
Software Maintenance Experiments
with the A+ Programming Language

and the Primitive Obsession
Bad Smell

Ph.D. Dissertation

by
Péter Gál

Supervisor:
Dr. Ákos Kiss

Doctoral School of Informatics

Department of Software Engineering

Faculty of Science and Informatics

University of Szeged

Szeged
2022

“I know nothing about surpassing others. I only
know how to outdo myself.”

— Bushido Code

Foreword

In one moment, you are playing with puzzle games and LEGO bricks.
Then you blink, and time moves forward.
Now you are coding your first program, solving it like a puzzle, building it

up like a LEGO construct. What goes where? How will it work? The questions
to be resolved are popping up one by one as more and more pieces are fitted
together.

Blink again.
The code became more complex, it now has more components, and more

puzzles appeared that need to be solved, more “bricks” to be placed. An
endless route on which puzzles are solved, bricks are arranged, and new ones
are created constantly.

Over the course of these puzzles, I was fortunate to have support from many
people. Mainly from my Mother, my Grandmother, and of course, my family,
to whom I am and will always be grateful.

Péter Gál, 2022

i

Contents

Foreword i

1 Introduction 1

I Experiments with the A+ Programming Language 3

2 Introduction 5

3 Background 7
3.1 The A+ Programming Language 7
3.2 Dynamic Language Runtime . 9
3.3 Related Works . 10

4 A+.NET Implementation 13
4.1 Defining the Grammar of the A+ Language 13
4.2 Architecture Overview . 14
4.3 A+ and .NET Integration . 16

5 Comparing A+ Implementations 21
5.1 Run Time Experiments . 21
5.2 Source Code Metrics . 25
5.3 Maintainability Metrics . 28

6 A+.NET Language Extension 33
6.1 Accessing Methods, Variables, and Properties 35
6.2 Variable and Property Modification 36
6.3 Indexers . 38
6.4 Type Casting . 38
6.5 Type Matching . 39

iii

7 Conclusions 43

II Primitive Enthusiasm Metrics 45

8 Introduction 47

9 Background 49
9.1 Definition of Primitive Obsession 49
9.2 Challenges using Primitive Obsession 50
9.3 Bug Prediction and Datasets . 51

10 Defining Primitive Enthusiasm 53
10.1 Local Primitive Enthusiasm . 54
10.2 Global Primitive Enthusiasm . 55
10.3 Hot Primitive Enthusiasm . 55
10.4 Primitive Enthusiasm and Wrapper Classes 55

11 Metric Calculation Evaluation 57
11.1 Eliminated Methods . 58
11.2 Results . 58

11.2.1 Exclusion Strategy . 58
11.2.2 Effect of Wrapper Classes 59
11.2.3 Reports on Primitive Enthusiasm Metrics 60

12 Bug Prediction Capabilities 63
12.1 Calculating the Metrics . 63

12.1.1 Information on Selected Systems 64
12.2 Correlation Between Metrics . 66
12.3 Cross-project Bug Prediction 69
12.4 Bug Prediction Across Versions 72

13 Conclusions 75

III Appendices 77

A Summary 79

B Összefoglalás 85

iv

Bibliography 95

v

List of Figures

4.1 Components of the A+ .NET runtime 15
4.2 Compilation steps of an A+ script 16

5.1 Execution times of the A+ test script 23
5.2 Histograms of the computed maintainability-related metrics. . . 30
5.3 Histograms of the derived metrics. 31

vii

List of Tables

5.1 Modules of the A+ reference interpreter 26
5.2 Modules of A+.NET runtime 27
5.3 Maintainability-related metrics measured for the A+ reference

interpreter and A+.NET . 29
5.4 Derived metrics computed for the A+ reference interpreter and

A+.NET. 31

11.1 Properties of the examined projects 59
11.2 Comparison of the two elimination strategies 59
11.3 The impact of wrapper classes by the number of methods 60
11.4 Comparison of Primitive Enthusiasm reports on method level . . 61
11.5 Comparison of Primitive Enthusiasm reports on class level . . . 61

12.1 Class count, Bug count, and PE metric count information on
selected systems . 65

12.2 Correlation between PE and other metrics 67
12.3 Correlation between a selected set of method count related metrics 68
12.4 Correlation between a selected set of line count related metrics . 69
12.5 Weighted fmeasure changes in case of cross-project validation . . 71
12.6 Weighted f-measure changes in the case of the Ant project across

versions . 73
12.7 Weighted f-measure changes in the case of the Velocity project

across versions . 73
12.8 Weighted f-measure changes in case of the Xerces project across

versions . 74

viii

Listings

3.1 The computation of the sum and product of the first 10 natural
numbers in A+ . 8

4.1 Example registration of the constant 3.2 into an A+.NET scope
in C# . 17

4.2 An A+.NET compatible C# method 17
4.3 Registering a C# method into an A+.NET scope 18
4.4 A+.NET conformant C# method with annotations, registered

as tst.foo in the A+ environment 18
4.5 Invocation of a registered C# method from A+.NET 19
5.1 The A+ script used for performance evaluation (written in APL

input mode). 22
5.2 A C# code fragment embedding A+ expressions (written in

ASCII input mode). 24
6.1 Example A+.NET accessor usage 36
6.2 Example A+.NET instance variable modification 37
6.3 Example indexer usage for .NET types 38
6.4 Example A+.NET type casting for .NET types 39
6.5 Example for C# method ambiguity 41
9.1 Sample code containing Primitive Obsessions 50

ix

x

xii

1
Introduction

Software maintenance is an extensive and diverse topic that focuses not only on
fixing defects found in applications, but also on software re-engineering, source
code analysis, calculation/evaluation of source code metrics, and detection of
various code bad smells. Out of these diverse topics, the author focused on two
areas, and these two parts are the main thesis points.

Part I explores the A+ language, its unique features and presents a clean-
room implementation of the A+ language on top of the .NET framework. Using
the original interpreter and the new .NET version, the runtime and source code
metrics were compared to see how the two systems perform. Albeit the .NET
version is slower in some cases when executing A+ scripts, the option to use
.NET components in A+ could levitate these problems simply by directly using
.NET methods from A+ scripts. Additionally, it is essential to note that the
original A+ implementation had more than twenty years to optimize its runtime.
On the other hand, the maintainability aspects of the two projects are quite
different. In this case, the .NET version yields better results. In order to extend
the capabilities and make the integration with .NET classes straightforward,
the A+ language was extended with object-oriented operations.

Part II presents a new metric and its variants to capture an aspect of the
Primitive Obsession code smell. Specifically, to measure the over usage of
primitively typed function arguments. This new metric group is the Primitive

1

1. Introduction

Enthusiasm (PE) metric. Each of the metrics is formulated and presented
in its respective sections. The main idea of the metric was not to give a
globally accepted threshold to mark a method – or class – “primitive” but to
compare the methods/classes in a given system to each other to see where the
irregularities are. These metrics are measured and investigated on a set of
systems to see if they find any methods/classes. This evaluation gave the result
that there are indeed classes/methods marked by these metrics. With the
creation of these metrics, the correlation between these and other code metrics
was also investigated to see how strong the connections are. The possibility of
using these new metrics for bug prediction is evaluated on multiple systems in
two different ways, by doing a cross-project measurement and – a more realistic
scenario – a project version-based measurement.

2

Part I

Experiments with the A+
Programming Language

3

2
Introduction

A+ is an array programming language [53] inspired by APL. It was created more
than 30 years ago to suit the needs of real-life financial computations. However,
even nowadays, many critical applications are used in computationally-intensive
business environments. Unfortunately, the original interpreter-based execution
environment of A+ is implemented in C and is officially supported on Unix-like
operating systems.

By implementing a .NET-based version, the lifetime of existing A+ appli-
cations can be extended. Additionally, this will allow A+ developers to access
.NET components and .NET developers to use A+ code. Furthermore, A+
applications can be hosted on Windows systems, which was previously impos-
sible with the original implementation. After implementing the new runtime,
it is worthwhile to compare the two implementations in terms of runtime and
source code metrics to see how they compare to each other.

As the new implementation allows interoperability between .NET classes
and A+ scripts, the next logical step is to extend this interoperability between
the two worlds. For this, the introduction of object-oriented notation and
mechanism is a good choice. This would make for an A+ developer effortless
to access various classes or methods from the .NET world.

Structure of this part : Chapter 3 briefly discusses the background of A+,
the Dynamic Language Runtime, and various related language implementations

5

I. 2. Introduction

and improvements. In Chapter 4 the new A+.NET clean room implementation
is presented, which is compared to the original implementation in Chapter 5.
Chapter 6 presents the object-oriented extension for A+. These chapters are
covered in papers [24], [25], and [23] respectively. Finally, results and final
thoughts are summarized in Chapter 7.

6

3
Background

3.1 The A+ Programming Language

A+ derives from one of the first array programming languages, APL [12].
This legacy of A+ is one of the most notable differences compared to more
recent programming languages. While the operations in modern widespread
programming languages usually work with scalar values, the data objects in A+
are arrays. This approach allows the transparent generalization of operations
even to higher dimensional arrays.

There are more than 60 built-in functions, which are usually treated as
operators in other languages. Among these functions are simple arithmetic
functions and some other complex ones, like inner product or matrix inverse
calculations. All built-in and user-defined functions are treated as first class-
citizens, which means that the programmer can assign functions to variables
and is also able to pass functions as arguments to other functions. In addition,
almost all built-in functions have special non-ASCII symbols associated. This
syntax makes the code compact and also allows mathematical-like notations in
an A+ code. However, this could pose a challenge for the untrained eye when
trying to read and understand the source code.

The language defines a very narrow set of types, it has integers, floats,
characters, symbols – denoted by a starting backtick character –, functions,

7

I. 3. Background

and a type named box – which is a special type wrapping another type. In
A+, even a single number or character is treated as an array. Arrays can be
placed in an array if they have the same type. This means putting a character
array inside an integer array is disallowed. The programmer would need to
convert the character array into an integer array first to be able to put it
into the target array. Currently, the original A+ implementation only allows
the creation of arrays with a maximum of 9 dimensions, as specified by the
language reference [53].

The variables and functions are categorized in a namespace-like concept
called contexts. By default, there is a root context that has no name, and there
is always an “active” context. Accessing functions and variables can be done in
two ways: using a qualified name and an unqualified name. The qualified name
has a format <context name>.<variable name>, that is the context name,
and the variable name is separated by a single dot character. Context names
can contain multiple dots, but variable names cannot. The term “unqualified
name” is used when the context is not specified for a variable. For example, if a
variable is named example and it is in the root context, then the qualified name
would be .example. If the context was the demo then the qualified name would
be demo.example. Whereas, the unqualified name in both cases is example.
When an unqualified name is used during A+ script execution, the runtime
will automatically extend it to a qualified name based on the currently active
context. Using the $cx <context name> command the developer can change
the active context.

Although being a language of mathematical origin, A+ has an unusual rule:
all functions have equal precedence, and every expression is evaluated from
right to left.

Listing 3.1: The computation of the sum and product of the first 10
natural numbers in A+

1 (+/a) , ×/a ← 1 + ι 10

Listing 3.1 depicts an A+ example where the sum and product of the first
ten natural numbers are calculated and placed into an array. In order to
understand better this code snippet, we should go through it in steps. The
first expression is ι 10. Using the symbol iota) this will generate a 10-element
array containing values from 0 to 9. The result of this is then supplied to for
the 1 + expression. In this case, the operation performed is the addition, but

8

I. 3. Background

on the left side of the addition is a scalar and on the left side is the previously
calculated 10-element long array. In A+, adding a scalar to an array is not a
problem. The addition will be done for each element in the array. In this case,
the values from 0 to 9 in the array will be transformed into a new 10-element
array containing values from 1 to 10. Next is the assignment a := operation.
That is, the result of the addition will be stored in the a variable. After this,
the */ operation will do a multiplication for each element in the array provided
by the right-hand side of the operation. In this case the 1 * 2 * 3* 4 * 5 *

6 * 8 * 9 * 10 calculation is performed and gives the 3628800 scalar result.
The +/a operation will calculate the a array’s sum, returning 55 as result. The
last operation done is the , which is the concatenation. The result of the sum
and product is concatenated into a single array, resulting in the two-element
array 55 3628800. An important note is that the parentheses around the sum
are required. Without this, the concatenation would be applied before the sum
calculation, and the whole code snippet would return a single scalar result. As
presented, this illustrates the right-to-left evaluation order of the language.

This example also demonstrates that in a very compact form, quite complex
computations can be easily expressed in this language. The A+ Language
Reference provides other examples. Most of them are for financial applications,
for example: how to compute the present value at various interest rates in a
single line [53, page 62].

3.2 Dynamic Language Runtime

The Dynamic Language Runtime is a set of classes and methods designed to
support dynamic languages, like IronPython [51]. The library adds dynamic
objects to C# and Visual Basic to support dynamic behaviour in these lan-
guages and enable their interoperation with dynamic languages. In addition, it
makes it possible to use .NET classes for the dynamic languages implemented
on top of .NET.

The DLR adds the following set of capabilities to the .NET Common
Language Runtime [51]:

• Expression trees. The DLR uses expression trees to represent language
semantics. For this purpose, the DLR has extended LINQ expression
trees to include control flow, assignment, and other language-modelling
nodes.

9

I. 3. Background

• Dynamic object interoperability. A set of classes and interfaces that
represent dynamic objects and operations that can be used by language
implementers and authors of dynamic libraries. These classes and inter-
faces include IDynamicMetaObjectProvider, DynamicMetaObject, Dy-
namicObject, and ExpandoObject.

• Call site caching. A dynamic call site is a place in the code where opera-
tions a + b or a.b() can be performed on dynamic objects. The DLR
caches the characteristics of a and b (usually the types of these objects)
and information about the operation. If such an operation has been
performed previously, the DLR retrieves all the necessary information
from the cache for fast dispatch.

3.3 Related Works

Even before the introduction of DLR, there were attempts to integrate lan-
guages into other runtimes. One of such attempts was the JPython project
(now Jython) [34]. This project implemented the Python language in/on Java.
In this implementation, the Python code was compiled to Java byte-code. The
developers of the port reported a slowdown by a factor of 1.7 compared to the
original Python implementation done in C.

Similarly, for .NET, a Python port was also started, but before the com-
ponents provided the DLR, this proved to be a difficult task and the project
was abandoned [33]. In another approach, the execution engine was not ported
to .NET but instead, a bridge was created between the framework and the
existing interpreter [47].

After a while, another attempt was made to port Python to .NET. In
this case, the result was a success, the IronPython project [35] was created.
The first public version was considerably slower on some benchmarks, in some
cases 100-fold, but in other cases, it was faster than the C implementation.
This project paved the way for other dynamic languages on top of .NET the
Dynamic Language Runtime components are created in this work. This project
is still under active development, and previously its performance was regularly
compared to the reference implementation. However, these results are no longer
accessible

The Java community is also putting effort into supporting the execution of
script languages on the Java platform. Several related JSRs [65, 66] reached
final status and got incorporated into public releases of the platform.

10

I. 3. Background

APL also had a few attempts to bring the language to the .NET framework.
One of the first of these is the VisualAPL [8]. This version of APL departed
from the conventional syntax and adopted object orientation, C# syntax and
semantics into the language. The first release was in 2009 as a consumer-ready
product [9], and currently, it seems that it was abandoned later, as there are
no new news or information available. Another project was the APL# [42]
based on Dyalog APL. With this approach, the developers and designers have
taken cautious steps in order not to introduce language-breaking features.
Unfortunately, after a while, this project was also abandoned.

As previously discussed, porting of various languages are a reoccurring
task taken up by various developers. Similarly, re-engineering legacy systems
have long been in the focus of researchers. In most cases, however, authors
concentrated on estimating the cost of such re-engineering work [62] or on using
automated tools to transform legacy systems from one source to another [63].
Alternatively, developing a methodological and technological modernization
framework to help the migration of legacy systems based on high-level design
models [58].

Furthermore, languages improve over time, and new syntax or semantics
are added to them. One such “new” element was the object-oriented notation
introduced into various languages. Extending an existing language with object-
oriented capabilities is not new in the world of programming languages. Even
for APL – from which A+ derives – there are object-oriented extensions [11]
and other experiments to incorporate object-oriented notations into the APL
language [28]. Both of these implementations provide object-oriented notations,
allowing the developers to create classes from APL code and not just operations
for objects. However, in one case, the authors introduced the member access
operation to be read from left-to-right thus making the right-to-left reading
mode a bit awkward when such operations are performed. In the other case,
the authors introduced a special system function (□NEW) to construct new
instances from a given class. Additionally, the possibility of interacting with
other objects – that are outside of the APL language – was not mentioned.

Moreover, the APL language is still in active use, and there are different
companies providing support for its implementations, the most notable one
is provided by Dyalog Ltd. [15]. This version also provides object-oriented
notations to make the developers’ life easier. In addition, it also gives a
syntax to write classes, not just the option to instantiate them and access
its members. The variant took the approach of introducing a new system
function to instantiate classes and use the dot syntax to select members on

11

I. 3. Background

classes/instances [43].
Other array-based programming languages used in mathematics already

have object-oriented support, for example, the widely used Maple [44] and
Matlab [48, 59] software packages.

One could also argue why a more than 30 years old language’s life should
be extended. For this, the COBOL language is a prime example. COBOL
was created in the 1960s for data processing and was first used by the U.S.
Department of Defense on mainframes [17]. Over the years, the language has
gained quite a bit of adoption in various industries, but mainly in financial
solutions. The need for a standardized COBOL language quickly became
apparent, and this resulted in an ISO standard [36]. This standard was updated
multiple times over these years [37, 38] and the latest one is from 2014 [39].
This new standard also introduced object-oriented elements into the language.
This led to the current era of computing, where even after almost half a
century, some systems are still using COBOL, and there is no short-term plan
to change them. For example, “The Social Security Administration’s Software
Modernization and Use of Common Business Oriented Language” report from
the USA states that they do not have a strategy to convert the COBOL systems
to a more modernized programming language [64]. Furthermore, a report from
2016 shows [60] that 43% of U.S. banking systems are built on COBOL, 95%
of ATM swipes use in some form on COBOL code. The report also describes
that 220 billion lines of COBOL code are still in use. This example also shows
that in some cases, systems could be used for a very long time and the option
to keep them alive is crucial. Furthermore, even in these days, there are books
to help learn COBOL [13, 69].

COBOL’s case illustrates, that it is difficult and costly to replace an already
existing system. A+ is same in this regard, there are various critical financial
applications that still uses this language.

12

4
A+.NET Implementation

Implementation of an interpreter or compiler for any programming language
usually requires a few key information. One such important component is
the syntax of the language and the other one is the internal working of the
interpreter or compiler.

4.1 Defining the Grammar of the A+ Lan-

guage

Even before the implementation of the .NET-based runtime could have started,
we ran into two major problems of the original system. First, it turned out that
A+ has no formal grammar. There are only two official sources of information
available on the syntax of A+: the Language Reference [53], which gives only
a textual description of the language, and the source code of the reference
implementation, which contains a hand-written lexer and parser, from which
the formal rules are non-trivial to reverse engineer. In addition quality of the
source code of the original implementation is a bit questionable. The quality
aspects of this are presented in Chapter 5.

Thus, we had to formalize the grammar of A+ first. In order to formalize
the grammar, the A+ language reference was extensively investigated and

13

I. 4. A+.NET Implementation

methodically processed. Furthermore, a multitude of simple and complex
grammar tests were created to understand the syntactic and semantic behaviour
of the language. In the end, a context-free grammar was constructed which can
handle the required language elements as described in the reference document.
With the formalized grammar using a parser-lexer generator, most of the A+
source code processing components can be generated. In our case, we chose the
ANTLR [56] parser generator framework to generate the required C# classes.

The second major problem was that the language reference and the reference
implementation conflicted at quite a few points in semantic matters. There
are two types of conflicts present in the original A+. The first one is due to
implementation laziness. That is, at quite a few points, the implementation only
checked or required a single value to determine what to do, despite the language
reference stating otherwise. For example, in the original implementation the
system command $mode determines whether a string equals to “apl”, “ascii”,
or “uni” based on the second character of the string instead of looking for an
exact match. This could lead to dangerous habits for A+ developers if they
find out that $mode "apl" and $mode "ipa" commands are treated the same
way by the implementation.

The other category of differences was when the implementation accepted
additional inputs for a given operation. Effectively extending the semantics of
the operation. For example, the implementation of the pick function accepts
not only one-dimensional arrays as documented but multi-dimensional ones as
well.

In those cases that fell into the first category, we decided not to repeat the
same errors but to follow the language reference. However, in the case of the
second category, we chose to accept the extensions in the .NET version since
existing A+ applications may rely on their existence.

Once we handled the disturbing syntactic and semantic problems of the
original system, we were able to start working on the adaptation to .NET.

4.2 Architecture Overview

The clean room implementation of an A+ runtime [1] for the .NET environment
utilizes the Dynamic Language Runtime (DLR) [51].

In order to provide an insight into how the components of the runtime
were designed and implemented, Figure 4.1 depicts main components of the
A+ runtime and also describes how the components are layered on top of each
other. The white boxes denote components provided by the .NET framework,

14

I. 4. A+.NET Implementation

including the base class library and the DLR that aids the adaptation of
scripting languages to .NET. The shadowed boxes form the system implemented
by us. These components build on top of each other as follows.

Figure 4.1: Components of the A+ .NET runtime

The Lexer and Grammar components can mostly be generated because the
A+ grammar was formalized. At first, the .NET implementation only supported
the two major lexer modes: APL and ASCII. But over time, the UNI lexer
mode was implemented. APL input mode is commonly used by everyday users
of the language and requires a special APL font configuration in order for the
symbols to be correctly displayed. If this custom font is not available, the
ASCII mode is preferred, as this can always be displayed correctly with all
commonly used fonts. A small downside of ASCII mode is that it usually
requires more characters to specify which operation the developer would like
to use. Without the need for a special font, the integration of A+ scripts into
C#/.NET makes it easier as the developer only needs the library to get started
with A+.NET.

The output of the generated parser is an abstract syntax tree (AST), which
is transformed by the Code Generator module into DLR Expression Trees (ET).
During transformation, part of the semantics – especially control structures
and the structure of statements – are expressed using ETs, while complex
functionalities operating on diverse data structures get usually transformed to
method calls to various helper functions implemented in C#.

The entry point for the execution of an A+ script is the Execution Engine.
This glues together the parser, the Code Generator, and the DLR subsystem
by feeding the A+ source code into the lexer-parser, giving the resulting AST

15

I. 4. A+.NET Implementation

to the Code Generator, passing the generated ET to the compiler of DLR, and
finally, calling the compiled executable .NET IL code. In Figure 4.2, we show
how the different components of the runtime transform an A+ source code
until it becomes executable by the .NET framework.

Figure 4.2: Compilation steps of an A+ script

A side effect of the .NET implementation is that the engine can be used
not just on Windows-based systems but on systems that support Mono, which
is a cross-platform, open source .NET framework [5].

The .NET-based A+ execution engine can be used in two ways. Since DLR
provides a command line hosting API, it is very easy to implement a command
line tool mimicking the behaviour of the reference interpreter implementa-
tion. The biggest advantage of the .NET-based implementation is, however,
that it can be embedded into other .NET applications. Moreover, by adding
.NET methods into the execution scope of the engine, it is possible to achieve
interoperation between A+ scripts and the embedding .NET environment.

4.3 A+ and .NET Integration

One of the advantages of the .NET implementation is that the developer can
access the .NET classes and methods from A+ scripts. In order to do this,
each value or function that the developer wants to register into the A+.NET
runtime must be wrapped into an AType and added into the engine’s runtime
scope. This makes it possible for the runtime to find and use these values.
There are five types of values that can be registered: numbers – integer and
double –, characters, symbols, and functions. The A+.NET types for these are
AInt, AFloat, AChar, ASymbol, and AFunc respectively. Naming the double
type as float might seem strange at first sight, however, floats represent double
precision floating point number in A+ terminology. Thus, AFloat adheres to
the original naming conventions. Listing 4.1 depicts how someone can add the

16

I. 4. A+.NET Implementation

constant 3.2 into the A+.NET runtime under the name tst.value. The first
line exemplifies the creation of a new scope in the runtime, which stores, all
methods and variables and can be used when executing A+ code from .NET.
Character, symbol, and arrays of these types can be added in the same way
to the scope. Each A+ .NET type has its own Create method to ease the
creation of these values.

Listing 4.1: Example registration of the constant 3.2 into an A+.NET
scope in C#

1 var scope = engine.CreateScope ();

2 scope.SetVariable("tst.value",

3 AFloat.Create (3.2));

However, functions require a bit of special handling. As each method that
the developer wants to add into the scope must adhere to some rules: First, the
method must be a static method. Second, the return type must be AType, which
is the base interface type for all types in the runtime. Third, the first argument
must be an Aplus type, which contains the runtime environment information
and can be accessed by the method. And fourth, any other arguments must be
of AType type and – most importantly – they must be in reverse order. The
reverse order is required because the A+ language evaluates function arguments
from right to left while C# does not. Thus, in the A+.NET runtime, we perform
a trick and require all methods to have a reverse order of arguments.

So for an A+ function that accepts two parameters, the second argument of
the A+ function becomes the first non-environment argument of the registered
C# method, and the first argument in A+ will be the last parameter in C#.
In Listing 4.2, a conforming method is shown, which meets all the requirements
for the A+.NET.

Listing 4.2: An A+.NET compatible C# method

1 static AType Foo(Aplus env ,

2 AType arg2 , AType arg1) {

3 // ...

4 }

There are two ways of adding a compatible method into the A+.NET
runtime. The first one is to create a scope – which contains the variables – for

17

I. 4. A+.NET Implementation

the A+.NET engine/runtime and then add the required method as a variable
into the scope via the scope’s SetVariable method. The function must be
wrapped into an AFunc which contains information about the callable method
for the runtime. This approach is shown in Listing 4.3, where method Foo

from Listing 4.2 is registered into the scope as tst.foo.

Listing 4.3: Registering a C# method into an A+.NET scope

1 var scope = engine.CreateScope ();

2 AFunc fun = AFunc.Create("foo", Foo , 2, "Test");

3 scope.SetVariable("tst.foo", fun);

The second option is to create a class with the compatible methods and an-
notate all functions as AplusContextFunction and the class as AplusContext.
The annotation AplusContext specifies the context name under which the
methods should be registered and is part of the A+.NET runtime. The func-
tion annotation specifies the name by which the method should be accessible
from A+. Such annotated classes can be loaded via the $load system command
specifying the name used in the annotation of the class. Listing 4.4 depicts a
class with all the annotations. For this specific case, the $load tst instruction
in A+ will load the method into the context named tst with the name of foo.

Listing 4.4: A+.NET conformant C# method with annotations, reg-
istered as tst.foo in the A+ environment

1 [AplusContext("tst")]

2 class Demo {

3 [AplusContextFunction("foo")]

4 static AType Method(Aplus env ,

5 AType arg2 , AType arg1)

6 {

7 // ...

8 }

9 }

Under the hood, the load function will traverse the DLL files currently
loaded and will search for the AplusContext and AplusContextFunction an-
notations. If such classes and functions are found, the runtime will internally

18

I. 4. A+.NET Implementation

call the same SetVariable method on the current scope as mentioned in the
previous case.

After we have loaded the required function(s) into the A+.NET runtime
– in any of the two ways described above –, it is possible to invoke them just
like any other A+ functions. For example, the previously registered method
tst.foo can be used as shown in Listing 4.5.

Listing 4.5: Invocation of a registered C# method from A+.NET

1 tst.foo {1;2}

As visible from the explanations and examples above, adding a method to
the A+.NET runtime requires writing a lot of code. Writing these wrapper
methods or classes for each required .NET class is tedious and error-prone, not
to mention that there could be a lot of copy-paste code in the end.

Instead of writing these wrappers or providing tools to generate them, a
better way would be to have a mechanism that allows runtime access for the
required classes, methods, properties, and variables.

19

I. 4. A+.NET Implementation

20

5
Comparing A+ Implementations

As the .NET version of A+ is now available, a comparison can be made to
see how the two engines perform. First, a run time comparison can be easily
made. Just provide the same input for both engines and time the executions.
Of course, this is a crude way to measure execution time, but this will contain
everything: engine setup, engine overhead, parser/lexer overhead, and finally,
the execution of operations defined in the input script.

The second comparison is made by looking at the source code and source
code metrics from them. However, there are several difficulties here that need to
be handled. Although both implementations aim at doing the same thing, i.e.,
executing A+ scripts according to the language specification, their architecture
and their internal logic are completely different. This is expected as the original
interpreter was written in C and the .NET version in C#.

5.1 Run Time Experiments

Although our primary goal for the initial implementation of the .NET-based
runtime was to make its observable behaviour as equivalent to the reference
implementation as possible and, thus, we did not focus especially on optimiza-
tions, we still wanted to get preliminary results on its runtime performance.
Thus, we extracted a code fragment from a real-life code base and extended

21

I. 5. Comparing A+ Implementations

it with some code performing execution time measurement. Listing 5.1 shows
the test A+ script, where lines 1–20 implement URL encoding of strings, and
lines 22–28 drive the encoding by feeding a set of URLs to the routines (and
repeating this 300 times) and additionally, measure the elapsed time. The input
for the encoding has been collected during a browsing session and contains 50
URLs of length ranging from 60 to 1439 characters.

Listing 5.1: The A+ script used for performance evaluation (written
in APL input mode).

1 uri.AN ← { "ABCDEFGHIJKLMNOPQRSTUVWXYZ",

2 "abcdefghijklmnopqrstuvwxyz",

3 "0123456789 -_.~" };

4
5 string.join{char; strlist }: {

6 if (0=# strlist) ← "";

7 ← (-#char)↓ ⊃ strlist ,¨ <char;

8 }

9
10 uri.encodechar{char; ignore }: {

11 if ((char=’ ’) ∧ (’ ’ ∈ ignore)) ← ’+’;

12 if (char ∈ uri.AN) ← char;

13 if (char ∈ ignore) ← char;

14 ← ’%’,(16 16 ⊤ ‘int?char)#"0123456789 abcdef";

15 }

16
17 uri.encode{ascii; ignore }: {

18 bts ← uri.encodechar ¨ {ascii; <ignore };

19 ← string.join{’’; bts};

20 }

21
22 uri.encodeD{ascii}: ← uri.encode{ascii; ""}

23
24 start ← time{}

25 300 do { uri.encodeD ¨ data; }

26 end ← time{}

27
28 ↓ ’elapsed: ’, ⊤◦ end[2] - start [2]

For our experiments, we used a computer equipped with a Dual Core AMD
Opteron 275 2.2GHz CPU and 4GB RAM. During the evaluation, the reference
implementation of the A+ interpreter (version 4.22) acted as a baseline for
comparison, which was executed on a 32-bit Debian Squeeze Linux installation.

22

I. 5. Comparing A+ Implementations

Our .NET-based implementation (revision 231) was ran on Windows 7 (32-bit)
and .NET framework 4.0 by embedding the execution engine into an application
utilizing the command line hosting API of DLR.

In our first experiment, we compared the execution time of the A+ script as
measured on the reference implementation and on the .NET-based interpreter.
The result of the comparison is shown in the first two columns (A and B) of
Figure 5.1. According to the measurements, the reference implementation is
about 7 times faster than the .NET port, currently.

Figure 5.1: Execution times of the A+ test script A) on the Linux reference
implementation, B) on the .NET implementation, C) on the .NET implemen-
tation with string.join replaced, and D) on the .NET implementation with
uri.encode replaced.

At first, the original A+ implementation shows a big lead compared to
the A+.NET implementation. An important note here is that the original
implementation had more than ten years to do any kind of optimization in
their engine whilst the .NET implementation does not have any optimization in
it by default. However, we also experimented with the interoperability between
A+ and .NET. Since the .NET Base Class Library contains equivalents of
string.join and url.encode. We performed two additional experiments
where we removed the A+ implementation of these functions from the test
script (lines 5–8 in the first experiment, lines 1–20 in the second) and added
their .NET counterparts to the scope of the engine before execution. The
result of these experiments is shown in the last two columns (C and D) of
Figure 5.1. The replacement of string.join by its .NET equivalent resulted
in a nearly 30% speedup, even though this version is still slower than the

23

I. 5. Comparing A+ Implementations

reference implementation. However, the replacement of url.encode yielded a
huge performance gain. The execution time in this experiment dropped to 20%
of the time measured for the reference implementation, which is equivalent to
a 5-fold speedup. This latter result shows one of the possible exploitation of
the interoperability, i.e., performance improvement of existing A+ applications
by adding .NET implementations for critical code parts.

Speeding up the execution of A+ scripts by calling .NET routines is not
the only interesting application of the runtime. Because of the mathemati-
cal expressive power of A+, it can be used in .NET code as an embedded
domain-specific language. Since A+ is mostly used in financial computations,
we illustrate the usefulness of the embedding with the mixed-language imple-
mentation of the oft-cited Black-Scholes formula [7] used to calculate the price
of European put and call options. Listing 5.2 shows a code fragment where
mathematical formulas are written in A+, but control structures are in the
host C# language.

Listing 5.2: A C# code fragment embedding A+ expressions (written
in ASCII input mode).
1 aplusEngine.Execute(@"CND{x}: {

2 a := 0.31938153 -0.356563782 1.781477937 -1.821255978

1.330274429;

3 L := |x;

4 K := %1 + 0.2316419 * L;

5 R := 1 - (%(2 * pi 1) ^ 0.5) * (^-(L ^ 2) % 2) * (a +.* K ^ (1 +

iota 5));

6 := if(x < 0) 1.0 - R else R }", scope);

7
8 aplusEngine.Execute(

9 "d1 := ((log (S % X)) + T * (r + (v^2) % 2)) % (v * T ^ 0.5)",

scope);

10 aplusEngine.Execute("d2 := d1 - v * T ^ 0.5", scope);

11
12 String script;

13 if (option == "call") {

14 script = "(S * CND{d1}) - (X * ^(-r * T) * CND{d2})";

15 } else {

16 script = "(X * ^(-r * T) * CND{-d2}) - (S * CND{-d1})";

17 }

18
19 result = aplusEngine.Execute(script , scope);

24

I. 5. Comparing A+ Implementations

5.2 Source Code Metrics

In order to do a meaningful comparison between the two runtimes, the func-
tionally equivalent parts should be selected. The modules of the .NET imple-
mentation, their interrelation, and their behaviour are described in Section 4.
However, the reference implementation has no available documentation on in-
ternal components other than the source code itself. The only meaningfully
deducible model for modules is the directory layout of the source code files.

Other difficulties include the difference in the languages of implementation:
the reference interpreter is written in C/C++, while A+.NET in C#. And
finally, we admit that the .NET-based version is far from being as functionally
rich as the reference implementation. These issues prevent matching lines,
functions, classes, or even files directly to each other in the two code bases.
Thus, we had to find a way to make our analysis unbiased. We decided to
determine the functionally equivalent parts of the two implementations and
perform the comparison on those parts.

Determining the functionally equivalent parts required a reasonably large
and diverse A+ code base to drive the engines and a way to track which
parts of the engines were exercised by the test inputs. Fortunately, during the
development of A+.NET, unit tests were written for almost every implemented
functionality. At the time of writing the related paper [24], this was 1778 test
cases, of which 1719 tests – consisting of about 2300 lines of A+ code – could
be used as input to both A+ execution engines.

For the reference implementation, we used the instrumentation support of
GCC. Recompiled the interpreter and instructed GCC to instrument every
function at its entry point with a call to a routine that determines (with the
help of the libunwind library [54]) the name of the called function at execution
time and dumps it out into a log file. Then, this instrumented interpreter was
used to execute the A+ test scripts and by analysing the log files. With this
approach, we were able to determine which functions were called.

For the .NET version, we used the built-in functionality of Visual Studio
that can collect the executed methods during a test session in order to gather
these code coverage results.

Tables 5.1 and 5.2 show the modularization of both systems and data about
the size and the test coverage ratio of each module. The reference interpreter
(version 4.22) has quite a large code base of C and C++ files. It consists of
153,990 lines of code and 102,924 statements in 18,981 functions (class methods
and global functions included). This means that its code is 8.87-14.38x larger

25

I. 5. Comparing A+ Implementations

T
a
b
le

5
.1
:

M
od
u
les

o
f
th
e
A
+

referen
ce

in
terp

reter,
th
e
size

o
f
ea
ch

m
od
u
le

(given
a
s
N
F

–
n
u
m
ber

o
f

fu
n
ction

s,
L
O
C

–
lin

es
of

code,
an

d
N
O
S
–
n
u
m
ber

of
statem

en
ts),

an
d
the

size
an

d
ratio

of
those

code
parts

that
are

exercised
by

the
test

su
ite

(T
he

gran
u
larity

of
the

code
coverage

in
form

ation
is

fu
n
ction

s.)

M
o
d
u
le

S
ize

M
etrics

T
est

C
overage

N
F

L
O
C

N
O
S

N
F

L
O
C

N
O
S

a
819

7716
12578

576
(70.33%

)
5083

(65.88%
)

8546
(67.94%

)
cx
b

26
480

484
1

(3.85%
)

18
(3.75%

)
15

(3.10%
)

cx
c

66
1073

877
2

(3.03%
)

38
(3.54%

)
32

(3.65%
)

cx
s

1
13

8
0

(0.00%
)

0
(0.00%

)
0

(0.00%
)

cx
sy
s

82
1802

1501
5

(6.10%
)

123
(6.83%

)
108

(7.20%
)

d
ap

227
4094

2466
18

(7.93%
)

344
(8.40%

)
208

(8.43%
)

esf
201

3690
3494

16
(7.96%

)
155

(4.20%
)

132
(3.78%

)
m
ain

17
425

322
15

(88.24%
)

272
(64.00%

)
209

(64.91%
)

A
p
lu
sG

U
I

3328
23761

17041
72

(2.16%
)

1768
(7.44%

)
1576

(9.25%
)

IP
C

303
2680

2358
12

(3.96%
)

52
(1.94%

)
47

(1.99%
)

M
S
G
U
I

8938
78268

44858
16

(0.18%
)

110
(0.14%

)
53

(0.12%
)

M
S
IP

C
399

2298
1344

28
(7.02%

)
261

(11.36%
)

156
(11.61%

)
M
S
T
y
p
es

4574
27690

15593
100

(2.19%
)

431
(1.56%

)
179

(1.15%
)

T
O
T
A
L

18981
153990

102924
861

(4.54%
)

8655
(5.62%

)
11261

(10.94%
)

26

I. 5. Comparing A+ Implementations

T
a
b
le

5
.2
:
M
od
u
le
s
of

A
+
.N

E
T

ru
n
ti
m
e,

th
e
si
ze

of
ea
ch

m
od
u
le

(g
iv
en

as
N
F
–
n
u
m
be
r
of

fu
n
ct
io
n
s,

L
O
C

–
li
n
es

of
co
de
,
an

d
N
O
S
–
n
u
m
be
r
of

st
at
em

en
ts
),

an
d
th
e
si
ze

an
d
ra
ti
o
of

th
os
e
co
de

pa
rt
s
th
at

ar
e
ex
er
ci
se
d

by
th
e
te
st

su
it
e.

(T
h
e
gr
a
n
u
la
ri
ty

o
f
th
e
co
d
e
co
ve
ra
ge

in
fo
rm

a
ti
o
n
is

fu
n
ct
io
n
s.

T
h
e
ta
bl
e
d
oe
s
n
o
t
in
cl
u
d
e

da
ta

on
th
os
e
pa
rt
s
of

th
e
le
xe
rs

an
d
th
e
pa
rs
er

th
at

ar
e
ge
n
er
at
ed
.)

M
o
d
u
le

S
iz
e
M
et
ri
cs

T
es
t
C
ov
er
ag
e

N
F

L
O
C

N
O
S

N
F

L
O
C

N
O
S

C
o
d
e
G
en
er
at
or

38
5

50
08

17
06

21
7

(5
6.
36
%
)

40
03

(7
9.
93
%
)

12
31

(7
2.
16
%
)

E
x
ec
u
ti
on

E
n
gi
n
e

87
63
9

28
4

55
(6
3.
22
%
)

35
5

(5
4.
56
%
)

17
6

(6
1.
97
%
)

H
el
p
er
s

12
13

11
39
6

50
20

90
9

(7
4.
94
%
)

91
71

(8
0.
48
%
)

41
83

(8
3.
33
%
)

L
ex
er
s

5
68

41
3

(6
0.
00
%
)

48
(7
0.
59
%
)

29
(7
0.
73
%
)

P
ar
se
r

34
25
5

10
4

22
(6
4.
71
%
)

22
7

(8
9.
02
%
)

98
(9
4.
23
%
)

T
O
T
A
L

17
24

17
36
6

71
55

12
06

(6
9.
95
%
)

13
80
4

(7
9.
49
%
)

57
17

(7
9.
90
%
)

27

I. 5. Comparing A+ Implementations

than the code base of A+.NET (revision 232), depending on which code size
metrics we compare. It is also visible from the tables that a big portion of
the reference interpreter is not covered by the tests. This is not a surprise
since the scripts were written as unit tests for the A+.NET system to cover its
functionality. However, if we consider that the major part of the functionality
of all the modules of A+.NET corresponds to module ‘a’ of the reference
interpreter and only parts of the ‘Helpers’ module contain code that match
other modules of the reference implementation, the coverage results become
much closer to each other: the function-level coverage ratio is circa 70% for
both the whole A+.NET system and module ‘a’ of the reference interpreter.
Moreover, the size metrics of the covered code do not differ as much as they
do in the case of the whole code bases: in the reference implementation, 8,655
lines of code and 11,261 statements were covered by the tests in 861 functions,
while the same data for A+.NET is 13,804 lines, 5,717 statements in 1,206
functions. This means that we managed to identify two function sets, one in
each system, of comparable size and of equivalent functionality, which can form
the basis of our further investigations.

5.3 Maintainability Metrics

Once we identified the functionally equivalent parts of the two A+ execution
environments, their comparison became possible. We used the Columbus tool
chain [18] to analyze the sources of the two systems and to compute such
maintainability-related metrics for the covered functions, which were defined
for both implementation languages. As a result, we got two size metrics –
(executable) lines of code (LOC) and number of statements (NOS), those that
were already presented in Tables 5.1 and 5.2 – and two complexity metrics –
McCabe’s cyclomatic complexity (McCC) and nesting level (NLE) – for each
function.

Two out of the four metrics above are traditional and well-known: LOC
is one of the easiest metric to compute (but often still very informative) and
McCC [49] is also often used. For the sake of completeness, however, NOS
and NLE are explained below. NOS counts the number of control structures
(e.g., if, for, while), unconditional control transfer instructions (e.g., break,
goto, return), and top-level expressions in a function. This definition makes
NOS capture a more syntax-oriented concept of size than LOC (at least for
languages where the concepts of line and statement are not related). The NLE
metric determines the maximum number of the control structure depth in a

28

I. 5. Comparing A+ Implementations

function.

Table 5.3: Maintainability-related metrics measured for the A+ reference
interpreter and A+.NET

Metric Reference Interpreter A+.NET
min / avg / max min / avg / max

LOC 1 / 10.07 / 375 1 / 11.46 / 275
NOS 0 / 13.08 / 372 0 / 4.73 / 71
McCC 1 / 4.45 / 123 1 / 2.38 / 71
NLE 0 / 1.04 / 6 0 / 0.59 / 5

Table 5.3 presents the aggregated metrics for both systems. The averages
of NOS, McCC, and NLE and the maximums of all metrics show that the size
and the complexity of the functions in the reference implementation are higher
(sometimes significantly larger, see NOS) than in A+.NET, which is usually
an accepted mark of lower maintainability. The only outlier is the average of
LOC values, where the reference implementation produces a lower (i.e., better)
metric. However, the difference in the case of this metric is much smaller (a
factor of 1.14 only) than for the others.

In addition to the aggregated results, Figure 5.2 shows the histograms of
the computed metrics. In the case of the size metrics, the histograms use
exponentially growing intervals with numbers on the horizontal axis denoting
the upper bound of the interval. For the complexity metrics, the intervals
are of equal size. The vertical axis denotes the percentage of functions falling
in a given interval. The histogram of LOC explains why the aggregations
of the metric do not give a conclusive result. Whether the relative number
of functions falling into a size category (interval) is larger in the reference
implementation or in A+.NET is almost alternating. However, the histograms
of the other three metrics, especially NOS and McCC, strengthen the hypothesis
that the reference interpreter is larger and more complex. For A+.NET, a
larger portion of functions falls into the lower ranges of the metrics than
for the reference implementation, while in the upper ranges, the reference
implementation dominates. We can observe that in A+.NET, circa 60% of
the functions have two statements at the maximum, while in the reference

29

I. 5. Comparing A+ Implementations

Figure 5.2: Histograms of the computed maintainability-related metrics.

0

10%

20%

30%

40%

1 2 4 8 16 32 64 128 256 256+

A+.NET
A+ Ref. Impl.

0

20%

40%

60%

0 1 2 4 8 16 32 64 128 256 256+

A+.NET
A+ Ref. Impl.

(a) LOC (b) NOS

0

20%

40%

60%

80%

1 2 3 4 5 6 7 8 9 10 10+

A+.NET
A+ Ref. Impl.

0

20%

40%

60%

80%

0 1 2 3 4 5 5+

A+.NET
A+ Ref. Impl.

(c) McCC (d) NLE

interpreter, on the contrary, circa 60% of the functions have more than four
statements. For the McCabe complexity, we can see that while in A+.NET
only 2% of the functions have a metric value higher than 10, in the reference
interpreter 8% of the functions can be found in the same complexity range.

Additionally to the metrics that are directly computed by the Columbus
toolchain from the sources, we experimented with derived metrics as well.
Our original plan was to compute the Maintainability Index (MI) [55] for both
systems, but unfortunately, the version of the toolchain at that time was unable
to compute the Halstead Volume metric [32], that is a component of MI. Thus,
the analysis of MI is left for future work. We compute two simpler formulae
that grasp some key differences between the reference implementation and
A+.NET. The first formula is NOS/LOC: this derived metric tells the average
number of statements written in a single line. Guidelines normally suggest one
statement per line to keep the code readable and comprehensible. The second
formula is McCC + ln(1 + NOS): combining the complexity and the size of a

30

I. 5. Comparing A+ Implementations

function into a single number. This metric is motivated by the Maintainability
Index, but the currently unavailable Halstead Volume component is left out,
and the scale is inverted: now, higher values represent larger code size and/or
higher complexity, thus – presumably – lower maintainability. As this metric
combines McCC and NOS, the only way a function can have a value of 1 is
when the McCC is one, and the NOS is zero. This means only empty functions
could get this small value.

Table 5.4: Derived metrics computed for the A+ reference interpreter and
A+.NET.

Metric Reference Interpreter A+.NET
min / avg / max min / avg / max

NOS/LOC 0 / 2.94 / 37 0 / 0.50 / 1.40
McCC + ln(1 + NOS) 1 / 6.42 / 128.36 1 / 3.72 / 75.28

Figure 5.3: Histograms of the derived metrics.

0

10%

20%

30%

40%

50%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2+

A+.NET
A+ Ref. Impl.

0

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10 11 11+

A+.NET
A+ Ref. Impl.

(a) NOS/LOC (b) McCC + ln(1 + NOS)

The derived metrics were also computed for each investigated function, and
their aggregated data is shown in Table 5.4. For all averages and maximums,
A+.NET scores considerably lower than the reference interpreter. Moreover,
the statements per line metric of the reference interpreter are stunning: the
average number of statements in every executable line of source code is about

31

I. 5. Comparing A+ Implementations

3, and the most “crowded” function contains 37 top-level statements in a line
on average! Manual investigation revealed that this extreme function consisted
of a single line only. However, multi-line functions with a high NOS/LOC ratio
are not uncommon either. Actually, circa 30% of the investigated functions of
the reference interpreter have more than two statements on a line on average,
as depicted in Figure 5.3.

In case of the McCC + ln(1 + NOS) metric, circa 70% of the the A+.NET
runtime’s functions fall in the 1-4 range. This means most of the functions are
small and less complex. Whereas in the case of the reference implementation,
this number is around 40%. Based on the averages, maximum values and
the histogram data, it can be concluded that the A+.NET implementation
performs better in terms of maintainability.

32

6
A+.NET Language Extension

As described in the previous Section 4.3, exposing methods into A+ scripts
requires a bit of boilerplate code. To improve the situation on this, we have
reviewed the object-oriented concepts and investigated the requirements for
the A+ language to handle external objects conveniently, as the language itself
is not an object-oriented one by design.

The first step for this was the investigation of the required operations to
handle objects in a language. During the investigation, the base requirements
to handle objects in a language were identified. First, the introduction of a
way to represent objects in the runtime was required. This essentially means
that a new type should be added to the language.

Second, there are four basic operations that should be supported by a
language to handle the most basic tasks on objects. These are the following:

• Accessing members (methods, variables, and properties): this operation
provides the means to read variables, properties, and to access methods.

• Modifying variables and properties: the operation makes it possible to
assign new values to properties and values.

• Type casting: an important operation to resolve ambiguities.

33

I. 6. A+.NET Language Extension

• Using indexer properties: in .NET, indexing objects is done via a special
property, and there are compound types where there is no other way of
accessing elements, e.g., in ArrayList. This is mainly required for the
.NET binding.

Note that the method invocation is not among the operations. This is
because most languages already support method calls in some way. So the
existing method invocation syntax and semantics can be improved to handle
the invocation of methods on instances and classes.

Also, note that with the operations above, the language will still not sup-
port classes natively. That is, it is not possible to write classes in the same
language for which the operations are implemented. Fortunately, the described
operations take the language closer to the real object-oriented languages. So
it becomes possible to build further object-oriented functionalities on top of
these new operations. Also, note that the concept of these operations is not
tied to one specific language, in our case, to A+. Thus, these could be added
to other non-object-oriented languages as well.

These four operations are a must for the A+.NET runtime to handle exter-
nal objects. In the case of A+.NET, the implementation of the required oper-
ations can take advantage of the reflection capabilities of the .NET framework
and also the code generation possibilities of the Dynamic Language Runtime
(DLR) framework. The use of reflection provides ways to search for classes and
methods, and the code generation capabilities of DLR enable the building of
wrapper method(s) at runtime. With these two techniques combined, it is pos-
sible to provide general functions for A+.NET that can perform the required
lookups and code generations, essentially avoiding unnecessary and repetitive
manual coding. The most important requirement for the language extension
is that it must take into account the language’s most unique aspects, which is
the order of evaluation. The main reason for this is to not break existing code
by adding new precedence into the language.

As mentioned previously, a new type must be added to the runtime. In
A+.NET, this new type is internally named AObject, and its instances can
store any .NET object. The subsequent sections will define each previously
mentioned operation in more detail.

34

I. 6. A+.NET Language Extension

6.1 Accessing Methods, Variables, and Prop-

erties

In A+, functions are first-class citizens, thus it must be ensured that each .NET
method can also be used accordingly and not just for simple method invocation.
Fortunately, this lenience is a win in our case as this will allow us to handle
the methods, variables, and properties in a similar way, thus simplifying the
implementation.

The following algorithm describes the inner workings of the accessor op-
eration. This operation has two input arguments, the name of the property,
variable, or method to be looked up and the instance or class on which the
lookup should be performed, and can be formulated as SelectMemeber(x, y).
In order to not interfere with the context concept of the A+ language, both
arguments of the operation must be of a symbol type. Steps preformed by the
algorithm:

1. Collect all methods, variables, and properties of the instance or class
specified by the second parameter (that is y).

2. For each method, variable, and property, check if it has the same name
as specified by the first parameter (that is x).

3. If no match is found, return an error, reporting that there is no member
accessible with the given name.

4. If a variable or property was found, return it as an A+ type. In the
case of a primitive type, such as string, number, or enum value, they are
converted into their compatible A+.NET counterpart which are: array of
AChar, AInt, AFloat, and ASymbol respectively. In any other case, the
value must be returned as an AObject.

5. If the lookup found a method, construct a lambda function using the DLR
capabilities, which accepts a variable number of arguments, performs the
type matching algorithm – which is described in Section 6.5 – and invokes
the method returned by type matching. The constructed lambda method
is then returned as an A+ function type, represented by the AFunc type
in A+.NET.

Constructor access can be thought of as a special case of method access.
The main difference, in this case, is that the function name parameter is always
that of the class.

35

I. 6. A+.NET Language Extension

When the SelectMember returns the generated lambda function – either
a constructor or another method – the A+ function containing it can be
called just like a traditional function in the runtime. Thus, method invocation
does not require additional implementation or functionality in the engine. The
generated lambda function contains all required information on how to perform
the .NET method invocation.

To integrate seamlessly into the syntax of the A+, the existing but hitherto
unused ⊖ symbol was chosen for the SelectMember operation. The format
x ⊖ y is treated as SelectMember(x, y). Listing 6.1 shows an example use
case for the SelectMember operation in A+. In line 1, the constructor lookup
for the .NET class named Bar is demonstrated, which is invoked in line 2.
This invocation looks like any other A+ function invocation. Line 3 shows
how variables can be accessed with this new operation. Finally, on line 4, the
method access and invocations are demonstrated. As this line shows, the call
to the ⊖ function is enclosed in parentheses to ensure the evaluation order
dictated by A+. Also, this way, the language grammar does not require radical
changes to give the ⊖ function a higher precedence.

Listing 6.1: Example A+.NET accessor usage

1 constructor ← ⊖ ‘Bar

2 instance ← constuctor {}

3 value ← ‘variable ⊖ instance

4 (‘method ⊖ instance){}

6.2 Variable and Property Modification

The modification of variables and properties is similar to the access case, with
the addition of a third parameter for the accessor algorithm. This third parame-
ter will serve as the new value for the target variable or property. Additionally,
searching for methods are not allowed when performing the member name
lookup. This restriction is chosen due to the fact that in the case of .NET,
changing an existing method on a class or instance is not permitted.

The following algorithm describes how to modify a variable or property
on a given instance or class. It has three input parameters. The first is the
name of the variable or property to modify. The second is the class or instance
on which the variable/property lookup should be performed. And the third

36

I. 6. A+.NET Language Extension

argument is the new value for the variable/property. The operation is named
SetMember(x, y, z) and the following steps are performed:

1. Get all variables and properties of the object or instance specified by the
second parameter (that is y).

2. For each variable and property, check if it has a name which is specified
by the first argument (that is x).

3. If no match is found, return an error, reporting that there is no such
member to modify.

4. As the lookup found a variable or a property, try to cast the new value –
specified by the third argument z – to the type of the variable/property.

5. If the cast is not possible, return with an error, stating that it is not
possible to update the variable with the supplied new value.

6. If the cast was correctly performed, assign the cast value to the selected
variable/property.

7. Return with the new value as specified by the third argument. Note that
this is the original value of z, not after the casting operation.

For the SetMember operation, the same ⊖ symbol was used, but to invoke
the algorithm, it must be used in the (x⊖y)← z format. This can be detected
during the parsing of the code, as the accessor function is on the left side
of the assignment function. Note that the parentheses are required because
of the strict right-to-left evaluation order of the A+ code and the fact that
the assignment function has the same precedence as any other function in the
language. Listing 6.2 exhibits a use case for the operation. In this example the
value of a member named variable on a previously accessed class instance
named instance is updated to have the value 42.

Listing 6.2: Example A+.NET instance variable modification

1 (‘variable ⊖ instance) ← 42

37

I. 6. A+.NET Language Extension

6.3 Indexers

In .NET, there are numerous objects that provide access to their individual
elements. This is usually performed with the help of indexers. To have better
integration with .NET types in the new runtime, it is essential to provide an
intuitive way to access such elements.

Fortunately, there is also the notation of indexing elements in A+, and there-
fore, there is no need for introducing new syntactic elements. We can leverage
the existing indexing mechanism and only improve its internal mechanisms to
add the .NET indexer binding.

As the indexers in .NET are unique properties that can be queried by
reflection, the SelectMember algorithm can be used to get the value of an item
at a given index from an object or instance. Thus, in the indexer case, the
SelectMember algorithm will search for the indexer properties. In the case of
element assignment at a given index, the SetMember algorithm will perform
the same search as in the element access case.

An example of indexer usage is shown in Listing 6.3. After creating an
instance of ArrayList in line 1, the code performs an element addition to the
list in line 2. (The equivalent code in C# would be: list.Add(1);.) Then
the usage of the indexers is shown: first, the access of a single element by its
index on line 3, continued by the value modification of a given index in line 4.

Listing 6.3: Example indexer usage for .NET types

1 list ← (⊖ ‘ArrayList){}

2 (‘Add ⊖ list){1}

3 list [0]

4 list [0] ← 2

6.4 Type Casting

Type casting is an important operation in the .NET world, as it allows devel-
opers to resolve ambiguities. A new ⋄ symbol is introduced into the language,
providing the means to perform the .NET type casting functionality in the
runtime from the A+ code. This function can also be used for resolving method
call ambiguities, which is detailed in Section 6.5.

38

I. 6. A+.NET Language Extension

Listing 6.4 depicts an example of the type casting function, represented
by the ⋄ symbol. In the example, the number 1 is initially represented as an
A+ number type, but using the new type cast function, it will be changed
to a Boolean type, which is from the .NET world. The A+.NET symbol
‘Boolean is used to specify the target type for the cast function. After the cast
is performed, the value can be assigned to a boolean variable or property on a
given instance if needed.

Listing 6.4: Example A+.NET type casting for .NET types

1 (‘booleanVariable ⊖ instance) ← ‘Boolean ⋄ 1

If the type cast operation cannot be accomplished, an error is reported to
the A+.NET runtime. For example, if the developer wants to cast an integer
to a string, the error is returned, stating that an invalid cast was attempted.

6.5 Type Matching

As mentioned before in the SelectMember operations, .NET methods are looked
up by their names. However, just a method name is not always enough to
correctly match a method. It is possible that there is more than one method
with the same name and the difference is only in the number of arguments or
in their types. Thus, to correctly select a method, the types and number of
parameters are also required.

The type matching algorithm should be performed after the potential meth-
ods based on their names have already been found. First, any method is ignored
if it does not have the same number of arguments as the number of arguments
supplied for the method invocation. In case there are no methods left to select
from, an error is reported during execution, that the number of parameters is
incorrect. Second, as the number of arguments is now correct, a type distance
vector calculation is performed. The basic building block of the calculation is
the type distance notation.

The type distance calculation of non-primitive types (i.e., classes) is based
on the inheritance hierarchy of .NET types. If two types are in an inheritance
relation, then the type distance of those types is the length of the shortest path
between them in the inheritance graph, with the result of 0 if the two types are
the same. If the two types are unrelated inheritance-wise, their type distance

39

I. 6. A+.NET Language Extension

is specified as infinite. For example: if there is a class named Bar which is a
subclass of class Place then the type distance between Bar and Place is one.

For primitive types, inheritance hierarchy is not applicable. However, the
C# reference documentation [16, § 11.2] specifies conversion tables, which help
to define a pseudo-hierarchy between them and can be used the same way as
the real inheritance for non-primitive types. This pseudo-hierarchy is as follows:
Boolean→ SByte→ Byte→ Int16→ UInt16→ Int32→ UInt32→ Int64

→ UInt64 → Single → Double → Decimal → AType → Object, the Char

type connects into the UInt16 type, the string values are starting with String

→ Enum and connecting into the AType. Thus, for example, if there is an input
argument with the type Byte and the method requires an Int32, the distance
between the two types is 3. The A+ types are using this pseudo-hierarchy
to allow interoperability with the .NET methods. A+ symbols are using the
chain starting from the String type, integers either from Int32 or Double,
and characters use the Char type as a starting point.

Based on this type of distance information, it is now possible to define the
type distance vector. The type distance vector is a vector of N elements where
N is the number of input parameters for the current method invocation and for
each element, the type distance is calculated between the input parameter and
the parameter of the potential method. After the distance calculations, the best
method is chosen. A method is considered better than the other if each element
of its type distance vector is smaller than or equal to the corresponding element
in the other method’s vector, but at least one element is strictly smaller than its
corresponding element. This selection method is based on the better function
member selection described in the C# language specification [16, § 12.6.4.3].
Note, however, that there may be incomparable elements in this relation. Only
if there is a single method that is better than all other alternatives does the
runtime select that method for invocation. Otherwise, the runtime reports
an error because of the ambiguity. Such ambiguities can be resolved with the
newly introduced type casting operation.

Listing 6.5 depicts a C# method ambiguity. For this use case the (`Foo

⊖ `class){(⊖ `Bar){}, (⊖ `Car){}} invocation would not be successful.
The calculated type vector distance for the invocation and the first Foo method
would be – based on the type hierarchy – the vector [1, 0], and for the second
Foo method it would be [0, 1]. Thus, based on the better method selection
rules, it is not possible to select one method, and the ambiguity error is reported.
However – as stated before – it is possible to resolve the ambiguity if, e.g., the
second parameter for the method invocation is cast to Vehicle. Then the

40

I. 6. A+.NET Language Extension

Listing 6.5: Example for C# method ambiguity

1 class Place {}

2 class Bar : Place {}

3 class Vehicle {}

4 class Car : Vehicle {}

5
6 void Foo(Place arg1 , Car arg2) {}

7 void Foo(Bar arg1 , Vehicle arg2) {}

type distance vector for the second case would result in a [0, 0] vector, and
a perfect match would be found.

41

I. 6. A+.NET Language Extension

42

7
Conclusions

In this part of the thesis, topics related to the A+ language were presented.
In order to be a bit more familiar with the language itself, a small language
introduction discusses the various unique aspects of A+.

The first new topic was the implementation of the A+.NET environment.
The main challenge of this implementation was twofold: there was no existing
formal grammar, and the original implementation was not always in line with
the operations described in the A+ Language Reference document. With our
work, a formalized grammar was created for A+ and we adopted an approach
to follow the original implementation’s deviations from the reference document
in some cases. With the newly formalized grammar, the implementation of
the A+.NET environment leveraged the ANTLR lexer-parser generator to help
build ASTs from the input A+ code. For the code execution, the Dynamic
Language Runtime component was used. This component gave the Expression
Trees with the transformation ASTs to executable code (MSIL) was done.
Furthermore, with the usage of DLR and its hosting capabilities, the integration
of A+ code into a C# application was demonstrated.

In the second topic, the original A+ and the A+.NET implementation were
compared in terms of script execution speed and maintainability metrics. Here
it is important to note that even though the A+.NET implementation is slower
in runtime, the ability to replace A+ script parts with .NET implementations

43

I. 7. Conclusions

can provide huge speedup. Furthermore, the original implementation has
almost twenty years of extra time to add various optimizations. In terms of
source mode metrics, the two systems’ comparable parts were found, and for
these, a maintainability comparison was made. Based on this comparison, the
presented data indicate that the re-implemented version of the runtime is less
complex and thus – presumably – more maintainable.

In the final chapter of this part, the improvement of the A+ language is
presented. A set of required operations are presented in order to access object-
oriented components in a language. These are the member access, member set,
indexing, and type cast operations. For these operations, extra care was taken
to make sure that the new syntax and semantics do not collide with existing
elements of the language. The right-to-left evaluation order was kept, and
the context handling of the language was not changed. Furthermore, a vector
based type matching algorithm is also presented that is mainly used for method
invocations in order to correctly report any type errors or method ambiguities.
In the future, the A+ language could be extended with full object-oriented
notation. This would allow a developer to create classes/objects in A+ itself,
further extending the language’s lifetime and expending the possible usages of
this environment.

44

Part II

Primitive Enthusiasm Metrics

45

8
Introduction

During software development, the structure of its source code will change and
could even degrade. After a while, identifying the base design will be more
difficult. In addition, the previously easily understandable code parts could be
harder to comprehend. Modifications and refactorings that help to improve
various aspects – like complexity or maintainability – of the code base without
changing the external functionality should be applied frequently to preserve
code quality.

There are already several known indicators that can help to notice if code
refactoring should be done. Fowler and Beck [20] list 22 code bad smells that
can be used as indicators for such cases. Usually, code smells are not coding
errors but highlight design issues that could cause problems in the future. This
is why it is not surprising that there are diverse discussions on code smells
among the researchers, not just on how to detect them but also on the possible
impact on maintenance costs. The original 22 code smells were extended over
the years, introducing new smell types and the means to detect them.

Not all code smells are treated equally, some of them get less attention than
other code smells. One such smell is the Primitive Obsession, which occurs if
the primitive data types are overused. We decided to study this code smell
and defined the Primitive Enthusiasm metric and its derivatives. This is done
to grasp a part of the Primitive Obsession code smell and show where it could

47

II. 8. Introduction

occur in a software.
Finding various bugs in applications could take from several minutes to

hours or even more. As a project development continues, the cost of finding
and fixing a bug will increase [10]. Therefore, researchers are also working on
creating and improving various automated tools that can help a developer to
quickly find a bug or even just provide hints on where the bug could be in the
system. In pursuit of automated tools to provide bug predictions there are
already several papers present [40, 68]. Some of these tools use various source-
level metrics to train and build models which will be used for bug predictions.
In relation to this, we investigated how the new Primitive Enthusiasm metrics
can be leveraged for bug prediction.

Structure of this part : Chapter 9 briefly describes the Primitive Obsession
code smell and bug prediction background. The new set of metrics is presented
in Chapter 10. A quick look at small projects with the new metrics is covered
in Chapter 11. In Chapter 12 the bug prediction capabilities are presented.
These topics are presented in papers [26], [57], and [22]. Results and final
thoughts are summarized in Chapter 13.

48

9
Background

9.1 Definition of Primitive Obsession

Usually, data types can be categorized into two groups: primitive and complex.
Primitive types are simple data types provided by a language, e.g., char, integer,
etc. Complex types are constructed from these primitive types or by using
other complex types and are usually named class or struct. Additionally, such
complex types can encapsulate operations on their data, providing semantic
knowledge on how the data can or should be used. For example, it would be
convenient to place a string and two integers that represent a task name, a
start, and end time into a class instead of using them separately. Doing such
data coupling and providing a name for the class will allow the developers to
understand the connections between the data. However, neglecting such minor
but useful code compositions is also common. Similarly, adding additional
method parameters to an already long parameter list seems to be a quick
solution to achieve a programming goal. However, in the long run, this will
make the relation between data harder to understand and decrease the source
code’s maintainability. Excessive usage of primitive data types instead of
creating small objects is the core of Primitive Obsession. Mäntylä et al. classify
Primitive Obsession as a type of bloater smell [46], in addition, it is a symptom
of the existence of overgrown, chaotic code parts. A simple example of Primitive

49

II. 9. Background

Obsession is depicted in Listing 9.1. The NORMAL and URGENT class constants
on Lines 2 and 3, can be considered type codes. Such type codes are usually
integers or strings that have a name and are used to simulate types. In this case
these are used to indicate task priorities. Type codes are widely used in various
projects and can be considered a version of Primitive Obsession. They break
the object-orient paradigm and can cause hidden dependencies [71]. There are
various ways to remove such type codes from a project, for example, with a
Strategy or State pattern [27].

Listing 9.1: Sample code containing Primitive Obsessions

1 class Task {
2 static const int NORMAL = 1 ;
3 static const int URGENT = 2 ;
4
5 public void work (
6 int from , int to , int breakCount , String worker)
7 {
8 if (worker == null | | worker . length () == 0) {
9 /∗ . . . ∗/
10 }
11 }
12 }

Starting from Line 5, the work method is presented. This method has three
integer parameters and a single string argument. As all of these arguments are
primitive types, the method can be considered to have the Primitive Obsession
code smell. Even more so if these arguments are repetitively used throughout
the project’s codebase. Please note that in Java strings are classes thus, they
are not really primitive types, but logically it makes sense to categorize it as
a kind of primitive type. Line 8 is also a good target for refactoring because
the checks present in this line should be encapsulated into a class. Especially
if these checks are used in multiple places. For more examples that contain
Primitive Obsession, Steven A. Lowe’s GitHub project [45] is a good start.
This project provides a set of steps on how to clean up this kind of code smell.

9.2 Challenges using Primitive Obsession

Previously, the Primitive Obsession was not in the main focus of researchers. A
team of researchers conducted a literature overview on code smells [72]. During

50

II. 9. Background

the review, they gathered 319 papers from 2000 to 2009. From these collected
papers, they examined 39 in more detail. One of the investigation point was
to determine which code smells attached the most attention from researchers.
The most discussed topic was the Duplicated Code smell, 21 papers from 39
elaborated on this. At the same time, other code bad smells received very little
attention. Among the unpopular smells was the Primitive Obsession, which
was only present in 5 papers. However, these papers also discussed Fowler’s
other code bad smells.

Another literature overview [29] by Gupta et al. collected 60 papers from
1999 to 2016 and concluded that four code bad smells did not have any detection
method, including Primitive Obsession. An investigation of five tools that
could detect code smells reported that none of them could find the Primitive
Obsession code smells.

In a thesis, Roperia introduced JSmell for Java applications that could
detect Primitive Obsession smells [61]. The detection technique for this smell
was based on the number of primitive data types declared in a class. JSmell
reports Primitive Obsession when the number of primitively typed data is
above the average of a project, and the class was not instantiated. As the tool
was not accessible, a comparison was not made between JSmell’s approach and
the Primitive Enthusiasm metrics solution.

9.3 Bug Prediction and Datasets

Using a bug predictor tool could help developers quickly triage an issue in
a given system cost-effectively. In one research [30], the authors used source
code metrics in conjunction with machine learning methods to provide fault
predictions. They observed that on the Mozilla suite, there are source code
metrics that can help to predict fault-prone classes. A different study [50]
concluded that defect predictors that were learned from source code metrics
were useful and easy to use. In addition, they are widely used. Another
conclusion of the paper is that the goal of the learning should be used to
select a preferred machine learning algorithm. Other papers elaborate on the
usefulness of code smells for maintenance indicators [52, 70]. However, these
cannot be considered as an all-in-one solution for defect predictions, but they
still give insights into important maintainability aspects for a project, even
more if they are combined.

In order to evaluate a method that provides bug prediction capabilities,
a dataset is required. Ideally, this dataset should provide additional data,

51

II. 9. Background

such as various source code metrics and the correct classification of classes or
methods that have bugs in them. In addition, it is favourable to have real-world
software in a dataset, as ultimately, a bug prediction tool should be used on real
applications, not on small benchmarks. In order to achieve this, a unified Java
dataset was used. This bug dataset was introduced by Ferenc et al. [19] This
dataset contains a collection of five publicly available bug datasets in a unified
format containing class and/or file level code metrics, including information on
defects. These are the following:

• PROMISE dataset [41]

• Eclipse bug dataset [73]

• Bug Prediction dataset [14]

• Bugcatchers dataset [31]

• GitHub bug dataset [67]

52

10
Defining Primitive Enthusiasm

As the previous section highlights, giving Primitive Obsession an exact, quan-
tifiable definition is challenging. It has many aspects, and every program is
unique with its own traits and criteria. Developers also abstract and imple-
ment the components differently. Therefore, it is challenging to find an absolute
threshold for how many times the primitive types can be used before something
can be considered Primitive Obsession, and to apply such a threshold to every
project is a similarly demanding endeavour.

Since defining Primitive Obsession is hardly possible with a single formula,
the deconstruction of the bad smell is a logical approach.

A part of this deconstruction is the new Primitive Enthusiasm metric. The
idea is to quantify the primitive typed arguments in a function so that the
methods can be compared to other methods in the system. To achieve this, the
metric does not employ a globally – as in outside of a selected project’s scope –
defined value but tries to capture each system’s uniqueness by comparing the
results to other methods of the same system.

The base of the metrics is the Formula 10.1 which describes how the
primitive-typed parameters are collected for a given Mi method.

Primitives(Mi) := ⟨PMi,j|1 ≤ j ≤ |PMi
| ∧ PMi,j ∈ PrimitiveTypes⟩ (10.1)

53

II. 10. Defining Primitive Enthusiasm

In this formula, the definitions of the parameters are the following:

• PrimitiveTypes is the set of types that are handled as primitive ones.
For Java this contains the following types: boolean, byte, short, int,
long, char, float, double, and String.

• N represents the number of methods in the current class.

• Mi denotes the ith method of the current class.

• Mc denotes the current method under investigation in the current class.

• PMi
denotes the list of types used for parameters in the Mi method.

• PMi,j defines the type of the jth parameter in the Mi method.

Albeit, String is a class in Java and not a primitive type, the way it is
usually used is just like a primitive type. This is why treating it as a primitive
in the current metric is recommended. Using this Primitives function, three
metrics were constructed. These metrics are described in the following sections.

10.1 Local Primitive Enthusiasm

Formula 10.2 depicts the calculation of the new Local Primitive Enthusiasm
(LPE) metric.

LPE(Mc) :=

N∑
i=1

|Primitives(Mi)|

N∑
i=1

| PMi
|

<
|Primitives(Mc)|

| PMc |
(10.2)

The left-hand side of the inequality calculates the percentage of how many
parameters of the current class are of primitive types. While the right-hand
side denotes how many parameters of the Mc method are of primitive types.
This can be considered as the method’s primitiveness ratio. If the right-hand
side is greater than the left-hand side, that is, there are more primitive types
in the Mc method’s parameter list than in the given class on average, then the
method is considered to be an LPE true method.

The Formula 10.2 is calculated for each method in a given class and com-
pared to the ratio calculated for the same class. This is why the formula is
treated as a Local Primitive Enthusiasm. Originally, this was the initial version
of the Primitive Enthusiasm metric.

54

II. 10. Defining Primitive Enthusiasm

10.2 Global Primitive Enthusiasm

Global Primitive Enthusiasm calculation is shown in Formula 10.3. In this
formula, the G is the list of methods in the analysed system, and Gi is the
ith method in this list. The main difference from GPE is that the left-hand
side now describes the average number of primitive-typed arguments in the
whole system and this is compared to the right-hand side, which is the current
method’s primitiveness ratio.

GPE(Mc) :=

|G|∑
i=1

|Primitives(Gi)|

|G|∑
i=1

| PGi
|

<
|Primitives(Mc)|

| PMc |
(10.3)

The idea behind GPE was that this compares the current method to the
other methods in the whole project, which in turn can highlight methods that
are above the system’s average.

10.3 Hot Primitive Enthusiasm

By combining the LPE and GPE formulae Formula 10.4 was constructed. The
purpose of this combination is to direct the developer’s attention to more
suspicious code parts.

HPE(Mc) := LPE(Mc) ∧GPE(Mc) (10.4)

If a method is HPE true, then it indicates that in terms of primitive method
arguments it is an outstanding method both in the scope of the current class
and in the whole system.

10.4 Primitive Enthusiasm and Wrapper Classes

The PrimitiveTypes set in the original formulate contained only the primi-
tive types found in Java, as this was the first implementation of the metric
calculation. However, in Java, there are wrapper classes for the primitives
defined by the language standard, namely: Boolean, Byte, Short, Integer,
Long, Character, Float, Double. Although these types are classes, they can
be considered as they represent primitive data types. Thus, we constructed the

55

II. 10. Defining Primitive Enthusiasm

wrapper class versions of the Primitive Enthusiasm Metrics by including these
types in the PrimitiveTypes set used for the metric calculation. In order to
differentiate these variants in the thesis, a W+ subscript is added if the wrapper
classes are included and a W- subscript is added if the wrapper classes are not
included. So the Local Primitive Enthusiasm with Wrapper classes is LPEW+.
Similarly the GPEW+ and HPEW+ variants are also constructed.

56

11
Metric Calculation Evaluation

To implement and evaluate the proposed formulas and their variants, the Open
Static Analyzer [6] was used, which is an open-source, multi-language, static
code analyzer framework developed at the Department of Software Engineering,
University of Szeged. The prototype implementation processes Java source
code, however, with a minor modification, the metrics could be applied to
other object-oriented languages as well.

As there is no benchmark for Primitive Obsession detection, manual valida-
tion was performed to see how the Primitive Enthusiasm metric and variants
are present in systems in three open-source Java projects. These projects are
often used in research papers working with various metrics:

• Joda-Time version 2.9.9 [4] a date and time replacement library,

• Apache Log4j [3] a commonly used logging library,

• Apache Commons Math version 3.6.1 [2], a library of lightweight, self-
contained mathematics and statistics components.

57

II. 11. Metric Calculation Evaluation

11.1 Eliminated Methods

The formulae introduced in Section 10 for Primitive Enthusiasm calculation
– by default – do not take into account that some methods have only one
parameter or none at all. Also, certain types of methods should be eliminated
from the calculation of the metrics. The implementation of PE metrics skipped
the investigation of constructors, the methods with an empty parameter list,
and methods that could be considered a class member setter method.

Using primitives for constructor arguments should not be considered in PE
calculations, as without these methods, it would be challenging to encapsulate
primitive types in a class. Similarly, the removal of setter methods is in the
same category, as the developer should allow the object’s internal properties
to be changed in some cases. In Java, setter methods are usually following the
setX format where X is the name of internal value they want to change. This
variant of method eliminations was called Skipping Set Methods (SSM).

Upon further work, the restriction was enhanced to skip the processing of
all methods with less than two parameters. The idea behind this approach is
that if a method only has a single primitive parameter, it usually either sets it
as an internal value or does some kind of calculation with it, probably mostly
short, simple getter-setters. In addition, a single parameter for a method can’t
be considered an overuse of primitive types. This variant was named Skip Ones
(SO).

A comparison of these two method skip variants is presented in the following
section.

11.2 Results

In order to better understand the target projects, a few metrics were calculated.
Table 11.1 summarizes these metrics.

The smallest project is log4j, with “only” 1561 methods in 189 classes and
the biggest one is the Apache common-maths library with 8808 methods in a
bit more than a thousand classes.

11.2.1 Exclusion Strategy

As it was stated in Section 11.1, two strategies were evaluated for eliminating
methods: to skip only setter methods (Skip Setter Methods - SSM) or skip
every method with just one parameter (Skip Ones - SO). These approaches

58

II. 11. Metric Calculation Evaluation

Table 11.1: Properties of the examined projects: thousand lines of code
(KLOC), number of classes (NC), number of methods (NM), longest parameter
list (LPL)

Project KLOC NC NM LPL

log4j 16 189 1561 9
joda-time 28 249 4265 10
commons-math 100 1033 8808 14

were proposed and implemented by co-author Edit Pengő. For the sake of
completeness, Table 11.2 sums up the details of the two strategies for the
examined three systems.

Table 11.2: Comparison of the two elimination strategies: number of not
eliminated methods (NNM), average parameter list length of not eliminated
methods (AVG)

SSM SO

Project NNM AVG NNM AVG

log4j 1371 1.33 429 3.01
joda-time 3787 0.98 893 2.55
commons-math 7229 1.12 1953 2.93

The numbers show that by skipping every method with just one parameter,
only a subset of the methods was processed for the calculation. During the
manual validation, we observed that the SSM strategy causes noise in the
results. It is not surprising as it is hard to interpret Primitive Obsession on
methods with only one parameter, as it is pretty hard to argue that a single
primitive parameter of a method is too much.

11.2.2 Effect of Wrapper Classes

In order to see all aspects of the Primitive Enthusiasm metrics, it is important
to see how the previously introduced variants are behaving in relation to
each other. The PE variant, which includes the wrapper types was already

59

II. 11. Metric Calculation Evaluation

introduced in Section 10.4 as having a W+ as a subscript, similarly to the W-

annotation.

To see how the inclusion or exclusion of the wrapping types changes the
number of detected methods, the number of methods with at least one (AL1)
and at least three (AL3) primitive typed parameters were counted. During
this calculation, only the constructor methods were eliminated, the previously
introduced skip strategies were not applied The results for this are summarized
in Table 11.3, and the difference is much less than expected. This table shows
that the extension of the PrimitiveTypes set with boxing types has very little
consequence on the set of methods that use primitive types in their parameter
lists, as the difference is only a few methods or none at all. These results also
mean that the wrapper types are less frequently used in these Java projects
and probably in other projects. With this we can conclude that there is no
demerit including wrapper types in the PrimitiveTypes set.

Table 11.3: The impact of wrapper classes by the number of methods: at
least one primitive parameter in the parameter list (AL1), at least three primi-
tive parameters in the parameter list (AL3), exclude wrapper classes from the
PrimitiveTypes set (W-), include wrapper classes in the PrimitiveTypes set
(W+)

AL1 AL3

Project W- W+ W- W+

log4j 577 577 35 35
joda-time 1580 1583 95 96
commons-math 2758 2759 556 556

11.2.3 Reports on Primitive Enthusiasm Metrics

The Primitive Enthusiasm metrics suggest such methods for refactoring that
use an unusually lot of primitive parameters. However, for large projects, the
list of reported methods can be long, making the review a demanding task.
Therefore, a class-level aggregation of the results is proposed and used during
the evaluation. This way, the classes can be ordered by the number of their
reported methods.

60

II. 11. Metric Calculation Evaluation

Table 11.4: Comparison of Primitive Enthusiasm reports on method level

Number of reported methods

LPEW- LPEW+ GPEW- GPEW+ HPEW- HPEW+

log4j 165 165 217 217 153 153
joda-time 301 301 429 431 230 231
commons-
math

698 698 1192 1192 553 553

Table 11.5: Comparison of Primitive Enthusiasm reports on class level

Number of reported classes

LPEW- LPEW+ GPEW- GPEW+ HPEW- HPEW+

log4j 29 29 74 74 29 29
joda-time 92 92 104 105 65 66
commons-
math

213 213 390 390 145 145

Table 11.4 shows the number of reported methods of the three studied
Java systems, while Table 11.5 depicts the number of classes with at least one
reported method. Both of these tables are calculated with the Skip Ones (SO)
strategy.

These warnings were processed manually to validate the results of the
various Primitive Enthusiasm metrics. After randomly sampling the reported
methods, they were checked in the source code. Additionally, the class level
aggregations were processed with great attention to the classes with the most
and least reported methods. As both the evaluation and the judgment of
Primitive Obsession itself are subjective, deciding if a warning is true positive
or not is hard to tell, therefore, the significance of the warning was investigated.

It is clear from the results of Table 11.4 and Table 11.5 that the Primitive
Enthusiasm metrics report quite a few methods and classes. However, the
number of reported methods is less than 8% of the total number of methods on
average. The other important aspect of these results is that there is almost zero
difference between the metrics that include or do not include the wrapper classes.

61

II. 11. Metric Calculation Evaluation

Considering the results of Section 11.2.2 it is not surprising, nevertheless, it is
recommended to include these types in the PrimitiveTypes set as their usage
might depend on the nature of the project or the habits of the programmer.

GPEW- and GPEW+ express how different the composition of the parameter
list of a method is from the global average, whilst LPEW- and LPEW+ express
only a class-level distinction. The combined metrics HPEW- and HPEW+ per-
form well as they are able to further fine-tune the results given by the LPE and
GPE variants. In most cases, the reduction in the number of reported methods
and classes was more than 25% percent. Based on this information, it is rec-
ommended that first, the HPEW- or the HPEW+ reports should be investigated
by the developer as they report both class-localized and application-global
suspicions.

62

12
Bug Prediction Capabilities

The previous sections presented the Primitive Enthusiasm metrics and a simple
evaluation of these metrics. By itself, it can be already helpful, but going
forward, it is worth investigating if these new metrics could add benefits in bug
prediction.

To investigate the bug prediction capabilities of the PE metrics, an al-
ready existing Java-based bug dataset was used [19]. From this dataset, the
PROMISE, GitHub, and Bug Prediction datasets were selected and used for
prediction calculations. These selected datasets contain class-level metrics,
and in total there are 66 systems in them. Among these 66 systems, there
are even multiple version for a few projects. For each system, 63 commonly
used source code metrics are already calculated, and classes with bugs are also
marked. This dataset was extended with the previously mentioned PE metrics
and calculated using the same Open Static Analyzer (OSA) [6] tool where the
new metric calculations were implemented.

12.1 Calculating the Metrics

The selected bug dataset already contains class-based metrics, and for each of
the classes in this dataset, the PE metrics were calculated. However, the PE
metrics are inherently method-based. In order to resolve this minor incompati-

63

II. 12. Bug Prediction Capabilities

bility, the PE metrics were aggregated by class. That is, for a given class the
number of LPE, GPE, and HPE true functions are counted, and these values
are used as class-level metrics. This aggregation inherently connects the PE
metrics with the number of methods in a class. If there are more methods in
a class, the class has a higher probability of having more PE true methods.
After the aggregation, the class-level PE metric value could be between 0 and
the number of methods in that class. In the following sections, the PE metrics
will refer to this kind of aggregated value if not mentioned otherwise.

12.1.1 Information on Selected Systems

In order to get an initial insight into the selected systems, an initial metric
calculation and aggregation were done. As in the used bug dataset, there
are multiple versions present for some projects, the author selected the latest
version of each project for further evaluation. Based on this criteria, 33 systems
were selected from the original dataset. We first checked how many classes
there are and how many bugs were reported for these systems. In addition,
the aggregated PE metric values were calculated for each system. These values
can be seen in Table 12.1.

The first column, “Class” describes the number of classes in the given
system. The second “Bugs” column represents the number of classes with at
least a single reported bug, and the third “Bugs/Class” column shows how
many of the system classes have a bug in them. This was calculated by dividing
the number of classes that have bugs in them with the total number of classes
in the system. The LPE, GPE, and HPE columns show how many classes have
at least a single LPE, GPE, or HPE method. There are various-sized projects
ranging from a small 8 class system to a more than 5500 class system. What
is interesting to see is that there are usually more GPE true classes than LPE
true ones. For example, in the case of the Elasticsearch system, there are 503
more GPE true classes than LPE ones. In addition, the HPE value is usually
lower than the LPE value. This indicates that the combination of the LPE
and GPE metrics can help focus the developers’ attention.

There are two tiny projects on this list: the Ckjm 1.8 and Forrest 0.8. As
there are already a small number of classes present, the PE metric values are
also small for these two.

64

II. 12. Bug Prediction Capabilities

Table 12.1: Class count, Bug count, and PE metric count information on
selected systems

Class Bugs Bugs/Class % LPE GPE HPE

Equinox 319 126 39.5 78 114 74
Lucene 670 63 9.4 115 175 85
Myly 1405 209 14.9 240 421 206
Eclipse PDE UI 1491 208 14.0 357 510 321
Android U. I. L. 73 20 27.4 7 23 7
ANTLR 479 21 4.4 60 119 56
Broadleaf 1593 292 18.3 173 271 164
Eclipse p. for Ceylon 1610 68 4.2 187 284 176
Elasticsearch 5908 678 11.5 560 1063 480
Hazelcast 3412 377 11.0 204 391 185
JUnit 731 35 4.8 17 29 12
MapDB 331 40 12.1 64 89 62
mcMMO 301 57 18.9 41 35 26
MCT 1887 9 0.5 146 219 106
Neo4j 5899 58 1.0 582 1025 498
Netty 1143 271 23.7 128 191 122
OrientDB 1847 280 15.2 288 402 253
Oryx 533 74 13.9 36 97 32
Titan 1468 96 6.5 135 263 126
Ant 1.7 681 165 24.2 100 190 84
Camel 1.6 795 170 21.4 88 173 87
Ckjm 1.8 8 5 62.5 1 1 1
Forrest 0.8 31 2 6.5 7 14 7
Ivy 2.0 294 37 12.6 81 97 68
JEdit 4.3 439 11 2.5 150 162 119
Log4J 1.2 191 175 91.6 30 71 29
Lucene 2.4 320 193 60.3 65 92 46
Pbeans 2 37 8 21.6 13 18 12
Poi 3.0 414 276 66.7 62 274 50
Synapse 1.2 228 84 36.8 47 83 46
Velocity 1.6 188 66 35.1 51 76 46
Xalan 2.7 848 837 98.7 191 208 147
Xerces 2.0 342 303 88.6 78 102 64

65

II. 12. Bug Prediction Capabilities

12.2 Correlation Between Metrics

As various metrics are already present in the bug dataset, it is worthwhile to
consider how the PE metrics behave compared to other metrics. With this
investigation, we can see if there are any metrics that have strong connections
with the new PE metrics. For this, a correlation matrix was calculated using
Pearson’s correlation for each metric, merging all of the selected systems into
a single input dataset. This matrix is shown in Table 12.2. A colour map was
applied to help show the correlation values between the metrics. The greater
the correlation between the metrics, the darker the cell colour.

Based on the correlation matrix, the LPE, GPE, and HPE metrics strongly
correlate. The LPE and GPE metrics have a 0.86 correlation value which is
caused by the fact that there is only a minor difference between the calculation
of these two metrics. In addition, the fact that the HPE has a high correlation
with both LPE and GPE is not a surprise as the HPE metric by definition is
calculated from these two metrics.

The highest correlation between the PE metrics and traditional metrics can
be found for the NLM and LPE metrics that have the value of 0.58. All other
correlation values are less than this value. By investigating some of the higher
correlation values, we could have an insight into the connection between the
metrics.

The PE metrics have greater correlations with metrics that are calculated
from the number of methods. These are the relevant metrics:

• NLM: Number of Local Methods.

• TNLM: Total Number of Local Methods.

• NLPM: Number of Local Public Methods.

• TNLPM: Total Number of Local Public Methods.

• RFC: Response set For Class.

• WMC: Weighted Methods per Class.

Their highest correlation values for PE metrics are 0.58, 0.54, 0.52, 0.48, 0.53,
and 0.51 in the same order. These correlations are understandable, as the PE
metrics have connections to the number of methods since the aggregation was
done by class (as was described in Section 12.1). The chance of having PE
true methods is higher if there are more methods. In addition, the PE metrics

66

II. 12. Bug Prediction Capabilities

Table 12.2: Correlation between PE and other metrics

LPE GPE HPE LPE GPE HPE

LPE 1.00 0.86 0.96 NM 0.28 0.27 0.26
GPE 0.86 1.00 0.91 NOA 0.03 0.01 0.03
HPE 0.96 0.91 1.00 NOC 0.04 0.04 0.03
AD 0.10 0.09 0.08 NOD 0.04 0.03 0.03
CBO 0.31 0.24 0.27 NOI 0.39 0.33 0.36
CBOI 0.19 0.20 0.19 NOP 0.06 0.04 0.05
CC 0.00 -0.01 0.00 NOS 0.40 0.35 0.38
CCL 0.11 0.09 0.10 NPA 0.02 0.02 0.02
CCO 0.09 0.08 0.09 NPM 0.26 0.27 0.25
CD 0.08 0.08 0.07 NS 0.11 0.12 0.11
CI 0.08 0.07 0.08 PDA 0.37 0.34 0.36
CLC -0.01 -0.02 -0.01 PUA 0.36 0.41 0.36
CLLC 0.00 -0.01 0.00 RFC 0.53 0.49 0.50
CLOC 0.41 0.35 0.39 TCD 0.07 0.08 0.07
DIT 0.01 0.00 0.01 TCLOC 0.41 0.35 0.39
DLOC 0.38 0.33 0.36 TLLOC 0.49 0.44 0.47
LCOM5 0.26 0.28 0.24 TLOC 0.51 0.45 0.49
LDC 0.15 0.13 0.15 TNA 0.11 0.10 0.11
LLDC 0.16 0.14 0.16 TNG 0.17 0.15 0.17
LLOC 0.49 0.44 0.46 TNLA 0.13 0.12 0.13
LOC 0.51 0.45 0.48 TNLG 0.35 0.33 0.34
NA 0.09 0.07 0.08 TNLM 0.54 0.52 0.51
NG 0.18 0.17 0.18 TNLPA 0.02 0.02 0.02
NII 0.26 0.28 0.26 TNLPM 0.48 0.49 0.46
NL 0.28 0.25 0.26 TNLS 0.20 0.22 0.21
NLA 0.10 0.09 0.10 TNM 0.23 0.21 0.22
NLE 0.30 0.27 0.28 TNOS 0.42 0.36 0.39
NLG 0.36 0.34 0.35 TNPA 0.03 0.02 0.03
NLM 0.58 0.57 0.55 TNPM 0.23 0.22 0.22
NLPA 0.01 0.01 0.01 TNS 0.13 0.12 0.13
NLPM 0.50 0.52 0.49 WMC 0.51 0.45 0.49
NLS 0.20 0.22 0.20 bugs 0.15 0.14 0.14

67

II. 12. Bug Prediction Capabilities

are calculated from method argument lists. Thus, if there are more methods,
there are usually more arguments. Another interesting insight can be seen
if the correlation between these common metrics is investigated. Table 12.3
elaborates on the correlation between these commonly used metrics.

Table 12.3: Correlation between a selected set of method count related metrics

NLM NLPM RFC TNLM TNLPM WMC

NLM 1 0.92 0.84 0.91 0.86 0.75
NLPM 0.92 1 0.75 0.82 0.89 0.55
RFC 0.84 0.75 1 0.79 0.72 0.68
TNLM 0.91 0.82 0.79 1 0.94 0.69
TNLPM 0.86 0.89 0.72 0.94 1 0.53
WMC 0.75 0.55 0.68 0.69 0.53 1

A strong correlation can be seen in most cases between these method-based
metrics, and these values are not a surprise as the metrics are also calculated
mainly or partially from the number of methods in a class. Excluding the
WMC metric, the correlation values were above 0.70 in every case, and in
some instances, it is even above 0.90. The NLM, TNLM, NLPM, and TNLPM
correlation results are not surprising, each of these captures the number of
methods in a class, but with a little variation. As shown in Table 12.2 and
Table 12.3, the PE metrics have less correlation than these method-related
metrics have between each other. This shows that the PE metrics can give
an extra dimension – aside from the already existing method-related metrics –
as they are not tightly coupled even if there is a connection between PE and
traditional method-based metrics.

The other set of interesting correlations with PE metrics are the ones related
to lines of code:

• LOC: Lines of Code.

• LLOC: Logical Lines of Code.

• CLOC: Comment Lines of Code.

• DLOC: Documentation Lines of Code.

• TLOC: Total Lines of Code.

68

II. 12. Bug Prediction Capabilities

• TLLOC: Total Logical Lines of Code.

• TCLOC: Total Comment Lines of Code.

• TNOS: Total Number of Statements.

• NOS: Number of Statements.

The connection between these and the PE metrics can be attributed to the
fact that if there are more lines of code, then there are usually more methods
in an application. With the 0.51 correlation value, the LPE, LOC, and TLOC
metrics are the most connected. In every other case, the correlation was less.
Just like previously, it is also worth checking the correlations between these
common metrics. This matrix is depicted in Table 12.4.

Table 12.4: Correlation between a selected set of line count related metrics

CLOC DLOC LLOC LOC NOS TCLOC TLLOC TLOC TNOS

CLOC 1.00 0.95 0.53 0.69 0.46 0.99 0.53 0.68 0.48
DLOC 0.95 1.00 0.39 0.56 0.32 0.94 0.40 0.56 0.34
LLOC 0.53 0.39 1.00 0.97 0.97 0.52 0.97 0.95 0.96
LOC 0.69 0.56 0.97 1.00 0.93 0.68 0.95 0.97 0.92
NOS 0.46 0.32 0.97 0.93 1.00 0.46 0.93 0.90 0.98
TCLOC 0.99 0.94 0.52 0.68 0.46 1.00 0.54 0.69 0.48
TLLOC 0.53 0.40 0.97 0.95 0.93 0.54 1.00 0.98 0.97
TLOC 0.68 0.56 0.95 0.97 0.90 0.69 0.98 1.00 0.93
TNOS 0.48 0.34 0.96 0.92 0.98 0.48 0.97 0.93 1.00

As shown in Table 12.4, most of these metrics have high correlation values
with each other. Just like before, these values are understandable since all of
them are size-related metrics and calculated from various types of code lines.

Based on these experiments, it can be concluded that although the Primitive
Enthusiasm metrics have some kind of connection between already existing
metrics, they can still give extra information for a developer.

12.3 Cross-project Bug Prediction

A cross-project validation was performed to evaluate the PE metrics’ bug
prediction capabilities. The cross-project validation was chosen as a method to
see how the newly added metric changes the bug prediction, and classification.

69

II. 12. Bug Prediction Capabilities

For the prediction, the Weka [21] tool was used with the default Random
Forest classificator. The classification label was the bug presence for a given
class. That is, there is at least a single bug in the target class. Using se-
lected each project, a model was trained, and every other project was used as
evaluation test data. These training and evaluation steps were done for the
original bug dataset metrics and for the newly extended dataset containing the
Primitive Enthusiasm metric aggregated to a class level. This gave us two sets
of classification results. For comparing the two result sets Weka’s F-measure
value was used. In Weka, the weighted average F-measure is calculated with
the following formula:

Fmeasure(a) ∗ InstanceCount(a) + Fmeasure(b) ∗ InstanceCount(b)

InstanceCount(a) + InstanceCount(b)

Where a and b are the two classes for classification, Fmeasure(x) represents
the F-measure value for class x, and InstanceCount(x) gives the number of
instances in the x class. Using this, the difference between F-measure values
was calculated for each train-test system pair. This difference shows how the
classification results changed after adding the new metrics to the dataset. These
differences can be examined in Table 12.5.

In this table, the first and second column describes the project on which the
training was done. The IDs of the projects are used as column labels to reduce
the size of the table a bit. The columns after the first two are the project IDs
on which the trained model was evaluated.

To highlight interesting parts, the values in the table were colour-coded.
To indicate improvement, cells that have a value of 0.05 or higher are coloured
green. In return, values less or equal to -0.05 are coloured red to indicate a
decrease in weighted F-measure values. Due to rounding, it is possible that
a value that is equal to one of these thresholds is not coloured. Aside from
the matrix main diagonal, some other cells do not have any value. In these
cases, the classificator was unable to calculate the weighted F-measure. This
usually meant that only bugged or non-bugged classes were reported by the
classificator resulting in an invalid weighted F-measure value.

The highest decrease in F-measure value was in the case of the Xerces
2.0 system. Based on Table 12.1, most of the classes in the system have a
bugged class. Due to this, an over-fitting can be observed by the classificator
marking more classes as bugged. A similar over-fitting can be observed in
the case of the Xalan 2.7 project. However, the F-measure change cannot be
observed in Table 12.5, because in most cases, even using the original dataset

70

II. 12. Bug Prediction Capabilities

T
a
b
le

1
2
.5
:
W
ei
gh
te
d
fm

ea
su
re

ch
an

ge
s
in

ca
se

of
cr
os
s-
pr
oj
ec
t
va
li
da

ti
on

ID
N
am

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

1
E
q
u
in
ox

-0
.0
0

-0
.0
2

-0
.0
3

0.
06

0.
01

0.
00

-0
.0
1

-0
.0
1

0.
01

0.
02

0.
03

-0
.0
3

0.
01

-0
.0
0

0.
04

0.
00

0.
00

0.
01

-0
.0
5

-0
.0
3

0.
26

0.
25

-0
.0
1

-0
.0
2

0.
00

0.
04

0.
00

-0
.1
1

0.
00

0.
04

0.
01

0.
08

2
L
u
ce
n
e

-0
.0
4

-0
.0
0

0.
01

-0
.0
4

0.
01

0.
01

-0
.0
1

0.
01

-0
.0
0

-0
.0
0

-0
.0
2

0.
03

-0
.0
0

-0
.0
1

-0
.0
0

0.
01

-0
.0
2

0.
00

0.
03

0.
03

-0
.0
1

0.
01

-0
.0
2

0.
01

0.
01

0.
03

-0
.0
0

0.
07

-0
.0
3

-0
.0
3

3
M
y
ly

0.
01

0.
03

0.
01

-0
.0
5

-0
.0
1

-0
.0
3

0.
03

-0
.0
2

0.
02

-0
.0
1

0.
04

-0
.0
7

0.
01

-0
.0
0

-0
.0
1

-0
.0
1

0.
00

-0
.0
1

-0
.0
3

0.
01

0.
28

0.
02

0.
04

0.
03

0.
04

-0
.0
1

0.
03

-0
.0
2

0.
09

-0
.0
4

0.
03

0.
03

4
E
cl
ip
se

P
D
E
U
I

-0
.0
2

0.
00

-0
.0
0

0.
09

-0
.0
2

-0
.0
3

0.
01

-0
.0
0

-0
.0
0

-0
.0
1

-0
.0
3

-0
.0
0

-0
.0
0

-0
.0
0

-0
.0
2

-0
.0
1

-0
.0
1

0.
01

0.
02

0.
02

0.
46

-0
.0
9

-0
.0
4

0.
04

0.
02

0.
02

-0
.0
6

0.
04

-0
.0
7

-0
.0
3

-0
.0
8

0.
00

5
A
n
d
ro
id

U
.
I.
L
.

0.
02

0.
00

0.
02

-0
.0
4

-0
.0
3

-0
.0
7

-0
.0
4

-0
.0
2

-0
.0
2

-0
.1
2

-0
.0
1

-0
.0
4

-0
.0
2

-0
.0
4

-0
.0
6

0.
03

-0
.0
1

-0
.0
3

0.
10

-0
.0
4

0.
12

-0
.0
6

-0
.1
0

0.
05

-0
.0
2

0.
03

0.
08

-0
.1
0

-0
.0
4

0.
00

-0
.0
5

-0
.0
4

6
A
N
T
L
R

0.
03

0.
00

-0
.0
0

0.
00

0.
03

-0
.0
3

0.
00

-0
.0
0

-0
.0
1

-0
.0
0

-0
.0
2

-0
.0
1

0.
00

0.
00

0.
02

0.
00

-0
.0
0

0.
01

-0
.0
3

0.
01

-0
.0
5

0.
00

-0
.0
2

-0
.0
0

0.
00

-0
.0
2

-0
.0
2

0.
03

0.
04

-0
.0
1

-0
.1
0

7
B
ro
ad

le
af

-0
.0
4

0.
00

0.
01

-0
.0
0

-0
.0
7

-0
.0
3

-0
.0
2

-0
.0
1

-0
.0
0

-0
.0
1

-0
.0
3

-0
.0
4

0.
01

0.
00

0.
01

0.
00

0.
02

-0
.0
1

0.
03

-0
.0
2

0.
28

0.
02

-0
.0
2

0.
00

0.
00

0.
10

0.
02

-0
.0
0

-0
.0
9

-0
.0
5

0.
04

0.
03

8
C
ey
lo
n

-0
.0
4

-0
.0
0

0.
02

-0
.0
1

0.
03

0.
02

0.
01

0.
01

-0
.0
1

-0
.0
0

-0
.0
3

0.
02

0.
00

0.
01

0.
03

-0
.0
1

-0
.0
1

0.
01

-0
.0
0

0.
00

-0
.0
4

-0
.0
1

-0
.0
7

0.
05

-0
.0
2

-0
.0
0

0.
02

0.
02

0.
01

-0
.0
4

9
E
la
st
ic
se
ar
ch

-0
.0
2

-0
.0
1

-0
.0
2

-0
.0
1

0.
03

-0
.0
1

0.
02

-0
.0
1

0.
02

-0
.0
1

-0
.0
3

-0
.0
1

0.
00

-0
.0
1

-0
.0
1

-0
.0
0

0.
01

-0
.0
1

-0
.0
1

-0
.0
0

-0
.0
9

-0
.0
7

-0
.0
1

-0
.0
2

-0
.0
3

0.
02

-0
.0
2

-0
.0
2

-0
.0
1

-0
.0
5

0.
04

-0
.1
2

10
H
az
el
ca
st

0.
02

0.
00

-0
.0
0

0.
00

0.
06

-0
.0
2

-0
.0
3

0.
01

-0
.0
1

0.
01

-0
.0
2

-0
.0
3

-0
.0
0

-0
.0
0

0.
02

0.
03

-0
.0
2

0.
01

0.
01

-0
.0
0

-0
.0
7

0.
01

-0
.0
2

0.
11

0.
01

-0
.1
4

0.
00

-0
.0
6

-0
.0
0

0.
12

-0
.0
2

11
J
U
n
it

0.
00

-0
.0
2

0.
00

-0
.0
4

-0
.0
2

0.
01

0.
05

-0
.0
3

-0
.0
1

-0
.0
2

0.
00

0.
03

-0
.0
1

-0
.0
1

0.
02

0.
00

0.
05

0.
00

0.
03

0.
04

0.
25

0.
07

-0
.0
2

-0
.0
9

0.
07

0.
06

0.
13

0.
11

0.
03

0.
02

0.
01

0.
24

12
M
ap

D
B

-0
.0
2

-0
.0
1

0.
01

0.
02

0.
04

-0
.0
0

-0
.0
3

0.
01

0.
02

-0
.0
1

-0
.0
2

0.
05

0.
00

-0
.0
1

0.
01

-0
.0
1

-0
.0
2

-0
.0
1

-0
.0
2

-0
.0
1

0.
04

0.
03

0.
00

-0
.0
2

-0
.0
3

-0
.0
2

-0
.0
9

-0
.0
7

0.
13

-0
.1
2

-0
.0
6

13
m
cM

M
O

0.
05

0.
00

-0
.0
1

0.
02

0.
01

0.
04

0.
02

-0
.0
1

-0
.0
1

-0
.0
5

0.
01

0.
00

-0
.0
2

-0
.0
1

-0
.0
3

-0
.0
3

-0
.0
1

0.
00

-0
.0
1

0.
03

0.
07

0.
01

0.
02

0.
08

0.
05

-0
.1
3

-0
.0
9

-0
.0
9

0.
02

-0
.1
3

-0
.1
0

14
M
C
T

-0
.0
1

0.
01

-0
.0
1

0.
00

-0
.0
2

0.
00

-0
.0
1

-0
.0
0

-0
.0
0

-0
.0
0

0.
02

-0
.0
0

-0
.0
0

-0
.0
2

0.
00

-0
.0
0

-0
.0
1

-0
.0
0

-0
.0
1

0.
00

0.
01

-0
.0
1

-0
.0
0

-0
.0
5

-0
.0
3

-0
.0
7

15
N
eo
4j

0.
02

-0
.0
0

0.
00

0.
01

-0
.0
2

0.
00

-0
.0
1

0.
00

-0
.0
0

-0
.0
1

0.
00

0.
01

0.
02

-0
.0
0

0.
00

0.
00

-0
.0
0

-0
.0
1

-0
.0
1

-0
.0
1

-0
.0
1

0.
02

-0
.0
1

0.
02

0.
01

16
N
et
ty

-0
.0
0

-0
.0
2

-0
.0
0

0.
03

-0
.0
5

-0
.0
2

0.
02

0.
01

-0
.0
2

0.
02

-0
.0
0

-0
.0
0

-0
.0
1

-0
.0
2

-0
.0
0

-0
.0
4

0.
04

0.
00

-0
.0
5

0.
03

-0
.0
5

0.
01

0.
00

-0
.0
5

0.
05

-0
.0
4

-0
.0
1

0.
08

0.
01

0.
04

0.
08

17
O
ri
en
tD

B
0.
00

0.
00

0.
01

0.
03

0.
00

0.
02

-0
.0
3

-0
.0
1

-0
.0
0

-0
.0
2

-0
.0
1

-0
.0
6

0.
01

-0
.0
0

-0
.0
1

0.
02

0.
01

0.
00

0.
01

0.
02

-0
.0
3

-0
.0
2

-0
.0
1

-0
.0
0

-0
.0
1

-0
.0
5

0.
03

0.
02

-0
.0
4

0.
08

-0
.1
0

18
O
ry
x

-0
.0
6

0.
01

0.
01

0.
01

0.
08

0.
01

-0
.0
0

-0
.0
2

-0
.0
0

-0
.0
1

0.
01

-0
.0
2

-0
.0
5

0.
02

0.
01

-0
.0
3

-0
.0
1

0.
01

0.
03

-0
.0
2

0.
28

-0
.0
1

0.
05

0.
01

-0
.0
1

-0
.0
1

0.
08

-0
.0
5

0.
05

-0
.0
6

-0
.0
6

-0
.0
8

19
T
it
an

-0
.0
3

0.
02

0.
00

-0
.0
1

-0
.0
1

-0
.0
1

-0
.0
0

-0
.0
1

-0
.0
0

-0
.0
1

-0
.0
0

-0
.0
2

0.
02

-0
.0
1

0.
00

-0
.0
0

-0
.0
0

-0
.0
2

-0
.0
2

-0
.0
0

0.
05

-0
.0
1

0.
02

0.
04

0.
05

0.
00

-0
.0
2

-0
.0
2

0.
07

0.
04

0.
02

20
A
n
t
1.
7

0.
08

-0
.0
0

-0
.0
1

-0
.0
2

0.
01

0.
05

0.
03

0.
09

0.
07

0.
06

0.
15

0.
07

0.
01

0.
06

0.
11

0.
06

0.
01

-0
.0
2

0.
06

-0
.0
1

-0
.0
5

-0
.0
1

-0
.0
1

0.
00

-0
.0
5

0.
00

0.
00

-0
.0
5

0.
09

0.
02

0.
00

21
C
am

el
1.
6

0.
01

0.
02

-0
.0
0

-0
.0
0

-0
.0
1

-0
.0
1

0.
00

-0
.0
0

-0
.0
1

0.
00

0.
00

-0
.0
0

-0
.0
5

-0
.0
2

-0
.0
2

0.
02

-0
.0
0

-0
.0
4

0.
01

-0
.0
5

0.
35

-0
.0
7

-0
.0
3

-0
.0
4

-0
.0
0

0.
06

0.
07

0.
09

0.
06

-0
.1
5

0.
05

0.
14

22
C
k
jm

1.
8

-0
.0
0

0.
09

0.
00

0.
08

-0
.0
4

0.
04

-0
.0
2

0.
05

0.
04

0.
12

0.
08

0.
05

-0
.0
5

0.
11

0.
09

0.
03

0.
07

-0
.0
1

0.
02

0.
12

-0
.0
4

-0
.0
4

-0
.0
3

-0
.0
1

0.
04

-0
.0
3

0.
00

-0
.0
9

0.
17

-0
.0
1

-0
.0
3

-0
.0
7

23
F
or
re
st

0.
8

-0
.0
2

0.
06

-0
.0
1

0.
04

-0
.0
3

0.
05

0.
01

0.
03

0.
01

0.
05

0.
03

0.
01

0.
04

0.
05

0.
04

-0
.0
2

0.
01

0.
00

0.
07

0.
05

-0
.0
2

0.
01

0.
04

-0
.0
9

-0
.0
0

0.
02

-0
.1
5

-0
.0
5

0.
02

-0
.1
1

0.
05

24
Iv
y
2.
0

-0
.0
2

-0
.0
2

0.
01

0.
02

0.
02

0.
01

-0
.0
0

0.
01

-0
.0
0

-0
.0
0

0.
03

-0
.0
1

-0
.0
0

0.
00

-0
.0
1

0.
00

-0
.0
1

0.
00

0.
01

0.
01

-0
.0
5

0.
05

-0
.0
9

0.
01

-0
.0
8

-0
.0
6

-0
.0
4

0.
03

-0
.0
0

0.
02

25
J
E
d
it
4.
3

-0
.0
1

-0
.0
0

-0
.0
0

0.
00

0.
01

-0
.0
0

-0
.0
0

-0
.0
1

-0
.0
0

0.
01

-0
.0
1

-0
.0
1

-0
.0
0

-0
.0
1

-0
.0
1

0.
00

0.
01

-0
.0
1

-0
.0
0

0.
02

0.
00

0.
00

0.
03

-0
.0
1

0.
00

0.
11

-0
.0
2

26
L
og
4J

1.
2

-0
.0
6

0.
03

0.
01

0.
04

0.
04

0.
19

0.
01

-0
.0
1

0.
08

-0
.0
4

0.
05

0.
03

0.
08

0.
07

0.
03

0.
04

-0
.0
3

-0
.0
5

0.
01

0.
01

0.
07

-0
.1
1

0.
06

0.
11

0.
00

0.
10

0.
05

-0
.0
2

-0
.0
0

-0
.0
1

-0
.0
3

27
L
u
ce
n
e
2.
4

-0
.0
8

0.
00

0.
04

-0
.0
0

-0
.0
5

-0
.0
2

-0
.0
4

-0
.0
3

0.
01

-0
.0
1

-0
.0
5

-0
.0
4

-0
.0
0

-0
.0
2

-0
.0
2

-0
.0
2

-0
.0
1

0.
00

-0
.0
3

-0
.0
0

-0
.0
3

0.
00

0.
00

-0
.0
8

-0
.0
5

0.
06

-0
.1
2

0.
02

0.
02

-0
.0
1

0.
05

0.
11

28
P
b
ea
n
s
2

-0
.0
6

-0
.0
3

0.
04

-0
.0
2

0.
05

0.
04

0.
01

0.
01

-0
.0
0

0.
03

0.
01

-0
.0
1

0.
01

0.
01

-0
.0
2

0.
00

0.
00

0.
04

0.
01

-0
.0
1

0.
00

0.
13

-0
.0
4

0.
03

-0
.0
9

0.
12

0.
06

-0
.0
5

0.
05

-0
.0
3

0.
12

0.
05

29
P
oi

3.
0

0.
08

0.
01

-0
.0
3

0.
01

0.
04

-0
.0
2

0.
07

0.
07

0.
01

0.
05

0.
08

0.
07

0.
15

0.
03

0.
03

0.
04

0.
01

0.
05

0.
05

0.
01

-0
.0
1

-0
.1
6

-0
.1
2

0.
03

0.
01

-0
.0
2

-0
.0
1

0.
01

0.
07

0.
00

0.
02

0.
07

30
S
y
n
ap

se
1.
2

0.
12

-0
.0
3

0.
05

0.
01

0.
03

-0
.0
6

0.
03

0.
04

-0
.0
0

0.
00

0.
02

0.
04

0.
05

0.
02

0.
00

0.
06

0.
04

-0
.0
1

-0
.0
3

-0
.0
5

-0
.0
6

0.
00

0.
02

-0
.0
0

-0
.0
0

0.
03

-0
.0
2

0.
12

0.
03

0.
02

0.
00

-0
.0
9

31
V
el
o
ci
ty

1.
6

-0
.0
3

0.
03

0.
05

0.
00

-0
.0
1

0.
03

0.
04

-0
.0
3

0.
02

0.
02

-0
.0
1

-0
.0
5

-0
.0
3

0.
00

0.
02

0.
01

-0
.0
4

0.
04

0.
01

0.
04

-0
.0
0

0.
00

0.
01

0.
04

-0
.0
3

0.
04

-0
.0
2

0.
10

-0
.1
3

0.
04

0.
01

0.
12

32
X
al
an

2.
7

-0
.0
5

-0
.0
4

0.
02

-0
.0
2

0.
02

-0
.0
2

0.
01

-0
.0
2

-0
.0
0

-0
.0
1

-0
.0
5

0.
01

0.
02

0.
03

0.
00

0.
03

0.
03

-0
.0
2

-0
.0
1

0.
01

-0
.0
1

-0
.0
6

-0
.0
1

0.
01

-0
.0
2

0.
01

0.
01

0.
01

-0
.0
2

0.
00

33
X
er
ce
s
2.
0

-0
.1
1

-0
.0
6

-0
.0
2

-0
.1
0

-0
.0
5

0.
04

-0
.0
5

-0
.0
8

-0
.0
6

-0
.0
8

-0
.1
3

-0
.0
8

0.
08

-0
.1
1

-0
.1
0

-0
.1
0

-0
.0
9

0.
01

-0
.1
6

-0
.0
4

-0
.0
4

-0
.0
6

-0
.0
8

0.
03

-0
.0
4

0.
02

-0
.1
7

-0
.0
1

0.
07

0.
04

-0
.0
0

71

II. 12. Bug Prediction Capabilities

for classification, the calculated weighted F-measure was already low, and it
was unable to predict if the class is bugged or not correctly.

Most of the increase can be seen when the classifier was trained on the
JUnit, Ant 1.7, Ckjm 1.8, Log4J 1.2, or Poi 3.0 projects. For these systems,
there are multiple instances where the F-measure change is greater or equal to
0.05, and there are only a few instances where a decrease can be observed.

The two small systems, Ckjm 1.8 and Forrest 0.8, improve overall. Addi-
tionally, using these systems as test data could make the classificator over-fit
in some cases, as shown by the empty cells in rows ID 22 and 23. However, in
other cases, there are quite big improvements when using bigger systems for
training and these two as test data. For example, in the case of the Equinox
training data, the F-measure improvements were 0.26 and 0.25.

Overall, from the 1089 results, there are 123 instances where the weighted F-
measure changes are greater than or equal to 0.05. In 107 cases, the F-measure
changes are less than -0.05. These cases indicate that adding the PE metrics
can be beneficial for bug prediction. Furthermore, the increase of the weighted
F-measure is greater than the decrease presented in the change matrix. It is
important to note that, as the PE metric values are intended to be used inside
a single system – and not comparing system to system –, this kind of usage is
less favourable for these new metrics. Adding the PE metrics for further bug
prediction classifications can be worthwhile based on these data.

12.4 Bug Prediction Across Versions

Training and testing the bug prediction across projects is a good idea and
can be useful. However, during a software development process, usually a
single application is developed from which multiple releases are created. As
the system evolves, an earlier project version could be used to predict bugs. In
this case, an earlier version can be used to train a bug prediction model and
used on later versions. Fortunately, the selected bug dataset contains multiple
versions for some systems. There are 12 such systems, which are Ant, Camel,
Ivy, JEdit, Log4J, Lucene, Pbeans, Poi, Synapse, Velocity, Xalan, and Xerces.

During the comparison of the other projects with multiple versions, the
most negative changes can be observed in the case of the Ant system, and all
other projects have better values. The Ant system’s comparison is depicted
in Table 12.6 and like before, the first column describes the systems on which
the training was performed and the other columns are the systems where the
evaluation was done.

72

II. 12. Bug Prediction Capabilities

Table 12.6: Weighted f-measure changes in the case of the Ant project across
versions

Ant 1.3 Ant 1.4 Ant 1.5 Ant 1.6 Ant 1.7

Ant 1.3 -0.01 0.01 -0.07 -0.01
Ant 1.4 -0.01 0.05 -0.02 -0.02
Ant 1.5 -0.05 -0.03 0.02 0.01
Ant 1.6 -0.08 -0.01 0.03 -0.02
Ant 1.7 0.00 -0.02 -0.02 0.03

In this case, there are a bit more than 10 cases where the addition of the
PE metrics resulted in slightly negative values. The largest impact was Ant 1.6
and Ant 1.3, which resulted in a -0.08 change in the F-measure values. Still,
most of the changes are between the -0.05 and 0.05 ranges, indicating that the
change is minimal in most cases. We can conclude that the changes are small
overall, and in most cases, the F-measure values changed slightly.

The Velocity project gave one of the best results with the addition of the PE
metrics. The improvement in the weighted F-measure value can be observed
in Table 12.7.

Table 12.7: Weighted f-measure changes in the case of the Velocity project
across versions

Velocity 1.4 Velocity 1.5 Velocity 1.6

Velocity 1.4 0.03 0.09
Velocity 1.5 0.13 -0.00
Velocity 1.6 0.03 0.03

In almost every version combination, the addition of PE metrics improved
the F-measure value. If the 1.4 version was used as the training data, the
evaluation of the bug prediction improved on newer versions of the project.
Interestingly, using a newer version as a base and making predictions for an
older system also gave positive results.

In the case of cross-project evaluation, the Xerces 2.0 system’s weighted
F-measure changes were usually negative, as previously shown in Table 12.5.
In this instance, the model trained with Xerces 2.0 could not improve the

73

II. 12. Bug Prediction Capabilities

prediction for other projects. In this case, it is worth investigating what would
happen if the various Xerces versions were compared.

Table 12.8: Weighted f-measure changes in case of the Xerces project across
versions

Xerces 1.2 Xerces 1.3 Xerces 2.0

Xerces 1.2 0.02 -0.00
Xerces 1.3 0.02 0.06
Xerces 2.0 -0.01 -0.01

This comparison can be observed in Table 12.8. This table describes that
using an older Xerces version for training dataset with the added PE metrics
can improve the bug prediction capabilities for future Xerces versions. The
most notable change is when Xerces 1.3 was used as a training dataset, and
the 2.0 version was used to evaluate the predictions.

Based on these experiments, the addition of PE metrics to perform bug
prediction across multiple versions is a viable option.

74

13
Conclusions

This part presented a set of new metrics to define one aspect of Primitive
Obsession code smell. Mainly the over usage of primitively typed parameters.
First, we discussed the new Primitive Enthusiasm metric and its variants.
Investigated results of these formulae on a selected set of systems. In order to
do this, the metric calculation was implemented in a Java static code analyser.
The results show that Primitive Enthusiasm metrics can detect such methods,
classes that could indicate a truly primitive obsessed element in a system.

Second, the new metric’s connection with other metrics was presented,
and the bug prediction capabilities were discussed. For this, a cross-project
validation was done to see how the F-measure values are changed by adding
the metrics to the already existing metrics dataset. Although there were cases
where the trained models performed less adequately, overall there were more
improvements in the classification of bugged classes. A different approach was
also presented where a project version-based bug prediction evaluation was
done. In this case, the addition of the new PE metrics was also able to add
improvements in terms of weighted F-measure.

Based on these data, we recommend the adoption of the new Primitive En-
thusiasm metrics in real-world use-cases and other source code metric research
as it tries to quantify the previously less investigated Primitive Obsession code
smell.

75

II. 13. Conclusions

76

Part III

Appendices

77

A
Summary

Software maintenance is a big and diverse topic that focuses not only on fixing
defects found in applications, but also on software re-engineering, source code
analysis, calculation/evaluation of source code metrics, and detection of various
code bad smells. Out of these diverse topics the author worked on two areas
and the thesis is divided accordingly into two parts. The experiments with the
A+ programming language and the investigation of the Primitive Obsession
bad smell. Both of these topics are tightly related software maintenance and
software quality aspects.

I. Experiments with the A+ Programming Language

In this thesis point, one of the goals was to extend the lifetime of existing A+
applications by providing a new runtime that can be made faster and could be
maintained with less effort. In addition, the new object-oriented operations also
help the binding between .NET and A+ worlds making adoptions smoother.

In Chapters 4, 5, and 6 the contributions for the first thesis point are
discussed. This thesis point can be separated into the following two main
results.

79

III. A. Summary

1. A+.NET Implementation and Comparison of Runtimes

A+ is an array programming language [53] inspired by APL. It was created
more than 30 years ago to suite the needs of real-life financial computations and
even even nowadays, many critical applications are used in computationally-
intensive business environments. Unfortunately, the original interpreter-based
execution environment of A+ is implemented in C and is officially supported
on Unix-like operating systems only.

By creating a clean-room implementation on top of .NET, the A+.NET can
extend the lifetime of existing A+ applications and also makes it possible to
run them not just on Unix-like systems. To test and prototype the interpreter
the A+ language’s grammar was defined in ANTLR grammar format. Using
this new – previously non-existent – formalized grammar and the Dynamic
Language Runtime with the .NET framework the base of the interpreter was
built. Leveraging the capabilities of DLR the interoperability between A+ and
.NET was achieved. The methods to expose .NET elements into the A+.NET
runtime presented in the thesis could be useful for A+ and .NET developers
alike.

After the new A+.NET implementation was created, it was compared to
the original A+ runtime. Comparison was done in terms of script execution
runtime and source code/maintainability metrics. The runtime comparison
was done using a code fragment that was extracted from a real-life code base.
This code fragment performs URL encoding on an input string. By using
this script, the measurements show that the original interpreter is significantly
faster than the clean-room implementation. This is not surprising as the
original runtime had more time to add various optimizations. But, the ease of
exposing method into the A+.NET runtime makes it possible to replace parts
of the URL encoding A+ code. By replacing the A+ part where strings are
joined with the .NET equivalent method string join method, there was 30%
speedup. Going further, the replacement of the whole URL encoding function
with the .NET counterpart the execution time dropped to 20% of the time
measured for the reference implementation, which is equivalent to a 5-fold
speedup. This speedup make sense as there is no additional A+.NET overhead
when the .NET equivalent URL encoding is executed.

In terms of source code metrics, we determined functionally equivalent parts
between the two runtimes by using a set of A+ test scripts to calculate source
code function-level coverage. The two function sets, one in each system, is of
comparable size and of equivalent functionality and was used for further inves-

80

III. A. Summary

tigation into the maintainability of the two systems. We used the Columbus
toolchain to analyse both interpreter’s sources and as a result we got two size
metrics – LOC and NOS – and two complexity metrics – McCC and NLE –
for each function. The averages of NOS, McCC, and NLE, and the maximums
of all metrics show that the size and the complexity of the functions in the
reference implementation are higher than in A+.NET. We also experimented
and investigated derived metrics. The calculation of statements per line metric
(NOS/LOC) revealed that in the reference implementation the average number
of statements in every executable line of source code is about 3. Moreover, the
most “crowded” function contains 37 top-level statements in a line on average.
This instance turned out to be a single line function. Overall, 30% of the inves-
tigated functions of the reference interpreter have more than two statements
on a line on average. For the A+.NET variant this is 0%. The combination of
McCC and NOS metrics re-confirmed that circa 70% of the compared A+.NET
implementation functions are small and less complex methods. Overall, the
A+.NET version displayed better results in terms of maintainability.

2. A+.NET Language Extension

The second main result of this thesis point is the new A+ language extension. A
set of required operations is presented in order to allow access to various object-
oriented components in a language. These are the member access, member
set, indexing, and type cast operations. For these operations extra care was
taken to make sure that the new syntax and semantics do not collide with
existing elements of the language. The right-to-left evaluation order was kept
and the context handling of the language was not changed. In order to help
resolve ambiguous method calls a vector based type matching algorithm was
also discussed. Using these new operations A+ developers can quickly access
.NET classes in their code without writing wrapper methods. Furthermore,
these new operations are not strictly tied to the A+ language and could be
adapted for use in other languages.

The Author’s Contributions
The author worked on designing and developing the A+.NET clean-room

implementation. He designed the formal grammar for A+ that was previously
non-existent. The comparison and evaluation of the two A+ runtimes were
carried out by the author both in terms of runtime and in terms of source
code/maintainability metrics. The author constructed and formalized four new

81

III. A. Summary

operations in order to allow object-oriented components to be used in the A+
language. To resolve method call ambiguities, the author formalized a type
vector based approach.

The publications related to this thesis point are the following:

[24] Péter Gál and Ákos Kiss. Implementation of an A+ Interpreter for
.NET. In Proceedings of the 7th International Conference on Software
Paradigm Trends (ICSOFT 2012), pages 297-302, Rome, Italy, July 2012.
SciTePress.

[25] Péter Gál and Ákos Kiss. A Comparison of Maintainability Metrics
of Two A+ Interpreters. Proceedings of the 8th International Joint
Conference on Software Technologies (ICSOFT 2013), pages 292-297,
Reykjav́ık, Iceland, July 2013. SciTePress.

[23] Péter Gál, Csaba Bátori, and Ákos Kiss. Extending A+ with Object-
Oriented Elements: A Case Study for A+.NET. In 21st International
Conference on Computational Science and Its Applications (ICCSA 2021),
Proceedings, Part IX, volume 12957 of Lecture Notes in Computer Science
(LNCS), pages 141-153, Cagliari, Italy, September 2021. Springer. Best
paper award.

II. Primitive Enthusiasm Metrics

In this thesis point our goal was to quantify the “too many primitives” definition
seen in the description of the Primitive Obsession bad smell. This was achieved
by the creating of the Primitive Enthusiasm metrics and was shown that they
can be used to improve bug predictions.

In Chapters 10, 11, and 12 the contributions for the second thesis point
are discussed. This thesis point can be separated into the following two main
results.

3. Definition and Evaluation of Primitive Enthusiasm Metrics

A previously less investigated Primitive Obsession code smell is decomposed.
The original idea that “too many primitives are used” is a bit vague. In order
to resolve this, a concrete calculable metric was created to capture part of the
Primitive Obsession bad smell, and it is called Primitive Enthusiasm (PE). This
metric captures the number of primitively typed parameters for a method in a
given class and compares it the averages of the same class. Based on this metric

82

III. A. Summary

two other variants were created called Global Primitive Enthusiasm (GPE), and
Hot Primitive Enthusiasm (HPE). The original metric was renamed to Local
Primitive Enthusiasm (LPE). The GPE variant changes the metric’s formulae
in way that it is now compares the current function under investigation to
the whole system. HPE then incorporates both LPE and GPE results into a
single result. These metric calculations were implemented into the Open Static
Analyzer [6] framework to evaluate the PE metrics on selected systems. During
the evaluation two additional aspects were investigated. First, the option to
skip methods was added. For this there were two variants: to skip only setter
methods (SSM) or skip every method with just one parameter (SO). Based on
the results the SO variant proved to be better in terms of reducing noise in the
reported results. The other option added was related to Java wrapper classes
that could be treated as primitives. The experiment revealed that by treating
the wrapper classes as primitives the results did not change drastically. Based
on this it is a good idea to treat the wrapper classes as primitives.

4. The Bug Prediction Capabilities of the Primitive Enthusiasm
Metrics

After this, the bug prediction capabilities of the new metrics were investigated.
For this, an already existing bug dataset was used that contained pre-calculated
metrics. In order to add the PE metrics to this dataset, they had to be
aggergated to class-level. An interesting experiment was to see correlation
between the already existing metrics and the new PE metrics. Not surprisingly
there were positive correlations between PE and older metrics that are using
the number of parameters as their base. The bug prediction capabilities were
tested by adding the new metrics to the data set. The original and extended
datasets were trained and evaluated to see the F-measure changes between
them. Furthermore, this training and evaluation was done in two ways. First,
a cross-project based evaluation was performed on 33 selected systems. In 123
of the 1089 cases, the change in the weighted F-measure is greater or equal
than 0.05. And in 107 cases the changes were less than -0.05. In the second
experiment the training and evaluation was done across project versions. This
concluded that adding the PE metrics to perform bug prediction across multiple
versions is a viable option.

The Author’s Contributions
The author designed the original Primitive Enthusiasm metric. Implemented

83

III. A. Summary

the calculation of this metric into a static analyzer for Java systems. The
author participated in the selection of the analyzed systems and the evaluation
of the original Primitive Enthusiasm metric. He designed the experiment to
see how Java wrapper classes affect the metric results. Based on the Primitive
Enthusiasm metric, the LPE, GPE, and HPE metrics were formalized by the
author. With the usage of an existing bug dataset, correlations between the
new metrics and other existing ones were investigated by the author. For the
bug prediction capabilities, the target systems were selected by the author. He
executed and evaluated the cross-project based bug prediction experiment with
the addition of PE metrics. The version-based bug prediction investigation
was also done by the author.

The publications related to this thesis point are the following:

[26] Péter Gál and Edit Pengő. Primitive Enthusiasm: A Road to Primi-
tive Obsession. In The 11th Conference of PhD Students in Computer
Science (CSCS 2018), Volume of short papers, pages 134-137, Szeged,
Magyarország, June 2018.

[57] Edit Pengő and Péter Gál. Grasping Primitive Enthusiasm - Approach-
ing Primitive Obsession in Steps. In Proceedings of the 13th International
Conference on Software Technologies (ICSOFT 2018), pages 389-396,
Porto, Portugal, July 2018. SciTePress.

[22] Péter Gál. Bug Prediction Capability of Primitive Enthusiasm Met-
rics. In 21st International Conference on Computational Science and
Its Applications (ICCSA 2021), Proceedings, Part VII, volume 12955
of Lecture Notes in Computer Science (LNCS), pages 246-262, Cagliari,
Italy, September 2021. Springer.

84

B
Összefoglalás

A szoftverkarbantartás egy nagy és szerteágazó téma, amely nem csak a az alka-
lmazásokban talált hibák jav́ıtására koncentrál, hanem szoftver újratervezéssel,
forráskód metrikákkal, forráskód elemzéssel, és gyanús kódok detektálásával.
A disszertáció kettő fő tézis csoportba kategorizálja az elért eredményeket. Az
első tézis az A+ nyelvvel végzett ḱısérleteket taglalja, mı́g a második tézis az
ú.n. Primitive Obsession1 gyanús kóddal foglalkozik.

I. Kı́sérletek az A+ programozási nyelvvel

Az első tézispontban az egyik cél a meglévő A+ alkalmazások élettartamának
a meghosszabb́ıtása volt. Ez sikerült is, mivel az új .NET megvalóśıtás ámbár
lassabb jelenleg, de több platformon használható, forráskód metrikái jobban,
és könnyebben kiegésźıthető .NET környezetből érkező eljárásokkal. Valamint,
az új objektumorientált műveletek seǵıtségével az A+ és .NET világok között
egyszerűbb az átjárás.

A 4, 5, és 6 fejezetekben az első tézisponthoz tartozó eredmények kerülnek
bemutatásra. Ez a tézispont két fő eredményre osztható.

1Nincs elfogadott magyar ford́ıtása, szó szerinti jelentése “primit́ıv megszállottság”. A
primit́ıv t́ıpusok indokolatlanul túlzásba vitt használatát takarja.

85

III. B. Összefoglalás

1. A+.NET fejlesztése és a végrehajtó motorok összehasonĺıtása

Az A+ egy tömb alapú programozási nyelv [53], amelyet az APL ihletett. Több
mint 30 éve hozták létre a valós pénzügyi számı́tási igények kieléǵıtésére, és még
napjainkban is számos kritikus A+ alkalmazást használnak üzleti környezetben.
Sajnos az A+ eredeti, interpretert C nyelven implementálták, és hivatalosan
csak Unix-szerű operációs rendszereken támogatott.

Az A+.NET egy .NET alapon létrehozott A+ interpreter, mely lehetőséget
ad arra, hogy a meglévő A+ alkalmazások használati ideje hosszabbodjon, mivel
nem csak Unix-szerű rendszereken képes működni. Azonban, az interpreterhez
első lépésben az A+ nyelvtanát formalizáltuk, és az ANTLR [56] lexer-parser
generátorral használtuk fel. Az A+-nak eddig nem létezett formális nyelvtana.
A generált lexer-parser és a Dynamic Language Runtime használatával .NET
alapon készült el az értelmező alapja. A DLR képességeinek kihasználásával
megvalósult az átjárhatóság az A+ és a .NET világ között. A disszertációban
bemutatott eljárásokkal .NET fejlesztők képesek különféle eljárásokat, osztályo-
kat az A+ fejlesztők részre bocsájtani. Hasonlóan, a .NET fejlesztők is képesek
A+-ban ı́rt eljárásokat, adatokat elérni-

Miután elkészült az új A+.NET implementáció, összehasonĺıtottuk azt az
eredeti A+ interpreterrel. Az összehasonĺıtás során az A+ szkript végrehajtási
sebességét és az interpreterek forráskód/fenntarthatósági metrikáit vizsgáltuk.
A végrehajtási idő összehasonĺıtás egy valós kódbázisból származó kódrészlet
seǵıtségével történt. Ez a kódrészlet URL-kódolást végez egy bemeneti karak-
terláncon. Ennek használatával a mérések azt mutatták, hogy az eredeti
interpreter jelentősen gyorsabb, mint a .NET implementáció. Ez nem meg-
lepő, mivel az eredeti futtatókörnyezetnek több mint 20 éve volt az opti-
malizálásra. De .NET esetében azzal, hogy egyszerűen lehet .NET eljárásokat
az A+ szkripteknek használhatóvá tenni, lehetőséget adott arra, hogy az
URL-kódolást megvalóśıtó eljárás egy vagy teljes részét lecseréljük. Azzal,
hogy lecseréltük a karakterek összefűzéséért felelős kódrészletet egy megfelelő
.NET eljárással, 30%-os gyorsulást értünk el a normál A+.NET végrehajtási
sebességhez képest. Továbbhaladva a ḱısérlettel a teljes URL-kódolásét felelős
eljárást egy .NET alternat́ıvával helyetteśıtve, a végrehajtási idő a referen-
cia implementáció idejének a 20%-ra csökkent A+.NET esetén. Ez ötszörös
gyorsulásnak felel meg.

Annak érdekében, hogy a két értelmezőt megfelelően össze tudjuk ha-
sonĺıtani forráskód metrikákkal, elsőként mindkét rendszerben meghatároz-
tuk a funkcionálisan azonos részeket. Ezt oly módon tettük, hogy A+ teszt

86

III. B. Összefoglalás

szkripteket használva meghatároztuk a lefedett eljárásokat. Az ı́gy meghatáro-
zott részhalmazok összehasonĺıtható méretűek a két rendszerben és ugyanazokat
a funkcionalitásokat látják el összességében. A forráskód metrikák előálĺıtásá-
hoz a Columbus [18] eszközt használtuk fel, mely mindkét forráskódra kiszámolt
különféle forráskód metrikákat. Kettő méret alap metrika – LOC és NOS –
és kettő komplexitást reprezentáló metrikát – McCC és NLE – használtuk
fel a további vizsgálatok során. A NOS, McCC és NLE átlagai és maximum
értékei azt mutatták, hogy a referencia implementációban a függvények nagyob-
bak és bonyolultabbak, mint az A+.NET esetében. Kı́sérletünk folytatásával,
kettő származtatott metrikát is megvizsgáltunk. Az átlagos soronkénti utaśıtás
(NOS/LOC) metrika értékek azt mutatták, hogy az eredeti implementációban
átlagosan 3 utaśıtás található. Ezen ḱıvül egy kiŕıvó esetben az egyik “leg-
zsúfoltabb” eljárásban 37 utaśıtás található egy sorban. Ez az eset ráadásul
egy egy soros eljárás. Összességében, a referencia megvalóśıtásban a vizsgált
eljárások 30%-ban több mint két utaśıtást találtunk egy sorban. Ezzel szemben
a .NET változatban nem volt egy ilyen eljárás se. A McCC és az NOS metrikák
kombinációja megerőśıtette, hogy az összehasonĺıtott eljárások a A+.NET eset-
ben kb. 70%-a kicsi és kevésbé összetett. Összességében az A+.NET változat
jobb eredményeket mutatott a szoftver karbantarthatóság tekintetében.

2. A+.NET nyelv kiterjesztése

A tézis második fő eredménye egy A+ nyelvi kiterjesztés. Bemutatásra került
egy sor művelet mely seǵıtségével lehetőség adódik arra hogy különböző ob-
jektumorientált elemekhez férjen hozzá dinamikusan egy A+ fejlesztő. Ezek
a műveletek az adattag hozzáférés, adattag módośıtás, indexelés és t́ıpus
változtató eljárások. A eljárások kidolgozása során különösen figyeltünk arra,
hogy az újonnan bevezetett szintaxis és szemantika ne ütközzön a meglévő
nyelvi elemekkel. Megtartottuk a jobbról-balra történő kiértékelési szabályt és
az A+ nyelv kontextus kezelése sem változott. Annak érdekében, hogy megold-
juk a nem egyértelmű eljáráśıvási eseteket egy vektor alapú t́ıpusillesztési
algoritmust dolgoztunk ki. Ezek új műveltek használatával az A+ fejlesztők
könnyebben hozzáférhetnek a különféle .NET osztályokhoz, azok adattagjai-
hoz anélkül, hogy csomagoló eljárásokat kelljen ı́rniuk. Érdemes megemĺıteni,
hogy az új nyelvi szabályok nem A+ nyelv függőek. Ezek alkalmazhatóak
lennének más nyelv esetében is ahol hasonlóan hiányoznak az objektumori-
entált komponensek. Fontos azonban megemĺıteni, hogy ettől még az A+ nem
lett objektumorientált, mivel osztály megadására még mindig nincs lehetőség

87

III. B. Összefoglalás

A+-ban.

A szerző hozzájárulásai
A szerző megtervezte és fejlesztette A+.NET interpretert. Megtervezte

az A+ formális nyelvtanát ANTLR nyelvtan formátumban. Az eredeti és
új futtató környezetet összehasonĺıtotta A+ szkript végrehajtási sebesség és
forráskód/karbantarthatósági metrikák tekintetében. A szerző megtervezte és
formalizálta a külső objektumok kezelését lehetővé tevő eljárásokat. Ehhez a
szerző megalkotta a vektor alapú az A+ nyelvben való felhasználását. Ehhez a
szerző megalkotta a vektor alapú t́ıpusillesztési algoritmust.

Az első tézisponthoz a következő publikációk kapcsolódnak:

[24] Péter Gál and Ákos Kiss. Implementation of an A+ Interpreter for
.NET. In Proceedings of the 7th International Conference on Software
Paradigm Trends (ICSOFT 2012), pages 297-302, Rome, Italy, July 2012.
SciTePress.

[25] Péter Gál and Ákos Kiss. A Comparison of Maintainability Metrics
of Two A+ Interpreters. Proceedings of the 8th International Joint
Conference on Software Technologies (ICSOFT 2013), pages 292-297,
Reykjav́ık, Iceland, July 2013. SciTePress.

[23] Péter Gál, Csaba Bátori, and Ákos Kiss. Extending A+ with Object-
Oriented Elements: A Case Study for A+.NET. In 21st International
Conference on Computational Science and Its Applications (ICCSA 2021),
Proceedings, Part IX, volume 12957 of Lecture Notes in Computer Science
(LNCS), pages 141-153, Cagliari, Italy, September 2021. Springer. Best
paper award.

II. Primitive Enthusiasm2 metrikák

Ebben a tézispontban a fő célunk a Primitive Obsession léırásában található
“túl sok primit́ıv t́ıpus használata” számszerűśıtése volt. Ehhez megalkot-
tuk a Primitive Enthusiasm metrikákat és megvizsgáltuk a hiba előrejelzési
képességét.

A 10, 11, és 12 fejezetekben a második tézisponthoz való hozzájárulásokat
tárgyaljuk. Ez a tézispont is két fő eredményre osztható.

2A Primitive Obsession nevéhez hasonlóan a Primitive Enthusiasm metrikának sincs
hivatalos magyaŕıtása. Neve szó szerinti ford́ıtásban “primit́ıv(ekért) lelkesedés”.

88

III. B. Összefoglalás

3. A Primitive Enthusiasm Metrikák Definiálása és Kiértékelése

Ebben a részeben egy korábban kevésbé vizsgált gyanús kóddal foglalkoztunk,
a Primitive Obsession-el. Az eredeti gondolat, miszerint “túl sok primit́ıv
adatt́ıpus van használva” nem jól behatárolható. Ezért egy konkrétan kiszámı́t-
ható metrikát hoztunk létre ennek a gyanús kódnak az egyik aspektusának a
mérésére. Ezt Local Primitive Enthusiasm (LPE)-nak neveztük el. A metrika
egy adott eljárás primit́ıv t́ıpusú paramétereinek az arányát hasonĺıtja össze az
aktuálisan vizsgált osztályban található primit́ıv paramétereknek az arányával.
Az ötlet az, hogy egy globális határérték megadása helyett az osztály saját maga
adja meg a limitet mikor gyanús egy eljárás. Ennek a metrikának számı́tását
beleintegráltuk az Open Static Analyzer [6] keretrendszerbe és három Java
alapú rendszeren kiértékeltük. A kiértékelés során megvizsgáltuk, hogy mi
történik ha kihagyunk eljárásokat amikben csak egy argumentum van és akkor
ha a “setter” eljárásokat hagyunk ki. Ebben az esetben a jobb eredményt az
hozta, ha minden olyan eljárást kihagyunk a kiértékelésből amiben csak egy
argumentum van. Ezt a stratégiát ajánlott a későbbiekben is használni. A
másik stratégia a Java csomagoló osztályokkal kapcsolatos. Ebben ḱısérletben
megvizsgáltuk, hogy ha a csomagoló osztályokat primit́ıv t́ıpusoknak tekintjük
vagy éppen ellentétben nem tekintjük annak, miként változnak a megtalált
eljárások mennyiségei. A ḱısérlet eredménye az, hogy célszerű a csomagoló
osztályokat is primit́ıv t́ıpusoknak tekinteni mivel a kiértékelt rendszereken alig
fordultak elő és nem igazán változtak az eredmények. Az LPE metrika alapján
kettő másik változatot is késźıtettünk, A Global Primitive Enthusiasm (GPE)
és a Hot Primitive Enthusasm (HPE)-t. A GPE változat esetén az aktuális
függvény a rendszerben található összes eljáráshoz van arányośıtva, ezzel egy
más határértéket adva mint az LPE esetén. A HPE pedig az LPE-t és GPE-t
kombinálja egyetlen eredménybe.

4. A Primitive Enthusiasm metrikák hiba előrejelzési képességei

A tézispont második fő eredményeként megvizsgáltuk a Primitive Enthusi-
asm metrikák hiba előrejelzési képességeit. Ehhez egy már meglévő hiba
adatbázist [19] használtunk fel, mely már tartalmazott meglévő metrikákat. Így
ezt csak a PE metrikákkal kellett kiegésźıteni. Azonban, ehhez a PE metrikákat
osztály szinten aggregálni kellett. Egy másik érdekes ḱısérletben megnéztük,
hogy mekkora korreláció van a meglévő metrikák és a PE metrikák között.
Bizonyos eljárás számosságot figyelembe vevő metrika esetén kapcsolat van a
PE metrikákkal. De összességében a PE metrikák egy alternat́ıvát nyújtanak

89

III. B. Összefoglalás

az eddigi metrikákhoz képest. A hiba-előrejelzési változást az eredeti és a
PE metrikákkal kibőv́ıtett adathalmazon végeztük el. A tańıtás és kiértékelés
kétféleképpen történt. Az első esetben, 33 kijelölt projektet egyenként min-
den más projekttel egy-egy tańıtás-kiértékelés sorozatnak vetettük alá. A
kapott súlyozott F-mértékek változását figyelve állaṕıtottuk meg, hogy javul-e
a hiba előrejelzési képesség. Az 1089 esetből 123 esetben a súlyozott F-mérték
változása nagyobb vagy egyenlő 0,05-nél, és 107 esetben a változás kisebb volt
-0,05-nél. A másik esetben ugyanazon projekt különböző verzióin történt a
tańıtás és kiértékelés, ezzel modellezve azt, hogy egy szoftver fejlesztés során
folyamatosan használják a régebbi rendszeren szerzett metrika adatokat a hiba
előrejelzéshez. Mindkét ḱısérlet alapján arra a következtetésre jutottunk, hogy
a PE metrikák hozzáadása hibaadatbázisokhoz seǵıthet a hibák előrejelzésében.
A második tézispont kettő fő eredménye a PE metrikák megalkotása, azoknak
a kiértékelése és a hiba-előrejelzési képességének a vizsgálata.

A szerző hozzájárulásai
A szerző tervezte meg az eredeti Primitive Enthusiasm metrikát. Imple-

mentálta ennek a metrikának a kiszámı́tását egy Java statikus elemezőben. A
szerző részt vett a rendszerek kiválasztásában és az eredeti Primitive Enthu-
siasm metrika kiértékelésében ezen a rendszereken. Megtervezte a ḱısérletet
annak megállaṕıtására, hogy a Java wrapper osztályok hogyan befolyásolják
a metrika eredményeit. A Primitive Enthusiasm metrika alapján a szerző
formalizálta az LPE, GPE és HPE metrikákat. Egy meglévő hiba adathal-
maz felhasználásával korrelációkat mutatott ki az új metrikák és más meglévő
metrikák között. A hiba előrejelzési képességek vizsgálatához kiválasztotta
a vizsgálandó rendszereket. Kidolgozta, végrehajtotta és kiértékelte a kétféle
módszert a hiba előrejelzéshez, PE metrikák hozzáadásával.

Az második tézisponthoz a következő publikációk kapcsolódnak:

[26] Péter Gál and Edit Pengő. Primitive Enthusiasm: A Road to Primi-
tive Obsession. In The 11th Conference of PhD Students in Computer
Science (CSCS 2018), Volume of short papers, pages 134-137, Szeged,
Magyarország, June 2018.

[57] Edit Pengő and Péter Gál. Grasping Primitive Enthusiasm - Approach-
ing Primitive Obsession in Steps. In Proceedings of the 13th International
Conference on Software Technologies (ICSOFT 2018), pages 389-396,
Porto, Portugal, July 2018. SciTePress.

90

[22] Péter Gál. Bug Prediction Capability of Primitive Enthusiasm Met-
rics. In 21st International Conference on Computational Science and
Its Applications (ICCSA 2021), Proceedings, Part VII, volume 12955
of Lecture Notes in Computer Science (LNCS), pages 246-262, Cagliari,
Italy, September 2021. Springer.

91

92

Acknowledgments

Firstly, I would like to thank Dr. Ákos Kiss, my supervisor, for his professional
help and unique opinions during my PhD studies. Secondly, to co-author Csaba
Bátori, who also shared the bizarre endeavour known as the A+ language, and
to my other co-author and PhD study partner, Edit Pengő. Finally, I would
also like to express my gratitude for the continuous support of my mother, my
grandmother and my whole family

• Part ot this thesis was supported by grant NKFIH-1279-2/2020 of the
Ministry for Innovation and Technology, Hungary.

• This thesis was partially supported by the EU-funded Hungarian national
grant GINOP-2.3.2-15-2016-00037 titled “Internet of Living Things” and
by the project “Integrated program for training new generation of sci-
entists in the fields of computer science”, no EFOP-3.6.3-VEKOP-16-
2017-0002. Part of this work was supported by the European Union and
co-funded by the European Social Fund.

• This thesis was partially supported by the EU-supported Hungarian
national grant GINOP-2.3.2-15-2016-00037 and by grant NKFIH-1279-
2/2020 of the Ministry for Innovation and Technology, Hungary.

93

94

Bibliography

[1] A+.NET implementation. https://github.com/elecro/aplusdotnet/

[Last accessed: 1 May 2022].

[2] Apache Commons Math. https://github.com/apache/commons-math.
[Last accessed: 3 May 2022].

[3] Apache Log4j. https://github.com/apache/log4j. [Last accessed: 3
May 2022].

[4] Joda-Time. https://github.com/JodaOrg/joda-time. [Last accessed:
3 May 2022].

[5] Mono. https://www.mono-project.com/ [Last accessed 22 April 2022].

[6] Department of Software Engineering, University of Szeged. Open
Static Analyser. https://github.com/sed-inf-u-szeged/

OpenStaticAnalyzer. [Last accessed: 3 May 2022].

[7] Fischer Black and Myron Scholes. The pricing of options and corporate
liabilities. Journal of Political Economy, 81(3):637–654, May–June 1973.

[8] Joe Blaze. VisualAPL documentation. http://forum.apl2000.com/

viewtopic.php?f=4&t=626&p=2383&hilit=documentation#p2383 [Last
accessed: 23 April 2022].

[9] Joe Blaze. Prior and current versions of VisualAPL. APL2000 Devel-
oper Network Forum, http://forum.apl2000.com/viewtopic.php?t=

447 [Last accessed: 22 April 2022], April 2009.

[10] Barry Boehm and Victor R. Basili. Software defect reduction top 10 list.
Computer, 34(1):135–137, January 2001.

95

https://github.com/elecro/aplusdotnet/
https://github.com/apache/commons-math
https://github.com/apache/log4j
https://github.com/JodaOrg/joda-time
https://www.mono-project.com/
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
http://forum.apl2000.com/viewtopic.php?f=4&t=626&p=2383&hilit=documentation#p2383
http://forum.apl2000.com/viewtopic.php?f=4&t=626&p=2383&hilit=documentation#p2383
http://forum.apl2000.com/viewtopic.php?t=447
http://forum.apl2000.com/viewtopic.php?t=447

[11] Robert G. Brown. Object oriented apl: An introduction and overview. In
Proceedings of the International Conference on APL-Berlin-2000 Confer-
ence, APL ’00, pages 47–54, New York, NY, USA, 2000. ACM.

[12] Leigh Clayton, Mark D. Eklof, and Eugene McDonnell. ISO/IEC
13751:2000(E): Programming Language APL, Extended. Internation Stan-
dards Organization, June 2000.

[13] Michael Coughlan. Beginning COBOL for Programmers. Apress, USA,
1st edition, 2014.

[14] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug
prediction approaches. In 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), pages 31–41, 2010.

[15] Dyalog Ltd. Dyalog APL. http://www.dyalog.com/ [Last accessed: 26
March 2022].

[16] ECMA International. ECMA-334 - C# Language Specification. 5th edition,
December 2017. https://www.ecma-international.org/wp-content/

uploads/ECMA-334_5th_edition_december_2017.pdf [Last accessed 14
May 2022].

[17] N.L. Ensmenger. The Computer Boys Take Over: Computers, Program-
mers, and the Politics of Technical Expertise. History of Computing. MIT
Press, 2012.

[18] Rudolf Ferenc, Árpád Beszédes, Mikko Tarkiainen, and Tibor Gyimóthy.
Columbus – reverse engineering tool and schema for C++. In Proceedings
of the 18th International Conference on Software Maintenance (ICSM
2002), pages 172–181, Montréal, Canada, 2002. IEEE.

[19] Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor
Gyimóthy. A public unified bug dataset for java and its assessment re-
garding metrics and bug prediction. Software Quality Journal, Jun 2020.

[20] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

[21] Eibe Frank, Mark A. Hall, and Ian H. Witten. Online Appendix for
“Data Mining: Practical Machine Learning Tools and Techniques”. Morgan
Kaufmann, Fourth Edition, 2016.

96

http://www.dyalog.com/
https://www.ecma-international.org/wp-content/uploads/ECMA-334_5th_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-334_5th_edition_december_2017.pdf

[22] Péter Gál. Bug prediction capability of primitive enthusiasm metrics. In
Computational Science and Its Applications – ICCSA 2021: 21st Inter-
national Conference, Cagliari, Italy, September 13–16, 2021, Proceedings,
Part VII, pages 246–262, Berlin, Heidelberg, 2021. Springer-Verlag.

[23] Péter Gál, Csaba Bátori, and Ákos Kiss. Extending A+ with object-
oriented elements: A case study for A+.NET. In Computational Sci-
ence and Its Applications – ICCSA 2021: 21st International Conference,
Cagliari, Italy, September 13–16, 2021, Proceedings, Part IX, page 141–153.
Springer, 2021.

[24] Péter Gál and Ákos Kiss. Implementation of an A+ interpreter for .NET.
In Proceedings of the 7th International Conference on Software Paradigm
Trends (ICSOFT 2012), pages 297–302, Rome, Italy, July 24–27, 2012.
SciTePress.

[25] Péter Gál and Ákos Kiss. A comparison of maintainability metrics of two
A+ interpreters. In Proceedings of the 8th International Joint Conference
on Software Technologies - ICSOFT-EA, (ICSOFT 2013), pages 292–297.
INSTICC, SciTePress, 2013.

[26] Péter Gál and Edit Pengő. Primitive enthusiasm: A road to primitive
obsession. In The 11h Conference of PhD Students in Computer Science,
pages 134–137. University of Szeged, 2018.

[27] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., USA, 1995.

[28] Jean Jacques Girardot and Sega Sako. An object oriented extension to
apl. In Proceedings of the International Conference on APL: APL in
Transition, APL ’87, pages 128–137, New York, NY, USA, 1987. ACM.

[29] Aakanshi Gupta, Bharti Suri, and Sanjay Misra. A systematic literature
review: Code bad smells in java source code. In Computational Science
and Its Applications – ICCSA 2017, pages 665–682, Cham, 2017. Springer.

[30] Tibor Gyimóthy, Rudolf Ferenc, and István Siket. Empirical validation of
object-oriented metrics on open source software for fault prediction. IEEE
Transactions on Software Engineering, 31(10):897–910, 2005.

97

[31] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. Some code smells have
a significant but small effect on faults. ACM Transactions on Software
Engineering and Methodology, 23(4), September 2014.

[32] Maurice H. Halstead. Elements of Software Science (Operating and Pro-
gramming Systems Series). Elsevier Science Inc., USA, 1977.

[33] Mark Hammond. Python for .NET: Lessons learned. ActiveState
Tool Corporation, November 2000. https://web.archive.org/web/

20060925092941/http://starship.python.net/crew/mhammond/

dotnet/PythonForDotNetPaper.doc [Last accessed: 29 April 2022].

[34] Jim Hugunin. Python and Java – the best of both worlds. In Proceedings
of the 6th International Python Conference, pages 11–20, San Jose, CA,
USA, October 1997.

[35] Jim Hugunin. IronPython: A fast Python implementation for .NET and
Mono. In PyCON 2004, Washington, DC, USA, March 2004.

[36] ISO 1989:1978, Programming languages - COBOL. Standard, February
1978.

[37] ISO 1989:1985, Programming languages - COBOL. Standard, December
1985.

[38] ISO/IEC 1989:2002, Information technology - Programming languages -
COBOL. Standard, December 2002.

[39] ISO/IEC 1989:2014, Information technology - Programming languages,
their environments and system software interfaces - Programming language
COBOL. Standard, June 2014.

[40] R. Jayanthi and M. Florence. Software defect prediction techniques using
metrics based on neural network classifier. Cluster Computing, 22:77–88,
2019.

[41] Marian Jureczko and Lech Madeyski. Towards identifying software project
clusters with regard to defect prediction. In Proceedings of the 6th In-
ternational Conference on Predictive Models in Software Engineering,
PROMISE ’10. ACM, 2010.

98

https://web.archive.org/web/20060925092941/http://starship.python.net/crew/mhammond/dotnet/PythonForDotNetPaper.doc
https://web.archive.org/web/20060925092941/http://starship.python.net/crew/mhammond/dotnet/PythonForDotNetPaper.doc
https://web.archive.org/web/20060925092941/http://starship.python.net/crew/mhammond/dotnet/PythonForDotNetPaper.doc

[42] Morten Kromberg, Jonathan Manktelow, and John Scholes. APL# - an
APL for Microsoft.Net. In Conference USB stick of APL2010, Berlin,
Germany, September 2010.

[43] Morten J. Kromberg. Arrays of objects. In Proceedings of the 2007
Symposium on Dynamic Languages, DLS ’07, page 20–28, New York, NY,
USA, 2007. Association for Computing Machinery.

[44] P. DeMarco L. Bernardin, P. Chin et al. Maple Programming Guide.
Maplesoft, 2011.

[45] Steven A. Lowe. kata-2-tinytypes. https://github.com/stevenalowe/

kata-2-tinytypes. [Last accessed: 3 May 2022].

[46] Mika V. Mäntylä, Jari Vanhanen, and Casper Lassenius. A taxonomy
and an initial empirical study of bad smells in code. In Proceedings of the
International Conference on Software Maintenance. ICSM, pages 381–384.
IEEE, 2003.

[47] Fabio Mascarenhas and Roberto Ierusalimschy. LuaInterface: Scripting the
.NET CLR with Lua. Journal of Universal Computer Science, 10(7):892–
909, July 2004.

[48] MathWorks. Matlab Object-Oriented Programming, 2021. https://www.

mathworks.com/help/pdf_doc/matlab/matlab_oop.pdf [Last accessed:
15 June 2021].

[49] Thomas J. McCabe. A complexity measure. IEEE Transactions on Soft-
ware Engineering, (4):308–320, 1976.

[50] Tim Menzies, Zach Milton, Burak Turhan, Bojan Cukic, Yue Jiang, and
Ayse Bener. Defect prediction from static code features: Current results,
limitations, new approaches. Automated Software Engineering, 17:375–407,
2010.

[51] Microsoft. Dynamic Language Runtime Overview. https://docs.

microsoft.com/en-us/dotnet/framework/reflection-and-codedom/

dynamic-language-runtime-overview [Last accessed: 28 April 2022].

[52] Leon Moonen and Aiko Yamashita. Do code smells reflect important
maintainability aspects? In Proceedings of the 2012 IEEE International
Conference on Software Maintenance. ICSM, pages 306–315. IEEE, 2012.

99

https://github.com/stevenalowe/kata-2-tinytypes
https://github.com/stevenalowe/kata-2-tinytypes
https://www.mathworks.com/help/pdf_doc/matlab/matlab_oop.pdf
https://www.mathworks.com/help/pdf_doc/matlab/matlab_oop.pdf
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-language-runtime-overview

[53] Morgan Stanley. A+ Language Reference, 1995–2008. https://github.

com/PlanetAPL/a-plus/blob/master/docs/language_reference.pdf

[Last accessed: 15 August 2022].

[54] David Mosberger. The libunwind project. http://www.nongnu.org/

libunwind/index.html [Last accessed: 15 April 2022].

[55] Paul Oman and Jack Hagemeister. Metrics for assessing a software system’s
maintainability. In Proceedings of the 1992 IEEE Conference on Software
Maintenance, pages 337–344, Orlando, FL, USA, 1992. IEEE.

[56] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Programmers. Pragmatic Bookshelf, first edition,
May 2007.

[57] Edit Pengő. and Péter Gál. Grasping primitive enthusiasm - approaching
primitive obsession in steps. In Proceedings of the 13th International
Conference on Software Technologies. ICSOFT, pages 389–396. INSTICC,
SciTePress, 2018.

[58] Ricardo Pérez-Castillo, Ignacio Garćıa-Rodŕıguez de Guzmán, and Mario
Piattini. Mimos, system model-driven migration project. In 2013 17th
European Conference on Software Maintenance and Reengineering, pages
445–448, 2013.

[59] Andy H. Register. A Guide to MATLAB Object-Oriented Programming.
Scitech Pub Inc, 2007.

[60] Reuters. Cobol blues. Technical report. https://fingfx.

thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/

index.html [Last accessed: 2 May 2022].

[61] Naveen Roperia. Jsmell: A bad smell detection tool for java systems.
Master’s thesis, Maharishi Dayanand University, 2009.

[62] Harry M Sneed. Estimating the costs of a reengineering project. In Pro-
ceedings of the 12th Working Conference on Reverse Engineering (WCRE
2005), pages 111–119, Pittsburgh, PA, USA, 2005. IEEE.

[63] Harry M Sneed. Migrating from COBOL to Java. In Proceedings of
the 26th IEEE International Conference on Software Maintenance (ICSM
2010), pages 1–7, Timisoara, Romania, 2010. IEEE.

100

https://github.com/PlanetAPL/a-plus/blob/master/docs/language_reference.pdf
https://github.com/PlanetAPL/a-plus/blob/master/docs/language_reference.pdf
http://www.nongnu.org/libunwind/index.html
http://www.nongnu.org/libunwind/index.html
https://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
https://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
https://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html

[64] Social Security Administration Office of the Inspector General. The Social
Security Administration’s Software Modernization and Use of Common
Business Oriented Language, May 2012. https://oig-files.ssa.gov/

audits/summary/Summary%2011132.pdf [Last accessed: 2 May 2022].

[65] Sun Microsystems. JSR-223: Scripting for the Java Platform, December
2006.

[66] Sun Microsystems. JSR-292: Supporting Dynamically Typed Languages
on the Java Platform, July 2011.

[67] Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A public bug database
of github projects and its application in bug prediction. In Computational
Science and Its Applications – ICCSA 2016, volume 9789, pages 625–638.
Springer, 2016.

[68] R. S. Wahono. A systematic literature review of software defect prediction:
Research trends, datasets, methods and frameworks. Journal of Software
Engineering, 1:1–16, 2015.

[69] Robert Wingate. COBOL Basic Training Using VSAM, IMS, DB2 and
CICS. 1st edition, 2020.

[70] Aiko Yamashita and Leon Moonen. To what extent can maintenance
problems be predicted by code smell detection? - An empirical study.
Information and Software Technology, 55(12):2223–2242, 2013.

[71] Zhifeng Yu and V. Rajlich. Hidden dependencies in program comprehen-
sion and change propagation. In Proceedings 9th International Workshop
on Program Comprehension. IWPC 2001, pages 293–299, 2001.

[72] Min Zhang, Tracy Hall, and Nathan Baddoo. Code bad smells: A review
of current knowledge. Journal of Software Maintenance and Evolution,
23(3):179–202, April 2011.

[73] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting
defects for eclipse. In Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, PROMISE ’07, page 9. IEEE,
2007.

101

https://oig-files.ssa.gov/audits/summary/Summary%2011132.pdf
https://oig-files.ssa.gov/audits/summary/Summary%2011132.pdf

	Foreword
	Introduction
	I Experiments with the A+ Programming Language
	Introduction
	Background
	The A+ Programming Language
	Dynamic Language Runtime
	Related Works

	A+.NET Implementation
	Defining the Grammar of the A+ Language
	Architecture Overview
	A+ and .NET Integration

	Comparing A+ Implementations
	Run Time Experiments
	Source Code Metrics
	Maintainability Metrics

	A+.NET Language Extension
	Accessing Methods, Variables, and Properties
	Variable and Property Modification
	Indexers
	Type Casting
	Type Matching

	Conclusions

	II Primitive Enthusiasm Metrics
	Introduction
	Background
	Definition of Primitive Obsession
	Challenges using Primitive Obsession
	Bug Prediction and Datasets

	Defining Primitive Enthusiasm
	Local Primitive Enthusiasm
	Global Primitive Enthusiasm
	Hot Primitive Enthusiasm
	Primitive Enthusiasm and Wrapper Classes

	Metric Calculation Evaluation
	Eliminated Methods
	Results
	Exclusion Strategy
	Effect of Wrapper Classes
	Reports on Primitive Enthusiasm Metrics

	Bug Prediction Capabilities
	Calculating the Metrics
	Information on Selected Systems

	Correlation Between Metrics
	Cross-project Bug Prediction
	Bug Prediction Across Versions

	Conclusions

	III Appendices
	Summary
	Összefoglalás
	Bibliography

