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Introduction

This doctoral thesis is concerned with the transmission dynamics of the
Nipah virus by using compartmental models, both autonomous and non-
autonomous. The main aim of the thesis was to investigate all possible
transmissions of the Nipah virus and determine which parameters are the
most influential in this regard.

The basic reproduction number (R0) describes the dynamics of the
system, as also demonstrated in the case of our autonomous model to be
a threshold parameter concerning disease extinction or persistence. For
periodic compartmental models, R0 is defined as the spectral radius of an
integral operator acting on the space of continuous periodic functions. In
our non-autonomous model, our goal is to demonstrate that for R0 < 1,
the disease-free periodic solution of our model is globally asymptotically
stable, whereas, for R0 > 1, the disease remains endemic and there exists
at least one positive periodic solution. Additionally, a modeling analysis
to assess the effect of disease transmission from deceased individuals and
an SIRS epidemic model for a zoonotic disease with a general nonlinear
incidence rate assuming that the animal population has already reached
an endemic equilibrium are analyzed in this dissertation.

The author’s publications listed below serve as the foundation for the
thesis, the last three of which are submitted to journals, and the first one
is accepted:

(1) Saumen Barua, Attila Dénes. Global dynamics of a compartmental
model for the spread of Nipah virus. Accepted in Heliyon.

(2) Saumen Barua, Attila Dénes. Global stability in an SIRS model
with zoonotic transmission, nonlinear incidence rate and temporary
immunity, submitted.

(3) Saumen Barua, Attila Dénes. A compartmental model for the spread
of Nipah virus with periodic outbreaks, submitted.

(4) Saumen Barua, Attila Dénes. Global dynamics of a compartmental
model to assess the effect of transmission from deceased. Accepted
in Math. Biosci.



Global dynamics of a compartmental model
for the spread of Nipah virus

Nipah virus (NiV) is a zoonotic virus meaning that it is transmitted
between species from animals to humans and causes outbreaks of fatal
disease in humans [1]. After the first identification of the virus in pig-
farming villages in Peninsular Malaysia, outbreaks were seen in Singapore,
Bangladesh, and India [2, 3, 4]. This emerging infectious disease has be-
come one of the most alarming threats to public health due to its periodic
outbreaks and extremely high mortality rate. WHO has included Nipah
virus in its blueprint list including ten diseases and pathogens to be pri-
oritized for R&D [5]. The disease has influenza-like symptoms including
fever, headache, muscle pain, vomiting and pain in the throat. In critical
cases inflammation of the brain and uncontrolled electrical activity take
place in the brain, progressing to coma within 24 to 48 hours [6]. The
animal host reservoir for NiV is the fruit bat also known as the flying fox,
belonging to the Pteropus genus in the Pteropodidae family [7]. We es-
tablish and study a novel SIRS model to describe the dynamics of Nipah
virus transmission, considering human-to-human as well as zoonotic trans-
mission from bats and pigs. We determine the basic reproduction number
which can be obtained as the maximum of three threshold parameters cor-
responding to various ways of disease transmission and determine in which
of the three species the disease becomes endemic. By constructing appro-
priate Lyapunov functions, we completely describe the global dynamics of
our model depending on these threshold parameters. Numerical simula-
tions are shown to support our theoretical results and assess the effect of
various intervention measures.

Model formulation

We develop a compartmental model considering transmission from bats
to humans, bats to pigs, bats to bats, pigs to humans, pigs to pigs, and
from humans to humans. That is, we do not consider transmission from
humans to any of the two animal species and pig-to-bat transmission either
as these ways of transmission have a negligible probability.

The total human population N(t) at time t is divided into suscepti-
bles (S(t)), infected (I(t)) and recovered (R(t)). Hence, N(t) = S(t) +
I(t) + R(t). The total pig (intermediate host) population Np(t) at time t
is divided into susceptible (Sp(t)), infected (Ip(t)) and recovered (Rp(t))
individuals, so that Np(t) = Sp(t) + Ip(t) + Rp(t), similarly the total
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bat population (host reservoir) Nb(t) at time t is divided into suscepti-
ble (Sb(t)), infected (Ib(t)) and recovered (Rb(t)) individuals, such that
Nb(t) = Sb(t) + Ib(t) +Rb(t).

We denote the birth and death rates of humans by Λ and µ, respectively.
There is also a disease-induced death rate, denoted by δ. Rates of human-
to-human, pig-to-human and bat-to-human transmission are denoted by
βI , βph and βbh, respectively. The rate of transmission among bats is
denoted by βb, while that of transmission among pigs by βp. Transmission
from bats to pigs is given by βbp.

Infected humans are transferred to the recovered compartment at the
rate γ (i.e. the average duration of the infectious period is 1/γ days) and θ
is the rate of loss of temporary immunity acquired by recovered individuals,
meaning that recovered individuals remain immune for 1/θ days on aver-
age. We define all other parameters for pigs and bats in an analogous way,
for these parameters, we introduce the subscripts p and b, respectively.

The system of differential equations established considering the above
assumptions takes the form

S′(t) = Λ−βIS(t)I(t)−βphS(t)Ip(t)−βbhS(t)Ib(t)−µS(t)+θR(t),

I ′(t) = βIS(t)I(t) + βphS(t)Ip(t) + βbhS(t)Ib(t)− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t),

(1a)

S′
p(t) = Λp − βpSp(t)Ip(t)− βbpSp(t)Ib(t)− µpSp(t) + θpRp(t),

I ′p(t) = βpSp(t)Ip(t) + βbpSp(t)Ib(t)− (µp + δp + γp)Ip(t),

R′
p(t) = γpIp(t)− (µp + θp)Rp(t),

(1b)

S′
b(t) = Λb − βbSb(t)Ib(t)− µbSb(t) + θbRb(t),

I ′b(t) = βbSb(t)Ib(t)− (µb + δb + γb)Ib(t),

R′
b(t) = γbIb(t)− (µb + θb)Rb(t),

(1c)

with nonnegative initial conditions.
It is important to note that due to the asymmetric transmission pos-

sibilities among the three species, subsystem (1c) can be decoupled from
the rest of the equations of (4), furthermore, the subsystem consisting of
equations (1b) and (1c) can also be decoupled from the human equations.

Basic properties

Lemma 1. All solutions of model (4) started from nonnegative initial
conditions will remain nonnegative for all forward time and will eventu-
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ally approach the forward invariant set Γ = {S, I,R, Sp, Ip, Rp, Sb, Ib, Rb ∈
R3

+ × R3
+ × R3

+ : 0 < N ≤ Λ/µ, 0 < Np ≤ Λp/µp, 0 < Nb ≤ Λb/µb}.

Basic reproduction number

The basic reproduction number is given by R0 = max
{
R1

0 ,R
2
0 ,R

3
0

}
,

where R1
0 = βIΛ

µ(γ+δ+µ) , R2
0 =

βpΛp

µp(γp+δp+µp)
, R3

0 = βbΛb

µb(γb+δb+µb)
.

Existence of endemic equilibria

Lemma 2. The human-only endemic equilibrium Ê :=
(
Ŝ, Î, R̂, Ŝp, 0, R̂p,

Ŝb, 0, R̂b,
)
exists if and only if R1

0 > 1.

Lemma 3. The human- and pig-endemic equilibrium Ẽ :=
(
S̃, Ĩ, R̃, S̃p,

Ĩp, R̃p, S̃b, 0, R̃b

)
exists if R2

0 > 1.

Lemma 4. The endemic equilibrium E∗ :=
(
S∗, I∗,R∗,S∗

p ,I
∗
p ,R

∗
p,S

∗
b ,I

∗
b , R

∗
b

)
with the disease being endemic in all three species exists if and only if
R3

0 > 1 and R2
0 > 1

Stability analysis

Local stability of the equilibria

Theorem 5. The disease free equilibrium E0

(
Λ
µ , 0, 0,

Λp

µp
, 0, 0, Λb

µb
, 0, 0

)
is

locally asymptotically stable if R1
0 < 1,R2

0 < 1,R3
0 < 1, while E0 is unsta-

ble if any one of the inequalities altered.

Global stability of the equilibria

Theorem 6. The disease-free equilibrium E0

(
Λ
µ , 0, 0,

Λp

µp
, 0, 0, Λb

µb
, 0, 0

)
is

globally asymptotically stable Γ:={(S(t), I(t), R(t), Sp(t), Ip(t), Rp(t), Sb(t),
Ib(t), Rb(t)) ∈ R9

+} if R0 < 1.

Theorem 7. The human-only endemic equilibrium Ê :=
(
Ŝ, Î, R̂, Ŝp, 0, R̂p,

Ŝb, 0, R̂b

)
is globally asymptotically stable in

Γ := {(S(t), I(t), R(t), Sp(t), Ip(t), Rp(t), Sb(t), Ib(t), Rb(t)) ∈ R9
+}

if R1
0 > 1, R2

0 < 1 and R3
0 < 1.

Theorem 8. The equilibrium Ẽ :=
(
S̃, Ĩ, R̃, S̃p, Ĩp, R̃p, S̃b, 0, R̃b

)
, where

the disease is endemic among humans and pigs, is globally asymptotically
stable in Γ := {(S(t), I(t), R(t), Sp(t), Ip(t), Rp(t), Sb(t), Ib(t), Rb(t)) ∈ R9

+}
if R2

0 > 1 and R3
0 < 1.

Theorem 9. The endemic equilibrium E∗ :=
(
S∗, I∗, R∗, S∗

p , I
∗
p , R

∗
p, S

∗
b ,

I∗b , R
∗
b

)
is globally asymptotically stable if R3

0 > 1.
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Numerical simulations

We performed numerical simulations to validate our model and to as-
sess the efficiency of various possible intervention strategies. We fitted our
model to real-world data. We chose the outbreak in 1999 in the Malaysian
state Negeri Sembilan [8]. We also conducted an analysis using the Latin
Hypercube Sampling along with the Partial Rank Correlation Coefficient
(PRCC) method with 10, 000 Monte Carlo simulations per run. The input
parameters considered for our PRCC analysis included all transmission
rates and recovery rates, while the output parameter was chosen as the
cumulative number of infected until the end of the time period under con-
sideration in the fitting. Our results confirmed the important role of pigs
in disease transmission and that decreasing the number of pigs by culling
might be an efficient tool to eradicate the epidemic.

Global stability in an SIRS model with zoonotic
transmission, nonlinear incidence rate and tem-
porary immunity

Zoonotic spillover is the transmission of pathogens from vertebrate an-
imals to humans and it is related to the direct or indirect interaction of
humans with different animal species and pathogens they host, including
handling, poaching, and consumption of meat from wild animals. Re-
cently, there has been an increase in the occurrence rate of novel zoonotic
illnesses, including Ebola virus disease, many strains of bird flu and swine
flu, COVID-19, West Nile fever, Lassa fever, Nipah fever. In most of
the mathematical models for zoonotic diseases, animals are included by
considering analogous compartments as for humans. Our aim was to es-
tablish a simple, but general model for zoonotic diseases, incorporating
many characteristics of them and assuming that the animal population
has already reached an endemic equilibrium, making it possible to only
consider human compartments establishing a novel type of model.

5



Model formulation

A simple SIRS model for a zoonotic disease can be established as

S′(t) = Λ− f(I)S(t)− fz(Ia(t))S(t)− µS(t) + θR(t),

I ′(t) = f(I)S(t) + fz(Ia(t))S(t)− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t),

(2a)

S′
a(t) = Λa − fa(Ia(t))Sa(t)− µaSa(t) + θaRa(t),

I ′a(t) = fa(Ia(t))Sa(t)− (µa + δa + γa)Ia(t),

R′
a(t) = γaIa(t)− (µa + θa)Ra(t),

(2b)

where S stands for susceptible, I for infected, R for recovered humans.
Human-to-human transmission is described by a nonlinear incidence func-
tion f and zoonotic transmission by fz. Human birth and death rates are
denoted by Λ and µ, respectively. Disease-induced death rate is denoted
by δ. Infected humans are transferred to the recovered compartment at the
rate γ and θ is the rate of loss of temporary immunity acquired by recovered
individuals. Compartments and parameters of the animal subsystem are
introduced in an analogous way, with a lower index a.We assume that the
disease is only transmitted from animals to humans but not the opposite
way, enabling us to decouple the animal subsystem (2b) from the human
subsystem (2a). It follows from [9, Theorem 3] that depending on the
basic reproduction number, either the disease-free or the unique endemic
equilibrium (S∗

a , I
∗
a , R

∗
a) of the animal subsystem is globally asymptotically

stable. Here we assume that the disease is endemic among animals, hence,
all solutions with positive initial conditions tend to the endemic equilib-
rium. We assume that the animal population has already reached this
equilibrium, so, by substituting the limit value I∗a of infected animals into
the human subsystem (2a) and introducing the parameter ξ := fz(I

∗
a), we

may rewrite the human subsystem (2a) as

S′(t) = Λ− f(I)S(t)− ξS(t)− µS(t) + θR(t),

I ′(t) = f(I)S(t) + ξS(t)− (µ+ δ + γ)I(t),

R′(t) = γI(t)− (µ+ θ)R(t),

(3)

with nonnegative initial conditions.

Lemma 10. All solutions of model 3 with nonnegative initial conditions
have a positive invariant solution in the region Ω = {S, I,R ∈ R3

+ : 0 <
N ≤ Λ/µ}.
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Lemma 11. Model (3) has a unique endemic equilibrium.

Theorem 12. The endemic equilibrium E∗ is a globally asymptotically
stable equilibrium of (3).

A compartmental model for the spread of Ni-
pah virus in a periodic environment

Since the outbreak, very few mathematical models are available for
the studies of the Nipah virus disease. Although some models [10, 11, 12]
demonstrate that little research has been done regarding its transmission
most of the models did not consider periodicity in the spread of the disease.
Additionally, several studies focused on optimal control problems rather
than the dynamics of the proposed models. So we tried to follow [13, 14,
15, 16] to observe NiV transmission in a periodic environment. Moreover,
we have considered all possible transmissions from humans to animals and
animals to humans.

Model formulation

We develop a compartmental model considering all possible transmis-
sions from animals to humans, animals to animals, and from humans to
animals with periodicity.

Total human population N(t) at time t is divided into susceptibles
(S(t)), exposed (E(t)), infected (I(t)) and recovered (R(t)). Hence, N(t) =
S(t) + E(t) + I(t) +R(t).

The total population of pigs (intermediate host) Np(t) at time t is di-
vided into susceptible (Sp), exposed (Ep(t)), infected (Ip(t)) and recovered
(Rp(t)) individuals, so that Np(t) = Sp(t) + Ep(t) + Ip(t) +Rp(t).

Similarly the total bat population (animal host reservoir) Nb(t) at time
t is divided into susceptible (Sb), exposed (Eb(t)), infected (Ib(t)) and
recovered (Rb(t)) individuals, such thatNb(t) = Sb(t)+Eb(t)+Ib(t)+Rb(t).

We denote the birth and death rates of humans by Π and µ, respec-
tively. There is also a disease-induced death rate, denoted by δ. The force
of infection for humans to humans, pigs, and bats for NiV transmission is
given by βI, βhpI, βpI and βhbI respectively. Again force of infection for
Niv transmission from pigs to humans, pigs, and bats is expressed here as
βphIp, βpIp and βpbIp. Furthermore, the force of infection for Niv transmis-
sion from bats to humans, pigs, and bats is expressed here as βbh(t)Ib, βbIb
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and βbp(t)Ib. Here the parameters are the effective contact rate of suscep-
tible individuals, who become infected from either humans or animals who
became NiV infected.

Here the average duration of the infectious period is 1/γ days, so in-
fected individuals are transferred to the recovered compartment at the rate
γ and θ is the rate of loss of temporary immunity acquired by recovered
individuals, meaning that recovered individuals remain immune for 1/θ
days on average. We define all other parameters for pigs and bats and ap-
ply the subscript p and b respectively for them. Note that time-dependent
parameters in this model are βbh(t), βbp(t) and Πb(t). So our model takes
the form

dS

dt
= Π− βSI − βphSIp − βbh(t)SIb − µS + θR,

dE

dt
= βSI + βphSIp + βbh(t)SIb − νE − µE,

dI

dt
= νE − (µ+ δ + γ)I,

dR

dt
= γI − (µ+ θ)R,

(4a)

dSp

dt
= Πp − βpSpIp − βhpSpI − βbp(t)SpIb − µpSp + θpRp,

dEp

dt
= βpSpIp + βhpSpI + βbp(t)SpIb − νpEp − µpEp,

dIp
dt

= νpEp − (µp + δp + γp)Ip,

dRp

dt
= γpIp − (µp + θp)Rp,

(4b)

dSb

dt
= Πb(t)− βbSbIb − βhbSbI − βpbSbIp − µbSb + θbRb,

dEb

dt
= βbSbIb + βhbSbI + βpbSbIp − νbEb − µbEb,

dIb
dt

= νbEb − (µb + δb + γb)Ib,

dRb

dt
= γbIb − (µb + θb)Rb.

(4c)

The following initial conditions are associated with system (4), define ϕ =
(S(0), E(0), I(0), R(0),
Sp(0), Ep(0), Ip(0), Rp(0), Sb(0), Eb(0), Ib, Rb(0)) where S(0) > 0, E(0) ≥
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0, I(0) ≥ 0, R(0) ≥ 0, Sp(0) > 0, Ep(0) ≥ 0, Ip(0) ≥ 0, Rp(0) ≥ 0,
Sb(0) > 0, Eb(0) ≥ 0, Ib(0) ≥ 0, and Rb(0) ≥ 0.

The disease-free periodic solution

Existence and uniqueness of the disease-free ω-periodic solution

The system (4) has a unique disease-free periodic solution

E∗ = (S∗
h, 0, 0, 0, S

∗
p , 0, 0, 0, S

∗
b (t), 0, 0, 0),

where S∗
h = Π/µ and S∗

p = Πp/µp .

To introduce the following result, we set hL = supt∈[0,ω) h(t) for a
positive, continuous ω-periodic function h(t).

Lemma 13. There is N∗
b =

ΠL
b

µb
> 0 such that each solution in R12

+ of (4)
eventually enters

GN∗ = {(S,E, I,R, Sp, Ep, Ip, Rp, Sb, Eb, Ib, Rb) ∈ R12
+ :

Nh ≤ N∗
h , Np ≤ N∗

p , Nb ≤ N∗
b },

and for each Nb(t) ≥ N∗
b , GN∗ is positively invariant for system (4).

Theorem 16. The disease-free periodic solution E∗ of (4) is locally asymp-
totically stable if R0 < 1, whereas it is unstable if R0 > 1.

Global stability of the disease-free solution

Theorem 18. The disease-free periodic solution E∗ of (4) is globally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proposition 19. The set X0 and ∂X0 are both positively invariant w.r.t.
the flow defined in (4).

Lemma 20. If R0 > 1, then there exists a σ > 0 such that for any
x0 ∈ X0, with ∥x0 − E∗∥ < σ we have lim supm→∞ d(Pm(x0), E∗) ≥ σ.

Theorem 21. Let R0 > 1. Then system (4) has at least one positive
periodic solution and there exists an ϵ1 > 0 such that

lim inf
t→∞

(E(t), I(t), R(t), Ep(t), Ip(t), Rp(t), Eb(t), Ib(t), Rb(t))
T ≥

(ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1, ϵ1)
T ,

for all ϕ ∈ X0.
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Global dynamics of a compartmental model to
assess the effect of transmission from deceased

Several infectious diseases caused by pathogenic microorganisms (e.g.
bacteria, viruses, parasites, or fungi) can be spread directly or indirectly,
from person to person, however, apart from infection from infectious indi-
viduals, also corpses of those deceased due to a given epidemic may pose
a risk of transmission, especially under special circumstances like natural
disasters, an overwhelmed health care system, or due to traditional fu-
nerary practices. Examples for this phenomenon include plague, cholera,
typhoid fever, tuberculosis, anthrax, smallpox, and influenza. Our aim
was to establish and study a model highlighting on the effect transmis-
sion of pathogens from the deceased in general and also including partially
protective vaccination.

Model formulation

We divide the total active human population, denoted by N(t) at time
t, into the following compartments: susceptibles (S(t)), vaccinated (V (t)),
exposed (E(t)), infected (I(t)) and recovered (R(t)). Hence, N(t) = S(t)+
V (t)+E(t)+ I(t)+R(t). An additional compartment D is introduced for
deceased humans who passed away due to virus infection and have not
been buried yet.

We denote the birth and natural death rates by Λ and µ, respec-
tively. A fraction ρ (with 0 < ρ < 1) of newborns not vaccinated af-
ter birth enter the susceptible compartment, while the remaining fraction
enters the vaccinated compartment. The force of infection is given by
λ(t) = (β1I(t) + β2D(t)), where β1 represents the effective contact rate
of susceptibles to get an infection from visibly infected individuals and
β2 is the effective unprotected contact rate of susceptibles, who become
infected from dead bodies. Since vaccines are not fully efficient enough
for a disease, we consider vaccine efficiency by introducing the parameter
η ∈ [0, 1]. Infected individuals progress from the exposed to the infectious
compartment at rate σ, and further, they leave the visibly infected com-
partment at rate γ (i.e. the average duration of the latent period is 1/σ
days and that of the infectious period is 1/γ days). Disease-induced death
affects individuals in the infected compartment. A fraction 0 < δ < 1 of
those leaving the infectious compartment will die due to the infection and
arrive in the D class, while the remaining fraction recovers and moves to
the recovered compartment R. Infected corpses are buried at the rate α,
i.e. the average time until the burial equals 1/α days. Besides vaccination
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right after birth, we also consider v as the vaccination rate of adults and
with that, susceptible individuals are transferred to the vaccinated com-
partment. With the above notations and assumptions, our model takes
the form

S′(t) = ρΛ− (β1I(t) + β2D(t))S(t)− vS(t)− µS(t),

V ′(t) = (1− ρ)Λ− η(β1I(t) + β2D(t))V (t) + vS(t)− µV (t),

E′(t) = (β1I(t) + β2D(t))(S(t) + ηV (t))− (σ + µ)E(t),

I ′(t) = σE(t)− (γ + µ)I(t),

R′(t) = (1− δ)γI(t)− µR(t),

D′(t) = δγI(t)− αD(t).

(5)

The following initial conditions are associated with the system (5): S(0) >
0, V (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, D(0) ≥ 0. We note that system
(5) is similar to the model studied in [17], where the compartment of low-
risk susceptibles corresponds to our vaccinated compartment. Apart from
the main difference, the presence of vaccination of susceptible individuals
(i.e. movement from the S class to the V class, which term clearly can-
not be present in [17] due to the different meaning of the corresponding
compartments), another important difference is that we use mass action
incidence, which allows us to prove global asymptotic stability of the en-
demic equilibrium without additional conditions.

To obtain our analytical results described in Sections and , for technical
reasons we will omit vaccination of adults, hence, we study the reduced
system

S′(t) = ρΛ− (β1I(t) + β2D(t))S(t)− µS(t),

V ′(t) = (1− ρ)Λ− η(β1I(t) + β2D(t))V (t)− µV (t),

E′(t) = (β1I(t) + β2D(t))(S(t) + ηV (t))− (σ + µ)E(t),

I ′(t) = σE(t)− (γ + µ)I(t),

R′(t) = (1− δ)γI(t)− µR(t),

D′(t) = δγI(t)− αD(t)

(6)

with the initial conditions S(0) ≥ 0, V (0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥
0, D(0) ≥ 0. We note that the assumption of omitting vaccination of
older individuals is not merely technical: in the case of several childhood
diseases, vaccination almost entirely takes place within a short time after
birth and vaccination of older individuals is negligible.
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Basic properties

Lemma 22. All solutions of system (6) with non-negative initial condi-
tions will enter the invariant region ϕ = {S, V,E, I,R,D ∈ R6

+ : 0 < N ≤
Λ/µ}.

The basic reproduction number

The basic reproduction number R0 is obtained as

R0 = (αβ1+β2γδ)Λ(η(1−ρ)+ρ)σ
αµ(γ+µ)(µ+σ) .

Existence of equilibria and stability analysis

Existence of endemic equilibrium

To determine the existence of endemic equilibria, we let the right-hand
sides of all equations in (6) to be equal to zero. Solving the last three

equations we get E = I(γ+µ)
σ , R = Iγ(1−δ)

µ and D = Iγδ
α . Substituting

these values in the first three equations, the system becomes

S
(
I
(
β1 +

β2γδ
α

)
+ µ

)
= Λρ,

IV
(
β1 +

β2γδ
α

)
η + V µ = Λ(1− ρ),

t
(γ + µ)(µ+ σ)

σ
=

(
β1 +

β2γδ
α

)
(S + ηV ).

(7)

Solving the first two equations of (7) for S and V in terms of I, we get

S = αΛρ
I(αβ1+β2γδ)+αµ and V = αΛ(1−ρ)

I(αβ1+β2γδ)η+αµ . Substituting these values

in the third equation of (7) we get the quadratic equation aI2+bI+c = 0,
where

a = (γ + µ)(µ+ σ)(αβ1 + β2γδ)
2η,

b = (αβ1 + β2γδ)(αµη(γ + µ)(µ+ σ) + αµ(γ + µ)(µ+ σ)(1− R0)

+ Λσρ(1− η)(αβ1 + β2γδ)),

c = α2µ2(γ + µ)(µ+ σ)(1− R0).

Clearly, c < 0 holds if and only if R0 > 1. As a > 0 independently of the
parameters, using Vieta’s formulas, we obtain that for R0 ≥ 1, there is
exactly one positive solution of the quadratic equation, while if R0 < 1,
there is no positive solution. Therefore, there is no endemic equilibrium if
R0 < 1 and there exists a unique endemic equilibrium if R0 ≥ 1.
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Local stability of the equilibria

Theorem 23. The disease-free equilibrium E0

(
ρΛ
µ , (1−ρ)Λ

µ , 0, 0, 0, 0
)
is lo-

cally asymptotically stable if R0 < 1, while E0 is unstable otherwise.

Global stability of the equilibria

Lemma 24. For the limit superior of S(t) and V (t), the inequalities S∞ ≤
ρΛ
µ and V ∞ ≤ (1−ρ)Λ

µ hold.

Theorem 25. The disease-free equilibrium E0

(
ρΛ
µ , (1−ρ)Λ

µ , 0, 0, 0, 0
)
is glob-

ally asymptotically stable in Γ := {(S, V,E, I,R,D) ∈ R6
+} if R0 < 1 .

Theorem 26. The endemic equilibrium E∗ :=
(
S∗, V ∗, E∗, I∗, R∗, D∗) is

globally asymptotically stable in Γ := {(S(t), V (t), E(t), I(t), R(t), D(t)) ∈
R6

+} if R0 > 1.

Assessing the effects of transmission by deceased on disease spread

We performed numerical simulations to estimate the disease burden
due to infection via contact with deceased individuals selecting three re-
cent epidemics with different characteristics: Ebola, COVID-19, and Nipah
fever. The simulations suggest that for such epidemics, a very efficient way
to reduce the epidemic spread is to diminish this way of transmission as
much as possible. On the contrary, generalizing the results of our simula-
tions regarding the COVID-19 epidemic, we may conclude that if corpses
are handled in a safe and adequate way and contact of susceptibles with
them is reduced, then even in the case of a large-scale epidemic, one may
more or less eliminate the contribution of deceased to disease spread.
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