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Preface

As I remember, my connection to science goes way back to my early childhood. Although
I didn’t have access to computers back then, I clearly remember that as a child I was
constantly bombarding my parents with questions about everything. Also, to this day, every
family photo session brings up a picture of me fiddling with my grandparents’ radio when I
was just a few years old. As time went on, my interest became more and more focused on how
technical things around me worked. Another defining memory is that I played with LEGO
endlessly. First, I just followed the assembly instructions, but later, I let my imagination
run wild to create increasingly complex structures.

In primary school, my favourite subjects were always real subjects such as mathematics,
physics, and chemistry. Then, as a teenager, when I was introduced to computers and
computer science, I was immediately drawn to this world. Interestingly, I didn’t get into
programming until relatively late in life. It was in high school that I first learned how to
write programs. But it was a very defining moment because from then on I felt more and
more that it was what I really loved to do.

From there, it was a straight road to the university and later to becoming a Ph.D.
student, where – as a software engineer – I can fulfill my desire to be creative and build
complex systems, and – as a researcher – I can use my curiosity I had as a child, as well as
the many years of experience I had acquired by constantly asking questions and wondering
about how things work.

Ferenc Horváth, 2023
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1
Introduction

Code coverage measurement plays an important role in white-box testing, both in industrial
practice and academic research. Several areas are highly dependent on code coverage as well,
including test case generation, test prioritization, fault localization, and others. Out of these
areas, this dissertation focuses on two main topics, and the thesis points are divided into two
parts accordingly. The first part consists of one thesis point that discusses the differences
between methods for measuring code coverage in Java and the effects of these differences.
The second part focuses on a fault localization technique called spectrum-based fault local-
ization that utilizes code coverage to estimate the risk of each program element being faulty.
More specifically, the corresponding two thesis points are discussing the improvement of the
efficiency of spectrum-based approaches by incorporating external information, e.g., users’
knowledge, and context data extracted from call chains.

Put simply, code coverage is a test completeness measure that is used to express to
what portion of the implemented functionality has been exercised in terms of the number of
executed code elements during dynamic testing. One may argue, that if it is simply used as
an overall completeness measure, minor inaccuracies of coverage data reported by a tool do
not matter that much; however, in certain situations, they can lead to serious confusion. For
example, a code element that is falsely reported as covered can introduce false confidence in
the test, or it can misguide test case generation approaches.

During my work, I started looking into code coverage measurement issues for the Java pro-
gramming language, when me and my colleagues noticed that certain mutation-based meth-
ods were behaving rather strangely. For Java, the prevalent approach to code coverage mea-
surement is to use bytecode instrumentation due to its various benefits over source code instru-
mentation (instrumentation means placing probes into the program which will collect cov-
erage information during runtime). However, as we experienced, bytecode instrumentation-
based code coverage tools produce different results in terms of the reported items that are
covered concerning source code instrumentation-based tools. Since most of the applications
of code coverage operate on the source code, the latter category is treated as more precise,
and deviations from it can lead to issues in the interpretation of the data.
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CHAPTER 1. INTRODUCTION

This dissertation reports on an empirical study to compare the code coverage results
provided by two tools for Java coverage measurement on method level (one for each instru-
mentation type). In particular, we want to find out how much a bytecode instrumentation
approach is inaccurate compared to a source code instrumentation method. The differences
are systematically investigated both in quantitative (how much the outputs differ) and in
qualitative terms (what are the causes for the differences). In addition, the impact on test
prioritization and test suite reduction, a possible application of coverage measurement, is
investigated in more detail as well. We look at how smaller or greater differences in the
coverage data itself influence the application: whether a small deviation in the coverage
information causes a significant difference in the derived data or the opposite?

Fault localization is considered a difficult and time-consuming activity. Tool support
for automated fault localization in program debugging is limited because state-of-the-art
algorithms often fail to provide efficient help to the user. They usually offer a ranked list
of suspicious code elements, but the fault is not guaranteed to be found among the highest
ranks. In Spectrum-Based Fault Localization (SBFL) – which uses code coverage information
of test cases and their execution outcomes to calculate the ranks –, the developer has to
investigate several locations before finding the faulty code element. Yet, all the knowledge
they a priori have or acquire during this process is not reused by the SBFL tool.

This dissertation proposes an approach in which the developer interacts with the SBFL
algorithm by giving feedback on the elements of the prioritized list, called Interactive Fault
Localization (iFL). We exploit the contextual knowledge of the user about the next item in
the ranked list (e.g., a statement), with which larger code entities (e.g., a whole function)
can be repositioned in their suspiciousness. First, we evaluated the approach using simulated
users incorporating two types of imperfections, their knowledge and confidence levels. Then,
we empirically evaluated the effectiveness of the approach with real users in two sets of
experiments: a quantitative evaluation of the successfulness of using iFL, and a qualitative
evaluation of practical uses of the approach with experienced programmers.

In SBFL, program elements such as statements or functions are ranked according to a
suspiciousness score which can guide the programmer in finding the fault more efficiently.
However, such a ranking does not include any additional information about the suspicious
code elements. Although there have been attempts to include control or data flow infor-
mation in the process, these attempts did not succeed because of scalability issues to real
programs and real faults. This dissertation proposes to complement function-level spectrum-
based fault localization with function call chains – i.e., snapshots of the call stack occurring
during execution – on which the fault localization is first performed, and then narrowed down
to functions. Experiments using medium-sized real programs show that the effectiveness of
the process, in terms of localization expense, can be substantially improved concerning the
basic function-level approach with a manageable computation overhead.

1.1 Challenges
Challenge 1: Accuracy of code coverage measurement (C1). Many software
testing fields, like white-box testing, test case generation, test prioritization, and fault local-
ization, depend on code coverage measurement. If used as an overall completeness measure,
the minor inaccuracies of coverage data reported by a tool do not matter that much, how-
ever, in certain situations they can lead to serious confusion. For example, a code element
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that is falsely reported as covered can introduce false confidence in the test.
Challenge 2: Effects of code coverage differences (C2). When someone applies
a certain code coverage measurement method in an industrial or experimental setting it is
important to know how the chosen method influences the application. It is also crucial to
know whether these discrepancies imply any risks in the concrete situation, and how these
risks can be mitigated.
Challenge 3: Efficiency of fault localization (C3). Localizing faults in a program
is a typically complex and hard task of software development. Many approaches aim to
support the developers by automating different parts of the debugging process, however,
state-of-the-art methods often fail to provide efficient help to the users. For example, it is
not unusual that developers have to investigate several of the suggested locations in the code
before finding the faulty element.
Challenge 4: User centric fault localization (C4). There are relatively few fault
localization approaches that offer a seamless user experience. Most of the methods are limited
to experimental scenarios, and existing tools are often complicated to use. In addition, there
are hardly any tools that utilize the extra information which can be extracted from the
interaction between the user and the tool.

1.2 Structure of the Dissertation
The contributions presented in this dissertation are organized into two parts based on their
corresponding topic (code coverage measurement and fault localization) and are presented
in three chapters that are mostly aligned with challenges from Section 1.1.

• Thesis I considers the several aspects of code coverage measurement for Java pro-
grams. It elaborates on what type of inaccuracies one might experience while using
different measurement tools, and it presents a quantitative and qualitative analysis of
these cases. In addition, it discusses how and to what extent the identified flaws of
accuracy affect different applications like test case prioritization and test suite reduc-
tion.
This thesis is presented in Chapter 3, that is organized as follows. Section 3.2 gives
the background of code coverage and its usability in different applications, and lists
the risks of coverage measurement for Java and the relation to similar works as well.
Research aims are stated in more detail in Section 3.3. Section 3.4 describes the basic
setup for the experiments, the tools, and the subject systems, while Section 3.5 presents
the results of the empirical study. This section is organized according to our research
agenda: first, we concentrate on the quantitative and qualitative differences, and then,
we investigate the effect on the test case prioritization application. Finally, Section 3.6
summarizes our findings and provides a more general discussion before concluding in
Section 3.7.
Thesis I responds to Challenges 1 and 2 discussed in Section 1.1.

• Thesis II is about how the interactivity between the developers and a fault localization
tool can be utilized to improve the effectiveness and efficiency of the process. It pro-
poses a new approach in which the developers can interact with the fault localization

3
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algorithm by giving feedback on the suggested code elements. It presents the design
and results of the experiments that empirically evaluate this approach with simulated
and real users.
This thesis is presented in Chapter 4, that is organized as follows. Section 4.2 contains
an example to illustrate our approach, which is then discussed in detail in Section 4.3.
Section 4.4 summarizes the goals of the empirical assessment, while Sections 4.5 and 4.6
present the experimental results for the simulated and the real users, respectively. A
discussion of our findings is presented in Section 4.7 with possible threats to validity
in Section 4.8. Related works are overviewed in Section 4.9, before concluding with
Section 4.10.
Thesis II responds to Challenges 3 and 4 discussed in Section 1.1.

• Thesis III studies how existing SBFL algorithms can be extended with additional
information. It proposes a new approach which complements fault localization by
utilizing snapshots of call stacks which occur during the execution of a program as
extra information. Also, it describes how the corresponding experiments for empirical
evaluation were constructed, and it shows the extent of the achieved improvements
over traditional algorithms.
This thesis is presented in Chapter 5, that is organized as follows. Related work is
overviewed in Section 5.2, before presenting our approach in Section 5.3. Section 5.4
includes the description of the empirical study. The associated results are introduced
in Section 5.5, before concluding in Section 5.6.
Thesis III responds to Challenge 3 discussed in Section 1.1.
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2
Background

2.1 Code Coverage Measurement
The term code coverage in software testing denotes the amount of program code which is
exercised during the execution of a set of test cases on the system under test. This indicator
may simply be used as an overall coverage percentage, a proxy for test completeness, but
typically more detailed data is also available about individual program elements or test cases.
Code coverage measurement is the basis of several software testing and quality assurance
practices including white-box testing [66], test suite reduction [80], or fault localization [33].

2.1.1 Different Types and Levels of Code Coverage
Code coverage criteria are often used as goals to be achieved in white-box testing: test
cases are to be designed until the required coverage level has been reached according to the
selected criteria. However, many possible ways exist to define these criteria. They include
various granularity levels of the analysis (such as component, method, or statement) and
different types of “exercised parts of program code” (for instance, individual instructions,
blocks, control paths, data paths, etc). The term code coverage without further specification
usually refers to statement level analysis and denotes statement coverage. Statement coverage
shows which instructions of the program are executed during the tests and which are not
touched. Even at this level, there may be differences in what constitutes an instruction,
which complicates the uniform interpretation of the results. In Java, for instance, a single
source code statement is implemented with a sequence of bytecode instructions, and the
mapping between these two levels is not always straightforward due to various reasons such
as compiler optimization.

Another common coverage criterion is decision coverage, where the question is whether
both outcomes of a decision (such as an if statement) are tested, or if a loop is tested with
entering and skipping the body. Since this level of analysis deals with not only individual
instructions but control flow as well, coverage measurement at this level imposes more issues.
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For instance, Li et al. [53] showed that decision coverage at statement level for the Java
language is prone to differences between the source code and the bytecode measurements;
they found that practically the two results were hardly comparable. The main reasons for
this besides the different optimizations were the actual shortcuts built in the implementation
of the logical expressions: what seems to be a single logical expression in the source code
can be a very complex control structure in the bytecode.

These examples show that even within a specific language difficulties might occur in
defining and interpreting code coverage criteria. This may be even more emphasized at
more sophisticated levels such as control path or data-flow based coverages [63].

Coarser granularity level coverage criteria (such as methods, classes, or components) are
also common, for instance, when the system size and complexity do not enable a fine-grained
analysis. Also, often it is more useful to start the coverage analysis in a “top-down” fashion
by starting from the components that are not executed at all, extend the tests to cover that
component at least once, and then continue the analysis with lower levels. In particular,
procedure level coverage is a good compromise between analysis precision and the ability to
handle big systems.

In our research, we primarily deal with this granularity, that is, we treat procedures (Java
methods in particular) as atomic code elements that can be covered. At this level “covered”
means that the method has been executed at least once during the tests but we do not
care about what instructions, paths, or data have been exercised in particular. Contrary to
what would be expected, this granularity level also involves difficulties in the interpretation
of code coverage, which was the main motivation for our research. In particular, we found
significant differences between different code coverage measurement tools for Java configured
for method level analysis.

2.1.2 Applications of Code Coverage and Risks
Uncertainties in code coverage measurement may impose various risks. Here, we overview
the notable applications of code coverage measurement and how they may be impacted by
the uncertainties.

The most important application of code coverage measurement is white-box testing (often
referred to as structure-based testing). It is a dynamic test design technique relying on code
coverage to systematically verify the amount of tests needed to achieve a completeness goal,
a coverage criterion. This goal is sometimes expected to be a complete (that is, 100%)
coverage, however in practice, this high level is rarely attainable due to various reasons. As
white-box testing directly uses coverage data, it is obvious that inaccuracies in the coverage
results directly influence the testing activity. On the one hand, a small difference of one or
two percentages in the overall coverage value is usually irrelevant if that value is used to assess
the completeness. On the other hand, an item inaccurately reported to be covered provides
false confidence in the code during a detailed evaluation, and it may result in unnecessary
testing costs if an item is falsely reported to be uncovered.

Other applications of code coverage measurement include general software quality assess-
ment1, automatic test case generation [75, 21], code coverage-based fault localization [40,
109], test selection and prioritization [64, 28, 93], mutation testing [92, 39], and in general,
program and test comprehension with traceability analysis [72]. As in the case of white-box

1https://www.sonarsource.com/products/sonarqube/
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testing, the inaccuracy of code coverage measurement may affect these activities in different
ways.

Certain applications do not suffer that much if the coverage data is not precise. This
includes overall quality assessment, where the coverage ratio is typically used as part of a
more complex set of metrics for software assessment. Here, a difference of a few percent-
ages usually does not affect the overall score. Program comprehension (and general project
traceability) is supported by knowing which program code is executed by which test case.
Depending on the usage scenario of this information, inaccurate results may lead to either
false decisions or simply an increased effort to interpret the data.

The other mentioned applications have high significance in academic research, and the
accuracy and validity of the published results may be affected by the issues with the code
coverage data. In coverage-driven test case generation, for instance, the generation engine
can be confused by an imprecise coverage tool because a falsely reported non-coverage will
keep the generation algorithm trying to generate test cases for the program element.

As another example, in code coverage-based fault localization the program elements
are ranked according to how suspicious they are to contain the fault based on test case
coverage and pass/fail status. Wrong coverage data may influence the fault localization
process because if the faulty element is erroneously reported as not covered by a failing test
case, the suspicion will move to other (possibly non-defective) program elements.

2.1.3 Code Coverage Measurement for Java
Java itself is a popular language, and due to its language and runtime design, it can be more
easily handled as the subject of code coverage measurement than other languages directly
compiled for native code (like C++).

In addition, the increased demand for code coverage measurement in agile projects –
where continuous integration requires the constant monitoring of the code quality and re-
gression testing – has led to the appearance of a large set of tools for this purpose, many
of which are free of charge and open source. However, it seems that the working principles,
benefits, drawbacks, and any associated risks with these tools are not well understood by
practitioners and researchers yet.

In Java, two conceptually different approaches are used for coverage measurement. In
both approaches, the system under test and/or the runtime engine is instrumented, meaning
that “measurement probes” are placed within the system at specific points, which enables
the collection of runtime data but do not alter the behavior of the system. The first approach
is to instrument the source code, which means that the original code is modified by inserting
the probes, then this version is built and executed during testing. The second method
is to instrument the compiled version of the system, i.e., the bytecode. Here, two further
approaches exist. First, the probes may be inserted right after the build, which effectively
produces modified versions of the bytecode files. Second, the instrumentation may take place
during runtime upon loading a class for execution. In the following, we will refer to these
two approaches as offline and online bytecode instrumentation, respectively. Some example
tools for the three approaches are Clover2 (source code), Cobertura2 (offline bytecode) and
JaCoCo1 (online bytecode).

2http://cobertura.github.io/cobertura/
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Different possible features are available in tools employing these approaches, and they
also have various benefits and drawbacks. In Table 2.1, we overview the most important
differences. Of course, many of these aspects depend on the application context; here, we
list our subjective assessment. One benefit of bytecode instrumentation is that it does not
require the source code, thus it can be used e.g., on third party code as well. On the other
hand, it is dependent on the bytecode version and the Java VM, thus it is not as universal
as source code instrumentation. In turn, implementing bytecode instrumentation is usually
easier than inserting proper and syntactically correct measurement probe elements in the
source code. Source code instrumentation requires a separate build for the instrumented
sources, while bytecode instrumentation uses the compiled class files. However, the latter
requires the modification of the VM in the online version. Source code instrumentation
also allows full control over what is instrumented, while bytecode instrumentation is usually
class-based (whole classes are instrumented at once). Online bytecode instrumentation will
not affect compile time, but its runtime overhead includes not only the extra code execution
time, but (usually a one-time per class load) instrumentation costs too. Finally, the bytecode
based results are sometimes difficult to be tracked back to source code, while source code
instrumentation results are directly assigned to the parts of the source code [106, 58].

Table 2.1: Code Coverage Approaches for Java

Offline Online
Property Source code bytecode bytecode
Source code Needed Not needed Not needed
Special runtime Not needed Not needed Needed
Bytecode and VM Not dependent Dependent Dependent
Filtering control Complete Partial Partial
Separate build Yes No No
Results in source Yes Partially Partially
Compile time Impacted Impacted Not impacted
Runtime Impacted Impacted Highly impacted
Implementation Difficult Easy Easy

These numerous benefits of bytecode instrumentation (e.g., easier implementation, no
need for source code and separate build) are so attractive that tools employing this technique
are far more popular than source code instrumentation-based tools [106]. Furthermore, most
users do not take the trouble to investigate the drawbacks of this approach and the potential
impact on their task at hand. Interestingly, scientific literature is also very poor in this
respect, namely systematically investigating the negative effects of bytecode instrumentation
on the presentation of results in source code (see Section 3.2).

The important benefits of source code instrumentation might overweight bytecode in-
strumentation in some situations, which are visible from Table 2.1. The most important
benefit is that in the situations when the results are to be investigated on the source code
level (in most of the cases!), mapping needs to be done from the computations made on the
bytecode level. Due to the fact that perfect one-to-one mapping is generally not possible,
this might impose various risks.

8
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2.2 Fault Localization
Debugging and related activities are among the most difficult and time-consuming ones in
software development [112]. It needs to be performed in all phases of the lifecycle when a
defect is found, including initial development, during testing, when failures occur in a live
system, and when dealing with regression errors during evolution. Debugging activities may
easily range up to 50-75% of the total development cost [112]. This activity involves human
participation to a large degree, and many of its sub-task are difficult to automate.

A relevant debugging sub-task is fault localization (FL), in which the root causes of an ob-
served failure are sought. Fault localization is notoriously difficult, and any (semi)automated
method, which can help the developers and testers in this task, is welcome.

2.2.1 Spectrum-Based Fault Localization
There exist a class of approaches to aid FL which are popular among researchers, but have
not yet been widely adopted by the industry: Spectrum-Based Fault Localization (SBFL),
also known as Statistical Fault Localization (SFL) [97, 69, 89, 71, 77].

The basic intuition behind SBFL is that code elements (statements, blocks, paths, func-
tions, etc.) exercised by comparably more failing test cases than passing ones are considered
as “suspicious” (i.e., likely to contain a fault), while non-suspicious elements are traversed
mostly by passing tests. Suspiciousness can be expressed in different ways, usually assigning
one value to each code element (called the suspiciousness score), which can then be used to
rank the code elements. The idea is that by inspecting this list a developer would find the
fault near the beginning of the list, hence being more productive in localizing the fault.

The use of execution profiles – program spectra – for FL purposes has been proposed
for the first time in a study on the Y2K problem aimed to discover date-dependent com-
putations [77], although the first mention of the idea appeared already in 1987 [15]. SBFL
approaches are using detailed code coverage data i.e., the program spectra and test results
to approximate the location of faults with different special suspiciousness formulae.

Since the early years of fault localization, SBFL methods emerged to be one of the main
approaches to fault localization [96], and they are still finding their way to be employed in
practice [48, 90, 47, 2]. For instance, most studies are carried out using artificial faults [71],
and still the faulty element is usually placed far from the top of the rankings [102, 70]. Abreu
et al. [1] investigate the accuracy of SBFL approaches in practice. Le et al. [48] show that
there is a gap between theoretical and practical results.

Different types of program spectra have been proposed by Harrold et al. [33, 32] (hit-
based, count-based, counting branches, paths, dependencies, etc.), however, the most com-
monly adopted approach uses individual statements or functions as the basic program ele-
ments. Researchers proposed many different scoring mechanisms, but these are essentially all
based on four fundamental statistics: counts of passing/failing and traversing/non-traversing
test cases in different combinations [97, 71]. Popular suspiciousness scores are Tarantula [40],
Ochiai [2], and DStar [99], among others. A detailed analysis of suspiciousness formulae is
reported in the survey by Wong et al. [97], and in the study of Pearson et al. [71]. Xie et al.
[103] examined the equivalence and hierarchy between a number of formulae, while Yoo et al.
[111] showed that there does not exist a perfect scoring formula which outperforms known
techniques found by humans or even by automatic search-based methods.
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2.2.2 Limitations of SBFL Approaches
Recent studies highlighted some barriers to the wide adoption of the SBFL methods, in-
cluding a high number of suggested elements to investigate [102, 70], the applicability of
theoretical results in practice [48], little experimental results with real faults [71], validity
issues of empirical research [90], and so on. Kochhar et al. [47] performed a systematic
analysis of practitioners’ expectations in the field.

One reason why an SBFL formula may fail is what is referred to as coincidental correct-
ness [94, 60, 9]. This is the situation when a test case traverses a faulty element without
failing. This can happen quite often since not all exercised elements may have an impact on
the computation performed by a test case [61], and if there are relatively more such cases
than traversing and failing ones, the suspiciousness score will be negatively affected [60].

A further problem is that there are no guarantees that any scoring mechanism will show
a sufficiently good correlation between the score and the actual faults [97, 71, 103, 111]. One
additional reason an SBFL-based method may fail is that these approaches provide only the
ranked list of code elements, however, this gives little or no information about the context
of bugs which makes their comprehension a cumbersome task for developers.

2.2.3 Improvements to SBFL Approaches
One of the main reasons for the suboptimal performance of SBFL, in general, is coincidental
correctness. This has been the focus of several works [61, 95, 7]. Wang et al. [95] used
context patterns for common fault types, which can strengthen the correlations between
program failures and the coverage of faulty program entities. Bandyopadhyay and Ghosh
proposed an approach to assign weights to test cases for representing their importance in
FL based on the proximity to the failing test cases [7]. They also proposed an approach
to iteratively predict and remove coincidentally correct test cases based on user feedback in
small programs [8].

Xie et al. [103] present an informative overview of suspiciousness score assignment ap-
proaches. Yoo [108] presents an automatic approach to derive risk evaluation formulae using
genetic programming. Renieris and Reiss [76] use nearest neighbor measures of program
spectra for FL. Several researchers have used the learning to rank model [52], to combine
different FL algorithms [105, 6, 117].

Gong et al. [25] propose to complement SBFL techniques with the users’ feedback, show-
ing how this could produce significant improvements on the FL accuracy. Finally, to support
developers in visualizing the output of spectrum-based FL, Orso et al. [65] developed Gam-
matella, a tool that visualizes statement suspiciousness using color maps.

2.2.4 Non-SBFL Approaches
Other than statistical analysis of dynamic test case executions, there have been other ap-
proaches proposed for FL as well. These include slicing-based [116]; statistics-based [56,
59]; and mutation-based approaches [68, 67]. Machine learning and data mining techniques
are employed for FL as well [98, 13]. Researchers have also proposed model-based FL ap-
proaches [62, 100], as well as state-based approaches [113, 115]. We refer to the surveys of
Wong et al. [97] and Wong and Debroy [96] and Parmar and Patel [69].
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A recent paper by Zou et al. [117] presents an empirical comparison of different FL
families of algorithms that include SBFL, mutation-based approaches, program slicing, stack
trace analysis, predicate switching, and history-based approaches. They also combine these
mechanisms using learning to rank [52].

Other debugging techniques involve record-replay and user interaction [3, 46, 57, 79].
Finally, some debugging approaches are loosely related to fault localization, for exam-

ple the works of Zeller and Hildebrandt [113], Zeller [112], and Kiss et al. [45] on Delta
Debugging, as well as on algorithmic debugging and testing [22, 86]. Delta debugging sys-
tematically narrows down failure-inducing circumstances in order to isolate failure causes
automatically. In algorithmic debugging, the tester feedback is used to reduce the search
space of a faulty program element, but it requires a large execution tree to be constructed.
These approaches construct an execution tree, which is pruned based on the user feedback
about questions related to particular nodes of the tree.

2.2.5 Evaulation of Fault Localization
Several strategies have been proposed in the literature for measuring the effectiveness of
SBFL methods, but they are practically all based on looking at the rank position of the
actual faulty element within the list of all possible program elements. One strategy is to
express this as the number of elements that need to be investigated by the programmer
before finding the fault [97], and another is the opposite: elements that need not to be
investigated [76]. This is usually expressed in relative terms compared to the length of the
rank list (program size). However, Parnin and Orso [70] argued that absolute rankings are
more helpful in practical situations.

Another issue with these mechanisms is the handling of ties [104] because in many cases
different program elements may get assigned the same suspiciousness scores. Some ap-
proaches select the first (best case), last (worst case) or middle (expected case) element for
expressing this value, while others simply treat the elements with the same values as all
belonging to one position.

For measuring the effectiveness of fault localization, the strategy to look at “elements
that need to be investigated” using the “expected case” in the case of ties is implemented in
this dissertation. This is reported in a set of measures called Expense, with two variants: an
absolute one expressed in the number of code elements (E) and a relative version compared
to the length of the rank list (E ′). The following formulae express precisely how to calculate
these values (following [1]):

E = |{i|si > sf}| + |{i|si ≥ sf}| + 1
2 , E ′ = E

N
· 100% ,

where N is the number of code elements, for i ∈ {1, . . . , N} si is the suspiciousness score of
the ith code element and f is the index of the faulty code element.

Recent user studies report that developers tend to investigate only the top 5 or at most
the top 10 elements in the recommendation list provided by localization methods before
giving up [102, 47]. Hence, any improved rank position which is beyond these thresholds
will probably be less useful, no matter how much relative improvement they can achieve.
Therefore, we define the notion of enabling improvement, as an improvement in which the
traditional FL algorithm ranks the faulty program element at a position larger than 10 (or
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5), but the evaluated method reaches the faulty element in less than 10 (or 5) steps. This way
from a practically “hopeless” localization scenario the method enables the user to localize
the fault by inspecting the top elements in the list (the accuracy measure by Sohn and Yoo
[88] is similar). In this dissertation, the following concrete cases will be reported to express
enabling improvement:

• (10, ∞] → (5, 10] The base FL score is larger than 10 and the method under evaluation
reaches the fault in 5 to 10 steps.

• (10, ∞] → [1, 5] The base FL score is larger than 10 and the method under evaluation
reaches the fault within 5 steps.

• (5, 10] → [1, 5] The base FL score is between 5 and 10 and the method under evaluation
reaches the fault fault within 5 steps.

In addition, in some analyses, we also report (10, ∞] → [1, 10] that is a combination of the
first two cases from above.
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3
Effects of Measurement Methods on Java Code

Coverage and Their Impact on Applications

3.1 Introduction
In software development and evolution, different processes are used to keep the required
quality level of the software, while the requirements and the code are constantly changing.
Several activities aiding these processes require reliable measurement of code coverage, a test
completeness measure. As with any other test completeness measure, it does not necessarily
have a direct relationship to fault detection rate [36], however, code coverage is widely used
and relied upon in several applications. This includes white-box test design, regression
testing, selective retesting, efficient fault detection, fault localization, and debugging, as
well as maintaining the efficiency and effectiveness of the test assets in a long term [73].
Essentially, code coverage indicates which code parts are exercised during the execution of a
set of test cases on the system under test. The knowledge about the (non-)covered elements
will underpin various decisions during these testing activities, so any inaccuracies in the
measured data might be critical.

Software testers have long established the theory and practice of code coverage measure-
ment: various types of coverage criteria like statement, branch, and others [12], as well as
technical solutions including various kinds of instrumentation methods [106]. This work was
motivated by our experience in using code coverage measurement tools for the Java pro-
gramming language. Even in a relatively simple setting (a method-level analysis of medium
size software with popular and stable tools), we found significant differences in the outputs
of different tools applied for the same task. The differences in the computed coverages might
have serious impacts on different applications, such as false confidence in white-box testing,
difficulties in coverage-driven test case generation, and inefficient test prioritization, just to
name a few.

Various reasons might exist for such differences and surely there are certain issues that
tool builders have to face, but we have found that in the Java environment, the most no-
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table issue is how code instrumentation is done. The code instrumentation technique is
used to place “probes” into the program, which will be activated upon runtime to collect
the necessary information about code coverage. In Java, there are two fundamentally dif-
ferent instrumentation approaches: source code level and bytecode level. Both approaches
have benefits and drawbacks, but many researchers and practitioners prefer to use bytecode
instrumentation due to its various technical benefits [106]. However, in most cases the ap-
plication of code coverage is on the source code, hence it is worthwhile to investigate and
compare the two approaches. In earlier work [c3], we investigated these two types of code
coverage measurement approaches via two representative tools on a set of open-source Java
programs. We found that there were many deviations in the raw coverage results due to the
various technical and conceptual differences in the instrumentation methods. In this work,
we have fine-tuned our measurements based on the previous results, examined and described
the deviations in the coverage in more detail, and performed experiments and quantitative
analysis on the effect of the differences. Similar studies exist in relation to branches and
statements [53].

Extending the earlier experiment, this work reports on an empirical study to compare
the code coverage results provided by tools using the different instrumentation types for Java
coverage measurement on the method level. We initially considered a relatively large set of
candidate tools referenced in literature and used by practitioners, and then we started the
experiments with five popular tools which seemed mature enough and actively used and de-
veloped. Overall coverage results are compared using these tools, but eventually, we selected
one representative for each instrumentation approach to perform the in-depth analysis of the
differences (JaCoCo1 and Clover2). The measurements are made on a set of 8 benchmark
programs from the open-source domain which are actively developed real-size systems with
large test suites. The differences are systematically investigated both quantitatively (how
much the outputs differ) and qualitatively (what the causes for the differences are). Not only
do we compare the coverages directly, but investigate the impact on a possible application of
coverage measurement in more detail as well. The chosen applications are test prioritization
and test suite reduction based on code coverage information.

We believe that the two selected tools are good representatives of the two approaches
and being the most widely used ones, many would benefit from our results. A big initial
question was, however, if we could use the tools as the “ground truth” in the comparison.
Since most of the applications of code coverage operate on the source code, the source code
instrumentation tool Clover was the candidate for this role. Thus, we performed a manual
verification of the code coverage results provided by this tool by randomly selecting the
outputs for investigation while maintaining a good overall functional coverage of the subject
systems. We interpreted the results in terms of the actual test executions and program
behavior on the level of source code. During this verification, we did not find any issues,
which made it possible to use this tool as a ground truth for source code coverage results.

To perform the actual comparison of the tools, various technical modifications had to be
done on the tools and the measurement environment; for instance, to be able to perform
per-test case measurements and calculate not only overall coverage ratios. This enabled a
more detailed investigation of the possible causes for the difference.

Our results indicate that the differences between the coverage measurements can vary
1http://eclemma.org/jacoco/
2https://www.atlassian.com/software/clover/
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in a large range and that it is difficult to predict in what situations will be the risk of
measurement inaccuracy higher for a particular application. In summary, we make the
following contributions:

1. The majority of earlier work on the topic dealt with lower-level analyses such as state-
ments and branches. Instead, we performed experiments on the granularity of Java
methods in real-size Java systems with realistic test suites. We found that – contrary
to our preliminary expectations – even at this level there might be significant differ-
ences between bytecode instrumentation and source code instrumentation approaches.
Method level granularity is often the viable solution due to the large system size. Fur-
thermore, if we can demonstrate the weaknesses of the tools at this level, they are
expected to be present at the lower levels of granularity as well.

2. We found that the overall coverage differences between the tools can vary in both
directions, and in the case of seven out of the eight subject programs they are at most
1.5%. However, for the last program, we measured an extremely large difference of
40% (this was then attributed to the different handling of generated code).

3. We looked at more detailed differences as well with respect to individual test cases and
program elements. In many applications of code coverage (in debugging, for instance)
subtle differences at this level may lead to serious confusion. We measured differences
of up to 14% between the individual test cases, and differences of over 20% between the
methods. In a different analysis of the results, we found that a substantial portion of
the methods in the subjects was affected by this inaccuracy (up to 30% of the methods
in one of the subject programs).

4. We systematically investigated the reasons for the differences and found that some of
them were tool-specific, while the others would be attributed to the instrumentation
approach. This list of reasons may be used as a guideline for the users of coverage
tools on how to avoid or workaround the issues when a bytecode instrumentation-
based approach is used.

5. We also measured the effect of the differences on the application of code coverage to
test prioritization. We found that the prioritized lists produced by the tools differed
significantly (with correlations below 0.5), which means that the impact of the inac-
curacies might be significant. We think that this low correlation is a great risk: in
other words, it is not possible to predict the potential amplification of a given coverage
inaccuracy in a particular application. This also affects any related research which is
based on bytecode instrumentation coverage measurement to a large extent.

3.2 Related Work
There is a large body of literature on comparing various software analysis tools, for instance,
code smell detection [19], static analysis [18], and test automation [74], just to name a few.

Most of the works that compare bytecode and source code instrumentation techniques
focus on the usability, the operability, and the features of certain tools, e.g., [106, 58], but
the accuracy of the results they provide is less often investigated – despite the importance
and the possible risks overviewed above.
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Li et al. [53] examined the difference between source code and bytecode instrumenta-
tion considering branches and statements. They concluded that due to several differences
between the two methods, source code instrumentation is more appropriate for branch cov-
erage computation. We verify the differences on coarser granularity (on method level), and
how these differences impact the results of the further applications of the coverage.

Kajo-Mece and Tartari [43] evaluated two coverage tools (source code and bytecode
instrumentation-based ones) on small programs and concluded that the source code-based
one was more reliable for use in determining the quality of their tests. We also used Java
source code and bytecode instrumentation tools in our experiments but on a much bigger
data set in a more comprehensive analysis.

Alemerien and Magel [4] experimented to investigate how the results of code coverage
tools are consistent in terms of line, statement, branch, and method coverage. They com-
pared the tools using the overall coverage as the base metric. Their findings show that
branch and method coverage metrics are significantly different, but the statement and line
coverage metrics are only slightly different. They also found that program size significantly
affected the effectiveness of code coverage tools with large programs. They did not evalu-
ate the impact of the difference on the applications of code coverage. We investigated only
method-level coverages, but we did not only use overall coverage but analyzed detailed cov-
erage information as well. Namely, we computed coverage information for each test case and
method individually and analyzed the differences using this data.

Kessis et al. [44] presented a paper in which they investigated the usability of coverage
analysis from a practical point of view. They conducted an empirical study on a large
Java middleware application and found that although some of the coverage measurement
tools were not mature enough to handle large-scale programs properly, using the adequate
measurement policies would radically decrease the cost of coverage analysis, and together
with different test techniques, it could ensure better software quality. Although we are
not examining the coverage tools themselves, we rely on their produced results and cannot
exclude all of their features from the experiments.

This work is a follow-up to our previous work on the topic [c3], in which we investigated
bytecode and source code coverage measurement on the same Java systems we used in
this work. We found that there were many deviations in the raw coverage results due to
the various technical and conceptual differences between the instrumentation methods, but
we did not investigate the reasons in detail and how these differences could influence the
applications where coverage data was used.

There are many code coverage measurement tools for Java (e.g., Semantic Designs’ Test
Coverage3, Cobertura2, EMMA4, FERRARI [11], and others). In Section 3.4.2, we discuss
how we selected the tools for our measurements.

In this work, we consider test suite reduction and test prioritization, as the application of
code coverage. Yoo and Harman [107] conducted a survey on different test suite reduction and
prioritization methods among which coverage-based methods can also be found. The most
basic coverage-based prioritization methods, which were studied by Rothermel et al. [81],
are the stmt-total and stmt-addtl coverages. In our experiments, we applied these concepts
on the method level and referred to them as general, additional, and additional with resets.
One of the test prioritization algorithms we used in our experiments was optimized for fault

3http://www.semdesigns.com/Products/TestCoverage
4http://emma.sourceforge.net/
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localization, which is based on the previous work by Vidács et al. [93]. Fault localization
aware test suite reduction turned out to produce different results than fault detection aware
reduction, which optimizes code coverage.

3.3 Research Goals
Following earlier research on the drawbacks of bytecode instrumentation for Java code cover-
age on lower granularity levels [53], and addressing challenges listed in the previous sections,
the aim of our research is the following. We investigate in quantitative and qualitative terms
in what situations and to what extent Java method-level code coverage based on bytecode
instrumentation is different from coverage based on source code. We investigate the differ-
ences between the actual coverage information on a detailed level and determine the root
causes of these differences after a manual investigation of the source code of the affected
methods. In addition, we evaluate the impact of the inaccuracies on an application of code
coverage measurement, namely test prioritization, and test reduction. We assume that a
certain degree of the differences in the coverages may be reflected in a different degree of
inaccuracies of the application.

To achieve our goal, we consider several candidate tools and then conduct an empirical
study involving two representative tools, one with source code instrumentation and one with
online bytecode instrumentation. We then measure the code coverage results on a set of
benchmark programs and elaborate on the possible causes and impacts.

More precisely, our research questions are:

RQ3.1 How big is the difference between the code coverage obtained by an unmodified
bytecode-instrumentation-based tool and a source-code-instrumentation-based tool on
the benchmark programs?

RQ3.2 What are the typical causes for the differences?

RQ3.3 Can we eliminate tool-specific differences, and if we can, how big is the difference, –
which can be possibly attributed to the differences in the fundamental approach, that
is, bytecode vs. source code instrumentation – that remains?

RQ3.4 How big is the impact of code coverage inaccuracies on the application in test pri-
oritization, and test suite reduction?

In this work, we calculate and analyze coverage results on the method level. More pre-
cisely, the basic elements of coverage information are whether a specific Java method is
invoked by the tests or not, regardless of what statements or branches are taken in that
method. At first, this might seem too coarse a granularity, but we believe that the results
will be actionable due to the following.

In many realistic scenarios, coverage analysis is done hierarchically starting from the
higher-level code components like classes and methods. If the coverage result is wrong at
this level, it will be wrong at the lower levels too. Also, in the case of different applications,
unreliable results at the method level will probably mean similar (if not worse) results at the
level of statements or branches as well. Previous works have shown that notable differences
exist between the detailed results of bytecode and source code coverage measurements at
the statement and branch level [53] and that at the method and branch level the overall
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coverage values show significant differences [4]. So, this leaves the question of whether there
are notable differences in method-level coverage results as well open.

3.4 Description of the Experiment and Initial Mea-
surements

To answer the research questions outlined in the previous section, we conducted an empirical
study on eight open-source systems (introduced in Section 3.4.1) with code coverage tools
for Java employing both instrumentation approaches. Initially, we involved more tools, but
as Section 3.4.2 discusses, we continued the measurements with two representative tools. In
Section 3.4.3, we overview the measurement process and discuss some technical adjustments
we performed on the tools and subjects.

Apart from the coverage measurement tools, our measurement framework consisted of
some additional utility tools. The main tool we relied on was the SoDA framework [91].
For the representation of the coverage data in SoDA, the data generated in different forms
by the coverage tools were converted into the common SoDA representation, the coverage
matrix. Later, this representation was used to perform additional analyses. This framework
also contains tools to calculate statistics, produce graphical results, etc. SoDA includes the
implementation of the test case prioritization and the test suite reduction algorithms, which
we used for our Research Question 3.4. Apart from this, only general helping shell scripts
and spreadsheet editors have been used.

3.4.1 Benchmark Programs

For setting up our set of benchmark programs, we followed these criteria. As we wanted
to compare bytecode and source code instrumentation, the source code had to be available.
Hence, we used open-source projects, which also enables the replication of our experiments.
We used the Maven infrastructure in which the code coverage measurement tools easily
integrate, so the projects needed to be compilable with this framework. Finally, the subject
programs needed to have a usable set of test cases of realistic size, which are based on the
JUnit framework5 (preferably version 4). The reason for the last restriction was that the use
of this framework was the most straightforward for measuring per-test case method coverage.

We searched for candidate projects on GitHub6 preferring those that had been used in the
experiments of previous works. We ended up with eight subject programs which belonged to
different domains and were non-trivial in size (see Table 3.1). The proportion of the tests in
these systems as well as their overall coverage is varying, which makes our benchmark even
more diversified. Columns “All Tests” and “Excluded Tests” show the size of the test suites
and the number of test cases that were excluded (we discuss the technical modifications that
we performed in Section 3.4.3 in detail).

5http://junit.org/
6https://github.com/
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Table 3.1: Subject Programs. Metrics were Calculated from the Source Code (Generated
Code was Excluded)

Program Version LOC Methods All Tests Excluded Tests Domain
Checkstylea 6.11.1 114K 2 655 1 589 104 static analysis
Langb #00fafe77 69K 2 796 3 683 358 java library
Mathc #2aa4681c 177K 7 167 5 842 902 java library
Timed 2.9 85K 3 898 4 177 162 java library
MapDBe 1.0.8 53K 1 608 1 786 68 database
Nettyf 4.0.29 140K 8 230 4 066 247 networking
OrientDBg 2.0.10 229K 13 118 950 153 database
Oryxh 1.1.0 31K 1 562 208 0 mach. learning

ahttps://github.com/checkstyle/checkstyle/tree/checkstyle-6.11.1
bhttps://github.com/apache/commons-lang/commit/00fafe77
chttps://github.com/apache/commons-math/commit/2aa4681c
dhttps://github.com/JodaOrg/joda-time/releases/tag/v2.9
ehttps://github.com/jankotek/mapdb/releases/tag/mapdb-1.0.8
fhttps://github.com/netty/netty/releases/tag/netty-4.0.29.Final
ghttps://github.com/orientechnologies/orientdb/releases/tag/2.0.10
hhttps://github.com/OryxProject/oryx/releases/tag/oryx-1.1.0

3.4.2 Selection of Coverage Tools
Our goal in this research was to compare the code coverage results produced by tools em-
ploying the two instrumentation approaches. Hence, we wanted to make sure that the tools
selected for the analysis are good representatives of the instrumentation methods and that
our results are less sensitive to tool specificities. The comprehensive list of tools we initially
found as candidates for our experimentation is presented in Table 3.2.

We ended up with this initial list after reading the related works (some of them are
mentioned in Section 3.2) and searching for code coverage tools on the internet. We learned
that the area of code coverage measurement for Java was most intensively investigated in
the early 2000s. At that time there were several different tools available, but the support
for most of these tools has long ended. There were tools referred by related literature and
some webpages which we could not even find, so we did not include them in the table.

In the next step, this list was reduced to five tools, which are shown in the first five rows
of the table and marked in boldface. For making this shortlist, we established the following
criteria. First, we aimed to actively developed and maintained tools that were popular among
users. We measured the popularity of the tool candidates by reviewing technical papers, and
open-source projects, and utilizing our experiences from previous projects. The tools had
to handle older and current Java versions including new language constructs (support for at
least Java 1.7 but preferably 1.8 was needed). Finally, we wanted the tool to easily integrate
into the Maven build system7, as this is one of the popular build systems used in many
open-source projects. In addition, the ability of smooth integration reduces the chances
of unwanted changes in the behavior of the system and the tests used in the experiments.
Finally, among the more technical requirements for the tools was the ability to perform

7https://maven.apache.org/
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Table 3.2: Tools for Java Code Coverage Measurement

Supported
Java/JRE

Tool Approach Version Active Licence
Clover source 1.3+ present commercial/free
Cobertura bytecode 1.5–1.7 2015 free
JaCoCo bytecode 1.5+ present free
Jcov bytecode 1.0+ present free
SD Test Coverage tools source 1.1+ present commercial
Agitar(One) bytecode 1.6+ present commercial
CodeCover source 1.5–1.7 2014 free
Coverlipse bytecode 1.5 2009 free
EclEmma (JaCoCo-based) bytecode 1.5+ present free
Ecobertura (Cobertura-based) bytecode 1.5–1.7 2010 free
Emma bytecode 1.5 2005 free
Gretel (by Univ. of Oregon) bytecode 1.3+ 2003 free
GroboUtils bytecode 1.4 2004 free
Hansel (Gretel-based) bytecode 1.5 2006 free
InsECTJ bytecode 1.5 2003 free
Jcover both 1.2 – 1.4 2009 commercial
Jtest (by Parasoft) bytecode ? present commercial
JVMDI bytecode 1.4+ 2002 free
Koalog bytecode ? 2004 commercial
NetBeans Code Coverage Plugin bytecode 1.6 2010 free
NoUnit bytecode 1.5 2003 free
PurifyPlus bytecode 1.5+ present commercial
Quilt bytecode 1.4 2003 free
TestWorks bytecode 1.2+ present commercial

coverage measurement on a per-test basis.
We ended up with five tools to be used for our measurements meeting these criteria. Three

of them use bytecode instrumentation, and two are based on source code instrumentation. In
Section 2.1.3, we discussed three fundamental code coverage calculation approaches for Java.
However, in the case of bytecode instrumentation, there are no fundamental differences in
how and which program elements are instrumented, only the “timing” of the instrumentation
is different. Hence, we include source code instrumentation as one category, but we do not
consider both types of bytecode instrumentation separately in the following, where we discuss
the selected tools briefly

3.4.2.1 Source-Code-Based Instrumentation Tools

As mentioned earlier, there are comparably much fewer coverage tools employing this method.
Essentially, we could find only two active tools that are mature enough and meet our other
criteria to serve the purposes of our experiment. The tools selected for the source code
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instrumentation approach were Clover by Atlassian2 (version 4.0.6), and Test Coverage8 by
Semantic Designs (version 1.1.32).

Clover is the product of Atlassian, and it was a commercial product for a long time but,
eventually, it became open source. It handles Java 8 constructs, easily integrates with the
Maven build system, and can measure per-test coverage.

Test Coverage is a commercial coverage tool from Semantic Designs. Native, it works on
Windows, handles most Java 8 code, and can be integrated into the Maven build process as
an external tool. Per-test coverage measurement is not feasible by this tool, because it could
only be solved by the individual execution of test cases.

We performed some initial experiments to compare these two tools. The details and
results of this investigation can be found in Section A.1. Results showed that there were
only minimal differences in the outputs produced by the two tools, and their accuracy is
almost the same.

Finally, we chose Clover to be used in our detailed bytecode-source code measurements
because it has better Maven and per-test coverage measurement support, which made it eas-
ier to integrate it into our experiments. Also, Test Coverage had difficulties in handling some
parts of our code base, which would have required their exclusion from the experimentation.

To be able to use the source code instrumentation results as the baseline in our experi-
ments, we did a manual verification of the results of Clover by performing a selective manual
instrumentation. A subset of the methods were selected for each of our subject systems,
up to 300 methods per system. Then, we manually instrumented these methods and ran
the test suite. We interpreted the results in terms of actual test executions and program
behavior on the level of source code. When the results were checked, we found no deviations
between the covered methods reported by the manual instrumentation and by Clover. Thus,
we treat Clover as a “ground truth” for source code coverage measurement from this point
onward.

3.4.2.2 Bytecode-Based Instrumentation Tools

We found three candidate tools in this category that met the mentioned criteria: JaCoCo1

(version 0.7.5.201505241946), Cobertura2 (version 2.1.1), and JCov9 (version c7a7c279c3a6).
Contrary to the two previous ones, all three tools in this category are open-source. We per-
formed similar experiments to compare the results of these three tools, and investigated their
differences. These experiments and the results are detailed in Section A.2. We concluded
that the main cause of the differences was mostly due to the slightly different handling of
compiler-generated methods in the bytecode by the three tools (such as for nested classes).
Since the quantitative differences were at most 4% and they were considering mostly gener-
ated methods, which are less important for code coverage analysis, we concluded that one
representative tool of the three should be sufficient for further experiments.

We ended up using JaCoCo1 for the bytecode instrumentation approach thanks to its
popularity and slightly higher visibility and easier integration for use in our experiments than
the other two. This is a free Java code coverage library developed by the EclEmma team,
which can easily be integrated into a Maven-based build system. JaCoCo has plug-ins for

8http://www.semdesigns.com/Products/TestCoverage/JavaTestCoverage.html
9https://wiki.openjdk.org/display/CodeTools/jcov/

23

http://www.semdesigns.com/Products/TestCoverage/JavaTestCoverage.html
https://wiki.openjdk.org/display/CodeTools/jcov/


CHAPTER 3. EFFECTS AND IMPACTS OF MEASUREMENT METHODS

most of the popular IDEs i.e., Eclipse10, NetBeans11, IntelliJ12, for CI- and build systems
e.g., Jenkins13, Maven7, Gradle14 and also for quality assessment tools e.g., SonarQube1.
These plug-ins have about 20k installations/downloads per month in total. In addition,
several popular projects, e.g., Eclipse Collections15, Spring Framework16, and Checkstyle17

are utilizing JaCoCo actively. JaCoCo has up-to-date releases and an active community.

3.4.3 Measurement Process
To be able to compare the code coverage results and investigate the differences in detail,
we had to calculate the coverages with the different settings and variations of the tools. In
particular, we wanted the data from the two tools to be comparable to each other, and we
wanted to eliminate tool-specific differences. Hence, we essentially calculated different sets of
coverage data, which we will denote by JaCoCoglob, JaCoCo, JaCoCosync, Cloverglob, Clover,
and Cloversync, with explanations following shortly.

The experiment itself was conducted as follows. First, we modified the build and test
systems of each subject program to integrate the necessary tasks for collecting the coverage
data using the two coverage tools. This task included a small modification to ignore the test
failures of a module that would normally prevent the compilation of the dependent modules
and the whole project. This was necessary when some tests of the project failed on the
measured version, and in a few cases when the instrumentation itself caused some tests to
fail. Furthermore, to avoid any bias induced by “random” tests, we executed each test case
three times and excluded from the further analysis the ones that did not yield the same
coverage consistently every time. Eventually, we managed to arrive at a set of filtered test
cases that were common for both tools. Column “Excluded Tests” of Table 3.1 gives the
number of excluded tests for each subject.

Since we planned a detailed study on the differences between the tools, we wanted to
make sure that we could gather per-test case and per-method coverage results from the tools
as well (i.e., which test cases covered each method and the opposite). Clover could be easily
integrated into the Maven build process and there were no problems in producing the per-
test case coverage information we needed. JaCoCo measurements could also be integrated
into a Maven-based build system, but originally it could not perform coverage measurements
for individual test cases. So, to be able to gather the per-test case coverage information, we
implemented a special listener at first. Then, we configured the test execution environment
of each program to communicate with this listener. As a result, we were able to detect the
start and the end of the execution of a test case (tools and examples are available at18). From
the per-test case coverage, we then produced a coverage matrix for each program, which is
essentially a binary matrix with test cases in its rows, methods in the columns, and 1s in the
cells if the given method is reached when executing the given test case. From this matrix,

10https://www.eclipse.org/
11https://netbeans.apache.org/
12https://www.jetbrains.com/idea/
13https://jenkins.io/
14https://gradle.org/
15https://www.eclipse.org/collections/
16https://spring.io/projects/spring-framework/
17https://checkstyle.sourceforge.io/
18https://github.com/sed-szeged/soda-jacoco-maven-plugin
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we could easily compute different kinds of coverage statistics including per-test case and
per-method coverage.

Due to the mentioned extension of the JaCoCo measurements, we essentially started with
two different kinds of JaCoCo results: the original one without test case separation, which
we will denote by JaCoCoglob, and the one with the special listener denoted by JaCoCo.
Theoretically, there should be no differences between the two types of measurements, but
since we noticed some, we investigated their amount and causes. Table 3.3 shows the two
overall coverage values for each program in columns two and three, with the differences shown
in the fourth column. It can be observed that JaCoCo results are always somewhat smaller
than the JaCoCoglob measurements. The difference is caused by executing and covering some
general utility functions (such as the preparation of the test execution) in the unseparated
version during the overall testing, but these cannot be associated with any of the test cases.
Since these methods have no covering test cases assigned, when we summarize the coverage
of all test cases, the methods remain uncovered. Note, that Clover does not suffer from this
issue as it originally produces per-test case results.

Table 3.3: Effect of Technical Setup on Overall Coverage Values

Program JaCoCoglob JaCoCo Difference Cloverglob Clover Difference
Checkstyle 53.85% 53.77% -0.08% 93.82% 93.82% 0.00%
Lang 93.29% 92.92% -0.37% 93.28% 93.28% 0.00%
Math 85.59% 84.92% -0.67% 84.65% 84.65% 0.00%
Time 91.36% 89.52% -1.84% 89.94% 89.94% 0.00%
MapDB 79.65% 74.64% -5.01% 76.06% 76.06% 0.00%
Netty 47.41% 40.92% -6.49% 46.66% 40.18% -6.48%
OrientDB 38.40% 27.01% -11.39% 39.84% 28.01% -11.83%
Oryx 29.62% 29.51% -0.11% 27.51% 28.75% +1.24%

Another technicality with the Clover tool had to be addressed before moving to the
experiments themselves. Namely, for handling multiple modules in projects we had two
choices with this tool: either to integrate the measurement on a global level for the whole
project or to integrate it individually in the separate sub-modules (this configuration can
be performed in the Maven build system). Since JaCoCo follows the second approach, we
decided to configure Clover individually for the sub-modules as well. These measurements
will be denoted simply by Clover and will be used subsequently.

Three of the eight subject systems (Netty, OrientDB, and Oryx) include more than one
sub-module, so this decision affected the measurement in these systems. To assess how
much the handling of sub-modules differs from the other approach, we performed global
measurements as well (denoted by Cloverglob), whose results can be seen in the last three
columns of Table 3.3. Cloverglob measurements typically include a smaller number of covered
elements than Clover, but the coverage itself can be bigger, which is due to the different
number of overall recognized methods. We will elaborate on the differences caused by sub-
module handling in detail in Section 3.5.2.
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3.5 Results
The experiment results presented in this section follow our RQs from Section 3.3. As dis-
cussed in Sections 2.1.3 and 3.4.2, we treat source-code-based instrumentation as more suit-
able for source code applications and Clover results as the ground truth, hence JaCoCo
results will be compared to Clover, serving as the reference.

3.5.1 Differences in Unmodified Coverage Values
Our first research question dealt with the number of differences we can observe in the overall
coverage values calculated by the two tools. In this phase, we wanted to compare the raw,
unmodified data from the tools “off the shelf”, because this could reflect the situations users
would experience in reality as well. However, as explained in Section 3.4.3, we needed to
perform a modification of the tool execution environment to enable per-test case measure-
ments, which caused slight changes in the overall coverages. In this section, we rely on this
modified set of measurements, which is denoted simply by JaCoCo and Clover.

3.5.1.1 Total Coverage

First, we compared the overall method-level coverage values obtained for our subject pro-
grams, which are shown in Table 3.4. JaCoCo and Clover results are shown for each program,
along with the difference in the coverage percentages. Coverage ratios are given in percent-
ages of the number of covered methods from all methods recognized by the corresponding
tool.

Table 3.4: Overall Coverage Values for the Unmodified Tools

Program JaCoCo Clover Difference
Checkstyle 53.77% 93.82% -40.05%
Lang 92.92% 93.28% -0.36%
Math 84.92% 84.65% +0.27%
Time 89.52% 89.94% -0.42%
MapDB 74.64% 76.06% -1.42%
Netty 40.92% 40.18% +0.74%
OrientDB 27.01% 28.01% -1.00%
Oryx 29.51% 28.75% +0.76%
Average 61.65% 66.84% -5.19%

Excluding the outlier program Checkstyle, the differences between the tools range in a
relatively small interval, from -1.42% to 0.76%. In the following sections, we seek the reasons
for the differences, and we will explain the outlier in Section 3.5.2.4.

3.5.1.2 Per-Test Case Coverage

While Table 3.4 presents the overall coverage values produced by the whole test suite, the
coverage ratios attained by the individual test cases might show another range of specific
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differences. Table 3.5a contains statistics about the coverages for the individual test cases
for JaCoCo, and Table 3.5b shows similar results for Clover. (Coverage is again the number
of covered methods relative to all methods). This includes minimum, maximum, median,
and average values with standard deviation. In Table 3.5c the difference in the average
values between the two tools is shown (positive values denote bigger average coverage values
for Clover). It can be observed that Checkstyle reflects the high global difference between
Clover and JaCoCo in the per-test case results too, although not as emphasized as in the
global case. Interestingly, in the case of MapDB, Netty, and Oryx the average individual
differences between Clover and JaCoCo have the opposite sign than the global differences.

Note, that it is not obvious how individual coverage differences imply global coverage
differences and vice versa. Individual coverages could differ greatly but the overall coverage
is not changed. For example, one test case is enough for a method to be reported as covered,
and if one instrumentation technique reports a hundred covering test cases while the other
technique reports only one, the global coverage will not change only the individual ones.
Similarly, low average individual differences might result in a high global difference; if many
test cases have only one method which is reported differently, and these methods are uniquely
covered by those test cases, the small individual differences will sum up in a high global
coverage difference.

An even more detailed way to compare the per-test case coverages is by investigating
not only the overall coverage ratios but the whole coverage vector, i.e., the row vector of
binary values from the coverage matrix for the corresponding test case. Figure 3.1 shows
the analysis of the difference between the corresponding coverage vectors produced by the
two tools. The difference was computed as the Hamming distance normalized to the vector
lengths. Note, that the two tools may recognize a different number of methods (more on this
in the next section), so in these cases, the vectors were padded with no-coverage marks for
the missing methods. Then, the distribution of the obtained differences was calculated and
shown as a histogram. The x and y axes of the graphs show the ranges of differences (size
ranges are 1%), and the number of cases (relative to all cases) for the given difference range
respectively. As expected, a lot of small differences occurred. In particular, a significant
portion of the vectors had 0 differences. On the other end, none of the programs had
vectors with Hamming distance values larger than 20%. Hence, to ease readability, we omit
the values that were 0 or larger than 20% from the diagrams and show the corresponding
numbers instead in the top right corner of the graphs.

There are two interesting results here. The Hamming distances of MapDB have a differ-
ent distribution than the other programs (the differences go up to 14% with this program),
and not surprisingly, it is also reflected in the higher average per-test case differences. This
shows that while differences would occur in either direction, in most of the cases the JaCoCo
coverage turns out to be higher than the Clover result (in contrast to the others, where on
average Clover reports higher coverage). The second interesting observation is that Check-
style behaves differently than the other programs: the high average per-test case difference
measured for this program (1.64%) is not observable from the Hamming distances (more
than 90% of the test cases show no difference and the others are below 1%). This seems to
be inconsistent at the first sight. However, as we will explain in Section 3.5.2.4, Checkstyle
shows a significant difference in the number of methods detected by the two instrumentation
techniques. Thus, the average coverage values for JaCoCo and Clover used significantly dif-
ferent denominators, while during Hamming distance computation a common denominator
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Figure 3.1: Relative Hamming distances of test case vectors (JaCoCo vs. Clover)
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Table 3.5: Per-Test Case Coverages

(a) JaCoCo Results

Program Minimum Maximum Median Average Deviation
Checkstyle 0.00% 15.87% 4.11% 3.02% 2.36%
Lang 0.00% 3.10% 0.20% 0.61% 0.74%
Math 0.00% 4.34% 0.26% 0.47% 0.54%
Time 0.00% 8.84% 1.24% 1.62% 1.37%
MapDB 0.00% 20.86% 6.28% 7.67% 5.39%
Netty 0.00% 3.43% 0.24% 0.32% 0.29%
OrientDB 0.00% 9.40% 0.22% 0.58% 1.20%
Oryx 0.00% 2.05% 0.33% 0.45% 0.40%

(b) Clover Results

Program Minimum Maximum Median Average Deviation
Checkstyle 0.00% 30.13% 6.21% 4.66% 3.65%
Lang 0.00% 2.93% 0.21% 0.64% 0.76%
Math 0.00% 4.34% 0.25% 0.47% 0.55%
Time 0.00% 9.93% 1.23% 1.64% 1.39%
MapDB 0.00% 22.08% 6.09% 7.19% 6.08%
Netty 0.00% 3.69% 0.26% 0.37% 0.33%
OrientDB 0.00% 9.88% 0.24% 0.62% 1.28%
Oryx 0.00% 1.79% 0.38% 0.48% 0.40%

(c) JaCoCo to Clover Average Difference

Program Average Difference
Checkstyle +1.64%
Lang +0.03%
Math 0.00%
Time +0.02%
MapDB -0.48%
Netty +0.05%
OrientDB +0.04%
Oryx +0.03%

was used and this caused the observed difference.

3.5.1.3 Per-Method Coverage

In the previous experiment, we investigated the coverage from the test case dimension. In
this one, we did the same from the method dimension. The distributions of the Hamming
distances were calculated similarly to the per-test case analysis. The results in Figure 3.2
show a similar overall picture to the per test-case analysis. Therefore, we used the same
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method to exclude and emphasize the differences larger than 20% or equal to 0. The distri-
bution of the distances and the average per-test case coverage values seem to be unrelated.
However, Checkstyle and MapDB behave differently than the other programs in this case,
too. The high average per-test case difference measured for Checkstyle is not observable
from the Hamming distances, while the high distances in the case of MapDB result in a
relatively high average difference.

In this case, we performed another, slightly different analysis. For each method, we
recorded how many of the test cases cover that method according to the two tools. Then,
we counted the number of the methods for which the number of the covering test cases was
equal, and how many times one or the other tool reported this differently. This kind of an
analysis is useful because it helps to find out the number of situations when the methods are
found falsely (not) covered, which may lead to confusion in certain applications.

When we compared the “number of covering test cases”, we identified three kinds of
differences. First, JaCoCo and Clover recognized different sets of methods, for which the
reasons will be explained in Section 3.5.2.4. Second, for some of the methods recognized
by both approaches, Clover reported at least one covering test case but JaCoCo did not,
and vice versa. The third kind of difference is when both tools reported that a method was
covered, but by a different number of test cases. Figure 3.3 shows the associated results. In
particular, the percentage of the methods is shown for each program (with respect to the
total number of methods recognized by any of the tools) for the following cases: there is
no difference in the covering sets of test cases, and either Clover or JaCoCo reports more
covering test cases. In the latter category, all three kinds of differences from above are
counted together.

An ideal case would be if only Equals is present, which would mean that the two tools
completely agree on the coverages. However, we can observe that the situation is quite
different. First, many methods are not recognized by the Clover tool, which can be attributed
to various reasons but mostly to the generated code. A notable outlier is Checkstyle with
55% of such methods, the others are below 15%.

Next, as can be seen in Table 3.6, there are only a few methods for which Clover and
JaCoCo do not agree in the coverage fact (covered by at least one test case) while both
recognize the method (“Czero” and “Jzero” columns). We investigated all these 220 methods
manually to find out the reasons for the difference (see Section 3.5.2.4). The other two
columns report on the cases when the number of covering test cases was not zero but different.
Column “CltJ” means “Clover reports less than JaCoCo”, while “JltC” is “JaCoCo reports
less than Clover”. A significant portion of the methods in the subjects was affected by the
inaccuracy to some extent (nearly 30% for MapDB and over 11% for Time).

Answer to RQ3.1: The detailed per-test case and per-method measurements, when
compared to the overall coverage ratios, may show quite different trends. In some cases,
the overall ratios are reflected in the detailed data, but not necessarily: a high overall
difference is often caused by a little difference on a detailed level, and the opposite. In other
words, by observing a certain overall level of inaccuracies, we cannot predict the differences
on the more detailed levels, and consequently, the effect on possible applications.
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Figure 3.2: Relative Hamming distances of code-element vectors (JaCoCo vs. Clover)
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Figure 3.3: Summary of differences in the per-method coverage

Table 3.6: Differences in Per-Method Coverages of Code Elements of JaCoCo and Clover

Program Czero CltJ JltC Jzero
Checkstyle 1 9 16 0
Lang 0 21 131 5
Math 19 297 239 7
Time 0 358 86 2
MapDB 7 450 25 2
Netty 91 300 466 76
OrientDB 1 104 32 5
Oryx 4 8 1 0

3.5.2 Causes of Differences
In this section, we address the possible causes for the differences we observed and presented
in the previous section. We used manual inspection, and carefully examined the differences
between the coverage results reported by JaCoCo and Clover. Due to their large number, we
could not look into each difference, instead, we manually selected the typical cases making
sure that each system and module was sufficiently covered by our investigation. We also made
sure to investigate all of the most problematic cases shown in columns “Czero” and “Jzero”
of Table 3.6. We involved the original and instrumented versions of the source code and the
bytecode as well. In addition, we examined other artifacts like build configuration files to
reveal additional factors that could be the cause of differences. The work was performed by
three authors of the paper, first by dividing the cases equally and performing the inspection
individually. Then, each result was cross-validated by at least one of the other authors
to ensure consistency of the results. Altogether, we manually investigated several hundred
individual methods and test cases one by one during this work. Finally, we were able to
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identify a set of common reasons, which we overview in the following.

3.5.2.1 Cross-Sub-Module Coverage

In the case of projects consisting of multiple sub-modules, Clover and JaCoCo work differ-
ently. Clover first instruments the whole source, thus, it can report cross-module coverage.
On the other hand, JaCoCo concentrates on the tested module and does not instrument
other modules when it is tested, thus it cannot report a cross-module coverage. Consider
Figure 3.4 for illustration. Let the system have three sub-modules A, B, and C, which define
their dependencies and build processes including unit tests. In the example, modules A and
C include test cases, while module B does not. The arrows on the figure indicate the possible
calls from tests to non-test methods and between non-test methods. During the build (and
test phase) of module C, module A is treated as an “external” dependency, which prevents
JaCoCo from instrumenting and measuring the coverage of the methods of A (along the gray
edges starting from module C ). Thus, it only considers a method of module A covered if the
method is invoked from the tests of module A (along the black edges). On the other hand,
Clover aggregates the coverage among all modules, so if a method from A is used in a test
in C (through some gray edges), Clover considers the method as covered. These different
behaviors can lead to differences in the global coverage of the projects. Our subjects Netty,
OrientDB, and Oryx are examples of multiple-module projects. The other five programs are
single-module projects.

testsA testsC
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Figure 3.4: Illustration of problems with sub-modules

Note, that although we investigated only Maven-based projects in our experiments, we
think that similar problems may occur in other build configuration systems as well.

3.5.2.2 Untested Sub-Modules

In the case of JaCoCo, if a module does not have any tests its methods will not be recognized.
Consider again Figure 3.4, where module B does not have any tests, thus JaCoCo will not be
executed for it (grayed in the figure). Consequently, the methods of B will not be recognized
and they will be missed from the set of all methods of the project. Clover, on the other
hand, correctly determines the set of all methods across all sub-modules and will include
methods of modules A, B, and C.
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3.5.2.3 Test Case Preparation and Cleanup

Some test cases might need preparation or cleanup, and this is common in some programs.
Technically, this is usually implemented as setup and teardown methods (annotated by
@Before, @BeforeClass, @After, or @AfterClass in JUnit) associated with a test class or a
set of test methods. These are executed before/after a set of test cases or before/after each
test case that requires them. In the JaCoCo measurement architecture, these are counted as
part of the test cases, i.e., all the methods executed during these setup/teardown phases are
reported as covered by the corresponding test cases. On the contrary, Clover does not treat
setup and teardown as an integral part of the test case, and as a consequence, if a method
is covered only during the setup or teardown phase of a test case, it will not be assigned to
the test case.

3.5.2.4 Recognized Method Sets

In addition to the previous three cases, a further inaccuracy exists between the JaCoCo
and Clover results regarding the method sets because the set of methods detected from the
source code and the bytecode can differ. There are many reasons for this; some of them
are the inherent problems of the measurement and some of them are tool-specific. Table 3.7
introduces our measurements in this regard (see also Figure 3.3). The second column shows
how many methods are recognized by both tools, and how many are recognized only by
Clover or JaCoCo, which are given in the third and fourth columns, respectively. The last
column contains the sum of these three values, i.e., the total number of methods recognized
by Clover and JaCoCo together.

Table 3.7: Number of All Methods

Program Both Clover Only JaCoCo Only Total
Checkstyle 2 653 2 3 263 5 918
Lang 2 783 13 154 2 950
Math 7 080 87 221 7 388
Time 3 884 14 76 3 974
MapDB 1 585 23 150 1 758
Netty 8 195 35 1 297 9 527
OrientDB 13 097 21 1 306 14 424
Oryx 1 560 2 244 1 806

Observe that several methods are recognized only by Clover or JaCoCo. The second
group is not surprising because we expected in advance a relatively large number of generated
methods in the bytecode (due to the necessary mechanisms of the Java language, on which
we will elaborate shortly). However, we were somewhat surprised to see that some methods
were recognized only by Clover. This section also investigates the reasons for this difference.
In any case, the impact of the difference in the recognized method sets can be significant.
The results from Section 3.5.1 were all produced for the two tools which were based on a
different total number of methods. This makes difficult, for instance, the comparison of the
overall coverage ratios because they involve different denominators for the two tools. The
actual causes of the different method sets are overviewed below.
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Test methods Unit tests themselves should not be investigated for coverage, hence all
methods of unit test classes needed to be excluded from further analysis. JaCoCo relies on
the project description to determine the test methods. On the other hand, Clover tries to
determine test methods by checking the class and method names, and in most cases this
is reliable. However, in some cases when the test class names did not follow the naming
conventions, Clover misclassified the tests as regular methods.

Compiler-generated code The difference in favor of JaCoCo consisted of various meth-
ods generated by the Java compiler, e.g., default constructors (if they were not given in the
source), <clinit> methods, and access methods in the case of some nested class operations.
Generated methods are considered for the coverage analysis by most bytecode instrumenta-
tion tools – including JaCoCo, however, a source-code-based tool like Clover may not include
them. This issue results in additional methods appearing in bytecode coverage results, which
can increase or decrease the overall coverage value.

Generated code All programs we investigated included code constructs that result in
compiler-generated methods, which are not visible in source code, only in bytecode (e.g.,
default constructors and initializers). On the other hand, some projects generate a portion
of the source code of the application on-the-fly using some external tools like ANTLR, or a
configuration setting. In particular, most of the big differences between JaCoCo and Clover
results of Checkstyle were caused by this reason (see Table 3.4). The two tools handle this
kind of code differently: while JaCoCo includes them in the same manner as any other regular
code, Clover excludes them from the analysis. Since the tests of Checkstyle do not cover any
of the generated code, the result is that JaCoCo uses a larger denominator than the other tool
with a similar amount of covered elements in the nominators. In general, instrumentation
tools may handle this situation differently, but usually, they can be configured to consider
the generated section of the source code as part of the code base.

3.5.2.5 Instrumentation

We found that in some cases the instrumentation itself modified the behavior of the tests,
which might have influenced the list of executed methods. An example is in the Time
program, where two specific test cases failed after being instrumented by Clover. This
is because the tests utilize Java reflection to query the number of nested classes of the
tested class, and – as Clover implements coverage measurements and test case detection by
inserting nested classes into the examined class – these two tests failed on assertions right
at the beginning of the test case. Similar failures occurred in the Checkstyle project as well,
where two of the test cases check whether the classes have a fixed number of fields. However,
with the additional fields that Clover inserts in the classes, these assertions fail.

3.5.2.6 Exception Handling During Coverage Measurement

When JaCoCo instruments the bytecode, it inserts probes into strategic locations by an-
alyzing the control flow of all methods of a class. If the control flow is interrupted by an
exception between two probes, JaCoCo will not consider the instructions between the probes
to be covered. The reason is that if a method throws an exception at the beginning of the
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caller method, JaCoCo marks the caller method as not covered because it misses the instru-
mentation probe on the exit point of the method. However, the instrumentation strategy of
Clover can handle this situation and it will mark the caller method as covered because it sim-
ply considers the probe at the entry point of the method. Another instance of this issue was
that JaCoCo computes lower coverage for tests that are expected to throw some exceptions
(i.e., annotated as @Test(expected=SomeException). It is related to the above-mentioned
exception handling, and it is a known issue of JaCoCo.

3.5.2.7 Name Encoding

A common reason for the differences was related to enums, anonymous and nested classes.
The problem is that in some cases a method of such a class may get additional parameters
when compiled to bytecode to access the members of its enclosing class. In other cases, the
methods even lost some of their source code parameters. This resulted in different signatures
of the source code and bytecode instances of the same method.

For example, a constructor like MyEnum(String name) of an enum type in the pack
package will have the signature pack/MyEnum/MyEnum(LString;)V in the source code, while
the bytecode-based tools will see it as pack/MyEnum/MyEnum(LString;ILString;)V because
of technical requirements. Another example is when there is a private static class named Bar
with a private constructor Bar(final Foo f) nested in a final class named Foo. The source-
code-based tools recognize the constructor as Foo$Bar(LFoo;)V, while bytecode-based ones
will see Foo$Bar()V.

Such missing or extra parameters in the bytecode make the signatures of these methods
different in JaCoCo and Clover measurements. This difference prevented the automatic
assignment of the methods of the two measurements and caused the reduction of JaCoCo
coverage counts in our experiments.

3.5.2.8 Other

We also found some other, occasional reasons for the deviations. The first one was the differ-
ent handling of some built-in methods of the Object class (for example, equals, finalize,
or hashcode). If these were redefined through multiple inheritance levels, both tools occa-
sionally produced incorrect results for these methods. Due to this difference, both JaCoCo
and Clover could report lower coverage on the same project. Another reason was that Clover
had issues detecting the test cases that were called from test cases (see, for example, the
class c in the Math project), which resulted in incorrect elements in the coverage results.
Although it is possible to avoid calling test cases from test cases (even transitively), if this
happens for any reason the resulting detailed coverage data might be unreliable. Note that
the overall coverage of the test suite will not be influenced by this issue because the coverage
will not be missed just recorded at a different program point.

3.5.2.9 Summary of Difference Causes

During our investigations of the differences listed above, we used the following approach.
We tried to eliminate or fix the issues one by one in the hope to reach a state when the
measurements produced by the two tools were synchronized. This way, we would have been
able to categorize each difference as tool-specific or approach-specific. Unfortunately, we
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were not able to uniquely classify all difference causes to one of the two categories, as we
detail below.

First, we excluded the test cases that were failing because of the instrumentation, but
this was rather a workaround than a solution. Second, we eliminated cross-module related
issues by measuring these sub-modules individually, and we filtered out those methods from
the covered set of a test case that were executed only during the setup/teardown phase.
This was appropriate to eliminate certain kinds of differences in our experiments, but in real
applications it might eliminate important coverage information (depending on the definition
and implementation of a test case and whether module or whole system coverage is needed).
In addition, we relied on the Maven project hierarchy and examined the source path infor-
mation of the classes, and filtered out those methods that were located in the test source
directories, e.g., src/test. This was required to filter out methods that were incorrectly
treated as non-test methods.

To mitigate the remaining inaccuracies, we tried to synchronize the method sets (to
make the individual test case and method coverage result comparable), for which we defined
a set of criteria. We thought that, as software engineers usually work with source code, the
synchronized set should be the set of methods actually appearing in the source code. We
wanted to verify if Clover produced this list accurately. For that we used the SourceMeter
static analysis tool19, and found that there were no differences between the two lists in any
of the programs. Thus, for each subject program, we created a list of methods based on
the source code (excluding, e.g., compiler-generated methods). We also made an assignment
between the JaCoCo and Clover methods by hand. With this workaround – although the two
tools recognized the same methods with different names – we could compare their coverage
values for the individual methods.

We denote the results using these sets as JaCoCosync and Cloversync. The important
property of the synchronized sets is that they are based on the same set of methods, hence
in this step we eliminated inaccuracies in the method sets regardless of their reason.

To summarize, Table 3.8 shows how the issues we found persist in the different mea-
surements. The first column names the issue, the second one states whether we considered
the issue being clearly tool-specific, approach-specific, or something in between. We did
not categorize any of the issues as purely “approach” specific because we think that any of
the potential differences could be theoretically aligned in source code and bytecode instru-
mentation. However, a number of such issues are not expected to be handled equivalently
in a realistic tool or this would be impractical. For example, the standard name encoding
in bytecode would be unusual to identically follow in source code (see the enum example
above). The third column in the table shows whether the corresponding issue was present
in the JaCoCoglob measurements, and the last two columns show whether the issue caused
differences in the two kinds of comparisons we performed. Indeed, we found that most of
the specific issues of JaCoCo are present in Cobertura and JCov, the other two bytecode
instrumentation tool we considered, as well.

19https://www.sourcemeter.com/
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Table 3.8: Presence of Issues with Different Levels of Filtering

Issue Tool Specific JaCoCoglob JaCoCo JaCoCosync

Clover Cloversync

1. Cross-submodule coverage yes – – –
2. Untested sub-modules yes – – –
3. Test case preparation and cleanup yes • • –
4. Recognized method sets partially • • –
5. Instrumentation yes – ◦ ◦
6. Exception handling during measurement yes • • •
7. Name encoding partially • • ◦
8. Other partially • • •

Measurement (Column 3) –: issue is not present in measurement; •: issue is present in measurement.
Comparisons (Columns 4–5) –: caused differences can be and are automatically eliminated; ◦: caused
differences are manually eliminated; •: differences are present.

Answer to RQ3.2: We were able to identify 8 common reasons, which are detailed in
previous sections and summarized in Table 3.8. In addition, we tried to fix these issues, but
the results varied: we managed to eliminate most of them, however, some (e.g., exception
handling and other technical issues) remained and this work can take significant effort
because it might not be fully automated. Also, we found that although there were some
tool-specific issues, most of them are generalizable, and will probably be applicable to
other bytecode-based and source-code-based tools.

3.5.3 Differences Due to the Instrumentation Approach
In the previous section, we listed the causes of differences in the coverages produced by
the two measurement tools. Some of them turned out to be due to tool-specific design
decisions, while others seemed to be inherent due to the differences in the fundamental
approach, namely bytecode vs. source code instrumentation. In some cases, we could not
determine if a specific difference belonged to the “tool-specific” or “approach” category. By
using the synchronized method sets and eliminating other tool-specific differences that were
possible, we arrive at the JaCoCosync and Cloversync sets of measurements. The differences
in these we attribute to most probably the fundamental differences in bytecode vs. source
code instrumentation, however, we cannot be sure that there are no more tool-specific issues
present. In this section, we quantitatively compare these two coverages. We take a look
again at the total coverage ratios, as well as the per-test case and per-method details.

Table 3.9 shows the comparison of all three aspects at a general level, in which the
final results of Section 3.5.1 are repeated for convenience, and the corresponding data are
presented for the synchronized versions.

The differences in the overall coverages are shown in columns 2–7 of the table. As
expected, in the synchronized set of results there are fewer differences between the two mea-
surements (the largest difference is 0.64%, in contrast to 40.05% of the outlier in the previous
set). These results also indicate that the coverage of JaCoCo is never greater than that of
Clover with the synchronized set of methods. This suggests that bytecode instrumentation
typically demonstrates the safe but imprecise case, because a smaller coverage may lead to
wasted effort but not to false confidence.
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Table 3.9: Differences in Overall Coverage with the Original and Synchronized Versions of
the Tools

Program Ja
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Checkstyle 53.77% 93.82% -40.05% 93.81% 93.81% 0.00%
Lang 92.92% 93.28% -0.36% 93.12% 93.30% -0.18%
Math 84.92% 84.65% +0.27% 85.23% 85.35% -0.12%
Time 89.52% 89.94% -0.42% 90.17% 90.19% -0.02%
MapDB 74.64% 76.06% -1.42% 76.03% 76.11% -0.08%
Netty 40.92% 40.18% +0.74% 39.79% 40.43% -0.64%
OrientDB 27.01% 28.01% -1.00% 28.02% 28.05% -0.03%
Oryx 29.51% 28.75% +0.76% 28.67% 28.67% 0.00%
Average 61.65% 66.84% -5.19% 66.86% 66.99% -0.13%

The comparison of the per-test case results is contained in columns 2–3 of Table 3.10.
Here, the overall Hamming distances can be compared, which have been computed jointly
for all test cases from the respective coverage matrices. It can be observed that the average
differences are reduced in different degrees: while in the case of Lang the reduction was
minimal, the difference almost disappeared in the case of Oryx. The reduction is dependent
on the internal structure and relations of the programs’ methods and tests, and cannot be
directly predicted from the different properties we measured in other experiments.

Table 3.10: Differences in Per-Test Case and Per-Method Coverages with the Original and
Synchronized Versions of the Tools

Program O
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Checkstyle 0.005% 0.002% 25 1 16 0
Lang 0.014% 0.012% 152 5 132 5
Math 0.034% 0.005% 536 26 251 7
Time 0.157% 0.031% 444 2 308 2
MapDB 3.062% 1.165% 475 9 81 3
Netty 0.155% 0.013% 766 167 484 98
OrientDB 0.013% 0.008% 136 6 61 6
Oryx 0.187% 0.004% 9 4 1 0
Average 0.450% 0.160% 318 28 167 15
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The per-method coverage differences are also presented for the final results for the re-
spective measurement levels in columns 4–7 of Table 3.10. They show the number of test
cases when there is a disagreement between the two tools according to the two levels of
strictness, as explained in Section 3.5.1.3. In particular, columns “Orig. Strict” and “Orig.
NoStrict” correspond to the sums “CltJ”+“JltC”, and “Czero”+“Jzero” from Table 3.6, re-
spectively, while the other two are the same for the synchronized measurements. As can be
observed, the synchronization improves this measurement as well, and the improvement rates
are again very different for the individual subjects. The counts roughly halved both in the
strict and non-strict cases, however, there are notable cases when this was more significant
(e.g., MapDB) and also where it was much smaller (e.g., Lang).

Answer to RQ3.3: While we have seen that there might be notable differences in the
“synchronized” data sets showing differences due to the instrumentation approach, tool-
specific ones cannot always be sorted out reliably.

3.5.4 Impact on Test Case Prioritization and Test Suite Reduction
In Section 2.1.2, we listed leading applications of code coverage measurement, and how they
are possibly impacted by the inaccuracies of the tools. The results presented earlier in this
section showed that the inaccuracies may directly impact some of the applications, most
notably white-box testing, and that this can be directly measured/predicted. However, it
does not directly follow if the inaccuracies would have a similar effect in applications where
code coverage is indirectly used to achieve a different purpose. We selected code coverage-
based test case prioritization and the related test suite reduction [81, 107] to quantify the
impact of code coverage inaccuracies.

Informally, test case prioritization takes the list of test cases of a test suite and produces
a specific order of their execution, which is believed to maximize the chances of early defect
detection, localization, and correction. Typically, defect detection is the primary concern,
but in this work, we concentrate on both detection and localization. The goal of the former
is to have failing test cases because they indicate that there are faults somewhere in the
system. On the other hand, in fault localization, we aim to find the causes of the faults, in
other words, pinpoint to the location of actual defects in the code. Both activities may be
aided by the use of code coverage information, but coverage needs to be used differently:

• For fault detection, the usual approach is to maximize coverage at the beginning of
the prioritized list because it is naturally expected that elements that are not covered
by the test cases may not exhibit faults.

• On the other hand, successful localization highly depends on how much the test cases
can exhibit different program behavior; i.e., if the test cases show similar behavior on
different program elements, these elements may be indistinguishable in this respect.
Consequently, for fault localization, those test cases should be chosen that distinguish
between different program elements. This is often quite different than simply the high-
est coverage. Many fault localization algorithms exploit this fact, such as Raptor [27],
FLINT [110], and Partition-based [93].

A practical use of the prioritized list of test cases is that not all of them are executed,
but only the first N elements of the prioritized list are selected. This can happen in various
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settings. First, if faults are detected or localized the testing may be terminated. Second, test
selection may be terminated at the first point where maximum coverage (or a suitable fault
localization metric) is reached. Finally, if there are resources to execute only a fixed number
of tests, this is a suitable approach because the chances of successful testing are maximized
by using a suitable prioritization algorithm. The test suites are then either minimized by
permanently discarding the remaining test cases or limited only for the execution [107].
Section 3.5.4.2 deals with test suite reduction, which is based on the prioritized list of test
cases investigated in Section 3.5.4.1.

Our rationale for selecting these applications is that they have a solid algorithmic back-
ground and the outcome of the algorithms may significantly influence test effectiveness and
efficiency.

In this section, we rely on our first set of coverage data used in Section 3.5.1 for RQ3.1.
These are the “raw” coverages produced by the tools and are not influenced by our “synchro-
nization” efforts for RQ3.2 and RQ3.3. We do this because, in most cases, the coverage tools
and their results are used “as is”: the users do not make an effort to additionally process the
data. Thus, we use coverage data denoted by JaCoCo and Clover for these comparisons.

3.5.4.1 Test Case Prioritization

In this experiment, we used four test case prioritization strategies: three optimized for max-
imal fault detection, and one for fault localization. There are many strategies for coverage-
based fault detection prioritization, but the so-called general and additional are probably
the most widely used ones [81]. We will also consider a variation of the second one called
additional with resets.

The general strategy greedily assigns a higher rank to those test cases that produce the
highest absolute coverage (that is, the test cases are simply ordered by their coverage value).
The additional algorithm is a bit more clever in that it looks for test cases that contribute
the most to the not yet covered elements (that is, it starts with the highest covering test case
and then it greedily selects the test cases based on their additional coverage). A common
issue with these approaches is that once high coverage is attained, the algorithm cannot
select but randomly chooses from the remaining test cases. Therefore, an extension to the
second algorithm (additional with resets) restarts the greedy selection once no improvement
in the additional coverage can be obtained. In particular, it resets the coverage counter to
zero whenever the maximum coverage is reached and continues to append test cases to the
prioritized list as if it was creating a new list from the remaining test cases [81].

Our selected algorithm for fault localization aware test case prioritization was the partition-
based algorithm [93]. The basic idea behind this algorithm is that the code elements in the
coverage matrix are partitioned according to their coverage patterns produced by the test
cases (that is, equal matrix columns constitute a partition). Since the code elements should
be distinguishable from each other during fault localization, the finest partitioning is sought
in this prioritization. The algorithm greedily selects the test cases that best divide the ex-
isting partitions that were obtained with the earlier test cases. To do this, in each step,
it divides the code elements into covered and uncovered subsets, and then it is recursively
invoked on these subsets to choose the new test cases.

These four algorithms typically produce quite different rankings in the prioritized lists,
but all of them are highly sensitive to the coverage data. Some of them mostly depend on
the overall coverage (such as general), while fine details in the coverage patterns may have
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a big influence on the others, for example, partition-based. Hence, in the first experiment,
we wanted to compare each algorithm by how their prioritized lists differ when computed
by the two coverage tools.

Note that certain test suite prioritization algorithms (and reduction algorithms as well)
make arbitrary choices in cases when more than one item has the same priority value. There-
fore, due to their non-deterministic nature, they could produce different results even on the
same coverage data. Hence, we designed our algorithms and their inner data structures to
be deterministic.

To compare the prioritizations, we used Kendall’s τB rank correlation coefficient, which
is known to be suitable for handling ties.

Table 3.11: Prioritization: Kendall’s τB Correlation Between JaCoCo and Clover Results

Program General Additional Additional Partition-basedwith resets
Checkstyle 0.801 0.274 0.666 0.049
Lang 0.890 0.373 0.751 0.043
Math 0.886 0.267 0.682 0.055
Time 0.940 0.245 0.672 0.018
MapDB 0.695 0.124 0.815 0.064
Netty 0.567 0.129 0.476 0.266
OrientDB 0.956 0.329 0.736 0.364
Oryx 0.684 0.440 0.659 0.379

Table 3.11 summarizes the associated results. We can observe that the correlation for
the general strategy is high or moderate for all programs, leading to the conclusion that
the differences in the coverage tools have a relatively low influence on the final rankings
produced by this algorithm. The ranked lists produced by the additional with resets strategy
show a similar correlation, only slightly lower than for the general strategy (an exception is
subject MapDB). However, the third column shows that the additional strategy is much more
influenced by the minor differences in the coverage measurements: the highest correlation
for this strategy (0.44) is much worse than the lowest one for general (0.567), and it has
some really low values too (0.124).

These results are caused by the different behavior of the algorithms and how they react
to the individual differences of the coverage vectors. In all of them, when there are more test
case candidates to be selected as the next item of the prioritized list, the selection is arbitrary
(the “random effect”). The good performance of the general strategy can be attributed to the
fact that before reaching the maximum coverage, the overall coverage is dominant and the
smaller differences do not have a big impact here. In the case of this algorithm, the random
effect will be smaller, and it will increase only after reaching the maximum coverage. On
the other hand, the different behavior of the additional and additional with resets strategies
is more related to the random effect: additional reaches maximum coverage relatively early,
and then it starts extending the list with elements in an arbitrary order. The additional with
resets strategy is more deterministic: after the reset, it will work with the same determinism,
again and again, hence it will more resemble the behavior of general.

Finally, the partition-based strategy for fault localization prioritization is the most sen-
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Figure 3.5: Test case prioritization: correlation for different selection sizes and strategies

sitive to coverage differences. Except for maybe OrientDB, Oryx and Netty, it shows no
correlation at all. Note that these are the subject programs that have modules, the others
are single-module programs. In addition, these programs have low coverage. When selecting
the next item in the ranked list, the partition-based strategy prefers the test case that best
splits the method sets into two parts. In each step, the algorithm tries to split a partition
into parts of mostly equal size, and select the best test case for it. But all the uncovered
methods form one partition, which is very large in these cases (due to the low coverage).
When this large partition is to be split, the selection of the test case is arbitrary, and the im-
plementation will select the first test case in the original list. Thus, the correlation between
the two ranked lists will depend on the correlation of the original lists. This correlation is
higher for the modular programs because the lists of the test cases are implicitly grouped by
the modules.

The correlation values from the previous table were computed for the whole prioritized
lists of test cases. However, often only the beginning of the prioritized list is used (such as for
test suite reduction, which is discussed in the next section). Further, the differences in the
code coverage measurements can vary depending on the stage of the algorithm: they may
be different among the first selected test cases and later when more test cases are already
processed. Hence, to see these effects in more detail, we computed the correlation values for
each selection size starting from the first test case in the prioritized list up to the whole set.

More precisely, Kendall correlation coefficients were computed for each prefix of the
ranked lists, which are shown in Figure 3.5. In these graphs, the x-axis shows how many
elements from the beginning of the two prioritized lists were considered for computing the
correlation (in percentage), while the y-axis shows the actual correlation value. The curves
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correspond to the different programs, but we did not distinguish between them because
it bears no information for this discussion. The last value in each graph corresponds to
the values in Table 3.11. As can be seen, the different strategies behave differently, but
it is common that, in the beginning, all strategies are very sensitive to the small coverage
differences. Also, the calculation of the correlation is statistically less significant with a
smaller number of elements in the data sets. In particular, the corresponding p-values are
greater than 0.05 for the first 20–50 elements. Hence, the investigation of the data in these
charts should not focus on the very beginning of the curves (also graphically they show quite
erratic behavior).

The specific observations we can make from this data are the following. In the case of the
general strategy (Figure 3.5(a)) the curves are forming a V-shape: the correlation is suddenly
reduced and then grows back as we compare more and more elements of the prioritized lists.
The characteristics of these drops are program dependent but at some point the correlations
grow back and become steady when more elements are considered. This shows that small
coverage differences have local influences on the ranking, but globally they have a small
impact.

The results for the additional strategy (Figure 3.5(b)) are different: as this strategy
incorporates some random factor once the test cases in the first part of the prioritized list
give full coverage, the correlation after this point starts to decrease as the effect of the
arbitrary selection accumulates. However, the curves for the different programs are more
similar to each other than those of the general strategy.

Results for the additional with resets strategy (Figure 3.5(c)) are very similar to the
results of additional until the first reset (it is typically between 10 and 30 percent of the test
cases). However, due to the elimination of the random factor with the reset, the remaining
parts of the curves show similar behavior to the general strategy. As more elements are
compared, the correlation between the two lists grows until the full lists are compared, and
this final correlation is comparable to the general strategy.

Since the additional with resets strategy is often seen as the best coverage-based greedy
strategy for fault detection prioritization, this result indicates a high risk when using different
code coverage tools for this application. Namely, when a relatively low number of tests are
selected, the influence of the coverage tool is quite high on the results.

Finally, the partition-based strategy (Figure 3.5(d)) behaves very differently. As men-
tioned above, this strategy selects the next test case in the ranking, which best splits the
method sets into two parts. As a result, the first very few elements on the two lists for each
program are expected to be the same given the relatively small difference in the coverage
vectors. But further selections use smaller partitions of the method sets, thus it is more
probable that multiple test cases indicate the same “best” split. In this case, the selection
of the next one is arbitrary among the candidates. It might happen that two “best” test
cases split the corresponding method partition in different ways, which heavily affects the
subsequent selections and rankings.

For 5 programs, after the first erratic values of the short list comparisons, the correlation
drops down showing that the lists derived from the two coverage measurements are very
different; practically, we cannot observe any correlation between them due to the cumulative
differences mentioned above. These are single-module programs, where all test cases are
potential candidates. However, the modular architecture programs OrientDB, Oryx, and
Netty have inherent partitioning aligned with the module boundaries. This means that the
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number of potential candidates for a selection is limited and randomness has a smaller effect.
The partition-based strategy results are aligned with these inherent partitions regardless of
the coverage measurement method; the algorithm works as if it were ranking the test cases
for each module independently. This results in more correlated rankings than for single-
module programs. The results for all the programs show that the first 2–3 elements match
exactly, the next few are the same but in a different order, and from there onward the lists
show very low overall correlation. To conclude, the partition-based prioritization algorithm
is very sensitive to the small coverage differences of the individual test cases, which is also
true for multi-module programs, but especially holds for single-module ones.

3.5.4.2 Test Suite Reduction

As mentioned, in test suite reduction, a given number of elements from the beginning of the
prioritized list is selected. For this experiment, we followed two scenarios. In the first one,
we stop the selection when the current subset of the test cases reaches the coverage of the
unreduced test suite, and then compare the attained reductions. In the second scenario, we
measure the differences in the coverages when any fixed size of the reduced subset is used.
These experiments include reductions based on the general, additional, and additional with
resets prioritization strategies.

Note, that in both scenarios the measurements for additional and additional with resets
strategies are the same: before the first reset additional with resets is equivalent to addi-
tional, but since the first reset occurs when the maximum possible coverage is reached, the
differences in the coverages after this point will be constant. So, we will present additional
and additional with resets results together.

Table 3.12 shows the results for the first scenario: namely, the reduction values for
the three fault detection algorithms that could be obtained for the subsets of test cases,
which achieve the original coverage of the unreduced sets. The reduction is given as a
relative number of eliminated test cases. Apart from the obvious advantage of the additional
strategies over general (which is not the topic of this paper), the differences between the
two coverage tools are not as obvious as we have seen for test case prioritization. For the
general strategy, MapDB seems to be an outlier; the difference between the reduction rate
of the results achieved by the two coverage methods is more than 11%, which could be a
consequence of the high Hamming distances between the coverage vectors for this program
(see Figures 3.1 and 3.2). On the other hand, Checkstyle and Oryx, for instance, have
very different Hamming distances but still, they demonstrate similar test suite reduction
differences.

The results of our second reduction strategy are shown in Figure 3.6. Here, we calcu-
lated the effects of the differences for various fixed reduction values from 0–100% (in these
diagrams, the test suite sizes increase from left to right). We used general, additional, and
additional with resets strategies, and calculated the relative differences of the overall cover-
age values compared to Clover. The x-axis represents the number of test cases (relative to
the size of the whole test suite) and the y-axis shows the difference itself. Again, we do not
distinguish between the subjects because only the trends are important.

It can be observed that the behavior of different programs in the general measurements
(Figure 3.6(a)) are different, but in general, the smaller size the reduced suite has, the greater
difference can be measured between the coverages of the reduced suites. In other words, a
higher reduction rate introduces more uncertainty in the results. In general, we found that
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Table 3.12: Test Suite Reduction without Reducing Coverage for the Different Strategies

Program General Additional
Additional with resets

JaCoCo Clover Difference JaCoCo Clover Difference
Checkstyle 0.20% 3.03% 2.83% 75.95% 78.04% 2.09%
Lang 0.69% 0.72% 0.03% 69.95% 70.16% 0.21%
Math 0.08% 0.28% 0.20% 77.04% 77.53% 0.49%
Time 0.54% 0.92% 0.38% 76.01% 76.21% 0.20%
MapDB 0.11% 11.17% 11.06% 89.28% 89.34% 0.06%
Netty 0.23% 0.57% 0.34% 87.85% 88.40% 0.55%
OrientDB 0.25% 0.25% 0.00% 70.63% 71.76% 1.13%
Oryx 7.21% 3.36% 3.85% 59.13% 60.09% 0.96%
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Figure 3.6: Test suite reduction: coverage differences for general and additional strategies

if the size of the reduced suite was over 20% of the full suite then the difference in coverage
mostly remained under 5%. The shape of the difference depends on the properties of the
subject program and its tests. The situation is different for the additional measurements
(Figure 3.6(b)). The decrease in coverage differences is visible, and it is even much faster.
Except for one program, the difference in coverage remains below 2% at a 10% test suite size
and above. The fast convergence is caused by the algorithm itself, which aims to reach full
coverage as quickly (with as few test cases) as possible. Thus, the two coverage values will
approach their maximum with monotonically smaller steps, which implies gradually smaller
and smaller differences.

Answer to RQ3.4: Our investigations about the impacts of code coverage inaccuracies
showed that they were unpredictable on the chosen applications. For some algorithms, the
impacts were high and less for others. A notable example is the test case prioritization
algorithm additional with resets, which is often considered the best greedy strategy. The
influence of the coverage tool was quite high in this case when a relatively low number of
tests were selected (which is often the case in practice).
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3.6 Discussion
3.6.1 Interpretation of the Results
In this work, we performed experiments on the granularity of Java methods to find out the
differences between the bytecode instrumentation approach and source code instrumentation
with respect to the final code coverage results. In particular, most of the detailed experiments
have been performed using two tools, JaCoCo and Clover, which we selected as representa-
tives of the two instrumentation approaches. We selected Clover as the source-code-based
tool from two candidates in our shortlist (which produced very similar results) and used it as
the comparison basis in the experiments. We started with three tool candidates in the other
category, but we found out that they produce similar results, so we selected JaCoCo as the
representative of bytecode-based approaches. In our experiments, we relied on real-size Java
systems with realistic test suites, so we believe that testing practitioners and researchers can
benefit from our findings as well.

We have seen that the bytecode level and the source code level coverage measurements
can produce very different results (answering RQ3.1). In general, the overall differences are
low (below 1.5%), but the different properties of the subject systems and the measurement
methods may result in very large differences as well. This can be exemplified by the subject
Checkstyle, where the generated methods caused a difference of about 40%. Furthermore,
differences can be identified in both directions: in some cases, JaCoCo reports more coverage
than Clover and vice versa.

On a more detailed analysis level, per-test case and per-method differences also showed
discrepancies in both directions. Overall, in some cases the differences are minimal (below
1%), however since this is very much project-dependent, we measured relatively high differ-
ences as well (higher than 20% in some cases; see Figures 3.1 and 3.2). The differences might
affect a large portion of the methods of a program, even around 30%, as can be observed
from Table 3.6.

The causes of these differences are various (RQ3.2). There are tool-specific ones like
the different sub-module handling of the used tools, or the handling of the test setup and
teardown methods; these are independent of the selected instrumentation method. These
can be eliminated by filtering the results (although this might not be fully automated).
Other tool-specific features like the influence of the instrumentation on the behavior of the
subject system tests are integral parts of the tools and in general, cannot be avoided. Finally,
deviations like the different issues on method set recognition and name encoding are mostly
determined by the instrumentation method, not the tool.

Theoretically, some of these differences could be eliminated using additional information
but not all (answering RQ3.3). To assess the number of inherent differences that are not
attributed to tool-specific issues, we tried to eliminate the differences, and we managed to
do so in many cases by adjusting or filtering the measurements (see Table 3.8). However, the
remaining differences still caused deviations in the coverage values, though they were much
lower than the differences for the unmodified tools: at most 0.64% in the total coverage (see
Table 3.9). These results show that with a careful tool design, more predictable results could
have been achieved, but the full alignment of the different tools seems practically impossible.
Since it is not expected from a user to make such corrective actions in the first place, as
general advice, users should examine the particular working methods of the tool and be aware
of its limitations. Our list of possible reasons for the differences may be used as a guideline
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on how to avoid and workaround the inaccuracies of the bytecode level instrumentation tools
with respect to the source code instrumentation approaches, and in particular to the tools
we investigated.

In the last part of our experiments, we checked how the differences in the coverage mea-
surement influenced the results of an application that used coverage as its input (RQ3.4).
We applied different test case selection and prioritization algorithms which were all based
on the coverage values computed by the two tools. We found that the coverage differences
had various influences on the results of the algorithms; the impact was dependent on the dif-
ferent properties of the subject programs and the algorithms themselves (answering RQ3.4).
However, for example, the most popular test prioritization algorithm, additional with resets,
might produce a low correlation of 0.476 between the results of the two tools, which indicates
that any practical application or research based on a tool with such inaccuracies imposes a
high risk of the validity of the results (see Table 3.11).

We systematically searched for correlations between the subject program properties (mod-
ularity, method, and test case numbers), raw measurement values (total and per-test case
coverages, coverage differences), and the application results (correlations, reduction rates),
but we did not find notable dependencies that could be generalized. It seems that the in-
fluence of coverage difference on the applications is subject and algorithm dependent. For
example, the average Hamming distance between the individual coverage vectors of MapDB
and Lang is very different, 3.062% and 0.014%, respectively. Yet, the correlations between
their prioritized lists using the additional with resets strategy are similar, 0.815 and 0.751.
The programs Time and Netty, which produce very similar average Hamming distances
(0.157% and 0.155%) but different correlations of the prioritization (0.672 and 0.476) are
examples of the opposite relation. The effect is that the impacts of the inaccuracies in the
coverage measurement are unpredictable, hence special care should be taken if code coverage
is not used only as a general test completeness measure, but as a base for more complex
analysis.

3.6.2 Threats to Validity
The main aim of this work was to investigate the effects of the different instrumentation
techniques on code coverage measurement results. We applied empirical measurements using
eight subject programs and two specific tools (we started the investigation with four tools).
This raises the question of how generalizable the results are to other tools using similar
techniques. The subjects were selected from different domains and had different sizes (both
in terms of code and tests), but were all actively developed community software.

The two final tools we selected for the detailed examination were among the most widely
used coverage tools representing the two instrumentation approaches, and they were mature
and actively developed. We carefully analyzed the data in the preliminary experiments from
Section 3.4.2 and concluded that there was not a big difference among the candidates from our
shortlist in either category. However, limiting the detailed analysis to two tools might impose
a threat to the generalizability of the results to other tools. When interpreting the results,
we tried to separate the tool-specific issues from the approach-specific ones and the results
of source code instrumentation with Clover were verified with manual instrumentation.

A possible threat is that we slightly modified the instrumentation process of JaCoCo by
adding a test execution listener that detected the start and the end of the execution of a test

48



CHAPTER 3. EFFECTS AND IMPACTS OF MEASUREMENT METHODS

case. The results obtained with this modification may not directly translate to the coverage
results everyday users would experience with the stock version of JaCoCo. However, we
compared the results of the unmodified JaCoCo measurement to our version in terms of
actually covered program elements and found no significant differences.

Our experiments showed results with respect to method-level coverage analysis. Gen-
eralization to other granularities such as components or statements may not directly be
possible.

3.7 Conclusions
The results have shown that even at the method level, significant differences occur between
the bytecode and the source code level instrumentation measurements. This confirms the
results of some related work (e.g., [53, 4]). Some of the differences can be eliminated,
but some cannot, or their elimination would not be practical. These differences, when used
in different testing applications, will undoubtedly influence the application results. But
the kind and level of influence cannot be generally predicted, as it depends on the subject
program and the application itself. A small difference in coverage may be amplified at the
application level, and a big coverage difference may have a minor impact.

In conclusion, we may say that the discrepancies between the different instrumentation
approaches might but not necessarily influence code coverage applications. It is thus safe to
treat source-code-based instrumentation as the correct approach to code coverage measure-
ment, despite its disadvantages (which are summarized in Section 2.1.3). Our results indicate
that bytecode instrumentation may have serious disadvantages in terms of the accuracy of
the results. The list of possible reasons for the differences may be used as a guideline on how
to avoid and work around the inaccuracies of the tools. This can then help assess the level of
risk of measurement inaccuracies in particular applications of code coverage measurement.

Thesis I:

1. I worked on the overview of theoretical differences in code coverage measurement
tools for Java.

2. I took part in the collection, categorization, testing, and selection of code coverage
measurement tools.

3. I also took part in the collection, configuration, and selection of Java programs
on which the experiments were executed.

4. I measured and analyzed the differences in code coverage of Java bytecode and
source code instrumentation tools.

5. I worked on the systematic investigation of discrepancies in coverage data and
their causes, and helped develop fixes and recommendations for the correction of
the issues.

6. I analyzed the effects of the found differences on coverage-based applications,
namely test selection, and test prioritization.
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Response to challenges. Regarding challenge C1 this thesis provides results that show
the quantity of code coverage differences from different aspects. To address the problems
related to challenge C2 the effects and causes of these differences were investigated, and
suggestions were made on how some of the differences could be eliminated.

Publications. A preliminary analysis of the differences between bytecode and source code
instrumentation was published at the International Conference on Software Analysis, Evo-
lution and Reengineering (SANER’16) [c3]. An extension of this work with more deeper and
precise analysis of both the causes of differences and the effects of them was published in
the Software Quality Journal (SQJ’19) [j2].

Applications. The results and experiences of this work helped me in developing a custom
instrumentation tool that is used as a basis by several former and ongoing works, for example,
the call-chain-based coverage data that is utilized in Thesis III (Chapter 5) was also collected
using this tool.
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4
Interactive Fault Localization

4.1 Introduction
It seems that automatic SBFL methods require external information – not just the program
spectra and test case outcomes – to improve on state-of-the-art performance and be more
suitable in practical settings. In this work, we propose a form of an Interactive Fault Local-
ization approach, called iFL. In traditional SBFL, the developer has to investigate several
locations before finding the faulty code elements, and all the knowledge they a priori have
or acquire during this process is not fed back into the SBFL tool. In our approach, the
developer interacts with the fault localization algorithm by giving feedback on the elements
of the prioritized list. With this work, we aim at bringing closer the applicability of SBFL
methods to practice by involving users’ knowledge to the process.

We build on our observations, intuitions and experiences, and we hypothesize that a
programmer, when presented with a particular code element, in general has a strong intuition
whether any other elements belonging to the same containing higher level code entity should
be considered in fault localization. With this intuition, developers can also make a decision
(“judge”) about the code snippets associated with the item they are currently examining.
This allows them to narrow down the search space (i.e., set of the suspicious code elements)
more efficiently, which could speed up finding the bug. For example, when users go through
the ranked list of suspicious methods, in addition to the examined code element, they could
have knowledge about its class, which information can be “fed back” into iFL to modify the
suspiciousness value of other methods in that class or even exclude items to be examined.
This way, larger code parts can be repositioned in their suspiciousness in the hope to reach
the faulty element earlier. Other interactive approaches have been proposed by researchers
as well [26, 31, 8, 51, 54, 55, 57, 50], but to our knowledge, similar contextual information
about higher level entities has not yet been leveraged.

We evaluated the approach in two sets of experiments. First, we used simulation to
predict the effect of interactivity. We simulated user actions during hypothetical fault finding
in well-known bug benchmarks, and measured the Expense metric improvements with respect
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to the following traditional SBFL formulae: Tarantula [40], Ochiai [2], and DStar [99]. We
relied on two benchmarks: artificial defects from the SIR repository [17] and real defects
from Defects4J [41]. Results show that the method can significantly improve the fault
localization efficiency: in both benchmarks, for 32-57% of the faults their ranking position is
reduced from beyond the 10th position to between the 1-10th position. Taking into account
all the defects, the localization efficiency in terms of Expense improved on average by 71-
79%. For reference, we implemented a closely related interactive FL algorithm proposed by
Gong et al. [26], called Talk, in our simulation framework. We compared the performance
of iFL to Talk on the real faults from Defects4J, and found that iFL has a significant
advantage over Talk. We also modelled user imperfection, which was rarely studied in
related interactive SBFL research. We addressed this aspect from two viewpoints: the user’s
knowledge and confidence. Experiments simulating these two factors show that iFL can
outperform a traditional non-interactive SBFL method notably even at low user confidence
and knowledge levels.

In the second stage, we performed a quantitative evaluation of the successfulness of iFL
usage by real users. We invited students and professional programmers to solve a set of fault
localization tasks using the implementation of the iFL approach in a controlled experiment.
The goal was to find out whether using the tool shows actual benefits in terms of finding more
bugs or finding them more quickly, and this also showed promising results. This experiment
also helped us better understand the developers’ thought processes and the weaknesses of
the approach, and gave us possible directions for future enhancements.

In summary, our contributions are the following.

1. We introduced iFL, a novel context-aware interactive fault localization method, em-
bedded in a flexible interactive fault localization framework.

2. We implemented a simulated user and performed experiments on both artificial and
real faults. The latter has not yet been studied in interactive fault localization research.

3. We compared the results of our iFL experiments to a previously defined algorithm
specified in [26].

4. We provide an analysis of two dimensions of user imperfection: knowledge and confi-
dence, which was marginally addressed in previous literature.

5. We implemented iFL as an Eclipse plug-in that enables interactive fault localization
on Java systems at method level granularity.

6. We performed an empirical study involving real users to compare the fault localization
efficiency with and without using the iFL approach.

4.2 Motivating Example
For illustration, consider the example in Table 4.1. This is a part of program replace from the
SIR benchmark repository, which includes manually seeded faults (this benchmark is often
used in SBFL research, although being somewhat outdated). Line 116 is a predicate inside
function dodash, where an artificial fault is seeded: the relation is changed and the +1 part is
deleted (the original version of the code line is shown in a comment). There are three other
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functions in this program that closely participate in exposing this particular fault, getccl,
omatch and locate. The relevant code lines are shown in Table 4.1, while the call-graph in
Figure 4.1 shows the high level relationship of the four functions. Function getpat is first
called from the main program which indirectly calls getccl and eventually dodash to calculate
and return a value. This value is subsequently passed to change and eventually to omatch
and locate where the fault will be manifested in form of failing test cases.

Table 4.1: Example Code and the Fault Localization Process with a Seeded Fault

Source code Test cases Scores and ranks
Line Code 557 560 855 857 864 0. iteration 1. iteration 2. iteration 3. iteration

93 void dodash(delim, src, i, dest, j, maxset) • • • • • 0.658 (23.) 0.658 (20.) 0.658 (7.) 0.658 (5.)
115 else if ((isalnum(src[*i - 1])) && (isalnum(src[*i + 1])) • • • • 0.677 (14.) 0.677 (12.) 0.677 (5.) 0.677 (4.)
116 &&(src[*i - 1] > src[*i])) { //faulty version • • • • 0.707 (11.) 0.707 (9.) 0.707 (2.) 0.707 (1.)116 //&&(src[*i - 1] <= src[*i + 1])) { //original version
118 for (k = src[*i-1]+1; k<=src[*i+1]; k++) • • • • 0.707 (12.) 0.707 (10.) 0.707 (3.) 0.707 (2.)
122 *i = *i + 1; • • • • 0.707 (13.) 0.707 (11.) 0.707 (4.) 0.707 (3.)
123 }

131 bool getccl(arg, i, pat, j) • • • • • 0.658 (24.) 0.658 (21.) 0.658 (8.) 0
144 } else
145 junk = addstr(CCL, pat, j, MAXPAT); • • • 0.709 (10.) 0.709 (8.) 0.709 (1.) 0
305 bool locate(c, pat, offset) • • • • • 0.762 (5). 0.762 (3.) 0 0
313 flag = false; • • • • • 0.762 (6.) 0.762 (4.) 0 0
314 i = offset + pat[offset]; • • • • • 0.762 (7.) 0.762 (5.) 0 0
315 while ((i > offset)) { • • • • • 0.762 (8.) 0.762 (6.) 0 0
317 if (c == pat[i]) { • • • • • 0.765 (4.) 0.765 (2.) 0 0
318 flag = true; • • • 0.677 (15.) 0.677 (13.) 0 0
319 i = offset; • • • 0.677 (16.) 0.677 (14.) 0 0
320 } else
321 i = i - 1; • • • • • 0.768 (3.) 0.768 (1.) 0 0
322 }
323 return flag; • • • • • 0.762 (9.) 0.762 (7.) 0 0
327 bool omatch(lin, i, pat, j) • • • • •
366 if (locate(lin[*i], pat, j + 1)) • • • 0.811 (1.) 0 0 0
367 advance = 1; • 0.665 (18.) 0 0 0
368 break; • • • 0.811 (2.) 0 0 0

Pass/Fail Status P F F F P

Figure 4.1: Call-graph of the example program

Table 4.1 also shows the coverage relationship between some typical test cases and the
code elements in question, which expose different behavior with respect to the suspicious
elements. We can see that there are passing and failing test cases, and that they are exercising
different parts of the program. The faulty statement is traversed both by passing and failing
test cases. The fourth column (0. iteration) of Table 4.1 corresponds to the suspiciousness
scores computed by the Tarantula method1 along with the ranking position of the elements

1We used Tarantula in this example because it is easy to use in the explanation, but other SBFL techniques
provide similar relative ranks.
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(the ranking position is arbitrary in the case of ties in the scores). There are several lines in
functions getccl, omatch and locate that have higher scores than the faulty one from dodash,
which will push it farther in the rank, in particular to the 11th-13th place (in the actual
implementation, ties are handled so that the average position among the elements with the
same value will be used, in this case 12th).

We can explain the failing of SBFL in this case as follows. Recall the Tarantula for-
mula [40] for a code element s:

T (s) =
ef (s)

ef (s)+nf (s)
ef (s)

ef (s)+nf (s) + ep(s)
ep(s)+np(s)

,

where the functions ef (s), nf (s), ep(s) and np(s) count the number of test cases that execute
s and fail, do not execute s and fail, execute s and pass, and do not execute s and pass,
respectively. Table 4.2 shows the four basic statistics for lines 116 (the actual fault), 366
(one of the most suspicious statements in the initial ranking) as well as 145 and 321 (the
two most suspicious statements in intermediate iterations of our algorithm, which will be
presented shortly). We can observe that all failing test cases are exercising statement 116
(30/30), while only (25/30) statement 366. This, in itself, would make the first statement
more suspicious, however, the counts for the passing test cases will change the result. In
particular, a lot more passing test cases exercise statement 116 (2280/5511) than statement
366 (1066/5511). In other words, there are comparably more coincidentally correct tests [61]
for the actual faulty statement than for the other, and despite the correct ordering in terms
of failing test cases, the final score will flip their relationship.

Table 4.2: Basic SBFL Statistics for the Example Program

Line ef ep nf np Tarantula score
116 30 2 280 0 3 231 0.707
145 25 1 882 5 3 629 0.709
321 30 1 662 0 3 849 0.768
366 25 1 066 5 4 445 0.811

4.3 Interactive Fault Localization
Our approach to improve SBFL is to leverage the background and acquired knowledge of
the developers about the system being debugged outside their current focus – the currently
investigated code element. We build on our observations, intuitions and experiences, and
we hypothesize that a programmer, when presented with a statement from a particular
function, in general has an intuition whether any other statements in that function should
be considered in fault localization. Or, in a different setting, the programmer is assumed to
be able to decide (in certain cases) whether the whole class is faulty or not, if presented with
one of its methods. Example situations when such decisions could be made include when
the element is known to have been reviewed or otherwise tested recently, it was examined in
a previous debugging session, class members follow the same pattern such as getters-setters,
etc.
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In our approach, we call this information the contextual knowledge, which can be fed
back to the iFL engine. More precisely, we define the context of an investigated code
element as the other elements of its enclosing higher level syntactic entity. For
example, in the case of a statement, its context are all the other statements belonging to its
function. A context of a function is its enclosing class, and so on.

Suppose that developers are performing SBFL and start with the highest ranked element,
statement 366 (see columns “Scores and ranks” in Table 4.1). They look at the function this
statement belongs to and conclude that it is not likely to contain the fault (because it
was not changed recently, or they examined it in a previous debugging session, etc.). This
knowledge is then fed back to the iFL engine, which in turn reduces the suspiciousness scores
for all contained elements to 0, sending other highly ranked elements to the end of the list.
Then, the next most suspicious element – statement 321 of function locate – is given to the
users. Again, the developers decide based on contextual knowledge that this function is
not suspicious, so the engine reduces the scores of all contained statements to 0. This is
repeated for line 145 as well in the next iteration. Consequently, several elements are pushed
to the end of the list, moving the faulty one, statement 116, to the next rank position.
This terminates the fault localization process with success. The effort required to locate the
fault was reduced from 12 steps to only 5 (3 steps for removing the three functions and two
steps in the final iteration to select the middle one from the three elements with the same
suspiciousness score).

Figure 4.2 shows a conceptual overview of our approach. The process starts by calculat-
ing an initial rank based on an arbitrary traditional SBFL approach e.g., Tarantula. The
elements are then shown to the user starting from the beginning of the list, and the iFL
engine is waiting for user feedback. The user investigates the recommended element and
gives one of the following answers: 1. fault is found, 2. element is not faulty, neither its
context, 3. element is not faulty, but the fault is somewhere within the context, or 4. don’t
know.

Based on the feedback from the user, the iFL engine performs the following actions. In
the case of (1), the process terminates, while at (4) it is continued as usual with the next
suspicious element (this means that in the worst case when the developer has no background
knowledge, the method falls back to the pure SBFL approach). In the remaining two cases,
the iFL engine makes adjustments to the suspiciousness scores, recalculates the ranking and
shows the next element from the new list to the user in the next iteration. Note that answer
(4) and its corresponding action could mean different things in different settings, and they
could be implemented in various ways depending on the actual setting. For example, in an
IDE where the suspicious elements are displayed in a list or a table (4) symbolizes that the
developer looks at an element and chooses not to interact with it.

There may be different strategies to make the mentioned adjustments, such as applying
proportional reductions or increases to the scores, which are different for the context and
other parts of the system, etc. Presently, we follow this approach: in the case of (2), the
whole context (i.e., function) gets 0 score, while for (3) everything but the context is reduced
to 0.

Since there are no increases in the suspiciousness scores, a mistake in the answer made by
the developer can move the faulty element towards the end of the ranking which could make
the fault finding efficiency even worse than not using the approach. It is safe to assume that
developers will not be free of mistakes and completely knowledgeable about the system; in
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Figure 4.2: Basic process of Interactive Fault Localization

some cases, they may not be able to provide additional information on the context of a code
element, or they can make wrong decisions. Therefore, part of our research goals in this
work is to verify what is the performance of the method when the user does exhibit some
imperfection properties (this is our RQ4.1.3 discussed below).

4.4 Evaluation Goals
We verified the effectiveness of the Interactive Fault Localization approach in two stages.
First, we performed an empirical study using simulated users (Section 4.5). Next, we com-
pared iFL to a closely related interactive approach, called Talk, proposed by Gong et al.
[26]. For this, we re-implemented the Talk algorithm in our framework, and we evaluated its
performance on real faults with simulated users (Section 4.5.5). These studies were followed
by another empirical study involving real users (Section 4.6).

The study with simulated users enables large scale and automated experimentation with
different faults from existing benchmarks, and predicting the expected effectiveness in real
life scenarios. This approach has been followed by most of the related research, e.g., Gong
et al. [26] and Hao et al. [31], but we also perform measurements by simulating various
degrees of user imperfection, which is a novelty compared to previous studies. On the other
hand, evaluation with real users provides direct results about the usefulness of the approach,
although only for a limited number of fault finding scenarios.

More precisely, the goal of the first part of the evaluation was the following. With
simulated users, how much improvement in localization effectiveness, in terms of elements
to be inspected, can we achieve with iFL over a traditional non-interactive SBFL method
and an interactive approach? We have the following Research Questions for this part of the
evaluation:
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RQ4.1.1 What improvement can we observe with iFL on artificial faults from the SIR
repository?

RQ4.1.2 What improvement can we observe with iFL on real faults from the Defects4J
repository?

RQ4.1.3 How iFL compares to another interactive approaches on real faults from the De-
fects4J repository?

RQ4.1.4 How sensitive iFL is to user imperfections?

The goal of the second part of the evaluation was the following. Given actual fault finding
tasks with real users, is it true that users with access to an implementation of iFL in their
development environment are able to find more bugs or find them more quickly compared
to a control group who did not have access to iFL? We formulate the following Research
Questions for the second part of the evaluation with real users:

RQ4.2.1 Is it true that users could find more bugs with iFL than users without access to
the method?

RQ4.2.2 Is it true that users could find bugs more quickly with iFL than users without
access to the method?

RQ4.2.3 How do real users subjectively evaluate the iFL method and its implementation
in the development environment?

Eventually, the answers to the questions above could help us design new elements into
the iFL approach and new features for the tool implementation.

4.5 Results with Simulated Users
4.5.1 Experiment Setup
To answer research questions RQ4.1.1–RQ4.1.4, we relied on two sets of benchmarks: the
SIR repository which contains mostly artificial faults and Defects4J, a benchmark consisting
of real faults. These two benchmarks are different also in terms of their size and complexity
so we will perform fault localization at different granularity levels. For SBFL, we selected
three algorithms: Tarantula [40], Ochiai [2], and DStar [99], which have been reported to be
the most successful in different settings [71], and are often referred in literature. With this
choice we wanted to verify if the actual algorithm has any impact on the effectiveness of the
approach.

Regarding the user responses and iFL engine actions, for RQ4.1.1 and RQ4.1.2 we
follow a relatively simple but strict approach (there are no intermediate, partial or uncertain
responses and actions, in other words, we simulate a hypothetical perfect user). The perfect
user is perfectly sure about her decisions, which means out of the four possible responses
explained in Section 4.3, we will not use the fourth one, “don’t know”. The perfect user
always recognizes the faulty method. She also has a perfect knowledge about whether the
fault is in the context of the inspected element. Furthermore, the mentioned strategy for the
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actions will be employed, that is, reducing either the whole context or everything but the
context to 0. Experiments of user imperfection that answer RQ4.1.4, including the “don’t
know” answer, are presented separately in Section 4.5.6.

We implemented the required components of the iFL system according to these settings
on different granularities for the two benchmarks, and executed it using all available bugs.
The simulated user component works so that it takes the elements from the ranked list
starting from the first one, compares their context to the context of the known fault and
generates the corresponding answers until the faulty element is reached.

4.5.1.1 Implementation Details of Talk

To answer RQ4.1.3 We have implemented the Talk algorithm in our simulation framework
based on the pseudo codes and descriptions available in [26]. The core of this algorithm is a
loop which waits for user feedback. In the loop two rules are utilized to apply adjustments
to the scores of code elements. The first rule is triggered when a code element is labelled as
clean by the user (the authors call these elements symptoms). This rule aims to find the root
cause of such symptoms. When a root cause is found, a portion of the symptom’s original
score is transferred to the root cause. The second rule is applied when a code element is
labelled as faulty. In these cases, the score of the code elements which are covered by the
smallest (in terms of the number of covered code elements) test case tmin is increased by a
factor Ks. Ks is set to a value which ensures that in the next few iterations of the algorithm
the code elements covered by tmin are displayed at the beginning of the list that is shown to
the user.

Note that our evaluation considers only the first faulty code element that is found. Con-
sequently, our simulation stops when the first faulty code element is found, therefore the
second rule is never applied in our experiments.

4.5.2 Evaluation Method
To compare the iFL method to a traditional SBFL approach, we will use the approach
presented in Section 2.2.5, i.e., we will compute Expense metrics for both approaches and
compare them in terms of improvement relative to traditional SBFL, and we calculate and
present enabling improvements as well. Since in each iteration of the approach one block of
code is decided upon in one step, we will count each iteration as an equivalent of one rank
position for calculating Expense. The amount of improvement will then be calculated for
each defect and suitable averages will be produced.

4.5.3 Results for Seeded Faults
To answer RQ4.1.1, seven small C/C++ programs from the Software-artifact Infrastructure
Repository (SIR) [17] were included in the experiments, which are the so-called “Siemens”
suite. This benchmark contains seeded faults, and both the original and faulty versions are
available. The subject programs are listed in Table 4.3. Column 2 shows the size of the
programs in lines of code (LOC) including the comment and empty lines, along with the
number of executable code elements (CE) for which coverage information could be obtained.
In column 3, the number of functions in the program is given (this corresponds to the context
in iFL). The number of test cases in the test suite is presented in column 4, while the 5th
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one contains the number of available faulty versions (each version has exactly one fault in
it).

Note that, the last column of Table 4.3 shows the number of defects we were able to use in
the experiments: 1) we filtered out versions where there were multiple faulty code elements;
2) we omitted faults where the coverage tool was unable to record coverage in, e.g., headers
and macros; 3) we omitted cases where the suspiciousness score of the faulty code element
assigned by the actual SBFL technique was zero. The latter issue was present in only a few
cases and slightly differently in the three SBFL methods we investigated, which resulted in
different number of cases we used for subject printtokens2 (also see Table 4.4). However, since
there were no ways to improve fault localization efficiency in these cases, this did not impact
the measurement results. For preparing the raw data for the iFL experiments including the
code coverage information and test case results, the tools [24] and [87] were used.

Table 4.3: Details of Subject Programs from SIR

Program LOC (CE) Functions Tests Faults Suitable faults
printtokens 726 (277) 18 4 130 7 1
printtokens2 570 (262) 19 4 115 10 7
replace 564 (400) 21 5 542 32 22
schedule 412 (225) 18 2 650 9 2
schedule2 374 (198) 16 2 710 10 4
tcas 173 (95) 9 1 608 41 31
totinfo 565 (187) 7 1 052 23 18
Total 3 384 (1 644) 108 21 807 132 85

Table 4.4 shows the improvements iFL was able to achieve on SIR. The performance
of the original SBFL algorithms can be seen in column 4, which we used as the reference
to evaluate iFL. Both absolute and relative versions of the Expense measure are provided.
For each of the SBFL techniques, a summarization line is provided with the corresponding
average values. The three techniques achieved similar results, Ochiai being slightly better
than the other two. On average, it prioritized the faulty code elements roughly to the 20th
place, which means that on average 13% of the executable code elements must be examined
to find the faulty one. Ochiai was followed by DStar (19.90 – 13.24%) and then by Tarantula
(24.85 – 15.43%).

Column 5 contains the same data for iFL. The average Expense measures are notably
better than for the original algorithm. Ochiai performs slightly better in this case as well
with an Expense of 5.78 (3.75%) on average. This means, that in this case a programmer
would need only about six steps (5.78) to find the fault on average. DStar was the second
best in this comparison with 5.83 (3.80%), but Tarantula was similar as well 6.86 (4.25%).
In terms of relative improvement (Column 6), Tarantula achieved the best results: 17.99
steps (11.19%). It was followed by DStar with 14.11 (9.47%) and Ochiai was last with 14.01
(9.34%). Column 7 of the table contains a summary of improvements in terms of relative
changes in the Expense values, expressed in percentage (that is, the difference over the SBFL
base value). For all techniques, the improvement is notable, 71-72%.

The last four columns of Table 4.4 summarize the enabling improvements iFL achieved
on the SIR benchmark. Here, the number of faults (and their relative ratio) are presented

61



CHAPTER 4. INTERACTIVE FAULT LOCALIZATION

Table 4.4: iFL Improvements on SIR

Alg. Program Faults
E(E′)

Impr.
Enabling improvements

Score iFL Diff. [∞, 10) [∞, 10) [10, 5) Total→ [10, 5) → [5, 1] → [5, 1]

D
St

ar

printtokens 1 5.00 ( 1.81%) 2.00 ( 0.72%) -3.00 ( -1.08%) 60.00% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
printtokens2 5 23.00 ( 8.78%) 6.30 ( 2.40%) -16.70 ( -6.37%) 72.61% 1 (20.00%) 1 (20.00%) 0 ( 0.00%) 2 (40.00%)
replace 22 13.05 ( 3.26%) 3.66 ( 0.91%) -9.39 ( -2.35%) 71.95% 1 ( 4.55%) 6 (27.27%) 5 (22.73%) 12 (54.55%)
schedule 2 6.25 ( 2.78%) 2.50 ( 1.11%) -3.75 ( -1.67%) 60.00% 0 ( 0.00%) 0 ( 0.00%) 1 (50.00%) 1 (50.00%)
schedule2 4 66.62 (33.59%) 13.25 ( 6.68%) -53.38 (-26.92%) 80.11% 0 ( 0.00%) 1 (25.00%) 0 ( 0.00%) 1 (25.00%)
tcas 31 20.26 (21.32%) 5.39 ( 5.67%) -14.87 (-15.65%) 73.41% 11 (35.48%) 11 (35.48%) 1 ( 3.23%) 23 (74.19%)
totinfo 18 18.78 (10.04%) 8.06 ( 4.31%) -10.92 ( -5.84%) 58.14% 7 (38.89%) 1 ( 5.56%) 0 ( 0.00%) 8 (44.44%)

83 19.90 (13.24%) 5.83 (3.80%) -14.11 (-9.47%) 70.91% 20 (24.10%) 20 (24.10%) 7 (8.43%) 47 (56.63%)

O
ch

ia
i

printtokens 1 5.00 ( 1.81%) 2.00 ( 0.72%) -3.00 ( -1.08%) 60.00% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
printtokens2 7 19.14 ( 7.31%) 4.79 ( 1.83%) -14.36 ( -5.48%) 75.00% 1 (14.29%) 1 (14.29%) 0 ( 0.00%) 2 (28.57%)
replace 22 13.09 ( 3.27%) 3.66 ( 0.91%) -9.43 ( -2.36%) 72.05% 1 ( 4.55%) 6 (27.27%) 5 (22.73%) 12 (54.55%)
schedule 2 6.25 ( 2.78%) 2.50 ( 1.11%) -3.75 ( -1.67%) 60.00% 0 ( 0.00%) 0 ( 0.00%) 1 (50.00%) 1 (50.00%)
schedule2 4 66.62 (33.59%) 13.25 ( 6.68%) -53.38 (-26.92%) 80.11% 0 ( 0.00%) 1 (25.00%) 0 ( 0.00%) 1 (25.00%)
tcas 31 20.32 (21.39%) 5.42 ( 5.70%) -14.90 (-15.69%) 73.33% 11 (35.48%) 11 (35.48%) 1 ( 3.23%) 23 (74.19%)
totinfo 18 19.00 (10.16%) 8.28 ( 4.43%) -10.92 ( -5.84%) 57.46% 8 (44.44%) 0 ( 0.00%) 0 ( 0.00%) 8 (44.44%)

85 19.74 (13.07%) 5.78 (3.75%) -14.01 (-9.34%) 70.95% 21 (24.71%) 19 (22.35%) 7 (8.24%) 47 (55.29%)

Ta
ra

nt
ul

a

printtokens 1 5.00 ( 1.81%) 2.00 ( 0.72%) -3.00 ( -1.08%) 60.00% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
printtokens2 7 30.71 (11.72%) 7.21 ( 2.75%) -23.50 ( -8.97%) 76.51% 1 (14.29%) 0 ( 0.00%) 0 ( 0.00%) 1 (14.29%)
replace 22 19.18 ( 4.80%) 4.70 ( 1.18%) -14.48 ( -3.62%) 75.47% 2 ( 9.09%) 6 (27.27%) 5 (22.73%) 13 (59.09%)
schedule 2 10.75 ( 4.78%) 5.50 ( 2.44%) -5.25 ( -2.33%) 48.84% 1 (50.00%) 0 ( 0.00%) 0 ( 0.00%) 1 (50.00%)
schedule2 4 77.38 (39.02%) 14.25 ( 7.18%) -63.12 (-31.84%) 81.58% 0 ( 0.00%) 1 (25.00%) 0 ( 0.00%) 1 (25.00%)
tcas 31 21.65 (22.78%) 5.58 ( 5.87%) -16.06 (-16.91%) 74.22% 9 (29.03%) 11 (35.48%) 1 ( 3.23%) 21 (67.74%)
totinfo 18 26.00 (13.90%) 10.33 ( 5.53%) -15.69 ( -8.39%) 60.36% 4 (22.22%) 0 ( 0.00%) 1 ( 5.56%) 5 (27.78%)

85 24.85 (15.43%) 6.86 (4.25%) -17.99 (-11.19%) 72.42% 17 (20.00%) 18 (21.18%) 7 (8.24%) 42 (49.41%)

falling in the three categories of enabling improvements. According to the last column, the
total ratio of improvements that turned out to be enabling is quite large, around 49-57%.
More importantly, most of these improvements are those that bring the faulty code element
from outside of top 10 into top 10 (Column 8) or, even better, into top 5 (Column 9). The
two programs on which iFL produces the highest rate of enabling improvements are tcas and
replace. Interestingly, tcas is the smallest and replace is the largest program in our set, which
may indicate that there is no connection between improvement rate and program size.
Answer to RQ4.1.1: In the case of SIR programs containing seeded faults, the Ochiai
method produced the best results from SBFL techniques. Compared to it, iFL achieved
71% improvement in Expense, and resulted in 47 enabling improvements, which
corresponds to 55% of the faults.

4.5.4 Results for Real Faults
In the field of Interactive Fault Localization, there is an emerging need for studies that go
beyond the size and complexity of the SIR repository. A recent study by Pearson et al.
[71] investigates existing techniques both on SIR and Defects4J, showing that the latter
repository has quite different properties when it comes to the performance of various SBFL
techniques. Here, we present our measurement results with iFL on defects from the Defect4J
repository [41], to answer RQ4.1.2.

Defects4J is a database and extensible framework which provides a high-level interface
to real defects, and has been widely used in software testing research [6, 114, 42, 85]. The
version (v2.0.0) of the dataset that we used contains 17 open source Java programs and 835
bugs in total. For iFL experiments, we extended the Defects4J framework with our Java
agent-based code-coverage measurement tool2. This tool attaches to the JVM and utilizes on-

2The extended framework is available at: https://github.com/Frenkymd/defects4j/tree/chain
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the-fly bytecode instrumentation to collect different levels of coverage information. Defects4J
provides the fix for each bug as a patch set. We created a static analyzer tool which uses
JavaParser [37] to analyze the patch sets and provides information about the changed code
elements. Then, using the patch sets and the information provided by the static analyzer
we were able to create change sets that contain data about which methods were affected by
which bug fixes. There are some bugs in this benchmark where the change set becomes empty.
The reason for this is that the patch set contains only additions of code elements i.e., the
changed elements did not exist in the faulty version of the program. Obviously, non existent
methods are not considered by any FL approach, therefore we excluded these cases from our
experiments. In addition, there are some bugs where the suspiciousness score of the faulty
code elements assigned by the actual SBFL technique was zero or undefined – we excluded
these cases too. Note that, different algorithms could produce zero or undefined scores in
different settings, therefore the number of excluded bugs could change from algorithm to
algorithm. In our experiment we encountered 37 cases where only failing tests exercised the
faulty code elements. In these cases, the denominator of the DStar formula (ep + (ef +
nf) − ef) evaluates to zero (0 + (n + 0) − n = 0) and due to the division by zero the score
is undefined. The main properties of programs from the Defects4J dataset can be seen in
Table 4.5, and the number of bugs we could use in the experiments is shown in Table 4.6
(Faults column).

Table 4.5: Main Properties of Programs Used from Defects4J

Program Bugs Size (LOC) Tests Methods Classes
Chart 26 96 382 2 193 5 227 472
Cli 39 1 936 94 149 19
Closure 174 90 694 7 911 8 392 1151
Codec 18 2 584 206 234 19
Collections 4 26 409 15 393 3 532 422
Compress 47 6 740 73 437 53
Csv 16 0 806 54 83 11
Gson 18 5 378 720 620 106
JacksonCore 26 15 871 206 795 73
JacksonDatabind 112 42 964 1 098 3 546 447
JacksonXml 6 4 679 138 293 35
Jsoup 93 2 546 139 327 41
JxPath 22 19 372 308 1 287 131
Lang 64 21 778 2 291 2 353 158
Math 106 84 317 4 378 6 350 818
Mockito 38 10 517 1 378 1 454 291
Time 26 27 795 4 041 3 612 204
Total 835 460 768 40 621 38 691 4 451

In this experiment, the granularity of fault localization was elevated to the method level
because of two reasons. First, we could use statement level granularity as well, but the
benchmark contains larger and real programs, and even on method level it includes a large
number of code elements. Second, we wanted to check how does the algorithm behave on this
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level and if there is a significant difference in terms of effectiveness to the other benchmark.
Our feedback-based algorithm needed adjustment as well: the basic elements are changed
from source code lines to methods, and the context is changed from functions to classes.
Otherwise, the main steps of the iFL process (from Figure 4.2) including the responses and
actions were the same as with the statement-level granularity. The measurements themselves
followed the same steps as we used for SIR in Section 4.5.3, and the results will be presented
in the same way in this section as well. Therefore, detailed explanation of the structure of
tables will be omitted.

Table 4.6: iFL Improvements on Defects4J

Alg, Program Faults
E(E′)

Impr.
Enabling improvements

Avg rank Avg rank w iFL Diff. [∞, 10) [∞, 10) [10, 5) Total→ [10, 5) → [5, 1] → [5, 1]

D
St

ar

Chart 22 9.14 ( 0.20%) 2.91 ( 0.06%) -6.23 ( -0.14%) 68.16% 1 ( 4.55%) 3 (13.64%) 4 (18.18%) 8 (36.36%)
Cli 37 14.45 ( 5.85%) 4.62 ( 1.97%) -9.82 ( -3.88%) 68.01% 6 (16.22%) 5 (13.51%) 6 (16.22%) 17 (45.95%)
Closure 173 89.45 ( 1.18%) 15.89 ( 0.21%) -73.64 ( -0.96%) 82.32% 34 (19.65%) 17 ( 9.83%) 14 ( 8.09%) 65 (37.57%)
Codec 16 6.25 ( 1.61%) 3.25 ( 0.81%) -3.00 ( -0.80%) 48.00% 0 ( 0.00%) 1 ( 6.25%) 1 ( 6.25%) 2 (12.50%)
Compress 46 15.73 ( 1.61%) 4.71 ( 0.51%) -11.02 ( -1.10%) 70.08% 3 ( 6.52%) 6 (13.04%) 5 (10.87%) 14 (30.43%)
Csv 16 5.97 ( 5.03%) 3.06 ( 2.26%) -3.25 ( -2.99%) 54.45% 0 ( 0.00%) 1 ( 6.25%) 5 (31.25%) 6 (37.50%)
Gson 16 18.72 ( 2.53%) 8.75 ( 1.19%) -10.09 ( -1.35%) 53.92% 3 (18.75%) 0 ( 0.00%) 0 ( 0.00%) 3 (18.75%)
JacksonCore 22 9.11 ( 0.94%) 3.73 ( 0.36%) -5.39 ( -0.58%) 59.10% 2 ( 9.09%) 2 ( 9.09%) 4 (18.18%) 8 (36.36%)
JacksonDatabind 96 60.59 ( 1.37%) 10.67 ( 0.24%) -49.94 ( -1.13%) 82.41% 19 (19.79%) 8 ( 8.33%) 9 ( 9.38%) 36 (37.50%)
JacksonXml 4 23.00 ( 7.78%) 6.00 ( 2.03%) -17.00 ( -5.75%) 73.91% 1 (25.00%) 0 ( 0.00%) 1 (25.00%) 2 (50.00%)
Jsoup 88 31.53 ( 3.25%) 8.20 ( 0.81%) -23.36 ( -2.44%) 74.07% 12 (13.64%) 10 (11.36%) 8 ( 9.09%) 30 (34.09%)
JxPath 21 53.48 ( 4.08%) 12.71 ( 0.97%) -40.76 ( -3.11%) 76.22% 3 (14.29%) 2 ( 9.52%) 2 ( 9.52%) 7 (33.33%)
Lang 52 4.90 ( 0.24%) 2.40 ( 0.12%) -2.54 ( -0.12%) 51.76% 7 (13.46%) 1 ( 1.92%) 0 ( 0.00%) 8 (15.38%)
Math 95 10.49 ( 0.27%) 3.62 ( 0.10%) -6.88 ( -0.17%) 65.58% 12 (12.63%) 11 (11.58%) 9 ( 9.47%) 32 (33.68%)
Mockito 35 24.24 ( 2.24%) 6.84 ( 0.60%) -17.40 ( -1.64%) 71.77% 2 ( 5.71%) 5 (14.29%) 0 ( 0.00%) 7 (20.00%)
Time 25 19.06 ( 0.55%) 4.88 ( 0.14%) -14.46 ( -0.42%) 75.87% 2 ( 8.00%) 1 ( 4.00%) 3 (12.00%) 6 (24.00%)

764 39.28 (1.74%) 8.36 (0.49%) -30.96 (-1.26%) 78.82% 107 (14.01%) 73 (9.55%) 71 (9.29%) 251 (32.85%)

O
ch
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Chart 25 7.96 ( 0.18%) 2.64 ( 0.06%) -5.32 ( -0.12%) 66.83% 1 ( 4.00%) 3 (12.00%) 4 (16.00%) 8 (32.00%)
Cli 39 14.09 ( 5.74%) 4.68 ( 2.01%) -9.41 ( -3.73%) 66.79% 6 (15.38%) 5 (12.82%) 7 (17.95%) 18 (46.15%)
Closure 173 90.25 ( 1.19%) 15.92 ( 0.21%) -74.33 ( -0.97%) 82.36% 36 (20.81%) 16 ( 9.25%) 13 ( 7.51%) 65 (37.57%)
Codec 16 6.34 ( 1.63%) 3.28 ( 0.82%) -3.06 ( -0.81%) 48.28% 0 ( 0.00%) 1 ( 6.25%) 1 ( 6.25%) 2 (12.50%)
Collections 1 1.00 ( 0.03%) 1.00 ( 0.03%) 0.00 ( 0.00%) -0.00% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Compress 47 15.72 ( 1.61%) 4.72 ( 0.52%) -11.00 ( -1.09%) 69.96% 2 ( 4.26%) 6 (12.77%) 5 (10.64%) 13 (27.66%)
Csv 16 5.97 ( 5.03%) 3.06 ( 2.26%) -3.25 ( -2.99%) 54.45% 0 ( 0.00%) 1 ( 6.25%) 5 (31.25%) 6 (37.50%)
Gson 16 18.91 ( 2.55%) 8.94 ( 1.22%) -10.09 ( -1.35%) 53.39% 3 (18.75%) 0 ( 0.00%) 0 ( 0.00%) 3 (18.75%)
JacksonCore 25 8.48 ( 0.87%) 3.80 ( 0.36%) -4.68 ( -0.51%) 55.19% 2 ( 8.00%) 1 ( 4.00%) 5 (20.00%) 8 (32.00%)
JacksonDatabind 101 58.49 ( 1.32%) 10.62 ( 0.24%) -47.89 ( -1.08%) 81.88% 18 (17.82%) 8 ( 7.92%) 9 ( 8.91%) 35 (34.65%)
JacksonXml 5 18.60 ( 6.29%) 5.00 ( 1.69%) -13.60 ( -4.60%) 73.12% 1 (20.00%) 0 ( 0.00%) 1 (20.00%) 2 (40.00%)
Jsoup 89 31.26 ( 3.22%) 8.03 ( 0.79%) -23.25 ( -2.43%) 74.37% 14 (15.73%) 9 (10.11%) 8 ( 8.99%) 31 (34.83%)
JxPath 22 51.66 ( 3.94%) 11.05 ( 0.84%) -40.61 ( -3.10%) 78.62% 4 (18.18%) 3 (13.64%) 2 ( 9.09%) 9 (40.91%)
Lang 61 4.51 ( 0.22%) 2.23 ( 0.11%) -2.31 ( -0.11%) 51.27% 6 ( 9.84%) 1 ( 1.64%) 1 ( 1.64%) 8 (13.11%)
Math 104 10.00 ( 0.26%) 3.51 ( 0.10%) -6.50 ( -0.16%) 65.02% 13 (12.50%) 11 (10.58%) 10 ( 9.62%) 34 (32.69%)
Mockito 35 24.47 ( 2.25%) 6.96 ( 0.61%) -17.51 ( -1.64%) 71.57% 3 ( 8.57%) 5 (14.29%) 0 ( 0.00%) 8 (22.86%)
Time 26 18.40 ( 0.53%) 4.81 ( 0.14%) -13.87 ( -0.40%) 75.34% 2 ( 7.69%) 0 ( 0.00%) 3 (11.54%) 5 (19.23%)

801 37.93 (1.68%) 8.10 (0.48%) -29.86 (-1.21%) 78.71% 111 (13.86%) 70 (8.74%) 74 (9.24%) 255 (31.84%)

Ta
ra

nt
ul

a

Chart 25 13.00 ( 0.30%) 3.16 ( 0.07%) -9.84 ( -0.23%) 75.69% 0 ( 0.00%) 3 (12.00%) 3 (12.00%) 6 (24.00%)
Cli 39 15.06 ( 6.09%) 4.76 ( 2.05%) -10.31 ( -4.04%) 68.43% 5 (12.82%) 5 (12.82%) 7 (17.95%) 17 (43.59%)
Closure 173 98.36 ( 1.30%) 16.35 ( 0.22%) -82.01 ( -1.08%) 83.38% 32 (18.50%) 17 ( 9.83%) 14 ( 8.09%) 63 (36.42%)
Codec 16 6.59 ( 1.68%) 3.44 ( 0.85%) -3.16 ( -0.83%) 47.87% 0 ( 0.00%) 1 ( 6.25%) 1 ( 6.25%) 2 (12.50%)
Collections 1 1.00 ( 0.03%) 1.00 ( 0.03%) 0.00 ( 0.00%) -0.00% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Compress 47 17.36 ( 1.81%) 5.04 ( 0.55%) -12.32 ( -1.26%) 70.96% 2 ( 4.26%) 7 (14.89%) 5 (10.64%) 14 (29.79%)
Csv 16 5.97 ( 5.03%) 3.06 ( 2.26%) -3.25 ( -2.99%) 54.45% 0 ( 0.00%) 1 ( 6.25%) 5 (31.25%) 6 (37.50%)
Gson 16 18.88 ( 2.55%) 9.06 ( 1.23%) -10.06 ( -1.35%) 53.31% 3 (18.75%) 0 ( 0.00%) 0 ( 0.00%) 3 (18.75%)
JacksonCore 25 8.34 ( 0.82%) 3.66 ( 0.33%) -4.68 ( -0.50%) 56.12% 2 ( 8.00%) 2 ( 8.00%) 3 (12.00%) 7 (28.00%)
JacksonDatabind 101 58.97 ( 1.33%) 10.63 ( 0.24%) -48.36 ( -1.09%) 82.00% 18 (17.82%) 10 ( 9.90%) 8 ( 7.92%) 36 (35.64%)
JacksonXml 5 18.60 ( 6.29%) 5.00 ( 1.69%) -13.60 ( -4.60%) 73.12% 1 (20.00%) 0 ( 0.00%) 1 (20.00%) 2 (40.00%)
Jsoup 89 31.98 ( 3.28%) 8.22 ( 0.81%) -23.76 ( -2.47%) 74.30% 13 (14.61%) 10 (11.24%) 8 ( 8.99%) 31 (34.83%)
JxPath 22 42.27 ( 3.22%) 10.59 ( 0.81%) -31.68 ( -2.41%) 74.95% 3 (13.64%) 3 (13.64%) 4 (18.18%) 10 (45.45%)
Lang 61 5.20 ( 0.25%) 2.46 ( 0.12%) -2.77 ( -0.13%) 53.31% 7 (11.48%) 0 ( 0.00%) 0 ( 0.00%) 7 (11.48%)
Math 104 9.89 ( 0.25%) 3.57 ( 0.10%) -6.33 ( -0.15%) 64.03% 14 (13.46%) 10 ( 9.62%) 11 (10.58%) 35 (33.65%)
Mockito 35 27.40 ( 2.52%) 8.07 ( 0.69%) -19.33 ( -1.83%) 70.54% 4 (11.43%) 5 (14.29%) 0 ( 0.00%) 9 (25.71%)
Time 26 19.71 ( 0.57%) 5.17 ( 0.15%) -14.73 ( -0.43%) 74.73% 1 ( 3.85%) 0 ( 0.00%) 4 (15.38%) 5 (19.23%)

801 40.07 (1.74%) 8.33 (0.49%) -31.77 (-1.26%) 79.27% 105 (13.11%) 74 (9.24%) 74 (9.24%) 253 (31.59%)

With iFL we achieved high improvements compared to all the three fault localization
metrics. The first part of Table 4.6 shows average ranking improvements (Diff. column)
and its ratio compared to the number of all possible code elements (i.e., Java methods).
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The Expense measures for the original SBFL methods are quite different than for the SIR
programs, they range from 1-98 steps, which is much more than the average on small pro-
grams, however, the relative measures are smaller, 1.68-1.74% on average. This is due to
the significantly larger number of program elements in this benchmark (despite the higher
granularity level). iFL achieved a notable improvement with this benchmark as well, as can
be seen from columns 5 and 6 of the table. The difference is between 30 and 32 positions on
average, but given the large total number of elements, the change in percentages is modest.
In this case, Ochiai produced the best initial ranking and the best final Expense measures
with iFL as well. The relative improvement (column 7) is higher than for the SIR bench-
mark, it is about 79% for each SBFL technique. Practically, this means that on average the
iFL approach could potentially save 79% of the human effort.

More importantly, in the case of large programs and real defects there are many cases
when iFL achieved enabling improvements. Detailed data is shown in the second part of
Table 4.6. Overall, iFL had 251-255 (32-33%) enabling improvements, which is slightly
worse than for the SIR programs. In most cases, iFL brings the faulty elements into the
top-10 or top-5 range from outside of top-10. These are the cases where the original SBFL
produced very bad Expense results initially. Compared to SIR, the lower number of test
cases may be one reason for this phenomenon, but finding the actual causes needs more
investigation. Note that, this benchmark contains much larger programs and that the original
Expense measures were typically much higher as well.
Answer to RQ4.1.2: In the case of Defects4J experiments with real faults, the
Ochiai method produced the best results from traditional techniques. Relative to it,
iFL achieved 79% improvement in Expense, and produced 255 enabling improve-
ments, corresponding to 32% of the faults in this benchmark.

4.5.5 Results for Real Faults with the Talk Algorithm
In this section, we present the results of the replication study in which we re-implemented
the Talk algorithm proposed by [26].

Note that we could not replicate the original experiment to its full extent. We did
our best to acquire the data and the most detailed description of the experiments from
the original paper. However, we could only work with what was published. In order to
accommodate the highest number of bugs we used the latest version of Defects4J. Since the
approach for coverage data collection was not mentioned in the original paper, we could
not reuse the exact same measurement methods. We also used method level granularity,
which could have affected the results. In addition, we ran into some issues while executing
Talk on the two largest subject programs from Defects4J. Unfortunately, because of the
complexity of the algorithm we were not able to execute Talk on Closure and on some bugs
of JacksonDatabind.

We followed the same approach to evaluate Talk that we presented at the beginning of
Section 4.5, and we used the same benchmark on which we evaluated iFL in Section 4.5.4.
However, as knowledge and confidence cannot be interpreted for the Talk algorithms, we
did not check the effect of these factors in the replication experiments.

As published, the baseline performance of Talk in terms of improvement is between -14%
and 60% (12.29% on average) with Ochiai, -25% and 46% (11.71%) with Jaccard and -35%
and 72% (13.37%) with Tarantula. Table 4.7 shows the performance of the re-implemented
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Talk algorithm on the Defects4J benchmark in the same fashion as Table 4.6 in Section 4.5.4.
As it can be seen, we obtained varying results. The best performance is achieved using DStar.
In this setting, improvements range from about -6% up to 10% and 1.56% overall. In the
case of Ochiai and Tarantula, Talk is behind its traditional SBFL counterparts by a slight
margin, -0.58% and -7.20% respectively. The maximal improvement (16%) is achieved on
Chart with Tarantula. However, in the case of some projects Talk performs significantly
worse than Ochiai and Tarantula. Also, the number of enabling improvements is very limited
compared to iFL.

Table 4.7: Talk Improvements on Defects4J

Alg, Program Faults
E(E′)

Impr.
Enabling improvements

Avg rank Avg rank w Talk Diff. [∞, 10) [∞, 10) [10, 5) Total→ [10, 5) → [5, 1] → [5, 1]

D
St

ar

Chart 22 9.14 ( 0.20%) 8.59 ( 0.19%) -0.55 ( -0.02%) 5.97% 0 ( 0.00%) 0 ( 0.00%) 1 ( 4.55%) 1 ( 4.55%)
Cli 37 14.45 ( 5.85%) 13.97 ( 5.65%) -0.47 ( -0.20%) 3.27% 1 ( 2.70%) 1 ( 2.70%) 1 ( 2.70%) 3 ( 8.11%)
Codec 16 6.25 ( 1.61%) 6.25 ( 1.60%) 0.00 ( -0.00%) -0.00% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Compress 46 15.73 ( 1.61%) 16.05 ( 1.72%) 0.33 ( 0.11%) -2.07% 1 ( 2.17%) 0 ( 0.00%) 1 ( 2.17%) 2 ( 4.35%)
Csv 16 5.97 ( 5.03%) 5.75 ( 4.97%) -0.22 ( -0.06%) 3.66% 0 ( 0.00%) 0 ( 0.00%) 1 ( 6.25%) 1 ( 6.25%)
Gson 16 18.72 ( 2.53%) 18.38 ( 2.48%) -0.34 ( -0.05%) 1.84% 1 ( 6.25%) 0 ( 0.00%) 0 ( 0.00%) 1 ( 6.25%)
JacksonCore 22 9.11 ( 0.94%) 9.68 ( 0.98%) 0.57 ( 0.04%) -6.23% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
JacksonDatabind 41 32.76 ( 0.80%) 29.44 ( 0.72%) -3.32 ( -0.07%) 10.13% 0 ( 0.00%) 1 ( 2.44%) 1 ( 2.44%) 2 ( 4.88%)
JacksonXml 4 23.00 ( 7.78%) 22.50 ( 7.61%) -0.50 ( -0.17%) 2.17% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Jsoup 88 31.53 ( 3.25%) 30.46 ( 3.09%) -1.07 ( -0.16%) 3.41% 0 ( 0.00%) 1 ( 1.14%) 5 ( 5.68%) 6 ( 6.82%)
JxPath 21 53.48 ( 4.08%) 56.29 ( 4.29%) 2.81 ( 0.21%) -5.25% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Lang 52 4.90 ( 0.24%) 5.02 ( 0.25%) 0.12 ( 0.01%) -2.35% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Math 95 10.49 ( 0.27%) 10.69 ( 0.27%) 0.21 ( 0.00%) -1.96% 2 ( 2.11%) 0 ( 0.00%) 1 ( 1.05%) 3 ( 3.16%)
Mockito 35 24.24 ( 2.24%) 24.10 ( 2.22%) -0.14 ( -0.02%) 0.59% 1 ( 2.86%) 0 ( 0.00%) 0 ( 0.00%) 1 ( 2.86%)
Time 25 19.06 ( 0.55%) 19.32 ( 0.56%) 0.26 ( 0.01%) -1.36% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)

536 18.78 (1.92%) 18.48 (1.89%) -0.29 (-0.03%) 1.56% 6 (1.12%) 3 (0.56%) 11 (2.05%) 20 (3.73%)
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Chart 25 7.96 ( 0.18%) 6.76 ( 0.15%) -1.20 ( -0.03%) 15.08% 0 ( 0.00%) 0 ( 0.00%) 1 ( 4.00%) 1 ( 4.00%)
Cli 39 14.09 ( 5.74%) 14.60 ( 6.10%) 0.51 ( 0.36%) -3.64% 0 ( 0.00%) 2 ( 5.13%) 1 ( 2.56%) 3 ( 7.69%)
Codec 16 6.34 ( 1.63%) 6.22 ( 1.55%) -0.12 ( -0.08%) 1.97% 1 ( 6.25%) 0 ( 0.00%) 0 ( 0.00%) 1 ( 6.25%)
Collections 1 1.00 ( 0.03%) 1.00 ( 0.03%) 0.00 ( 0.00%) -0.00% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Compress 47 15.72 ( 1.61%) 16.23 ( 1.74%) 0.51 ( 0.13%) -3.25% 0 ( 0.00%) 1 ( 2.13%) 1 ( 2.13%) 2 ( 4.26%)
Csv 16 5.97 ( 5.03%) 6.44 ( 5.58%) 0.47 ( 0.54%) -7.85% 0 ( 0.00%) 0 ( 0.00%) 1 ( 6.25%) 1 ( 6.25%)
Gson 16 18.91 ( 2.55%) 19.00 ( 2.56%) 0.09 ( 0.01%) -0.50% 1 ( 6.25%) 0 ( 0.00%) 0 ( 0.00%) 1 ( 6.25%)
JacksonCore 25 8.48 ( 0.87%) 9.56 ( 0.96%) 1.08 ( 0.09%) -12.74% 0 ( 0.00%) 0 ( 0.00%) 2 ( 8.00%) 2 ( 8.00%)
JacksonDatabind 44 31.52 ( 0.77%) 29.48 ( 0.72%) -2.05 ( -0.04%) 6.49% 0 ( 0.00%) 1 ( 2.27%) 1 ( 2.27%) 2 ( 4.55%)
JacksonXml 5 18.60 ( 6.29%) 18.20 ( 6.16%) -0.40 ( -0.13%) 2.15% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Jsoup 89 31.26 ( 3.22%) 30.11 ( 3.09%) -1.15 ( -0.12%) 3.67% 0 ( 0.00%) 2 ( 2.25%) 3 ( 3.37%) 5 ( 5.62%)
JxPath 22 51.66 ( 3.94%) 56.14 ( 4.28%) 4.48 ( 0.34%) -8.67% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Lang 61 4.51 ( 0.22%) 4.79 ( 0.23%) 0.28 ( 0.02%) -6.18% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Math 104 10.00 ( 0.26%) 10.72 ( 0.28%) 0.72 ( 0.02%) -7.16% 0 ( 0.00%) 0 ( 0.00%) 1 ( 0.96%) 1 ( 0.96%)
Mockito 35 24.47 ( 2.25%) 24.61 ( 2.26%) 0.14 ( 0.01%) -0.58% 1 ( 2.86%) 0 ( 0.00%) 0 ( 0.00%) 1 ( 2.86%)
Time 26 18.40 ( 0.53%) 18.81 ( 0.54%) 0.40 ( 0.01%) -2.19% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)

571 17.95 (1.83%) 18.05 (1.88%) 0.10 (0.05%) -0.58% 3 (0.53%) 6 (1.05%) 11 (1.93%) 20 (3.50%)
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Chart 25 13.00 ( 0.30%) 10.92 ( 0.24%) -2.08 ( -0.06%) 16.00% 0 ( 0.00%) 0 ( 0.00%) 1 ( 4.00%) 1 ( 4.00%)
Cli 39 15.06 ( 6.09%) 15.96 ( 6.66%) 0.90 ( 0.58%) -5.96% 1 ( 2.56%) 1 ( 2.56%) 0 ( 0.00%) 2 ( 5.13%)
Codec 16 6.59 ( 1.68%) 6.38 ( 1.65%) -0.22 ( -0.04%) 3.32% 1 ( 6.25%) 0 ( 0.00%) 0 ( 0.00%) 1 ( 6.25%)
Collections 1 1.00 ( 0.03%) 1.00 ( 0.03%) 0.00 ( 0.00%) -0.00% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Compress 47 17.36 ( 1.81%) 18.02 ( 1.94%) 0.66 ( 0.13%) -3.80% 0 ( 0.00%) 1 ( 2.13%) 1 ( 2.13%) 2 ( 4.26%)
Csv 16 5.97 ( 5.03%) 6.44 ( 5.43%) 0.47 ( 0.40%) -7.85% 0 ( 0.00%) 0 ( 0.00%) 1 ( 6.25%) 1 ( 6.25%)
Gson 16 18.88 ( 2.55%) 20.56 ( 2.77%) 1.69 ( 0.22%) -8.94% 1 ( 6.25%) 0 ( 0.00%) 0 ( 0.00%) 1 ( 6.25%)
JacksonCore 25 8.34 ( 0.82%) 12.02 ( 1.15%) 3.68 ( 0.33%) -44.12% 0 ( 0.00%) 0 ( 0.00%) 2 ( 8.00%) 2 ( 8.00%)
JacksonDatabind 42 28.26 ( 0.70%) 29.99 ( 0.74%) 1.73 ( 0.05%) -6.11% 0 ( 0.00%) 1 ( 2.38%) 1 ( 2.38%) 2 ( 4.76%)
JacksonXml 5 18.60 ( 6.29%) 16.20 ( 5.48%) -2.40 ( -0.82%) 12.90% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Jsoup 89 31.98 ( 3.28%) 31.85 ( 3.28%) -0.13 ( -0.00%) 0.40% 1 ( 1.12%) 4 ( 4.49%) 2 ( 2.25%) 7 ( 7.87%)
JxPath 22 42.27 ( 3.22%) 50.41 ( 3.84%) 8.14 ( 0.62%) -19.25% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Lang 61 5.20 ( 0.25%) 5.82 ( 0.29%) 0.62 ( 0.03%) -11.99% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)
Math 104 9.89 ( 0.25%) 12.45 ( 0.32%) 2.56 ( 0.07%) -25.91% 0 ( 0.00%) 0 ( 0.00%) 1 ( 0.96%) 1 ( 0.96%)
Mockito 35 27.40 ( 2.52%) 28.59 ( 2.61%) 1.19 ( 0.09%) -4.33% 1 ( 2.86%) 0 ( 0.00%) 0 ( 0.00%) 1 ( 2.86%)
Time 26 19.71 ( 0.57%) 20.94 ( 0.61%) 1.23 ( 0.04%) -6.24% 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%)

569 18.13 (1.88%) 19.43 (2.00%) 1.31 (0.12%) -7.20% 5 (0.88%) 7 (1.23%) 9 (1.58%) 21 (3.69%)

66



CHAPTER 4. INTERACTIVE FAULT LOCALIZATION

Answer to RQ4.1.3: Regarding Expense, Talk achieves -0.29 (1.56%), 0.10 (-0.58%)
and 1.31 (-7.20%) improvement on average compared to DStar, Ochiai and Tarantula
respectively, which is worse than iFL’s 78.72%, 78.71% and 79.27%. Considering en-
abling improvements, Talk produces 20-21 such improvements which correspond to the
3.50-3.73% of the faults, which is significantly less than the 251-255 (31.59-32.85%)
that iFL produces.

4.5.6 Effect of User Imperfections
To answer RQ4.1.4, in this section we investigate to what extent user imperfection affects
the results of our method. This phenomenon is only marginally addressed in interactive
fault localization literature. Hao et al. [31] tackled the problem of user imperfection by in-
corporating two factors into their approach and analysis. They introduce a parameter which
approximates the confidence of developers by acting as a scaling factor on suspiciousness
modifications. Also, they define the concept of accuracy rate to represent the probability
that the developer makes correct estimations. Li et al. [54, 55] used a similar approach to
simulate the reliability of the users by modifying the automated oracle in their experiment
such that it gives erroneous answers on a configurable rate. Both studies consider a limited
range (5-30%, 50%) of the various factors that impact the effectiveness, and they conclude
that various factors modelling user imperfections indeed had impact on the effectiveness
results, but not that significant which would invalidate their findings. We provide a similar,
but more detailed analysis of user imperfection by experimenting with two factors that may
influence the validity of simulated users:

Confidence Level This factor indicates how much confidence we have in the user for
providing reliable answers. We model confidence by applying a proportional decrease of the
scores instead of nullation as with the base algorithm. The iFL engine was modified to scale
down the suspiciousness of appropriate code elements proportionally to the confidence level:
the new score s′ is calculated from the original s using confidence level c as: s′ = (1 − c)s.
Here, c = 0 means no confidence in which case the original scores remain, and with perfect
confidence, c = 1, nullation will be performed.

Knowledge Level In our model, the knowledge of the users means the rate at which they
can make informed decisions about the context. Thus, knowledge is modelled by the user’s
ability to give meaningful answers about the context as a whole. This factor was implemented
by letting the user choose the “don’t know” response randomly with a frequency that is
inversely proportional to the knowledge level. This means that a perfect knowledge, k = 1,
allows no “don’t know” responses, while with no knowledge at all, k = 0, every answer will
be of this type, falling back to the base FL algorithm.

These two factors were designed and implemented solely for the experiments for answer-
ing RQ4.1.4. If both factors are set to 1, we will obtain the base approach we used for
research questions RQ4.1.1-RQ4.1.3. Any combination of values are interesting to observe
to what extent they are influencing the effectiveness of the iFL method. We re-executed
our experiments on both datasets with confidence and knowledge levels set between 20%
and 100% in 10% steps. We decided to ignore values below 20% because they simulate an
unlikely situation in which the user is very incompetent. Due to the random factor that was
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introduced by the implementation of the knowledge level, we repeated each measurement
100 times and used the average data that was collected during the iterations.
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Figure 4.3: iFL improvement with different knowledge and confidence levels on SIR
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Figure 4.4: iFL improvement with different knowledge and confidence levels on Defects4J

Improvement levels, in terms of absolute Expense difference, can be seen in Figures 4.3
and 4.4. Each point on the 3D surface represents a different configuration of knowledge and
confidence. The near and far edges of the 3D cube mean the perfect and almost completely
incompetent users, respectively. Results show that both knowledge and confidence affect the
performance of iFL, though to various extent. The algorithm is sensitive to both factors when
DStar is used as the base suspiciousness score, however it is relatively stable with Ochiai
and Tarantula. We can observe that confidence and knowledge have different effects. While
the algorithm scales almost linearly with knowledge, lack of confidence causes performance
loss on a near exponential rate. This seems to be aligned with the everyday observation that
high confidence combined with low knowledge is a worse situation than a low confidence
with high knowledge scenario.

Table 4.8 shows the approximate lowest knowledge and confidence levels allowable to
limit the performance loss of iFL to at most 10 or 20% (reduction to 80 or 90% of the gain
of the base iFL algorithm). These requirements were calculated by setting one of the factors
to 100%, e.g., the last column in the last row means that confidence can be as low as 20%
(while knowledge is set to 100%), but iFL still provides 80% of its benefits compared to the
best case scenario on Defects4J using Tarantula (except DStar on Defects4J).
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Table 4.8: Requirements for Keeping 80-90% of Improvement

90% 80%
Know. Conf. Know. Conf.

SI
R

DStar 60% 60% 40% 40%
Ochiai 60% 40% 40% 30%
Tarantula 60% 30% 40% 20%

D
4J

DStar 70% 90% 50% 80%
Ochiai 60% 70% 50% 50%
Tarantula 60% 20% 40% 20%

User imperfection is more realistic when both factors are changed at the same time. For
the minimum gain levels 80-90%, consider the areas of the surfaces in Figures 4.3 and 4.4
marked with different shades of yellow and green. Points satisfying the 80 or 90% gain level
are positioned in the lower part of the surface. To keep the desired gain level, a tradeoff
between confidence and knowledge may be made but when both aspects of user imperfection
exceed the roughly 30-40% levels, the overall gain will be above the 80% of the gain of the
perfect user.
Answer to RQ4.1.4: User imperfection, as modelled by our experiments, affects the
results of the context aware iFL algorithm differently. iFL is sensitive to the knowledge
and the confidence factors as well. Our experiments show that even very low confidence
(20-30%) and knowledge levels (30-40%) suffice to keep 80% of the improvements.

4.6 Quantitative Results with Real Users

4.6.1 Experiment Setup
To answer research questions RQ4.2.1-RQ4.2.3, we performed a user study involving real
programmers and asking them to solve real fault localization tasks within an IDE. For the
experiment setup, we reused parts of the methodology followed by Parnin and Orso [70] and
Le et al. [49].

Participants 36 software engineering students were invited for participation on a volun-
tary basis, of which 22 were BSc (undergraduate) and 14 were MSc (graduate) students. Only
the top-performing students were invited from the class of about 230 based on their previous
scholastic performance in the relevant subjects. Only students with sufficient knowledge of
Java, Eclipse, and its debugging features were included. The programming experience of
the participants was between 0.5–6 years, on average 2.5 years. 23 participants had at least
1 year programming experience working in industry. Three groups (G1 − G3) have been
formed randomly, each having approximately the same ratio of BSc and MSc students.

To diversify the experiment we also invited professional programmers from the software
development teams of our university. We excluded everyone who had some relation to the
topic of this paper and from the 4 volunteers we created group G4. The average programming
experience in this group was 12.75 years (between 5–18 years).
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Tool Support We implemented a prototype tool [t1, p1] as an Eclipse plug-in that im-
plements the basic functionality of iFL. Currently, it supports Java projects and fault local-
ization on method granularity. It provides in a window a ranked list of methods with the
associated suspiciousness scores, the context (enclosing class), and other information. The
user can interact with this list, provide the feedback, make filtering on the scores, navigate
to the source, etc.

Task Assignment We designed altogether 8 different fault localization tasks (A − H),
keeping in mind that participants should be able to solve each task in about 30 minutes
including understanding the problem and documenting the solution (it was treated successful
if the participant can briefly explain the required fix but no actual implementation was
needed). We also wanted to ensure some diversity, so we selected A and E to be small, the
rest large programs, B, E, F be simple bugs and the rest more complex, some to have low
Tarantula ranks (A, C, D), and the rest high ranks. This information was not told to the
participants.

We selected 6 concrete bugs from the Defects4J database (3 from Commons Math and 3
from Joda-Time) and 2 bugs from a student project. One important consideration in the
selection was to have bugs where the rank of the faulty code element is small (math-53) and
slightly larger (ship-3), however, other aspects were also considered. Such characteristics
were the following: (i) the number of faulty methods, i.e., there should be a bug where one
method is faulty (math-5) and also one where there are multiple faulty methods (time-9)
(ii) the complexity of the bugfix, i.e., the fix should not be too complicated/complex (since
students participated in the experiment) and (iii) the similarity of ranks, i.e., the FL algo-
rithms should produce the same result in terms of the ranks of the faulty methods. These
properties ensured that we control the most variables during the experiment. In particular,
the eight bugs with their ID-s, names and Tarantula ranks were the following: [A] ship-3
(rank 11), [B] math-5 (rank 2), [C] time-9 (rank 7), [D] time-8 (rank 7), [E] ship-1 (rank 2),
[F] math-53 (rank 1), [G] time-4 (rank 5), [H] math-4 (rank 2).

Groups G1 − G3 have each been assigned 4 different tasks from the 8 available, half of
which had to be executed using the iFL functionality and the rest without it (feedback was
disabled). In order to increase the diversity, we assigned the tasks and tool modes in various
combinations to the groups. We reserved two more complex tasks for group G4, and tool
modes were randomly selected when the participants started their tasks. Table 4.9 shows
the task assignments (I: iFL used, N: iFL not used).

Table 4.9: Task Assignment

Group / Task A B C D E F G H

G1 N I - N I - - -
G2 - N I - N I - -
G3 I - N I - N - -
G4 - - - - - - I/N I/N

Experiment Execution The experiment was executed in two sessions with three half
hour blocks in each session and a break between the sessions. The first block was dedicated
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to introduce participants to the experiment, explain the goals, the basic functionality of the
tool and other instructions. Then, the four tasks have been performed in the next blocks,
where 25 minutes were available to actually perform the task and 5 minutes were reserved
for documenting the results and switching to the next task. After each task and for each
participant, we recorded the following information: number of minutes for completion if it
was successful, the solution, how much was the tool used (none, little, fully), how much did
it help (none, little, a lot), if the tool was not used what method was used instead to find
the bug. During the final 30 minutes, the participants were asked to fill a questionnaire
about their general impressions and comments: how useful was the approach (on a scale
1-5), actual benefits and drawbacks encountered, further information that could be used as
the context and other ideas to improve the tool.

4.6.2 Results for Bug Finding Efficiency
Results regarding the number of completed tasks are presented in Table 4.10.3 For each task,
we include the total number of participants who performed it, using iFL support and without
it (columns 2, 4 and 6, respectively).4 Columns Compl. show the number of participants
who successfully completed the task belonging to the group using the tool and not using it,
respectively (also, percentages are given wrt. the number of participants in the corresponding
groups).

Table 4.10: Number of All and Completed Tasks

Bug Overall with iFL no iFL
All Compl. All Compl. All Compl.

A - ship-3 24 3 ( 12%) 12 2 ( 17%) 12 1 ( 8%)
B - math-5 24 19 ( 79%) 12 9 ( 75%) 12 10 ( 83%)
C - joda-9 24 14 ( 58%) 12 5 ( 42%) 12 9 ( 75%)
D - joda-8 24 18 ( 75%) 12 8 ( 67%) 12 10 ( 83%)
E - ship-1 25 15 ( 60%) 13 8 ( 62%) 12 7 ( 58%)
F - math-53 23 23 (100%) 12 12 (100%) 11 11 (100%)
Total 144 92 ( 64%) 73 44 ( 60%) 71 48 ( 68%)

The overall success was 64% but it was highly varying across the different tasks. We
could not observe any dependence on the program size (A vs. D), but more simpler bugs
could be localized by more participants (B vs. E), overall. Initially, it was not our intent,
but task A turned out to be the most difficult to solve by the participants. Besides the
relative complexity of the bug, this might also be influenced by the fact that it was the first
assignment for the participants, who perhaps did not have enough understanding of the tool
at that time.

3In group G4 success rate was 100% for both tasks, and the completion time varied between 10-29 minutes
independently from tool usage, but due to the very low number of participants we excluded this group from
the evaluation of effectiveness and efficiency.

4For E and F , number of group members with and without iFL was not equally 12+12 because two
workstations had to be exchanged due to technical reasons, which resulted in a slight change to the planned
task assignment.
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We could not observe any difference in the success rate of participants who used iFL
compared to those who did not. In particular, the number of participants who successfully
solved the tasks is approximately the same, there is even a slight increase in the overall
number of cases without tool support. A very slight improvement within the group using
the tool can be observed for tasks A (small but difficult bug), E (complex bug) and F (simple
bug and high Tarantula rank).
Answer to RQ4.2.1: iFL does not seem to help in localizing more bugs. A slight increase
in success rate can be observed in the case of complex bugs and when the Tarantula rank
is very high.

Table 4.11: Task Completion Time in Hours, Minutes and Seconds

Bug with iFL no iFL Diff.
A - ship-3 0:16:00 0:25:00 -0:09:00 (-36%)
B - math-5 0:10:33 0:05:48 0:04:45 ( 82%)
C - joda-9 0:08:00 0:14:53 -0:06:53 (-46%)
D - joda-8 0:15:15 0:21:06 -0:05:51 (-28%)
E - ship-1 0:16:07 0:19:17 -0:03:09 (-16%)
F - math-53 0:12:40 0:09:16 0:03:23 ( 37%)
Total 9:30:00 11:05:00 -1:35:00 (-14%)

Table 4.11 shows the results we collected about the time required to localize the fault,
which was needed for RQ4.2.2.

For each bug, we present the average times required for completion over all group mem-
bers who managed to complete the task. The last column shows the difference of the times
(absolute and relative) with respect to the cases without tool support. We could observe a
noticeable overall improvement, of 14%. But, results also show that there is a big variance
of the difference across the different tasks: in the case of the Commons Math bugs, B and F ,
the tool even resulted in longer completion times, but in the other cases there was 16-46%
improvement on average. Both Commons Math bugs were quite easy to understand and to
locate the faulty element in them, so it might be the case that the use of iFL resulted in such
a big overhead that not using the tool was actually more simpler. The overall improvement
excluding these two tasks was about 36% (5:23:00 vs. 8:25:00 total times). We could not
observe any relationship between the program size or Tarantula rank and the completion
times.
Answer to RQ4.2.2: Using iFL reduced the time required to localize the fault, overall
by 14%, except for the cases when the bug was very simple and easy to identify (without
these, the improvement was 36%).

4.6.3 Subjective Evaluation by the Participants
For answering RQ4.2.3, participants were asked to fill out a questionnaire that consisted
of two parts: short questions about each bug and questions about the approach and tool in
general. Table 4.12 includes the data for the first part, the responses per bug (this relates
only to tasks where iFL was enabled). In more than two-thirds of all cases, participants
expressed their opinion regarding the usage and usefulness of iFL.
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Table 4.12: Subjective Evaluation of iFL per Bug

Bug
Usage Usefulness

no none little fully no none little a lotansw. answ.
A - ship-3 6 0 3 3 6 2 3 1
B - math-5 2 2 6 2 3 1 6 2
C - joda-9 5 2 5 0 5 2 3 2
D - joda-8 5 2 2 3 6 2 1 3
E - ship-1 3 1 5 4 3 2 5 3
F - math-53 1 0 8 3 1 0 7 4

Total 22 7 29 15 24 9 25 15
(30%) (10%) (40%) (20%) (33%) (12%) (34%) (21%)

Users responded that they did not use the tool in 7 cases (10%); they used it a little in
29 cases (40%); and relied fully on iFL in 15 cases (20%). Overall, participants used the
interactive approach at least a little in 44 cases (60%). Considering the usefulness of iFL,
the results were similar. Participants did not find the approach helpful at all in 9 (12%)
cases, but in the remaining 25 (34%) and 15 (21%) cases they found that iFL aided fault
localization at least a little or a lot, respectively (this is 82% of the cases when participants
responded). Experts also agreed on the usefulness of the tool, but they argued that the
complexity of the bugs may have an impact on it. However, we did not identify any pattern
in the distribution of opinions wrt. differences in bug types.

In the next part of the survey, participants were asked to rate the usefulness of the
interactivity for SBFL in general on a scale 1–5 (1-not useful, 5-extremely useful). The
results are presented in Fig. 4.5. Two thirds of the participants (24) said that iFL was
useful at least moderately and only 8.3% (3) answered that they did not find it helpful at
all.
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6
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Figure 4.5: Overall usefulness of the iFL approach

Participants could also write a textual evaluation of the approach and the tool, in which
they could list the advantages and disadvantages they experienced. Some typical benefits
mentioned:

“The tool gives good hints and it can confirm if my idea is good or not”,

“It is straightforward to navigate between suspicious functions”.

Some disadvantages of the tool mentioned by participants:
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“The tool can mislead and so gives an unnecessary overhead”,

“We can exclude the actually faulty functions with feedback, which cannot be undone”.

In addition, participants could articulate suggestions for using or further developing
the tool. Several commented that it would be helpful if the selected method could be
automatically opened in a separate window or a view. Also, undo-redo and the dynamic
score-update were among the most frequently mentioned missing features. Some commented
that for a large set of methods, the traditional search function made it easier to find the
appropriate methods.

Professional developers said that the tool provides good starting points for debugging and
it also helps focusing their efforts on the most suspicious parts of the source code. However,
they also added that more information would be beneficial to make full use of the potential of
interactivity and to make decisions about contexts easier. They mentioned the visualization
of factors that contribute to the suspiciousness scores (e.g., related tests, especially the failing
ones) and provide more detailed information about the bug (e.g., stack traces, call-chains,
etc.) in an organized, easily understandable way as the most advantageous improvement.
Answer to RQ4.2.3: For most tasks where they responded, participants found interactive
feedback useful to find the bug (82%), and two thirds of the participants said that in
general it was useful at least at a moderate level. Textual responses about the benefits
and drawbacks will help us in further developing the approach and tool.

4.7 Discussion
This section contains our general views on the interpretation of the empirical data from
previous sections.

4.7.1 Conceptual Evaluation Based on Simulations
As discussed, iFL achieved notable improvements on both benchmarks; Table 4.13 summa-
rizes the most important results. For reference, the Talk algorithm proposed by Gong et al.
[26] achieves about 10-16% improvement at best on some projects from Defects4J, and it
produces 20-21 enabling improvements. DStar and Ochiai behaves very similarly and they
produce slightly different results compared to Tarantula. However, DStar is very sensitive to
user imperfections. Results are comparable for the two benchmarks, despite the significant
differences in their properties including size and the number of tests compared to the number
of program elements.

We confirmed the effectiveness of iFL with paired t-test and signed Wilcoxon test to check
if the differences in the Expense measures between iFL and the basic SBFL over the entire
dataset are statistically significant. These tests showed that iFL results are significantly
better than SBFL at 99% confidence level for each SBFL technique and benchmark.

4.7.2 Possible Improvement Based on Experiments with Real Users
The previously mentioned results concerned the validity and usefulness of the iFL method-
ology from a conceptual point of view. However, there are at least two main practical issues
which could hinder its application in real life situations. Namely, do developers have enough
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Table 4.13: Main Results of the iFL Algorithm

Study Best FL method Fault type All faults Improvement Enabling
improvement

SIR Ochiai seeded 85 71% 47 (55%)
Defects4J Ochiai real 801 79% 255 (32%)

information about the context (i.e., the surrounding code base) to be able to give adequate
feedback for the iFL algorithm? Furthermore, developers have to integrate the proposed
methodology and its implementation into their daily workflows. The latter could affect
several other factors, not only the raw efficiency as we used during the simulation.

Based on the findings in Sections 4.6, we were able to articulate several concrete improve-
ments to the iFL methodology and current implementation in the Eclipse IDE to address the
above issues. We categorize these into three groups: improvements to the methodology, func-
tional enhancements to the implementation and design and other technical improvements to
the tool.

In addition to these issues, several participants explicitly expressed their opinion that
without accurate background knowledge of the underlying method (such as score calculation)
they would be less trustful in the outcomes of the tool. These kinds of issues are related to
multiple aspects of the iFL methodology and its implementation. Technical details should
be explained in the documentation and calculation details need to be accessible from the
tool on demand. We could solve these issues in several different ways. For example, we could
use various help features in the IDE, or clarify the concept and principle of score calculation
in a detailed training session.

4.7.2.1 Methodology

The main improvements regarding the iFL methodology include lowering the granularity
level and experimenting with different kinds of contextual data. Currently, in the case of
large programs the iFL engine works on method level. However, we have seen that users
often demand more detailed information during debugging. Since iFL is designed to cope
with different granularity levels, changing the granularity to line/statement level is fairly
straightforward after we eliminate the technical limitations implied by the current coverage
measurement approach. Users usually incorporate multiple information sources into their
debugging process. Along this idea iFL itself could be extended to utilize additional data,
e.g., function call contexts, as contextual information to improve the effectiveness.

4.7.2.2 Functional Enhancements

We could aid the integration of iFL into the developers’ workflow by implementing features
which enhance the user experience of the methodology. For example, a possible improvement
is automatic score calculation after test execution. So, by running the tests during or after
the (bug)repair, we can modify (upgrade) the score values and get a real-time picture of the
change in suspiciousness values. These changes can provide useful information for locating
the bug or identifying other faulty (i.e., , not yet inspected and corrected) methods.
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The degree of trust in the tools or the users’ own decisions could impact the willingness
of the tools’ usage. There may be cases when users approve an interaction and then they
regret it afterwards. This could be due to, for example, a “false-click” or because the users
have changed their previous judgment or opinion and therefore they want to revoke it. This
would be supported by the undo and redo functions, which allow the developers to rollback
any iFL score changes.

Currently, we do not support other IDEs besides Eclipse, so another important goal is
to create a plug-in for other environments such as IntelliJ.

4.7.2.3 Tool Design and Technicalities

Experience has shown that the participants’ main source of information is the code itself;
hence it would be more useful to “bring the information closer” to the source code. One
possible way to do this is to visualize it in the code-editor window, for example by code
highlight. This would greatly help in understanding the iFL’s results and increase usability.
This feature may also help us to reduce the overcrowding of method rank lists and the
information in them.

4.8 Threats to Validity
4.8.1 Simulation
The main threat to the validity of the results related to RQ4.1 is the set of projects and
bugs that we used during our experiments. We selected the SIR and Defects4J benchmarks
because they are popular in the scene of fault localization research, hence we maximize the
comparability of our results to the related works. However, some researchers argue that the
projects and bugs in these benchmarks are not representative of real life projects and bugs.
We restricted the experiments in this paper to single-fault cases, however this is a current
technical restriction, the proposed method itself is not limited in this regard. In addition,
multi-fault cases would not have an effect on the results considering the Expense metrics,
since (as usual in these experiments) only the faulty code element with the highest rank is
considered during the calculation of the evaluation metrics. Considering the experiments
related to user imperfections, multi-fault cases may yield different results, because the algo-
rithm may have more ways to modify the scores of faulty and non-faulty code elements as
well.

The next threat is that the feedback model of our method is relatively simple, which
might not be suitable in a real life scenario. For example, the user might give some more
complex feedback, like combining code elements from other contexts or pointing to code
elements not suggested in the rank list. Also, as new knowledge is obtained, changes to
earlier decisions could be possible. We plan to address this topic in future work.

4.8.2 Quantitative User Study
The first threat that we identified which could impact the validity of the results of our user
studies in RQ4.2 is the time to perform the tasks. We set the time limit to 25 minutes for
each task, which may have an effect on the participants’ performance, especially if they have

76



CHAPTER 4. INTERACTIVE FAULT LOCALIZATION

less experience. Also, a longer period of time would have affected the performance as well,
since the developers could loose concentration as they get tired.

It is also a possibility that the rank of the faulty code element may have influenced
our results. Although, differently ranked faults may yield different results, investigating
the correlation between the position of faulty code elements and the success rate or time
needed to fix the bugs was not an explicit goal of our experiments. In addition, we tried to
select bugs with as different ranks as possible while keeping in mind the distribution of the
complexity of the tasks. Also, during the design of the tasks we investigated various projects
and we selected bugs for which the developers do not need specific domain knowledge. In
other words, we simulated the scenario in which the developer has to debug an unknown
program. However, some of the participants may had knowledge about the projects or bugs,
which could have influenced their performance.

An other threat is the so called Hawthorne effect [20], i.e., the participants might have
changed their behavior in response to the awareness of being observed. They may try to
figure out the goals of the experiment in which they participate. To mitigate this threat we
minimized the amount of information that might have helped the participants determine the
goal of the experiment. However, there is still a chance that they were able to deduce the
purpose of the experiment.

A further threat is related to the participants of the studies. They were undergradu-
ate and graduate students, and professional developers. We tried to diversify the list of
participants by inviting people with different levels of experience, yet they may not be a
representative sample of the population of developers. In addition, we tried to design the
experimental groups and assign the tasks to them in such a way that the distribution of
participants through the groups is balanced.

4.9 Related Work
The closest related works from the other Interactive Fault Localization methods [26, 31, 8, 51,
54, 55] to our approach are the ones that change the ranking of program elements based on
the user feedback iteratively [26, 31, 51]. Other than utilizing user feedback, these papers also
incorporate the Siemens suite from SIR into their set of subject programs. However, the setup
of experiments and metrics used for the evaluation are different in every case. Differences
include the set of defects, the total number of code elements, different interpretation of the
localization effectiveness metrics, etc. This makes it difficult to compare our results directly
to the reported ones in these works, however, we managed to re-implement the work of Gong
et al. [26].

For reference, Lei et al. [51] utilize test data generation techniques to automatically
produce feedback for interacting with fault localization techniques. They used a very similar
metric to ours (E ′) to measure the relative effectiveness improvement and concluded that the
improvement is around 21% on average compared to the 71-72% range achieved by iFL. Hao
et al. [31] propose a trace-based method which is reported to achieve about 8% in a similar
measure; they also showed that about 90% accuracy from the user is needed to improve the
base SBFL algorithm.

In the work of Gong et al. [26], the user simply decides whether the statements are
faulty or not. Ranking is updated to find the root cause of the fault using the program
spectra. Their approach yields about 12-13% absolute improvement in Expense on average
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over Tarantula and Ochiai on small programs from the SIR repository [2]. For a more precise
comparison which includes real bugs, we reimplemented the Talk algorithm proposed by
Gong et al. [26] in our simulation framework and re-executed our experiments. We found
that Talk improves the rank of the faulty elements by 1-3 positions which translates to
2-6% improvement on Defects4J.

Li et al. [54, 55] uses a concept of contextual knowledge that is similar to ours. They
build on the assumption that the semantics of a method wrt. inputs and output is well
known by developers. They generate queries and use the feedback to guide the SBFL based
recommendation process in a debugging scenario. Also, they considered the correlation
between the success rate of their approach and the percentage of erroneous answers to these
queries. Bandyopadhyay and Ghosh [8] proposed a method to iteratively predict and remove
coincidentally correct test cases based on user feedback .

Fry and Weimer [23] used software- and defect-related features to study human accuracy
at locating faults. They found that certain types of bugs are much harder for humans to
locate accurately. Also, they identified source code features that can foretell human FL
accuracy and proposed formal models of debugging accuracy based on these features.

4.10 Conclusions

In this thesis, we presented iFL – a new form of an Interactive Fault Localization approach.
This approach extends traditional Spectrum-Based Fault Localization by providing the abil-
ity for the developer to interact with the fault localization algorithm. Interaction means
giving feedback on the elements of the prioritized list, based on which the suspiciousness
scores are adjusted. We exploit the knowledge of the user about the next item in the ranked
list (e.g., a statement or a function) and its context (the containing function or class), with
which larger amounts of code elements can be repositioned in their suspiciousness.

With the two-staged approach to empirical evaluation of the proposed approach, we
tried to investigate the potential in the iFL techniques from many different angles, but this
might still not represent real life scenarios fully. However, we obtained promising results
in both stages. Results with simulated users showed quite big improvements with respect
to non-interactive SBFL even in the case when the users exhibit low levels of reliability.
In addition to non-interactive approaches, iFL also outperformed Talk, a closely related
interactive FL algorithm by a huge margin. Although iFL does not seem to help in localizing
more bugs when it comes to real users, the fault localization times were reduced significantly
(except for the very simple cases), and subjective feedback was also mostly positive about
our experimental implementation. However, further research is required to find out how the
methodology involving the interactivity should be made more intuitive, and the supporting
tools more directly related to the source code, the centerpiece of the developer’s attention
during debugging. This would enable better acceptance by practitioners without extensive
training and explanation through use cases.
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Thesis II:

1. I worked on the development of the theoretical background of applying the concept
of interactive feedback in fault localization.

2. I also worked on the development of the theoretical background of applying the
concept of user imperfection factors (confidence and knowledge) in the evaluation
of fault localization.

3. I designed and implemented the simulation framework as a basis for testing in-
teractive fault localization approaches.

4. I implemented the iFL approach in the simulation framework.

5. I performed experiments using seeded and real faults from the SIR and Defects4J
benchmark to evaluate iFL.

6. I measured and analyzed the effectiveness and efficiency of iFL in the aforemen-
tioned simulated environment.

7. I took part in the reimplementation of the Talk algorithm, and the execution of
the subsequent comparative experiments and analyses.

8. I also took part in the design and development of the iFL4Eclipse plug-in which
implements iFL in the Eclipse IDE.

9. I worked on the design, execution and analysis of the user studies.

Response to challenges. Regarding challenge C3 this thesis shows that by incorporating
the additional knowledge of the developers, the effectiveness and the efficiency of debugging
process can be significantly improved. In addition to showing the benefits of incorporating
additional information, in response to challenge C4, this thesis proposes an interactive fault-
localization approach which could be tailored to the developers’ needs.

Publications. The general ideas from which iFL was composed were published at the
International Conference on Software Maintenance and Evolution (ICSME’20) [c2]. This
paper includes the evaluation of the proposed approach in simulated and real world scenarios,
but to a limited extent. Later, we extended the evaluation to significantly more faults, as
well as, we implemented the Talk algorithm proposed by Gong et al. [26] to evaluate
and compare it directly to our approach. In addition, we conducted a more elaborated
user-study with a few experienced developers. In this experiment, we utilized the think-
aloud method to gain the most accurate insight into the users’ thought processes during
debugging tasks. The findings of this study were published recently in the Empirical Software
Engineering (EMSE’22) [j1].

Applications. The iFL approach has been implemented in a tool called iFL4Eclipse, that
is an Eclipse plug-in which provides developers with all the benefits of the interactive debug-
ging process. The details of this tool can be found in [p1, t1] and on the following websites:
[35, 78].
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5
Call-Chain-Based Fault Localization

5.1 Introduction
Based on the vast amount of research performed in the field of SBFL, it seems that variations
to these basic approaches may yield only marginal improvements, and that perhaps more
radical changes in how we approach the problem are required to achieve more significant
gains. For example, by combining conceptually different approaches [117], or by involving
additional information to the process. Early attempts to incorporate control or data flow
information, for instance [77, 32], have not been further developed because it soon became
apparent that they are difficult to scale to large programs and real defects.

Beszédes et al. [c1] propose the concept of enhancing traditional SBFL with function call
chains on which the FL is performed. Function call chains are snapshots of the call stack
occurring during execution and as such can provide valuable context to the fault being traced.
Call chains (and call stack traces) are artifacts that are well-known by the programmers who
perform debugging and can show, for instance, that a function may fail if called from one
place and perform successfully when called from another.

In this thesis, we propose a novel SBFL algorithm, that computes ranking on all oc-
curring call chains during execution, and then selects the suspicious functions from these
ranked chains using a function-level (i.e., method-level for object-oriented languages like
Java) spectrum-based algorithm, Ochiai in particular [2].

Our approach works at a higher granularity than statement-level approaches (previous
work suggests that function-level is a suitable granularity for the users [6, 117]). At the same
time, we provide more context in the form of the call chains and therefore have the potential
to show better performance in terms of Expense.

We empirically evaluated the proposed approach using 404 real defects from the Defects4J
benchmark [41]. Results indicate that except for the two outliers (Chart and Closure) the
call-chain-based FL approach can improve the localization effectiveness of 1 to 9 positions
(with a relative improvement of 19-48%), compared to Ochiai, a hit-based function-level
approach. In the case of defects with ranks worse than 10, this ratio increased even more
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(66-98%) on all programs. Furthermore, the defective element could be located in 69% of the
cases in the highest-ranked call chains, which turned out to be relatively short on average.
Last, but not least, we provide qualitative evidence that, besides improved performances, the
proposed approach can provide useful information to the developer performing a debugging
task.

The main contributions of this work can be summarized as:

• Based on the high-level concept of function call-chain-based FL presented in [c1], we
introduce a new SBFL method that utilizes function call chains instead of individual
statements or functions.

• We empirically show that the method can produce about 43% improvement in local-
ization expense compared to simple function-level localization.

• Apart from the final suspiciousness rank, the method offers a set of affected call chains
to the user, which can further enhance the localization process. Measurements show
that the majority of the defective elements could be located in the highest-ranked call
chains.

5.2 Related Work
Similar concepts to function call chains have been explored by other researchers [82, 5],
however, not in this detail and not with the FL application in focus. Schröter et al. [84] and
Zou et al. [117] suggest assigning a score to the function which is reciprocal to the depth of
its first occurrence in the stack trace. They found that this approach was the most successful
in localizing the crash faults (which account for about 25% of the defects in Defects4J). Wu
et al. [101] extend the call stack with static call graph information and then calculate the
suspiciousness scores for the functions.

5.3 Fault Localization on Call Chains

Figure 5.1: Call-chain-based FL overview

Figure 5.1 provides a high-level overview of our approach. Using a given set of test
cases T , the subject program P is executed while collecting the necessary execution trace
information. This is used to produce the function call chains, as well as the test case pass/fail
outcomes (more on this in Section 5.3.1). Based on that, we compute the call chain level
program spectrum information, which is used to calculate the ranking of the chains according

82



CHAPTER 5. CALL-CHAIN-BASED FAULT LOCALIZATION

to their suspiciousness levels (discussed in more detail in Section 5.3.2). In the next step,
two algorithms are applied to compute the ranking of the functions for FL, which are then
merged to produce the final ranking (see Section 5.3.3).

5.3.1 Function Call Chains
Let F be the set of functions in a program P , and T a set of test cases used to test P . Then,
a Call Chain c is one of the possible deepest call stack states occurring during the execution
of a test case t ∈ T . Call chains can be efficiently produced from test case executions because
only the function entry and exit events need to be recorded and stored in a stack structure.
One thing to note here is that the used instrumentor method must be able to handle any
non-structured call events such as exceptions and multi-threaded execution. In our method,
we collect all distinct call chains occurring during the execution of T , which will be referred
to as the call chain set C. We also maintain a set of chains C(t) occurring for each test case
t (we say that t executes c if c ∈ C(t)). Finally, the set of functions occurring in a chain c
will be denoted by F (c).

5.3.2 Call-Chain-Based FL
The first phase of our approach is FL on the call chains. This takes as inputs the test case
execution outcomes (pass/fail) and uses a program spectrum representation with the chains
as code elements. The output is a ranked list of call chains with the associated suspiciousness
scores.

We apply a traditional program spectrum representation based on binary matrices. Let
Sch denote the chain-based spectrum, whose rows represent test cases (elements of T ), and
columns contain the call chains (elements of C):

Sch = ti



cj︷ ︸︸ ︷

0/1 0/1 · · · 0/1 0/1
0/1 0/1 · · · 0/1 0/1

. . .
0/1 0/1 · · · 0/1 0/1
0/1 0/1 · · · 0/1 0/1

 Rch =



0/1
0/1

...
0/1
0/1



Sch(i, j) = 1 means that the call chain cj will occur at least once in the execution of test
case ti. The vector Rch denotes the test case execution results vector. It is a record of the
outcomes of test case runs, namely pass (0) or fail (1).

For the call chains, any basic SBFL suspiciousness score could be used. In this work,
we used the Ochiai score [2], used in recent work [71, 117, 6], and proved to outperform
other popular formulae in many situations. To calculate the suspiciousness scores, many
formulae rely on some or all of these four basic statistics for each code element c (chain, in
our case): ef (c), nf (c), ep(c), and np(c), which count the number of test cases that execute
call chain c and fail, do not execute c and fail, execute c and pass, do not execute c and pass,
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respectively. The Ochiai score does not use np(c) and is computed as:

O(c) = ef (c)√
(ef (c) + nf (c)) · (ef (c) + ep(c))

.

This way, each call chain c will be assigned a suspiciousness score between [0, 1] according
to the formula. This, in itself, might be a useful output for the programmers seeking the
faulty code element because the high-ranked chains could lead their attention to the faulty
element and the context in which it was invoked. However, we proceed to compute also the
most suspicious functions, as described in the following.

5.3.3 Locating Functions

A trivial approach for the user to locate the defective function (and statement, respectively)
is to consider the highest-ranked call chains and investigate the functions occurring in them
(according to our experimentation, this can be successful quite often). But we also propose
an approach to produce a ranked list for functions as well based on the call chain scores.

We experimented with various algorithms for this purpose and eventually found out that
different strategies may produce good results in different cases. Hence, we decided to use the
two best performing strategies and then combine their results, as explained in the following.

5.3.3.1 Weighted Chain Counts

The basic idea with this strategy is to count the number of occurrences of each function in the
chains weighted by the respective chain scores from the previous phase. The intuition behind
this is that functions frequently occurring in highly ranked chains will be more suspicious.
More precisely, for each function f ∈ F we compute the score W as:

W(f) =
∑

c∈C(f)
O(c) , where C(f) = {c | f ∈ F (c)} .

Note that this score will not fall in the interval [0, 1] which is typical for many other
scoring mechanisms. However, this does not affect other parts of the approach since only
the relative ranks are subsequently used.

5.3.3.2 Reapplied Spectrum

The second idea for computing function-level scores is to re-apply the spectrum-based ap-
proach, but this time on the functions using the call chains in place of the test cases. For
this purpose, we treat a call chain as a “proxy” to a test case in the following manner. If its
score is greater than a threshold z ∈ [0, 1) it is treated as “failing” otherwise as “passing.”
Hence, our function-level spectrum has the call chains in its rows and the functions in the
columns:
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Sfn = ci



fj︷ ︸︸ ︷

0/1 0/1 · · · 0/1 0/1
0/1 0/1 · · · 0/1 0/1

. . .
0/1 0/1 · · · 0/1 0/1
0/1 0/1 · · · 0/1 0/1

 Rfn =



0/1
0/1

...
0/1
0/1



In this case, a 1 at the matrix position (i, j) means that fj ∈ F (ci), and the entry in the
vector Rfn for a chain ci is 1 if O(ci) > z. By adjusting z, one can regulate how “strictly” a
suspicious call chain should be considered faulty. We experimented with different thresholds,
but in the following, we will set z = 0 as it provided the best results.

The final scores in this case will be computed by re-applying the Ochiai formula to this
function-level spectrum, which will be denoted by R(f) for a function f .

5.3.3.3 Merging the Ranks

The reason for the two ranking methods to behave differently can be traced back to the
mentioned coincidental correctness, which – apparently – can affect the chain-based approach
as well.

Most SBFL formulae poorly perform when the defective element f has a high ep(f) value
compared to ef (f). In the case of our reapplied spectrum technique, this means that f is
found in many chains that have ≤ z score, while in fewer chains that have > z score. This, in
turn, can happen if some passing test cases are complex enough to generate a lot of different
chains, contrary to the failing ones. We observed that this can happen often in the case of
the reapplied spectrum, so in this case, the weighted chain counts technique will perform
better because it is not affected by the many passing chains.

Since we do not know in advance which of the two function-level scores will lead to better
results in a particular case, so we merged the two ranked lists by alternatively selecting the
next element from each of the two lists. The algorithm in Figure 5.2 depicts the approach
more precisely.

Input R1 {rank according to W scores}
Input R2 {rank according to R scores}
Output {combined rank}
Repeat

f := next element in R1
If f is not output yet

Output f
f := next element in R2
If f is not output yet

Output f
Until R1=empty and R2=empty

Figure 5.2: Rank merging algorithm

The algorithm has the following property: if the rank position of the faulty element
is r1 in R1 and r2 in R2, in the worst case it will be found in 2 · min(r1, r2) steps. This
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means that if one of the scoring mechanisms is poor compared to the other, the result will
depend on the better one. Moreover, if the two ranks are similar, the output will also be
similar to them and the mentioned worst case will not be reached. Note that this algorithm
does not explicitly handle ties, situations when elements with the same score are ranked
subsequently in an arbitrary order. Also, the rank list with which the processing is started is
arbitrary. Depending on how these are implemented, the algorithm could produce different
final outputs.

Several researchers have used machine learning, such as learning to rank [52], to combine
different FL algorithms [105, 6, 117]. We selected to use the above simple approach instead
because it guarantees the minimum required rank position and it is practically the same
approach the users would follow if they are given two ranked lists to analyze in parallel.

5.4 Empirical Evaluation
The goal of the study is to assess the proposed approach based on the combination of call
chain scores and function-level SBFL. The quality focus is the effectiveness of the approach,
compared with state-of-the-art SBFL. The context consists of 404 bugs from the Defects4J
suite [41].

More specifically, the study aims at addressing the following research questions:

RQ5.1 What are the properties of the occurring call chains and, in particular, of chains
that contain faulty elements? We measure how often the faulty elements appear in the
top-ranked chains. Also, we collect the number and length of the chains because this
highly contributes to the usefulness of the chain ranking.

RQ5.2 How much improvement can the call-chain-based approach achieve compared to basic
function-level fault localization? We measure this property using the fault localization
Expense measure (RQ5.2a). At this point, we also compare the two function-level
scoring mechanisms of the second phase of our approach and measure how often each
of them is better than the other (RQ5.2b).

In the following, we describe the details of the experiment setup and the evaluation
methodology.

5.4.1 Study Settings
Our study considered different SBFL formulae i.e., Ochiai, Tarantula, and DStar. Since
they provided similar performance in the traditional setting we report only Ochiai results.
However, the online appendix [10] includes the results of the other formulae as well.

We performed the experiments on real defects from the Defects4J suite (v1.4.0) [41]. We
selected this benchmark because it can be seen as the state of the art in FL research for
Java [6, 71, 117, 114, 42, 85], and it includes real defects and programs with non-trivial
size and complexity. The dataset provides the fix for each bug as a patch set (called a
version). Using the patch sets we were able to create change sets that contain data about
which functions (Java methods) were affected by each bug fix.

By default, Defects4J utilizes Cobertura [14] to measure code coverage. However, since
call chains are needed for our approach we had to use different technology. We used a
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bytecode instrumentation tool based on Javassist [38] to collect execution traces. This tool
uses a compact data structure that was carefully engineered to handle recursive calls and
the exceptional amount of data that is generated during the execution of real-life programs.

Unfortunately, some test cases fail if the code is instrumented. These tests assert things
that the instrumentation changes e.g., the structure of an object, runtime, contents of the
classpath, etc. Since the unexpectedly failing tests would affect the suspiciousness of the
covered code elements, we excluded those bugs that include this kind of test. Finally, we
considered only those faults for which there is at least one failing and traversing test case.
The final set of programs and defects from the Defects4J dataset we used in our experiments
is reported in Table 5.1. Numbers regarding size (lines, tests, functions) vary from version to
version, here data from the last versions are provided. The last column contains the number
of chains generated (also for the last version), which will be explained later.

Table 5.1: Main Properties of the Defects Used in the Experiments

Program KLOC Tests Bugs Functions Chains
Chart 96 2 187 25 5 235 41k
Closure 91 7 867 173 8 379 889k
Lang 22 2 270 60 2 353 6k
Math 84 4 371 92 6 351 228k
Mockito 11 1 331 28 1 433 11k
Time 28 4 019 26 3 627 150k
Total 332 22 045 404 27 378 1 325k

To store the spectrum information matrices and compute the various scores and ranks,
we used the SoDA framework [87]. Apart from that only various scripts and spreadsheet
editors were used for the calculations.

5.4.2 Measuring the Chain Properties
Compared to a basic function-level SBFL method, the proposed approach requires:

1. To compute the call chains besides simple code coverage information.
2. A larger spectrum matrix, because its columns include different chains rather than

functions.
3. An additional step to locate the functions, which is composed of two ranking algorithms

and a merging phase. The function-level spectrum requires a matrix whose rows are
composed of the different chains which are typically more numerous than the test cases.

To account for these differences, we recorded their basic properties such as the number
and size (number of function occurrences) of the chains. The corresponding results are
presented in Section 5.5.1.

5.4.3 Evaluation of Fault Localization Effectiveness
To compare our approach to traditional SBFL techniques, we will use the approach presented
in Section 2.2.5, i.e., we compute the Expense metric for both approaches and compare them
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in terms of change relative to traditional SBFL, using both absolute values and relative
improvements, and we calculate and present enabling improvements as well.

Finally, we compare the rankings achieved by Ochiai with those achieved by the proposed,
combined approach. To this aim, a Wilcoxon sign-rank test [16] should normally be used.
However, in the context of FL, especially for the easy matches, the test could encounter
ties, e.g., when both approaches report the same function as the first. To overcome this
limitation, we use, instead, the Wilcoxon-Pratt test [16] which copes with the ties. Since
multiple tests are performed (one per program), the p-values have been adjusted using Holm’s
correction [34]. We complement the Wilcoxon-Pratt test with Cliff’s d effect size measure [29].

5.5 Results
In this section, we present the results of our experimental evaluation following our research
questions from above.

5.5.1 Properties of Call Chains
As described in Section 5.4.2, we recorded the different properties of data structures during
the execution of the experiments and used these to compare our approach to the basic
function-level FL. Table 5.1 includes some basic statistics, i.e., the number of functions,
tests, and call chains, of the considered programs (their last versions).

The distribution of chain lengths is depicted in the blue boxplots (i.e., the second for
each program) of Figure 5.3 (note that outliers are excluded). Although the call chains can
be very long (about 3,500 functions), Closure tends to have shorter chains, i.e., about 4
to 26 functions. The average call chain length is 24.8 for the whole dataset and 12.4 if we
exclude Closure. (More details can be seen in Column 3 of Table 5.2.)

Table 5.2: Faulty Elements in Highest-Ranked Chains and Average Chain Lengths

Program Faulty in Highest-Ranked Length
All High

Chart 19 (73%) 8.3 5.7
Closure 98 (56%) 26.0 849.3
Lang 56 (88%) 4.4 5.1
Math 70 (75%) 14.8 13.9
Mockito 20 (69%) 7.8 58.6
Time 21 (78%) 10.1 11.7
Total / Average 284 (69%) 24.8 749.2

We now investigate what is the relationship between the faulty elements and the content
of the highly-ranked chains produced in the first phase of our approach. The second column
of Table 5.2 shows the number of times (and their ratio) the faulty element can be located
in the call chains from the very beginning of the ranked list. In particular, we considered
the chains with the highest suspiciousness scores. It is interesting to note that the highest
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Figure 5.3: Properties of highest-ranked and all chains

score was in many cases 1. We can observe from the data that, for all programs, 69% of the
defective elements are found in the highest-ranked chains, which is a very high ratio.

It is also interesting to investigate whether these fault-containing chains are any different
in terms of their sizes from the general statistics. The red boxes in Figure 5.3 (left-side for
each program) depict the length distribution of such chains. As we can observe, the maximum
length of these call chains varies from program to program. In general, not considering the
outlier Closure, the average length of chains with the highest score is 13.8. Column 4 in
Table 5.2 shows the related average values. This finding indicates that the investigation of
only the resulting call chains may often lead to finding the fault. However, this process may
be supported by the ranked functions in the second phase.

Answer to RQ5.1: 69% of the faulty elements appear in the chains with the highest
score values, and these chains contain about 14 functions on average. These two factors
contribute to the usefulness of the chain ranks for FL.

5.5.2 Localization Effectiveness
Table 5.3 reports the results for FL effectiveness. Columns “Ochiai” and “Combined” show
the absolute and relative Expense values for function-level Ochiai and the proposed approach,
respectively. Column “Difference” reports the difference between the average rankings, while
column “Relative change” expresses the same as percentage increase/decrease with respect
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Table 5.3: Fault Localization Effectiveness Comparison (Averages Shown)

Program Bugs Ochiai Combined Difference Relative Ochiai Enabling Relative
E(E ′) E(E ′) E(E ′) change > 10 improvements improvement

Chart 25 8.3 (0.19%) 10.8 (0.25%) 2.4 (0.06%) 29% 5 2 (8%) -19.0 (-76%)
Closure 173 99.5 (1.33%) 131.4 (1.77%) 31.9 (0.44%) 32% 106 16 (9%) -58.8 (-93%)
Lang 60 4.7 (0.23%) 3.5 (0.17%) -1.1 (-0.05%) -24% 7 4 (7%) -15.4 (-66%)
Math 92 11.0 (0.29%) 7.3 (0.19%) -3.7 (-0.10%) -34% 27 17 (18%) -28.1 (-87%)
Mockito 28 25.6 (2.47%) 20.6 (1.98%) -5.0 (-0.49%) -19% 9 3 (11%) -92.0 (-98%)
Time 26 18.3 (0.53%) 9.5 (0.27%) -8.8 (-0.26%) -48% 7 2 (8%) -49.2 (-94%)
Total / Average 404 49.3 (0.89%) 61.1 (1.00%) 11.9 (0.11%) 24% 161 44 (11%) -43.0 (-91%)

to Ochiai. Column “Ochiai > 10” reports the number of defects in the programs for which
the ranking position is more than 10. “Enabling improvement” indicates how many defects
were successfully moved to the 10th or below position by our approach (the percentage is
relative to the bug number), and the last column shows the average absolute and relative
difference of rankings for such cases.

Table 5.4: Results of the Wilcoxon-Pratt Test and Cliff’s d Effect Size When Comparing
Ochiai vs. Combined Approach (Cliff’s d is Positive When in Favor of the Combined Ap-
proach)

Program Whole evaluation set Bugs ranked > 10 by Ochiai
p-value d Magn. p-value d Magn.

Chart <0.001 -0.05 negligible 0.01 0.12 negligible
Closure <0.001 -0.27 small <0.001 -0.01 negligible
Lang <0.001 0.04 negligible <0.001 0.59 large
Math <0.001 0.15 small <0.001 0.66 large
Mockito <0.001 -0.25 small <0.001 0.47 medium
Time <0.001 -0.04 negligible <0.001 0.61 large
Overall <0.001 -0.08 negligible <0.001 0.14 negligible

For Lang, Math, Mockito, and Time, the improvement is measurable in terms of the
Expense metric: this ranges from 1 to about 9 ranking positions on average with a relative
change of 19-48%. For Chart and Closure, the proposed algorithm yields ranking positions
that are worse by 29-32% on average compared to Ochiai. Note that, the average ranking
that Ochiai scores on the bugs of Closure is 99.5, which is already impractical as developers
would unlikely investigate such a large number of functions. The reason for this result
could be that Closure is different from the other programs in the dataset. It is a JavaScript
compiler, which means that it has a very specific code structure and test suite as well. Also
note that, despite the poor average performance on Closure, our approach can still deliver
enabling improvements in 16 (9%) cases and the improvement is very high -58.8 (-93%) in
these cases.

The left-side of Table 5.4 addresses the comparison between the Combined approach and
Ochiai from a statistical point of view. Results show that, on the whole evaluation dataset,
while the results of the statistical tests show significant differences, the effect size is negligible
to small, and in favor of Ochiai.
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However, if we look at the results obtained when Ochiai scores a bad ranking position of
the correct recommendation, i.e., > 10th (right-side of Tables 5.3 and 5.4), we can observe
that 44 of 161 (27%) of defects with ranks higher than 10 could be reduced to below 10 and
the average reduction in terms of ranking positions is 43 which is 91% relative improvement.
From a statistical point of view, except for Closure, results are in favor of the proposed
approach. Also, the effect size is large in three cases (Lang, Math, Time), and medium for
Mockito.

Answer to RQ5.2a: In 4 out of 6 cases the call chain-based FL approach could improve
the localization effectiveness of Ochiai of 1 to 9 positions on average, with a relative im-
provement of 19-48%. Also, about 27% of the defects with ranks higher than 10 could
be reduced to below 10 with an average reduction of 91%, with statistically significant
differences and medium to large effect size.

Our final set of experiments regarding localization effectiveness deals with the two func-
tion localization algorithms that work on the ranked chains, which we introduced in Sec-
tion 5.3.3. As described, the two techniques performed well in different situations, and it was
difficult to predict which approach would be better for a particular case. Hence, we follow
the described merging approach, which produces an overall better result than the two indi-
vidually (in each particular case, twice the minimum is guaranteed). Table 5.5 includes the
comparison of these two techniques summarized for each program, with the overall average
shown in the last row.

Table 5.5: Comparison of Weighted Chains vs. Reapplied Spectrum (Averages Shown)

Program E Weighted Reapplied
Weighted Reapplied Combined better better

Chart 13.5 10.6 10.8 12 9
Closure 143.6 149.9 131.4 59 112
Lang 3.7 4.0 3.5 23 19
Math 9.3 7.0 7.3 17 52
Mockito 21.0 36.3 20.6 13 15
Time 16.5 8.0 9.5 9 13
Total / Average 67.5 70.1 61.1 133 220

In columns 2 and 3 of the table, we report the average absolute Expense metrics for the
respective techniques, while column 4 includes the same data for the merged outcome. The
last two columns include the counts when the respective technique performed better than
the other. We can conclude from the data that the combined algorithm indeed is useful
because there is a similar number of cases when one of the two rankings is better. We also
checked the correlation between the scores produced by the two function-level techniques,
and we found that it is close to zero. As expected, the combined approach produced an
overall better result than any of the other two, however, both approaches are quite close to
the combined one.
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Answer to RQ5.2b: When comparing function-level rankings, we found that the reap-
plied spectrum outperforms the weighted chain counts in more cases (220 vs. 133). It also
yields better average scores than the combined approach in some cases, though its overall
average is not as low as the scores of the combined rank.

5.5.3 Discussion
Besides the ranking improvement, we argue that the additional information provided by the
call chains (stack traces) could help the developer even in situations when the function itself
will be further in the rank. As shown in RQ5.1, the faulty element is typically found among
the highest-ranked chains. The chains are relatively short (12-13 functions) on average, so
investigating the chains themselves in more detail is a good approach during the localization
process.

Table 5.6: Function-Level Ochiai (Base)

Method ef ep nf np Ochiai
forTimeZone 1 6 0 3822 0.3780
getConvertedId 1 6 0 3822 0.3780
getZone 1 131 0 3697 0.0870
getID 1 528 0 3300 0.0435
setDefault 1 3157 0 671 0.0186
getDefault 1 2884 0 944 0.0178

To better illustrate the support provided by call chains during FL, let us consider a
real case from our benchmark. Bug number 23 from the Joda-Time Defects4J subject1

can be located in the method DateTimeZone.getConvertedId. This causes one test case,
TestDateTimeZone.testForID_String_old, to fail. The function-level Ochiai-based FL
approach provides the localization scores as shown in Table 5.6. Apart from the men-
tioned faulty element, all other functions are listed that have a score > 0. It can be seen
that all functions are executed by the single failing test case and several passing ones as
well. However, two of them are executed by fewer passing tests, i.e., the faulty one and
DateTimeZone.forTimeZone, which makes them the most suspicious but indistinguishable
from each other.

Figure 5.4 shows the relationship of the mentioned functions, which is an excerpt of
a call graph belonging to this program. DateTimeZone.forTimeZone is the main function
called by the test case, which apart from the faulty DateTimeZone.getConvertedId calls
ZoneInfoProvider.getZone as well. The other directly called functions are setup and tear-
down helper functions for the test case. The reason the base algorithm cannot distinguish
between forTimeZone and getConvertedId is that the latter is always called (both from
failing and passing test cases) by the former, and no additional information is available to
the algorithm.

By introducing the concept of the call chains, forTimeZone → getConvertedId can
be investigated separately along with all other call chains. In particular, forTimeZone →
getZone is interesting as it also relates to the suspicious forTimeZone but represents a

1https://github.com/JodaOrg/joda-time/commit/14dedcb
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Figure 5.4: Call graph of TestDateTimeZone.testForID_String_old

Table 5.7: Chain-Level Ochiai

Chain ef ep nf np Ochiai
forTimeZone→getZone 1 2 0 3826 0.5774
forTimeZone→getConvertedId 1 2 0 3826 0.5774
getID 1 9 0 3819 0.3162
setDefault 1 2882 0 946 0.0186
getDefault 1 2887 0 941 0.0186

different context. Table 5.7 presents the localization scores calculated by the first phase of
the proposed approach, namely the suspiciousness scores for the chains. Similarly, we only
show those chains that have > 0 scores. We can observe that apart from the two mentioned
chains, the other (one-element) chains are represented as well because they are also part of
the failing test run (and also of some passing runs as well).

Table 5.8: Function-Level Ochiai (Reapplied)

Chain ef ep nf np Ochiai
getConvertedId 1 4 4 87692 0.2000
forTimeZone 2 50 3 87646 0.1240
setDefault 1 78 4 87618 0.0503
getZone 1 77 4 87619 0.0506
getID 1 376 4 87320 0.0230

Again, the two highest-ranked chains cannot be distinguished from each other because
both are executed in the same situations by the failing and passing test cases. However, the
next phase of our approach can pinpoint the faulty elements, because it combines the infor-
mation about suspicious chains with the functions they contain. Namely, in the reapplied
spectrum technique, we treat all suspicious call chains as “failing” and by counting their
frequency for each function and the frequency of non-suspicious chains for the same, we can
select the most suspicious function. Table 5.8 shows the statistics for this phase. As can be
seen, the highest score is given to getConvertedId, followed by forTimeZone. The expla-
nation for this can also be seen in the corresponding numbers used by the Ochiai formula.
Although forTimeZone can be found in more suspicious chains than getConvertedId (2 vs.
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1) it is found in much more non-suspicious chains as well (50 as opposed to 4). forTimeZone
is a common method called by many test cases, passing and failing, and present in many
different chains, but its specific branching to the faulty getConvertedId is less frequent and
is typical to the failing test case.

This example is realistic and shows one possible benefit of the approach. However, we
had to limit its complexity to be able to clearly explain it. The ranking positions 1 and 2,
used in the example, are equally good in practical situations, but in more complex cases, the
context provided by the call chains could be much more useful.

In summary, the two outputs produced by our approach (i.e., the ranked list of most
suspicious call chains in the first phase and the merged ranked list of functions in the second)
can be used in different scenarios — to be empirically evaluated in future work through user
studies — to complement hit-based approaches like Ochiai. In the first scenario, the user
can start localizing the fault by observing the ranked chains. If the fault is located this
way, the context of the investigated chains also informs about the possible ways to fix the
defect. If there are many high-ranked chains with equally high scores, the user can rely on
the final result of the ranked functions from the second phase, and focus on those functions
only. In the second scenario, the user starts from the ranked list of functions from the second
phase, and if the defect is not easily found, looks at the highest-ranked call chains (and the
functions with high ranks in them) for clues about the possible contexts leading to the failed
test cases.

5.5.4 Threats to Validity
Concerning construct validity, we relied on a widely used measurement for SBFL, i.e., the
Expense metric. The likelihood of errors in the dataset is limited, as the Defect4J suite is
widely used in research, and we carefully reviewed the code for call chain extraction.

The main threat to the internal validity of this study is that, as explained in Section 5.4.1,
we used 404 defects out of a total of 438 that were available in the Defect4J version we used,
because we could not compute call chains for all of them. However, the selection was not
based on the performances of the proposed algorithm and of Ochiai, and the comparison was
in any case performed on the same dataset. Since this limitation was mainly technological
due to the nature of the programs in the dataset we used, it will not affect use cases when
one could apply the approach in a real usage scenario.

Conclusion validity of this study is supported by the use of appropriate statistical pro-
cedures, namely a non-parametric test suitable to deal with ties (Wilcoxon-Pratt test), the
use of Holm’s correction to avoid fishing the error rate, and Cliff’s d effect size.

Concerning external validity, while the evaluation of the study has been performed on
404 real defects from Java programs, it is still desirable to replicate the work on a larger and
possibly more diverse dataset.

5.6 Conclusions
This thesis investigates the use of function call chains for Spectrum-Based Fault Localization
(SBFL). Call chains are instances of call stack traces, and these are useful artifacts occurring
at runtime which can often help developers in debugging.
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Results indicate that except for the two outliers the proposed approach can achieve a
significant improvement in terms of the FL expense, about 19-48%, which is even higher in
the case of worse ranking positions (over 10).

The highest-ranked call chains provide useful information for a better understanding of
the context of the defect (in 69% of the cases, the defective element is in the highest-ranked
chains), and could even provide hints for the fixation of the bug. For instance, the call chain
indicates which function invokes the defective function when the fault manifests in a failure.

In future work, we plan to conduct user studies to evaluate the practical usefulness of
call chains, following scenarios as the ones described in Section 5.5.3. In addition, it could
be interesting to evaluate our approach on more benchmarks e.g., Bugs.jar [83], BugsJS [30],
etc. The rank combination approach we used could be replaced by a more sophisticated
approach taking into account other properties of the spectrum, or by the learning-to-rank
model.

Thesis III:

1. I worked on the development of the theoretical background of applying the concept
of function call chains in SBFL.

2. I designed and implemented a bytecode instrumentation tool that was used to
collect the call chains in the experiments.

3. I implemented the call-chain-based FL approach, including the weighted chain
count, the reapplied spectrum, and the rank merging algorithms.

4. I performed experiments using real faults from the Defects4J benchmark to eval-
uate this approach.

5. I measured and analyzed the effectiveness and efficiency of this method.

Response to challenges. This thesis responds to challenge C3 by introducing a new
approach which utilizes the additional contextual information of the collected function call-
chains to successfully improve the effectiveness and efficiency of SBFL.

Publications. The concept of using call chains for fault localization, the corresponding FL
algorithm, the experiments and the results were published at the International Conference
on Software Analysis, Evolution and Reengineering (SANER’20) [c1]. As a follow up of this
work, a new algorithm which also utilizes call chains was published at the International
Conference on Software Analysis, Evolution and Reengineering (SANER’21) [c4]. However,
contrary to this thesis, that approach uses call chains indirectly i.e., to compute a count-
based spectrum that replaces the traditional hit-based one. In addition, an extension of
the latter work was published in the Special Issue on Intelligent Bug Fixing of Journal of
Software: Evolution and Process (JSEP’22) [j3].
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A
Comparison of Coverage Measurement Tools

A.1 Source-Code-Based Tools
In this appendix, we present additional results of comparing the results of the two methods
employing source code instrumentation, Clover and Test Coverage.

As these two tools generate instrumented source code, it is possible to compare their
instrumentation algorithms on a high level by investigating the instrumented code itself. To
do so, we manually checked the instrumented sources and investigated the probe points, i.e.,
the locations where extra code were injected into the original source code. We found that
the two tools identified and instrumented exactly the same source code elements. The main
technical difference between the two tools is that while Test Coverage uses boolean vectors
to store coverage data, Clover has a complex mechanism for calculating which part of the
production code is exercised (this enables per-test coverage measurement as well). Thus, in
general, Test Coverage inserts less extra code into the original source. Another difference is
the handling of such code which does not have a conventional form of a Java method but
will be included in the bytecode as a special method (e.g., static initialization code of the
class or anonymous methods). Both tools recognize and instrument these parts of the source
code, but Clover reports them as methods, while Test Coverage includes them in the class
coverage only.

In the next step, we calculated the raw overall coverages for our subject systems with
these two tools in order to see how much their results differ. Table A.1 shows the associated
results. Columns 2 and 3 show the overall coverage ratios as produced by the tools, while
the last column includes the percentage difference. The numbers in the last row represent
the averages of the absolute differences.

We can observe that the aforementioned differences of the tools cause small differences
in the overall coverage results. Note, that we used Cloverglob which is the value measured
globally, including cross-submodule coverage for submodule-based systems, and this is how
Test Coverage works too. Unfortunately, we were not able to produce per-test coverage
values using Test Coverage, as this would have required the individual execution of the test
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Table A.1: Comparison of the Overall Coverages Computed by the Source Code Tools
(Clover and Test Coverage)

Program Cloverglob Test Coverage Cloverglob vs. Test Coverage
Checkstyle 93.82% 93.77% -0.05%
Lang 93.28% 93.13% -0.15%
Math 84.65% 85.59% +0.94%
Time 89.94% 90.94% +1.00%
MapDB 76.06% 78.58% +2.52%
Netty 46.66% 48.93% +2.27%
OrientDB 39.84% 39.92% +0.08%
Oryx 27.51% 27.68% +0.17%
Average Difference 0.90%

cases and consequently large-scale modifications in the build environments. Hence, we could
not perform such a comparison of the tools.

A.2 Bytecode-Based Tools
In this appendix, we present additional results of comparing the results of the three tools
employing bytecode instrumentation: JaCoCo, JCov, and Cobertura.

We calculated the raw overall coverages for our subject systems with these tools in order
to see how much their results differ. Table A.2 shows the associated results. Columns 2–4
are the overall coverage ratios as produced by the tools “out of the box” (i.e., without any
modifications made to them1, only the necessary parameters have been set). The last three
columns show the pairwise differences in the percentage, while the numbers in the last row
represent the averages of the absolute differences.

Quantitatively, the differences between these tools were at most 4%, and the behavior
of the tools was different on the different subjects. We made some deeper but basically still
quantitative analysis: we compared the per-test coverage results of the tools. Unfortunately,
we were not able to produce such results using Cobertura, so we compared JaCoCo and
JCov in this respect.

In Figure A.1 we present the differences in test case coverage vectors. For each test case,
we use a coverage vector in which each element corresponds to a single code element. We
compared such vector pairs for JaCoCo and JCov for each test case using the Hamming
distance measure and normalized the result by the length of the vectors. Figure A.1 shows
the corresponding data in form of histograms.

For the first four subject programs, data shows that most of the vector pairs are the same
and the difference is less than 1% for the others. For MapDB and Netty, there are very few
vector pairs that match exactly, but most of them are still close to each other. In the case
of Oryx and OrientDB, about half of the vector pairs match exactly, the difference in the
majority of the cases is less than 1%, but there are differences as high as 5% or even 14%.

1There was one exception to this: in Cobertura, we disabled the feature of skipping the analysis of
generated source code, as this was not implemented in the other two tools.
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Table A.2: Comparison of the Overall Coverages Computed by the Bytecode Tools (Cober-
tura, JaCoCo and JCov)

JCov Cobertura Cobertura
Program JaCoCo JCov Cobertura vs. vs. vs.

JaCoCo JaCoCo JCov
Checkstyle 53.85% 52.20% 54.79% -1.65% 0.94% 2.59%
Lang 93.29% 92.81% 94.08% -0.49% 0.79% 1.28%
Math 85.59% 87.41% 88.78% 1.82% 3.19% 1.37%
Time 91.36% 91.33% 91.55% -0.03% 0.19% 0.22%
MapDB 79.65% 79.12% 78.46% -0.53% -1.20% -0.67%
Netty 47.41% 49.10% 45.51% 1.69% -1.90% -3.59%
OrientDB 38.40% 42.02% 42.23% 3.62% 3.83% 0.21%
Oryx 29.62% 26.33% 25.60% -3.29% -4.03% -0.74%
Average Difference 1.64% 2.01% 1.33%

After the manual investigations, most of these high differences are found to be tolerable
outliers.

Similarly to the previous set of experiments, we performed a per-method comparison
of the coverages. Here the vectors were assigned to code elements and a vector element
corresponded to a test case. Figure A.2 shows the differences in these vectors for JaCoCo
and JCov in form of histograms.

We got the same results as in the case of test case vectors for the first 4 subject programs,
namely, most of the vector pairs are the same and the rest of them differ by at most 1%.
Here, the last 4 programs are similar to each other: a lower part of the vector pairs matches
exactly, but there are some higher differences as well. Later, these high differences turned
out to be explainable outliers.

To find the cause of the differences (especially of the high Hamming distances) we ob-
served from these experiments, we investigated the detailed coverage of the three tools man-
ually as well. We concluded that the main cause of the differences was mostly due to the
slightly different handling of compiler-generated methods and nested classes in the bytecode
(such as the methods generated for nested classes). Since the overall quantitative differences
were at most 4% and they were concerned mostly generated methods, which are less impor-
tant for code coverage analysis, and the high individual Hamming distances could also be
traced back to these methods, we concluded that one representative tool of the three should
be sufficient for further experiments.
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Figure A.1: Relative Hamming distances of test case vectors (JaCoCo vs. JCov)
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Figure A.2: Relative Hamming distances of code element vectors (JaCoCo vs. JCov)
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Summary

Code coverage measurement plays an important role in white-box testing in industrial prac-
tice and academic research as well. Moreover, several areas are highly dependent on code
coverage, including test case generation, test prioritization, and fault localization, among
others. Out of these areas, this dissertation focuses on two main topics, and the thesis
points are divided into two parts accordingly. The first part consists of one thesis point that
discusses the differences between methods for measuring code coverage in Java and the effects
of these differences. The second part is composed of two thesis points on fault localization,
more specifically, improving the efficiency of spectrum-based approaches by incorporating
external information, e.g., users’ knowledge, or context data extracted from call chains. The
relation between these thesis points and their supporting publications is shown in Table B.1.

I Code Coverage Measurement

1 Effects of Measurement Methods on Java Code Coverage and Their Impact
on Applications

The contributions of this thesis point – related to code coverage measurement methods, and
the impact of measurement discrepancies on test prioritization and test suite reduction – are
discussed in Chapter 3.

Software testers have long established the theory and practice of code coverage measure-
ment: various types of coverage criteria like statement, branch, and others [12], as well as
technical solutions including various kinds of instrumentation methods [106]. This work was
motivated by our experience in using code coverage measurement tools for the Java pro-
gramming language. Even in a relatively simple setting (a method-level analysis of medium
size software with popular and stable tools), we found significant differences in the outputs
of different tools applied for the same task. The differences in the computed coverages might
have serious impacts on different applications, such as false confidence in white-box testing,
difficulties in coverage-driven test case generation, and inefficient test prioritization, just to
name a few.
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Various reasons might exist for such differences and surely there are certain issues that
tool builders have to face, but we have found that in the Java environment, the most no-
table issue is how code instrumentation is done. The code instrumentation technique is
used to place “probes” into the program, which will be activated upon runtime to collect
the necessary information about code coverage. In Java, there are two fundamentally dif-
ferent instrumentation approaches: source code level and bytecode level. Both approaches
have benefits and drawbacks, but many researchers and practitioners prefer to use bytecode
instrumentation due to its various technical benefits [106]. However, in most cases the ap-
plication of code coverage is on the source code, hence it is worthwhile to investigate and
compare the two approaches.

This work reports on an empirical study to compare the code coverage results provided
by tools using the different instrumentation types for Java coverage measurement on the
method level. We initially considered a relatively large set of candidate tools referenced in
literature and used by practitioners, and then we started the experiments with five popular
tools which seemed mature enough and actively used and developed. Overall coverage re-
sults are compared using these tools, but eventually, we selected one representative for each
instrumentation approach to perform the in-depth analysis of the differences (JaCoCo and
Clover). The measurements are made on a set of 8 benchmark programs from the open-
source domain which are actively developed real-size systems with large test suites. The
differences are systematically investigated both quantitatively (how much the outputs dif-
fer) and qualitatively (what the causes for the differences are). Not only do we compare the
coverages directly, but investigate the impact on a possible application of coverage measure-
ment in more detail as well. The chosen applications are test prioritization and test suite
reduction based on code coverage information.

The majority of earlier work on the topic dealt with lower-level analyses such as state-
ments and branches. Instead, we performed experiments on the granularity of Java methods
in real-size Java systems with realistic test suites. We found that – contrary to our prelimi-
nary expectations – even at this level there might be significant differences between bytecode
instrumentation and source code instrumentation approaches. Method level granularity is
often the viable solution due to the large system size. Furthermore, if we can demonstrate
the weaknesses of the tools at this level, they are expected to be present at the lower levels
of granularity as well.

We found that the overall coverage differences between the tools can vary in both di-
rections, and in the case of seven out of the eight subject programs they are at most 1.5%.
However, for the last program, we measured an extremely large difference of 40% (this was
then attributed to the different handling of generated code).

We looked at more detailed differences as well with respect to individual test cases and
program elements. In many applications of code coverage (in debugging, for instance) subtle
differences at this level may lead to serious confusion. We measured differences of up to 14%
between the individual test cases, and differences of over 20% between the methods. In a
different analysis of the results, we found that a substantial portion of the methods in the
subjects was affected by this inaccuracy (up to 30% of the methods in one of the subject
programs).

We systematically investigated the reasons for the differences and found that some of
them were tool-specific, while the others would be attributed to the instrumentation ap-
proach. This list of reasons may be used as a guideline for the users of coverage tools on
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how to avoid or workaround the issues when a bytecode instrumentation-based approach is
used.

We also measured the effect of the differences on the application of code coverage to test
prioritization. We found that the prioritized lists produced by the tools differed significantly
(with correlations below 0.5), which means that the impact of the inaccuracies might be sig-
nificant. We think that this low correlation is a great risk: in other words, it is not possible
to predict the potential amplification of a given coverage inaccuracy in a particular appli-
cation. This also affects any related research which is based on bytecode instrumentation
coverage measurement to a large extent.

The Author’s Contributions
The author of this thesis worked on the overview of theoretical differences in code cov-

erage measurement tools for Java. He took part in the collection, categorization, testing,
and selection of code coverage measurement tools. After establishing the measurement en-
vironment, he also took part in the collection, configuration, and selection of Java programs
on which the experiments were executed. He measured and analyzed the differences in code
coverage of Java bytecode and source code instrumentation tools. The author worked on the
systematic investigation of discrepancies in coverage data and their causes, and helped de-
velop fixes and recommendations for the correction of the issues. He performed experiments
to analyze the effects of the found differences on coverage-based applications, namely test
selection, and test prioritization.

The publications related to this thesis point are:
♦ [c3] Dávid Tengeri, Ferenc Horváth, Árpád Beszédes, Tamás Gergely, and Tibor Gy-

imóthy. “Negative effects of bytecode instrumentation on Java source code coverage”.
In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). vol. 1. IEEE. 2016, pp. 225–235

♦ [j2] Ferenc Horváth, Tamás Gergely, Árpád Beszédes, Dávid Tengeri, Gergő Balogh,
and Tibor Gyimóthy. “Code coverage differences of Java bytecode and source code
instrumentation tools”. In: Software Quality Journal 27.1 (Mar. 2019), pp. 79–123

II Fault Localization

1 Interactive Fault Localization

The contributions of this thesis point – related to interactive fault localization – are discussed
in Chapter 4.

Recent studies highlighted some barriers to the wide adoption of the SBFL methods,
including a high number of suggested elements to investigate [102, 70], applicability of theo-
retical results in practice [48], little experimental results with real faults [71], validity issues of
empirical research [90], and so on. With this work, we aim at bringing closer the applicability
of SBFL methods to practice by involving users’ knowledge to the process.

The basic intuition behind SBFL is that code elements (statements, blocks, functions,
etc.) that are exercised by comparably more failing test cases than passing ones are more
suspicious to contain a fault. Suspiciousness is usually expressed by assigning one value
to each code element (the suspiciousness score), which can then be used to rank the code
elements. When this ranked list is given to the developer for investigation, it is hoped that
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the fault will be found near the beginning of the list. Studies revealed that the number
of elements that have to be investigated before finding the fault is crucial to the adoption
of the method in practice. In particular, research showed that if the faulty element is
beyond the 5th element (or 10th according to other studies), the method will not be used by
practitioners because they need to investigate too many elements [71, 102, 70, 47]. A further
problem is that there are no guarantees that any scoring mechanism will show sufficiently
good correlation between the score and the actual faults [97, 71, 103, 111]. One additional
reason an SBFL method may fail is that these approaches provide only the ranked list of
code elements, however this gives little or no information about the context of bugs which
makes their comprehension a cumbersome task for developers.

It seems that automatic SBFL methods require external information – not just the pro-
gram spectra and test case outcomes – to improve on state-of-the-art performance and be
more suitable in practical settings. In this work, we propose a form of an Interactive Fault
Localization approach, called iFL. In traditional SBFL, the developer has to investigate sev-
eral locations before finding the faulty code elements, and all the knowledge they a priori
have or acquire during this process is not fed back into the SBFL tool. In our approach, the
developer interacts with the fault localization algorithm by giving feedback on the elements
of the prioritized list.

We build on our and other researchers’ observations, intuitions and experiences, and we
hypothesize that a programmer, when presented with a particular code element, in general
has a strong intuition whether any other elements belonging to the same containing higher
level code entity should be considered in fault localization. With this intuition, developers
can also make a decision (“judge”) about the code snippets associated with the item they
are currently examining. This allows them to narrow down the search space (i.e., set of
the suspicious code elements) more efficiently, which could speed up finding the bug. For
example, when users go through the ranked list of suspicious methods, in addition to the
examined code element, they could have knowledge about its class, which information can
be “fed back” into iFL to modify the suspiciousness value of other methods in that class or
even exclude items to be examined. This way, larger code parts can be repositioned in their
suspiciousness in the hope to reach the faulty element earlier.

We evaluated the approach in two sets of experiments. First, we used simulation to
predict the effect of interactivity. We simulated user actions during hypothetical fault finding
in well-known bug benchmarks, and measured the Expense metric improvements with respect
to the following traditional SBFL formulae: Tarantula [40], Ochiai [2], and DStar [99]. We
relied on two benchmarks: artificial defects from the SIR repository [17] and real defects
from Defects4J [41]. Results show that the method can significantly improve the fault
localization efficiency: in both benchmarks, for 32-57% of the faults their ranking position is
reduced from beyond the 10th position to between the 1-10th position. Taking into account
all the defects, the localization efficiency in terms of Expense improved on average by 71-
79%. For reference, we implemented a closely related interactive FL algorithm proposed by
Gong et al. [26], called Talk, in our simulation framework. We compared the performance
of iFL to Talk on the real faults from Defects4J, and found that iFL has a significant
advantage over Talk. We also modelled user imperfection, which was rarely studied in
related interactive SBFL research. We addressed this aspect from two viewpoints: the user’s
knowledge and confidence. Experiments simulating these two factors show that iFL can
outperform a traditional non-interactive SBFL method notably even at low user confidence
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and knowledge levels.
In the second stage, we performed a quantitative evaluation of the successfulness of iFL

usage by real users. We invited students and professional programmers to solve a set of fault
localization tasks using the implementation of the iFL approach in a controlled experiment.
The goal was to find out whether using the tool shows actual benefits in terms of finding more
bugs or finding them more quickly, and this also showed promising results. This experiment
also helped us better understand the developers’ thought processes and the weaknesses of
the approach, and gave us possible directions for future enhancements.

The Author’s Contributions
The author worked on the development of the theoretical background of applying the

concept of interactive feedback in fault localization. He also worked on the development of
the theoretical background of applying the concept of user imperfection factors (confidence
and knowledge) in the evaluation of fault localization. Following the theoretical design, the
author implemented the simulation framework as a basis for testing interactive fault local-
ization approaches. The implementation of the iFL approach in the simulation framework
is also the author’s own work. He performed experiments using seeded and real faults from
the SIR and Defects4J benchmark to evaluate iFL. He measured and analyzed the effective-
ness and efficiency of iFL in the aforementioned simulated environment. The author took
part in the reimplementation of the Talk algorithm, and the execution of the subsequent
comparative experiments and analyses. He contributed to the design and development of
the iFL4Eclipse plug-in which implements iFL in the Eclipse IDE. The author was involved
in the design, execution, and evaluation of the user studies.

The publications related to this thesis point are:

♦ [j1] Ferenc Horváth, Árpád Beszédes, Béla Vancsics, Gergo Balogh, László Vidács, and
Tibor Gyimóthy. “Using contextual knowledge in interactive fault localization”. In:
Empirical Software Engineering 27 (Aug. 2022)

♦ [c2] Ferenc Horváth, Árpád Beszédes, Béla Vancsics, Gergő Balogh, László Vidács, and
Tibor Gyimóthy. “Experiments with Interactive Fault Localization Using Simulated
and Real Users”. In: 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 2020, pp. 290–300

♦ [w1] Ferenc Horváth, Victor Schnepper Lacerda, Árpád Beszédes, László Vidács, and
Tibor Gyimóthy. “A New Interactive Fault Localization Method with Context Aware
User Feedback”. In: 2019 IEEE 1st International Workshop on Intelligent Bug Fixing
(IBF). Feb. 2019, pp. 23–28

♦ [t1] Gergő Balogh, Victor Schnepper Lacerda, Ferenc Horváth, and Árpád Beszédes. iFL
for Eclipse – A Tool to Support Interactive Fault Localization in Eclipse IDE. Presented
in the Tool Demo Track of the 12th IEEE International Conference on Software Testing,
Verification and Validation (ICST’19). Apr. 2019

♦ [p1] Gergő Balogh, Ferenc Horváth, and Árpád Beszédes. “Poster: Aiding Java Develop-
ers with Interactive Fault Localization in Eclipse IDE”. in: 2019 12th IEEE Conference
on Software Testing, Validation and Verification (ICST). 2019, pp. 371–374
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2 Call-Chain-Based Fault Localization

The contributions of this thesis point – related to call-chain-based fault localization – are
discussed in Chapter 5.

The state-of-the-art approach to SBFL is to use the so-called “hit-based” spectra [32]
with statements as basic code elements. Researchers proposed many different scoring mech-
anisms, but these are essentially all based on counts of passing/failing and traversing/non-
traversing test cases in different combinations [97, 71, 103]. Popular suspiciousness scores
are Tarantula [40], Ochiai [2], and DStar [99], among others.

One reason why an SBFL formula may fail is what is referred to as coincidental correct-
ness [94, 60, 9]. This is the situation when a test case traverses a faulty element without
failing. This can happen quite often since not all exercised elements may have an impact on
the computation performed by a test case [61], and if there are relatively more such cases
than traversing and failing ones, the suspiciousness score will be negatively affected [60].

Based on the vast amount of research performed in the field, it seems that variations
to these basic approaches may yield only marginal improvements, and that perhaps some
more radical changes in how we approach the problem are required in order to achieve more
significant gains. For example, by combining conceptually different approaches [117], or by
involving additional information to the process. Early attempts to incorporate control or
data flow information, for instance [77, 32], have not been further developed because it soon
became apparent that they are difficult to scale to large programs and real defects.

Beszédes et al. [c1] propose the concept of enhancing traditional SBFL with function
call chains on which the FL is performed. Function call chains are snapshots of the call
stack occurring during execution and as such can provide valuable context to the fault being
traced. Call chains (and call stack traces) are artifacts that occur during program execution
and are well-known to programmers who perform debugging and can show, for instance,
that a function may fail if called from one place and perform successfully when called from
another. There is empirical evidence that stack traces help developers fix bugs Schröter et al.
[84], and Zou et al. [117] showed that stack traces can be used to locate crash-faults.

In this work, based on the high-level concept of function call-chain-based FL presented in
[c1], we propose a novel SBFL algorithm, that computes ranking on all occurring call chains
during execution, and then selects the suspicious functions from these ranked chains using
a function-level (i.e., method-level for object-oriented languages like Java) spectrum-based
algorithm, Ochiai in particular [2].

Our approach works at a higher granularity than statement-level approaches (previous
work suggests that function-level is a suitable granularity for the users [6, 117]). At the same
time, we provide more context in the form of the call chains and therefore have the potential
to show better performance in terms of Expense.

We empirically evaluated the proposed approach using 404 real defects from the Defects4J
benchmark [41]. Results indicate that except for the two outliers (Chart and Closure) the
call-chain-based FL approach can improve the localization effectiveness of 1 to 9 positions
(with a relative improvement of 19-48%), compared to Ochiai, a hit-based function-level
approach. In the case of defects with ranks worse than 10, this ratio increased even more
(66-98%) on all programs. Furthermore, the defective element could be located in 69% of the
cases in the highest-ranked call chains, which turned out to be relatively short on average.
Last, but not least, we provide qualitative evidence that, besides improved performances, the
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proposed approach can provide useful information to the developer performing a debugging
task.

The Author’s Contributions
The author worked on the development of the theoretical background of applying the con-

cept of function call chains in SBFL. He designed and implemented a bytecode instrumenta-
tion tool that was used to collect the call chains in the experiments. Following the theoretical
design, the author implemented the call-chain-based FL approach, including the weighted
chain count, the reapplied spectrum, and the rank merging algorithms. He performed ex-
periments using real faults from the Defects4J benchmark to evaluate this approach, as well
as, he measured and analyzed the effectiveness and efficiency of this method.

The publications related to this thesis point are:
♦ [c1] Árpád Beszédes, Ferenc Horváth, Massimiliano Di Penta, and Tibor Gyimóthy.

“Leveraging contextual information from function call chains to improve fault localiza-
tion”. In: 2020 IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE. 2020, pp. 468–479

♦ [c4] Béla Vancsics, Ferenc Horváth, Attila Szatmári, and Árpád Beszédes. “Call Frequency-
Based Fault Localization”. In: 2021 IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER). 2021, pp. 365–376

♦ [j3] Béla Vancsics, Ferenc Horváth, Attila Szatmári, and Árpád Beszédes. “Fault local-
ization using function call frequencies”. In: Journal of Systems and Software 193 (2022),
p. 111429. issn: 0164-1212

Table B.1 summarizes the main publications and how they relate to the thesis points.

№ [c3] [j2] [j1] [c2] [w1] [t1] [p1] [c1] [c4] [j3]
I. ♦ ♦

II. ♦ ♦ ♦ ♦ ♦

III. ♦ ♦ ♦

Table B.1: Thesis contributions and supporting publications
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C
Összefoglaló

A kódlefedettség mérés fontos szerepet játszik a white-box tesztelésben az ipari gyakorlat-
ban és a tudományos kutatásokban egyaránt. Ráadásul számos terület nagymértékben függ
a kódlefedettségtől, többek között a tesztesetek generálása, a tesztek priorizálása és a hiba-
lokalizáció is. Ezen területek közül jelen disszertáció két fő témára fókuszál, és a tézispontok
ennek megfelelően két részre oszlanak. Az első rész egy tézispontból áll, amely a kódle-
fedettség mérésére szolgáló módszerek közötti különbségeket és ezen különbségek hatásait
tárgyalja. A második rész két tézispontból áll, amelyek a hibalokalizációval foglalkoznak,
pontosabban a spektrumalapú megközelítések hatékonyságának javításával külső informáci-
ók, például a felhasználók tudása vagy a hívási-láncokból kinyert kontextusadatok bevoná-
sával. A tézispontok és az azokat alátámasztó publikációk közötti kapcsolatot a C.1 táblázat
foglalja össze.

I Forráskód lefedettség mérés

1 A mérési módszerek hatásai a kódlefedettségre és ezek hatása az alkalmazá-
sokra

Ezt a tézispontot, amely a mérési módszereknek a kódlefedettségre, valamint az alkalmazá-
sokra gyakorolt hatásairól szól, a 4. fejezet tárgyalja bővebben.

A szoftvertesztelők már rég kidolgozták a kódlefedettség mérés elméletének és gyakorla-
tának alapjait: a különböző típusú lefedettségi kritériumokat, mint például az utasítás, az
elágazás, stb [12], valamint a technikai megoldásokat, beleértve a különböző mérési módsze-
reket [106]. Ezt a munkát a Java programmozási nyelvre vonatkozó kódlefedettség mérésére
szolgáló eszközök használatával kapcsolatos tapasztalataink motiválták. Még egy viszonylag
egyszerű környezetben is, mint a metódus-szintű elemzés közepes méretű, népszerű, és stabil
eszközökkel, jelentős különbségeket találtunk a kimenetekben az egyazon feladatra alkalma-
zott különböző eszközök eredményei között. A kiszámított lefedettségek közötti különbségek
komoly hatással lehetnek a különböző alkalmazásokra, például hamis bizalmat kelthetnek
a white-box tesztelés irányában, nehézségeket indukálhatnak a lefedettségvezérelt teszteset
generálásban, vagy negatívan befolyásolhatják a tesztek priorizálásának hatékonyságát.
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Az ilyen különbségeknek számos oka lehet, és akadnak bizonyos problémák, amelyekkel
az eszközkészítőknek szembe kell nézniük, de úgy találtuk, hogy a Java környezetben a leg-
jelentősebb probléma a kód instrumentálásának módja. A kódinstrumentálási technikával
“szondákat” helyeznek el a programban, amelyek futtatáskor aktiválódnak, hogy összegyűjt-
sék a szükséges információkat a kódlefedettségről. Java-ban két alapvetően eltérő instrumen-
tálási megközelítés létezik: a forráskód szintű és a bájtkód szintű. Mindkét megközelítésnek
vannak előnyei és hátrányai, de sok kutató és gyakorlati szakember a bájtkód instrumen-
tálást részesíti előnyben annak különböző technikai előnyei miatt [106]. A legtöbb esetben
a kódlefedettség alkalmazása a forráskódra vezetendő vissza, ezért érdemes megvizsgálni és
összehasonlítani a két megközelítést.

Ez a munka egy olyan empirikus vizsgálatról számol be, amely a Java kódlefedettség
mérésére szolgáló különböző típusú eszközök által szolgáltatott kódlefedettségi eredménye-
ket hasonlítja össze. Kezdetben a szakirodalomban hivatkozott és a gyakorlati szakemberek
által használt eszközök viszonylag nagy halmazát vettük figyelembe, majd a kísérleteket öt
olyan népszerű eszközzel kezdtük, amelyek elég kiforrotnak tűntek, és amelyeket aktívan
használnak és fejlesztenek. Az általános lefedettségi eredményeket ezekkel az eszközökkel
hasonlítottuk össze, de végül minden egyes instrumentálási megközelítésből kiválasztottunk
egy-egy reprezentatív eszközt a különbségek mélyreható elemzéséhez (JaCoCo és Clover).
A méréseket 8 olyan nyílt forráskódú programon végeztük el, amelyek aktívan fejlesztett,
valós méretű, nagy tesztkészletekkel rendelkező rendszerek. A különbségeket szisztematiku-
san vizsgáljuk mind mennyiségi (mennyire különböznek a kimenetek), mind minőségi (mi a
különbségek oka) szempontból. Nemcsak közvetlenül hasonlítjuk össze a lefedettségeket, ha-
nem részletesebben is vizsgáljuk a lefedettségmérés alkalmazásaira (teszt priorizálás és teszt
szelekció) gyakorolt hatását.

A témával kapcsolatos korábbi munkák többsége alacsonyabb szintű elemzésekkel, példá-
ul utasításokkal és elágazásokkal foglalkozott. Ehelyett metódus szintre vonatkozó kísérlete-
ket végeztünk valós méretű Java-rendszerekben, reális tesztkészletekkel. Azt találtuk, hogy
– előzetes várakozásainkkal ellentétben – még ezen a szinten is jelentős különbségek lehet-
nek a bájtkód instrumentáló és a forráskód instrumentáló megközelítések között. A metódus
szintű granularitás a nagy rendszerméret miatt gyakran a megvalósítható megoldás. Továb-
bá, ha ezen a szinten ki tudjuk mutatni az eszközök gyengeségeit, akkor azok várhatóan az
alacsonyabb szinteken is jelen lesznek.

Megállapítottuk, hogy az eszközök közötti általános lefedettségi különbségek mindkét
irányban változhatnak, és a nyolc vizsgált programból hét esetében legfeljebb 1,5%-osak.
Az utolsó program esetében azonban rendkívül nagy, 40%-os különbséget mértünk (ezt a
későbbi vizsgálatok során a generált kódrészletek eltérő kezelésének tulajdonítottuk). Rész-
letesebb különbségeket is vizsgáltunk az egyes tesztesetek és programelemek tekintetében.
A kódlefedettség számos alkalmazásánál (például a hibakeresésnél) az ilyen szintű finom kü-
lönbségek komoly zavart okozhatnak. Az egyes tesztesetek között akár 14%-os, a módszerek
között pedig több mint 20%-os különbségeket mértünk. Az eredmények további elemzése so-
rán azt találtuk, hogy a programok metódusainak jelentős részét érintette ez a pontatlanság
(az egyik programban a módszerek közel 30%-át).

Szisztematikusan megvizsgáltuk a különbségek okait, és azt találtuk, hogy a különbségek
egy része eszköz-specifikus, míg a többi a mérési megközelítésnek tulajdonítható. A felfedett
okok listája iránymutatásként szolgálhat a lefedettségi eszközök felhasználói számára, hogy
miként kerüljék vagy hárítsák el a problémákat, ha bájtkód-alapú megközelítést alkalmaznak.
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Azt is megmértük, hogy a különbségek milyen hatással vannak a kódlefedettség-alapú
teszt priorizálásra. Azt találtuk, hogy az eszközök által előállított priorizált listák jelentősen
eltértek egymástól (0,5 alatti korrelációkkal), ami azt jelenti, hogy a pontatlanságok hatása
jelentős lehet. Úgy gondoljuk, hogy ez az alacsony korreláció nagy kockázatot jelent. Más
szóval, nem lehet megjósolni egy adott lefedettségi pontatlanság potenciális felerősödését egy
adott alkalmazásban. Ez természetesen minden olyan kapcsolódó kutatást is érinthet, amely
nagymértékben támaszkodik a bájtkód-alapú lefedettség mérésre.

A szerző hozzájárulása
Jelen disszertáció szerzője a Java kódlefedettség mérő eszközök elméleti különbségeinek

áttekintésén dolgozott. Részt vett a kódlefedettséget mérő eszközök összegyűjtésében, kate-
gorizálásban, tesztelésben és kiválasztásában. A mérési környezet kialakítása után részt vett
a kísérletekhez használt Java programok összegyűjtésében, konfigurálásában és kiválasztásá-
ban is. Mérte és elemezte a Java bájtkód és a forráskód lefedettség mérő eszközök különb-
ségeit. A szerző dolgozott a lefedettségi adatok eltéréseinek és azok okainak szisztematikus
vizsgálatán, és részt vett a hibák kijavítására szolgáló javítások és ajánlások kidolgozásában.
Kísérleteket végzett a talált eltéréseknek a lefedettségen alapuló alkalmazásokra, nevezetesen
a teszt szelekcióra és a teszt priorizálásra gyakorolt hatásának elemzése céljából.

A tézispont a következő publikációkra épül:
♦ [c3] Dávid Tengeri, Ferenc Horváth, Árpád Beszédes, Tamás Gergely és Tibor Gyimóthy.

“Negative effects of bytecode instrumentation on Java source code coverage”. 2016 IE-
EE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 1. köt. IEEE. 2016, 225–235. old.

♦ [j2] Ferenc Horváth, Tamás Gergely, Árpád Beszédes, Dávid Tengeri, Gergő Balogh és
Tibor Gyimóthy. “Code coverage differences of Java bytecode and source code instru-
mentation tools”. Software Quality Journal 27.1 (2019. márc.), 79–123. old.

II Hibalokalizáció

2 Interaktív hibalokalizáció

Ezt a tézispontot, amely az interaktív hibalokalizációhoz kapcsolódik, a 4. fejezet tárgyalja
bővebben.

A közelmúltban készült tanulmányok rávilágítottak a spektrum alapú hibalokalizációs
módszerek (továbbiakban: SBFL) széleskörű alkalmazásának néhány akadályára. Ilyen aka-
dály, többek között a vizsgálandó elemek nagy száma [102, 70], az elméleti eredmények
gyakorlatban történő alkalmazhatósága [48], a kevés kísérleti eredmény valós hibákkal [71],
valamint az empirikus kutatások érvényességi problémái [90]. Célunk, hogy a felhasználók
tudásának bevonásával közelebb hozzuk az SBFL módszerek alkalmazhatóságát a gyakor-
lathoz.

Az SBFL alapvetése a következő: azon kódelemek (utasítások, blokkok, függvények stb.)
esetében, amelyeket viszonylag sok sikertelen és kevés sikeres teszteset fed le, ott nagyobb
az esélye annak, hogy az adott elemek hibát tartalmaznak. A gyanússágot általában úgy
fejezzük ki, hogy minden kódelemhez egy valós számot rendelünk (ún. gyanússági érték),
amely aztán a kódelemek rangsorolására használható. Amikor ezt a rangsorolt listát átadjuk
a fejlesztőknek, hogy vizsgálják meg az elemeket, akkor remélhetőleg a hiba a lista elején lesz
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majd található. Kutatások kimutatták, hogy a tényleges hiba megtalálása előtt megvizsgá-
landó elemek száma döntő fontosságú ezen módszer gyakorlati alkalmazása szempontjából.
Megállapításra került, hogy ha a hibás elem az 5. helynél (vagy más tanulmányok szerint a
10. helynél) hátrébb van a listában, akkor a módszert a felhasználók nem fogják használni,
mert túl sok elemet kell megvizsgálniuk [71, 102, 70, 47]. További probléma, hogy nincs ga-
rancia arra, hogy bármelyik számítási mechanizmus kellően jó korrelációt mutat a gyanússági
érték és a tényleges hibák között [97, 71, 103, 111]. Az SBFL módszer sikertelenségének egyik
további oka, hogy ezek a megközelítések csak a kódelemek rangsorolt listáját adják meg, ez
azonban kevés vagy semmilyen információt nem ad a hibák kontextusáról, ami a fejlesztők
számára nehézkes feladattá teszi a hibák megértését.

Úgy tűnik, hogy az automatikus SBFL módszereknek valamilyen külső információra van
szükségük – a kódlefedettségen és a tesztesetek eredményén felül – ahhoz, hogy lehetőség
nyíljon a manapság népszerű megközelítések teljesítményének javítására, illetve, hogy al-
kalmasabbak legyenek a gyakorlati környezetben történő használatra. Ebben a tézisben az
interaktív hibalokalizációs megközelítés egy formáját terjesztjük elő, amelyet iFL-nek ne-
vezünk. A hagyományos SBFL-ben a fejlesztőnek több elemet kell megvizsgálnia, mielőtt
megtalálja a hibás kódelemeket, és az összes tudást, amellyel eredendően rendelkezik vagy
amelyet e folyamat során szerez, azt elveszítjük, nincs mód rá, hogy visszatápláljuk ezt az
információt az SBFL eszközbe. A mi megközelítésünkben a fejlesztő interakcióba léphet a
hibalokalizációs algoritmussal azáltal, hogy visszajelzést ad a priorizált lista elemeiről.

A saját és más kutatók megfigyeléseire, intuícióira és tapasztalataira építünk, és feltéte-
lezzük, hogy a programozónak általában – amikor egy adott kódelemmel találkozik – erős
intuíciója van arról, hogy az azonos, vagy magasabb szintű kódegységhez tartozó más ele-
meket figyelembe kell-e venni a hibalokalizáció során. Ennek az intuíciónak a segítségével
a fejlesztők az éppen vizsgált elemhez tartozó kódrészletekről is tudnak döntést hozni. Ez
lehetővé teszi számukra, hogy hatékonyabban szűkítsék a keresési teret (azaz a gyanús kód-
elemek halmazát), ami felgyorsíthatja a hiba megtalálását. Például, amikor a felhasználók a
rangsorolt listán haladnak végig, a vizsgált kódelemen túl az osztályáról is rendelkezhetnek
ismeretekkel, amely információ “visszatáplálható” az iFL-be, ezáltal módosítható az adott
osztályba tartozó további elemek gyanússági értéke, vagy akár teljesen ki is zárhatóak bizo-
nyos vizsgálandó elemek. Ily módon nagyobb kódrészletek is áthelyezhetőek a listában abból
a célból, hogy hamarabb elérjük a hibás elemet.

A megközelítést két kísérletsorozatban értékeltük ki. Az első fázisban szimulációt hasz-
náltunk az interaktivitás hatásának előrejelzésére, megbecsülésére. Szimuláltuk a hibakeresés
során végzett felhasználói műveleteket és mértük az Expense metrika1 javulását a követke-
ző hagyományos SBFL megközelítésekhez képest: Tarantula [40], Ochiai [2], és DStar [99].
Két adathalmazra támaszkodtunk: mesterséges hibákra a SIR-ből [17] és valódi hibákra a
Defects4J-ből [41]. Az eredmények azt mutatják, hogy a módszer jelentősen javítja a hibalo-
kalizáció hatékonyságát: mindkét adathalmazon a 10. pozíciót meghaladó pozícióról az 1-10.
pozíció közé csökkent a hibás elemek pozíciója a hibák 32-57%-ban. Az összes hibát figye-
lembe véve pedig átlagosan 71-79%-kal javult a hatékonyság. Összevetés céljából a Gong és
tsai. [26] által publikált, Talk nevű, interaktív hibalokalizációs algoritmust is újra imple-
mentáltuk a szimulációs keretrendszerünkben. Összemértük az iFL és a Talk teljesítményét
a Defects4J valós hibáin, és azt találtuk, hogy az iFL jelentős előnyben van a Talk-kal

1A hiba megtalálásához szükséges lépések számát fejezi ki.
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szemben. A felhasználói “bizonytalanságot” is modelleztük, amelyet a kapcsolódó kutatá-
sokban ritkán vizsgáltak eddig. Ezt két szemszögből vizsgáltuk meg: a felhasználó tudása
és megabiztossága. A két tényezőt szimuláló kísérletek azt mutatják, hogy az iFL még ala-
csony felhasználói magabiztosság és tudásszint esetén is képes felülmúlni a hagyományos,
nem interaktív SBFL módszert.

A második szakaszban kvantitatív kiértékelést végeztünk az iFL használatának sikeres-
ségéről valós felhasználók által. Diákokat és hivatásos programozókat kértünk fel arra, hogy
egy ellenőrzött kísérletben hibalokalizációs feladatokat oldjanak meg az iFL megközelítés
egy implementációjának felhasználásával. A cél annak az elemzése volt, hogy az eszköz hasz-
nálata valóban előnyös-e, azaz segítségével több hiba és kevesebb idő alatt található-e meg
– ebben a kísérletben is ígéretes eredmények születtek. Ez a kísérlet segített továbbá job-
ban megérteni a módszerünk gyengeségeit és a fejlesztők gondolatmenetét, valamint sikerült
általa meghatároznunk lehetséges irányokat a jövőbeli továbbfejlesztéshez.

A szerző hozzájárulása
A disszertáció szerzője részt vett az interaktív visszacsatolás koncepciójának a hibaloka-

lizációban, továbbá a felhasználói bizonytalansági tényezők koncepciójának a hibalokalizáció
értékelésében való alkalmazásának elméleti hátterének kidolgozásában. Ezt követően meg-
valósította a szimulációs keretrendszert, amely az interaktív hibalokalizációs megközelítések
tesztelésének alapjául szolgált. Az iFL megközelítés megvalósítása a szimulációs keretrend-
szerben szintén a szerző saját munkája. A módszer kiértékelésének során a SIR és a Defects4J
adathalmazokból származó injektált és valós hibák felhasználásával végzett kísérleteket. Mér-
te és elemezte az iFL hatékonyságát a szimulációs környezet segítségével. Részt vett a Talk
algoritmus újra implementálásában, valamint az ezt követő összehasonlító kísérletek és elem-
zések végrehajtásában. Közreműködött az iFL4Eclipse tervezésében és fejlesztésében, amely
az iFL-t a népszerű Eclipse fejlesztőkörnyezetben valósítja meg. Valamint részt vett a fel-
használói tanulmányok tervezésében, végrehajtásában és kiértékelésében.

A tézispont a következő publikációkra épül:
♦ [j1] Ferenc Horváth, Árpád Beszédes, Béla Vancsics, Gergo Balogh, László Vidács és Ti-

bor Gyimóthy. “Using contextual knowledge in interactive fault localization”. Empirical
Software Engineering 27 (2022. aug.)

♦ [c2] Ferenc Horváth, Árpád Beszédes, Béla Vancsics, Gergő Balogh, László Vidács és
Tibor Gyimóthy. “Experiments with Interactive Fault Localization Using Simulated
and Real Users”. 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 2020, 290–300. old.

♦ [w1] Ferenc Horváth, Victor Schnepper Lacerda, Árpád Beszédes, László Vidács és Tibor
Gyimóthy. “A New Interactive Fault Localization Method with Context Aware User
Feedback”. 2019 IEEE 1st International Workshop on Intelligent Bug Fixing (IBF).
2019. febr., 23–28. old.

♦ [t1] Gergő Balogh, Victor Schnepper Lacerda, Ferenc Horváth és Árpád Beszédes. iFL
for Eclipse – A Tool to Support Interactive Fault Localization in Eclipse IDE. Presented
in the Tool Demo Track of the 12th IEEE International Conference on Software Testing,
Verification and Validation (ICST’19). 2019. ápr.

♦ [p1] Gergő Balogh, Ferenc Horváth és Árpád Beszédes. “Poster: Aiding Java Developers
with Interactive Fault Localization in Eclipse IDE”. 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST). 2019, 371–374. old.
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3 Hívási-lánc alapú hibalokalizáció

Ezt a tézispontot, amely a hívási-lánc alapú hibalokalizációhoz kapcsolódik, az 5. fejezet
tárgyalja bővebben.

Az SBFL legnépszerűbb megközelítése az úgynevezett bináris spektrumokra [32] épül és
a legszéleskörűbben használt elemzési szint az utasítás vagy sor szint. A kutatók számos
különböző statisztikai megközelítést javasoltak már, de ezek alapvetően mind a különböző
kombinációkban előforduló sikeres/bukó és fedő/nem fedő tesztesetek számolásán alapul-
nak [97, 71, 103]. Többek között ilyen népszerű módszerek közé tartoznak a Tarantula [40],
az Ochiai [2] és a DStar [99] is.

Az egyik ok, amiért egy SBFL formula rosszul működhet, az úgynevezett véletlenszerű
helyesség [94, 60, 9], azaz az a jelenség, amikor egy teszteset egy valójában hibás elemen úgy
halad át, hogy a teszt kimenetele sikeres lesz. Ez sajnos elég gyakran előfordulhat, mivel a
lefedett elemnek nem minden esetben van hatásuk a teszteset által elvégzett számításokra
és így a teszt végső kimenetelére [61], sőt, ha viszonylag sok ilyen eset fordul elő és az
adott elemeket fedő bukó tesztesetek száma kicsi, akkor ez a gyanússági értéket negatívan
befolyásolhatja [60].

A területen végzett temérdek kutatás alapján úgy tűnik, hogy ezen alapvető megköze-
lítések kombinálása csak elhanyagolható javulást eredményezhet, illetve, hogy talán radi-
kálisabb változtatásokra van szükség a probléma megközelítésének módjában ahhoz, hogy
jelentősen jobb eredményeket érjünk el. Például alapvetően különböző megközelítések kom-
binálásával [117], vagy további információknak a folyamatba való bevonásával. A vezérlési
vagy adatáramlási információk bevonására tett korai kísérletek, például [77, 32], nem kerül-
tek továbbfejlesztésre, mert hamar kiderült, hogy nehezen skálázhatók nagy programokra és
valós hibákra.

Ebben a munkában a hagyományos SBFL továbbfejlesztését tűztük ki célul a (függvény)-
hívási-láncok koncepciójának felhasználásával. A hívási-láncok a végrehajtás során előforduló
hívási verem pillanatfelvételei, és mint ilyenek, értékes információt biztosítanak a éppen
vizsgálandó hiba kontextusáról. A hívási-láncok a program végrehajtása során előforduló, a
hibakeresést végző programozók által jól ismert források, amelyek megmutatják például, hogy
egy függvény hibásan működik, ha egy adott helyről hívják meg, ellenben hibátlanul működik,
ha egy másik helyről hívják. Empirikus bizonyítékok vannak arra, hogy a stack trace-ek
segítenek a fejlesztőknek a hibák kijavításában [84], valamint Zou és tsai. [117] kimutatták,
hogy a stack trace-ek felhasználhatók program összeomlást okozó hibák felkutatására.

Konkrétabban, egy SBFL algoritmust javasolunk, amely a végrehajtás során előforduló
összes hívási-lánc kiszámolja a gyanússági értékeket, majd az ezek alapján rangsorolt lán-
cokból választja ki a gyanús függvényeket egy függvényszintű (objektumorientált nyelvek,
például Java esetén metódusszintű) spektrum alapú algoritmus segítségével.

Habár a megközelítésünk durvább granularitást használ, mint az utasításszintű meg-
közelítések (korábbi munkák szerint a függvényszint megfelelő granularitás a felhasználók
számára [6, 117]), ugyanakkor a hívásláncok formájában több információt biztosítunk a kon-
textusról, így potenciálisan jobb teljesítményt érhetünk el.

A javasolt megközelítést a Defects4J adathalmaz [41] 404 valós hibájának felhasználásával
értékeltük ki. Az eredmények azt mutatják, hogy a két kiugró eset (Chart és Closure) ki-
vételével a hívási-lánc alapú megközelítés 1-9 pozícióval (19-48%-os relatív javulással) képes
javítani a lokalizációs hatékonyságot a hagyományos Ochiai megközelítéshez képest. A 10-
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nél rosszabb rangú hibák esetében ez az arány még jelentősebb: átlagosan 66-98% az összes
vizsgált hibára vetítve. Továbbá, a hibás elemet az esetek 69%-ában lehetett megtalálni a
legmagasabb rangú (leggyanúsabb) hívási-láncokban, amelyek átlagosan viszonylag rövidnek
bizonyultak. Végül, de nem utolsósorban, bizonyítékot szolgáltatunk arra, hogy a jobb tel-
jesítmény mellett a javasolt megközelítés hasznos információkkal szolgálhat a hibakeresési
feladatot végző fejlesztő számára.

A szerző hozzájárulása
A szerző egy olyan kontextus alapú hibalokalizációs módszer elméleti hátterének kidol-

gozásában vett részt, amely a hibalokalizáció javításához a függvényhívási láncok koncep-
cióját használja fel. Megtervezte és megvalósította azt a bájtkód instrumentációs eszközt,
amelyet a kísérletekben a hívási-láncok kinyerésére használt. A tervezést követően a szerző
megvalósította a hívási-lánc alapú hibalokalizációs megközelítést, beleértve a súlyozott lánc
számlálásos, az újraalkalmazott spektrum és a rangsorolt lista összevonó algoritmusokat.
Kísérleteket végzett a Defects4J adathalmaz valós hibáinak felhasználásával a megközelítés
kiértékelésének céljából, valamint mérte és elemezte a módszer hatékonyságát és eredmé-
nyességét.

A tézispont a következő publikációkra épül:
♦ [c1] Árpád Beszédes, Ferenc Horváth, Massimiliano Di Penta és Tibor Gyimóthy. “Le-

veraging contextual information from function call chains to improve fault localization”.
2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE. 2020, 468–479. old.

♦ [c4] Béla Vancsics, Ferenc Horváth, Attila Szatmári és Árpád Beszédes. “Call Frequency-
Based Fault Localization”. 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). 2021, 365–376. old.

♦ [j3] Béla Vancsics, Ferenc Horváth, Attila Szatmári és Árpád Beszédes. “Fault locali-
zation using function call frequencies”. Journal of Systems and Software 193 (2022),
111429. old. issn: 0164-1212

A tézispontokat és a kapcsolódó publikációkat a C.1. táblázat összegzi.

№ [c3] [j2] [j1] [c2] [w1] [t1] [p1] [c1] [c4] [j3]
I. ♦ ♦

II. ♦ ♦ ♦ ♦ ♦

III. ♦ ♦ ♦

C.1. táblázat. A tézispontokhoz kapcsolódó publikációk
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