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1 Introduction

This PhD thesis focuses on advancing the field of Silent Speech Interface, by proposing new
strategies and techniques to improve various aspects of the ultrasound SSI project. The
project has wide range of usability including when humans can not talk due to a specific
disease related to speech or they don’t want to talk due to several reasons. In this thesis
the goal is to enhance model implementation, data preparation and processing, general-
ization, and model training speed. The methods proposed in this thesis have been tested
on two large datasets, and the results have been thoroughly evaluated. In this introduc-
tion, we provide an overview of the SSI system’s fundamental components, including the
feature extractor, different modalities, and model training. We also explore the application
of deep neural networks, particularly Convolutional Neural Networks (CNNs), and their
effectiveness in image processing. As it is shown in Figure 1, speech could be synthesize
from articulatory signals which are related to human’s speech. [13].

Figure 1: Process of transforming articulatory features to acoustic features using deep learn-
ing methods for speech synthesis[13]

The subsequent chapters delve into specific aspects of the SSI system and adapt algo-
rithms from related areas to enhance their performance.

2 3D Convolutional Neural Networks for Developing Silent
Speech Interfaces Utilizing Ultrasound

Chapter 2 of this thesis investigates the use of deep neural networks for converting ultra-
sound videos of tongue movements into speech. Specifically, Convolutional Neural Net-
works (CNNs) are employed to process a sequence of images, a technique widely recog-
nized for image recognition tasks. The input to the CNNs is a video sequence that captures
the temporal trajectory of tongue movements. The chapter explores different network
structures for processing time sequences, including the stacking of a 2D CNN and a recur-
rent neural network (RNN), as well as extending the 2D CNN to a 3D CNN by incorporating
time as an additional dimension [14, 19, 21, 22, 24, 27, 33]. The experimental results re-
veal that the 3D CNN model achieves a lower error rate, requires a smaller model size, and
trains faster compared to the CNN+LSTM model. This finding suggests that 3D CNNs of-
fer a viable alternative to recurrent neural models for ultrasound video-based SSI systems.
The application of CNNs for processing time sequences presents a novel approach that
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achieves superior performance with faster training times, holding promise for improving
silent speech technology.

3 Utilizing adversarial training to improve Deep Neural
Network models

Chapter 3 aimed to enhance the performance of SSI models by leveraging Generative Ad-
versarial Networks (GANs) and incorporating perceptual loss in addition to conventional
loss functions.

In deep neural network based ultrasound image SSI projects, conventional loss func-
tions for 3D CNNs (3D convolutional neural networks) are often used to optimize the
performance of the models. These loss functions can be simple mathematical formulas
that measure the difference between the predicted output of the model and the actual
ground truth. The most commonly used loss function for image processing tasks is the
mean squared error. However, conventional loss functions for 3D CNNs in ultrasound im-
age SSI projects face several challenges. For example, conventional loss functions do not
always capture the perceptual quality of the output spectrogram images. Additionally, con-
ventional loss functions may result in blurry spectrogram images or spectrogram images
with loss of fine details. Therefore, there is a need to use alternative loss functions that
can capture the perceptual quality of the spectrogram images. Perceptual loss functions
are one type of alternative loss functions that can improve the performance of ultrasound
image SSI models. Perceptual loss functions are originally designed to measure the simi-
larity between two images in terms of their perceptual qualities, such as texture, contrast,
and sharpness, instead of just measuring the pixel-wise differences between the images.
Perceptual loss functions are commonly used in image style transfer and image generation
tasks [17, 20, 25].

The objective of this chapter was to generate high-quality spectrogram images with
improved accuracy and fidelity, crucial for the SSI project. The proposed method involved
introducing GAN as a perceptual loss term to the conventional loss function employed
in the SSI model. This perceptual loss term quantified the difference between features
extracted from real and synthetic predicted output using a pre-trained neural network. By
doing so, the GAN could generate output that not only matched the target distribution but
also captured the relevant features and structures of real data. The performance of the
proposed method was evaluated using two distinct datasets: one comprising Hungarian
sentences and the other containing English sentences.

3.1 Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a type of neural network that consists of two
main components: a generator network and a discriminator network. The generator net-
work is responsible for generating synthetic data, while the discriminator network’s job is
to distinguish between synthetic data and real data [15]. These two networks are trained
together in a process called adversarial training, where the generator tries to produce more
realistic data, and the discriminator tries to improve its ability to differentiate between real
and fake data. In the GAN structure, the generator network takes a random noise vector
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Figure 2: A typical GAN implementation consists of two neural networks (generator and
discriminator) trained in an adversarial manner, with noise vectors as input to the generator
and real/fake labels as input to the discriminator.

as input and generates a synthetic image(here spectrogram) as output. The discriminator
network then takes the synthetic image generated by the generator network and a real
image from the dataset as input. It outputs a probability value indicating whether the in-
put image is real or fake. The training process is adversarial, where the generator aims to
produce more realistic images to deceive the discriminator, while the discriminator aims
to improve its ability to classify the images accurately.

Through this adversarial training process, the generator learns to generate more real-
istic images, and the discriminator learns to accurately classify the images as real or fake.
Once the training is complete, the generator can be used to generate new images that
resemble the real images in the dataset. GANs have been successfully applied in various
domains such as image generation, speech synthesis, and natural language processing.

3.2 Conditional Generative Adversarial Networks

Conditional Generative Adversarial Networks (cGANs) are a type of Generative Adversar-
ial Network (GAN) that incorporate additional information, known as conditions, into the
generator and discriminator models [64]. These conditions can take the form of labels,
attributes, or any other relevant data that helps guide the generation process. By includ-
ing conditions(see fig 3), cGANs provide more precise control over the generated output.
cGANs have been successfully applied to various tasks, including image-to-image trans-
lation, text-to-image generation, and style transfer [26]. Image-to-image translation in-
volves converting an image from one domain to another, such as transforming a grayscale
image into a colored image or turning a sketch into a realistic image. Text-to-image gen-
eration aims to generate an image based on a textual description. Style transfer involves
transferring the style of one image onto another while preserving the content, enabling
the creation of new stylized images.

The key advantage of cGANs is their ability to incorporate conditional information,
which allows for targeted and controlled generation. This makes them highly applicable
in fields such as computer vision, natural language processing, and creative arts. They
offer opportunities for more precise image generation, enabling tasks that require specific
attributes or characteristics to be fulfilled.
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Figure 3: Conditional Generative Adversarial Networks

3.3 Generative Adversarial Networks for Articulatoryto-Acoustic Map-
ping

In our case, the generator network was responsible for converting ultrasound data to mel-
spectral data, using the same network that showed the better result in chapter ??. The
generator and discriminator were trained in parallel using a two-step process. In the first
step, the discriminator was trained on real and generated spectrograms using the hinge
loss function. In the second step, the generator weights were updated using a combination
of the mean squared error (MSE) loss and the discriminator’s feedback. This adversarial
training approach aimed to create generator outputs that resemble real spectrograms.

The results demonstrated that incorporating the perceptual loss led to a significant
improvement in spectral quality and accuracy. This approach has the potential to enhance
the reliability and accuracy of SSI models, thereby advancing SSI applications. Moreover,
the utilization of GANs and perceptual loss can be extended to other modalities, opening
up possibilities for further advancements in the field.

4 Neural Speaker Embeddings for Generalizing Ultrasound
SSI model

In Chapter 4, we focused on enhancing the SSI model by exploring Embedding Neural Net-
works. The previous performance of the SSI model was hindered by suboptimal parameter
tuning in unseen speakers. To overcome this issue, we introduced a novel approach called
x-vector, which aimed to improve the model’s performance by incorporating speaker in-
formation into the input ultrasound data [31]. The effectiveness of this approach was
evaluated on unseen speakers, and its impact on improving the model’s generalizability
was assessed. The evaluation was conducted using an English dataset prepared at both
the frame and speaker levels, including their respective spectrograms. The x-vector con-
cept was introduced as a neural solution to replace the Gaussian-based i-vector approach
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Figure 4: The error calculation (forward arrows) and weight update (backward arrows)
training steps for the discriminator (upper image) and the generator (lower image) networks
of the GAN.

for speaker recognition [29]. It consists of a deep neural network (DNN) trained to dis-
criminate speakers, with three main parts. The lower layers, typically a time-delay network
(TDNN), operate on frame-level information. The subsequent temporal pooling layer ag-
gregates statistics over speech segments, and the aggregated values are processed by fully
connected layers. The network produces a fixed-size speaker embedding vector. In the
context of ultrasound-based silent speech interfaces, the x-vector DNN was adjusted to
operate with ultrasound images, with a frame-level part utilizing a 3D convolutional layer
and a statistical pooling layer performing simple average pooling. The segment-level part
consists of fully connected layers and a softmax output layer. The results demonstrated
that the integration of the x-vector approach significantly enhanced the model’s ability to
generalize and perform better on unseen speakers.

5 Convolutional Neural Networks for Detecting Voice Ac-
tivity in Silent Speech Interfaces based on Ultrasound

In Chapter 5, we investigated the utilization of ultrasound images for differentiating be-
tween silent and speech segments, (Figure 6), similar to voice activity detection in speech.
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Figure 5: Illustration of the UTI-based xx-vector network.
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Fig 6 shows two examples of the tongue position recorded by the device, when the subject
is speaking (producing a vowel) and when he is not – the diagonal light stripes in the im-
ages correspond to the tongue of the speaker. After examining several samples, we got the
impression that speaking versus remaining silent typically results in more drastic changes
in the speech signal than in the corresponding ultrasound tongue images, so voice activity
detection based on the latter is presumably much harder. In the following we train a CNN
to perform the voiced/invoiced classification using such ultrasound images. The structure
of this VAD-CNN and the network that we apply for the SSI task are very similar.

First, we estimated training labels based on a public Voice Activity Detection (VAD)
implementation applied to parallel speech recordings [32]. The classifier developed for
this purpose achieved an accuracy of 86% in discriminating silence and speech frames,
Figure 7. Furthermore, we emphasized the importance of carefully handling the amount
of silence retained in the training set, as an excessive presence of silence can adversely
affect the quality of the synthesized speech and the training process of the model.
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Figure 6: Two UTI examples from the database, one for a speech (vowel) frame (left) and one
for a silent frame (right).

Figure 7: Illustration of obtaining the VAD training labels and training the 2D-CNN for
silence/speech classification.

To address the challenges associated with preprocessing in Silent Speech Interfaces,
we proposed a novel method of voice activity detection. Instead of considering the entire
speech, we implemented VAD on each ultrasound frame, resulting in better alignment be-
tween the spectrogram and ultrasound frames, and consequently, more reliable features
for the model. We employed the VAD technique to remove silence as a preliminary step be-
fore feature extraction. Subsequently, we synchronized the windowed speech signal with
the ultrasound frames and fed them into the VAD process. The retained frames determined
by VAD were then subjected to subsequent feature extraction steps, which facilitated tasks
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such as speech synthesis. By incorporating VAD at the ultrasound frame level, rather than
at the speech level, we observed improved accuracy in the SSI model. The proposed VAD
method effectively removed silence from the input data and yielded more reliable fea-
tures, demonstrating the potential of ultrasound images for discriminating between silent
and speech segments. This finding holds significant implications for the advancement of
the SSI technology.

6 Enhanced analysis of ultrasound tongue videos via the
fusion of ConvLSTM and 3D Convolutional Networks

In Chapter 6, we addressed the challenge of high computational cost associated with deep
learning models, which typically require large amounts of data to achieve optimal perfor-
mance. Our proposed solution involved a fusion of Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN), known as ConvLSTM [30],which was applied in
another areas such as emotion recognition [23] and in [34] with promising results applied
along with the integration of a 3D Convolutional Network (Conv3D), (Figure 8). This fu-
sion enabled the extraction of both sequential and volumetric information from the data
while reducing the number of layers and parameters required for training. Consequently,
our approach achieved high performance with improved efficiency.

Figure 8: Internal structure of a standard LSTM cell and its extended version (with extra
peephole connections) used in Convolutional LSTMs [11, 12].

To evaluate the effectiveness of our proposed method, we conducted experiments using
a Hungarian dataset and compared the results against previous state-of-the-art models.
This chapter provides a detailed explanation of the ConvLSTM model’s implementation
and showcases its ability to extract spatial and temporal features from ultrasound tongue
videos. The experimental results demonstrated that our proposed method outperformed
the previous state-of-the-art models, delivering superior accuracy and efficiency.

In conclusion, our method offers a promising approach to enhance the performance of
deep learning models while mitigating the computational burden. The potential impact
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of our approach extends to the field of image processing and deep learning, where it can
contribute to advancements in research and application.

7 Enhancing Tongue Ultrasound-Based Silent Speech In-
terfaces with Spatial Transformer Networks

Chapter 7 explores the application of spatial transformer networks (STNs) to enhance
the speaker and session adaptation capabilities of ultrasound tongue imaging-based silent
speech interfaces. Traditional SSI models often exhibit limited performance when transi-
tioning between different speakers or sessions due to their speaker-specific nature [18].
In this area, There have already been several cross-session and cross-speaker studies. To
handle the session dependency of UTI based synthesis, by using data from different ses-
sions [16], unsupervised model adaption [28], or as we used in chapter 4 by using xx-
vectors featurs from the speakers.

Figure 9: An example UTI image, before and after STN.

Most of the above approaches hope to solve speaker sensitivity simply by acquiring
articulatory training data from a large quantity of speakers. In this chapter, we experiment
with a direct adaptation of an UTI-based SSI network to the actual speaker or session.

To address this, we proposed an augmenting deep networks with a spatial transformer
network module. The STN module facilitates affine transformations on input images, en-
abling quick adaptation for different speakers and sessions. By integrating spatial trans-
former networks into the SSI models, we can improve their performance when confronted
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with variations in tongue articulation across speakers or changes in the recording setup.
This enhancement enhances the overall flexibility and adaptability of ultrasound tongue-
based SSIs, leading to improved synthesis performance and a broader range of applicabil-
ity.

By investigating the integration of STNs in Chapter 7, we aim to overcome the limita-
tions associated with speaker and session adaptation in SSI models, ultimately advancing
the field of silent speech interfaces based on ultrasound tongue imaging. When only the
STN module was adapted, the error rate decreased significantly. When both the STN mod-
ule and the linear output layer were allowed to adapt, the error reduction went even more.
Although the improvement was slightly smaller for 3D input blocks, similar tendencies
were observed.

8 Contributions of the thesis

In the first thesis group, the contributions are related to the publication ’3D Convolutional
Neural Networks for Developing Silent Speech Interfaces Utilizing Ultrasound’. Detailed
discussion can be found in Chapter 2.

I/1. Implementing the neural networks used in the experiments to restore speech signals
from articulatory recordings. Specifically, we implemented a 3D convolutional neu-
ral network with different window length and compared it with different variations
of CNN and combination with CNN+LSTM and BiLSTM networks.

I/2. Calculating the performance of the models using objective metrics such as STOI,
PESQ, and MCD. The results obtained from these metrics were analyzed to compare
the performance of the different network architectures.

In the second thesis group, the contributions are related to the publication ’Utilizing
adversarial training to improve Deep Neural Network models’. Detailed discussion can be
found in Chapter 3.

II/1. Implementation of GAN and CGAN models for image generation.

II/2. Utilization of various SSI models as generators in the GAN and CGAN frameworks.

II/3. Calculation and analysis of performance metrics to evaluate the effectiveness of the
models.

II/4. Conducting research in the field of GANs and image generation.

In the third thesis group, the contributions are related to the publication ’Neural Speaker
Embeddings for Generalizing Ultrasound SSI model’. Detailed discussion can be found in
Chapter 4.
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III/1. Preparing data for the experiments.

III/2. Implementing the model and conducting the experiments.

III/3. Comparing the results obtained from the experiments.

III/4. Calculating the relevant metrics to evaluate the model’s performance.

In the forth thesis group, the contributions are related to the publication ’Convolutional
Neural Networks for Detecting Voice Activity in Silent Speech Interfaces based on Ultra-
sound’. Detailed discussion can be found in Chapter 5.

IV/1. Implementing the model for voice activity detection using a CNN architecture and
training it with binary cross-entropy loss function.

IV/2. Developing the idea of applying VAD to remove silence from the speech signal in SSI
systems.

IV/3. Analyzing the results of experiments with different amounts of silence in the corpus,
comparing the MCD and MSE metrics, and evaluating the impact of VAD on the SSI.

In the fifth thesis group, the contributions are related to the publication ’Enhanced anal-
ysis of ultrasound tongue videos via the fusion of ConvLSTM and 3D Convolutional Net-
works’. Detailed discussion can be found in Chapter 6.

V/1. Preparing data for the specific task.

V/2. Implementing code for the models (Conv3D, Conv3D+BiLSTM, ConvLSTM).

V/3. Analyzing and interpreting the results.

V/4. Calculating the evaluation metric for the results.

In the six thesis group, the contributions are related to the publication ’Enhancing Tongue
Ultrasound-Based Silent Speech Interfaces with Spatial Transformer Networks’. Detailed
discussion can be found in Chapter 7.

VI/1. Preparing data.

VI/2. Implementing code for the models.

VI/3. Analyzing and interpreting the results.

Table 1 summarizes the relation between the thesis points and the corresponding publica-
tions.
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Table 1: Correspondence between the thesis points and my publications.
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II/1 II/2 III/1 IV/1 V/1 VI/1 VII/1
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[3] •
[4] •
[5] •
[6] •
[9] •
[10] •

The author’s publications on the subjects of the thesis

Journal publications
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Speaker Embeddings for Ultrasound-Based Silent Speech Interfaces. In Proceedings
of the International Conference on Interspeech, 1932-1936, Springer, 2021.
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2021.

Other References

[11] Convolutional LSTM. https://medium.com/neuronio/

an-introduction-to-convlstm-55c9025563a7, 2019.

[12] Recurrent neural networks and LSTMs with keras. https://blog.eduonix.com/

artificial-intelligence/recurrent-neural-networks-lstms-keras, 2020.

[13] B. Cao, A. Wisler, and J. Wang. Speaker adaptation on articulation and acoustics for
articulation-to-speech synthesis. Sensors, 22(16):6056, 2022.

[14] Jose A. Gonzalez, Lam A. Cheah, Angel M. Gomez, Phil D. Green, James M. Gilbert,
Stephen R. Ell, Roger K. Moore, and Ed Holdsworth. Direct speech reconstruc-
tion from articulatory sensor data by machine learning. IEEE/ACM Trans. ASLP,
25(12):2362–2374, 2017.

[15] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.
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9 Összefoglalás

Ez a doktori értekezés a Néma Beszéd Interface (SSI) területének előmozd́ıtására összpontośıt,
új stratégiák és technikák javaslatával a hangtomṕıtott ultrahang SSI projekt különböző
szempontjainak fejlesztése érdekében. A projekt széles körű használhatóságot ḱınál, ideértve
azokat az eseteket, amikor az emberek nem tudnak beszélni a beszédhez kapcsolódó
konkrét betegség miatt, vagy több okból nem szeretnének beszélni. Ebben az értekezésben
a cél a modell implementáció, adat előkésźıtés és feldolgozás, általánośıtás és modellképzés
sebességének jav́ıtása. Az értekezésben javasolt módszereket két nagy adathalmazon tesztelték,
és az eredményeket alaposan értékelték. Az bevezetésben áttekintést adunk az SSI rend-
szer alapvető összetevőiről, beleértve a jellemzők kinyerését, különböző modalitásokat és
a modellképzést. Emellett felfedezzük a mély neurális hálózatok, különösen a Konvolúciós
Neurális Hálózatok (CNN-ek) alkalmazását és hatékonyságukat képfeldolgozásban .
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