,833 0.39 3,610,002 0.73 3,166,054 0.57

-Os -fipa-procabstr 2,886,632 0.47 3,599,042 1.03 3,160,626 0.74
All 2,838,348 2.13 3,542,506 2.58 3,123,398 1.91

Table 3.1: Code-size reduction with code factoring algorithms.

flags
i686-elf arm-elf sh-elf

max. reduction (%) max. reduction (%) max. reduction (%)
-Os -ftree-lfact -frtl-lfact 6.13 10.98 10.29
-Os -frtl-lfact 4.31 3.51 4.35
-Os -ftree-lfact 5.75 10.34 8.78

-Os -ftree-seqabstr -frtl-seqabstr 36.81 56.92 43.89
-Os -frtl-seqabstr 30.67 45.69 42.45
-Os -ftree-seqabstr 30.60 41.60 44.72

-Os -fipa-procabstr 38.21 56.32 59.29
All 57.05 61.53 60.17

Table 3.2: Maximum code-size reduction results for CSiBE objects.

The proposed algorithms are publicly available [52] and part of the GCC
code base in the CFO branch.

19



I. 3. Code Factoring Techniques in the GCC Compiler

20



4
Binary Code Size Measurement

Methods and Benchmark

The most frequently used performance metric of compilers is the speed of the
generated code. Although it is important, the generated code size is also a
significant indicator, since from the industrial’s point of view it can also mean
huge savings in costs for embedded or other systems (e.g., for IoT devices,
smartphones, TVs).

This is also represented in the compiler flags. For example, all compilers
have a fine-tuned scale for runtime performance, implemented in combined
optimization flags, such as -O0 . . . -O3 (or even -O4). However, for code size
optimization, compilers have only one single flag, the -Os. In addition, this can
also be seen in the various benchmarks. Most of them are to test the runtime
performance, not the code size (for example SPEC [89] benchmarks).

The measurement of the size of the generated code (i.e. its compactness)
is not always trivial. Most of the compilers produce assembly code, after that
the assembler tool provides the executable binary. So, using the assembly
code would be one option to measure the generated code size, but we suggest
a different approach. If we recall that the final goal is to reduce the size of
the entire software, we must examine several parts of the program that the
compiler might influence. The binary objects and executables are the trivial
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parts of the software that the compiler has an effect on. In addition, it must be
carefully examined how the connected libraries can affect the code generation.
Finally, the different parts of the binaries (e.g. sections) should be analyzed
in order to include or exclude them from the measurements. Thus, we cannot
rely only on the assembly code, other parts of the software should be included
in the measurement. The following sections discuss which parts of the software
should be measured and how.

4.1 Fundamentals of Measuring Code Size

Binary objects and executables. The granularity of the code is an impor-
tant aspect: Should we measure the size of functions individually, the object
code of a complete compilation unit, or investigate the size of the linked exe-
cutable? For the first option, it is possible to compile one function at a time
(compilers used to have a flag for such a case). This approach is very similar
to the second option of the previous question, but the function-at-a-time com-
pilation might miss possible optimizations because of this granularity. When
comparing the object sizes (compilation unit granularity), the effectiveness of
a given compiler is investigated, while in the last option, the entire compiler
toolchain is evaluated, including the compiler, linker, and libraries. This is
because the size of the linked program also depends on the size of the libraries
and the way the linker processes them. Therefore, here we rely mainly on com-
paring objects that are more informative concerning the optimization potential
of a compiler for space.

Standalone and Linux programs. Another dimension of the categorization
we investigated was two types of targets: standalone executables (i.e. without
an operating system) and executables built for a particular operating system
(in our case GNU/Linux). Even if the same compiler is used with the same
settings, the resulting binaries usually contain several notable differences: some
for objects and some for executables. These are mainly due to the different
executable production and the different runtime libraries used in these cases
(GCC, newlib, and glibc).

One could expect there to be no difference between objects on these different
targets. However, some differences between the libraries affect the objects as
well. The library headers have to contain the same standard prototypes (e.g.
standard functions), but there can be differences in the implementation of
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certain features. For example, some standard names can be implemented both
with macros and function calls. These can have various effects on the size of
the code.

Clearly, then, measuring the size of executables incorporates a much larger
impact of library code. It is apparently measurable in standalone executables.
However, the situation becomes more complex when we investigate executables
that are built for Linux. This is because Linux executables often do not embed
the library code in the application binary, but keep only references to so-called
shared objects linked at execution time. Even if static linking is used, some
functions will be implemented in the operating system rather than in the
executable.

Sections. Another problem was to determine which parts of the generated
files to take into account (e.g., the size of the binary file, printed by a file
manager, is irrelevant due to various file format headers). The generated
program code consists of many parts, such as instructions, data, etc., usually
separated in a binary file (so-called in sections). However, in many cases, these
parts can be mixed (e.g. executable code can embed data). Furthermore, other
custom sections are usually placed in binary files and are not mature in terms
of code size. These include debug sections, symbol tables, etc.

The different types of object files (e.g. elf [99] and coff [7]) can have
different types of sections, and, in addition, different compilers can use different
strategies to organize the code and the data into sections. More specifically,
different compilers can divide some code into several parts or combine other
components into a single section. For example, the elf file contains one (or more)
initialized read-write data section, and the coff file contains program code to
initialize the data during runtime. Thus, no common treatment could be used
and the combination of sections to be incorporated in the measurements had
to be determined separately for each measurement target.

In each case, we summarize only the size of the sections that contain
generated code that is directly used by the program. These sections contain
executable code and constant or initialized read-write program data. However,
since executable code and constant data cannot always be clearly separated
(there are constant data elements hidden in the executable code), we treat
them together during comparison.

We have investigated two types of section combinations:

1. the size of sections containing program code or constant data (referred
to as read-only sections), and
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2. the size of sections containing any type of program code, constant, and
initialized data (referred to as all sections).

We decided to follow the second approach because it seemed the most reasonable
due to the various types of initialized read-write data and their relationship to
the program code mentioned above.

Measurement tools. When assessing both objects and executable sizes, it
was necessary to investigate elf and coff files (they were the most important
file formats in the 2000s). As a consequence, different methods were used to
extract section sizes due to different binary formats. The program size (part
of binutils [28]) is an appropriate tool to extract the size of specified sections
from elf files. We were not aware of a similar tool for coff files. However, the
coffdump [6] program extracts the sizes of sections from coff files, albeit not in
a summarized form. Fortunately, all coff files have almost the same sections
with the same names. We examined the contents of these sections and counted
the appropriate sizes by hand.

Execution and testing. Correctness and validation are also important fea-
tures. In this field, we should ensure that the compiled executable binaries
provide the expected results. Therefore, a measurement environment should
be able to execute the built programs. If the host and target architectures are
the same, the execution of the binaries is very easy. Otherwise, if the target
architecture differs from the host (cross-compilation), a simulator could be a
good choice. Another approach is to have specific hardware that can receive
and execute standalone programs. In our environment, we can handle both
mentioned cases. The simulator can be set via an environment variable, and
specific hardware can be accessed via SSH command or another custom script.

Thus, we ran the programs and checked their outputs to validate the com-
piler toolchain with components of different versions and to check the correct-
ness of different combinations of compiler options. In all our measurements,
only the configurations that produced the correct and running programs were
used.

4.2 CSiBE Benchmark

The fundamentals of measuring code size described in the previous section have
led to the creation of a prototype of a benchmark. During the discussions with
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compiler developers and the evaluation of this prototype benchmark, we have
released a useful benchmark that has become the official code size benchmark
of GCC [93]. The benchmark is called CSiBE, the Code Size BEnchmark [19].

This benchmark has been developed and maintained by the Department of
Software Engineering at the University of Szeged in Hungary. Since its initial
introduction, CSiBE has been used by GCC developers in their daily work to
help minimize the size of the generated code. Moreover, the latest results are
continuously monitored, and the GCC developers are informed about any code
size-related issues, should any occur.

Around the CSiBE benchmark, there is a complete framework, which was a
variant of a SaaS (Software as a Service) system. We simply call it the CSiBE
system. The whole system is designed, implemented, and maintained by us.

The CSiBE system consists of two main components. The front-end server
is used to download daily GCC snapshots and generate raw measurement data.
The back-end server acts as a data server by filling the relational database
with measurement data and is also responsible for transmitting data to the
user via a web interface. The back-end server and the web client represent a
typical three-tier client/server system. It serves as a data server (via Postgres),
implementing various query logics, and providing HTML presentations. All
services run on Linux systems.

This online system is controlled by a so-called master phase on the front-
end servers, which is responsible for the timely CVS checkout, compiler build,
measurements using offline CSiBE benchmarks, and data population to the
relational database. The main challenges of the master phase were the avail-
ability and correctness of the system. In the first decade of 2000, two mid-end
PCs were sufficient to measure all target architectures. Basically, we donated
this resource to the GCC community to have a continuous integration-like
service that can detect code size changes daily. Later, the interest in code
size increased rapidly, and dominant industrial companies and organizations
began to enter the field of code size optimization (such as ARM, Linaro, LLVM
Foundation, RT-RK).

The core of the CSiBE system is the offline CSiBE benchmark [20], which
consists of the testbed and the required measurement scripts. The package can
be downloaded from the official website [19] and can also be used independently
of the online system.

The testbed consists of 18 projects and the source size is about 50 MB.
When compiling, the total amount of binary code is about 3.5 MB. Various
types of programs, such as codecs (gsm, mpeg), compilers, compressors, editor
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programs, and preprocessed units, have been adopted. Some projects are also
suitable for measuring performance and constitute about 40% of the testbed.

We have also added some Linux kernel sources to the v2.1.1 version of
the testbed. Taking the original goal into account, we started with the S390
platform and turned it into a so-called test platform. On this platform, we
replaced all assembly code with code stubs, leaving only C code for important
Linux modules (kernel, device, file system, etc.).

The following projects are in CSiBE v2.1.1 (references are in Table 4.1):

bzip2 is a freely available, patent-free, high-quality data compressor. It
typically compresses files to within 10% to 15% of the best available techniques
(the PPM family of statistical compressors), whilst being around twice as fast
at compression and six times faster at decompression.

cg-compiler-opensrc is a toolkit that provides a compiler for the Cg lan-
guage, runtime libraries for use with both leading graphics APIs, and runtime
libraries for CgFX.

compiler is the vc compiler for VSL that can be used to produce VSL
abstract machine code for the VAM interpreter. VAM is a 32-bit machine,
with 16 general-purpose registers, a program counter, a single-bit status flag,
and up to 4G bytes of byte-addressed memory. It is a byte stream design but
with a very reduced instruction set.

flex is a tool for generating scanners: programs that recognize lexical patterns
in text. It can be used to build programs that handle structured input. It was
designed originally to build compilers, but it has proven to be useful in many
other areas.

jikespg, the Jikes Parser Generator is a parser generator that accepts as
input an annotated description for a language grammar and produces text files
suitable for inclusion in a parser for that language. It is similar in function and
use to the widely available parser generators Yacc and Bison.

jpeg is a compression and decompression tool for JPEG images.
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libmspack is a library for some loosely related Microsoft compression formats:
CAB, CHM, HLP, LIT, KWAJ, and SZDD.

libpng is the Portable Network Graphics (PNG) Reference Library, an open,
extensible image format with lossless compression.

linux kernel is a free and open-source, monolithic, modular, multitasking,
Unix-like operating system kernel. This test case has our test platform imple-
mentation, which contains only C code.

lwip is a widely used open-source TCP/IP stack designed for embedded
systems. The focus of the lwIP network stack implementation is to reduce
resource usage while still having a full-scale TCP stack. This makes lwIP
suitable for use in embedded systems with tens of kilobytes of free RAM and
room for around 40 kilobytes of code ROM.

mpeg2dec is a free library for decoding mpeg-2 and mpeg-1 video streams.

mpgcut is a command line MPEG audio/video/system file cutter that allows
to cutting of MPEG streams into playable chunks in many ways including
time intervals, file offset intervals, or several parts. It can also handle the
demultiplexing of video and audio streams from an MPEG file.

OpenTCP is a highly robust and portable implementation of the TCP/IP
and Internet application-layer protocols intended for those who want to imple-
ment TCP/IP functionality in truly resource-constrained environments (8/16-
bit MCUs).

replaypc is a simple text mode utility for extracting mpg files from ReplayTV
Personal Video Recorders via TCP/IP. The ReplayPC utility is Win32 native
but is being developed with an eye for easy porting to *nix operating systems.

teem is a coordinated group of libraries for representing, processing, and
visualizing scientific raster data. Teem includes command-line tools that permit
the library functions to be quickly applied to files and streams, without having
to write any code.

27



I. 4. Binary Code Size Measurement Methods and Benchmark

ttt is the standalone traffic monitor program in the ttt program suite. It
displays traffic data of a local interface. The ttt program suite is a descendant
of tcpdump but it is capable of real-time, graphical, local, and remote traffic
monitoring. It does replace tcpdump, rather, it helps to find out what to look
into with tcpdump.

unrarlib, the UniquE RAR File Library is a platform-independent, small,
and fast static library for decompressing RAR files. Full RAR v2.0 file format
support of all compression methods, including multimedia compression and
encoding is available.

zlib is a fast and unobtrusive compression library. It is designed to be a free,
general-purpose, legally unencumbered - that is, not covered by any patents -
lossless data-compression library for use on virtually any computer hardware
and operating system. The zlib data format is itself portable across platforms.

Name Reference URL
bzip2 https://sourceware.org/bzip2/

cg-compiler-opensrc https://developer.nvidia.com/cg-toolkit

compiler https://www.jeremybennett.com/publications/download.html

flex https://github.com/westes/flex

jikespg https://jikes.sourceforge.net/

jpeg https://www.ijg.org/

libmspack https://www.cabextract.org.uk/libmspack/

libpng http://www.libpng.org/pub/png/libpng.html

linux kernel https://www.kernel.org/

lwip https://savannah.nongnu.org/projects/lwip/

mpeg2dec https://libmpeg2.sourceforge.io/

mpgcut https://mpgcut.sourceforge.net/

OpenTCP https://sourceforge.net/projects/opentcp/

replaypc https://replaypc.sourceforge.net/

teem https://teem.sourceforge.net/

ttt https://github.com/esoule/ttt

unrarlib https://unrarlib.org/

zlib https://www.zlib.net/

Table 4.1: Tests and their references in the CSiBE benchmark

The testbed is composed of two parts: one for code size measurement and
the other for testing executable projects. This separation encompasses the
entire benchmark, so the user would be able to add any custom test cases.
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Since the code size measurement is the main focus of the benchmark, every
project has a compilation method to produce binary files. Those projects that
can be used for runtime measurement have a separate code path to produce the
runtime results. For them, execution test cases have been selected to represent
typical executions of the programs. The total size of the execution test input
is currently about 60MB.

The table in Figure 4.2 shows some statistics on test projects. The number
of source files, the size of the source code in bytes, the number of objects, the
total size of objects measured using CSiBE and GCC 3.4 on i686-gnu-linux
with -O2 flag, and the number of executable programs for each project have
been listed. Later, as the benchmark evolved, additional tests were introduced
in CSiBE, such as Common Microcontroller Software Interface Standard [5]
(CMSIS ), Servo [63], and other small ones. In addition, new configuration files
have been implemented to support other compilers, e.g. LLVM.

Project # Src. Src. bytes # Obj. Bin. bytes # Exec.
bzip2-1.0.2 11 242,034 9 80,112 2
cg-compiler-opensrc 42 813,343 22 148,838 -
compiler 9 202,938 6 27,928 1
flex-2.5.31 33 658,799 22 240,206 1
jikespg-1.3 29 978,833 17 267,712 1
jpeg-6b 81 1,119,991 66 156,078 3
libmspack 40 319,611 25 76,506 -
libpng-1.2.5 21 859,762 18 128,941 2
linux-2.4.23-pre3-testpl. 2,430 34,238,976 271 993,815 -
lwip-0.5.3.preproc 30 928,538 30 86,486 -
mpeg2dec-0.3.1 43 461,047 29 62,873 1
mpgcut-1.1 1 28,889 1 29,845 -
OpenTCP-1.0.4 40 545,358 22 38,221 -
replaypc-0.4.0.preproc 39 1,692,413 39 64,221 -
teem-1.6.0-src 370 2,786,644 293 1,210,365 2
ttt-0.10.1.preproc 6 311,311 6 19,049 -
unrarlib-0.4.0 4 93,894 3 16,339 -
zlib-1.1.4 27 305,136 14 42,422 1
Total 3,256 46,587,517 893 3,689,957 14

Table 4.2: CSiBE v2.1.1, testbed statistics

4.3 Results

Since the start of the first code size measurement in 2003 [11], the CSiBE
benchmark has made a lot of progress. It took less than a year and became
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the official code size benchmark for GCC [93]. Interest in code size has become
a central issue in the world of compilers with new vigor. This encouraged the
improvement of CSiBE. From the first public version v1.0.1 on 2003-08-11 to
the most well-known version v1.1.1 on 2004-02-20, the benchmark environment
took its present structure. As the years went by and software became more and
more complex, CSiBE adopted new projects to track various types of programs.
The latest official version is CSiBE v2.1.1, released on August 15, 2015, but
the benchmark is constantly evolving. Its Github page [20] now contains
even more complex tests, from the CMSIS, a common software package for
microcontrollers, to Servo, the parallel browser engine. These projects ensure
that the importance of code size is taken into account in compilers.

In addition to the GCC compiler, another compiler, LLVM Compiler Infras-
tructure [51] also uses CSiBE in their development workflows. After presenting
the advantages of CSiBE [8] to their developer community, they began demon-
strating improvements in code size with CSiBE (e.g. some recent public uses
of CSiBE [50] are made by ARM and Linaro).

The Github statistics show that CSiBE v2.1.1 has been downloaded more
than 54,000 times since 2016.

Today, the benchmark is maintained mainly by the author of the thesis. The
present and future of CSiBE benchmarks are very clear. Industrial companies
and other organizations still use benchmarks to represent their results. Today,
CSiBE is used not only to optimize the code size but also for regression testing.
We have seen many emails (e.g. in [81]) and papers (e.g. in [50], and [76])
focusing primarily on performance or memory improvements, but also taking
the size of the code into account.
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At the time of the evaluation of this topic, there were very few algorithms
implemented in GCC to reduce the binary code size, and none of them was
based on code factoring, which grew in popularity in the 2000s. Developers
recognized the power of these methods, and several applications used these
algorithms for optimization purposes. One of these applications was the Squeeze
Project [17] maintained by Saumya Debray, and was one of the first to use this
technique.

Another application is the aiPop (Automatic code compaction software), a
commercial program published by AbsInt Angewandte Informatik GmbH with
a functional abstraction (reverse inline) for common basic blocks’ function [3].
The application is an optimizer software suite supporting C16x/ST10, HC08,
and ARM architectures, and is also used by Siemens.

Although these tools entered the market, they have focused on a very
small segment. None of them tried to cooperate with any of the open-source
compilers, which could have helped them to reach a larger audience. Our
solutions are more general and can be used on the architectures supported by
GCC.

Nowadays commercial compilers adopted at least the procedural abstraction
algorithm. Most of the time they refer to it as reverse inlining. For example,
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the LLVM-based Wind River Diab compiler2 of Wind River Systems, compiler
toolchains of HighTec EDV-Systeme3, and MPLAB compilers of Microchip
Technology4 have this algorithm implemented in their compiler toolchains.

As for code size measurement, we are not aware of any prior art or attempt
to create a code size benchmark for compilers before our paper. According
to our best knowledge, compiler code optimization research and papers were
focused on the proposed algorithms instead, and let the readers decide which
measurement methodology and tests should be used. There was no de facto
standard for that purpose. Thus, the measurement methods were neither
discussed by others.

2https://www.windriver.com/themes/Windriver/pdf/PN_Compiler_0110.pdf
3https://hightec-rt.com/en/products/development-platform
4https://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB_C18_Users_Guide_

51288c.pdf
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6
Conclusions

In this part of the thesis, topics related to executable code optimizations
were presented, which cover not only compiler optimizations to save code size
but also measurement methods and a benchmark, which became the official
benchmark of GCC.

First, several code size optimization techniques have been introduced which
had impressive effects. These algorithms were local code factoring and pro-
cedural abstraction. Both have been implemented in the RTL and Tree-SSA
intermediate languages of GCC, and procedural abstraction has also been pro-
vided for the interprocedural abstraction phase. We found, with the help of
the CSiBE benchmark, that the algorithms can achieve a maximum of 61.53%
and an average of 2.58% reduction in code size compared to the baseline option
’-Os’ of GCC. In addition, a very simple optimization technique, hashtables,
was used to improve the running time of the algorithms and thus the total
compilation time. The proposed code factoring algorithms are publicly avail-
able [52] in the CFO branch. The papers that form the basis of this part of
the thesis have also inspired recent research works [79, 80, 91], making code
size optimization important in other areas as well.

As the second topic, the measurement method of code size has been pre-
sented, which led to the birth of CSiBE, GCC’s official code size benchmark.
Many aspects of code size measurements have been evaluated to make the
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benchmark the de facto code size measurement standard for compilers. During
the many years of development of CSiBE, it has taken its well-awarded place
alongside other benchmarks, such as SPEC [89] and the later Openbench [23].

After its original release, as code size measurement and monitoring were
getting more important, the developers of another major open-source compiler
toolchain also started using it. This was the LLVM Compiler Toolchain, which
is used to produce many modern applications from smartphone OS to powerful
laptops. For the validation of code size changes and for regression testing,
companies and organizations still use CSiBE (e.g. in [50, 76, 81]).
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7
Overview

In recent years, the spread of web applications with various complexity and
functionality has made JavaScript [88] a cutting-edge technology in modern
programming languages. The popularity of JavaScript in web development
is still increasing due to its ability to facilitate the creation of dynamic and
interactive web interfaces. However, the growing demand for complex web
applications with real-time functionality [37] highlights the need to optimize
JavaScript source code to improve performance and efficiency.

JavaScript developers generally have two main options to enhance their
JavaScript programs. One dates back to a time, when the JavaScript execution
engines were based on traditional interpreters, and the developers followed
various tips, tricks, and advice to improve the source code. The other option is
the usage of different tools which can reveal the structural relationship between
the source code and the bottleneck of their software.

To understand the first option we have to look back to the history of
JavaScript, which started in 1995 with Netscape Navigator. After some time
the browser war has started. This inspired the entire industry to create better
and more efficient JavaScript codes. In addition, the JavaScript language just
started to be standardized in 1996. Ecma International5 was who adopted
the language. This is how ECMAScript was born and became the standard

5http://www.ecma-international.org/
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II. 7. Overview

for scripting languages, including JavaScript, JScript, and ActionScript. At
that time there was no such sophisticated tool that could aid developers in
revealing bottlenecks in their scripts. Thus, they were starting to write tips,
measurement reports, suggestions, and advice on the web to help each other.
Several people tried to summarize these, which became unofficial guidelines
that every JavaScript developer should know, but the landscape changed again,
and new state-of-the-art JavaScript engines arose using efficient algorithms
to speed up the source code. However, the software engineers still use the
guidelines. The question now is if these guidelines are still useful.

On the other hand, nowadays, developers have more tools to improve their
software. These tools [1, 25, 33, 35, 86] usually optimize or analyze source
code and either automatically perform or interactively suggest changes. Typ-
ically, optimization techniques include static pre-execution analysis and code
conversion. Although these are effective in many programming environments
and languages, the dynamic and event-based nature of JavaScript imposes
challenges [48, 78] to static optimization.

Dynamic optimization is an emerging paradigm in programming languages
that includes strategies to improve program performance during execution.
These strategies [31, 39] use runtime profiles, and adaptive and Just-In-Time
(JIT) compilation methods to optimize key code paths based on real usage pat-
terns, data characteristics, and environmental factors. A particularly relevant
topic of dynamic optimization, alongside performance, is in the field of call
chains. Call chains embody the structural blueprint of applications, revealing
the dynamic relationships between functions, especially in dynamic languages
such as JavaScript. They aid in code comprehension, debugging, and profiling,
forming a foundation for efficient program analysis [12, 87, 104]. In the long
run, these can be used to optimize the JavaScript application source to be more
fail-proof, effective, and fast.

This part of the thesis will give an overview of the JavaScript guidelines in
Chapter 8 which were the first experiments improving the runtime performance.
Chapter 9 will then give an overview of dynamic call graph generators which
can be used to understand the underlying structural blueprint of JavaScript
applications and can be the basis of other software analyses. These chapters are
based on the results of our previously published papers [4, 40, 41, 42, 43, 53].
The results and the conclusions of this part are summarized in Chapter 11.
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JavaScript Guidelines

Before the time of JIT engines, several guidelines were published [74, 101, 105,
106] on how to write efficient JavaScript code. In this chapter, our research
focuses on whether programmers should still comply with these guidelines or
can rely on JIT compilers to achieve good performance results as they do with
classical compilers to generate optimal code in static languages such as C. We
explore the effect of Just-In-Time compilation and programming guidelines on
the performance of JavaScript execution. In addition, not only one but two
variants of JavaScript standards have been evaluated to get a bigger picture of
these guidelines.

8.1 Legacy Guidelines

In the early days of JavaScript, optimized ideas could only be found in guidelines
distributed in various places on the Internet. These proposals were made
on the basis of experience and dynamic measurements on small benchmarks.
Furthermore, they typically apply only to a single JavaScript engine and only
a specific version of it. Therefore, these optimization techniques are more
of subjective experiences than objective analyses. In this section, we collect
guidelines that have been proposed over the years, for various JavaScript engines
and versions, to allow their systematic evaluation (the results of which will
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be presented later in Section 8.4). The main focus area is in this section the
ECMAScript 5.1 standard [21], the first high-impact version of JavaScript.

Using Local Variables Each time a variable is accessed in JavaScript, a
complex search method is started that searches the entire scope chain. However,
it is known that all widespread execution engines speed up the lookup of local
variables. The guidelines therefore recommend the use of local variables instead
of global variables whenever possible. The example transformation can be seen
in Figure 8.1

for (i = 0; i < 10000000; ++i) ; for (var i = 0; i < 10000000; ++i) ;

(a) (b)

Figure 8.1: Using local variables instead of global ones.

Using Global Static Data In general, the guidelines recommend the use
of local variables rather than global ones, as described above. However, there
exist variables that can be defined within functions but last throughout the
entire run of the program called static variables. JavaScript (at least the 5.1
version of the standard) does not support the concept of constants or static
variables, and initialization is nothing more than assignments.

For example, if a literal array is used in the assignment, as shown in the
example in Figure 8.2a, the array is constructed every time the execution
reaches the assignment. These unnecessary operations may take a long time,
even longer than the cost of searching for a global variable. So, the guidelines
suggest that, in this special case, globally initialized variables should be used,
as shown in Figure 8.2b.

Caching Object Members If the same object member is accessed several
times in a script (e.g. in a loop), it is recommended to cache the member value
in a local variable, as shown in Figure 8.3. The reason for this is similar to the
explanation given in the Using Local Variables paragraph, where the resolution
of the member is slower than the lookup for the local variable.
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function hexDigit (s) {

var digits = ["0","1","2","3",

"4","5","6","7",

"8","9","a","b",

"c","d","e","f" ];

return digits[s];

}

for (var i = 0; i < 5000000; ++i)

hexDigit(i & 0xf);

var digits = ["0","1","2","3",

"4","5","6","7",

"8","9","a","b",

"c","d","e","f"];

function hexDigit (s) {

return digits[s];

}

for (var i = 0; i < 5000000; ++i)

hexDigit(i & 0xf);

(a) (b)

Figure 8.2: Moving static data out of functions.

var o = {a: 678,b: 956}

var r

for(var i=0;i<30000000;++i)

r = o.a + o.b

var o = {a: 678,b: 956}

var r

var ca = o.a

var cb = o.b

for(var i=0;i<30000000;++i)

r = ca + cb

(a) (b)

Figure 8.3: Caching object members in variables.

Avoiding With The with language construct of JavaScript adds a calculated
object at the top of the scope chain and executes its body with this augmented
scope chain. If the chain of object references or object names is very long,
this is a very useful syntactic feature, but in practice, it increases execution
time. Again, the guidelines suggest that it is possible to achieve a better
performance result if local variables are used to access object members instead
of with statements (see Figure 8.4).

Creating Objects The most important suggestion of the legacy guidelines
on object creation is to avoid creating objects like in object-oriented languages
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var o = new Object()

o.ext1 = new Object()

o.a = 23

o.ext1.ext2 = new Object()

o.ext1.b = 19

o.ext1.ext2.c = 36

with (o) {

with (ext1) {

with (ext2) {

for(var i=0;i<2000000;++i)

a = b + c

} } }

var o = new Object()

o.ext1 = new Object()

o.a = 23

o.ext1.ext2 = new Object()

o.ext1.b = 19

o.ext1.ext2.c = 36

var ext1 = o.ext1

var ext2 = ext1.ext2

for(var i=0;i<2000000;++i)

o.a = ext1.b + ext2.c

(a) (b)

Figure 8.4: Avoiding with statements.

(OO), as this type of object creation must be solved by a function call. It
is suggested to use the JavaScript Object Notation (JSON) form to specify
the object literals in the script code. Figure 8.5 shows the possible methods
for object creation: Subfigure 8.5a implements object creation in an OO way,
Subfigure 8.5b shows an inline solution for object creation, and Subfigure 8.5c
gives an example of JSON-based object creation.

Avoiding Eval The eval function evaluates a string and executes it as a
script code. This language function can help conceal or obscure script code,
and it can also help execute dynamic script code, but it has its costs. Each
string passed to the eval function must be analyzed and executed on the fly.
This cost must be paid each time the execution reaches an eval function call.
Thus, avoiding eval is regarded as a good idea whenever an alternative solution
is possible, as shown in Figure 8.6.

Function Inlining Function inlining is a traditional compiler optimization
technique [65] that replaces a function call with the body of the function called.
In JavaScript, making a function call is an expensive operation. It takes several
preparatory steps to perform: allocate space for parameters, copy parameters,
and resolve function names. The function inlining can save the cost of these
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function create() {

this.str = "String"

this.int = 56

this.num = 6.7

this.get = function()

{ return this.int }

}

var object

for(var i=0;i<3000000;++i)

object = new create()

var object

for(var i=0;i<3000000;++i) {

object = new Object()

object.str = "String"

object.int = 56

object.num = 6.7

object.get = function()

{ return this.int }

}

var object

for(var i=0;i<3000000;++i) {

object = {

str: "String",

int: 56,

num: 6.7,

get: function()

{ return this.int }

}

}

(a) (b) (c)

Figure 8.5: Creating objects.

function funcs() { return " " }

function funcd() { return "." }

function funcl() { return "_" }

var code = "dsdllsdsdlls";

var len = code.length

var res = ""

for (var j = 0; j < 50000; ++j) {

for (var i = 0; i < len; ++i)

res += eval(

"func"+code.charAt(i)+"()")

}

function funcs() { return " " }

function funcd() { return "." }

function funcl() { return "_" }

var code = "dsdllsdsdlls";

var len = code.length

var res = ""

for (var j = 0; j < 50000; ++j) {

for (var i = 0; i < len; ++i)

switch (code.charAt(i)) {

case ’s’ : res += funcs() ; break

case ’d’ : res += funcd() ; break

case ’l’ : res += funcl() ; break

}

}

(a) (b)

Figure 8.6: Avoiding eval.

steps (e.g., Figure 8.7). (For the sake of completeness, we give two function-call-
based implementations in the example next to the inline version; Subfigure 8.7a
shows the call of a user-defined function, and Subfigure 8.7b uses a built-in
function.)
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function abs(a) {

return a>=0 ? a : -a

}

var a

for(var i=0;i<8000000;++i)

a = abs(4000000-i);

var a

for(var i=0;i<8000000;++i)

a = Math.abs(4000000-i);

var a

for(var i=0;i<8000000;++i)

a = (4000000-i) >= 0 ?

(4000000-i) :

-(4000000-i);

(a) (b) (c)

Figure 8.7: Function inlining.

Common Subexpression Elimination Common subexpression elimina-
tion (CSE) is another performance-oriented compiler optimization technique [65],
that searches for identical expression instances and replaces them with a single
variable that stores the calculated value. In the guidelines, it is recommended
to do this manually (see Figure 8.8), as typical JavaScript engines do not
support this optimization. The use of a single local variable for a common
subexpression is expected to be always faster than leaving the code unchanged.

function get_roots(a, b, c) {

var ret = {

x1:((-b+Math.sqrt(b*b-4*a*c))

/(2*a)),

x2:((-b-Math.sqrt(b*b-4*a*c))

/(2*a))

}

return ret

}

for (var i = 0; i < 2000000; ++i)

get_roots(i & 0xff, i & 0x7, 10)

function get_roots(a, b, c) {

var sq = Math.sqrt(b*b-4*a*c);

var ret = {

x1: ((-b + sq) / (2*a)),

x2: ((-b - sq) / (2*a))

}

return ret

}

for (var i = 0; i < 2000000; ++i)

get_roots(i & 0xff, i & 0x7, 10)

(a) (b)

Figure 8.8: Common subexpression elimination.

44



II. 8. JavaScript Guidelines

Loop Unrolling Loop unrolling [98] is another compiler optimization tech-
nique (Figure 8.9) suggested by the guidelines to be applied manually. This
is much more efficient if the body of the loop is small, but the loop runs long.
The performance gain comes from the absence of most loop tests and loop test
instructions.

var iterations = 100000000

var counter=0

for(i=iterations;i>0;--i) {

counter++

}

var iterations = 100000000

var counter=0

var n = iterations % 8

if (n>0)

do {

counter++

} while (--n)

n = iterations >> 3

if (n > 0)

do {

counter++

counter++

counter++

counter++

counter++

counter++

counter++

counter++

} while (--n)

(a) (b)

Figure 8.9: Loop unrolling.

Optimizing Loop Indices With regard to loop indices, the guidelines gener-
ally make two recommendations. First, the post-increment and decrement oper-
ators of the loop index variable should be replaced, if possible, by pre-increment
and decrement operators. Second, it should be preferred to decrementing a
loop rather than incrementing it. The reason for the first recommendation
is that post-operators require more machine instructions to execute than pre-
operators, but JavaScript engines normally do not automatically transform
post-increment and decrement operators into their “pre-” counterparts, i.e. if
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the value returned by the operation is not used. Secondly, decrementing a loop
is preferable over incrementing it because a comparison to zero is much faster
in almost every architecture than a comparison to any other number.

HTML DOM Almost all guidelines contain recommendations for optimizing
HTML Document Object Model (DOM) based object accesses, such as dynamic
HTML generation. The most typical recommendation is not to access DOM
objects too often because DOM bindings are slow. However, these guidelines
are not JavaScript language-specific but browser-specific, so they are not within
the scope of this research.

8.2 ECMAScript 6-based Guidelines

The ECMAScript 6 standard [22] was introduced in 2015. Since then, the main
web browsers and JavaScript engines have adopted its features. This is also
true for JavaScript engines that target embedded domains. Today, we can see
a lot of support for ECMAScript 6 (and later) in the JavaScript engine world.
The main purpose of introducing ECMAScript 6 was to improve functionality,
bring JavaScript closer to other widespread languages, and facilitate the use of
the language for every web developer. To validate and introduce possible new
guidelines, we analyzed and evaluated features and components of ECMAScript
6. The goal is not only to introduce new guidelines that help developers improve
the performance of applications but also to show how new language constructs
affect performance compared to ECMAScript 5.

Arrow Function The arrow function is a shorter syntax of a function ex-
pression and does not have its own this, arguments, or super constructs. Many
developer discussions suggest using arrow functions when using non-method
functions. Figure 8.10a shows an arrow function simulation in ECMAScript
5.1, while Figure 8.10b describes the new standard for it.

Class Definition In ECMAScript 5.1, a class is nothing but a somewhat spe-
cially written function. It has the same syntax as the function expressions and
declarations. In ECMAScript 6, the main motivation was to bring JavaScript
closer to object-oriented programming languages. Figure 8.11a introduces an
example simulation of the class, while Figure 8.11b shows the new construct.
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array.map(function(it){

return it * local_var;})

array.map(it => it * local_var)

(a) (b)

Figure 8.10: Arrow Function

var cat = function(name) {

this.name = name;

this.speak = function () { v++ }

}

var lion = function(name) {

parent = new cat(name);

this.speak = function() {

parent.speak(); v++;

} }

class Cat {

constructor(name) {

this.name = name;

}

speak() { v++; }

}

class Lion extends Cat {

speak() { super.speak(); v++; }

}

(a) (b)

Figure 8.11: Class Definition

Enhanced Object Properties Object literals are extended to support set-
ting the prototype for constructions, shorthand for assignments, defining meth-
ods, making super calls, and computing property names with expressions. This
brings the object literals closer to the class definition. Figures 8.12a and
Figure 8.12b show the ECMAScript 5 and 6 approaches, respectively.

Template Strings Template strings provide easy-to-use syntax for creating
different strings from previously defined templates. Many languages use similar
types of templates, such as Linux’s Bash, C#, Perl, and Python. The motiva-
tion behind this feature is to extend JavaScript with well-accepted template
constructions from other languages. Figure 8.13a shows the old simulated way,
and Figure 8.13b shows the standard of the ECMAScript 6.
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var car = {

make: make, value: value,

dep: function dep() {

this.value -= 2500;

} }

car[’make’ + make] = true;

var car = {

make, value,

[’make’ + make]: true,

dep() { this.value -= 2500; }

}

(a) (b)

Figure 8.12: Enhanced Object Properties

’a% ’+(isOK()?"":(test?"!d":"12")) ’a% ${isOK()?"":(test?"!d":"12")}’

(a) (b)

Figure 8.13: Template Strings

Tagged Templates A more advanced form of template literals is the tagged
templates. Tags allow one to parse template literals with the help of a function.
The simulated (a) and the new standard (b) methods can be seen in Figure 8.14.

myTag({0:"that ",1:" is a "},

person,

age)

myTag’that ${person} is a ${age}’

(a) (b)

Figure 8.14: Tagged Templates

Destructuring Objects In the JavaScript world, destructuring objects is a
fail-soft action to unbind values from their container. In ECMAScript 6, this is
the case when one unpacks values from arrays or properties from objects into
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district variables. This could be very useful for developers in many program-
ming situations. Similar language features can be seen in other script languages
(e.g. Python). Figure 8.15 presents the simulated (a) and the ECMAScript 6
(b) approaches.

a = 10; b = 20;

var _ref = [10,20,30,40,50];

a = _ref[0]; b = _ref[1];

rest = _ref.slice(2);

[a,b] = [10,20];

[a,b,...rest] = [10,20,30,40,50];

(a) (b)

Figure 8.15: Destructuring Objects

Spread Operator ECMAScript 6 has introduced extended parameter han-
dling. The most important is the spread operator, which spreads the elements
of an iterable collection (such as arrays or strings) into individual elements or
function parameters. An example of a simulated version of ECMAScript 5 can
be seen in Figure 8.16a, while the ECMAScript 6 standard uses a much more
straightforward design (Figure 8.16b).

function f(x, y, z) {

return x + y + z;

}

var a = [1, 2, 3];

f(a[0],a[1],a[2]);

f(...a);

(a) (b)

Figure 8.16: Spread Operator

Constants One of the most significant changes to ECMAScript 6 is that it
is possible to create constant values in JavaScript. The const construction is
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defined to contain only constant values. In ECMAScript 5, only the values
stored in the global lexical scope can be configured as constants.

Iterators This feature allows objects to customize their iteration behavior.
In addition, it supports the iterator protocol to generate a value sequence
and provides a convenient method to iterate all values of an iterable object.
Figure 8.17 shows the ECMAScript 5.1 (a) and ECMAScript 6 (b) approaches.

for(var i=0,n=array.length;i<n;i++)

array[i]

for (var value of array)

value

(a) (b)

Figure 8.17: Iterators

Generators Many languages contain generators and yield constructs. The
same functionality has been added to the ECMAScript 6 feature set. The
generators are subtypes of iterators that include additional next and throw
functions. This allows the values to flow back into the generator so that the
yield can be returned with the next value. Figure 8.18 shows the ECMAScript
5.1 (a) and ECMAScript 6 (b) approaches.

Map Structure In ECMAScript 6, some effective data structures were intro-
duced for common algorithms (e.g. Map, Set, WeakMap, WeakSet). Since they
are not part of the ECMAScript 5 standard, previously function objects have
been used to implement the same functionality. In our evaluation, we focus on
the structure of Map, as the main logic is similar to the others. Figure 8.19
describes an example of this structure in ECMAScript 5.1 (a) and the way in
which it can be used with the ECMAScript 6 (b) standard.

Symbols In ECMAScript 6, there is a new feature called Symbol, a global
symbol indexed by a unique key. Each symbol value returned from Symbol()
call is unique. Since the simulated implementation of ECMAScript 5 is long,
the research does not present examples of this feature.
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function foo(param){

this.param = param;

this.next = function() {

var res;

var done = true;

if (param >= 1) {

res = param;

param = param - 1;

done = false;

}

return {value:res, done:done};

} }

function* foo(param){

while (param >= 1) {

yield param;

param = param - 1;

} }

(a) (b)

Figure 8.18: Generators

m["abc"] = 123

m[576]

"abc" in m

m.set("abc", 123)

m.get(567)

m.has("abc")

(a) (b)

Figure 8.19: Map Structure

Binary Literals In ECMAScript 6, binary literals can be entered. EC-
MAScript 5 provides only octal, decimal, and hexadecimal numeric literals.
The new standard has added support to describe binary and an alternative
syntax for octal numbers (Figure 8.20 (a) and (b) for 5.1 and 6 versions of EC-
MAScript, respectively). This can help developers when representing numbers
for binary operations (such as binary or, xor, and, and negation).
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parseInt("111110111",2)===503

0767 === 503

0b111110111 === 503

0o767 === 503

(a) (b)

Figure 8.20: Binary Literals

8.3 Static Optimization Difficulties

The previous sections of the guidelines provide instructions to JavaScript pro-
grammers on how to write effective code. However, it would be very convenient
if these performance acceleration techniques did not need to be applied man-
ually but could be implemented as automatic code conversions, i.e. compiler
optimizations. The experience with static languages shows that optimization
algorithms are worthwhile to apply, since the cost of the technology is paid only
during the compilation time, and the performance gains are considerable. Thus,
the need for optimization algorithms increases naturally for dynamic languages,
and the existing guidelines can serve as a natural starting point for the design
of these techniques. However, as we shall see below, the language features of
JavaScript render most of the static optimization techniques ineffective.

First, consider Figure 8.21. The loop of the function test1 is allegedly
infinite, and it continuously prints “Hello World!” messages. However, the
example loop stops after three iterations due to the parameters used in the
function call. This parameter is passed to eval and redefines the print identifier
from the internal function to a user-defined one. Furthermore, since the new
print implementation is defined in the scope of the test1 function, it can also
access its local variables. Since the loop index variable is increased each time
the print is called, the loop is terminated in this case.

The example in Figure 8.22 produces the same results as in Figure 8.21 but
achieves it in different ways. The code shows that one does not have to use
eval to get hardly predictable results. In this example, the setter function is
used to turn variables b into function calls. As in the previous example, local
variables of the function test2 can also be accessed in the called function. In
addition, as shown in the example, the definition of the setter method can be
obfuscated; it is done via the call of the def function in this case. Therefore,
theoretically, any function call can be a setter function.
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function test1(cmd) {

var a = 0

eval(cmd)

while (a < 3)

print("Hello world!")

}

test1("var pr = print; print = function(text) { a++ ; pr(text) } ")

Figure 8.21: Eval, function redefinition, and access to local variables.

var def = __defineSetter__

function test2(name) {

def(name, function(value) { print("Hello world!") ; a++ } )

for (a = 0 ; a < 3 ; /* Do nothing */ ) {

var a

b = void(0)

}

}

test2("b")

Figure 8.22: Setter function.
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The last example in Figure 8.23 shows an unusual use of valueOf. The
valueOf method is implicitly called when the operator needs the primitive
value of an identifier. Therefore, in this case, the loop test implicitly increases
the loop index. Unfortunately, this effect is completely invisible to a static
analyzer of the test3 function.

var x = 0

Number.prototype.valueOf = function() { return x++ }

function test3(a) {

while (a < 3)

print("Hello world!")

}

test3(new Number(0))

Figure 8.23: Overriding the valueOf() method.

The examples above show several unpredictable changes that can occur
in variables and functions that static optimization algorithms cannot predict.
Because compiler optimizations always have to be safe, these language features
make the application of complex static optimization algorithms and automated
programming guidelines to JavaScript practically infeasible. Thus, it seems
that guidelines are still just guidelines and not rules that should be applied
blindly. The following section describes the effectiveness of these guidelines.

8.4 Results

In this section, we compare the various guidelines. We chose to measure on
a Raspberry Pi 3 Model B, as it is a platform that all JavaScript engines can
be applied to and it is situated between the embedded and desktop worlds.
Desktop engines usually offer better performance but at the cost of code size
and memory consumption, which is not feasible in a restricted environment.
The Raspberry Pi 3 Model B provides the best of both worlds, as it allows
desktop engines to be executed without sacrificing performance optimizations.

We used the following hardware and software environment: BCM2835
ARMv7 quad-core CPU, 1GB DDR2 memory, 4GB Class 10 SD card with
a Raspbian GNU/Linux 8.0 (jessie) OS and a Linux Raspberry Pi 4.9.35-v7+
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kernel image. The measurement framework was written using Python 2.7.9
and Bash scripts.

The measurement methodology was the following:

� Each legacy guideline has an original and a transformed code snippet.

� Each ECMAScript 6 guideline has example codes for versions 6 and 5 as
well.

� The measurement framework extends every test with utility functions to
measure and save elapsed time within the main test cases.

� Since desktop engines still perform better than embedded ones, an addi-
tional loop iteration was introduced for desktop engines.

� Each measurement has been executed twenty times and the median of
the results was used to compute the relative percentages on the figures.

The JavaScript engines are tailored to various software and hardware con-
figurations. Several are designed for desktop computers, others for embedded
systems, and some are intended to work with both. As a result, certain fea-
tures may be absent or implemented differently in different JavaScript engines.
To find out which features are supported by each engine, there are online
comparison tables available 6.

On the other hand, in the JavaScript engines that are targeting low-end
hardware or focusing on supporting machine-to-machine communication, it is
not so evident to support all JavaScript language features. Our evaluation
shows that these embeddable engines do not support the full spectrum of
ECMAScript 6 language constructs. There is no single language construct that
is supported by all the three embeddable engines (see below), so we cannot do
a conclusive evaluation of these engines.

In this research, six JavaScript engines are examined:

� JavaScriptCore: It is the JavaScript engine of Safari and WebKit-based
web browsers. It can be found on iPhone and Mac desktop machines.
(main branch on 2017-12-10)

� V8 : it is the main JavaScript engine of Google’s Chrome and Chromium-
based web browsers [34] as well. Most smartphones delivered with An-
droid OS have it, and of course, common desktop machines can use
Google’s Chrome web browser. (Version: 6.4.99)

6https://kangax.github.io/compat-table/es6/
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� Spidermonkey : This engine is used by Mozilla’s Firefox web browser.
Firefox can run on phones, tablets, and desktop computers. (Version:
59)

� JerryScript : This engine is the first on this list that is targeted only
at the embedded world. This engine is developed by Samsung, Intel,
ARM, and the University of Szeged in partnership with other open-source
community members. It is running inside several smartwatches. (Version:
1.0 - da24727)

� Espurino: It is a JavaScript interpreter for microcontrollers. The support-
ing company also built a hardware stack around the software. (Version:
1v95)

� Duktape: An easily embeddable ECMAScript E5/E5.1 engine with a
small footprint. (Version: 2.2.0)

In this part of the thesis, our target is to evaluate JavaScript guidelines to
see how they are affecting the different engines. For each language construct
and feature the runtime was measured with and without guidelines, and a
resulting percentage was calculated.

Figure 8.24 shows the relative execution time changes when the guidelines
have been applied to the source code (smaller numbers are better; the runtime
of modified code has been divided by the original one). Thus, the legacy
guidelines are still valid and it is worth using them in terms of performance.

An evaluation of ECMAScript 6 has revealed some unexpected and note-
worthy modifications to ECMAScript 5. We have divided the results into two
categories; one in which the previous standard performs better (Figure 8.25)
on average and the other in which the new standard has more efficient code
paths in the engines (Figure 8.26). Both figures show the change in relative
execution time (smaller numbers are better), but the basis of comparison is
different. For Figure 8.25 the base is ECMAScript 6, and for Figure 8.26 the
base is ECMAScript 5 variant code snippets. Based on the findings, we can
set out the following guidelines for ECMAScript 6 language features:

� Arrow Function: Use the arrow functions if a non-method function is
needed. The reason for this is that although JavaScript engines reveal
very small performance improvements, the ECMAScript 6 form is clearer
and easier to adopt.
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Figure 8.24: Performance Improvement with Legacy Guidelines

� Class Definition: Use the class definition. The reason for this is that most
JavaScript engines perform better by using fast-path implementations.
The new standard can have as much as a 95% reduction in the running
time.

� Enhanced Object Properties : Do not use the enhanced object properties
in the ECMAScript 6 form. Use the ECMAScript 5 variant instead. The
results show that significant speedup can be seen with most execution
engines if the old standard is used.

� Template Strings: There are no significant changes when using the EC-
MAScript 5 or 6 version of the template strings, so there is no clear
conclusion about this construct. In this case, we suggest following the
new standard. The engines may improve this code later.

� Tagged Templates : Use tagged templates. Engines implement a special
code path for this construct. One of the engines outperforms the others
with a runtime improvement above 99%.

� Destructuring Objects : Do not use the destructuring construct. The
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destructuring

Figure 8.25: Performance Improvement with ECMAScript 5

reason for this is that it significantly slows down almost all engines,
except one.

� Spread Operator : Do not use the spread operator. Most JavaScript
engines perform better when using the ECMAScript 5 form.

� Constants : Use the constant construct. All engines perform better with
const. A special code path has been implemented for this.

� Iterators : Do not use iterators. The reason for this is that the EC-
MAScript 5 form is still faster. Currently, there is no fast-path imple-
mentation for this construct in the engines.

� Generators : Do not use generators. The reason for this is the same as in
the iterator case.

� Map Structure: Use the new built-in structure, e.g. Map construct. The
engines implemented these features with a fast code path.
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Figure 8.26: Performance Improvement with ECMAScript 6

� Symbols: Do not use the new symbol standard. Although JavaScript
engines have a new code path for this feature, simulating it is currently
faster.

� Binary Literals : Use the binary literals. The reason for this is that the
new feature implementations are very fast and there is no need to call
any parsers to read binary literals.
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9
Dynamic Analysis of JavaScript’s Call

Graphs

The fundamental area of understanding the structural blueprints of dynamic
applications and even further detecting harmful behavior is the analysis of
software function calls. A form of call information is the call graph, which is
successfully used in mobile and non-mobile systems to detect both known and
unknown harmful code.

A call graph is a type of directed graph that illustrates the connections
between functions in a program. Nodes in the graph represent the called
functions, and the edges between them signify the function calls, with the
direction of the edge pointing towards the callee. Call graphs can be created
without running the program (known as a static call graph) or during execution
(known as a dynamic call graph). The former has been extensively studied [26,
27, 45, 56], and first, we focus on the latter to enable the dynamic analysis of
JavaScript programs.

Call graphs have been used successfully in fault localization [77, 97], which is
the process of pinpointing the cause of a test failure without human intervention.
This can save time and money in problem resolution. When comparing the
call graphs of successful and unsuccessful tests, it is possible to identify the
functions most likely to contain an implementation error and focus on them.
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These methods rank functions according to the probability that they contain
an implementation error.

A considerable amount of web applications and back-end services have
been developed using the Node.js framework [73]. With more than 6.3 million
websites using Node.js, it has become the most widely used tool for web devel-
opment [75, 90] before React. Consequently, if one is looking to examine the
structural designs of dynamic applications, Node.js-based applications could be
a great option. In this research, we also focused on this framework to unravel
the complexity of dynamic JavaScript language in the area of call chains and to
provide useful and precise experiences that can be used in other code analyses
(for example to detect malicious or fraudulent activities).

9.1 Dynamic Call Graph Generation

At the time of our analysis, there were no publicly available tools that produced
a dynamic call graph for Node.js applications. However, some tools, with
different goals, could be extended to generate call information for further
processing. The following subsections discuss three tools that use distinct
approaches to create call graphs.

9.1.1 Call Graph Generator Tools

Jalangi2 The Jalangi2 framework [83], an improved version of Jalangi [82],
is the first tool used to dynamically analyze the ECMAScript 5.1 code [21],
and is compatible with Node.js and multiple web browsers.

Jalangi2 is an instrumentation framework that works with ECMAScript 5.1
source code, adding event notifications without altering the observed behavior.
Events such as variable assignments, expression evaluations, and entering and
exiting functions can be captured by Jalangi2. These events are then processed
by a JavaScript application called Jalangi2 analyzer. For example, we have
created an analysis for dynamic call graph construction [54], which registers
handlers for function entry/exit events to collect the nodes and edges of a call
graph.

Jalangi2 is distinct from other tools in this category, as it is a JavaScript-
based framework that alters the source code of a JavaScript application and
then runs the modified code using Node.js.
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nodejs with Nodejs-cg
tracing enabled

running time 48 s 5 s
disk space 161 MB 0.9 MB

Table 9.1: Running time and disk space consumed by the express module.

NodeProf NodeProf [92] is a dynamic program analysis tool for Node.js
applications that is based on the Graal-nodejs project. This project utilizes
the Graal.js [102] engine to interpret JavaScript code and convert it into an ab-
stract syntax tree (AST) representation that is then executed by the GraalVM
virtual machine. The Graal.js engine is compliant with the ECMAScript 2017
standard.

NodeProf is similar to Jalangi2 in that it adds event notifications to JavaScript
programs. Instead of instrumenting the source code, NodeProf links events to
the program’s Abstract Syntax Tree (AST) representation and applies changes
to the AST to report events. To expedite the implementation, NodeProf utilizes
Jalangi2 analysis to process events, although the interface is not completely
compatible. Fortunately, we were able to modify and reuse the analysis of the
call graph generator [54].

Nodejs-cg We have developed a customized version of Node.js, known as
Nodejs-cg [54], which features a modified V8 JavaScript engine. This engine
is capable of producing an execution trace, which is typically used to print
information about functions that are entered or exited. We have replaced this
tracing mechanism with our call graph generator.

Our approach collects all nodes and edges when a Node.js application
is executed and stores the entire graph in memory. This allows for much
faster execution of JavaScript with minimal printing. Table 9.1 shows that our
approach is 10 times faster and requires 100 times less space than postprocessing
the tracing output.

Unlike other tools in this section, call graphs are generated directly by
Nodejs-cg’s JavaScript engine. The source code or the intermediate representa-
tion is not modified by the generator tool. Thus, Nodejs-cg’s JavaScript engine
produces call graphs directly, without altering the source code or intermediate
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representation.

9.1.2 Node Identification

To compare multiple call graphs of the same program generated by different
tools, it is necessary to assign a unique identifier to each node, regardless of
the current execution of the program. This identifier can be created from
the absolute path of the file, in which the function is defined, and the source
code location in which the function starts. However, the locations provided
by NodeProf and Nodejs-cg are often different, with Nodejs-cg indicating the
start of the function argument list and NodeProf indicating the start of the
function. To identify the same nodes in the call graph returned by these two
tools, the NodeProf location must be converted to the location returned by
Nodejs-cg using the source code.

We have made a significant improvement in that explicit constructor nodes
are identified as the same nodes. As illustrated in Figure 9.1, when a constructor
is called in JavaScript, the NodeProf’ and Nodejs-cg’s locations are the starting
points of the class keyword and the starting points of the constructor argument,
respectively. These location places are unified in the final call graph. It is
also worth mentioning that JavaScript allows for dynamic script evaluation,
meaning scripts are not stored in files, but are strings constructed at the time
of execution. This means that they do not have path information. To address
this, some heuristics may be designed to add unique identifiers to these strings,
however, identifying an element in such a dynamic code is a complex task. For
now, all of these scripts are assigned to a single node with an <eval> identifier.

class ClassWithConstructor {

constructor(arg) {

// Prints the "arg" argument.

console.log(arg);

} }

Figure 9.1: An example for defining a class with an explicit constructor.
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96 215 314

NodeProf Nodejs-cg

Nodes

186 205 546

NodeProf Nodejs-cg

Edges

Figure 9.2: Number of call graph nodes and edges on SunSpider.

9.1.3 Comparison of Found Nodes and Edges

Figure 9.2 shows a Venn diagram of the nodes and edges encountered during
the running of the SunSpider benchmark [100] suite. The number of nodes
and edges identified by each generator tool is represented by a circle. The
intersection of the two circles indicates the number of nodes and edges found
by both tools, which are referred to as common nodes and edges in the rest of
the research. The non-intersected regions of the circles represent the unique
nodes and edges that are only found by one tool. If the call graphs generated
by both generators had been identical, the number of unique nodes and edges
would have been zero. However, Figure 9.2 shows a large number of unique
nodes and edges.

For further examination, the nodes and edges of Figure 9.2 are divided
into four categories. Tables 9.2 and 9.3 demonstrate the number of nodes and
edges that are part of these categories for these call graph generators. The
common group represents the shared nodes and edges, and its values are the
same as the values in the overlapping areas of the circles in Figure 9.2. In the
following subsections, we will concentrate on the other groups, which represent
the distinctions between these two call graphs.

9.1.4 JavaScript Built-ins

The second line in Tables 9.2 and 9.3 contains unique nodes and edges that are
called JavaScript, or simply JS built-ins. The ECMAScript standard outlines
a variety of built-in functions [21, in section 15], some of which are exercised
by SunSpider. For instance, the ‘string-tagcloud.js’ benchmark program sorts
the elements of an array with the assistance of the built-in sort() method.
Figure 9.3 provides an example of the use of this built-in method.
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group name number of nodes number of edges

common 215 (69.1%) 205 (52.4%)
JS built-ins 0 (0.0%) 0 (0.0%)
node.js init 91 (29.3%) 117 (29.9%)
module loading 5 (1.6%) 69 (17.7%)

total 311 (100.0%) 391 (100.0%)

Table 9.2: Call graph node and edge groups by NodeProf.

group name number of nodes number of edges

common 215 (40.7%) 205 (27.3%)
JS built-ins 17 (3.2%) 29 (3.8%)
nodejs init 290 (54.8%) 452 (60.2%)
module loading 7 (1.3%) 65 (8.7%)

total 529 (100.0%) 751 (100.0%)

Table 9.3: Call graph node and edge groups by Nodejs-cg.

A JavaScript engine may incorporate built-in functions that are written in
JavaScript or native functions that are not JavaScript-based. When a function
is written in JavaScript, the call graph generator may create its node, and the
relevant edges may be added to the call graph when the function is invoked
or when it calls other functions. However, native built-in functions are usually
not included in the call graph, since these functions usually do not alert the
engine when they are used.

Figure 9.4 illustrates two distinct subgraphs in which the nodes assigned
to the doSort() and compare() functions specified in Figure 9.3 are linked by
a route. The left subgraph is a direct edge between these two nodes since the
sort() function is an internal function implemented in NodeProf and its calls
are not monitored. Earlier versions of NodeProf captured the invocation of
native functions and allocated the same <built-in> source file name, but this
feature has been removed from the most recent versions.

The sort() function in Nodejs-cg is written in JavaScript and can be seen in
the right subgraph of Figure 9.4. However, most of the built-in functions are na-
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function compare(a, b) {

if (a < b) {

return -1;

}

return (a > b) | 0;

}

function doSort(arr) {

arr.sort(compare);

}

doSort([3, 2, 1])

Figure 9.3: An example for sort-
ing an array.

doSort()

InnerArraySort()

InsertionSort()

compare()

Nodejs-cg

doSort()

compare()

NodeProf

Figure 9.4: Subgraphs from Fig-
ure 9.3 example.

tive to Nodejs-cg, so the two call graph generators do not provide much insight
into the usage of the built-in functions in a module. This could be improved
in the future by adding entry/exit notifications to the native functions.

9.1.5 Module Initialization

The Node.js initialization group is shown in Tables 9.2 and 9.3. The nodes and
edges in this group are part of every call graph, regardless of the program.

The Node.js startup procedure, known as bootstrap, is partially written in
JavaScript. During bootstrap, Node.js runs a few core modules that set up the
module loading system, message queues, timers, and so on. These core modules
are part of the Node.js binary to guarantee that they cannot be changed and
that Node.js can always depend on them.

Regarding Nodejs-cg, 64 modules are loaded and almost 300 functions are
executed during the initiation procedure. These functions appear as nodes in
the call graph, and their exact amount is displayed in the Node.js init group
in Table 9.3. These figures are much lower for NodeProf: It only loads 19
modules and runs almost a hundred functions, as seen in Table 9.2. The cause
of these low numbers is that NodeProf loads its analysis script at a later stage
of Node.js initialization, and the call graph generator is unable to capture the
function calls that happened before loading.
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console.log(’Hello!’);

(function(exports, ...) {

console.log(’Hello!’);

})

(a) Original source code (b) Wrapped source code

Figure 9.5: Example for source code wrapping.

9.1.6 Module Loading

The last category in Tables 9.2 and 9.3 is the module loading group. This
group has a small number of nodes, since most modules are used during the
initialization process, and only a few extra support functions are necessary to
load other modules.

SunSpider’s benchmark suite [100] consists of 26 individual programs, and
this is reflected in both tables, which show more than 60 edges. The test driver
loads the module by first wrapping the source code into a function expression
(as seen in Figure 9.5). Node.js’s JavaScript engine then evaluates the wrapped
code, creating internal functions, and executing them. This process is captured
by the call graph generator, which adds a new edge to the call graph. The
internal function returns with another function object, which is later called
by Node.js, resulting in the addition of another edge to the call graph. This
explains why the module load group has so many edges.

Comparing the differences, the Nodejs-cg and NodeProf-generated call
graphs not only have many common edges but also contain a large number of
unique edges. For example, only 27% of the edges in the call graph created by
Nodejs-cg were part of the common group. This is less than the common edge
ratio of NodeProf, which was around 50%. This implies that the call graphs
created for the SunSpider benchmark suite reveal more about Node.js than
SunSpider. In subsection 9.1.8, we demonstrate how filtering can effectively
reduce the discrepancies between call graphs.

9.1.7 Call Graphs of Real-World Programs

In the preceding subsection, we compared the nodes and edges of multiple
call graphs created from the SunSpider benchmark suite. We discovered that
these call graphs have a considerable number of distinct nodes and edges, for
instance, 73% of the edges are exclusive in the call graph produced by Nodejs-
cg. Nevertheless, SunSpider is a relatively small benchmark suite, so it would
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be advantageous if further research was conducted with other programs before
making any conclusions.

In this subsection, we compare the call graphs generated from 12 Node.js
modules. Many modules are from the BugsJS [38] framework, while the re-
maining ones have been chosen by us, namely doctrine, jshint, and request.
The BugsJS framework has an additional module, node-redis, which was ex-
cluded from this comparison. Further information on why this module was not
included is provided in Section 9.1.10.

Each module has its own testing system that utilizes Node.js to carry out
the tests. The call graph generators also work on Node.js binaries, which
can run the tests simultaneously and construct JavaScript call graphs. After
the testing is finished, a final call graph is created which is the union of the
produced call graphs. The final call graph contains all the function calls that
were executed during testing, including the internal calls from Node.js and the
JavaScript engine.

9.1.8 Comparison of Nodes

Table 9.4 shows the number of nodes recorded for each Node.js module. The
left side of the table contains all the nodes that were identified, while the right
side contains the nodes that remain after a filter is applied. This filtering
process is conducted during testing and causes the generators to ignore the
internal JavaScript functions of the JavaScript engine and Node.js. Although
nodes can be filtered out after the testing is completed, this is not the case
for the call-graph edges, as seen in Figure 9.6. When the filter is applied,
only the application-related functions and their connections remain in the call
graph, such as core module functions, functions related to testing, and functions
provided by various external dependencies installed by the package manager.

Table 9.4 is divided into two halves, with three columns in each. The middle
column shows the number of nodes that were found by both NodeProf and
Nodejs-cg, while the columns on either side show the number of nodes that
were only identified by one of the two generators.

The two halves of the table usually have very similar values in the middle
columns, which implies that the filter is successful in enhancing the similarity of
the call graphs by eliminating only distinct nodes. Nevertheless, the mongoose
module is an exception: When testing the mongoose and karma modules, some
test cases may be lost. This is further discussed in Section 9.1.10. In addition,
the nodes that represent the functions related to these tests are also absent
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Name All call graph nodes Module call graph nodes

NodeProf common Nodejs-cg NodeProf common Nodejs-cg

bower 804 9604 996 1 9604 2
doctrine 372 1954 581 7 1954 1
eslint 571 15898 781 15 15898 17
express 727 5239 928 0 5239 1
hessian 437 2103 648 0 2103 1
hexo 541 10076 749 2 10076 1
jshint 412 2299 627 0 2299 1
karma 828 9363 1019 0 9363 1
mongoose 708 12508 890 2 12506 5
pencilblue 539 6265 745 1 6265 6
request 876 3675 1067 1 3675 3
shields 773 9544 976 0 9544 2

0% 20% 40% 60% 80% 100%

shields 
request 

pencilblue 
mongoose 

karma 
jshint 
hexo 

hessian 
express 

eslint 
doctrine 

bower 

nodeprof.js common nodejs-cg

0% 0.5% 99.5% 100%

Table 9.4: Number of call graph nodes found by NodeProf and Nodejs-cg.

from the call graphs, decreasing the number of common nodes.

Table 9.4 reveals that there are multiple distinct nodes in the call graphs
when the filter is not applied. However, this discrepancy is significantly reduced
to a single digit when the filter is used (except for eslint). This implies that
the majority of the nodes in the side columns of the left subtable are internal
functions of both the JavaScript engine and Node.js. As for eslint, it creates
temporary directories and runs JavaScript source files placed in these directories.
Since the source code of these functions is not available later, they are not
currently identified as the same nodes in the two call graphs. This was discussed
further in Section 9.1.2. The remaining differences will be discussed in the
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A()

B()

X() C()

Figure 9.6: Call graph filtering problem: if the node marked with X() is
removed, it cannot be decided whether C() node is transitively called from A()
or B() or both.

following subsection, which focuses on the call graph edges.

9.1.9 Comparison of Edges

Table 9.5 shows the number of edges recorded for each Node.js module. The
table is divided into two sections: the left side contains the total number of
edges, and the right side contains the edges that have been filtered. The filter
used is the same as the one described in Section 9.1.8.

We have investigated the effects of filtering by examining Table 9.5. It is
evident that after the filter is applied, the number of common edges increases,
while the number of unique edges decreases significantly. In 16 of the 24 cases,
the number of unique edges is reduced to a single digit, which is less than
0.1% of the edges in the related call graph. As we observed in Section 9.1.8,
the unique nodes of the filtered call graphs are also very low, thus we can
conclude that the filtered call graphs created by NodeProf and Nodejs-cg are
very similar. However, there are two modules, that have hundreds of unique
edges even in the filtered call graphs.

The mongoose module has hundreds of distinct edges in its filtered call
graph, which is mainly due to JavaScript generator functions. An example of
this is illustrated in Figure 9.7. When the generator function g() is called, both
call graph generators record a function call, but the body of the g() function
is not executed. Instead, an object is created with a next() method. When
this next() method is invoked, the body of the generator function is executed
until a yield operator is encountered or the function returns. This means that
when the next() method is invoked, the f() function in Figure 9.7 is called,
and the Nodejs-cg tool accurately records this as a function call from g() to
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Name All call graph edges Module call graph edges

NodeProf common Nodejs-cg NodeProf common Nodejs-cg

bower 8302 12250 8734 4 18849 6
doctrine 1751 2788 2237 12 3572 1
eslint 8153 24093 8791 124 29436 73
express 4023 9988 4451 0 11455 1
hessian 2346 2503 2735 0 3399 1
hexo 6904 15460 7578 2 19856 1
jshint 2084 2251 2493 0 3189 1
karma 8463 10787 8892 3 15864 2
mongoose 9468 28889 10735 148 31859 875
pencilblue 5358 6856 5811 4 10000 12
request 4662 3892 5059 9 5776 9
shields 8329 8400 9035 39 13489 259

0% 20% 40% 60% 80% 100%

shields 
request 

pencilblue 
mongoose 

karma 
jshint 
hexo 

hessian 
express 

eslint 
doctrine 

bower 

nodeprof.js common nodejs-cg

0% 2% 98% 100%

Table 9.5: Number of call graph edges found by NodeProf and Nodejs-cg.

f(). However, the call graph generator based on NodeProf is unaware that the
execution has entered the body of the g() function and it registers a function
call from h() to f(). This is why the call graph generated by Nodejs-cg has
six times more unique edges than the one generated by NodeProf. This is
because many tests of the mongoose module are implemented as generator
functions which call the same API functions with different parameters. If these
generator functions are disregarded, the test driver becomes the caller of the
API functions, resulting in fewer edges being created.

The NodeProf-based call graph generator could be improved in the future
to recognize function calls made by generator functions. This is not a simple
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function f() {

return 1;

}

function* g() {

yield f();

}

function h() {

g().next();

}

h();

Figure 9.7: An example for
JavaScript generator functions.

function f() {

}

function r(res, rej) {

res("Resolved");

}

var p = new Promise(r);

async function g() {

await p;

f();

}

g();

Figure 9.8: An example for using
Promises and await keyword.

adjustment, however, as NodeProf only provides the source code location of the
call site, not the source code location of the calling function, and the generator
would need to search for the relevant function for each site.

The call graphs of the shields module have the second-highest number of
distinct edges. However, this difference is not due to generator functions, al-
though the cause is somewhat similar. The await expression halts the execution
of an asynchronous JavaScript function until a Promise object is fulfilled, as
shown in Figure 9.8. When the function g() is invoked, it runs until the await
expression is encountered, and the function returns with a Promise object.
The return value of a function declared with the async attribute is always a
Promise object, even if the function terminates normally. When the Promise
object’s argument of the await expression in the g() function is fulfilled, the g()
function continues its execution and calls the f() function. In a similar way to
generator functions, the call graph generator based on NodeProf is not aware
that the execution of the g() function is resumed, and it reports that the f()
function is called by the Promise callback executor, leading to discrepancies
between the call graphs.

The differences in the call graph (both nodes and edges) are mainly due
to the version of Node.js employed by the call graph generator and some test
failures. Each module in our benchmark set checks the versions of Node.js
and its supported command line options, which leads to different initialization
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steps depending on the version of Node.js. Additionally, there are a few test
failures that occur only with NodeProf. We have disabled these tests that
caused engine crashes, as the test systems cannot continue testing after a crash
and a large portion of the call graph would be missing.

9.1.10 Performance Overhead

In this subsection, we can discuss the performance impact of constructing
call graphs. Table 9.6 shows the effect of the call graph generation with
NodeProf and Nodejs-cg. The execution is significantly slower; it is more
than two and eight times slower on eslint Although the relative slowdown is
smaller generating call graphs with NodeProf, it runs around ten times slower
than Nodejs-cg on average. Filtering does speed up call graph construction,
but the difference is only 10%. Generally, the mentioned slowdown has no
negative effect on testing, except for three modules from the BugsJS framework:
mongoose, karma, and node-redis. We noticed that some tests may be skipped
nondeterministically during testing, and the nodes and edges related to these
tests are also absent from the call graphs. This issue can even occur when an
unmodified Node.js runs the tests, although rarely. However, when call graph
generators are used, we observe more frequent test disappearances. Usually,
only a few tests are missing, but sometimes up to 80% of the test cases are
absent.

The aforementioned modules interact with external tools: mongoose and
node-redis manage a database server, while karma controls a web browser. If
an error occurs during communication, the test system captures it and halts
the execution of the current batch of tests. Tests that have not been executed
yet are not marked as successful or failed tests; they are simply ignored and
the test system continues testing with the next batch of tests. As for mongoose
and karma modules, the call graph generators can usually run most of their
tests without any issues, but node-redis often loses its network connection, so
we decided to exclude this module from the comparison. We assume that the
overhead of call graph construction is the cause of this issue since node-redis
runs several time-sensitive tests.
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Name Slowdown factor
Slowdown factor
without filtering with filtering

NodeProf Nodejs-cg NodeProf Nodejs-cg

bower 1.58 2.40 1.37 2.15
doctrine 1.99 2.59 2.14 1.78
eslint 2.76 8.80 2.53 8.70
express 1.29 1.25 1.13 1.41
hessian 1.61 4.06 1.57 3.51
hexo 1.36 2.51 1.57 2.42
jshint 1.71 1.79 1.50 1.63
karma 1.20 2.30 1.20 1.14
mongoose 1.41 2.33 1.02 2.10
pencilblue 1.35 1.58 1.03 1.58
request 1.52 1.45 1.03 1.17
shields 1.60 4.45 1.55 4.15

average 1.62 2.96 1.47 2.65

Table 9.6: Performance overhead of generating call graphs.

9.2 Comparison of Static and Dynamic Call

Graphs

In the previous sections, a detailed analysis has been performed of dynamic call
graph generators, showing their properties, performances, and applicabilities.
Although dynamic call graph generators have many advantages, the classic
static version of generators should not be overlooked.

Static approaches have the disadvantage of not being able to detect dynamic
call edges from nontrivial eval(), bind(), or apply() usages (i.e., reflection). Ad-
ditionally, they may be overly conservative, recognizing edges that are valid
statically, but never realized in practice. However, they are faster, and more
memory-friendly than dynamic analysis techniques and do not require a large
testbed for the program being analyzed. Dynamic approaches, on the other
hand, only identify real call edges, but the completeness of their results is
highly dependent on the quality of the test cases for the program. Therefore,
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it is necessary to learn more about the current static and dynamic JavaScript
call graph-building techniques to better understand their capabilities and limi-
tations compared to each other (in terms of tools and approaches).

9.2.1 Static and Dynamic Call Graph Generators

We quantitatively evaluated five distinct static analysis-based tools (TAJS [2],
ACG [25], Google Closure Compiler [35], IBM WALA [27], and npm call-
graph [32]) and two dynamic tools (NodeProf [92] and Nodejs-cg [54]) to
determine the various calls each tool can detect and how the results of the
static analysis-based tools compared to those of dynamic analysis-based tools.
We also perform a quality analysis of the results, which involves comparing
and validating the identified call edges and analyzing the discrepancies. Fur-
thermore, we compare the results of the static and dynamic tools to gain an
understanding of the overall accuracy of static analysis.

In order to carry out our analyses, we required inputs. Unfortunately, there
is no existing, community-acknowledged standard for assessing JavaScript call
graph builder algorithms. To address this issue, we identified two distinct sets
of inputs: first is the straightforward, single-file inputs (in this instance, we
employed the SunSpider benchmark), and second is the multi-file real projects
(we selected a few popular Node.js modules).

We conducted a SunSpider analysis to investigate the variations in numbers,
precision, and types of call edges reported by different tools. Our manual
evaluation of 348 call edges revealed that TAJS had the highest precision, with
more than 97% of the edges found to be true positives. The union of all the
true edges found by the five tools showed that ACG and TAJS had the highest
recall (93%). Closure, however, detected true positive edges that all other
static tools had missed. TAJS had an accuracy of 97%, but it failed to detect
any unique edges (edges that other static tools missed). The call graph built
by TAJS was also most similar to that of dynamic tools. The combination
of static tools did not produce all true edges and the combined precision was
only 53%. The similarity between the static call graphs and the dynamically
constructed ones varied greatly. We found that many of the missing dynamic
edges were not realized in any runs due to incomplete test input. The dynamic
nature of JavaScript also hindered static techniques from reliably identifying
edges.

The results of the analysis of the Node.js modules showed a large variance.
As none of the tools other than ACG could analyze multi-file projects, ACG was
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the only static tool used in addition to the dynamic approaches. ACG’s two call
graph building strategies had a precision of 34.20%, while the dynamic tools had
perfect precision. The recall values of the static and dynamic approaches were
similar, ranging from 58.40% to 69.52%. The combination of the two approaches
achieved perfect recall with a precision of 39.49%. The main contributions of
this part of the research are:

� the quantitative and results quality analysis of the static and dynamic
tools on 26 SunSpider benchmark programs,

� evaluation and comparison of ACG and dynamic approaches on 12 widely
used Node.js modules,

� a manually validated data set of call edges found by these tools.

9.2.2 Fundamentals of Comparison

Let us add some details to the definition of call graph (introduced in Section 9):

� The nodes represent program functions (functions are identified by the
name of the containing file and the exact source code position (line and
column) where the function starts),

� A directed edge connects two nodes and represents a call from one function
to another (i.e., function a() calls function b()),

� In our approach, there is a maximum of one edge between two nodes,
thus, we track only if a call from one function to another is feasible, but
we ignore its multiplicity. This is because not all tools can detect multiple
calls, and we wanted to keep the definition of call graphs simple.

At first glance, it appears reasonable to compare graphs in our research
using the conventional method. However, our initial thought was that the tools
could overlook certain edges, which would make comparing graphs much more
challenging. Therefore, in this research, we will analyze the set of edges that
compose graphs. We would like to point out that our call graph outputs can
be used to construct a graph at any time, on which any graph algorithm can
be applied.

In our research, we needed to use call graph extraction tools. However, it
was difficult to select the right set of tools, as a simple search could result in
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hundreds of potential options. To make the selection process easier, we estab-
lished criteria for the tools and only considered those that met the following
requirements: i) the ability to generate a function call graph from a JavaScript
program, ii) open-source and free, and iii) widely used in practice. The latter
was a less formal criterion, where we took into account the number of weekly
downloads on npm 2 and the activity on GitHub (stars, issue management,
number of forks, and pull requests). As a result, we chose five static and two
dynamic tools for our comparative study.

We have not found any benchmark specifically designed to compare JavaScript
call graph extraction tools. Therefore, we examined what input other re-
searchers and practitioners use for similar evaluation tasks. One of the bench-
marks used by many is the SunSpider benchmark of the WebKit browser engine.
This benchmark includes several single-file JavaScript examples in real-world
use. The programs are intended to test the WebKit JavaScript engine, and
thus contain code of varying complexity, with multiple function types and calls,
all within single JavaScript files. These features make them an ideal choice for
our single-file test subjects.

Today, many JavaScript modules are made up of multiple files that may
contain references to each other. To make our research as realistic as possible,
we randomly chose 12 Node.js modules from GitHub that met the following
criteria: (1) the module was composed of multiple JavaScript source files, (2)
it had a high test coverage of at least 75% statement level, and (3) it was used
by at least 100 other modules. These criteria guarantee that our results (based
on the chosen inputs) are in line with the results that would be obtained if the
tools were used in practice.

We sought to assess the performance of the tools using proto-benchmarks
that reflect their real-world application. We also keep in mind that one may
want to evaluate the tools with more specific inputs (e.g. domain-specific li-
braries) or include another tool in the comparison. Therefore, we have designed
our study and framework to be easily expandable, with other tools and input.

9.2.3 Overview of Call Graph Generator Tools

In this subsection, we outline the techniques that we used in our comparison
study.

WALA WALA is a comprehensive system for analyzing Java programs, both
statically and dynamically. It also has a JavaScript front-end based on Mozilla’s
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Rhino parser [62]. For this research, we only used one of its main components,
called static analysis, designed specifically for call graph creation.

Closure Compiler Closure Compiler is a genuine JavaScript compiler that
takes JavaScript applications, parses and examines them, eliminates unused
code, rewrites and compresses the code, and looks for common JavaScript errors
with limitations. Instead of compiling to machine code, it produces improved
JavaScript.

ACG ACG (Approximate Call Graph) implements a field-based call graph
construction algorithm for JavaScript. The call graph constructor has two
distinct approaches, pessimistic and optimistic, which differ in the way inter-
procedural flows are managed.

NPM CallGraph Module Gunar C. Gessner developed npm callgraph,
a tiny npm package to generate call graphs from JavaScript code. It uses
UglifyJS2 [9] to parse JavaScript code. Despite its small size and limited
number of commits, it is highly popular, having been downloaded more than
5,000 times.

TAJS A dataflow analysis tool for JavaScript, developed at Aarhus Uni-
versity, called the ’Type Analyzer for JavaScript’, allows one to infer type
information and produce call graphs.

NodeProf NodeProf, introduced in the previous section, is a framework for
instrumentation and profiling of Node.js modules. It is able to execute the
modules and alert applications, known as analyses, when certain events occur in
the JavaScript code, such as the entry and exit of a function or the assignment
of a variable. Our dynamic call graph generator tool is one of these analyses,
collecting data related to the call graph.

Nodejs-cg We employed Nodejs-cg, a customized Node.js runtime, in this
project. Node.js utilizes the V8 engine as its default JavaScript interpreter. It
has integrated tracing capabilities, but the default tracing system has significant
overhead as it requires a lot of time and space to parse the output and construct
a call graph.
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9.2.4 Testbed

We created two distinct sets of test inputs for the purpose of conducting a
thorough and comprehensive evaluation. These test input groups were carefully
chosen to include a wide variety of scenarios, complexities, and usage patterns.

Single file benchmark examples We previously discussed our intention to
include real-world, single-file JavaScript examples that can be easily examined
by a program or manually. To do this, we used the SunSpider benchmark.

Real-word, Multi-file Node.js Examples We tested several Node.js mod-
ules to see how they manage the current ECMAScript 6, and Node.js features
(such as module exports or external dependencies, i.e., the require keyword) and
inter-file connections. Modules that employ the most up-to-date standards and
have a large group of developers and users have been chosen for this testbed.
Table 9.7 summarizes the details of the selected Node.js modules.

Name Repository URL SLOC
debug https://github.com/visionmedia/debug.git 1,083
doctrine https://github.com/eslint/doctrine 5,109
hessian.js https://github.com/BugsJS/hessian.js.git 6,796
request https://github.com/request/request 9,469
express https://github.com/BugsJS/express.git 11,673
hexo https://github.com/BugsJS/hexo.git 16,617
karma https://github.com/BugsJS/karma.git 17,690
bower https://github.com/BugsJS/bower.git 28,087
shields https://github.com/BugsJS/shields.git 47,786
pencilblue https://github.com/BugsJS/pencilblue.git 54,746
jshint https://github.com/jshint/jshint 68,411
eslint https://github.com/BugsJS/eslint.git 284,342

Table 9.7: The selected Node.js modules and their size (source lines of code)

9.2.5 Graph Comparison

We quantitatively evaluated the call graphs by comparing the number of nodes
and edges, as well as the similarity of entire call graphs. To assess the quality
of the results, we implemented a Python-based call graph comparison script
based on the work of Lhoták et al [49]. This script was designed to detect
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matching edges identified by various tools. Each node and edge was extended
with an attribute containing a list of tool identifiers that found the particular
node or edge. Because many JavaScript functions do not have names, nodes,
and edges were identified using path, line, and column information instead of
a unique unified naming scheme (as discussed before in Section 9.1.2).

We manually verified the path and line data generated by the evaluated
tools to ensure that the comparison was accurate. TAJS provided precise line
and column information in its standard DOT output. We implemented and
modified the line information extraction in Closure Compiler, WALA, and ACG
tools. Unfortunately, WALA was only able to report line numbers, not column
information, so we had to manually refine its output. Since the reported line
and column data from npm callgraph were not precise (neither of them), we
manually added this information to the created JSON files. As previously
noted in 9.1.2, we also implemented a precise line information dump in our
dynamic tools.

We conducted an analysis of the quality of the results by evaluating all 348
call edges found by the five static and two dynamic tools on the 26 SunSpi-
der benchmark programs. We manually examined the JavaScript sources to
determine the validity of the edges in the merged JSON files and added a new
attribute (’valid’) to the edges of the call graph, which can be either true or
false. After evaluating the edges, we cross-reviewed the validation results and
resolved any discrepancies. The final validated JSON was created based on
consensus.

9.2.6 Precision, Recall, F-measure

To ensure the most precise information retrieval metrics, we only took into
account edges that were reported by the dynamic tools, that is, those that
occurred during the execution of the program. In the case of simple source
files, like the SunSpider benchmark, we thoroughly examined all 348 call edges
by hand. In the case of Node.js modules, it would be very challenging to
examine all the nodes and edges by hand, thus, we rely on our tools (which
were validated on SunSpider’s results). Based on our findings we divided the
identified edges into three categories:

� true positive (TP): the edge that exists and is realized during execution.

� false positive (FP): edge that does not exist in the source code.
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� pseudo-positive (PP): edge that could be a real call but remains unrealized
due to lack of test input of the dynamic analysis.

Identifying true positive edges was a straightforward task, however, distin-
guishing between false positive and pseudo-positive edges was more difficult.
False positive edges do not exist in the source code, but either the edge’s caller
or callee has a function signature that is similar to a function signature that
is actually present in the program. On the other hand, in the vast majority
of pseudo-positive cases, the caller function is never invoked, and thus the call
from the caller to callee (which would otherwise be a valid, possible call) is
never executed.

9.2.7 SunSpider Analysis

The quantitative analysis shows the number of nodes and edges found by the
call graphs generator tools. In Table 9.8, we can see a static tool that produces
similar results to the dynamic tool in almost every case. For example, all of
the tools agreed on the number of nodes and edges for math-spectral-norm.js
and string-fasta.js. For itops-bitwise-and.js and regexp-dna.js, we can see that
none of the static or dynamic tools can find a node. Since bitops-bitwise-and.js
contains only some statements without calling any function, none of the tools
realize a node (or an edge). In the case of regexp-dna.js, we can also see some
statements, however, some calls to built-in functions happen.

In Table 9.8 one can spot the numerical differences of properties’ dynamic
call graph reported in the earlier sections. In this follow-up research, we do
not take into account the built-in function calls, which allows us to focus on
JavaScript analyses rather than the deficiencies of generator tools. Thus, the
following aspects do not influence the final result:

� Only the Nodejs-cg can show the built-in calls.

� The benchmark contains several eval() calls that do not have path in-
formation (see Section 9.1.2). So, such calls should be connected to an
artificial node which can be very different in generator tools.

We evaluated the static analysis and discovered 184 true positive edges.
We then added all edges that could only be identified by dynamic tools as
they are certain to occur during program execution. This resulted in a total
of 195 edges, which we used as a benchmark. For each tool and all possible
combinations of them, we were able to calculate the well-known information
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Benchmark program

Static tools Dynamic tools
npm-cg ACG WALA Closure TAJS NodeProf Nodejs-cg
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3d-cube 15 23 15 23 16 24 15 23 15 23 15 23 15 23
3d-morph 2 1 2 1 0 0 2 1 2 1 2 1 2 1
3d-raytrace 22 29 28 41 21 22 27 40 28 39 28 39 28 39
access-binary-trees 3 3 4 5 4 5 4 5 4 5 4 5 4 5
access-fannkuch 2 1 2 1 3 2 2 1 2 1 2 1 2 1
access-nbody 8 11 12 15 8 11 11 14 12 15 12 15 12 15
access-nsieve 3 2 3 2 2 1 3 2 3 2 3 2 3 2
bitops-3bit-bits-in-byte 2 1 2 1 3 2 2 1 3 2 3 2 3 2
bitops-bits-in-byte 2 1 2 1 3 2 2 1 3 2 3 2 3 2
bitops-bitwise-and 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bitops-nsieve-bits 3 2 3 2 3 2 3 2 3 2 3 2 3 2
controlflow-recursive 4 6 4 6 4 6 4 6 4 6 4 6 4 6
crypto-aes 17 16 17 16 13 16 17 16 13 14 13 14 13 14
crypto-md5 21 30 21 30 3 2 21 30 12 15 12 15 12 15
crypto-sha1 18 23 18 23 3 2 18 23 9 8 9 8 9 8
date-format-tofte 18 18 19 20 2 1 3 2 3 2 12 11 12 11
date-format-xparb 0 0 14 14 13 17 14 14 5 5 6 5 6 5
math-cordic 5 5 5 5 5 5 5 5 5 5 5 5 5 5
math-partial-sums 2 1 2 1 2 1 2 1 2 1 2 1 2 1
math-spectral-norm 6 6 6 6 6 6 6 6 6 6 6 6 6 6
regexp-dna 0 0 0 0 0 0 0 0 0 0 0 0 0 0
string-base64 3 2 3 2 3 2 3 2 3 2 3 2 3 2
string-fasta 5 4 5 4 5 4 5 4 5 4 5 4 5 4
string-tagcloud 4 4 12 18 2 1 11 17 3 2 6 6 6 6
string-unpack-code 0 0 13 20 5 8 12 64 13 20 13 16 13 16
string-validate-input 4 3 5 4 5 4 5 4 5 4 5 4 5 4∑

169 192 217 261 134 146 197 284 163 186 176 195 176 195

Table 9.8: SunSpider analysis results

retrieval metrics (precision and recall). We should note that only simple call
edges were evaluated and compared; paths along these edges (i.e., call chains)
were not taken into account. The effect of missing or extra edges may vary
depending on the number of paths that go through them, and this could
influence the precision and recall of the identified call chain paths.

The information in Table 9.9 can be seen in detail. The first column
lists the name of the tool or a combination of tools. The second and third
columns display the total number of true (TP) and false positive (FP) instances
identified by the relevant tool or combination of tools. The column labeled
PP displays the amount of pseudo-positive edges, which would be actual if the
program’s execution had reached the caller’s side. Since this does not occur,
these edges are not considered true positive edges. The fifth column (labeled
All) shows the total number of edges that were identified by the relevant tool
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or combination of tools. The sixth (labeled Prec.), seventh (labeled Rec.), and
eighth (labeled F ) columns contain the precision (TP / All), recall (TP / 195 ),
and F-measure values, respectively.

Tool TP FP PP All Prec. Rec. F
ACG 182 6 73 261 70% 93% 80%
Closure 175 54 55 284 62% 90% 73%
npm-cg 125 18 49 192 65% 64% 65%
TAJS 181 4 1 186 97% 93% 95%
WALA 122 19 5 146 84% 63% 72%
ACG+Closure 182 54 73 309 59% 93% 72%
ACG+npm-cg 182 24 73 279 65% 93% 77%
ACG+TAJS 184 6 73 263 70% 94% 80%
ACG+WALA 184 25 73 282 65% 94% 77%
Closure+npm-cg 175 72 72 319 55% 90% 68%
Closure+TAJS 184 54 55 293 63% 94% 75%
Closure+WALA 183 73 55 311 59% 94% 72%
npm-cg+TAJS 183 22 50 255 72% 94% 81%
npm-cg+WALA 149 37 54 240 62% 76% 69%
TAJS+WALA 181 23 6 210 86% 93% 89%
ACG+Closure+npm-cg 182 72 73 327 56% 93% 70%
ACG+Closure+TAJS 184 54 73 311 59% 94% 73%
ACG+Closure+WALA 184 73 73 330 56% 94% 70%
ACG+npm-cg+TAJS 184 24 73 281 65% 94% 77%
ACG+npm-cg+WALA 184 43 73 300 61% 94% 74%
ACG+TAJS+WALA 184 25 73 282 65% 94% 77%
Closure+npm-cg+TAJS 184 72 72 328 56% 94% 70%
Closure+npm-cg+WALA 183 91 72 346 53% 94% 68%
Closure+TAJS+WALA 184 73 55 312 59% 94% 73%
npm-cg+TAJS+WALA 183 41 55 279 66% 94% 77%
ACG+Closure+npm-cg+TAJS 184 72 73 329 56% 94% 70%
ACG+Closure+npm-cg+WALA 184 91 73 348 53% 94% 68%
ACG+Closure+TAJS+WALA 184 73 73 330 56% 94% 70%
ACG+npm-cg+TAJS+WALA 184 43 73 300 61% 94% 74%
Closure+npm-cg+TAJS+WALA 184 91 72 347 53% 94% 68%
ALL 184 91 73 348 53% 94% 68%

Table 9.9: Precision and recall measures for individual tools and their combi-
nations

TAJS stands out among the individual tools due to its almost perfect
precision (97%) and high recall values (93%). In comparison, ACG and Closure
have recall values that are close to TAJS, but their precisions are much lower.
Closure had the lowest precision (62%), while WALA had the lowest recall
(63%). ACG identified the most true positive edges, but it also found a number
of pseudo-positive edges, which explains its lower precision and recall.

Table 9.10 presents the correlation between the call edges identified by the
static call graph tools and the dynamic call graph extraction process. We only
kept those static edges that were determined to be true positives. As can be
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seen, there is considerable variation in the intersections and discrepancies in
the call edges among the static tools. The two extremes are npm-cg and TAJS.
On the one hand, npm-cg misses 70 valid edges and has the lowest intersection
(125 edges) with the dynamic approach. On the other hand, TAJS produces a
result that is very similar to that of the dynamic approach. 99% of the edges
found by TAJS are also in the dynamic call set, and TAJS also finds 93% of
all dynamic edges (i.e., it misses only 14 edges found by NodeProf).

Tool Static only Static ∩ Dynamic Dynamic only Precisiondyn Recalldyn
ACG 71 162 33 0.70 0.83
Closure 55 175 20 0.76 0.90
npm-cg 49 125 70 0.72 0.64
TAJS 1 181 14 0.99 0.93
WALA 5 122 73 0.96 0.63

Table 9.10: Comparison of static and dynamic edges

WALA generated only five edges that were not in the dynamic set, resulting
in a precision of 96%. Closure, on the other hand, identified 90% of the
dynamic edges, but also included 55 edges that were not in the dynamic set.
We examined all the edges that were only found by either the static tool or the
dynamic approaches.

Edges found by the dynamic approaches Given the highly dynamic na-
ture of JavaScript, it is not unexpected that certain edges were discovered only
by dynamic tools. These edges were valid calls between functions, but they are
mostly undetectable by static analysis. For example, in Listing 9.9, an anony-
mous function dynamically adds several functions to its parameter, referred
to as s. This function is then immediately called with the String.prototype
parameter, meaning that every String object will be extended with the defined
functions and properties. Therefore, tagInfoJSON (which is a string) will have
a parseJSON function that takes a function as an argument. The function
call was realized by an inner function called inside parseJSON, walk, which
calls the parseJSON ’s parameter named filter. Since parseJSON was added
dynamically, it would have been difficult to detect by static analysis alone.

Dynamic evaluation of strings is a common challenge that is difficult to iden-
tify with a static analyzer but can be easily identified with a dynamic tool. As
an example, Listing 9.10 shows a program that adds a formatDate function to
all Date instances. This function splits the desired output format (a parameter
called input) and iterates through it. If it finds a format character presented in
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(function (s) {

// ...

s.parseJSON = function (filter) {

// ...

function walk(k, v) { // line 180

// ...

return filter(k, v);

}

// ...

return typeof filter === ’function’ ? walk(’’, j) : j;

}

// ...

};

// ...

})(String.prototype);

// ...

var tagInfoJSON = ’A long string on line 226 in string-tagcloud.js’;

// ...

var tagInfo = tagInfoJSON.parseJSON(function(a, b)

{ /*code*/ }); // line 229

Figure 9.9: A call detected only by dynamic tools (String.prototype)

the predefined variable switches, the function calls the corresponding function
with eval. This is a straightforward dynamic call, but it is very hard to detect
with a static analysis tool.

It is worth mentioning one module, the string-unpack-code.js, which con-
fuses the static analysis. The Listing 9.11 shows the root of the issue. The
dynamic tools in string-unpack-code.js identified more nodes than the static
ones. We evaluated these nodes and established that they are valid and existing
functions. The static analyzers overlooked these nodes since they do not invoke
any functions (as they are callbacks that return an element of an array).

Edges found only by static tools As anticipated, certain edges were only
identified by the static tools. Generally, static call graphs contain potential
call edges that are never executed during runtime. It is important to be aware
that the SunSpider benchmark contains a considerable amount of unused code,
leading to a large number of potential calls that are not being made. This
reveals one of the drawbacks of the dynamic approach, which is that inadequate
test input can lead to an imprecise call graph. Nevertheless, there are a number
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function arrayExists(array, x) {

for (var i = 0; i < array.length; i++) {

if (array[i] == x) return true;

}

return false;

}

Date.prototype.formatDate = function (input,time) {

var switches = ["...", "g", "G", "..."];

// ...

function g() {/* 12 hour format of the given date */}

// ...

var ia = input.split("");

var ij = 0;

while (ia[ij]) { // this will be "g"

//...

if (arrayExists(switches,ia[ij])) { // "g" in switches

ia[ij] = eval(ia[ij] + "()"); // ia[ij] = g()

}

ij++;

}

// ...

}

var date = new Date("1/1/2007 1:11:11");

var longFormat = date.formatDate("g");

Figure 9.10: A call detected only by dynamic tools (eval-based)

of potential edges that are not realized due to certain conditions on the inputs,
and we ran the dynamic analysis with only one input vector supplied with the
tests.

In Listing 9.12, the function call to String.escape (line 19) is never put into
action, since the dateFormat was never invoked with an argument that has a
backslash.

9.2.8 Node.js Modules Analysis

Testing and analyzing static call graph generators on real-world programs is a
challenging task. The npm callgraph and WALA were unable to analyze whole,
multi-file projects because they cannot resolve calls among different files (e.g.,
requiring a module). The Closure Compiler can analyze complex programs as
well, however, a manual evaluation of it, on various Node.js modules, showed
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var decompressedMochiKit = function(p,a,c,k,e,d)

{e=function(c){return(c<a?"":e(parseInt(c/a)))+

((c=c%a)>35?String.fromCharCode(c+29):c.toString(36))}

...

}(...);

var decompressedDojo = function(p,a,c,k,e,d)

{e=function(c){return(c<a?"":e(parseInt(c/a)))+

((c=c%a)>35?String.fromCharCode(c+29):c.toString(36))}

...

}(...);

Figure 9.11: A confusing code snippet from ‘string-unpack-code.js’

only 20% precision in the case of found edges. The TAJS framework supports
the required command, nonetheless, it was still unable to detect call edges in
multi-file Node.js projects. Therefore, we could apply only ACG as a static tool
to recognize call edges in Node.js modules. Thus, we used only this static and
the two dynamic tools to perform the analysis and comparison on the selected
Node.js modules.

To gather as much valuable information as we could, we performed the
analysis using both applicable strategies that ACG offers (ONESHOT and DEMAND).
The ONESHOT strategy tracks the inter-procedural flow but it tracks only for
one-shot closures that are invoked immediately. The DEMAND strategy (called
the optimistic approach) performs inter-procedural propagation along the edges
that may end at a call site.

We calculated some basic statistics from the gathered data that is shown
in Table 9.11. The table displays the number of nodes (functions) and edges
(possible calls between two functions) found by the tools. As can be seen,
the results show resemblance, the correlation between these nodes and edges
is high. Unsurprisingly, there are no exact matches in the number of nodes
and edges for such complex input programs. The two dynamic tools produced
almost identical results in terms of the number of nodes and edges. However,
in one case, there is a slight difference between the found edges (eslint).

During the evaluation of the edges, we could only validate the existence of
the edges, due to the huge size of the input programs. So it is possible that
we labeled pseudo-positive edges as true positive edges, since checking whether
the execution of such huge programs reaches a particular point (in any way)
is cumbersome. Taking every tool into consideration, only 6,818 edges were
found by all of the tools, which is approximately 8% of all edges. The number
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Date.formatFunctions = {count:0};

Date.prototype.dateFormat = function(format) {

if (Date.formatFunctions[format] == null) {

Date.createNewFormat(format);

} // ...

}

Date.createNewFormat = function(format) {

// ...

for (var i = 0; i < format.length; ++i) {

ch = format.charAt(i);

if (!special && ch == "\\") {

special = true;

}

else if (special) {

special = false;

code += "’" + String.escape(ch) + "’ + ";

// ^ This call is never realized but is a valid possible call

}

} } // ...

String.escape = function(string) {

return string.replace(/(’|\\)/g, "\\%$1"); //’

}

var date = new Date("1/1/2007 1:11:11");

for (i = 0; i < 4000; ++i) {

var shortFormat = date.dateFormat("Y-m-d");

var longFormat = date.dateFormat("l, F d, Y g:i:s A");

date.setTime(date.getTime() + 84266956);

}

Figure 9.12: An unrealized edge

of common edges between the tools can be seen in Figure 9.13 Venn diagram.

Since it is not feasible to double-check every edge by hand, we used a
simple statistics approach to achieve a 95% confidence level with a 5% margin
of error on found edges. Based on the evaluated samples, we can even give an
estimation of the precision and recall of each approach. Table 9.12 shows these
estimated numbers.
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Node module

Static tools Dynamic tools
ACG ONESHOT ACG DEMAND NodeProf Nodejs-cg
nodes edges nodes edges nodes edges nodes edges

bower 674 2146 710 2464 790 1177 790 1177
debug 32 29 35 33 22 23 22 23
doctrine 87 179 87 179 92 195 92 195
eslint 2529 13139 2545 13436 3646 6658 3646 6660
express 122 262 133 506 176 345 176 345
hessian 81 201 81 201 117 224 117 224
hexo 440 1173 482 2922 927 1351 927 1351
jshint 351 1019 378 1128 262 360 262 360
karma 443 781 449 817 510 751 510 751
pencilblue 2192 8862 2443 48512 863 1126 863 1126
request 114 217 114 218 169 233 169 233
shields 1410 8062 1524 8832 1609 2236 1609 2237∑

8475 36070 8981 79248 9183 14679 9183 14682

Table 9.11: Node.js analysis results

9.3 Results

Each approach and tool has advantages and disadvantages. This comparative
study yielded the following insights.

� Static tools are adept at dealing with recursive calls; the Closure Compiler
appears to be the most advanced in this area.

� Edges that lead to functions that are nested within other functions are
not always managed properly by static analysis tools, such as WALA,
which can result in a large number of false edges.

� In addition to the dynamic tools, only WALA, TAJS, and ACG with the
optimistic approach (DEMAND) can identify calls of function arguments
(e.g. higher-order functions).

� ACG and TAJS cal are able to trace more intricate control flows and
recognize non-trivial call connections.

� Closure is frequently based solely on name comparison, which can lead
to incorrect or absent connections.

� WALA is capable of analyzing eval structures and making dynamic calls
from strings to a certain degree.
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ACG Demand

ACG Oneshot

NodeProf

Nodejs-cg

29,227

43,009 6,818

169 25

32

7,660

10

Figure 9.13: Common edges in Node.js modules

Tool(s) Prec. Rec. F
ACG ONESHOT 34.20% 58.40% 43.13%
ACG DEMAND 16.93% 63.53% 26.74%
Dynamic (NodeProf) 100.00% 69.50% 82.01%
Dynamic (Nodejs-cg) 100.00% 69.52% 82.02%
ACG ONESHOT+Nodejs-cg 45.94% 95.52% 62.04%
ACG ONESHOT+NodeProf 45.94 % 95.50% 62.04%
ACG DEMAND+Nodejs-cg 29.91% 99.85% 46.04%
ACG DEMAND+NodeProf 29.91% 99.83% 46.03%
ACG ONESHOT+Nodejs-cg+NodeProf 59.49% 95.67% 73.36%
ACG DEMAND+Nodejs-cg+NodeProf 39.39% 100.00% 56.52%
ACG ONESHOT+DEMAND 16.93% 63.53% 26.74%
Nodejs-cg+NodeProf 100.00% 69.67% 82.12%
ALL 38.10% 100.00% 55.17%

Table 9.12: Precision and recall values
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� Npm-cg mishandles requests from anonymous functions declared in the
global context, indicating that the call is coming directly from the global
context (as opposed to the anonymous function).

� TAJS generated a call graph that was the most similar to the one produced
by dynamic analysis.

� Of the existing static techniques, only ACG is practically suitable for
assessing the most recent Node.js modules (owing to its language support
and accuracy).

� Both static and dynamic techniques identified edges that the other had
overlooked.

It is evident that dynamic approaches are highly precise, as they only report
call edges that take place. However, this is also their greatest drawback, as they
require a very high degree of test coverage to achieve the highest possible recall
value. Furthermore, there may be code that relies on the current operating
system, environment variables, or even the presence of another service, for
which traditional unit tests may not be adequate. In such cases, more complex
test cases may necessitate multiple environments with different configurations
(or even different interpreters), which can have a major impact on the accuracy
of the call graph.
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Related Work

Although the topic of writing efficient JavaScript applications and code snip-
pets is very important for the software industry, the main area to evolve the
JavaScript software stack is the improvement of the engines themselves. Based
on the well-studied research area in static languages [69, 95] the static opti-
mization algorithms could be the first good choice to use in JavaScript engines
as well. However, JavaScript is a dynamic language where the static optimiza-
tion algorithms cannot determine various properties, for example, the types
of objects, variables, or even the structure of the input script. For this chal-
lenge, user intervention is needed, for example, applying guidelines to improve
performance.

There are only a limited number of studies that discuss how to improve any
specific characteristic of a JavaScript application with source transformations.
There were studies on how to transform JavaScript projects to look like object-
oriented source code [84, 85], but the focus of these researches was to improve
maintainability and not to improve user experiences (such as performance
or memory consumption). Another approach could be to analyze the best
practices for JavaScript [72].

JavaScript’s dynamic language structure and runtime environment behavior
are clearly evident when performance is the main concern; however, the real
challenge arises when program analysis is the focus. Call graphs are a useful

93



II. 10. Related Work

// shorthand for: let f = function() { ... }

function f() { return true; }

f = function() { return false; }

Figure 10.1: An example for redirecting a JavaScript function.

tool for program analysis and can be generated statically or dynamically. The
first publications mentioning call graphs were published in the 1970s [24, 36].
Based on their construction method, we can divide call graphs into two basic
subgroups, they can be either dynamic [103] or static [66]. There are several
programs that can generate static call graphs from JavaScript code, regardless
of the target platform, such as a web browser, Node.js, or something else [26,
27, 45, 56]. However, the precision of these tools is limited due to the highly
dynamic nature of JavaScript. Functions are objects and can be stored in any
JavaScript value. Even when a function is declared with a name, it is just a
shorthand for assigning that function object to a local variable, which can be
changed later, as seen in Figure 10.1. This makes it difficult for static analyzers
to track which variable refers to which function object.

Some static analyzers try to improve their prediction by supporting well-
known APIs. For example, the Node.js event emitter API allows for emitting
named events, and these events can be captured by listener functions. The
listener functions activated by a named event can be predicted statically [57]
as long as certain conditions apply; e.g., the names of the events are string
literals.

In addition to NodeProf, there are other frameworks [59, 83] that can be
extended with dynamic call graph generators. These frameworks offer an API
to capture events and execute custom JavaScript code in response. While
NodeProf provides an example analysis for generating call graphs, it links call
sites to called functions instead of connecting two function nodes. Technically,
this analysis is not a call graph generator.

There is a tool that has been developed to generate dynamic call graphs for
web applications [94]. It runs tests on web applications and collects method-
level execution traces, which are then used to construct a call graph. In contrast
to our work, this tool is designed for browser-based web applications rather
than Node.js.
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11
Conclusions

In this part of the thesis, topics related to Just-In-Time Compilers’ Optimiza-
tions and Analyses were presented.

In the first topic, we evaluated guidelines available for JavaScript engines
and presented new ones targeting the ECMAScript 6 feature set. The presented
results show that the guidelines are still important and that a significant
performance improvement can be achieved by adapting them to a JavaScript
project. Although the results are now very conclusive, it is very advisable to
revisit and assess the importance of the guidelines from time to time. As the
JavaScript engines evolve, it might happen that some of the guidelines become
obsolete.

In the second topic, we have compared several call graph generator tools
for JavaScript. One of them, Nodejs-cg, is developed and maintained by us.
The other tools are Jalangi2 and NodeProf which produce dynamic call graphs,
and WALA, Closure, ACG, npm callgraph, and TAJS which create static ones.

First, the effectiveness of dynamic call graph generators has been evaluated
and compared to each other. Validation of their efficiency has been done
in various test programs. One of them is the SunSpider benchmark, which
contains simple JavaScript files that test various parts of the JavaScript engine.
The other type of test is based on various Node.js modules that represent
real-world applications.
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As a result, we have found that a large number of edges are unique in these
call graphs and have shown that this is true for nodes as well. The unique
nodes and edges have been validated by hand and organized into groups. These
groups were compared and the reason for the differences between call graphs
was explained

The comparison also provides an investigation of the runtime performance.
We have found that the generation of call graphs can slow down execution to
up to eight times. Due to this slowdown, unexpected test failures are more
frequent for those modules that control external tools, e.g., database servers or
web browsers.

The purpose of the second part of the JavaScript analysis was not to
determine a victor, but rather to gain empirical knowledge into the abilities
and effectiveness of modern static call graph extractors, as well as how they
compare to dynamic techniques.

Each tool and analysis approach had its own set of pros and cons. The
Closure Compiler was able to detect calls, mainly recursive ones, that had been
overlooked by other static tools. Unfortunately, it also identified several false
positive edges due to shallow name matching. ACG followed more complicated
control flows to detect call edges. This led to a greater recall rate while still
keeping precision at an acceptable level; however, it failed to detect higher-
order function calls (callbacks). It should be noted that ACG was the only
tool that had the ability to evaluate actual Node.js modules. WALA was
able to recognize calls to higher-order functions; however, it generated a large
number of false positive edges with unidentified nodes and had the lowest rate
of accuracy among the tools. The npm callgraph module had a very poor
F-measure, with both precision and recall being low, and it did not discover
any true positive edges that the other methods had missed. TAJS, on the other
hand, had the highest precision and recall values and generated a call graph
that was most similar to the one produced by the dynamic approach.

The accuracy of the dynamic call graphs was high, however, they did
not capture certain static edges due to the lack of adequate test inputs. The
findings also demonstrate that the collective strength of multiple tools is greater
than that of individual call graph extractors. Consequently, we believe that
cleverly combining static and dynamic techniques could lead to considerable
enhancements in the accuracy of the generated call graphs.
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A
Summary

The demand for speed, efficiency, and resource utilization in the world of
modern computing is still growing. As a result, the importance of compiler
optimizations is becoming more and more apparent in the software develop-
ment process. Compilers are essential tools that transform human-readable
source code into machine-executable binary code, thus connecting the program-
mer’s goal and effective execution. They have a set of strategies that refine
and enhance generated code and are essential to achieving optimal program
performance, resource efficiency, and code quality.

The complexity of software has been steadily rising, as evidenced by the
exponential growth in the size of software codebases and the demands for new
software applications. This has caused a change in the traditional perception
of compilers. The changes need to go beyond the typical code generation,
necessitating the compiler toolchains to recognize additional possibilities in
the codebases, such as reducing code size bottlenecks, enhancing algorithms,
reducing memory usage, and making the most of hardware resources.

In addition, the basis of optimizations, i.e. compiler technologies, has also
gained importance. The utilization of these technologies is widespread in many
areas of software engineering, from detecting bugs in the software code to
improving software quality and even aiding in the visualization of software.
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I. Executable Code Optimizations

In this thesis point, the main goal was the introduction of efficient code size-
optimizing algorithms for one of the most well-known compilers, the GNU
Compiler Collection (GCC). In addition, a reliable code size measurement
method and a stable benchmark environment were presented.

In Chapters 3 and 4, the contributions to the first thesis group were dis-
cussed. This thesis group can be separated into the following two main results.

1. Code Factoring Techniques in the GCC Compiler

Several code size optimization techniques have been introduced which have
impressive effects. These algorithms were local code factoring and procedural
abstraction. Both have been implemented in the RTL and Tree-SSA interme-
diate languages of GCC, and procedural abstraction has also been provided for
the interprocedural abstraction phase. We evaluated the algorithms with the
help of CSiBE, GCC’s Code Size Benchmark Environment, on three different
targets (i686-elf, arm-elf, sh-elf ) and found that a maximum of 61.53% and an
average of 2.58% of extra code size savings could be achieved compared to the
GCC flag ’-Os’. In addition, a very simple optimization technique, hashtables,
was used to improve the running time of the algorithms and thus the total
compilation time.

2. Binary Code Size Measurement Methods and Benchmark

The measurement method of code size has been presented which led to the
birth of CSiBE, GCC’s official code size benchmark. Many aspects of code
size measurements have been evaluated to make the benchmark the de facto
code size measurement standard for compilers. During the many years of
development of CSiBE, it has taken its well-awarded place alongside other
benchmarks, such as SPEC and the later Openbench.

The Author’s Contributions
The author had a decisive role in the design, implementation, improvement,

and maintenance of a significant proportion of the algorithms presented in the
“Code Factoring Techniques in the GCC Compiler” chapter:

� Local Code Factoring: The author designed, implemented, and main-
tained the RTL version while improving and maintaining the Tree-SSA
version.
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� Procedural Abstraction: The author designed, implemented, and main-
tained the Tree-SSA version while improving and maintaining the RTL
version. In addition, the IPA version has been designed, improved, and
maintained by the author.

� Hash tables: This technique was introduced for optimization algorithms
by the author.

The author had a decisive role in the design, implementation, and im-
provement phases of the code size measurement techniques and the evaluation
environment for compilers’ binary code optimizations presented in the “Binary
Code Size Measurement Methods and Benchmark” chapter. Besides these, the
author has been the main maintainer of the official code size benchmark of
GCC, CSiBE, since 2004.

The publications related to this thesis point are the following:

[11] Árpád Beszédes, Tamás Gergely, Tibor Gyimóthy, Gábor Lóki, and László
Vidács. Optimizing for space: Measurements and possibilities for improve-
ment. In Proceedings of the 2003 GCC Developers’ Summit, pages 7–20,
Ottawa, Canada, 2003

[10] Árpád Beszédes, Rudolf Ferenc, Tamás Gergely, Tibor Gyimóthy, Gábor
Lóki, and László Vidács. CSiBE benchmark: One year perspective and
plans. In Proceedings of the 2004 GCC Developers’ Summit, pages 7–15,
Ottawa, Canada, 2004

[55] Gábor Lóki, Ákos Kiss, Judit Jász, and Árpád Beszédes. Code Factoring
in GCC. In Proceedings of the 2004 GCC Developers’ Summit, pages
79–84, Ottawa, Canada, 2004

[67] Csaba Nagy, Gábor Lóki, Árpád Beszédes, and Tibor Gyimóthy. Code
factoring in GCC on different intermediate languages. In Proceedings
of the 10th Symposium on Programming Languages and Software Tools,
pages 79–95, Dobogókő, Hungary, 2007. Eötvös Loránd University Press

[68] Csaba Nagy, Gábor Lóki, Árpád Beszédes, and Tibor Gyimóthy. Code
factoring in GCC on different intermediate languages. Annales Universi-
tatis Scientiarum Budapestinensis De Rolando Eötvös Nominatae Sectio
Computatorica, 30:79–95, 2009
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II. Just-In-Time Compilers’ Optimizations and Analyses

In this thesis point, the main goal was to collect, examine, and validate
JavaScript guidelines, presented on various web pages, that can improve the
efficiency of JavaScript runtime performance. In addition, one approach of
JavaScript’s source code analysis was presented that can aid other optimiza-
tions or analyses that rely on call graph information.

In Chapters 8 and 9, the contributions to the second thesis group were
discussed. This thesis group can be separated into the following two main
results.

3. JavaScript Guidelines

Available guidelines for JavaScript engines have been evaluated and new ones
targeting the ECMAScript 6 feature set have been presented. The presented
results showed that the guidelines are still important and that a significant
performance improvement could be achieved by adapting them to a JavaScript
project. The highest results could be achieved with the ‘Avoiding With’ guide-
line, while the ‘Common Subexpression Elimination’ guideline has a small effect
on the runtime performance in the case of ECMAScript 5.1 guidelines. On
the other hand, the ECMAScript 5.1 simulated version of ‘Symbol’ construct
achieved the best result over ECMAScript 6, while the ‘class’ construct per-
forms way better with the new standard. Although the results are now very
conclusive, it is very advisable to revisit and assess the importance of the
guidelines from time to time. As the JavaScript engines evolve, some of the
guidelines might become obsolete.

4. Dynamic Analysis of JavaScript’s Call Graphs

Several call graph generator tools for JavaScript have been compared. One
of them, Nodejs-cg, is developed and maintained by the author and his co-
authors. The other tools are Jalangi2 and Nodeprof.js, which produce dynamic
call graphs, and WALA, Closure, ACG, npm callgraph, and TAJS, which create
static ones.

First, the effectiveness of dynamic call graph generators has been evaluated
and compared to each other. Validation of their efficiency has been done on
various test programs. One of them is the SunSpider benchmark, and the
other type of test is based on various Node.js modules that represent real-
world applications. As a result, it was found that a large number of edges and
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nodes are unique in these call graphs. The unique nodes and edges have been
validated by hand and organized into groups. These groups were compared
and the reason for their differences between call graphs was explained. The
comparison also provided an investigation of the runtime performance. We
have found that the generation of call graphs can slow down execution up to
eight times. Due to this slowdown, unexpected test failures are more frequent
for those modules that control external tools.

After the comparison of dynamic call graph generator tools, additional ones,
static call graph generators were added to the next comparison. It is concluded
that each tool and analysis approach had its own set of pros and cons. One of
them was able to detect recursive calls. The other was able to reach a greater
recall rate while still keeping precision at an acceptable level, but only one was
able to handle complex modules (ACG). Overall, the accuracy of the dynamic
call graphs was high compared to the static ones, however, they did not capture
certain static edges due to the lack of adequate test inputs. The findings also
demonstrate that the collective strength of multiple tools is greater than that
of individual call graph extractors.

The Author’s Contributions
The author’s contribution was decisive in the collection, formalization, im-

plementation, testing, and evaluation of a significant part of the JavaScript
guidelines presented in the “JavaScript Guidelines” chapter. The published
guidelines and measurement methods are joint results with the co-authors.

The author had a decisive role in the design, implementation, and improve-
ment of the Nodejs-cg dynamic call graph generator presented in the “Dynamic
Analysis of JavaScript’s Call Graphs” chapter, and in the evaluation of the
dynamic results included in the comparison. In addition, in the comparison
of different types of call graph generators, the author had a decisive role in
discovering and explaining the differences related to dynamic call graphs.

The publications related to this thesis point are the following:

[42] Zoltán Herczeg, Gábor Lóki, Tamás Szirbucz, and Ákos Kiss. Guidelines
for JavaScript Programs. Are They Still Necessary? In SPLST’09 & NW-
MODE’09. Proceedings of 11th Symposium on Programming Languages
and Software Tools and 7th Nordic Workshop on Model Driven Software
Engineering, pages 59–71, Tampere, Finnland, 2009

[43] Zoltán Herczeg, Gábor Lóki, Tamás Szirbucz, and Ákos Kiss. Validating
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JavaScript Guidelines Across Multiple Web Browsers. Nordic Journal of
Computing, 15:18–31, 2013

[53] Gábor Lóki and Péter Gál. JavaScript Guidelines for JavaScript Program-
mers - A Comprehensive Guide for Performance Critical JS Programs. In
Proceedings of the 13th International Conference on Software Technolo-
gies, pages 397–404, Porto, Portugal, 2018. SciTePress

[40] Zoltán Herczeg and Gábor Lóki. Evaluation and Comparison of Dynamic
Call Graph Generators for JavaScript. In Proceedings of the 14th In-
ternational Conference on Evaluation of Novel Approaches to Software
Engineering, pages 472–479, Heraklion, Greece, 2019. SciTePress

[41] Zoltán Herczeg, Gábor Lóki, and Ákos Kiss. Towards the Efficient Use of
Dynamic Call Graph Generators of Node.js Applications. In Evaluation
of Novel Approaches to Software Engineering., volume 1172 of Communi-
cations in Computer and Information Science, pages 286–302. Springer,
2020

[4] Gábor Antal, Péter Hegedűs, Zoltán Herczeg, Gábor Lóki, and Rudolf
Ferenc. Is JavaScript Call Graph Extraction Solved Yet? A Comparative
Study of Static and Dynamic Tools. IEEE Access, 11:25266–25284, 2023

Publications

Most of the research results presented in this thesis were published in pro-
ceedings of international conferences and workshops, or journals. Table A.1
presents which publications cover which results of the thesis.

Chapter Title Publications
3. Code Factoring Techniques in the GCC Compiler [55, 67, 68]
4. Binary Code Size Measurement Methods and Benchmark [10, 11]
8. JavaScript Guidelines [42, 43, 53]
9. Dynamic Analysis of JavaScript’s Call Graphs [4, 40, 41]

Table A.1: Summary of thesis topics and corresponding publications

The author adds that although the results presented in this thesis are his
major contribution, the term ‘we’ is used instead of ‘I’ for self-reference to
acknowledge the contributions of the co-authors of the papers that this thesis
is based on.
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B
Összefoglalás

A mai, modern számı́tástechnikában megállás nélkül növekszik a sebesség, a
hatékonyság és az erőforrás-felhasználás iránti igény. Ennek eredményeként a
szoftverfejlesztési folyamatban a ford́ıtóoptimalizálás jelentősége egyre fontosab-
bá válik. A ford́ıtók olyan alapvető eszközök, amelyek az ember által olvasható
forráskódot gépi futtatható bináris kóddá alaḱıtják, ı́gy összekapcsolják a
programozó célját és a hatékony gépi végrehajtást. Ezek az eszközök olyan
stratégiákkal rendelkeznek, amelyek finomı́tják és jav́ıtják a generált kódot, és
elengedhetetlenek az optimális programteljeśıtmény, az erőforrás-takarékosság
és a kódminőség eléréséhez.

A szoftverek összetettsége folyamatosan növekszik, amit a kódbázisok mére-
tének exponenciális növekedése és az új szoftveralkalmazások iránti igény is jól
tükröz. Ez változást indukált a ford́ıtók hagyományos felfogásában; túl kell
lépni a tipikus kódgenerálási feladatokon. Ezért a ford́ıtóprogram rendszereknek
további kih́ıvásokra kell felkészülniük, mint például a kódméret csökkentése, az
algoritmusok jav́ıtása, a memóriahasználat csökkentése és a hardvererőforrások
maximális kihasználása.

Ezek mellett nem csak a ford́ıtóprogramok optimalizációs képessége, hanem
a felhasznált a ford́ıtóprogram technológiák is egyre inkább előtérbe kerültek.
Ezeknek a technológiáknak a használata a szoftverfejlesztés számos területén
elterjedt, a szoftverkód hibáinak észlelésétől, a szoftver minőségének jav́ıtásán
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át, egészen a szoftver vizualizálásáig, megjeleńıtéséig használják őket.

I. Futtatható állományok optimalizálása

Ebben a tézispontban a fő cél az egyik legismertebb ford́ıtóprogram, a GNU
Compiler Collection (GCC) számára kódméret-optimalizáló algoritmusok be-
vezetése volt. Emellett bemutatásra került egy megb́ızható kódméret mérési
módszer és egy stabil benchmark környezet.

Az első téziscsoport tárgyalása a 3. és 4. fejezetekben történt meg. Ez a
téziscsoport a következő két fő eredményre bontható.

1. Code Factoring technikák a GCC ford́ıtóprogramban

A korábbi évek során két kódméret-optimalizálási technika lett bemutatva,
melyek jelentős eredményeket tudtak elérni a GCC ford́ıtóprogramba éṕıtve.
Ezek az algoritmusok a ‘local code factoring’ és az ‘procedural abstraction’
voltak. Mindkettőnek készült megvalóśıtása a GCC RTL és Tree-SSA köztes
nyelveire, a ‘procedural abstraction’ technikának pedig egy inter-procedurális
implemetációja is. Az algoritmusok a CSiBE, GCC Code Size Benchmark
Environment, seǵıtségével lettek kiértékelve három célarchitektúrán: i686-elf,
arm-elf, sh-elf. Ez eredmények azt mutatták, hogy a GCC ’-Os’ kapcsolójához
képest maximum 61,53% és átlagosan 2,58% extra kódméret megtakaŕıtás
érhető el. Ezen ḱıvül egy nagyon egyszerű, de addig még ezen a területen
bevezetetlen technika, a hash-tábla lett felhasználva az algoritmusok futási
idejének és ı́gy a teljes ford́ıtási időnek a jav́ıtására.

2. Bináris kódméret méréstechnikájának módszertana és kiértékelő
környezete

A kódméret mérési módszereinek bemutatásával és a figyelembe vehető szem-
pontok megvitatásával létrejött egy új benchmark, a CSiBE, mely nem sokkal
ezek után a GCC hivatalos kódméret eszköze lett. A kezdeti apró lépések
után a CSiBE többéves fejlesztése elérte a célját, és a benchmark elfoglalta
a kitüntetett helyét más ford́ıtóprogram benchmark mellett (mint például a
SPEC és a későbbi Openbench).
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A szerző hozzájárulásai

� A szerzőnek meghatározó szerepe volt a “Code Factoring Techniques in
the GCC Compiler” részben bemutatott algoritmusok jelentős hányadának
tervezésében, implementálásában, jav́ıtásában és karbantartásában:

– Local Code Factoring : A szerző megtervezte, implementálta és kar-
bantartotta az RTL változatát, illetve jav́ıtotta és karbantartotta a
Tree-SSA változatát az algoritmusnak.

– Procedural Abstraction: A szerző megtervezte, implementálta és
karbantartotta a Tree-SSA változatát, illetve jav́ıtotta és karbantar-
totta az algoritmus RTL változatát. Ezen felül az algoritmus IPA
változatának a tervezését, jav́ıtását és karbantartását is elvégezte.

– Hash Tables : Ezt a technikát a szerző javasolta és implementálta a
különböző kódoptimalizációs algoritmusokhoz.

� A szerzőnek meghatározó szerepe volt a “Binary Code Size Measure-
ment Methods and Benchmark” részben bemutatott ford́ıtóprogramok
bináris kódoptimalizációkhoz késźıtett kódméret méréstechnikájának és
kiértékelő környezetének tervezési, megvalóśıtási és jav́ıtási fázisaiban.
Ezek mellet a szerző 2004 óta a fő karbantartója a hivatalos kód méret
kiértékelő környezetnek és tesztrendszernek, a CSiBE -nek.

A következő felsorolásban lévő publikációk tartoznak ehhez a tézisponthoz:

[11] Árpád Beszédes, Tamás Gergely, Tibor Gyimóthy, Gábor Lóki, and László
Vidács. Optimizing for space: Measurements and possibilities for improve-
ment. In Proceedings of the 2003 GCC Developers’ Summit, pages 7–20,
Ottawa, Canada, 2003

[10] Árpád Beszédes, Rudolf Ferenc, Tamás Gergely, Tibor Gyimóthy, Gábor
Lóki, and László Vidács. CSiBE benchmark: One year perspective and
plans. In Proceedings of the 2004 GCC Developers’ Summit, pages 7–15,
Ottawa, Canada, 2004

[55] Gábor Lóki, Ákos Kiss, Judit Jász, and Árpád Beszédes. Code Factoring
in GCC. In Proceedings of the 2004 GCC Developers’ Summit, pages
79–84, Ottawa, Canada, 2004
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[67] Csaba Nagy, Gábor Lóki, Árpád Beszédes, and Tibor Gyimóthy. Code
factoring in GCC on different intermediate languages. In Proceedings
of the 10th Symposium on Programming Languages and Software Tools,
pages 79–95, Dobogókő, Hungary, 2007. Eötvös Loránd University Press

[68] Csaba Nagy, Gábor Lóki, Árpád Beszédes, and Tibor Gyimóthy. Code
factoring in GCC on different intermediate languages. Annales Universi-
tatis Scientiarum Budapestinensis De Rolando Eötvös Nominatae Sectio
Computatorica, 30:79–95, 2009

II. Just-In-Time ford́ıtóprogramok optimalizálása és anaĺızise

Ebben a tézispontban a fő cél az volt, hogy összegyűjtsük, megvizsgáljuk
és validáljuk a különböző weboldalakon megjelent JavaScript programozási
irányelveket, amelyek jav́ıthatják a JavaScript futási teljeśıtményének hatékony-
ságát. Ezenḱıvül bemutattuk a JavaScript forráskód-elemzésének egyik változa-
tát, amely seǵıthet a h́ıvási gráfok információira támaszkodó egyéb optimalizá-
lásokban vagy elemzésekben.

A második téziscsoport tárgyalása a 8. és 9. fejezetekben történt meg. Ez
a téziscsoport a következő két fő eredményre bontható.

3. JavaScript programozási irányelvek

Kiértékelésre került a JavaScript nyelvhez, az ECMAScript 5.1 verzióhoz ı́ródott
irányelvek számos példánya. Továbbá kiértékelés alá lett vonva az ECMAScript
5.1-es és a 6-os verziók között bevezetett új nyelvi elemek hatékonysága. A mért
eredmények azt mutatták, hogy az irányelvek továbbra is fontosak, jelentős
teljeśıtményjavulás érhető el egyes irányelvek alkalmazásával. A legmagasabb
eredményeket az ‘Avoiding With’ irányelvvel lehet elérni, mı́g a ‘Common
Subexpression Elimination’ irányelvnek kis hatása van a teljeśıtményre az EC-
MAScript 5.1 irányelvek esetén. Másrészt a ‘Symbol’ konstrukció ECMAScript
5.1 szimulált változata érte el a legjobb eredményt az ECMAScript 6-hoz
képest, mı́g az ‘class’ konstrukció sokkal jobban teljeśıt az új szabvánnyal. Bár
az eredmények nagy része meggyőző, tanácsos időről időre felülvizsgálni őket és
újból lemérni ezen irányleveket, hogy még a későbbi ECMAScript verziók között
és az új JavaScript futtatómotrok használatával is megállják-e a helyüket.
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4. JavaScript h́ıvási gráfjainak dinamikus szoftveranaĺızise

Számos JavaScript-h́ıvási gráf generátor eszköz lett összehasonĺıtva és kiértékel-
ve. Az egyiket, a Nodejs-cg-t a szerző és szerzőtársai késźıtették, fejlesztik és
tartják karban. A bemutatott többi eszköz sorban a Jalangi2 és a Nodeprof.js
volt, amelyek dinamikus h́ıvási gráfok előálĺıtására használhatók. Valamint a
WALA, a Closure, az ACG, az npm callgraph és a TAJS volt, amelyek statikus
h́ıvási gráfok előálĺıtására hoznak létre.

Először is a dinamikus h́ıvási gráf generátorok hatékonysága lett kiértékelve
és összehasonĺıtva egymással. Hatékonyságuk különféle szempontokon keresz-
tül, tesztprogramok seǵıtségével lettek ellenőrizve. Az egyik ilyen a SunSpider
benchmark volt, amely egyszerű JavaScript fájlokat tartalmaz, és a JavaScript
végrehajtó motorok különböző részeinek tesztelésére hozták létre. A másik
t́ıpusú teszt különböző Node.js modulokon alapult. Ezek hivatottak betölteni
a valós alkalmazásokon történő tesztelést.

Az eredmények azt mutatták, hogy nagyszámú él és csomópont egyedi
ezekben a h́ıvási gráfokban. Az egyedi csomópontokat és éleket manuálisan
kellett ellenőrizni és csoportokba rendezni. Ezek az elemcsoportok kerültek
összehasonĺıtásra. Utána a bennük talált különbözőségek részletezése és okainak
felfedése történt meg. Továbbá azt lehetett az eredményekből leolvasni, hogy
a h́ıvási gráfok generálása akár nyolcszorosan is lelasśıthatja a programok
végrehajtást. A lassulás miatt váratlan hibák fordulhatnak elő azoknál a
moduloknál, amelyek például külső eszközöket vezérelnek.

A dinamikus h́ıvási gráf generátor eszközök összehasonĺıtása után már
statikus h́ıvási gráf generátorok is hozzá lettek adva a következő összehasonĺıtás-
hoz. Az összehasonĺıtás eredménye arra mutatott, hogy minden eszköznek
és elemzési megközeĺıtésnek megvannak a maga előnyei és hátrányai. Nem
lehet egyértelmű győztest hirdetni. Az egyik eszköz képes volt felismerni a
rekurźıv h́ıvásokat, a másik nagyobb recall értéket tudott elérni, miközben a
pontosságot továbbra is elfogadható szinten tartotta, de csak egy eszköz volt
képes kezelni az összetett modulokat (ACG). Összességében elmondható, hogy
a dinamikus h́ıvási grafikonok pontossága kiemelkedően nagy volt a statiku-
sokhoz képest, azonban a megfelelő tesztek hiánya miatt bizonyos statikus éleket
nem rögźıtettek, nem jelentek meg a h́ıvási gráfban. A kombinált eredmények
azt is megmutatták, hogy több eszköz együttes használatával jobb eredmény
érhető el, mint ha csak egy eszközre támaszkodnánk. Más h́ıvási gráfokra éṕıtő
anaĺızisekben a kombinált technikák alkalmazása a javasolt.
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A szerző hozzájárulásai

� A szerző hozzájárulása volt meghatározó a “JavaScript Guidelines” részben
bemutatott JavaScript irányelvek jelentős részének felkutatásában, for-
malizálásában, implementálásában, tesztelésében és kiértékelésében. A
publikált irányelvek és mérési módszerek osztatlan közös eredmények a
társzerzőkkel.

� A szerzőnek meghatározó szerepe volt a “Dynamic Analysis of JavaScript’s
Call Graphs” részben bemutatott Nodejs-cg dinamikus h́ıvási gráf generátor
megtervezésében, implementálásában és jav́ıtásában, az összehasonĺıtásban
szereplő dinamikus eredmények kiértékelésében. Ezen felül a különböző
t́ıpusú h́ıvási gráf generátorok összehasonĺıtásában a szerzőnek meghatározó
szerepe volt a dinamikus h́ıvási gráfokhoz kapcsolódó különbözőségek
felfedezésében és megmagyarázásában.

A következő felsorolásban lévő publikációk tartoznak ehhez a tézisponthoz:

[42] Zoltán Herczeg, Gábor Lóki, Tamás Szirbucz, and Ákos Kiss. Guidelines
for JavaScript Programs. Are They Still Necessary? In SPLST’09 & NW-
MODE’09. Proceedings of 11th Symposium on Programming Languages
and Software Tools and 7th Nordic Workshop on Model Driven Software
Engineering, pages 59–71, Tampere, Finnland, 2009

[43] Zoltán Herczeg, Gábor Lóki, Tamás Szirbucz, and Ákos Kiss. Validating
JavaScript Guidelines Across Multiple Web Browsers. Nordic Journal of
Computing, 15:18–31, 2013

[53] Gábor Lóki and Péter Gál. JavaScript Guidelines for JavaScript Program-
mers - A Comprehensive Guide for Performance Critical JS Programs. In
Proceedings of the 13th International Conference on Software Technolo-
gies, pages 397–404, Porto, Portugal, 2018. SciTePress

[40] Zoltán Herczeg and Gábor Lóki. Evaluation and Comparison of Dynamic
Call Graph Generators for JavaScript. In Proceedings of the 14th In-
ternational Conference on Evaluation of Novel Approaches to Software
Engineering, pages 472–479, Heraklion, Greece, 2019. SciTePress
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[41] Zoltán Herczeg, Gábor Lóki, and Ákos Kiss. Towards the Efficient Use of
Dynamic Call Graph Generators of Node.js Applications. In Evaluation
of Novel Approaches to Software Engineering., volume 1172 of Communi-
cations in Computer and Information Science, pages 286–302. Springer,
2020

[4] Gábor Antal, Péter Hegedűs, Zoltán Herczeg, Gábor Lóki, and Rudolf
Ferenc. Is JavaScript Call Graph Extraction Solved Yet? A Comparative
Study of Static and Dynamic Tools. IEEE Access, 11:25266–25284, 2023

Publikációk

A disszertációban bemutatott kutatási eredmények többsége nemzetközi kon-
ferenciák és workshopok kiadványaiban vagy folyóiratokban jelent meg. A
B.1 táblázat pedig azt mutatja be, hogy mely publikációk a dolgozat mely
eredményeit fedik le.

Fejezet Ćım Publikációk
3. Code Factoring Techniques in the GCC Compiler [55, 67, 68]
4. Binary Code Size Measurement Methods and Benchmark [10, 11]
8. JavaScript Guidelines [42, 43, 53]
9. Dynamic Analysis of JavaScript’s Call Graphs [4, 40, 41]

Table B.1: A tézisek és a hozzájuk kapcsolódó publikációk összegzése

A szerző hozzáteszi, hogy bár ebben a dolgozatban bemutatott eredményekhez
az ő hozzájárulása volt a meghatározó, az ‘én’ (‘I’) helyett a ‘mi’ (‘we’) kife-
jezést használja önhivatkozásként, hogy elismerje a dolgozat alapjául szolgáló
cikkek társszerzőinek hozzájárulását.
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Arpád Beszédes, Rudolf Ferenc, and Ali Mesbah. Bugsjs: a benchmark
of javascript bugs. In 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST), pages 90–101. IEEE, 2019.

118

http://gcc.gnu.org/
http://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gccint/
https://github.com/gunar/callgraph
https://github.com/gunar/callgraph
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
https://v8.dev/
https://github.com/google/closure-compiler
https://github.com/google/closure-compiler
https://2022.stateofjs.com/en-US/usage/
https://2022.stateofjs.com/en-US/usage/


[39] Jungwoo Ha, Mohammad R Haghighat, Shengnan Cong, and Kathryn S
McKinley. A concurrent trace-based just-in-time compiler for single-
threaded javascript. Proc. PESPMA, 2009.
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