Machine Learning based analysis of users’

online behaviour

Gabor Korosi

Supervisor: Dr. Richard Farkas

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
OF THE UNIVERSITY OF SZEGED

University of Szeged

Doctoral School of Computer Science

March 2022

Preface

The various data logging systems transmit a huge amount of information about their users’ online
behaviour patterns, which is easily accessible, especially since the availability of open databases. The
goal of behavioural analysis is to predict a particular reaction to different topics. Early approaches
favoured manual data processing and traditional machine learning methods. Today, however, ad-
vances in machine learning have made it possible to solve these time-consuming pre-processing tasks
automatically. This thesis presents a wide range of techniques and experiments on two databases
that push the boundaries of state-of-the-art techniques on traditional Machine Learning and Deep
Learning networks. Generally, behavioural analysis is performed on aggregated data from time se-
ries, but several studies have pointed out that a great amount of information is lost with cumulative
data and that it is therefore worth working with raw data. This dissertation investigates the applica-
bility and effectiveness of Deep Learning method based predictive models using aggregated and raw
data, using continuous and discrete time series, and as a result, provides insights into the operation

of predictive models for MOOC courses and webshops.

iii

Acknowledgments

First of all, T would like to thank my supervisor, Dr. Richard Farkas, for his guidance and for
supporting my work with his useful comments. I am indebted to my colleague Dr. Vink6é Tamés,
who helped me with the webshop behavior analysis. I am indebted to Stanford University and Havasi
Ferenc, who produced the datasets which enabled me to work on the relevant problems discussed
here. I would also like to thank the anonymous reviewers of my publications for their useful comments
and suggestions. I would like to thank Dr. Livia Szedmina for scrutinizing and correcting this thesis
from a linguistic point of view. I would like to thank my wife Anita for her endless love, support
and inspiration. Last, but not least, I wish to thank my family and friends for their constant love
and support. I would like to dedicate this thesis to them as a way of expressing my gratitude
and appreciation. This dissertation was supported by the National Research, Development and
Innovation Office of Hungary through the Artificial Intelligence National Excellence Program (grant
no.: 2018-1.2.1-NKP-2018-00008) and by the Ministry of Innovation and Technology NRDI Office
within the framework of the Artificial Intelligence National Laboratory Program. I am grateful
for this support, which definitely acted as an accelerator for the submission of this thesis. I am
also thankful to CAROL (Center for Advanced Research through Online Learning), of Stanford

University for providing me with the dataset necessary to conduct my research.

Contents

Preface
Acknowledgments
1 Introduction

2 Background

2.1 Online user behavior analysis
2.2 E-commerce user behaviour analysis oo
2.3 Educational data mining oL Lo
24 Typeofdata e
2.5 Prediction methods and algorithms L oo
2.5.1 Evaluation methodology
2.5.2 Classic Machine Learning methods
2.5.3 Neural Network based predictors for sequential data
2.6 Related work in the analysis of users’ online behavior

User behaviour analysis from high-level log data

3.1 Imtroduction L
3.2 Related works L
3.2.1 Behavior prediction in e-commerce
3.2.2 Behavior prediction methods,
3.2.3 Sales promotion prediction Lo
3.3 Problem Statement
3.4 Dataset L
3.5 Methodology e
3.6 Experimental setup
3.7 Results. e
3.7.1 Classification

vii

© o ot ot !

10
10
11
15
23

3.8

3.72 Regression.o
3.7.3 DISCussion e e e

Contributions

Educational performance prediction from middle-level click-stream data

4.1
4.2
4.3
4.4

4.5

4.6
4.7
4.8

Introduction
Related works oL
E-learning logger module layer o
Collected dataset
4.4.1 Datacleaning e
4.4.2 Preliminary investigation oo oo
Machine learning experiments
4.5.1 Featurespaceo
4.5.2 Feature selection Lo
4.5.3 Prediction Models
Experimental results
Discussion Lo

Contributions e

MOOC performance prediction by Deep Learning from raw clickstream data

5.1
5.2

5.3

5.4
5.5
5.6
5.7

Introduction oL
Related works oL L
5.2.1 Predicting the MOOC dropout rates
5.2.2 Cumulative feature representation in MOOCs
5.2.3 Deep Learning methods in MOOC performance prediction
Methodology e e
5.3.1 Data preprocessing e e e
5.3.2 Evaluation methodology
5.3.3 Baseline solutions
5.3.4 Deep Learning architecture o L.
Dataset o e
Results. o e
Discussion oL e
Contributions L

Deep learning models and interpretations for MOOC performance prediction

6.1
6.2

Introduction e e e e e e e e
Related Work e e e e e e

35
35
36
37
40
40
42
43
43
45
45
46
47
48

51
51
92
52
93
54
o4
54
%)
56
96
o8
99
61
64

6.2.1 MOOC clickstream data analysis 66

6.2.2 Neural models 67
6.2.3 Embedding e 67
6.3 Dataset e 68
6.4 Embedding-based Multivariate Sequence Regression 68
6.5 Regression results 69
6.6 Interpretations L 71
6.6.1 Embedding spaces L e 72
6.6.2 Temporal saliencyo 73
6.6.3 User behavior clustering oL oo 74
6.7 Contributions L 76
Summary 77
7.1 Summary in English 0o 7
7.1.1 User behavior analysis from high-level log data 7
7.1.2 Educational performance prediction from mid-level click-stream data 78

7.2

7.1.3 MOOC performance prediction by Deep Learning from raw clickstream data 78
7.1.4 Deep learning models and interpretations for MOOC performance prediction 79

7.1.5 Contributions of the thesis 80
Magyar nyelvi Osszefoglald oL 82
721 BevezetS. e 82
7.2.2 A disszertacio felépitéseo 83
7.2.3 Felhasznaldi viselkedéselemzés magas szintd napléadatokbol 84
7.2.4 Oktatasi teljesitmény el6rejelzése kozépszintl kattintasfolyam adataibol . . . 84

7.2.5 MOOC teljesitmény elérejelzés Deep Learning segitségével a nyers kattintés-
folyam adatokbolo 85

7.2.6 Meélytanulasi modellek és azok értelmezése a MOOC teljesitmény elérejelzéséhez 85

ix

List of Tables

2.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
44
4.5

5.1
5.2
5.3
5.4

The primary categories of educational data mining 7
[lustration: problem statement as a binary classification. 28
Ilustration: problem statement as a recursion; the distribution of sales promotion types 28

Example of model outcome Lo 31
Results of classifications oL 32
This table presents ways to determine which type of sales promotion most of the users

would prefer. The table summarizes the results of the sales promotion regression
problem. The different settings demonstrate the LGBMReg CV TOP offer the best

results.o e 33
Course contents Lo 41
Time spent in course L e 42
Average distance of mouse in course contents L. 43
Average number of scrolls in course contents 44

Performance of certificate earner prediction with different methods (%), the most

weighted 60 feature L 46
Feature set of Stanford’s course o oo 56
The Stanford Lagunita Science 101 dataset 59
Number of logged events in the different progress sections of the course 59

Tabulated statistics for results which corresponding to GRU for baseline methods.
The two columns on the left compare GRU and logistic regression with RMSE (root
mean squared error) while the two columns on the right show the results for multiclass

classification problem. 60

xi

List of Figures

2.1

2.2

2.3

24

2.5
2.6

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4

Ilustration of different architectural types of Recurrent Neural Networks . From left
to right: One to One, One to Many, Many to One, Many to Many, Many to Many

Mlustration of the RNN layer, where z; is the input and h;_; are the output and the
previous hidden state. The h; update of the recurrent hidden state in the vanilla
RNN is as follows hgt) = g([Way]; 4+ [Uh¢—1];) where g is a smooth, bounded function
such as a logistic sigmoid function or a hyperbolic tangent activation function. While
x and hy_, are the input and the previous hidden state, respectively.
Mlustration of the LSTM layer, where z; is the input and h;_; are the output and the
previous hidden state, sigmoid and than are activation functions
Mlustration of the GRU layer, where z; is the input and h;_; are the output and the
previous hidden state, sigmoid and than are activation functions
A unified deep learning framework for time series classification.(Fawaz et al., 2019) .

Iustration of activation functions, from left to right than, o, Softmax and ReLU
State diagram of our combined solution L L.

Front-end logging system L L
Number of clicks by user
Time spent in course e
Average distance of mouse in course contents
Average number of scrolls in course contents L
Average Prediction performance in the function of the number of features for training

The highest weighted features

Formulation of performance prediction problem
Formulation of 3-dimensional data
Architecture overview of the proposed RNN model
The results of the proposed GRU method, XGboost regression and the RIDGE re-

gression on Computer Science 101 dataset

xiii

16

17

18

20
21
22

30

38
41
42
43
44
47
48

55
57
58

5.5

5.6

5.7

6.1

6.2

6.3

6.4

6.5

6.6

6.7

The results of the proposed GRU method and the XGBoost on Computer Science 101
dataset
The distribution of Students’ final outcomes - The test results of the proposed GRU
method and the baseline (XGBRegression) methods on Computer Science 101 dataset
in Weekd (n = 2159)
Boxplots of average error (AE) achieved by GRU-reg and XGBReg in the function of

students’ log sequence length L

A unified Deep Learning framework for discrete sequence forecasting. A DL architec-
ture where the Embedding layers are designed to encode each categorical attribute
separately. Following this, the TCNN and RNN networks learn the hierarchical rep-
resentations of the sequenced data.,
Overview of the configurations for multivariate sequence prediction. TCNN architec-
ture is displayed on the left, RNN (GRU and LSTM) on the right. The numbers in
boxes refer to layer sizes, i.e., the number of hidden units.
Mean Absolute Errors achieved by various models at different progress state of the
COUTSE .+« v v v e e et e e e e e e e e e
Real (x axis) vs predicted (y axis) final student scores results from Light GMB, CNN,
GRU, and LSTM models in different progress points of the course.
T-Distributed Stochastic Neighbor Embedding (t-SNE) results for EVENT feature
em- bedding layer. The figure illustrates the learning capability of the Embedding
layer, as it was able to group events from a raw dataset into similar groups according
to their role in the course. The figure shows the four main groups based on the start,
processing, and stopping of the course content and forum posts.
Representations over time from CNNs and GRUs layers. Each row corresponds to the
predicted student result group from CNN and GRU at each timestep. Each grid from
the column corresponds to each dimension of the current sequence step representation.
I examined only that part of the heatmap, where the data was not constant, or not
too uniformly distributed. The brighter color indicates high activation at the output
of the layer of my neural network, while the dark means weak activation.
Cluster analysis of the group of 20% - 20% students who achieved best (top) and
worst (bottom) final student scores during the course. The blue and brown colors

show the different clusters in the observed group.

xiv

69

71

Chapter 1

Introduction

Events and activities of daily life are increasingly often taking place in the online space, including, for
example, the purchase of durable goods and education. Both of these areas, shopping and learning,
which until a few years ago existed almost exclusively in the traditional offline format, have changed
significantly. This change poses new challenges for professionals working in these fields, as most of
the methods and methodologies used to date have become completely obsolete and unworkable in
the online space. This is particularly true of the expertise of offline shop assistants or the role of
teachers in brick-and-mortar educational facilities, roles which were once indispensable, but have
now become outdated. The disappearance of these roles has not gone unnoticed, given that many
online businesses are struggling with dwindling customer numbers and decreasing effectiveness of
online learning systems (such as Massive Open Ounline Courses - MOOCs) with effectiveness at
barely 25-30%. While it is undeniable that the online presence has created considerable challenges
for business and education managers, it has also opened up new opportunities that can be exploited,
notably by involving data science professionals. The various online platforms have a wealth of log
data.

There are three levels to dive into:

e High-level: The simplest high-level of access to log data includes users’ purchases, the pro-
visional and final contents of the shopping cart, and in the case of educational platforms,

interactions with videos, tutorials and quizzes.

e Middle-level: More in-depth than the previous category, the middle-level provides informa-

tion on the time spent on the page and the order of the items involved within the page.

e Low-level: In addition, some log systems go deeper into hardware interactions, where mouse
clicks and movements, keyboard press habits are stored, which is called the low-level informa-

tion space.

2 CHAPTER 1. INTRODUCTION

With this data, one can create support systems and decision support systems that, in addition
to aiding the operator, also improve the user experience. The topic of this dissertation is the
development of different Machine Learning methods for webshop and MOOC applications based on
log data analysis.

What all applications have in common is the creation of aggregated databases, so-called user profiles,
using log data of different widths and depths, which are used for classification, regression or even
clustering. For more than fifteen years now there has been active research on the analysis of user log
data. Initially, research and development were carried out in isolation on small databases in research
teams or on closed internal databases in companies. In recent years, as online business and online
educational interfaces have become more common, the number of real business applications and the
amount and depth of data generated by each application have increased. Therefore, the previously
traditional feature extraction and Machine Learning methods have been replaced by Deep Learning
methods, which can provide high- quality solutions for large amounts of data, even starting from
low-level data.

Altogether this dissertation contains 7 chapters, composed of separate studies implementing the
above-mentioned approaches. In the first two chapters, I will present the special challenges of log data
collection and preparation on high-level log databases. I will describe forecasting results on a real-life
Hungarian Webshop database, and the MOOC course ‘Conscious and safe Internet use’, which was
developed and launched as a cooperation of two departments of the University of Szeged. Apart from
the data collection and formulation of solutions, this dissertation also proposes application-specific
feature sets. Through these training and evaluation databases, I will present several comparative
Machine Learning experiments. Based on the experience of the feature space design work, I focused
my efforts on the possibility of building end-to-end systems using Deep Learning algorithms directly
from low-level log data. I subjected the data to minimal data processing and then successfully
applied different neural network architectures. For the Deep Learning experiments, I used the log
data from the Education-115-Spring-2014 MOOC course at Stanford University consisting of 39.5
million records. The experimental results achieved are primarily determined by the user profiles and
data preprocessing techniques employed. The Deep Learning models outperform classical Machine
Learning methods based on feature extraction in accuracy, but they are black-box in nature, which
hinders their real-life application (for instance, an instructor who does not trust the prediction
of a black box). In the last chapter, I propose three visualization methods for interpreting deep
neural networks learned over sequential log data, which can contribute to human experts’ better

understanding of the patterns observed from the data.

The structure of the dissertation

In my dissertation, I am going to introduce online user behaviour modelling techniques and several

empirical experiments. In Chapter 2, I summarize the application area and research challenges

of webshops and MOOC sites through a literature review. Special attention has been paid to
summarizing the different classical Machine Learning and Deep Learning techniques in the field, as
well as to investigating data processing and feature extraction solutions.

Using log data from a webshop which is based in Hungary and operating within the borders of the EU,
I created an actual business solution to build a reaching model for targeted offers and promotional
mailings. In order to achieve this, I implemented and analysed the shopping habits and behavioural
patterns of users (high-level log data). This process consisted of feature extraction methods, where
new aggregated preprocessed data was created from the log data. Using a combination of so-called
combined regression and classification models on a hand-crafted feature space, I carried out various
prediction experiments that were successfully applied to real business operations, which are presented
in detail in Chapter 3.

Chapter 4 describes the next step of this research. Namely, in collaboration with the Software
Engineering Department of the University of Szeged, I developed a MOOC course with the title
‘Conscious and safe Internet use’ along with the full stack user interface. This system records the
task completion (middle-level log data), mouse movements and video viewing log data (low-level log
data). I managed a dataset of ‘course completed’ among students aged 10-21 which yielded nearly
4.5 million log records from 510 students. On the resulting, considerably richer middle- and low-
level datasets, I proposed preprocessing and feature extraction methods, and then investigated the
effectiveness of traditional Machine Learning, as conducted for the previous, webshop research. The
results highlighted the shortcomings of this dataset and the drawbacks of the implemented methods,
but also proved the initial hypothesis that methods using richer and longer time series of middle
and high-level log data provided higher efficiency.

In the final two parts of this dissertation, Chapters 5 and 6, I present student performance predictive
models using 39.5 million log data of 142,395 students enrolled in a MOOC course at Stanford
University. Instead of the difficult and time-consuming feature space extraction, I investigated raw,
clickstream- level data and Deep Learning methods that could handle the raw sequences. In Chapter
5, I argue that given such a large training dataset, these methods are significantly more accurate
than classical methods based on feature extraction. In Chapter 6, I compare convolutional and
recurrent neural network architectures on the Stanford MOOC dataset. Further, I provide insights
into numerical and discrete sequential data processing techniques, where I investigated embeddings
per variable. Lastly, I also propose three visualization techniques for deep neural networks trained
on sequential log data to help, to aid learning site owners in understanding the patterns learnt by

the neural models.

CHAPTER 1. INTRODUCTION

Chapter 2

Background

Analyzing users online behavior using Machine Learning has a long-standing history, but analyzing
user interaction log data from MOOCs and webshops directly on raw, low-level time series is a
relatively new area of research. In terms of analyzing and predicting user behavior, there are many
different methods available that will lead to the solution. Most traditional approaches rely mainly on
classic Machine Learning, they typically work on the accumulated, aggregated dataset. In addition
to those conventional methods, nowadays more and more studies tend to apply different Neural
Network models. This chapter presents a review of the use cases on two application areas as well as

various prediction approaches.

2.1 Online user behavior analysis

Big data is revolutionizing the digital world, influencing the way of making business and strategic
decisions making. This area is evolving at an impressive speed. While more and more public data
is being created, more and more expensive tools for data analysis are becoming low-cost solutions,
available to users on a large scale. For example, several years ago, time series research was carried out
within the framework of universities, whereas now countless small and medium-sized webshops have
adopted this in their daily business. Another instance is the research on Neural Networks capable
of interpreting models, which have once again come into focus. There are countless excellent studies
on this topic in which user behavior patterns are examined and the expected attitudes predicted

based on a sequenced dataset.

2.2 E-commerce user behaviour analysis

While in a traditional shop the tracking of customers may be cumbersome (e.g., loyalty card pro-

gram), the back-end of a webshop offers numerous solutions for this task. Available methods include

5

6 CHAPTER 2. BACKGROUND

cookies, tracing spending, sending newsletters and product tracking, among others (Ahmed et al.,
2011; Banerjee and Ghosh, 2001; Grbovic et al., 2015). The main driving force behind this fast
evolution is to understand and anticipate user behavior better, so that related questions can be
answered in real-time. The main goal is to obtain the highest response from users by spending as
little time and money on it as possible, and to create customer-oriented services (Aly et al., 2012).
This is called personalization and targeting (Essex, 2009), where the objective is to find the best
matching ads or form of sales promotion to be displayed for each user. This application field is not
new, given that there were already similar solutions implemented in the first-generation webshops,
but nowadays the amount of data is much greater than before. As data is increasing, more and more
companies are demanding high-quality solutions from their data scientists.

In e-commerce content online behavior analysis is used for recommendation systems which is a quite
general concept. It may be based on the collaborative filter solution, the content based method, the
classification or regression, and their implementation in different depths and widths. Collaborative
filtering (CF) is probably one of the most commonly used and most well-known technologies. The
underlying concept in this solution is that, on the basis of the users’ historical data, the users are
put into an n'" dimensional space , make it thus possible to measure the distance between them. In
light of this, recommendations were formulated based on the data of the users that portrayed similar
behavior. Although this CF technique has proven its power, it does have disadvantages, including
the huge amount of work it requires as well as the cold start problem, data sparsity, and scalability.
Besides collaborative filtering, the second most popular solution is the content based method. It
is a technique which operates with unique characteristics and behaviors of each customer, and in
turn, delivers personalized content for each user, based on their content consumption history across
channels. Another noteworthy option is the community based method. This approach works with
the assumption that the content stemming from a given user’s friends or authoritative users is more
likely to be relevant for said user than other, non-relatable content. While collaborative filtering and
content based models use only a static ‘user snapshot’, there are numerous papers which use uni-
or multivariate user event history, i.e., sequences, time series to build a predictive model, so that
the predictions can be utilized in recommendation systems (Lucas et al., 2013; Chen et al., 2014;
Tian et al., 2019; Bozanta and Kutlu, 2018; Burke, 2002). Chapter 3 will introduce solutions for a

specific e-commerce user-level prediction task.

2.3 Educational data mining

In today’s world virtual online educational platforms emerge literally on a daily basis. Mushrooming
as a scalable lifelong learning paradigm, online educational platforms have enjoyed significant high in
recent years, both in industry and academia (Haggard, 2013). With the emergence of Coursera and

eDX (collectively known as Massive Open Online Courses - MOOCs), educational platforms have

2.3. EDUCATIONAL DATA MINING 7

gained an additional impetus, a new aspect in their evolution process that has opened up a novel
field of research in the context of data mining, thanks to the extraction of logging information. While
thousands of students have been attracted to large online classes, keeping them motivated has become
proven to be quite challenging (D. Liang, 2014). Learning outside the confines of an educational
institution and without the supervision of a teacher can pose certain obstacles. As an example, the
T. Sinha and Dillenbourg (2014) revealed that one of the most crucial aspects about MOOCs is that
they require a higher-than-average level of self-regulation by students. Several studies reported that
in online learning environments, students have poorer than average performance, lower motivation
and measurably fewer experiences of success, which are specifically identified as the downside of
MOOCs (Y. Bergner, 2012; C. G. Brinton and Ju, 2015; J. Guan, 2002; J. Cheng, 2013; D. Liang,
2014; T. Sinha and Dillenbourg, 2014; P. Esztelecki, 2016). In addition, one of the most controversial
issues is the high dropout rate, analyzed in dozens of studies. It would therefore be paramount to

gain an understanding of the students’ motivation, or the reasons behind the loss thereof.

Table 2.1: The primary categories of educational data mining

Category of Method Goal of Method Key applications

. . Detectin student behaviors
Develop a model which can infer g
. (e.g.gaming the system, offtask
a single aspect of the data (pre- . . .
. . . . | behavior, slipping); Developing
Prediction dicted variable) from some combi- . -
. domain models; Predicting and
nation of other aspects of the data . .
. . understanding student educational
(predictor variables)
outcomes
Find data points that naturally | Discovery of new student behavior
usterin roup together, splittin e fu atterns; Investigating similarities
Clust together, splitt the full tt ;0 1 tigat larit

dataset into a set of categories and differences between schools

Discovery of curricular associa-
tions in course sequences; Dis-
covering which pedagogical strate-
gies lead to more effective/robust
learning

Discover between

variables

Relationship Mining relationships

A model of a phenomenon devel-
oped with prediction, clustering,
or knowledge engineering, is used

Discovery of relationships between
student behaviors, and student

Discovery with Models characteristics or contextual vari-

as a component in further predic-
tion or relationship mining.

ables; Analysis of research ques-
tion across wide variety of contexts

Distillation of Data for
Human Judgment

Data is distilled to enable a human
to quickly identify or classify fea-
tures of the data.

Human identification of patterns
in student learning, behavior, or
collaboration; Labeling data for
use in later development of predic-
tion model

Ironically, the dropout and loss of motivation problems can be solved through the online platform

itself because its structure allows all around logging of student activities, providing some previously

8 CHAPTER 2. BACKGROUND

unknown tools of pedagogical research. This idea was based on a study by Romero and S.Ventura
(2010), who argued that if learning management systems already accumulated a lot of log data
on students’ activities, those could be used for research purposes. An educational system can au-
tomatically record whatever student activities are involved, such as reading, writing, taking tests,
performing various tasks, and even communicating with peers (J. Mostow and Heiner, 2005). That
data can be aggregated over large numbers of students and can contain many variables that data
mining algorithms and techniques can explore for model building (Prabha and Shanavas, 2014).
Working from student data can help educators both track academic progress and understand which
instructional practices are effective (L. Cao, 2009).

Following Romero and S.Ventura (2010) line of thought, over the last decade, a number of stud-
ies were carried out in various institutions, most of which were promising and made significant
breakthroughs in the field nownamed Educational Data Mining (EDM). Its origin dates back to an
Educational Data Mining conference in 2008, where the idea of educational data mining of MOOC
courses first emerged. Educational Data Mining is a multidisciplinary area in which some of the
most useful data mining tasks and methods are: statistics, visualization, clustering, classification,
association rule mining, sequential pattern mining, text mining, etc. The goal is the discovery of
non-obvious valuable patterns from a large collection of data (W. Klosgen, 2002).

Several studies (Luan, 2002; Baker, 2010) showed that data mining can be used to detect at-risk
students and help institutions become more proactive in identifying them and responding to their is-
sues. Four main axes can be identified along which EDM methods may be helpful for constructionist

research:

e EDM methods do not require constructionists to abandon deep qualitative analysis for sim

plistic summative or confirmatory quantitative analysis;

e EDM methods can generate different and complementary new analyses to support qualitative

research;

e By enabling precise formative assessments of complex constructs, EDM methods can support

an increase in methodological rigor and replicability;

e EDM can be used to present comprehensible and actionable data to learners and teachers in

situ;

e In order to investigate those axes, the first step is to describe one’s perspective on compat-
ibilities and incompatibilities between constructionism and EDM (M. Berland and Blikstein,
2014).

The strengths of EDM systems can be traced back to their tools, in particular the logging
methods, which provide information to researchers, who could then discover previously unknown

pedagogical implications. Baker summarizes in Table 2.1 what is known about these tools and the

2.4. TYPE OF DATA 9

results in Baker (2010).

As stated previously, educational data mining covers areas that directly affect students and their
learning methods (Huebner, 2013). Although EDM has been around for more than a decade, it is
still an emerging field that from time to time reveals new and unique ways of exploring problems
related to education (Huebner, 2013). All research results from the 2008 conference were published,
confirming that it is worth digging deeper. Numerous successful methods for improving education in
the online space were presented. For example, in a review of relevant studies Huebner (2013) revealed
works that suggested ways to keep students in a learning environment, to find more effective teaching
techniques and create better curricula, or help reduce dropout rates in a predictive way (Huebner,
2013). Along this line of thinking, in a successful case study, researchers at Bowie State University
assigned risk factor scores to each student that indicated who would have difficulty (F. Chacon,
2012). This research piqued my interest, and based on it, using log data from Stanford University’s
online course, I attempted to predict the expected behavior of users at a particular point in the

course, as detailed in Chapters 5 and 6.

2.4 Type of data

When discussing sequential data or time series processing, one must not forget that this process
actually starts with the collection and processing of data. In terms of time series, there are uni-
variate or multivariate time series, continuous or discrete sets of variables, each requiring a specific
preprocessing or transformation. The depth of the users’ online activity log data can be divided this

into three levels:

e High-Level: The simplest type of data-set is the high-Level of log data, which includes, for
example, users’ shopping carts and bills, and for educational platforms, quiz scores, basic
interaction with course content. This dataset typically stores only the most important actions.
For example, in a webshop, what is known are the contents of purchased baskets (purchase
history), registration date, and login date. However, there is no information about what the

user did while on the site.

e Middle-level: middle-level data contains more information on user operations. This level,
for example, reveals some information in chronological order with a timestamp, which is not
available in high-level data. These could be, e.g., in the case of a webshop, the details of logins
and logouts, the times and exact dates of the pages opened, or the eventual process of loading
the shopping cart. midle-level data could be the clicks on products and advertisements or a

user interface action , like hitting a button.

o Low-level: The deepest data container is the low-level data. Here, in addition to the data

types already listed, one can access the number of characters typed, the pattern of mouse clicks,

10 CHAPTER 2. BACKGROUND

the cursor path, and all interactions between the user and the browser page. Other accessible
data includes the number of mouse scrolls performed while reading course material, the path

of mouse movements, or the path of answer changes performed while completing quizzes.

2.5 Prediction methods and algorithms

Several approaches have been used in the literature to process sequences and build predictive models.
The simplest methods work with uni-variate data and try to predict its value. In another approach,
multivariate data is cumulated over days, weeks, or any given time period, and then a classical
Machine Learning (classification or regression) approach is applied. A somewhat more complex yet
much more efficient method is the use of Neural Networks, which makes work easier by allowing

some or all of the tedious feature engineering to be omitted.

2.5.1 Evaluation methodology

To develop a Machine Learning model, it is necessary to, often randomly, split the dataset into
training data and test data. The training data is used to train the Machine Learning model and the
same model is tested on independent test data to evaluate the model performance. Test data should
be kept independent of training data to avoid data leakage. The ML model development should use
the test data to evaluate the model performance. Cross-validation is a resampling procedure used
to evaluate Machine Learning models and how the model will perform on an independent test data
set. It has eight different types, though in this thesis work I only implemented two, namely Leave

One Out Cross-Validation and K-fold Cross-Validation. These techniques are summarized below.

e Leave-One-Out Cross-Validation (LOOCYV) is an exhaustive cross-validation technique.
For a dataset of n rows, rowl is selected for validation and the remaining (n-1) rows are used
for model training. For the next iteration, row2 is selected for validation and the others are
selected for model training. The process is repeated in a similar manner for n steps or the
desired number of operations. This cross-validation method learns and tests in all possible

ways.

e K-fold Cross-Validation is a technique where the original dataset is equally divided into k
parts or folds. From the k folds or groups, one group is selected as validation data at each
iteration and the remaining (k-1) groups are selected as training data. The final accuracy of

the model is calculated based on the average accuracy of the validation data of the k-model.

2.5. PREDICTION METHODS AND ALGORITHMS 11

2.5.2 Classic Machine Learning methods

When considering the bulk of the work on EDM, it must be pointed out that a significant percentage
of the studies used the easiest-to-apply method first. Examples include Decision Tree based mod-
els, or simpler regression approaches which proved to be highly popular in EDM related research
(Y. Bergner, 2012; Baker, 2010; Aldowah et al., 2019; Pigeau et al., 2019; Baker and Inventado, 2014;
X. Wang and Rose, 2015). Following this line of investigation, I used similar approaches in some
of the theses of my dissertation. In the next few pages, I briefly describe the supervised machine
learning methods used in this work, drawing on books by Fielding (1999) and Sarker (2021), among

others.

Support Vector Machine

The Support Vector Machine (SVM) algorithm can be formulated in the following simple manner:
in the Support Vector Machine (SVM) algorithm, each data item is represented as a point in n-
dimensional space (where n is the number of features), where the value of each feature is a coordinate
value. Classification is then performed by finding the hyper-plane that distinguishes the two classes
very well. The support vectors are simply the coordinates of each observation. The SVM classifier

is a boundary line that best separates the two classes (hyper-plane/line).

K-Nearest Neighbor Classifier

The K-Nearest Neighbor Classifier (k-NN) algorithm is a straightforward, easy-to-implement super-
vised machine learning approach. The algorithm assumes the similarity between the new case/data
and the available cases, and classifies the new case into the category that is most similar to the
available categories. The trained model stores all the available data and classifies the new data
point based on the similarity. This means that when new data appears, it can be easily classified
into a well-matched category using the k-NN algorithm. The k-NN algorithm only stores the dataset
in the training phase and when a new piece of data is received, it classifies that given piece of data

into a category that is very similar to the new data.

Decision Tree

Tree based algorithms are one of the best and most commonly used supervised learning methods
over limited sized feature spaces. Tree based algorithms provide highly accurate, stable and easy-
to-interpret predictive models. Unlike linear models, they represent non-linear relationships quite
well and they can be adapted to solve any type of problem, as well (classification or regression).
Methods such as decision trees, random forests, gradient boosting are popularly used in all kinds of

data science problems.

12 CHAPTER 2. BACKGROUND

e Decision tree is a type of supervised learning algorithm with predefined target variables,mostly
used for classification or regression problems. It works for both categorical and continuous in-
put and output variables which could be highly useful for high-level data which contain discreet
valued variables. In this technique, a population or sample is divided into two or more ho-
mogeneous sub-populations based on the most significant divisor/discriminator of the input

variables.

e Conditional inference trees (Ctree) are another type of decision trees that use recursive
partitioning of dependent variables based on the value of correlations. Like other algorithms
for classification and regression in Machine Learning, it avoids bias, therefore, it also avoids
vulnerability to errors, making it more flexible to problems in the data. Conditional inference
trees use a significance test, which is a permutation test that selects a covariate for variable
partitioning and recursivity. The p-value is calculated in this test. The significance test is
performed at each run of the algorithm. This algorithm is not suitable for learning data with

missing values.

Ensemble Tree based models

Like any other model, the tree based algorithm suffers from bias and variance, which can be countered
by the ensemble methods when trying to remedy those. Ensemble methods involve a group of
predictive models to achieve better accuracy and model stability. Ensemble methods are known to
give a top boost to tree based models. In the ensemble models the trees are added to the ensemble
one by one and are fitted to correct for prediction errors made by previous models. This is a type
of ensemble Machine Learning model called gradients boosting. Some commonly used ensemble

methods include Bagging, Boosting and Extreme Gradient Boosting.

e Random Forest approach works in a simple but effective way, building several decision trees
and combining them to obtain a more accurate and stable forecast. It is a type of ensemble
learning method where a set of weak models are combined to form a strong model. The random
forest has almost the same hyper-parameters as the decision tree, but uses the classifier-class of
the random forest for a better solution. The other difference compared with the Decision tree
is that this approach adds additional randomness to the model while growing the trees. The
Decision tree searches for the most important feature when partitioning a node, whereas this
method searches for the best feature among a random subset of features. So, in the random
forest, the algorithm considers only a random subset of features when partitioning nodes. The
model can make the trees even more random by also using random thresholds for each feature,
rather than looking for the best possible threshold. This leads to a wide range of variation,

which generally results in a better model.

e Bagging decision trees are sensitive to the specific data on which they have been trained.

2.5. PREDICTION METHODS AND ALGORITHMS 13

If the training data is changed, the resulting decision tree may be quite different, and conse-
quently the predictions may also be quite different. This problem is known as the problem
of algorithms with high variance, which the bagging algorithm tries to solve by reducing the
variance. Bagging is an ensemble technique that often takes homogeneous weak learners, trains
them in parallel, independently of each other, and combines them following some deterministic

averaging process. The bagging algorithm consists of three basic steps:

— In the first step, bagging uses a bootstrapping sampling technique to generate diverse
samples. This resampling method creates different subsets of the training dataset by
randomly and surrogately selecting data points. This means that each time one selects
a data point from the training dataset, one can select the same instance multiple times.

As a result, a value may be repeated twice or even more in a sample.

— In the second step, parallel learning is initiated, where bootstrap patterns are trained

independently and in parallel with each other using weak or base learners.

— Finally, the average or majority of predictions is taken to calculate a more accurate
estimate. In the case of regression, the average of all the outcomes predicted by each
classifier is taken (soft voting). For classification problems, the class with the largest

majority of votes is adopted (hard voting or majority voting).

e Boosting The way boosting works is rather similar to bagging, the main difference lies in the

way it is trained. In bagging, weak learners are trained in parallel, whereas in boosting, they
are trained sequentially. This means that a sequence of models is built and with each new
model iteration, the weights of the data misclassified in the previous model are increased. This
redistribution of weights helps the algorithm to identify parameters which to focus on in order
to improve performance. Boosting methods are typically used when low variance and high
bias are observed. The AdaBoost (adaptive boosting algorithm) is one of the most popular
boosting algorithms, as it was one of the first such approaches.
Tree boosting is a highly effective and widely used Machine Learning method. Chen and
Guestrin (2016) described a scalable end-to-end tree boosting system called XGBoost(Extreme
Gradient Boost), which is used widely by data scientists to achieve top results on many Ma-
chine Learning challenges. XGBoost provides parallel tree boosting that solves many data
science problems quickly and accurately. I opted for using XGBoost in the studies presented
in Chapters 3 and 4.

Ridge regression

Ridge regression is a way of creating a parsimonious model when the number of predictor variables
exceeds the number of observations, or when there are correlations between predictor variables

in the dataset. Ridge regression works by shrinking the coefficients or weights of the regression

14 CHAPTER 2. BACKGROUND

model towards zero. This is achieved by applying a quadratic penalty to their size. This technique
analyses multiple regression data that suffers from correlations between predictor variables. If there
are correlations between one or more predictor variables, the least-squares estimates are unbiased,but
their standard deviations are large and so they may be far from the true value. By adding a degree

of bias to the regression estimates, spine regression reduces standard errors.

Multilayer Perceptron

The Multilayer Perceptron (MLP) is a feed-forward neural network often used for simpler classi-
fication tasks. In my work I used this method exclusively on cumulative data. The Multilayer
Perceptron consists of three layers: input layer, output layer and hidden layer. The input layer
receives the input signal to be processed. The output layer performs the purpose, such as prediction
and classification. Between the input layer and the output layer there are any number of hidden
layers in the MLP. In the MLP, data flows forward from the input layer to the output layer in a
similar way to a feed forward network. The neurons in MLP are trained using the back propagation
learn ing algorithm. MLP can approximate any continuous function and can solve problems that

are not linearly separable.

Feature selection methods

In classical Machine Learning, it is advisable to select the most important features. Several solutions
can be used to do this, for my work described in Chapter 4, I chose information gain for its ease
of implementation and robustness. The information gain calculation starts by determining the
information of the training data. The information in a response value, r, is calculated in the

following expression:

- tog (L4010 (2.1)

T represents the training data and |T'| is the number of observations. To determine the expected

information of the training data, sum this expression for every possible response value:

Z freq(rimT) . logQ(freq(ri),T)

7] T (22)

Here, n is the total number of response values. This value is also referred to as the entropy of
the training data. Next, consider a split S on a variable X with m possible attributes. The expected

information provided by that split is calculated by the following equation:

= Z TT (2.3)

2.5. PREDICTION METHODS AND ALGORITHMS 15

In this equation, T; represents the observations that contain the 4t attribute. The information

gain of split S is calculated by the following equation:
G(s)=1(S) — I(T) (2.4)

Information gain ratio attempts to correct the information gain calculation by introducing a split

information value. The split information is calculated by the following equation:

m

T3] T3]
SI(S)=—-Y —L xlogy | -2 (2.5)
211 7]
As its name suggests, the information gain ratio is the ratio of the information gain to the split
information:

GR(S) = ———L (2.6)

2.5.3 Neural Network based predictors for sequential data

The Multilayer Perceptron (MLP) is so popular because of its simple design and efficiency, but this
simple approach is worth digging much deeper into neural networks. In addition to the classical
approach, there is research available on temporal prediction using recurrent or convolutional Neural
Net works to process raw or partially preprocessed sequences. In several of the studies of this
dissertation, I focused on similar solutions which were based on Neural Networks. These methods

are described in more detail in the following sections.

Recurrent Neural Networks

When working with sequential data, classic feed-forward networks may not be the best for learning
and forecasting. In such cases, a mechanism is needed that can preserve past information to predict
future values. Recurrent Neural Networks, or RNNs for short, are a variant of traditional feed-
forward artificial Neural Networks that can handle sequential data and can be trained to retain past
knowledge. RNNs are a group of Neural Networks that allow the use of previous outputs as inputs
while having hidden states. These networks represent a special type of artificial Neural Networks
that can process data in time series or sequences. Simple feed-forward Neural Networks are only
suitable for independent data points. However, if the data are in a sequence so that one data point
is dependent on a previous data point, then the Neural Network must be modified to recognize and
use the dependencies between these data points. Recurrent Networks have a "memory unit" that
helps them store the state of previous inputs, which is later used in the next output of the sequence.

There are different architectural types of recurrent Neural Networks (Figure 2.1), such as:

e One To One - Traditional Neural Network (1:1)

16 CHAPTER 2. BACKGROUND

One To Many - Music, text generation (1:N)

e Many To One - Sentiment or sequence classification, regression (N:1)

Many To Many - Name entity recognition (N:N)

Many To Many - Machine translation (N:M)

Figure 2.1: Ilustration of different architectural types of Recurrent Neural Networks . From left to
right: One to One, One to Many, Many to One, Many to Many, Many to Many

In natural language processing, time series prediction tasks, recurrent Neural Networks have
been more widely used due to their ability to memorize long-range, sequence dependencies of data.
However, simple RNNs are prone to problems associated with gradient diminishing or explosion.
RNNs can be considered deep Neural Networks over many time instances, the gradients at the end
of a sequence may not be able to back-propagate to the beginning of the sentence because of the
many layers of nonlinear transformations (Yao et al., 2015). To solve this problem, there are different

variations of RNNs that are being applied:

e Bidirectional recurrent Neural Networks (BRNN) are a variation of RNNs where the inputs
of future time steps are used to improve the accuracy of the network. It can be compared to

predicting the middle words based on the knowledge of the first and last words of a sentence.

e Long Short Term Memory (LSTM) are also designed to solve the vanishing gradient problem
of RNNs. The LSTM uses three gates called input, output and forget gates. Like the GRU,

these gates determine which information is to be retained.

e Gated Recurrent Units (GRU) is designed to deal with the disappearing gradient problem.
They have a reset and a refresh gate. These gates determine which information is to be kept

for future predictions.

2.5. PREDICTION METHODS AND ALGORITHMS 17

=

v

than

X

Figure 2.2: Tllustration of the RNN layer, where z; is the input and h;_; are the output and the
previous hidden state. The h; update of the recurrent hidden state in the vanilla RNN is as follows

h§t) = g([Wx¢];+[Uhi—1];) where g is a smooth, bounded function such as a logistic sigmoid function
or a hyperbolic tangent activation function. While z and h;_; are the input and the previous hidden
state, respectively.

Long Short-Term Memory (LSTM) Recurrent Neural Network

In a conventional recurrent Neural Network, the error signals "flowing" backwards in time either
ex- plode or disappear exponentially, depending on the size of the weights, as the backward prop-
agating error evolves over time. This can lead to oscillating weights, moreover, learning to bypass
long time delays takes excessively long times, or does not work at all. As a solution Hochreiter
and Schmidhuber (1997) proposed their new recurrent network architecture which would solve this
problem, and named it Long short-term memory (LSTM). LSTM is designed to overcome these
error feedback problems. It is able to learn to traverse time intervals greater than 1000 steps even
for noisy, incompressible input sequences, without loss of short time-shifting capabilities. This is
achieved by an efficient gradient based algorithm for an architecture that imposes a constant error
flow through the internal states of specialized units. The LSTM network is based on the forget gate,
input gate, cell state, output gate. To make the equations uncluttered, I omitted biases. Based on
(Hochreiter and Schmidhuber, 1997) approach, I described how the activation of the j*" hidden unit
is computed. The extent to which the existing memory is forgotten, is modulated by a forget gate

f; » which is computed by

18 CHAPTER 2. BACKGROUND

fe=o(WrXi]; + [Uphi—1];) (2.7)

where o is a logistic sigmoid function. Ugand W, are the weights to be learnt.The forget gate is
controlled based on the input z; and the previous hidden state h;_1.

The extent to which new memory content is transferred to the memory cell is modulated by an input

gate:
it = o([WiXe]; + [Uihe];) (2.8)
hl
r 3
Cet P G mEsEmn e o e N mmm—mme &
[v A v s A
! i :7 i !
2 ! i i ! |
Edd | X 1 :I 5 :l |
: ! . ' = 1
/ i b I B 8
! I ! ! =
: (il i 1! |
! H = X e !
i nl ! X !
i fi :i it :i G :: I i
! 1 ! 1
U ° 1 1
! T 0 = g 1 E !
! & i £ Il = 0 £ '
h ! H ! S i o i h
1 1 i @ | | t
. A L o ' .
T i . ; >
: I T I |
! ! ! 1! |
4 1L = ! 1
| 1!] 1! !
\ l\ e

Forget gate |, Input gate \ Output Gate
‘.___|____f _________ SN ___ P o

Xe

Figure 2.3: Illustration of the LSTM layer, where x; is the input and h;_; are the output and the
previous hidden state, sigmoid and than are activation functions

The input gate is also controlled by the x; input and the previous hidden state h;_;. However,
the weights of the input gate are independent of the weights of the forget gate.
The memory cell ¢; is updated by partially forgetting the existing memory and adding a new memory
content c;:

= O +iOc (2.9)

A
where the new memory content ¢, is:

¢; = o(WeXyl; + [Uchi) (2.10)

The o; is the output gate that modulates the amount of exposure of memory content:

2.5. PREDICTION METHODS AND ALGORITHMS 19

Ot = thcm([WoXt}j + [Uoht_ﬂj) (211)

The LSTM unit output h;, or activation is :

hy = oy © than(cy) (2.12)

Gated Recurrent Unit (GRU) network

Sequence based Neural Networks are recurrent Neural Networks, with feedback connections enclos-
ing several layers of the network. Gated Recurrent Unit (GRU) networks is an example of recurrent
Neural Networks. GRU is good at solving problems that require learning long-term temporal de-
pendencies. This Neural Network has proven its success in many applications involving sequential
or temporal data. For example, they have been widely used in speech recognition and machine
translation. This model’s success is mainly due to the gated network signals that control how the
current input and the previous memory are used to update the current activation and generate the
current state (Dey and Salem, 2017). These gates have their own weight sets, which are updated
adaptively during the learning. Although these models enable successful learning in the RNN, they
increase the parameterization through their gate networks. Consequently, they have an additional
computational cost compared to a simple RNN model. Note that the LSTM RNN uses three dif-
ferent gate networks, while the GRU RNN reduces the number of gate networks. The number of
networks is reduced to two. It is recommended to reduce the number of external gates to the lowest

number possible, one, by preliminary evaluation of sustainable performance.

The GRU network is based on update, reset gate, current memory content and final memory.
To make the equations uncluttered, I omitted biases. How the activation of the j** hidden unit is
computed is described on the basis of the idea by (Cho et al., 2014). First, the reset gate r;

re = o([Wr Xil; + [Urhi-a];) (2.13)
where o is the logistic sigmoid function, and [©®]; denotes the j*" element of a vector. = and h;_1

are the input and the previous hidden state, respectively. W, and U, are weight matrices which are

learned. Similarly, the update gate z; is computed by

2 = o([W2Xol; + [Ushe—n];) (2.14)

The actual activation of the proposed unit h; is then computed by

ht :Ztth_1+(1*Zt)®h; (215)

20 CHAPTER 2. BACKGROUND

Figure 2.4: Illustration of the GRU layer, where z; is the input and h;_; are the output and the
previous hidden state, sigmoid and than are activation functions

where
hy = than((Wzy); + [r © Uhy_1];) (2.16)

In this formulation, when the reset gate is close to 0, the hidden state is forced to ignore the
previous hidden state and reset with the current input only. This effectively allows the hidden state
to drop any information that is found to be irrelevant later on, thus, allowing a more compact
representation. However, the update gate controls how much information from the previous hidden
state will carry over to the current hidden state. This acts similarly to the memory cell in the LSTM

network and helps the RNN to remember long-term information.(Cho et al., 2014)

Convolutions neural networks

Recent advances in neural architectures and their application to time series offer an end-to-end
learning framework that is often more flexible than standard time series methods. Although there
has been extensive work on the former, recent temporal models have been limited to sliding window
action detectors, segmental and recurrent models. For many of these models, such as RNNs with
LSTM or GRUs, the latent state at each time step, ¢, is only a function of the data at ¢ and the
hidden state and memory at ¢ — 1. Conversely, some new approaches, capable of considering the

temporal dimension, have recently been tested, such as the Convolutional Neural Networks (CNNs).

2.5. PREDICTION METHODS AND ALGORITHMS 21

Temporal 1D-CNNs (TempCNNs) where convolutions are applied in the temporal domain proved to
be effective for handling the temporal dimension for time series classification. Pelletier et al. (2017)
provided an exhaustive study of new deep learning approaches, namely Temporal Convolutional
Neural Networks (TempCNNs) where convolutions were applied in the temporal dimension (see in
2.5).

global
average
pooling

channels

input time "
B}me e

1
» output
* | classes

input f layer-4 [ayer-5
fully-connected

layer-3

layer-2

Figure 2.5: A unified deep learning framework for time series classification.(Fawaz et al., 2019)

Activation Function

It has become clear that the most important unit in Neural Network structure is their net inputs
by using a scalar-to-scalar function called “the activation function or threshold function or transfer
function”, output a result value called the “unit’s activation”. An activation function is used for
limiting the amplitude of the output of a neuron. Enabling in a limited range of functions is usually
called squashing functions. It squashes the permissible amplitude range of the output signal to some
finite value.(Karlik and Olgac, 2011) In the RNN, LST and GRU network, I had to use Uni-polar
Sigmoid (o), Softmax, Hyperbolic Tangent Function (than) and Rectified Linear Unit (ReLU)
activation functions (see in 2.6).

The activation function of the Uni-polar sigmoid function is given as follows:

1

o(z) = [(2.17)

The term sigmoid means ‘S-shaped’, so the logistic form of the sigmoid maps the interval (—oo, c0)
onto (0, 1).
Hyperbolic Tangent Function is easily defined as the ratio between the hyperbolic sine and the cosine
functions or expanded as the ratio of the half-difference and half-sum of two exponential functions
in the points and —z as seen below (Karlik and Olgac, 2011). The Hyperbolic Tangent Function
is similar to the sigmoid function, with its range outputs between -1 and 1.
sinh(z) e*—e™*

tanh(z) = cosh(z) R (2.18)

22 CHAPTER 2. BACKGROUND

ReLU stands for Rectified Linear Unit. Although bearing similarities to a linear function, ReLU
has a derivative function and allows backpropagation, while also providing computational efficiency.
The main idea behind prefunctions is that the ReLU function does not activate all neurons at once.

Neurons are only deactivated when the output of the linear transformation is less than 0.

ReLU(z) = max(0,) (2.19)

The output of the sigmoid function falls within the range of 0 to 1, which can be regarded as the
classification probability. However, the function faces problems when there are multiple output layers
(e.g., multiclass classification). This problem is solved by the Softmaz function. The Softmaz
function is defined as a combination of several sigmoids and computes the relative probabilities. Like
the sigmoid /logistic activation function, the Softmaz function returns the probability of each class.
It is most often used as an activation function for multiclass classification. It can be mathematically
represented as follows:

Softmax(z) = _exp @) (2.20)

> exp ()

Hyperbolic tangent Logistic (sigmoid) Softmax Rectifier Linear unit(RelLl)
g¥ —e™™ 1 exp (x)
than(x) = EieE o(x) = el softmax(x) = m RelLU(x) = max(0, x)

Figure 2.6: Illustration of activation functions, from left to right than, o, Softmaxr and ReLU

One-Hot-Encoding

Some Machine Learning algorithms can work directly with categorical data, such as a decision tree,
but in most cases the input or output variables must be a number or numeric value. Since user
log data is often composed of more than just numeric data, the need arises for some way to handle
discrete variables in such cases. One commonly used method is the process of One-Hot-Encoding,
which can map all categorical data into integers. With One-Hot-Encoding, each categorical value
is converted into a new categorical column and the columns are assigned a binary value of 1 or 0.
Each integer value is represented as a binary vector. This approach is a simple and efficient solution,

but for many categories it produces sparse matrices which offer poor results for neural-relational

2.6. RELATED WORK IN THE ANALYSIS OF USERS’ ONLINE BEHAVIOR 23

analysis.

Embedding Layer

In Deep Learning based approaches, the conventional way to extract information from past history is
to feed raw or prepared sequences into the RNN or CNN. In the case of discrete valued time series,
the categorical values must be transformed into the numeric space. Using a common encoding
approach such as One-Hot-Encoding might not be very useful, as it explodes the dimensionality of
the input feature vector and dramatically increases its sparsity.

There is another way to handle this problem, as in natural language processing, the categorical data
could be transformed into a continual space with embedding. The embedding layer is mainly used
in natural language processing applications such as language modelling, but can also be applied
to other tasks involving Neural Networks. Thus one can train their own embeddings using the
embedding layer. It is well-know that when dealing with textual data, it is necessary to transform it
into numeric space before feeding it into any Machine Learning model, including Neural Networks.
The same approach must be taken with discrete-valued sequences. The embedding layer maps the
value of the discrete variable into a fixed-sized vector. The resulting vector is dense and contains real
values instead of 0 and 1 as in One-hot-encoding model. The fixed length of the vectors of discrete
sequences helps to better represent discrete labels with reduced dimensions. Thus, the embedding
layer acts like a lookup table. The discrete labels are the keys in this table, while the dense discrete

label vectors are the values.

2.6 Related work in the analysis of users’ online behavior

Koehn et al. (2020) summarized the methods of event sequence data preprocessing, highlighting their
advantages and disadvantages. One of the most often implemented methods is to create aggregated,
cumulated data, which, however, results in data loss and requires manual feature engineering by the
domain experts. Another conventional method is to create sequence segments or sliding a window,
where only a chunk/fixed-length part of the data is used. Lastly, there are Neural Networks and
embedding layers, where one can work with partially or completely raw data. Although classical
Machine Learning methods have proven their value in many case studies, they are difficult to apply.
One of the main obstacles is that they require a lot of data preprocessing and there is no general
description of what counts as "good enough" cumulative data, so it is often a matter of luck whether
a good feature is detected or not. Although Deep Learning based solutions can overcome these
problems, but their use requires a higher level of knowledge. For example, even a classical Machine
Learning method works with 2D data, while an RNN requires mapping the same in 3D or more
dimensional space.

The usual time series prediction model works with numerical data such as stock prices, meteorology,

24 CHAPTER 2. BACKGROUND

or sensor data. In essence, many publications use some implementation of recurrent (LSTM, GRU)
or convolutional networks (CNN) to find patterns in processed or raw time series. In the last decades
vanilla and combined solutions have proven successful in solving a given numerical sequence based
problem. As an example, the work of (Yu et al., 2016) used Belief Networks and Bidirectional Long
Short Term Memory to analyze sleep disorder data, while others combined Long Short Term Memory
Fully Convolutional Network (LSTM-FCN) and Attention LSTM-FCN to solve multivariate time
series classification problems. The list of research on numerical sequence processing may be quite
lengthy, but when focusing on studies about discrete, categorical time series, it narrows down this
list considerably. In my literature research I found only few studies that dealt with the analysis of
categorical time series or discrete sequences. So far, most of field’s research work has been carried

out by biologists (in DNA research) and researchers in natural language processing.

Sequence predictors

The preprocessing of the time series data preprocess is rather challenging task. There are numerous
gaps to handle, e.g., cleaning the dataset, creating and handle features with different types (time,
numeric, categorical, etc.) or scale. In the case of data from a webshop or web service like education
platforms, the sequences often contain discrete, categorical datasets. For instance, the log data of a
video based educational site (MOOC) could often contain only video commands, i.e., play, stop, pause
and rewind and the contents of the webshop basket could also be taken as a categorical data sequence.
Thus it can be seen, the handling of the numerical order must be done in the same as the handling
of categorical data. Dealing with the problem of categorical sequences does not seem difficult at
first glance, as there are many methods for preprocessing the categorical data. For example, several
studies successfully used the One-Hot-Encoding, Label encoding, and CountVectorizer techniques.
Each method has its advantages and disadvantages: although these methods are easy to use, they
require an immense amount of memory for long sequences with thousands of categories. Another
disadvantage of these techniques is that the relationships between features and their temporality are
lost. To solve these problems, many research works used the embedding layer in their model, since the
embedding technique is able to deal with the problem of temporality and categorical discrete-valued
variables. For instance, Ng (2017) used the popular SkipGramm embedding model to process DNA
sequences and create the dna2vec approach. Asgari and Mofrad (2015) work involved embedding
layers and introducing a new feature extraction method for protein-vectors (BioVec). Kimothi et al.
(2016) also applied the same technique to create seq2vec for biological sequences. Koehn et al. (2020)
proposed their impressive clickstream classification results where they applied RNN architectures

and embedding layers.

Chapter 3

User behaviour analysis from

high-level log data

One of the most commonly used areas of online user behaviour analysis is the webshop. In most
cases, such a predictive model tries to predict some parameter (purchase size, next purchase time)
on high-level data. That approach is based on some statistical or classical machine learning method.
In this thesis, I will present a case study on sales promotion prediction which is based on the most

common forecasting methods and their advantages and disadvantages.

3.1 Introduction

As stated in the previous chapter, understanding user behavior for log data is crucial for e-commerce
and related services. High-level log data usually contains a great amount of information on the user’s
history with the webshop, e.g., purchase history, page visit dates, or wish list, which is useful data
for purchase prediction, user clustering, or recommendation system. This chapter describes the task
of high-level log data behavior analysis and presents a practical framework for real-life webshop sales
promotion targeting. The use of recommendation systems has become a daily concept in product
suggestion, product group selection, and promotional message content generation which is supported
by Machine Learning techniques. Common examples of applications include the recommendation
of movies (e.g., Netflix, Amazon Prime Video), music (e.g., Pandora), videos (e.g., YouTube), news
content (e.g., Outbrain) or advertisement (e.g., (Sidana, 2018)). Section 3.2 highlights that recom-
mendation systems are not directly applicable to users described by event history, like in the case of
marketing letters and sales offer promotion prediction.

As the main contributions of this chapter, I will present techniques for the development of an ML

based recommendation system. This type of system classifies users based on their event history

25

26 CHAPTER 3. USER BEHAVIOUR ANALYSIS FROM HIGH-LEVEL LOG DATA

and makes sales promotion prediction on two levels. I solved the classification task of first level
and the set of regression tasks of second level. T also exploited the clickstream high-level data (as
described in 3.3) which provided an individual-level approach for sales promotion types. In this
study, I worked with both high-level log data and static user profile attributes and therefore, pro-
posed an efficient method to handle the problems of cold start, data sparsity and scalability. This
chapter also introduces high-level data preprocessing methods and proposes cumulative features. I
empirically compared several traditional Machine Learning models on these datasets. The last part

of this chapter outlines their advantages and disadvantages.

3.2 Related works

3.2.1 Behavior prediction in e-commerce

Koehn et al. (2020) summarized the filed of user behavior prediction from log data in e-commerce,
and divided the task into four groups, namely the ‘predict the product group’, ‘classify a user log
history’, ‘predict the outcome of an incomplete session’; and ‘click-through rate prediction’ groups.
In this chapter I focus on predicting the user’s interest, based on observations of the user’s purchase
behavior during the shopping process. Hence this task belongs to the ‘predict the product group’

task of e-commerce user behavior prediction.

3.2.2 Behavior prediction methods

There are many classic data mining and Machine Learning methods published which deal with
the problem of user behavior prediction in e-commerce (e.g., Bozanta and Kutlu, 2018; Cheng
et al., 2016; Burke, 2002; Grbovic et al., 2015; Sidana, 2018; Cano and Morisio, 2017; Velingker
and Alphonso, 2016). For instance, classification can predict the occurrence of an event (Adede,
2012), or regression techniques can aid in predicting the time or amount of money the user will
spend on the website (Groves and Gini, 2011). The solutions that were more sophisticated and
also more popular were, in fact, offered by collaborative filtering (Goldberg et al., 1992) or content
based approaches (Van Meteren and Van Someren, 2000), as discussed in more detail in Chapter
2. Apart from the classical approach, many recent publications introduced combined solutions for
this complex problem (Lucas et al., 2013; Chen et al., 2014; Tian et al., 2019), in which simple
methods had to be combined and embedded to find a proper model. Bozanta and Kutlu (2018),
for example, published a hybrid recommendation model that integrated user based and item based
collaborative filtering, content based filtering together with contextual information to avoid the
disadvantages of each approach. These combined methods proved their robustness and ability to
solve many recommendation, or user behavior prediction problems. However, the majority of them

used only a static snapshot of users and could not handle dynamic single- or multivariate user event

3.3. PROBLEM STATEMENT 27

sequences, time series based data-sets. The event timeline in user history is vital in this database,
thus applying a classic recommendation system was not an option.

The methods of event sequence data preprocessing were summarized in Chapter 2. One of the most
often implemented methods use static user states or product information, which is a type of snapshot,
though, working with only this small piece of data results in considerable information loss. Another
common method is to create sequence segments or sliding a window, using only a fixed-length chunk
of the data, but such action could also lose some important part from user history if the aim is to
handle variable length user log-sequence. In this study I used high-level webshop log data, which
consists of variable-length sequences. Since the goal was to avoid the loss of information, I used full
sequences. For high-Level data, the most obvious solution was to create a cumulative feature-set
capable of exploiting the whole time series.

Another approach is the Deep Learning based solution, but as several papers have shown (e.g., Chen
and Guestrin, 2016; Osman et al., 2021), when the dataset size is limited and based on only short
sequences (as in this high-Level log data-set), a traditional ML model can outperform a DLL based
model. Moreover, because of the client’s needs, I opted for an interpretable model, where the results
were easily explained and visualized. Given these two requirements, I chose to work with classical
Machine Learning methods and decided to build a combined model for this system that used both

regression and classification methods.

3.2.3 Sales promotion prediction

The goal was to solve the problem of predicting the sales promotion from high-level log-lines.
Martinez et al. (2020) and Liu et al. (2016) published the results that were probably most sim-
ilar to those obtained in my work. They developed models that could predict future customer
behavior which was based on the set of customer-relevant features that were derived from the times
and values of previous purchases. Similar to the solution presented in this chapter, they applied
Machine Learning algorithms including Logistic Lasso Regression, the Extreme Learning Machine
and Gradient Tree Boosting for predicting whether the customer would make a purchase in the
upcoming month. Although these two cited papers were quite similar to the solution implemented
here, there were also differences: Unlike the afore-mentioned works, the here-presented prediction
algorithm used a combination of methods instead of a single one. Since each unique problem re-
quired a unique feature set, much effort was invested in building a new cumulative dataset to meet

our needs, in addition to building the model.

3.3 Problem Statement

This chapter focuses on ways to solve the problem of predicting the purchase behaviors of users who

have a known history on an e-commerce website. More specifically, the aim was to forecast which ads

28 CHAPTER 3. USER BEHAVIOUR ANALYSIS FROM HIGH-LEVEL LOG DATA

Table 3.1: Illustration: problem statement as a binary classification.

1% purchase 2"¢ purchase 3" purchase n™ purchase

Likely to buy with
sales promotion

time of prediction -> (user who use more
than 50% promotion

for buying something)

Table 3.2: Illustration: problem statement as a recursion; the distribution of sales promotion types

1°¢ purchase | 27 purchase | 3"¢ purchase | n'? purchase
SPTypel | 35%
SPType2 | 25%

Time of prediction | ->

group or form of sales promotion the user will most likely use based on his or her purchase history
and profile information. This form of sales promotion could include buy two, get one free; price deal;
sampling, etc. While I did not directly use the work of others to design this system, the solution I
arrived at did, in fact, show considerable similarity to the description of (Zhang and Pennacchiotti,

2013). In other words, the predictive system would help in several practical scenarios, including:

e building a cold start recommender system, by providing high-level recommendations to users

who visit an e-commerce website for the first time;

e improve existing product recommendation engines by providing category-level priors that can

guide the recommender system to, and domains of interest for the user;

e provide e-commerce companies with tools for targeted email/social media campaigns.

This implementation of the algorithm had two main goals. The first one was to explore which
piece of information was correlated with the form of sales promotion which the users were most
likely to opt for (see 3.1 for an illustrative example.) Based on this a combined model was built and
tested, which optimized a user-level table, in order to propose the form of sales promotion to users
that best fit their interests and preferences, (as presented in 3.2). The second goal was to back-test
and thoroughly document each critical point of combined Machine Learning algorithms that could

be used as a base structure for those who aimed to replicate this model or build a similar system.

3.4 Dataset

The data used in this work was recorded from a health and beauty webshop. The data contained

more than one million users, from different markets (countries), however, in order to obtain the

3.5. METHODOLOGY 29

richest data possible, it was filtered by the oldest market which included 230.000 user-profiles and
their purchase history. The data consisted of seven years’ of user interaction logs with the webshop.
Each event had a user identifier, timestamp, and an event type. The purchase data contained five
categories of events: pageview of a product, basket view, buy, ordered timestamp, and delivered
timestamp. There were approximately 240 different types of products. In the case of a buy or a
basket view, there was information about the price and extra details. An average customer visited the
shop two or three times a year, which led to a very sparse and high dimensional dataset. This was not
surprising since this is a common occurrence in recommender systems (Sidana, 2018). As a solution,
there were two obvious ways to reduce the dimensionality of the data: either by marginalizing the
time (aggregate pageviews per user over the period) or by marginalizing the product pageviews
(aggregate products viewed per time frame) (Vieira, 2015). I explored both approaches in this work.
As a first step, the solution presented in this chapter connected unique events with sessions. I used
homogeneous data such as purchase history only and heterogeneous example clicks, profile data in
nature. These events were then cleaned and ordered by their timestamps to form the action chain.
As a next step, the unique events were transformed into a feature list (e.g., number of purchases, the
distance between two logins, etc.). Besides the evident data (number of, sum of, mean of purchases),

the script accumulated other data such as:

e distance (in time) between first and second, third,etc. actions;
e number of purchases in first, second, etc. months;
e increase or decrease in purchases compared to the previous month by month;

e the reaction times between advertising letters and a purchase.

Feature engineering

One of the crucial steps for better performance of a classifier was to preprocess the data correctly.
Apart from the regular data cleaning process, the features were transformed by scaling each feature to
a given range with min-max scaling. As a last preprocessing step, feature importance was calculated
with a tree based ensemble method, namely the ExtraTreesClassifier method (Geurts et al., 2006).
Based on the obtained results, the model used only the top 20 features, which significantly increased

the accuracy of the results.

3.5 Methodology

In order to handle the popularity-bias, the problem was divided into two subtasks:

e predict if a user is sensitive for the sales promotion or not, and

30 CHAPTER 3. USER BEHAVIOUR ANALYSIS FROM HIGH-LEVEL LOG DATA

Binclass train Binclass predict
—
e all customers
Ap“ Preproc —»| target _\ user_n_feature i"l features binclass_predict
: binclass_learning i
train/test
—b} features :— model, | prediction
features,
| erros |
="
£ \ v
@
§ > Regression predict
g ,
5) all customers
£ train/test)
Preproc —» target J features | regression_predict
| : l
train/test
—>| user_n_feature |—»| features model, | prediction |
features,
erros
— Regression train

Figure 3.1: State diagram of our combined solution

e predict which kind of form of sales promotion is more interested in it.

As a solution, a combined model was created which used both the regression and classification
methods, see Figure 3.1. The recommendation model returned two lists. The first list gave informa-
tion about the users, whether or not they were likely to use any of the sales forms (the sensitivity
for sales promotion). The second list provided the data to calculate the probability for every sale
(which form of sales the user was likely to opt for). For the results, I proposed a novel combined
recommendation algorithm where similarity measurement is performed between a user the form of
sales based on features derived from the user’s profile and history information. Table 3.3 presents a

table where every single user is designated their specific predicted value.

3.6 Experimental setup

When using raw log data to make a prediction for recommendation, one must handle the data sparsity
problem. As already mentioned, this dataset contained 230.000 pieces of data. However, only 33.000
of the entries had data of sufficient quality. Thus, in the research, only this reduced and filtered
dataset was used, where the entire dataset was split into test sets (20%) and training sets (80%).
The first step was to train various classification models, including Logistic Regression (Darroch and
Ratcliff, 1972), Random Forest (Breiman, 1999), Light GBM (Ke et al., 2017), and XGBoost (Chen

and Guestrin, 2016), where grid search was used to select the optimal parameters. As proven by

3.7. RESULTS 31

Table 3.3: Example of model outcome

user ID likely to use likely to use sales promotion type
sales promotions | typel | type2 | type3 | typed | typed

1000 YES 35% 50% 5% 6% %

1001 NO 0% 0% 0% 0% 0%

the final results, the XGBoost classifier and XGBRegressor performed the best. Additionally, the
majority of classifier (MC) (James, 1998) was used as a baseline for comparison with the above
learning algorithms. For the regression problem, the central tendency measure was used as the
baseline for all predictions. Based on these, I examined the combined models using the training set
and adjusted the parameters of the predictive algorithms’ achieving the best performance on the
validation set. A prediction was made for each instance in the test set and the forecast results were
compared with the true values by computing corresponding performance metrics. To obtain the
best evaluations I applied the K-fold validation, where both training and validation sets were used

for prediction.

Handling the problem with an ensemble classification and regression tree

The first goal was to predict if a user was likely or not likely to use a sales promotion, which was a
binary classification problem. In order to find the best solution, I trained and tested classification
models a great many times. Following extensive research, it was established that the XGBoost
ensemble classifier (Chen and Guestrin, 2016) provided the best results. This was not entirely
surprising, because tree boosting is a highly effective and widely used Machine Learning method.
Another important feature was that the algorithm performed well, as it included an efficient linear
model solver and could also exploit parallel computing capabilities (Chen and Guestrin, 2016).
Ensemble learning provided a systematic solution to merge the power of multiple learners. The
prediction value of XGBoost can have different interpretations depending on the task, i.e., regression
or classification. XGBoost is a tree ensemble model set of classification and regression trees. It was
able classify the data used in this research into one of a finite number of values, that was why it was
called a regression model (nonlinear model). Apart from XGBoost, the results were also compared
with Linear regression (Cook, 1977), Lasso regression (Park and Casella, 2008) and Ridge regression
(Hoerl and Kennard, 1970).

3.7 Results

3.7.1 Classification

The greatest challenge of the recommendation system is usually the cold start problem. It may

appear when the user starts the initial steps, or as in the present case, when the shop owner starts a

32 CHAPTER 3. USER BEHAVIOUR ANALYSIS FROM HIGH-LEVEL LOG DATA

Table 3.4: Results of classifications

Model ACC | F1 precision | recall
Baseline 0.587 | 0.342 | 0.351 0.337
Logreg all 0.676 | 0.409 | 0.620 0.306
Logreg topl0 0.685 | 0.404 | 0.661 0.291
XGBoost all 0.706 | 0.527 | 0.652 0.436
XGBoost topl0 0.703 | 0.518 | 0.657 0.419
XGBoost all HPT 0.768 | 0.519 | 0.666 0.423
XGBoost topl0 HPT 0.771 | 0.509 | 0.658 0.417
XGBoost topl0 HPT(4) | 0.790 | 0.624 | 0.713 0.554

new sales promotion type, which makes very sparse data. To solve this problem, I filtered (dropped)
those particular users and promotions from the training dataset which had too sparse data or no
data at all. Based on my model, I created a binary classification with XGBoost to predict whether
or not a user was likely to use a given sales promotion. The parameters of the estimator were used to
apply optimization by cross-validated grid-search over a parameter grid. Several models and settings
were tested before the most accurate model was identified.

These results are displayed in Table 4, where the window size (number of purchases) was three for
all the methods, except in the last configuration. During the first phase, XGboost was used with
all features, more specifically, with only the top-10 features, which achieved a 70% rate of accuracy.
To improve this, I applied hyperparameter tuning (HPT), namely cross-validated grid search over a
parameter grid which would provide greater accuracy. The aim was to make further improvements,
but the sparsity of the data did not allow for it. The challenge was to predict user feature habits
in as short a time as possible. For that reason, I used the user’s first three instances of purchase
history to train the model, but this failed to improve the results, which was, however, to be expected.
Simply put, it would take more data to gain better results. This could only be achieved by waiting
for more information, or by prompting clients to fill in the profile table. To prove this concept, I
trained the model with the user’s first four purchases, which achieved 0.79 accuracy (as highlighted
in the last row of Table 3.4). Surmounting this obstacle called for a different approach, which had
actually been suggested by many researchers: if the classification model is not accurate enough, one
should resort to changing the point of view. In line with this suggestions, I retested this solution as a
regression with XGBRegression (as a regression problem). This provided the result RMSE = 16.77,
which was, indeed, not a better outcome, because if this result were transformed into a classification
result, it would still be accuracy 0.686, precision: 0.578, recall: 0.546, and F1: 0.562.

3.7.2 Regression

In the second phase, the goal was to determine which type of sales promotion (SP) most users would

prefer (see Figure 3.1). This was a regression problem, in which every SP type had to be predicted

3.7. RESULTS 33

Table 3.5: This table presents ways to determine which type of sales promotion most of the users
would prefer. The table summarizes the results of the sales promotion regression problem. The
different settings demonstrate the LGBMReg CV TOP offer the best results.

model Sales promotion Typel Sales promotion Type2 Sales promotion Typel
MAE | MSE RMSE | MAE | MSE RMSE | MAE | MSE RMSE
Baseline CV 5.840 | 53.568 | 7.313 9.970 | 161.948 | 12.723 | 12.679 | 256.261 | 16.001
DNN 5.906 | 53.275 | 7.298 9.870 | 158.492 | 12.589 | 12.600 | 259.132 | 16.097
LR all CV 5.039 | 46.029 | 6.779 8.927 | 131.045 | 11.442 | 11.368 | 206.408 | 14.3651
LGBMReg CV 4.7152 | 42.469 | 6.551 8.446 | 118.202 | 10.869 | 10.946 | 191.677 | 13.843
StackReg CV TOP 4.778 43.153 | 6.564 8.720 | 125.506 | 11.200 | 11.092 | 196.392 | 14.013
LR CV TOP 4.986 | 44.844 | 6.691 8.829 | 127.842 | 11.301 | 11.234 | 203.471 | 14.284
LGBMReg CV TOP | 4.700 42.349 | 6.501 8.602 | 112.589 | 11.067 | 10.895 | 191.12 13.824

for every user. Instead of testing all the types of SP for a measurable result, I only selected three

types of promotions:
e Typel was an SP type which had a long history in this webshop;
e Type2 only had a one-year background, and

e Type3 was the most recent SP type, with less than six months of use.

Based on the above-described, the results were obtained as reported in Table 3.5. To ensure the
best outcome, I ran more models with different settings, including linear regression (LR), Light GBM
(LGBMReg), and a simple Deep Neural Network (DNN). In the initial step, the model used all (n
= 129) normalized, scaled, and skewed feature sets. Based on this method, the LGMBReg made the
most accurate solution. The second step was to increase the model’s accuracy, which required finding
the most important features. For this purpose, I implemented the wrapper method, specifically,
backward elimination. As the name suggests, all the possible data were fed into the model at first.
Then the performance of the model was tracked and the worst performing features were repetitively
removed one by one, until the overall performance of the model came in a suitable range. To calculate
feature importance, I used the ordinary least squares (OLS) model (Weiss, 1988). After numerous
attempts and settings, it was found that the best solution was provided by LGBMReg, a tree based

regression model, which created a much more accurate model than the random choice.

3.7.3 Discussion

The problem and solution of predicting the acceptance of the sales promotion were highly specific
since the task was not to predict the next purchase but to gauge a user reaction to advertising letters.
Regardless, I had to identify a way to compare the performance of this model with other ones. The
methodology and results of this experiment were similar to the results obtained by Martinez et al.

(2020), so I selected their results as a basis for comparison. The problem of predicting whether a

34 CHAPTER 3. USER BEHAVIOUR ANALYSIS FROM HIGH-LEVEL LOG DATA

user was likely or not to use a sales promotion was essentially identical to their binary classification
problem. While my model achieved quiet a good level of accuracy, their solution gave an almost
perfect solution. The difference between these two models was not surprising, given the fact that I
used only the first four purchases and high-level sequences, whereas they used 24 months’ worth of
data with a middle and low-level time series for the same task. The comparison results confirmed
Martinez et al.’s observation that it was difficult to make an accurate prediction model from short
data and few purchases, however, over time, as data was collected, more accurate results could be

gleaned from the data.

3.8 Contributions

This thesis has presented the following contributions. The construction of the model and its results

were presented in the journal paper: (Kérosi and Vinko, 2021).

e [used the log data of an existing webshop in Hungary to develop a solution that can reliably
predict the sales promotion acceptance probability from the high-level user log data. I proposed
a specific feature representation that allowed me to generate cumulative data from the obtained
user sequences that effectively supported the operation of the model, which was designed in

the form of a combined classification and regression solution.

e In the combined model the classification method was used to determine whether or not a
user would accept the sales promotion. Using the output of this classification model with
a regression task, I separately predicted the probability of promotional package acceptance.
The output of this combined model was not only able to predict user behavior with relatively

efficiently, but also provided a solution that was easy for the client to interpret.

e [made empirical measurements with almost a dozen different Machine Learning methods, and
run hyper-parameter tuning to find the optimal solution. I demonstrated that when using
high-level log data, the cumulative feature extraction method with a combined classification
and regression solution was able to provide fast and efficient results, which was confirmed by

the customer’s satisfaction.

Chapter 4

Educational performance prediction

from middle-level click-stream data

Researchers in the field of online education have been working on predicting student behavior for
almost a decade, but so far they have only been able to do so on poor data sets. Today, we live
in the age of online education platforms, which have given us access to greater amounts of data.
The availability of new middle- and low-level data has opened up new opportunities for researchers,
allowing the use classical Machine Learning methods in more accurate ways. In this thesis, I present

the middle-level data collection techniques and prediction methods of an online reasoning platform.

4.1 Introduction

Mushrooming as a scalable lifelong learning paradigm, Massive Open Online Courses (MOOCs)
have enjoyed considerable limelight in recent years, both in industry and academia (Haggard, 2013).
With the appearance of MOOCs, educational platforms gained additional boosting, a new aspect
in their evolutionary process, which opened a new field of research thanks to the extraction of user
log behaviour information within the frames of data mining. Despite their early promise, however,
MOOCs are still relatively unexplored and poorly understood (A. Anderson and Leskovec, 2014).
Meanwhile, MOOCs often attract an enormous number of registrants, but only a fraction of them
are able to successfully complete their courses. High drop-off rates are often attributed to factors
such as low teacher-to-student ratios, the asynchronous nature of interaction, and heterogeneous
educational backgrounds and motivations, which make it difficult to scale the efficacy of traditional
teaching methods with the size of the student body (X. Wang and Rose, 2015; Yang et al., 2017).

The time series structure and analysis of e-commerce and MOOC platforms shows great similarity.

However, during the analysis of the high-level webshop log data used in the previous step of this

35

36 CHAPTER 4. EDUCATIONAL PERFORMANCE PREDICTION

research, detailed in Chapter 3, it transpired that the short and high-level log data limit the accuracy
of the model. Thus, in order to build models with higher accuracy, it was first necessary to change
the depth of the data. For the purpose of obtaining better and deeper data, I designed an e-learning
course on a Moodle site, called Conscious and Safe Internet Usage, or in Hungarian, Tudatos és
biztonsagos internethasznalat alapjai TEBIA. The course was attended by primary and secondary
school pupils, as well as university students. The term ‘learners’ is used to denote both pupils and
students, I also added a middle-level user behaviour logging component in order to collect the users’
online activities. This chapter describes the analysis of the log- data of learners who were motivated
by their teacher and their school to attend and complete the short MOOC course, lasting only a few
days. The logged data is similar to the data from edX and Coursera, even though it was created in
a much shorter time period than those, and it is of a school-class nature. This log file ensured an
opportunity to study clickstream data and user attitudes in short MOOCs. This chapter presents
the following:

e the structures of the self developed middle-level user behaviour logging component;

e the data collection and preparation methodologies: The logging system during the two courses

registered 4.663.120 logs, out of which 26 variables were generated and assigned to the user;
e the structure of the curriculum;

e feature design and selection methods: a feature space of 263 attributes was proposed to describe
learners’ clickstream data, while various feature selection and various classification approaches

are applied;
e comparison of model results.

The main contributions of this investigation are that deeper middle-level data is able to support
more accurate model even if using short MOOC courses. Those features which influence the classifier

results the most are highlighted, thus providing useful insights for MOOC developers.

4.2 Related works

There is significantly less research specifically using Machine Learning models to support e-learning
systems than works focusing implementing those in the area of e-commerce. Brinton and his research
group published various studies (C. G. Brinton and Ju, 2015; C. G. Brinton and Poor, 2015; Brinton
and Chiang, 2015; C. G. Brinton, 2016) aimed at predicting student behavioural classification from
log data of MOOC systems. They stated that the most common way for time series prediction
was to use the recurrent Neural Networks. However, they specified that if the sequence was short,

discrete-valued and variable- length, the RNN based solution was not the best option. To solve

4.3. E-LEARNING LOGGER MODULE LAYER 37

this problem, they opted for preprocessing the cumulative middle-level log data based features and
feed them into a Multi-layer Perceptron instead of the RNN based method. Given that the present
research worked with a similar, middle-level dataset, my solution also used cumulative data, which
I did using various classical Machine Learning methods.

The dataset captured various user events, but the most data instances on interactions were captured
during video viewing. The work of (C. G. Brinton, 2016) underlined the value of video interactions
in student performance prediction, thus I also chose to focus on the video-interaction logs. In this
reference work Brinton studied the behaviour during video viewing and the success rate of quizzes
embedded in video.

For this purpose, he searched for so-called motifs in preprocessed and denoised cumulative data. The
resulting motifs and a Support Vector Machine were used to predict the outcome of video-in-quizzes.
In another study, M. Speiser (2012) also tried to build a predictive model on video viewing data,
which served to support the aim of my research. Brinton explained why it is not worth using raw
log data for short time series with few data points, which confirmed my notion that for a middle-
and low-level data set with variable and short time series, it is preferable to carry out thorough
preprocessing and define cumulative features and only then use classical Machine Learning methods

to predict the success or failure of the course.

4.3 E-learning logger module layer

As part of a team, I participated in the development of a middle-level user behaviour logging com-
ponent, presented in Kérosi and Havasi (2017). It was built on the basis of Moodle which is an
open-source, free, well-supported, popular e-learning platform. The Moodle platform is known for
its robustness, though its user interface is less modern than it would be expected these days. This
was the underlying reason for completely replacing its font-end and developing a new one, which
is called Moodle’s back-end. One module of its front-end is responsible for logging and this logger
front-end collects and processes events, and calls its back-end part via HT'TP call to store them. The
back-end part — which is completely independent from the back-end of the Moodle - is developed in
NodeJS and uses MongoDB to store events (Figure 4.1). Every log entry is an event. Each of the
events classified the log data into different types, and depending on the type, they store different
parameters for it. For example, a “textinput” event has a parameter, which stores the typed text,
called text:

{
type: "textinput",
data: {
target: "search—target",

text: "database"

38

CHAPTER 4. EDUCATIONAL PERFORMANCE PREDICTION

Front-end

Main front-end

HTTP

Back-end

Moodle Php

Filesystem PostgreSQL

event

JavaScript

Logger front-end

HTTP

Nodels

Logger

MongoDB

Figure 4.1: Front-end logging system

}s

time: "2017.01.23. 16:01:28.242",

page: "https://...",
userid: 1876

There are some parameters, which are stored for all events:

e userid: the ID of the user, who executed the operation, or 0, if there was an anonymous user

e time: the date of the event

e page: the URL of the page, where the event happened

e type: the type of the event (see below)

The type of the events, and their parameters can be as follows:

e load, unload, focus, blur: generated in the case of loading or unloading of the page and

achieving and losing the focus.

e resize: meaning to resize the browser window. It has two parameters: x, y (the new size of the

windows).

e click: it represents a mouse click. Its parameters are x and y.

4.3. E-LEARNING LOGGER MODULE LAYER 39

e testClick: it signifies a mouse click to an answer of a quiz. It is a preprocessed event: this
javascript event handler automatically recognizes whether the mouse click happened over an
answer and generates a testClick event, not a simple click event. Its parameters are: question,

answer, correct, choiceCleared.
e download: generated in the case of downloading a file. Parameter: filename.

e textinput: this event represents a change of a text input field. Parameters: target (ID of the

text element), text (actual value of the text element).

e textinput focus, textinput blur: they are generated when a text input gains or loses the

focus. Parameters: target (ID of the text element), text (actual value of the text element).

e passwordinput, passwordinput_focus, passwordinput blur: similar to the previous ones, but
because of security consideration, the value of the password text input is not stored. Parame-
ters: target (ID of the text element), and length (of the text element).

e mouse move: mouse moving event. Parameters: x, y, xDistance, yDistance, realDistance. The

system stores only two mouse events in a second.

e scroll: means scrolling the page. Parameter: top. The system stores only two mouse events in

a second.

There are video events, as well. The system supports two kinds of video: html5 video element
and embedded YouTube video. Events:

e videoSeek: means seeking in the html5 video element. Parameters: seekTime, videold, total-

Time, src.

e videoPlay, videoPause, fullscreenOn, fullscreenOff: html5 video playing events. Parameters:

actualTime, videold, totalTime, src.

e volumeChange: html5 video element volume change. Parameters: actualTime, videold,totalTime,

src, new Volume.

e youtubePlay, youtubeEnd, youtubePause, youtubeBuffering: youtube video playing events.

Parameters: actualTime, videold, totalTime, src.

e youtubeQuality. changing youtube video quality settings. Parameters actualTime, videold,

totalTime, src, quality

e youtubeRate. parameters: actualTime, videold, totalTime, src, rate.

40 CHAPTER 4. EDUCATIONAL PERFORMANCE PREDICTION

4.4 Collected dataset

The courses were created to test the logging platform and collect user behaviour data. In the first
part of this research, a pilot study was conducted between the dates of March 1 and May 30, 2016,
which was followed up by the second study, carried out between October 1 and December 10, 2016.
Altogether 163 learners participated in the initial study and 1370 student signed up for the second
course in the autumn semester. The course details are summarized in Table 4.1 below. The learning
material for the course comprised a six-week study period. The course, in fact, courses, as the same
course was offered several times, ran under the name ‘TEBIA,” and included 4 + 1 (embedded)
videos with attached embedded texts, or external links. The primary point of interest lay not only
in the dropout rate, but in discerning how the platform functioned and how the learners would
behave. Eventually, 99.8% of the learners who had signed up for the course, had also completed it.
The logging system during the pilot and the second course registered 4.663.120 logs, out of which
26 variables were generated and assigned to the users. These were the following: Data, Page, Pid,
Time, Type, User, Data.realDistance, Data.x, Data.xDistance, Data.y, Data.yDistance, Data.Text,
Data.Top, Data.Target, Data.Filename, Data.Length, Data.ActualTime, Data.Scr, Data.TotalTime,
Data.Videold, Data.SeekTime, Data.NewVolume, Data.Ip Adress, Data.Quality, IP.
In the course of recording, middle-level time series data was obtained through the developed a middle-
level user behaviour logging component in the form of student IDs, time stamps, and activities. The
samples of data are constructed from the TEBIA course which involved upper grade learners form
20 elementary schools. Components of a previously used and tested curriculum were taken as the
basis of the course content, which included an initial test with a video lesson and three further units.
Every unit consisted of an obligatory video task and further optional textual learning materials.
To complete a unit, the learners had to solve three tests with a minimum score of 5 points out of
10. Every unit culminated in a test with a maximum score of 10 points, except for the initial test,
which carried a max of 15 points. The distribution of the learners’ final scores showed a Gaussian
distribution (Figure 4.2) which confirmed the validity of the outcome test.

The distribution of students’ final scores shows a Gaussian distribution (Figure 4.2) which

supports the validity of the outcome test.

4.4.1 Data cleaning

The types of activities recorded are those which correspond to broad categories of student behaviour,
such as previewing lectures, mouse behaviours (move, scroll, click), video watching attitudes and
text inputs. As mentioned before, the course analysed in this chapter had 1370 registered learners
who generated 4.663.120 click events over a 6-week period. The portal recorded 1370 learners and
lecturers, out of which only 1077 filled in and completed the initial test (Q0). As Chapter 4.4

shows, the noisy and complex nature of this set of data made it impossible to use simple statistical

4.4. COLLECTED DATASET

Table 4.1: Course contents

Course name

TEBIA

Content

Basics of Conscious and Safe Internet Usage

Time frame

6 weeks

Parts of the Learning Material

Introduction:Video (3.37 min., Embed);

Digital footprint:
Video (14.04 min, Embed);
HTML embedded text;

Conscious and Safe Internet Usage:
Video (13.07 min, Embed);
HTML embedded text; External link;

Online bullying:

Video(13.31 min, Embed);
HTML embedded text;

Extra video (11.55 min, Embed);

Density
0.05 0.10 0.15 0.20

0.00

v

Data

Figure 4.2: Number of clicks by user

41

or clustering methods to create a predictive model. Those learners, who had an output test but

had an insufficient number of activities, were eliminated from the measurement. The number of

obtained results amounted to 603. Based on the conditions set to complete the course, the group

was split into two parts (Q1>=5 and Q2>=5 and, Q3>=5), which were labelled as 0 (“Failed”) and

1 (“Completed”).

42 CHAPTER 4. EDUCATIONAL PERFORMANCE PREDICTION

A
1.2e-06
E=)
B 9.0e-07
£
2
é 6.0e-07 . Failed
E . Passed
5
o
£ 3.0e-07
=
0.0e+00 N
0.0 2.5e+06 5.0e+06 7.5e+05 1.0e+07 ms
Time(normalized)
Figure 4.3: Time spent in course
Table 4.2: Time spent in course

Failed

Min. 1%t Qu. | Median | Mean 377 Qu. | Max. NA’s

51000 684300 | 861900 1294000 | 1291000 | 9725000 | 3

Completed

Min. 1%t Qu. | Median | Mean 377 Qu. | Max. NA’s

123500 123500 | 1098000 | 1987000 | 2970000 | 9462000 | 3

4.4.2 Preliminary investigation

The class- label-wise distributions of several log properties were visualized so that the structure of
the data can be investigated, and user behaviour better understood. Due to the unbalanced nature
of the data (n failed = 419, Neompleted = 184), density distribution is presented. The following density
figures show the differences between the main attributes of the learners who failed and completed
the course. The final diagrams (Figure 4.5) show a significant overlap between the two groups,
which makes it harder to adjust the weighting settings. While the list of differences between these
two groups is far from complete, the following illustrations sum up the most significant distinctions,
as given in Figure 4.3, Figure 4.4, and Figure 4.5 as well as Tables 4.2, 4.3, and 4.4. All the
diagrams below were constructed using the Ggpolt R package of Wickham, et al. (Wickham et al.,
2016)

4.5. MACHINE LEARNING EXPERIMENTS 43

5.0e-05 4
_ 4.0e-05
g
r_g
5 3.0e-05
E B railed
é 2.0e-05 . Passed
©
5
g 1.0e-05
=
0.0e+00
0.0 25000 50000 75000
Distance of mouse move in pixel
Figure 4.4: Average distance of mouse in course contents
Table 4.3: Average distance of mouse in course contents
Failed
Min. 15t Qu. | Median | Mean | 3% Qu. | Max. | NA’s
226 4325 8190 14800 | 20570 82210 | 262
Completed
Min. 15t Qu. | Median | Mean | 3% Qu. | Max. | NA’s
541 5632 12990 19040 | 28520 95030 | 76

4.5 Machine learning experiments

I conducted Machine Learning experiments using clickstream log data to predict whether a particular

student would pass or fail the final exam of the MOOC. I employed the Rminer (Cortez et al., 2009)
package of R.

4.5.1 Feature space

As stated above (section 4.3), a total of 263 features were defined to describe the clickstream data.
There were two types of data. In the first group was the data which was collected during the filling
process in the incoming test. The second type of data was the clickstream which was collected during

the learning process in the three parts of the curriculum (see Table 4.1). This collection was divided

44

1.2e-06
=)
~
=
£ 9.0e-07
(o]
£
w
=
[}
g 6.0e-07
7
2
(]
@
0
£ 5.0e-07
=}
=
0.0e+00

CHAPTER 4. EDUCATIONAL PERFORMANCE PREDICTION

. Failed
. Passed

v

0.0 50 100 150 200 250

Number of scrolls

Figure 4.5: Average number of scrolls in course contents

Table 4.4: Average number of scrolls in course contents

Failed

Min. 15t Qu. | Median | Mean | 3" Qu. | Max. | NA’s
0 64 89.50 95.58 | 118.80 | 244.00 | 9
Completed

Min. 15t Qu. [Median | Mean | 3" Qu. | Max. | NA’s
0 81 109.00 | 115.00 | 144.00 | 249.00 | 9

into 18 major categories:

e binary and numeral answers provided to input and output tests (28-+60).

e time spent on the quizzes (6).

e and the sites of the curriculum (7).

the number of visits to the site of quizzes (6) and site of the curriculum (7).

e the mouse movement distance in pixels (13).

the average mouse speed (13).

e the cumulated data (6).

4.5. MACHINE LEARNING EXPERIMENTS 45

o the number of mouse movements on a page (13).

e the number of clicks on a page (13).

e the use of test buttons during the input/output testing (4).

e the number of scrolls on a page (13).

o the last login date to a page compared to the first login to the site (13).
e the first login date compared to the first login to the site (13).
e the days spent on the sites (13).

e the mean behaviour on the sites (19).

e the number of calendar days between the output tests (7).

e binary output results (1).

e output results (2).

o user-related data (6).

4.5.2 Feature selection

Various feature selection methods were investigated and the gain-ratio function in the FSelector
package (P. Romanski, 2017) proved to be the most effective. Gain-ratio examines all the parameters
one-by-one and creates a hierarchy, which distinguishes weak and strong correlational connections.
The FSelector package was designed to handle such problems and the most useful functions of all
were the chi.square and gain.ratio filtering algorithms. Out of these two, the latter provided accurate
calculations so the choice