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Introduction

The appearance of small computational devices connected to the Internet has led to the
Internet of Things (IoT) paradigm, which resulted in a vast amount of data generation
requiring the assistance of cloud services for storage, processing and analysis. According
to Taylor et al. [21] the number of smart devices will exceed 75 billion all over the world
by 2025, resulting in an inevitable increase of network traffic.

Cloud systems become good candidates to serve IoT applications because the huge
amount of sensed data require elastic storage and processing services for further analysis,
and their marriage created so-called smart systems [[14]. One of their latest improvements
addresses data locality meaning that data management operations are better placed close
to their origins to reduce service latency. This idea created Fog Computing [15]], which
implied the appearance of loT-Fog-Cloud systems with the highest complexity.

These IoT-Fog-Cloud systems, which are often associated with the Cloud-to-Thing Con-
tinuum, require significant investments in terms of design, development and operation,
therefore the use of simulators for their investigation is inevitable. There are a large num-
ber of simulators addressing the analysis of parts of these systems, however it is obvious
that only a state-of-the-art simulator is capable of modelling complex architectures in a
realistic way, which meets modern challenges.

This PhD thesis consists of three theses separated into three major chapters. The first
chapter presents a detailed survey and taxonomy of various IoT, cloud and fog simulators
in order to determine the key requirements of a compact and well-defined IoT-Fog-Cloud
simulator. The second chapter introduces the IoT and the pricing extension, exploiting a
multi-cloud environment in the DISSECT-CF-IoT simulator. Finally in the third chapter the
DISSECT-CF-Fog simulator is presented which is able to model a multi-layered fog topology
with mobility and actuator events. The resulting DISSECT-CF-Fog simulator is open-source
and available on GitHub[ll

Thesis I. 1 analysed and classified numerous simulation ap-
proaches in terms of functionality, usability, maintainabil-
ity, and code quality, in order to determine the most rel-
evant properties for modelling IoT-Fog-Cloud systems. 1
also compared the two most prominent simulators in these
fields, namely DISSECT-CF-Fog and iFogSim, with an in-
depth performance analysis.

Cloud and fog technologies can be used together to aid data management needs of IoT
environments, but their application gives birth to complex systems that still need a signifi-
cant amount of research. It is obvious that significant investments, design and implemen-
tation tasks are required to create such IoT-Fog-Cloud systems in reality, therefore, it is

IDISSECT-CF-Fog simulator (accessed in October, 2022): https://github.com/sed-inf-u-szeged/DISSECT-
CF-Fog



inevitable to use simulations in the design, development, and operational phases of such
establishments. This rationale has led many scientists to create simulators to investigate
and analyse certain properties and processes of similar complex systems. We believe that
modelling IoT-Fog-Cloud architectures in such simulators is far from complete, and there
is a need to gather and compare how key properties, especially of fogs, are represented in
these works to trigger further research in this field.

The methodology for finding suitable works for our investigations was twofold. First,
we looked for recently published surveys targeting Fog Computing and narrowed their
scope to fog modelling and simulation. Second, to extend the group of considered solu-
tions, we performed a literature review with search engines such as Google Scholar and
Scopus. Our preliminary observation based on the literature analysis is that most simula-
tion tools started to be developed as cloud simulators, and were later extended to model
IoT and fogs as well.
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Figure 1: Visualised relationships between the examined cloud, IoT, and fog simulators

Overall 44 different simulation tools were analysed, but Figure |1| presents only those
that built on each other in some way, the others can be considered as stand-alone im-
plementations. The bottom circle represents the core or base simulators, their extensions
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within the same system categories are placed on top of them, while the arrows lead to
extensions for solutions modelling other systems as well. This graph shows that many
variations of a base simulator exist, and we also know that a concrete simulator has many
development versions that may have different features. This fact makes it very hard for
researchers to choose the right version for their investigations, and for developers to cre-
ate an improved solution of different versions of the same simulator. Our taxonomy aims
to reveal some implementation details in terms of simulation type, publication date, cost
model, geolocation, sensor model, network model, virtual machine (VM) management,
energy model, and source code metrics. Table [1| depicts and compares properties of fog
simulators focusing on code quality.

Table 1: Comparison of the examined fog simulators with software metrics

Simulator Language Lines of | Comments | Duplication Files | Bugs | Vulnerabilities Code
code (%) (%) smells
FogTorchIl Java, XML 2,748 15.9 8.3 39 21 31 308
FogDirSim Python, YAML 5,641 1.4 84
OPNET N/A
N/A
PDES C N/A
FogNetSim++ C++ 20,199 5.7 N/A 59 N/A
Edge-Fog Python 887 17.2 66
YAFS Python, JS, HTML, JSON | 31,597 22.0 208
EdgeNetworkCloudSim Java, HTML 113,654 27.5 571
PureEdgeSim Java, XML 3,308 12.2 4.3 30 18 101 301
iFogSim Java, XML 27,754 25.3 24.3 290 | 124 248 1.5k
MyiFogSim Java, XML 32,723 23.2 23.5 328 174 275 2k
iFogSimWithDataPlacement | Java, Protocol Buffers | 212,780 7.6 N/A 2,313 N/A
EdgeCloudSim Java, XML 6,232 14.3 29.7 54 14 22 496
SpanEdge Java, XML 1,417 10.3 34.1 17 9 11 232
Matlab (Zhang et al.) N/A N/A
DockerSim C++, INI 48,118 22.7 N/A 336 N/A
EmuFog Java 2,570 77.6 52
DISSECT-CF-Fog Java, XML 9,870 33.3 2.0 118 | 31 \ 192 \ 482

The CloudSim-based extensions (e.g. iFogSim or EdgeCloudSim) are often used for
investigating Cloud and Fog Computing approaches, and in general, they are the most
referred works in the literature. On the other hand, the DISSECT-CF simulator is proven
to be much faster, scalable and reliable than CloudSim (see [[17]). This former research
showed that the simulation time of DISSECT-CF is 2,800 times faster than the CloudSim
simulator for similar cloud use cases. Taking into account the literature search results, the
existing performance comparison of the core simulators, and the maturity and number of
citations, our next goal was to make a comprehensive comparison with the original version
of iFogSim and the DISSECT-CF-Fog simulator.

iFogSim and DISSECT-CF-Fog are quite evolved and complex simulators, however, they
follow a slightly different logic to model Fog Computing. To facilitate their comparison,
we gathered and compared their properties and components closest to each other.

Since we thoroughly analysed meteorological applications in our research, we decided
to use this analogy to compare the performance of the two simulators. So in our scenario,
sensors attached to IoT devices (i.e. weather stations) monitor weather conditions, and
send the sensed data to fog or cloud resources for processing (i.e. for weather forecasting
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and analysis). We defined four layers for the topology with one cloud layer, two fog layers
and an IoT (smart) device layer. For the concrete resource parameters we defined one
scenario with three different test cases utilising 20, 40 and 60 IoT devices, respectively.
The simulation properties were set equally as much as possible in both simulators.

The results of executing the test cases with both simulators can be seen in Table
Comparing their runtime, DISSECT-CF-Fog is better suited for high-scale simulations, while
iFogSim simulations become intolerably time consuming by modelling higher than a cer-
tain number of entities. In the third test case, we experienced process starvation caused
by the Java Finalizer thread, which was also mentioned in [12].

Table 2: Comparison of the two simulators

Property DISSECT-CF-Fog iFogSim
Test case L. II. III. L. II. II1.
Runtime (ms) 248.75 312.5 392.58 2,260.33 3,873.66 | 5,400,000*
Application delay (min) 3.41 4.33 4.33 14.89 17.52 N.A.
Generated data (byte) | 19,600,000 | 39,200,000 | 58,800,000 | 19,600,000 | 39,200,000 N.A.
Lines of code 50 liqes + XML ﬁleg 1.59. lines + some
for detailed configuration inline constants

The results of this chapter belong to Thesis I, and its content was published in papers
(P31, [[P7]}, and [[P11]]

Thesis I1. I designed a generic model of IoT systems and im-
plemented it in the DISSECT-CF-IoT simulator. I developed
a novel cost estimation extension using real cloud and IoT
provider pricing schemes. I proposed various resource al-
location strategies to reduce IoT application execution time
and utilisation costs for multi-cloud environments. I also
evaluated these strategies with a real-world meteorological
use case.

The Internet of Things (IoT) paradigm allows for interconnecting sensors (e.g. heart rate,
heat, motion, etc.) and actuators (e.g. motors or lighting devices) in automated and cus-
tomisable systems [20]. We aim at supporting the simulation of up to thousands of devices
participating in IoT scenarios and examine those in terms of scalability, energy efficiency or
management costs. Sensors are essential parts of IoT systems, and they are usually passive
entities. Their performance is limited by their network gateway’s (i.e. the device which
polls for the measurements and sends them away) connectivity and maximum update
frequency. Actuators are entities also limited by their network connectivity and reaction
time (e.g. how long does it take to actually perform an actuation action). Finally, central
computing services provide the large-scale background processing and storage capabilities
needed for IoT scenarios. According to recent advances in IoT, these services are expected
to be used only if unavoidable. The simulator extension presented in this chapter takes
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Figure 2: IoT and cloud costs in the evaluation scenario

into account the following IoT components: sensors, devices (i.e. gateways or brokers),
and applications (deployed in a central computing service, i.e. cloud).

As one of the earliest examples of sensor networks is from the field of meteorology
and weather prediction, we choose to model the crowd-sourced meteorological service.
These kinds of applications aim to make weather analysis more efficient by allowing the
purchase of a small weather station kit including light sensors (to potentially capture cloud
coverage), wind sensors (to collect wind speed), and temperature sensors (to capture the
current ambient temperature). The weather station will then create a summary of the
sensor’s findings over a certain period of time and report it to a Cloud service for further
processing, such as detecting hurricanes or heat waves in the early stages. If many of
these stations are set up over a region, it can provide accurate and detailed data flow to
the cloud service to produce accurate results.

In our evaluation scenarios, we mainly focus on how resource utilisation and manage-
ment patterns alter based on changing sensor behaviour and how these affect the incurred
costs of operating the IoT system (e.g. how different sensor data sizes and the varying
number of stations and sensors affect the operation of the simulated IoT system). For in-
stance, we varied the amount of data produced by the sensors as follows: we set 50, 100,
and 200 bytes for different cases (allowing overheads for storage, network transfer, dif-
ferent data formats, and secure encoding etc.). We simulated 486 stations of the weather
service for 24 hours and we also applied cloud and IoT-side pricing schemes of providers
such as IBM Bluemix, Amazon, Azure, and Oracle.

Figure |2| presents a cost comparison for all considered providers. We can see that
Oracle costs are much higher than the other three providers in all cases (50, 100, 200
bytes messages). The main cause of this issue is that Oracle charges after each utilised
device, which is not the case for other providers. Our initial estimations show that only
such an IoT cloud system operation is beneficial with Oracle, which has at most 200 devices



and transfers 1-2 messages per minute per device.

The further research question of this work is how we can influence the behaviour of an
IoT application, if the sensors can have different allocation strategies for multiple clouds.
Earlier we could only exploit one cloud data centre to start VMs, therefore, all sensors
and smart devices were connected to this specific cloud, and all the generated data of the
sensors were processed by virtual machines running in the same cloud. As a result, a single
cloud could be easily overloaded, and the unprocessed data could hinder the operation of
the IoT application causing longer response times and even service unavailability in real-
world services.

To resolve this issue, during the start of the simulation, we can set up different IaaS
clouds, and another improvement is the introduction of a cloud broker, which can manage
different IoT applications and their VM queues. These queues may have virtual machines
with different pricing policies, and within a simulation the broker can decide to which
cloud (and to which application) the IoT devices should be connected, thus where the
generated data should be sent and processed in an application.

Currently, four different resource allocation (i.e. device) strategies can be chosen to
perform cloud provider selection during each IoT device start-up. With the Random strat-
egy, the cloud broker chooses one of the available applications running in the simulated
clouds randomly for an actual IoT device (sensor or station). The Cost-aware strategy
looks for the cheapest available VM in a cloud (based on their static pricing properties),
thus it compares the prices of the required VM flavors for a given device. This solution
may be more suitable for IoT applications having relatively small data processing needs
or that are less susceptible to the processing time because cloud providers usually offer
lower resource capacities for lower costs. In the Load-balanced strategy, the corresponding
algorithm ranks the available VMs (residing in different clouds) by a specific value defined
by the ratio of the number of already connected devices and the number of the available
physical machines in the hosting cloud. This is a dynamic strategy that takes into account
the actual load of the available clouds. Applications having longer data processing needs
may prefer this strategy.

The last device strategy is based on the Pliant logic; The Pliant system is a kind of fuzzy
theory that is similar to a fuzzy system [[16]. This algorithm calculates a score for each
cloud using the environment properties. The calculation includes a normalisation step,
where we apply the Sigmoid function. In the normalisation step, it should be mentioned
that if the normalised value is close to one, that means it is a more valuable property, and
if the normalised value is close to zero, that means it is a less prioritised property. After
the normalisation step, we modify the normalised value to emphasise the importance of
the result by using the Kappa function. The final step is to calculate a score number for
the node. To achieve this, we can use the conjunction, disjunction or aggregation operator.
The conjunctive operator is similar to the AND operator. This means that if one of the
values is small, then the result will be also small. The opposite is true for the disjunctive
operator, which is similar to the OR operator. The aggregation operator lies between the
disjunctive or conjunctive operator, that is why we use this operator. Finally, when the
score number is calculated for all clouds, we create a distribution function based on the
score number and choose one from this distribution randomly. For our Pliant strategy
we consider the following properties for each cloud VM: general VM cost, current cost of
application, workload, number of running VMs in the hosting cloud, number of devices



Table 3: Evaluation results

| Strategies | Cost-aware | Random | Load-balanced | Pliant |
Total cost (Euro) 26.419 66.527 65.451 65.651
No. of used VMs 109 180 170 173
Total tasks 1,722 1,830 1,819 1,838
Timeout (min) 631 86 86 71

that are already connected to a cloud, memory size and number of CPUs.

For the evaluation we also aimed to simulate a worldwide weather forecasting system.
We used three clouds configured with Amazon, Azure, and IBM Bluemix cloud provider
pricing. The number of running weather stations has been increased to 40,000, each of
them works with 8 sensors and generates 50 bytes of data every minute. We run this
scenario to simulate 6 working hours. In the beginning, we started 10,000 stations, then
we added 10,000 stations more in the next hours to reach 40,000 stations by the fourth
hour. The results of the second scenario are shown in Table |3), where the Pliant strategy
reached the most favourable timeout (71 minutes) with a slightly worse cost (65.651
Euros) than in the case of Random and Load-balanced strategies.

The results of this chapter belong to Thesis II, and its content was published in papers

[P1]] [[P2]] [[P5]} [[P6]} and [[P10]]

Thesis III. 1 designed a generic model of Fog Computing
and implemented it in the DISSECT-CF-Fog simulator to en-
able the modelling of the Cloud-to-Thing Continuum. I de-
veloped various task offloading policies for fog and cloud
infrastructure management, to optimise IoT application
makespan, utilisation costs, and energy consumption. I
also proposed novel extensions to enable mobility and ac-
tuator behaviour analysis, and I evaluated these extensions
with different smart system use cases.

In the surrounding world of IoT devices, location is often fixed, however, the Quality
of Service (QoS) of these systems should also be provided at the same level in the case
of dynamic and moving devices. Systems composed of 10T devices supporting mobility
features are also known as the Internet of Mobile Things (IoMT) [[18]. Mobility can have a
negative effect on the QoS to be ensured by fog systems, for instance, they could increase
the delay between the device and the actual node it is connected to. Besides scalability,
latency and resource management issues, energy consumption of a fog environment and
the corresponding smart devices is also a great challenge as stated in [13]].



When the number of tasks is growing, a single fog node may not be able to process
them continuously, therefore, a forwarding function for some of the tasks to other nodes
can be useful to manage a higher number of tasks of an IoT application. A fog topology
consisting of several nodes with different locations can handle the unforeseen appearance
of smart devices (and new tasks) more effectively, than a single, heavyweight cloud node.
To manage the offloading decisions separately for each node, we introduce the application
strategy components with which different task allocation approaches can be created and
implemented taking in consideration the characteristics of the topology.

We defined four basic strategies for task allocation to validate the usability of our pro-
posal. The Random strategy is the default, which always chooses one from the connected
nodes randomly. The Push Up strategy always chooses the connected parent node (i.e.
a node from a higher layer), if available. This approach does not take into account the
properties of the neighbours, and basically ensures the fastest way to forward unprocessed
tasks to the cloud, where more powerful VMs may reduce the processing time of it. The
disadvantage of these strategies is the disability to consider increased network traffic and
costs of the operation in the decision. The third strategy called Hold Down aims to address
privacy needs because the system can keep application data as close to the end-user as
possible. In this way, the network traffic is minimal, but the execution time of the appli-
cation can increase dramatically (due to the possible overload of constrained resources at
the lowest layer). The Runtime-aware strategy ranks the available parent nodes and all
neighbour nodes (from its own layer) by network latency and by the ratio of the available
CPU capacity and the total CPU capacity. The algorithm picks the node with the highest
rank (i.e. the closest and least loaded one). The last strategy we propose is an algorithm
that can predict which computing node could be the best for managing a given IoT device
(according to the actual state of the system, represented by its properties). This algo-
rithm is also based on the Pliant logic, therefore, for each reachable fog and cloud node
it calculates a score number using normalisation, Sigmoid and Kappa functions, and the
aggregation operator. We define the following three properties for each system node: load,
cost, and unprocessed data of a node.

In the layered architecture of 10T, actuators are located in the perception layer, which is
often referred to as the lowest or physical layer that requires the most detailed level of ab-
straction in IoT. Since the actuator has the ability to control the sensing process itself [19],
half of the predefined actuator events foster low-level sensor interactions. The Change file
size event can modify the size of the data to be generated by the sensor. Such behaviour
reflects use cases, when more or less detailed data are required for the corresponding IoT
application, or the data should be encrypted or compressed for some reason. Increase
frequency and Decrease frequency might be useful when the IoT application requires an
increased time interval between the measurements of a sensor. A typical use case of this
behaviour is when a smart traffic control system of a smart city monitors the traffic at night
when usually fewer inhabitants are located outside. The Decrease frequency is the opposite
of the previously mentioned one, a typical procedure may appear in IoT healthcare, for
instance, the blood pressure sensor of a patient measures continuously increasing values,
thus more frequent perceptions are required. The Stop device event imposes a fatal error on
a device, typically occurring randomly. Finally, the Restart device reboots the given device
to simulate software errors or updates.

Currently two mobility strategies are implemented in DISSECT-CF-Fog. The goal of the



Table 4: Results of the Transport actuator strategy and number of events during the evalua-
tion scenario

Actuator strategy Transport
Fog node range (km) 25 50
Vehicle (pc.) 2 | 20 | 200 2 | 20 | 200
VM (pc.) 19 19 19 19 19 19
Generated data (MB) 65 642 6,445 83 851 8,469
Fog + Cloud cost ($) 1,974.7 | 4,492.9 | 10,231.1 | 2,557.8 | 5,006.5 | 10,312.7
Delay (min.) 5.0 4.03 2.02 5.0 4.04 4.01
Runtime (sec.) 3 13 119 4 15 128
Change file size (pc.) 20,012 | 198,221 | 1,986,157 | 20,107 | 189,693 | 1,870,594
Change node (pc.) 0 0 0 6,111 65,424 | 654,135

Change position (pc.) 91,167 | 910,014 | 9,122,057 | 93,088 | 970,373 | 9,791,859
Connect / disconnect | 14146 | 131 455 | 1,314,037 | 7,020 | 66,349 | 659,573
to node (pc.)
Increase frequency (pc.) | 19,833 | 198,888 | 1,982,648 | 19,573 | 66,117 | 1,872,881
Decrease frequency (pc.) | 19,735 | 199,759 | 1,983,997 | 19,646 | 189,298 | 1,875,489

Restart / stop device (pc.) 0 0 0 0 0 0
Timeout (pc.) 35,379 | 354,788 | 3,536,881 0 0 0
Timeout data (MB) 15 149 1,557 0 0 0

(i) Nomadic mobility model is that entities move together from one location to another,
in our realisation multiple locations (i.e. targets) are available. It is very similar to the
public transport of a city, where the route can be described by predefined points (or bus
stops), and the dedicated points are defined as geographical positions. An entity reaching
the final point of the route will no longer move but may function afterwards. Between the
locations, a constant speed is considered, and there is a fixed order of the stops. The (ii)
Random Walk mobility takes into consideration entities with unexpected and unforeseen
movements, for instance, the observed entity walks around the city, unpredictably. The
aim of this policy is to avoid moving in straight lines with a constant speed during the
simulation because such movements are unrealistic. In this policy, a range of the entity is
fixed, where it can move with a random speed. From time to time, or if the entity reaches
the border of the range, the direction and the speed of the movement dynamically change.

The simulator monitors the position of the fog nodes and IoT devices continuously and
makes decisions knowing these properties. A connection of an IoT device is closed with
the corresponding node in case the latency exceeds the maximum tolerable limit of the
device, or the IoT device is located outside of the range of the node. When a device finds
a better fog node instead of the current one, or the IoT device runs without connection to
any node, it finds an appropriate one. To cover such actions, we introduce five actuator
events related to mobility.

To evaluate this extension, we simulated a one-year-long operation of a smart transport
route across cities located in Hungary. This track is exactly 875 kilometres long, and it
takes slightly more than 12 hours to drive through it by a car based on Google Maps,
which means the average speed of a vehicle is about 73 km/h. We placed fog nodes in
9 different cities maintained by a domestic company, and applied the Transport actuator
policy: if the asset was located closer than five kilometres, it would send position data
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every two minutes. In the case of five to 10 kilometres, the data frequency is five minutes,
and from 10 to 30, the data generation is set to 10 minutes, lastly if it is farther than 30
kilometres, it informs changes in 15 minutes. The results are shown in Table 4
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Figure 3: Energy consumption percentage of cloud, fog nodes and IoT devices

Concerning power consumption of IoT resources, we had to build up the energy model
from scratch. In this work, we had to extend the IoT device representation of DISSECT-CF-
Fog, which represents any smart objects, and responsible for power consumption metering
for IoT devices during simulations. To resolve this issue, we decided to create a more
detailed physical layer called a microcontroller for implementing our energy model. Such
realisation keeps the already existing functionalities (e.g. data sensing of IoT sensors, tem-
porary data storing, and data forwarding to fog or cloud nodes), and introduces predefined
states for microcontrollers, which allow mapping a certain power consumption to a certain
state.

Our findings and experiments revealed that the power consumption values of microcon-
trollers are highly dependent on their actual behaviour and their use cases. Typical mod-
ifying circumstances may be the usage of a wired connection instead of wireless, and/or
different types of power supply cables or converters. To handle such extreme cases and to
be able to simulate uncertainty, we introduce three different states of a microcontroller in
our model.

The state OFF indicates a fully turned-off device with static minimal energy consump-
tion using the min power preset value. The RUNNING state represents a high energy
consumption state, where the actual power consumption can change dynamically with re-
gard to the actual CPU utilisation. The minimal and maximal consumption values in this
state are set by the predefined idle and max power values. To simulate specific events
when high power spikes appear (caused by e.g. activating a previously unused port of the
device), we introduce the ACTIVE state. It also represents a high energy consumption state
allowing dynamic changes, but its minimal value should be higher than in the RUNNING
state; by default it is set to double the idle power value.
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In our simulation, the microcontrollers can use either ESP32 or Raspberry Pi energy
models, and they are equipped with a temperature-humidity sensor (similar to our real-
world measurements). In our weather forecasting use case, we defined three different
scenarios by scaling up the number of operating devices. In the first case, we utilised 100
IoT devices, then we increased the number of devices to 1,000, and finally, in the last case,
the maximum device number was 10,000, operated for 60 minutes within the experiments.
The microcontrollers measured the environmental parameters every 60 seconds, similar to
the real device evaluation, hence our goal was to map the real monitoring execution in
the DISSECT-CF-Fog simulation environment. Figure (3| highlight the results by comparing
the energy consumption ratio of the utilised cloud node, fog nodes and IoT devices (i.e.
microcontrollers) by depicting their ratio in percentage.

The results of this chapter belong to Thesis III, and its content was published in papers

[P4]], [[P8]], and [[P9]l

Table 5: Publications, theses and citations

Thesis I | Thesis II Thesis III Google S(IESZ?S MTMT
[P3] ¢ 48 36
[P7] ¢ 4 4
P11l o 1 2
[P1] ¢ 13 11
[P2] ¢ 10 7
[P5] ¢ 10 7
[P6] ¢ 3 4
[[P10]| ¢ 5 3
[P4] ¢ 1 1
[P8] ¢ - -
[P9] ¢ 1 -

[ Sum [ 3 ] 5 \ 3 \ 96 75 |

Publications, Theses and Citations

Table |5| summarises the relation between the thesis points and the corresponding publi-
cations and it also presents the citations received so far according to Google Scholar and
MTMT.

Journal publications

[P1] A. Markus, G. Kecskemeti and A. Kertesz. Cost-aware IoT extension of DISSECT-CF.
Future Internet, Volume 9, 2017. DOI: 10.3390/fi9030047
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[P2] A. Markus and J. D. Dombi. Multi-Cloud Management Strategies for Simulat-
ing IoT Applications. Acta Cybernetica, Volume 24, 2019. DOI: 10.14232/acta-
cyb.24.1.2019.7

[P3] A. Markus and A. Kertesz. A Survey and Taxonomy of Simulation Environments
Modelling Fog Computing. Simulation Modelling Practice and Theory, Volume 101,
2020. DOI: 10.1016/j.simpat.2019.102042

[P4] A. Markus, M. Biro, G. Kecskemeti and A. Kertesz. Actuator behaviour modelling in
IoT-Fog-Cloud simulation. PeerJ Computer Science, 7:€651, 2021. DOI: 10.7717/peerj-
cs.651

Full papers in conference proceedings

[P5] A. Markus, G. Kecskemeti and A. Kertesz. Flexible Representation of IoT Sensors for
Cloud Simulators (PDP). In Proceedings of 25th Euromicro International Conference
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Osszefoglalas

Az internethez csatlakoztatott kis szamitdsi eszk6zok megjelenése vezetett a Dolgok In-
ternete (IoT) paradigmdjahoz, ami hatalmas mennyiségli adatot eredményezett. Azon-
ban ezen adatok tdroldsa, feldolgozdsa és elemzése nem trividlis feladat. Az elosztott
rendszerek fejlédése lehetévé tette, hogy az IoT rendszereket 6tvozziik bizonyos szamitasi
(példaul Felh6/Cloud és Kod/Fog) szolgaltatasokkal, amelyek a korabban emlitett felada-
tokban segitséget nytjtanak. Ilyen IoT-Kod-Felhé rendszerek elemzése a valo vildgban
igen koltséges lehet, ezért szamos szimulacios megoldas sziiletett annak érdekében, hogy
ezeket a komplex rendszereket vizsgdlhassuk. Ez a doktori értekezés harom fejezetben
foglalja 6ssze az [0T-Kod-Felh6 rendszerek modellezését célzé DISSECT-CF-Fog szimulatort,
amellyel képesek vagyunk nagy szamu IoT eszkozt és alkalmazast valésaghtien modellezni.

Az els6 fejezetben Gsszesen 44 darab, felhd, IoT és kod rendszereket modellezé szi-
muldcids megoldast részletesen elemeztiink és osztalyoztunk. A vizsgalt szimuldtorokat
harom csoportra osztottuk, és az osztalyozas alapjan 6sszehasonlité tablazatokat és abrakat
mutattunk be, hogy feltdrjuk a kiilonbségeket, és ravilagitsunk, hogyan modellezik az
[oT-K6d-Felhé rendszerek egyes elemeit. Az Osszehasonlité elemzésiink alapjan megal-
lapithatjuk, hogy a kod rendszerek atfogé modellje még mindig hianyzik, és az Osszetett
kornyezeteket nehéz egyetlen szimulatorral kezelni. F6 javaslatunk a tovabbi kutatashoz
a szimulatorokban taldlhaté modellek folyamatos bévitése az igények alapjan a megfelel6
szoftvermindség fenntartdsa mellett. Az atfogd elemzésiink alapjan ezt kovetéen 0sszeha-
sonlitottuk az iFogSim és a DISSECT-CF-Fog szimulatorokat.

A masodik fejezetben bemutattuk a DISSECT-CF-IoT szimulatort, amely képes részletes
arképzési sémakkal modellezni az IoT szenzorokat, eszkozoket és alkalmazasokat, ehhez
figyelembe vettiik valds szolgdltatéknak, példaul az Amazon-nak vagy az Azure-nek az
arazasi modelljeit. Mivel az IoT eszkozok szama a tizezres nagysagrendet is meghalad-
hatja, egyetlen felh6 konnyen tulterheltté valhat, és a feldolgozatlan adatok akadalyozhat-
jak az IoT alkalmazas miikodését, ami hosszabb valaszidét, s6t — valdsidejii szolgaltatasok
esetén — a szolgdltatds elérhetetlenségét is okozhatja, ezért ebben a munkdban bemutattuk
a tobb felhébol allo architektura kezelésének lehet6ségét. Ahhoz, hogy az IoT eszkozok
kihaszndlhassak a megnovekedett szamitdsi er6forrdsokat, négy felh6 valasztasi stratégiat
is javasoltunk, amelyek célja az IoT alkalmazasok végrehajtdsi idejének és koltségeinek
csokkentése.

A harmadik fejezetben bevezettiik a DISSECT-CF-Fog szimulatort kod rendszerek mo-
dellezésre, amely figyelembe veszi a kod csomdpontok pozicidjat is. A tobbrétegli kod ar-
chitekturak kezelésének érdekében kiilonb6z6 alkalmazas vezérlési stratégidkat vezettiink
be a komplex [0T-Kod-Felh6 rendszerek tehermentesité dontéseinek kezelésére, igy ameny-
nyiben egy kod vagy felh6csomopont tulterheltté valik, képes a varakoztatott szamitasi
feladatokat masik szamitasi cscomopontnak tovabbitani. Végiil a szimulaciés eszkozt kiter-
jesztettiik az IoT eszkozok energiafogyasztdsanak mérésére valamint az aktudtorok és a
mobilitasi jellemzék modellezésére, amelyek segitségével az IoT eszk6zok mozgasat is fi-
gyelembe veszi a szimulator.

Osszefoglalasként, a DISSECT-CF-Fog részletes IoT, kod és felhd modellje, kiegészitve
a felh6 valasztasi és alkalmazas stratégiakkal, lehet6vé teszi komplex IoT-Kod-Felh6 rend-
szerek modellezését az IoT alkalmazdas végrehajtdsi ideje, a kod és felh6 eréforrasok fel-
hasznalasa, a koltségek és az energiafogyasztas szempontjabdl.
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