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The thesis is about two problems both concerning partially ordered
sets, shortly, posets. Though being connected by the type of their main
objects of interest, i.e. posets, the two problems are unrelated in their
depths.

1 Definability in the Embeddability and
Substructure Orderings of Finite Directed
Graphs

The first problem, which fills up Chapter 1, is first-order definabil-
ity in substructure and embeddability orderings. Chapter 1 is based on
three papers of the author [5H7]. To put it on the huge palette of math-
ematics merely, one could say the following. The questions seem like
logic: try to grasp the expressive power of a certain first-order language
in a given structure. To get answers, we use basic, finite, combinato-
rial thinking, no more. What looms behind the problems though, is
the symmetries of some particular, complicated, infinite posets. This
research is, in fact, a continuation of a series of papers by Jaroslav
Jezek and Ralph McKenzie [1H4], published in 2009-2010. Beyond the
author of this thesis, others have picked up on this topic [9L|12H14].

Let us go into detail a little. Let D be the set of (the isomorphism
types of) finite directed graphs, shortly, digraphs. For two digraphs
G,G €D, let G < G’ denote that G is embeddable into G’, that is we
can get G from G’ by leaving out some vertices and edges. Equiva-
lently, there exists an injective map from G to G’ preserving the edges.
An ostensibly similar notion follows. Let G C G’ denote that G is a
substructure of G', that is we can get G from G’ by leaving out vertices
only. Equivalently, there exists an injective map from G to G’ preserv-
ing both edges and non-edges (i. e. the absence of edges). What we
have so far is two partially ordered sets: (D; <) and (D;C) (see Figs.
and . In the first chapter of the thesis, we investigate the expressive
power of the first-order language of partially ordered sets for these two
particular posets.

Probably, the most natural question is elementwise definability.
Can you identify every single element in either (D;<) or (D;C) by
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Figure 1: The initial segment of the Hasse diagram of the embeddabil-
ity ordering, (D; <).

a first-order formula in the language of posets? This is where sym-
metries, i. e. automorphisms, come into play. Say, in a poset P,
the element p is taken by an automorphism to a different element p’.
Then, naturally, first-order formulas cannot distinguish p from p’ as
they share the exact same structural properties in P.

With regard to both the automorphisms and definability, (D; <) is
a much easier nut to crack. Therefore, we start Chapter 1 with the em-
beddability ordering. The automorphism that sends G to its transpose
GT, that is just reversing all edges, is easy to discover. Consequently,
the strongest we can hope, in terms of elementwise definability, is that
the set {G,GT} is first-order definable for every digraph G € D. In-
deed, this is proven in the thesis.

Theorem 1. In the poset (D; <), the set {G,GT} is first-order defin-
able for all finite digraph G € D.

Using this theorem, we can show that there is no other nontriv-
ial automorphism, pointing to the strong, back-and-forth connection
between the definability we investigate and the automorphisms.



Figure 2: The initial segment of the Hasse diagram of the substructure
ordering, (D; ).

Theorem 2. The poset (D; <) has ezxactly two automorphisms, namely
the trivial and the one that maps every digraph to its transpose. Con-
sequently, the automorphism group of (D;<) is isomorphic to Zs.

So far, what we have settled is the definability of finite subsets of
(D;<): a finite subset S C D is first-order definable if and only if
G € S implies G € S. Hence, to move forward, we must ask about
infinite subsets.

As a famous statement in model theory reveals, there is no first-
order formula defining the set of weakly connected digraphs in their
own first-order language. Surprisingly, we do have such a formula in
our language. We even show that with the addition of just a single
constant, a digraph that is not isomorphic to its transpose, the whole
second-order language of directed graphs is expressible in our language.
Technically, what we do is go on the path laid by Jezek and McKenzie
in [4]. We define a new language. This language is seemingly much
stronger than the first-order language in question. Nonetheless we
show that, in fact, it possesses the same expressive power.

Let [n] denote the set {1,2,...,n} for all n € N. Let us define
the small category CD of finite digraphs the following way. The set
ob(CD) of objects consists of digraphs on [n] for some n € N. For all
A,B € ob(CD) let hom(A, B) consist of triples f = (A, «, B) where
a: A — B is edge-preserving. Composition of morphisms is made the



following way. For arbitrary objects A, B,C € ob(CD) if f = (A, «, B)
and g = (B, 8,C), then

fg=(A,Boa,C).

It is easy to see that f € hom(A, B) is injective if and only if for all
X € ob(CD)

Vg,h € hom(X,A): gf =hf < g=h. (1)
Similarly f € hom(A, B) is surjective is and only if for all X € ob(CD)
Vg,h € hom(B,X): fg=fh<g=nh.

These are first-order definitions in the (first-order) language of cat-
egories, hence in CD, isomorphism and embeddability are first-order
definable. This implies that all first-order definable relations in (D, <)
are definable in CD too.

Let us introduce some objects and morphisms:

E, € ob(CD): V(E;) = [1], E(Ey) =0,

I, € ob(CD) : V(Iz) = [2], E(E1) = {(1,2)},
fi € hom(Eq,I,) : f; = (Eq,{(1,1)}, Io),
f; € hOHl(El;IQ) fa = (Elv{( ) )}aIQ)

Adding these four constants to CD we get CD'.

In the first-order language of (D, <), formulas can only operate
with facts telling whether digraphs as a whole are embeddable into
each other or not, the inner structure of digraphs is (officially) un-
available. In the first-order language of CD’ though, we can capture
embeddability (as we have seen above) but it is possible to capture
the first-order language of digraphs too. The latter is not trivial, but
the following argument explains it. For any X € ob(CD) the set of
morphisms hom(E;, X) is naturally bijective with the elements of X.
Observe that if f,g € hom(E;, X) are

f = (E17{(1’$)}7X)7 9= (El,{(l,y)},X) (a:,y € V(X)),
then (z,y) is an edge of X if and only if

3h € hom(Iy, X) : fih=f, fh=g. (2)



This shows how we can reach the inner structure of digraphs with the
first-order language of CD’. So the first-order language of CD’ is much
richer than that of (D, <). We can go even further. One can show
that the first-order language of CD’ can express the full second-order
language of digraphs. To formulate this more precisely, we will show
that the first-order language of CD’ can express a language containing
not only variables ranging over objects and morphisms of CD’ but also

(I) quantifiable variables ranging over
(a
(b

(¢
(d

) elements of any object,

) arbitrary subsets of objects,

) arbitrary functions between two objects,

) arbitrary subsets of products of finitely many objects (het-
erogeneous relations),

(IT) dependent variables giving the universe and the edge relation of
an object,

(III) the apparatus to denote

(a) edge relation between elements,
(b) application of a function to an element,

(¢) membership of a tuple of elements in a relation.

We say that the relation p C (ob(CD))™ is isomorphism invariant
if whenever A;, B; € ob(CD), and A; = B; (1 <i <n), then

(Al,...,An)ep = (Bl,...,B»,L)Ep.

The set of isomorphism invariant relations of ob(CD) is naturally bi-
jective with the relations of D.

Let A denote the (isomorphism type of the) digraph with edges
(a,c¢) and (b,c), on three vertices: a, b and ¢. Then what we prove is
the following.

Theorem 3. A relation is definable using the first-order language of
(D; <, A) if and only if the corresponding isomorphism invariant rela-
tion of CD’' is first-order definable in CD'.



To prove this, we somehow “model” the workings of this category
using the first-or language of (D; <, A). This is a long and technical
proof.

The second part of Chapter 1 examines the substructure ordering,
(D;C). Here, we are faced with something new right away. Unprece-
dented in the line of this topic, we find nontrivial automorphisms.
Though we present a conjecture for the automorphism group, it is un-
proven at the moment.

Conjecture 4. The automorphism group of (D;C) is isomorphic to
the 768-element group, (Z3x Sy) X o Za, with a given o in the semidirect
product.

We try to offer some sense of this vast automorphism group. To
define an automorphism ¢, we need to tell how to get (G) from G. All
the automorphisms, that we know of at the moment, share a particular
characteristic. They are all, say, local in the following sense. Roughly
speaking, to get ¢(G) from G, one only needs to consider and modify
G’s at most two element substructures according to some given rule.
To make this clearer, we give a nontrivial example. Let ¢(G) be the
digraph that we get from G such that we change the direction of the
edges on those two element substructures of G that have loops on
both vertices. It is easy to see that this defines an automorphism,
indeed. (Perhaps, one would quickly discover the automorphism that
gets p(G) by reversing all edges of G, but this is different.) Observe
that, in this example, the modification of G happens locally, namely
on 2-element substructures. All the automorphisms, that we know of,
share this property. Now, we define some of our automorphisms ;.
To do so, we just tell how to get ¢;(G) from G. One of the most trivial
automorphisms is

e 1: where there is a loop, clear it, and vice versa, to the vertices
with no loop, insert one.

Observe that this automorphism operates with the 1-element substruc-
tures. Now we start to make use of the labels of Fig. [2|

e 5 change the substructures (isomorphic to) E to E’ and vice
versa.



e ©3: change the substructures (isomorphic to) L to L’ and vice
versa.

e 4: reverse the edges in the substructures (isomorphic to) P.
e 5: reverse the edges in the substructures (isomorphic to) Q.

Let Sy denote the symmetric group over the four-element set { A, B, C, D},
and 7 € Sy. We define

e ¢,: We change the substructures (isomorphic to) X € {4, B,C, D}
to m(X) (such that the loops remain in place).

Observe that, with the exception of ¢, the automorphisms defined
above do not touch loops (when getting ¢;(G) from G). We conjecture
that these automorphisms generate the whole automorphism group.
After seeing these generators, the 768-element group, (Z3 x Sy) X Zo,
may feel more natural to the reader.

We have already seen that there is a strong connection between
the expressive power of the first-order language of posets and their
automorphism groups. Does this mean that the uncertain automor-
phism group blocks us from getting any definability result? Though
this could very well be the case, fortunately, it is not. What we show
is the following.

Theorem 5. With the addition of finitely many constants, the first-
order language of (D;C) can express that of (D; <).

Note that this theorem carries weight only because, at this point,
we’ve already established that the first-order language of (D; <) is very
strong.

How do we prove such an expressibility statement though? Despite
the fact that the proof is long and technical, it is based on a simple
idea, which we outline here. Remember that we get substructures of
a directed graph by leaving out vertices, while, to get embeddable di-
graphs, we can leave out both vertices and edges. We want to define
the latter, so we should be able to ‘simulate’ leaving out edges some-
how. Our approach is the following. In a digraph G, if there is an
edge (u,v), then we add a vertex and two edges to ‘support’ the edge
(u,v). Namely, we add w to the set of vertices, and the edges (u,w)
and (w,v) to the set of edges. After the addition, we say that the



edge (u,v) is ‘supported’. The idea is that the supportedness of an
edge can be terminated by leaving out a vertex, i.e. w in the previous
example, what we can do by taking substructures. Roughly, what we
should do is: support all edges, take a substructure, and in one more
step, leave only the supported edges in. Of course, there seem to be
many problems with this. Firstly, how can we distinguish between
the supporting vertices and the original ones? This appears to be an
essential part of the plan. Secondly, the plan ended with “leave only
the supported edges in” which just looks like running into the origi-
nal problem again: We cannot leave edges out. Even though the plan
seems flawed for these reasons, it is manageable. That is what we do
in the thesis.

Finding a minimal list of the constants of the theorem above is al-
most equivalent to determining the automorphism group. Hence such a
minimal list is not provided. A possible, far-from-minimal list consists
of the digraphs of at most 12 elements. It might seem odd that we do
not “know” what constant digraphs we use through our proof. This is
because some of our arguments go the following way. Some properties
of digraphs can be told by saying something about them locally. For
example, one can judge if a digraph has a non-loop edge by the set of
its (at most) 2-element substructures. Far more complicated proper-
ties can be told in this way. It would get overwhelmingly tedious to
list all the digraphs that are used in this manner. And even if we did
so, though we would get a much more concrete list, it would still be
quite far from minimal. Therefore, analyzing this particular proof to
get a minimal list seems hopeless (at least to the author).

As a corollary to the theorem above, we get, nevertheless, that the
automorphism group is finite—the best we can prove as for now.

Theorem 6. The automorphism group of the poset (D;C) is finite.

2  On Finite Generability of Clones of Fi-
nite Posets

This chapter investigates a completely different problem, still hav-
ing posets as main players in it. A set of finitary operations is called
a clone if it contains all projections and is closed under superposition
(composition). In this thesis, we always assume the base set of our



operations to be finite. Clearly, the set of all operations (on a finite
base set) is a clone. The largest (with respect to inclusion) clones that
are smaller than this one are called maximal clones. Ivo G. Rosenberg,
in a classical result [10], classified the maximal clones into six classes.
For five of the six classes it has been shown that the clones of these
classes are finitely generated. The unsettled class is the class of clones
consisting of the monotone operations of bounded partial orders, that
is posets having both least and largest elements. Some partial results
have already been obtained. Monotone clones of at most seven ele-
ment posets are proven to be finitely generated and so are posets with
a monotone near unanimity operation. In a brilliant paper [11] from
1986, Gébor Tardos shows that the clone of a particular eight ele-
ment poset is not finitely generated. This was the first proof showing
a maximal clone to be not finitely generated. In a 1993 paper [15],
Lészl6 Zadori generalized Tardos’s result by describing all series paral-
lel posets having not finitely generated clones. Since Zadori, up until
recently no one found non-finitely generated maximal clones, though
one may conjecture that there are a lot of them. We present the recent
paper [§] finding new such clones in Chapter 2. The author submerged
in this topic as a PhD student guided by his second supervisor, the
professor Zadori just mentioned. Miklés Maréti, the first supervisor of
the author, also joined. The three of them wrote the paper [§] that
comes up with a new family of finite bounded posets whose clones of
monotone operations are not finitely generated and suggests some di-
rections where, the authors think, this research might evolve in the
future.

In the first part of the chapter, we present this new family of finite
bounded posets whose clones of monotone operations are not finitely
generated. Let k denote the k-element antichain. Let A,, be the poset
obtained from the Boolean lattice with n atoms by removing its great-
est element, and B,, the dual of A,. Let Cy, , = A, + 2+ B, (see
Fig. . We prove the following.

Theorem 7. If m,n > 2, then the clones and idempotent clones of
C,n are non-finitely generated.

Here, by the idempotent clone, as usual, we mean the clone of those
monotone operations that satisfy the identity f(z,...,2) = x. The
proof of this statement is an analogue of the one in the famous paper
of Tardos.



7o "M

B g

(%)) (03]
0

Figure 3: The posets Cy 2, C32, Ca3, and Cs 3

Sketchily, the Tardos-proof goes the following way. It presents re-
lations which the small-arity operations preserve, while the large-arity
ones do not. Say, you come up with a relation r that is preserved by
operations of arity at most n, but there is a larger-arity operation that
does not preserve r. This means that the (finite) set of the monotone
operations of arity at most n does not generate the clone.

How do we produce a particular “larger-arity” operation that does
not, preserve our relation? Tardos defines it partially, only on some
carefully chosen elements of the domain so that it shows that, indeed,
it does not preserve his relation. Then he states that his partial op-
eration is extendible fully. To show the extendability, he leans heavily
on the description of the so-called obstructions of his poset which he
provides earlier. (Actually, he did not call them obstructions at the
time, he called them zigzags for their shape in his particular case.) Ob-
structions are the minimal causes that block partial operations from
being extendible. Using them, the proof of the extendability of a par-
tial function is just checking it does not contain any of them. The
toughest part of carrying over the Tardos-proof to other posets turns
out to be the description of obstructions. Fortunately, we managed to
describe them for C,, ;.

Another interesting family of finite posets, from the finite generabil-
ity point of view, is the family of locked crowns. To decide whether the
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clone of a locked crown, where the crown is of at least six elements, is
finitely generated or not, one needs to go beyond the scope of Tardos’s
proof for the description of obstructions in this case seems hopeless.
Although our investigations are not complete in this direction, they
led to the results in the second part of the chapter.

We call a monotone operation ascending if it is greater than or
equal to some projection. We prove that the clones of bounded posets
are generated by certain ascending idempotent monotone operations
and the 0 and 1 constant operations. A consequence of this result is
that if the clone of ascending idempotent operations of a finite bounded
poset is finitely generated, then its clone is finitely generated as well.
We provide an example of a half bounded finite poset whose clone of
ascending idempotent operations is finitely generated but whose clone
is not finitely generated.

Theorem 8. The clone of ascending idempotent operations of the poset
2 4+ 2 + 1 is finitely generated. Meanwhile, its clone is nonfinitely
generated.

Another interesting consequence of our results is that if the clone of
a finite bounded poset is finitely generated, then it has a three element
generating set that consists of an ascending idempotent monotone op-
eration and the 0 and 1 constant operations.
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