
Methods for Enhancing
Software Fault Localization

Summary of the PhD Thesis

By:
Qusay Idrees Sarhan Alsarhan

Supervisor:
Árpád Beszédes, PhD, associate professor

Doctoral School of Informatics
Department of Software Engineering
Faculty of Science and Informatics

University of Szeged
Szeged, Hungary, 2023





Introduction

Software products cover many aspects of our everyday life as they are used in different
application domains, such as communication, healthcare, military, and transportation.
Thus, our modern life cannot be imagined without software. The extensive demand and
use of different software products in our day-to-day activities have significantly increased
their functionality, size, and complexity. As a result, the number and types of software
faults have also increased. Software faults not only lead to financial losses but also loss of
lives. Therefore, faults should be fixed as soon as they are found. Finding the locations
of faults in software systems has historically been a manual task that has been known to
be tedious, expensive, and time-consuming, particularly for large-scale software systems.
Besides, manual fault localization depends on the developer’s experience to find and
prioritize code elements that are likely to be faulty.

Developers spend almost half or more of their time on finding faults alone [4]. There-
fore, there is a serious need for automatic fault localization techniques to help developers
effectively find the locations of faults in software systems with minimal human interven-
tion. Software fault localization is a significant research topic in software engineering [5].
Despite starting in the late 1950s, software fault localization research has gained more
attention in the last few decades. Researchers and developers have proposed and imple-
mented different types of fault localization techniques. However, Spectrum-based Fault
Localization (SBFL) [1] is considered amongst the most prominent techniques in this re-
spect due to its efficiency and effectiveness, lightweight, language-agnostic, easy-to-use,
and relatively low overhead in execution time characteristics.

In SBFL, the probability of each program element (e.g., statement, function, or class)
being faulty is calculated based on the results of executing test cases and their corre-
sponding code coverage information. Currently, SBFL is not yet widely adopted in the
industry as it poses several issues and its performance is affected by several influential
factors [6, 2]. Therefore, addressing SBFL issues can lead to improving its effectiveness
and making it widely used. This PhD thesis aims to improve the effectiveness of SBFL,
the most common fault localization technique, by addressing some of the most important
challenges and issues posed by it.

Spectrum-based Fault Localization (SBFL)

The basic principle of SBFL is the following. It requires the information of executing
several tests on a program’s elements to locate faults. Suppose a Python function called
mid() accepts three values as input and outputs the median of the three values (see Fig-
ure 1). The mid() function, a widely used code example in fault localization research [3],
consists of 12 statements Si (1 ≤ i ≤ 12) and 6 tests Tj (1 ≤ j ≤ 6), as shown in Figure 1.
In statement 7, there is a fault (the valid statement is m = x).

Then, the function was tested with all the tests, and the spectra (the execution infor-
mation of statements in failed and passed tests) were recorded, as presented in Table 1. A
1 in the cell corresponding to the statement Si and the test case Tj indicates that the test
case Tj executed the statement Si, otherwise it is 0. Additionally, a 1 in the row labeled
“Results” denotes a failed test, whereas a 0 denotes a passed test. In SBFL, a program
element (e.g., a statement in our example) that is executed in more failed test cases would
be more likely to be faulty. For each program element e in Table 1, the following four
statistical values are computed:

1



Figure 1: SBFL example: code and test cases

• ef : the number of failed tests that executed (e) a program element.

• ep: the number of passed tests that executed (e) a program element.

• nf : the number of failed tests that did not execute (n) a program element.

• np: the number of passed tests that did not execute (n) a program element.

Table 1: SBFL example: spectra information
Statement T1 T2 T3 T4 T5 T6 ef ep nf np

1 1 1 1 1 1 1 1 5 0 0
2 1 1 1 1 1 1 1 5 0 0
3 1 1 1 1 1 1 1 5 0 0
4 1 1 0 0 0 1 1 2 0 3
5 0 1 0 0 0 0 0 1 1 4
6 1 0 0 0 0 1 1 1 0 4
7 1 0 0 0 0 1 1 1 0 4
8 0 0 1 1 1 0 0 3 1 2
9 0 0 1 0 1 0 0 2 1 3
10 0 0 0 1 0 0 0 1 1 4
12 1 1 1 1 1 1 1 5 0 0

Results 0 0 0 0 0 1

Then, these four basic statistics can be used by an SBFL formula, such as “Tarantula”
in Equation 1, to produce a ranking list of program elements. Whichever element came in
first on the list is the one that is most likely to have a fault. Therefore, SBFL can make
it simpler for developers to identify the problematic code in the target program.

Tarantula =

ef
ef+nf

ef
ef+nf

+ ep
ep+np

(1)

After calculating the suspicion score for each program element, the statements are
ranked based on the scores after they get sorted in ascending order from the most suspi-
cious to the least suspicious to be examined by developers. Table 2 presents this infor-
mation. For example, the “Tarantula” formula scores both statements 6 and 7 greater

2



than others; thus they are more suspicious and should be examined before others. While
it gives statement 4 the third greatest score, and so on. However, no score was given to
statement 11 because it has no spectra information (i.e., no test has executed it).

Table 2: SBFL example: scores and ranks
Tarantula Tarantula

score rank
1 0.5 4
2 0.5 4
3 0.5 4
4 0.71 3
5 0 8
6 0.83 1
7 0.83 1
8 0 8
9 0 8
10 0 8
12 0.5 4

Summary

In this PhD thesis, the aim was to enhance SBFL by introducing new methods and
enhancing previous approaches by addressing some of SBFL’s main issues and challenges.
This is achieved by conducting a systematic literature survey to identify several issues
and challenges in SBFL that are still not addressed, and then I started to tackle them
one by one by conducting several lab experiments. As a result, several articles on the
topic have been published or accepted for publication in well-known venues (conferences
and journals). The scientific results I achieved and report in this thesis are grouped into
several thesis points, as presented in Table 3.

Table 3: Mapping of PhD thesis points and publications
No. PhD Thesis Points Publications
I. Systematic Survey of SBFL Challenges [P1]
II. Tie-Breaking Method for SBFL [P2]
III. Emphasizing SBFL Formulas with

Importance Weights
[P3], [P4]

IV. New Formulas for SBFL [P5], [P6], [P7]
V. Supporting Tools for SBFL [P8], [P9], [P10], [P11]

3



Thesis Point I presents the results of a systematic literature survey on the challenges of
SBFL where different issues and challenges that affect the effectiveness of SBFL and thus
prevent it from being widely used were presented and discussed. Also, different potential
solutions to improve/enhance SBFL were given. This systematic survey study was the
basis for the experimental contributions presented in the subsequent chapters.

Thesis Point II introduces the ties in SBFL and a novel proposed approach to address
this issue. Often, SBFL formulas produce the same suspicion score for more than one code
element. Thus, ties emerge between the code elements. To solve this issue, a method based
on method call frequency in failed test cases to break ties is proposed and discussed. The
idea is that if a method appears in many different calling contexts during a failing test
case, it will be more suspicious and thus gets a higher rank position compared to other
methods with the same scores.

Thesis Point III introduces importance weights to improve SBFL by addressing the
issue of unbalanced test suites where the number of passed tests is much higher than the
number of failed tests. This is achieved by emphasizing the factor of failing tests in SBFL
formulas by giving more importance to code elements that are executed by more failed
tests and appear in more failing method call contexts compared to other elements. Thus,
such elements get higher ranks than others and get examined first by software developers.

Thesis Point IV introduces a new manually crafted SBFL formula based on intuition.
The new formula breaks ties between the elements that share the same suspicion score
by emphasizing the high number of failing test cases and the low number of passing ones
for a particular code element. This chapter also introduces a systematic search method
to generate new SBFL formulas instead of the heuristic and ad-hoc approaches. This is
achieved by examining existing formulas, defining formula structure templates, generating
formulas from the defined templates, and finally comparing them to each other. All the
new formulas, which are not reported in the literature, outperform many well-known
existing ones.

Thesis Point V introduces two software fault localization tools that employ SBFL,
namely “CharmFL” and “SFLaaS”, for Python developers. The tools are designed with
several useful features to help Python programmers debug their code. Through lab set-
tings, the usefulness of both tools has been assessed. In addition to being simple to use,
the tools have been shown to be helpful for identifying faults in various programs.

4



Thesis Point I: Systematic Survey of SBFL Challenges

In Chapter 3, we started our thesis with an important systematic survey study on the
topic. As a result, several important issues and challenges of SBFL have been identified
and categorized in this survey study. In each category, the most important issues have
been briefly presented with possible solutions. The experimental contributions discussed
in the following chapters were built upon the findings of this comprehensive survey study.
Figure 2 shows the identified challenges and issues posed by SBFL.

Figure 2: Challenges and issues of SBFL

In this chapter, the following points summarize my main contributions to the topic of
thesis point I.

• Providing a theoretical background on the topic of SBFL and its main concepts.

• Conducting a systematic survey study that discussed the papers related to SBFL
and the challenges and issues preventing it from being widely used. The results of
the systematic survey showed that still, SBFL poses many problems that have not
been addressed yet despite their importance to the effectiveness of SBFL.

• Categorizing the identified challenges and issues into 18 categories. Practically, ad-
dressing SBFL challenges can enhance the performance of SBFL in many directions,
as will be seen in the subsequent thesis points and chapters.

The results of this chapter were published in:

• [P1] Qusay Idrees Sarhan and Arpad Beszedes. A survey of challenges in spectrum-
based software fault localization. IEEE Access, 10:10618–10639, 2022.

5



Thesis Point II: Tie-Breaking Method for SBFL

In Chapter 4 of the thesis, we proposed a method to break the ties between program
elements when they are ranked by an SBFL formula. Rank ties in SBFL are very com-
mon regardless of the formula employed, and by breaking these ties, improvements to
localization effectiveness can be expected. We propose the use of method call contexts
for breaking critical ties in SBFL. We rely on instances of call stack traces, which are
useful software artifacts during runtime and can often help developers in debugging. The
frequency of the occurrence of methods in different call stack instances determines the
position of the code elements within the set of other methods tied together by the same
suspiciousness score.

Figure 3 shows our tie-breaking process, which can be seen as a two-stage process.
In the first stage, we compute the suspiciousness scores of program methods and their
ranks by applying different SBFL formulas to the program spectra (test coverage and
test results). The output of this stage is an initial ranking list of program methods
including critical and non-critical ties. In the second stage, we trace the execution of
program methods to obtain the ϕ, i.e., frequency-based ef . We first build the call tree of
each test case during the execution and then we count the call frequency value of each
method without considering the repetition. The ϕ value of a method is then calculated
by summing the call frequency values of the method in failed test cases only. This will
then be used as a tie-breaker after re-arranging the order of the critical tied methods in
the initial ranking list based on the value of ϕ for each method. The output of this stage
is a final ranking list, where many critical ties are either eliminated or their sizes were
reduced.

Figure 3: The proposed tie-breaking process

The experimental results show that ties and critical ties are very common (for the
bugs in our benchmark). Each of the examined SBFL formulas created critical ties for
more than half of the bugs, and on average, the ranks could potentially be improved

6



by around 3.5 positions by eliminating the ties. By using the call frequency-based tie-
breaking strategy, we achieved a significant reduction in both the size and the number of
critical ties in our benchmark. In 72-73% of the cases, the ties were completely eliminated,
the average reduction rate being more than 80%. In nearly three-quarters of the cases
(72–73%), the faulty element got the highest rank among the tie-broken code elements,
and here it improved its position by 59–74% on average.

The efficiency of all investigated SBFL formulas could be improved by using the pro-
posed tie-breaking strategy: the average improvement of rank values in the benchmark
was about two positions, and we observed improvement about 3-4 times more frequently
than disimprovement, such improvements being much higher as well. Considering the
Top-N categories, notable improvements could be observed: all Top-N categories showed
positive results (improvements in 36–44 cases), and at the same time, in only a few (2–3)
cases did Top-N categories worsen. We were able to increase the number of cases where
the faulty method became the top-ranked element by 23–30%.

In this chapter, the following points summarize my main contributions to the topic of
thesis point II.

• Providing the idea of using tie-breaking to improve the effectiveness of SBFL.

• Providing a thorough background on the problem of ties in SBFL.

• Gathering and discussing the related papers.

• Developing a tie-breaking method based on method call frequency to enhance the
performance of SBFL.

• Evaluating the experimental results of the proposed tie-breaking method.

The results of this chapter were published in:

• [P2] Qusay Idrees Sarhan, Bela Vancsics, and Arpad Beszedes. Method calls
frequency-based tie-breaking strategy for software fault localization. In 2021 IEEE
21st Inter- national Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 103–113, 2021.

Thesis Point III: Emphasizing SBFL Formulas with

Importance Weights

In Chapter 5 of the thesis, we enhanced SBFL by proposing the use of emphasis on
the failing tests that execute the program element under consideration in SBFL. We rely
on the intuition that if a code element gets executed in more failed test cases compared
to the other elements, it will be more suspicious and be given a higher ranking. This is
achieved by introducing a multiplication factor to SBFL formulas. This factor is called the
importance weight. This importance weight can be used without contextual information
and is given as the ratio of executed failing tests for a program element with respect
to all failing tests. Or, it can be used with contextual information and is given as the
ratio of covering failing tests over all failing tests combined with the so-called method call
frequency in these tests. Thus, we multiply each element’s suspicion score obtained by

7



an SBFL formula by this importance weight. In other words, a program element will be
more suspicious if it is affected by a larger portion of the failing tests.

The main features of the proposed approach are: (a) it can be applied to a wide range
of SBFL formulas without modifying a formula’s structure or its concept. (b) it solves
the issue of an unbalanced SBFL matrix in the sense that there are many more passing
tests than failing ones, and many formulas treat passing and failing tests similarly.

The results mentioned in this chapter show that both non-contextual and contextual
importance weights can improve the effectiveness of SBFL. However, the positive impact
of using the contextual importance weight is more obvious as it shifts several bugs to the
highest Top-N ranks, and thus improves the average ranks for all investigated formulas.
This encourages us to try other types of contextual information (rather than the method
call frequency in failed test cases) and other forms of importance weights in the future.

In this chapter, the following points summarize my main contributions to the topic of
thesis point III.

• Providing the idea of using importance weights to improve the effectiveness of SBFL.

• Gathering and discussing the related papers.

• Developing two methods based on importance weight. The first method improves
SBFL without using any contextual information and the second method improves
SBFL by using contextual information.

• Evaluating the experimental results of the proposed methods of importance weights.

The results of this chapter were published in:

• [P3] Qusay Idrees Sarhan. Enhancing spectrum based fault localization via em-
phasizing its formulas with importance weight. In 2022 IEEE/ACM International
Workshop on Automated Program Repair (APR), pages 53–60, 2022.

• [P4] Qusay Idrees Sarhan and Arpad Beszedes. Quality of Information and Com-
munications Technology, chapter Effective Spectrum Based Fault Localization Using
Con- textual Based Importance Weight, pages 93–107. Springer International Pub-
lishing, Cham, 2022.

Thesis Point IV: New Formulas for SBFL

In Chapter 6 of the thesis, we proposed a new SBFL ranking formula to automatically
lead developers to the locations of faults in programs. It is based on the intuition that
ties often happen because of shared ef and nf values, and in this case, more failing tests
(larger ef ) and/or fewer passing ones (smaller ep) will determine the outcome. Via an
evaluation across 297 different single-fault programs of Defects4J, the proposed formula is
shown to be more effective than all the selected SBFL formulas in this study. It approves
the average rank and the Top-N categories as well.

The effectiveness of SBFL could be improved by using the proposed new formula: the
average improvement of rank positions in the used benchmark was about 10 positions
overall. This indicates that the proposed formula could have a positive impact and en-
hances the results. Every Top-N category showed successful outcomes. Additionally, we

8



were able to raise the proportion of instances in which the faulty method was the highest-
ranked element by 13–23%. Another interesting finding is that in some cases we were able
to achieve 11% enabling improvement by moving 7–11 bugs from the “Other” category
into one of the higher-ranked categories. Such cases are now more likely to be discovered
than before.

Introducing new SBFL formulas is an interesting line of research. Sometimes we can
get good results from not-so-obvious formulas or a simple combination of ef , ep, nf , and
np. Therefore, we performed a more systematic approach to finding new formulas.

We proposed a systematic approach to search for new SBFL formulas using only the
four basic statistical numbers from the spectra. For this purpose, formula templates are
determined and the possible formulas are generated automatically. As a demonstration,
we used a formula template to systematically generate all formulas for that template,
then these were analyzed and their effectiveness was evaluated on the Defects4J dataset.
Interestingly, the analysis has shown that in theory several formulas generated from the
same template are equivalent to or should similarly rank elements to each other, while
the handling of special cases (like division-by-zero) can significantly influence the practical
performance of the formulas and thus the relations among them. In the aforementioned
preliminary study, we found formulas that outperformed some existing ones but failed to
achieve significant improvement over the most successful existing techniques. However,
since the template we used was very simple, this is not surprising.

Thus, we extended the effort to systematically search for SBFL formulas in [P6].
We defined new formula templates, which are more elaborate and can cover more existing
formulas. The results of our extended formula templates show that the proposed approach
led to new formulas (i.e., SGF-1 and SGF-2) that were not reported in the literature and
that outperformed many well-known existing ones. The two new formulas can improve the
performance of SBFL by reducing the ranks compared to most of the baseline formulas,
while the results are very similar to some of the existing ones. The two formulas produce
better results in mutually exclusive cases. The average improvement of rank positions in
the used benchmark was about 2 positions overall. The two new formulas also showed
improvements in the Top-N categories. Using SGF-1, we were able to increase the number
of cases where the faulty method became the top-ranked element by 2–8%, and by using
SGF-2 this rate was 13–21%. SGF-2 produced the most Top-1 elements overall. In some
cases, we were able to achieve 13% enabling improvement by moving 12–43 bugs from
the “Other” category into one of the higher-ranked categories by using the formula SGF-
1, while by using SGF-2 this rate was 12% (enabling improvements for 11–42 bugs). In
particular, formula SGF-2 performed very well in all measurements, and being surprisingly
simple, we think that it is very competitive to many previously advised and widely used
manually crafted formulas.

This proves that the concept is valid and research on systematic SBFL formula gen-
eration is a promising direction. Compared to the Genetic Programming (GP)-generated
approaches or Machine Learning (ML), our approach generates readable and explainable
formulas.

In this chapter, the following points summarize my main contributions to the topic of
thesis point IV.

• Providing the idea of introducing new formulas to improve the effectiveness of SBFL.

• Gathering and discussing the related papers.

9



• Developing several new formulas and comparing their effectiveness to the existing
formulas.

• Evaluating the experimental results of the proposed new SBFL formulas.

The results of this chapter were published in:

• [P5] Qusay Idrees Sarhan and Arpad Beszedes. Experimental evaluation of a new
ranking formula for spectrum based fault localization. In the 22nd IEEE Interna-
tional Work- ing Conference on Source Code Analysis and Manipulation (SCAM),
pages 276–280, 2022.

• [P6] Qusay Idrees Sarhan, Tamas Gergely, and Arpad Beszedes. New ranking
formulas to improve spectrum based fault localization via systematic search. In 2022
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pages 306–309, 2022.

• [P7] Qusay Idrees Sarhan, Tamas Gergely, and Arpad Beszedes. Systematically
generated formulas for spectrum-based fault localization. In Accepted for publi-
cation at the 6th International Workshop on the Next Level of Test Automation
(NEXTA), co-located with the 16th IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2023.

Thesis Point V: Supporting Tools for SBFL

In Chapter 7 of the thesis, we present “CharmFL”, an open-source fault localization
tool for Python programs. The tool is developed with some interesting features that can
help developers debug their programs by providing a hierarchical list of ranked program
elements based on their suspiciousness scores. Also, we present “SFLaaS”, a fault local-
ization tool for Python programs, which is provided in the form of software as a service.
It is implemented with several helpful and practical characteristics to aid developers in
debugging their programs. The applicability of both tools has been evaluated via different
use cases. The tools have been found to be useful for locating faults in different types of
programs and they are easy to use.

In this chapter, the following points summarize my main contributions to the topic of
thesis point V.

• Regarding the “SFLaaS” tool, I did the following:

– Developed the fault localization tool as a service to support SBFL for Python
developers.

– Performed the literature review of the currently available tools.

– Prepared the use cases of the tool.

• Regarding the “CharmFL” tool, I participated in the following:

– Developed the fault localization tool to support SBFL for Python developers.

– Performed the literature review of the currently available tools.

10



– Prepared the use cases of the tool.

The results of this chapter were published in:

• [P8] Qusay Idrees Sarhan, Attila Szatmari, Rajmond Toth, and Arpad Beszedes.
Charmfl: A fault localization tool for python. In 2021 IEEE 21st International
Working Con- ference on Source Code Analysis and Manipulation (SCAM), pages
114–119, 2021.

• [P9] Attila Szatmari, Qusay Idrees Sarhan, and Arpad Beszedes. Interactive fault
local- ization for python with charmfl. In the 13th International Workshop on
Automating Test Case Design, Selection and Evaluation (A-TEST), pages 33–36,
2022.

• [P10] Qusay Idrees Sarhan, Hassan Bapeer Hassan, and Arpad Beszedes. Poster:
Software fault localization as a service (sflaas). In Accepted for publication at
the Posters track of the 16th IEEE International Conference on Software Testing,
Verification and Validation (ICST), 2023.

• [P11] Qusay Idrees Sarhan, Hassan Bapeer Hassan, and Arpad Beszedes. Sflaas:
Software fault localization as a service. In Accepted for publication at the Tool Demo
track of the 16th IEEE International Conference on Software Testing, Verification
and Validation (ICST), 2023.

11



References

[1] Higor A. de Souza, Marcos L. Chaim, and Fabio Kon. Spectrum-based Software Fault
Localization: A Survey of Techniques, Advances, and Challenges. arXiv, pages 1–46,
2016.

[2] Mojdeh Golagha and Alexander Pretschner. Challenges of Operationalizing Spectrum-
Based Fault Localization from a Data-Centric Perspective. In IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pages 379–381, 2017.

[3] Jeongho Kim, Jonghee Park, and Eunseok Lee. A new hybrid algorithm for software
fault localization. In Proceedings of the 9th International Conference on Ubiquitous
Information Management and Communication, pages 1–8, 2015.

[4] Yui Sasaki, Yoshiki Higo, Shinsuke Matsumoto, and Shinji Kusumoto. SBFL-
Suitability: A Software Characteristic for Fault Localization. In Proceedings - 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 702–706, 2020.

[5] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A Survey on
Software Fault Localization. IEEE Transactions on Software Engineering, 42(8):707–
740, 2016.

[6] Abubakar Zakari, Shamsu Abdullahi, Nura Modi Shagari, Abubakar Bello Tambawal,
Nuruddeen Musa Shanono, Jaafar Zubairu Maitama, Rasheed Abubakar Rasheed, Al-
hassan Adamu, and Salish Mamman Abdulrahman. Spectrum-based Fault Localiza-
tion Techniques Application on Multiple-Fault Programs: A Review. Global Journal
of Computer Science and Technology, 20:41–48, 2020.

12



Összegzés

A szoftverhibák lokalizálása jelentős kutatási téma a szoftverfejlesztésben. Annak ellenére,
hogy az 1950-es évek végén kezdődött, a (szoftver)hibalokalizációs kutatások az utóbbi
évtizedekben egyre nagyobb figyelmet kaptak. Ezt tükrözi a technikák, eszközök és pub-
likációk számának növekedése. A fokozott figyelem fő oka a szoftverrendszerek méretének
drámai növekedése az általuk biztośıtott újonnan hozzáadott funkciók miatt. Ez egyben
e rendszerek komplexitásának növekedéséhez is vezetett. Ennek eredményeképpen több
hibát is jelentettek. Itt a szoftverhibák lokalizálása jó megközeĺıtés a hibák számának
csökkentésére és a szoftver minőségének biztośıtására. A jelen doktori értekezés célja a
spektrumalapú hibalokalizáció (SBFL), a legelterjedtebb hibalokalizációs technika hatéko-
nyságának jav́ıtása azáltal, hogy foglalkozik a technika által felvetett legfontosabb kih́ıvás-
okkal és problémákkal.

Ez a doktori értekezés három részből áll. Az első rész (1-2. fejezetek) munkánk
bevezető része, amely meghatározza a doktori értekezés célját és azokat az alapvető
defińıciókat, amelyek szükségesek a későbbi fejezetekben bemutatott tézispontok megértés-
éhez. A második rész (3-7. fejezetek) a tézispontokat tartalmazza, amely bemutatja
az SBFL hatékonyságának növeléséhez való hozzájárulásomat azáltal, hogy néhány fő
kih́ıvással és problémával foglalkozik. A harmadik rész (8. fejezet) a következtetések és a
jövőbeli munka része, amely lezárja a dolgozatot, és különböző utakat javasol a jövőbeli
kutatáshoz. Az általam elért és ebben a szakdolgozatban közölt tudományos eredményeket
több tézispontba csoportośıtottam, az alábbiakban bemutatottak szerint.

Az SBFL kih́ıvásainak szisztematikus áttekintése: A dolgozat 3. fejezetében
bemutatjuk a terület szisztematikus irodalmi áttekintését. Ennek eredményeképpen az
SBFL számos fontos kérdését és kih́ıvását azonośıtottuk és kategorizáltuk ebben a felmérő
tanulmányban. Minden kategóriában röviden bemutattuk a legfontosabb problémákat a
lehetséges megoldásokkal együtt. A következő fejezetekben tárgyalt ḱısérleti eredmények
ezen tanulmánynak a megállaṕıtásaira épültek.

Holtverseny-feloldás módszere az SBFL esetében: A 4. fejezetben javasoltunk
egy megoldást a programelemek közötti holtverseny megszüntetésére, amikor azokat egy
SBFL-képlet alapján rangsorolják. Az SBFL-ben az azonos gyanússági értékek az alka-
lmazott formulától függetlenül nagyon gyakoriak, és ezen holtversenyek megszüntetése
által a lokalizációs hatékonyság javulása várható. Javasoljuk a eljárásh́ıvási kontextu-
sok használatát az SBFL-ben a holtverseny feloldására. A h́ıvási vermek tartalmára
támaszkodunk, amelyből hasznos információk nyerhetőek ki a program futására vonatkozó-
an, és amelyek gyakran seǵıthetik a fejlesztőket a hibakeresésben. A különböző h́ıvási
vermekben előforduló metódusok gyakorisága határozza meg a kódelemek egymáshoz vis-
zonýıtott poźıcióját az azonos gyanússági érték esetén.

SBFL-képletek súlyozása fontossági súlyokkal: Az 5. fejezetben továbbfejlesztet-
tük az SBFL-t azzal, hogy az SBFL-ben a vizsgált programelemet végrehajtó hibás tesztek
súlyozását javasoltuk. Arra az intúıcióra támaszkodunk, hogy ha egy kódelemet a többi
elemhez képest több sikertelen tesztesetben hajtanak végre, akkor az gyanúsabb lesz,
és magasabb rangsorolást kap. Ezt úgy érjük el, hogy az egyes program-eljárások SBFL-
formulák alapján kiszámı́tott kezdeti gyanússági pontszámát megszorozzuk egy fontossági
súllyal, amely a módszer sikertelen tesztesetekben történő végrehajtásának arányát jelzi.

Új képletek az SBFL számára: A 6. fejezetben egy új SBFL rangsorolási for-
mulát javasoltunk. Ez azon az intúıción alapul, hogy a kötések gyakran a közös ef és nf
értékek miatt következnek be, és ebben az esetben a több sikertelen teszt (nagyobb ef )

13



és/vagy a kevesebb átmenő teszt (kisebb ep) határozza meg a végeredményt. A Defects4J
297 különböző egyetlen hibát tartalmazó programjának kiértékelésén keresztül a javasolt
képlet hatékonyabbnak bizonyul, mint a tanulmányban kiválasztott összes SBFL-képlet,
úgy az átlagos rangsor mint a Top-N kategóriák tekintetében.

Az új SBFL-formulák bevezetése érdekes kutatási irányvonal. Néha jó eredményeket
kaphatunk nem is olyan nyilvánvaló formulákból vagy a ef , ep, nf és np egyszerű kom-
binációjából. Ezért szisztematikusabb megközeĺıtést végeztünk az új formulák konstruálás-
ára.

Javasoltunk egy szisztematikus megközeĺıtést új SBFL-képletek generálására, amely
csak a spektrumokból származó négy alapvető statisztikai számot használja. Ehhez képlet-
sablonokat határozunk meg, és a lehetséges képleteket automatikusan generáljuk. Demon-
strációként egy képletsablon seǵıtségével szisztematikusan generáltuk az összes képletet
az adott sablonhoz, majd ezeket elemeztük és hatékonyságukat a Defects4J adathalmazon
értékeltük. Érdekes módon az elemzés azt mutatta, hogy elméletileg több, ugyanabból
a sablonból generált formula egyenértékű, vagy hasonlóan kell rangsorolni az elemeket
egymáshoz, mı́g a speciális esetek (például a nullával való osztás) kezelése jelentősen be-
folyásolhatja a formulák gyakorlati teljeśıtményét és ı́gy a köztük lévő kapcsolatokat.
A fent emĺıtett előzetes tanulmányban olyan formulákat találtunk, amelyek felülmúltak
néhány létező formulát, de nem sikerült jelentős javulást elérni a legsikeresebb létező tech-
nikákhoz képest. Ezért kiterjesztettük a módszerünket az SBFL formulák szisztematikus
keresésére [P6]. Új képletsablonokat definiáltunk, amelyek kidolgozottabbak és több létező
képletet képesek lefedni. A kibőv́ıtett képletsablonjaink eredményei azt mutatják, hogy
a javasolt megközeĺıtés olyan új képleteket eredményezett, amelyekről a szakirodalomban
nem számoltak be, és számos jól ismert létező képletet felülmúlt. Különösen az SGF-2
formula teljeśıtett nagyon jól minden mérésben, és mivel meglepően egyszerű, úgy gon-
doljuk, hogy nagyon versenyképes számos korábban javasolt és széles körben használt,
kézzel késźıtett formulával szemben.

Ez azt bizonýıtja, hogy a koncepció működőképes, és a szisztematikus SBFL-képletgene-
rálással kapcsolatos kutatás ı́géretes irány. A GP-generált megközeĺıtésekhez vagy az
ML-hez képest a mi megközeĺıtésünk olvasható és megmagyarázható formulákat generál.

Támogató eszközök az SBFL számára: A 7. fejezetben bemutatjuk a “CharmFL”
nýılt forráskódú hibalokalizációs eszközt Python programokhoz. Az eszköz számos hasznos
funkcióval rendelkezik, amelyek seǵıthetik a fejlesztőket programjaik hibakeresésében,
mivel a gyanússági pontszámok alapján rangsorolt programelemek hierarchikus listáját
nyújtja. Emellett bemutatjuk az “SFLaaS”-t, egy hibalokalizációs eszközt Python pro-
gramokhoz, amelyet szoftver mint szolgáltatás formájában nyújtunk. Számos hasznos
és praktikus tulajdonsággal van implementálva, hogy seǵıtse a fejlesztőket programjaik
hibakeresésében. Mindkét eszköz alkalmazhatóságát különböző felhasználási eseteken
keresztül értékeltük. Az eszközök hasznosnak bizonyultak a különböző t́ıpusú programok
hibáinak lokalizálására, és könnyen használhatóak.

14


