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1

Introduction
The goal of tomographic reconstruction is to discover the inner structure of ob-

jects using their projections in a slice-by-slice manner. Most often, the projections
are produced by X-rays. Measuring the attenuation of the beams passing through
the object can provide information about the density of the materials along the paths
of the beams. Collecting such projection data from many angles, one can produce
an image showing the inner structure of the object [40, 49]. Computed Tomogra-
phy (CT) is a widely used tool in different �elds, such as medical imaging, non-
destructive testing (NDT) [11], material characterization, crystallography, etc. to an-
alyze the interior of the subject of investigation.

Discrete Tomography (DT) [41, 42] uses the prior information that the cross-
section image to be reconstructed contains only a few different intensities which
are known in advance. Exploiting this prior knowledge, a smaller set of projections
is suf�cient for a reconstruction with an acceptable quality.

Binary Tomography (BT) is a more restricted variant of DT. In this case, every
single pixel of the image to be reconstructed can take only two different intensities.
In practice, objects corresponding to these images must be made of a homogeneous
material. Based on this fact, one pixel in the cross-section image holds the informa-
tion on the presence or absence of the material. BT is most commonly used in the
�elds of industrial NDT and electron microscopy [3, 10].

This thesis is the summary of the Author's research in the �eld of CT and BT.
Our main aim was to improve reconstruction quality by developing novel algo-
rithms and improving previous approaches in the research �elds of selecting the
most informative projection angles, automatic selection of the tube voltage of a CT
scanner, and binarizing already reconstructed CT slices using Convolutional Neural
Networks. The structure of the dissertation is as follows.

In Chapter 1, we detail some fundamentals that are indispensable for understand-
ing the different research topics in the thesis. Here we assemble the formulations of
different reconstruction approaches and the reconstruction methods belonging to
them. Some quality measurements are given for later evaluations.

As we said before, BT reconstructs binary images from a low number of their
projections. Often, there is a freedom in how these projections can be chosen, which
can signi�cantly affect the quality of reconstructions [78, 115]. In Chapter 2, we ap-
ply sequential feature selection methods to propose new of�ine projection selection
algorithms to �nd the "most informative" projection set based on a blueprint image.
Using various software phantom images, we show that these methods outperform
the previously published projection selection algorithms. Based on the results of
these previous algorithms, we propose two strategies for reducing the amount of
data needed for binary tomographic reconstructions. We study how the direction
dependency changes by lowering the resolution of an image. We point out how to
specify the most informative angles for the original image using its downscaled ver-
sion. We also show how to predict the �nal acceptable resolution. Applications of
the proposed strategies are also mentioned.

In many applications, incomplete projection data holds insuf�cient information
for the correct reconstruction of the original object. The low number of projections
leads to a lack of information and uncertainty in the reconstructions. In practice, this
means that the pixel values of the reconstruction are not uniquely determined by the
measured data and thus can have variable values. In Chapter 3, we modify one of
our of�ine sequential projection selection methods and a previously published on-
line adaptive angle selection algorithm [38] to use global uncertainty [119] to select
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projection angles. Besides the projection data, we assume no further knowledge of
the image to be reconstructed. Based on the experience gained during experimenting
with binary uncertainty, we provide a theoretically proven uncertainty metric that
can be used for measuring the variability of pixel values in grayscale reconstruc-
tions. The uncertainty values are based on linear algebra and measure the slopes of
the hyperplane of solutions in the algebraic formulation of tomography. The meth-
ods can also be applied for any linear equation system that satis�es a given set of
conditions. Using the uncertainty measure, we derive upper and lower bounds on
the possible pixel values in tomographic reconstructions. We also show that the per-
turbed reconstructions can directly be applied for calculating the difference between
the original object of study (ground-truth image) and its reconstructions, and how
it could be used to predict the reconstruction error that may arise during the recon-
struction. We give practical validation and analysis to the results.

Since CT is a widely used X-ray based imaging modality in radiodiagnostics and
NDT, for medical considerations as well as for economic and environmental reasons,
it is desirable to reduce the dose of radiation and to optimize the energy used for ac-
quiring X-ray projection images. Especially in the case of elongated objects, using a
constant energy spectrum radiation may not provide realistic information about the
interior. In Chapter 4, we provide an adaptive tube voltage selection method, which
determines the proper amount of radiation energy on-the-�y during the acquisition,
based on projection information. By simulation toolbox experiments on software
phantom images, we show that this adaptive approach can produce better quality
CT images, simultaneously consuming less energy.

Recently, deep learning approaches, especially Convolutional Neural Networks
(CNNs) [58], have achieved tremendous success in various �elds, such as classi�-
cation, segmentation, denoising, super-resolution, and removing CT noise related
to low dose. In Chapter 5, we apply CNNs to select projections in order to recon-
struct the original images from their sinograms with the smallest possible error. The
training of neural networks is generally a time-consuming process, but after the net-
work has been trained, the prediction for a previously unseen input is fast. We train
CNNs using sinograms as input and the desired, algorithmically determined k-best
projections as labels in a supervised setting. We achieve a signi�cantly faster projec-
tion selection and only a slight decrease in the quality of the reconstructed images.
Then, we provide a U-Net [99] based segmentation algorithm for CT slices of mi-
croarchitectured specimens, as a part of a bigger project. We compare our approach
to U-Net and other non-CNN based methods and show that our approach gave the
closest results to the groundtruth images in most of the cases.

In Chapter 6, we summarize the results achieved in the thesis.
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Chapter 1

Fundamentals

1.1 Formulations of the reconstruction problem

The aim of tomography is to reconstruct the 2D slices of an object using its projec-
tions. In transmission tomography, X-ray passes through the object of investigation
from several directions while a certain amount of photons are absorbed. A detector
line measures the intensity of the traversed radiation. Passing through different ma-
terials, the degree of absorption varies based on the characteristics of the materials.
This is called the linear attenuation coef�cientof a material. This coef�cient depends
on the applied energy and the type of the material. Based on the Beer-Lambert law
[44], if I0 is the initial intensity of the monochromatic X-ray, and it crosses a homo-
geneous material with Dx thickness and m linear attenuation coef�cient, then the
exiting intensity can be given with the following formula

I = I0 � e� mDx , (1.1)

where the intensity can be replaced with the number of photons. Inasmuch as the
X-ray passes through materials with different m1, m2, . . . ,mn linear attenuation coef�-
cients and Dx1, Dx2, . . . ,Dxn thicknesses, Eq. (1.1) can be changed as follows

I = I0 � e� å n
i= 1 mi Dxi . (1.2)

In the mathematical sense, the material density of a 3D object's 2D slice in the
(x, y) point can be described using a bivariate f (x, y) function. The only information
one has about these slices is the sum of the material densities from certain angles,
i.e., instead of the f (x, y) function, only its line integrals are known, taken from
certain directions. The task of the reconstruction is to produce the f (x, y) function
from its line integrals. These line integrals are called projections. Let g(s, q) denote
the projection of an f (x, y) function from the q direction, where q is �xed. The g(s, q)
is the Radon transform of the f (x, y) function and denoted as [R f ](s, q). For parallel
beam tomography, the projections can be expressed as the Radon transform of the
object that is to be reconstructed. The Radon transform is de�ned as:

[R f ](s, q) = g(s, q) =
Z ¥

� ¥
f (s cosq � u sinq, s sinq+ u cosq) du , (1.3)

where s indicates the distance from the origin and u is the parameter for positioning
the line that is determined by the (s, q) pair (see Fig. 1.1b for illustration).

The projections can be placed one after another in a 2D coordinate system by
ascending q values on the vertical axis, where the projection values are replaced
with grayscale intensities. This image is called a sinogram(see Fig. 1.2). The size
of the sinogram depends on the density of projection sampling. Thus, in essence,
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the task of image reconstruction is to produce the original function (or at least its
best possible approximation), which is basically the construction of the f (x, y) image
from its sinogram.

(a) (b)

FIGURE 1.1: (a) Parallel beam geometry. (b) Acquisition of a projec-
tion.

There are two main types of reconstruction approaches: analytic and algebraic.
In the next two sections, we discuss both approaches along with the reconstruction
algorithms that will be used in the thesis. Before getting into the details, it is impor-
tant to mention that we use parallel beam geometry for all types of reconstructions.
This means that we map the projection of a function (object) from a certain direction
using parallel projection rays (Fig. 1.1a).

(a) (b)

FIGURE 1.2: (a) A simple object. (b) Its sinogram, acquired on the
[0� , 179� ] integer angle interval.

1.1.1 Analytic approach

In the case of analytic approaches, no prior information is given. A simple recon-
struction method, backprojection, can be achieved by evenly backprojecting all the
projection values from the right direction and summing the right projection values
for all the pixels. This is the basis for the most commonly used reconstruction tech-
niques. Let us assume that we have a �nite number of projections of an object. We
need to simply run the projections back through the image to obtain a rough ap-
proximation to the original. The projections will interact constructively in regions
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that correspond to the sources in the original image. This is the previously men-
tioned "backprojection". An immediately apparent problem is the blurring (star-like
artifacts) that occurs in the reconstructed image (see Fig. 1.3a). To avoid this blur-
ring, one could choose another simple reconstruction technique, which is described
by the Projection-Slice(Central Slice or Fourier Slice) Theorem:

Theorem 1. The 1D Fourier-transform of the f(x, y) function's projection at angleq is
equal to a section of the f(x, y) function's 2D Fourier-transform frequency space that is
covered by a line passing through the center of this space inq direction.

Theorem 1 provides a reconstruction method, which is called the Fourier recon-
struction technique. The essence of this method is as follows: taking the 1D Fourier-
transform of the projections they specify lines in the function's 2D Fourier-transform.
If one takes all the angles between 0 andp , one can get all the points of the original
function's 2D Fourier-transform. Applying a 2D inverse Fourier-transform in this,
one can also get back the original function. Although the Fourier reconstruction
is mathematically elegant, it may suffer from different problems. The 2D inverse
Fourier-transform is computationally expensive. Still more signi�cant is that an in-
�nite model of the Fourier-transform has to be discretized and in practice, only a
�nite number of projections can be taken.

Filtered Backprojection (FBP) The optimal way – in the noiseless case – to elimi-
nate the previously mentioned blurring effect that occurs during a simple backpro-
jection process is through a ramp �lter. The ramp �lter is a high pass �lter that does
not permit low frequencies that cause blurring to appear in the image. Thus, in this
case – as opposed to the Fourier reconstruction technique – not the original projec-
tions' inverse Fourier-transforms are backprojected during the reconstruction, but
the functions that are created by �ltering the original projections in the frequency
space (see Fig. 1.3b). This method is called�ltered backprojection[49], which is the
combination of the simple backprojection and the Fourier reconstruction methods.
It is one of the oldest and most popular analytic reconstruction algorithms that was
developed. In general, for an accurate reconstruction, this method needs hundreds
of projections and cannot take prior information to improve the reconstruction pro-
cess.

(a) (b)

FIGURE 1.3: The reconstruction of the Fig. 1.2b sinogram after apply-
ing backprojection (a) and �ltered backprojection (b).

1.1.2 Algebraic approach

Due to the small number of projections, typically available in DT, the reconstruction
is mainly solved by one of the algebraic approaches. The idea is to describe the
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connections between projections and pixels using equations. Assuming that the size
of the image to be reconstructed is n � n (N = n2), the reconstruction problem can
be described as a system of equations (see Fig. 1.4 for illustration)

Ax = b, A 2 Rm� N , x 2 R N , b 2 Rm , (1.4)

where

• x is the vector of all N unknown image pixels,

• b is the vector of all m measured projection values (m is the total number of
projection lines used),

• A describes the projection geometry with all ai ,j elements giving the length of
the line segment of the ith projection line through the jth pixel.

Therefore, the task of the continuous reconstruction is to �nd an x 2 R N reconstruc-
tion such that Ax = b. If we want to further limit this formulation into the binary
reconstruction problem, we have to add a new restriction to x, which is x 2 f 0, 1gN .
This way x is forced to contain only f 0, 1g values. Although the basic formulation is
given for the 2D case of tomography, the results are directly applicable to the 3D case
of tomography as well. Some of our proposed methods strongly rely on the non-
negativeness of the projection matrix, the projection values, and the reconstructed
pixels. This assumption can be made in transmission tomography since there are
no materials with negative density or projection rays with line segments of negative
lengths. We also will bene�t on the fact that the plane of solutions in Eq. (1.4) is a
linear hyperplane in R N

� 0.
It can be noted, that the stability of the reconstruction is connected to the con-

dition number of the A matrix. Unfortunately, classical tools for analyzing the con-
dition number are hard to carry out due to the large size of projection matrices.
Therefore, alternative approaches are needed. Furthermore, in real scenarios, the
projection data is often perturbed with noise. As a consequence, the reconstruction
problem may happen to have no exact solution. We note that the reconstruction
model in Eq. (1.4) also covers the DT model that works on lattice sets, i.e., �nite
subsets ofZ 2 (in that case A is a 0-1 matrix describing the connection between the
points and lattice lines). It is known that the general reconstruction problem on lat-
tice sets is NP-hard and unstable (implying that an entirely different solution can be
returned), which can also cause problems in �nding an exact solution of Eq. (1.4) [29,
30].

Therefore, in BT, often an approximate solution of Eq. (1.4) is satisfactory. The Al-
gebraic Reconstruction Technique (ART) is the �rst published method that approx-
imated the object to be reconstructed by solving a system of equations [35]. ART
is based on the Kaczmarz-method. For details about the method see [48]. All the
different algebraic algorithms use ART as a basis, where we start out from a given
initial image and approximate the correct reconstruction by iteratively subtracting
the back-projected error of the intermediate state from itself. In general, these meth-
ods provide continuous reconstructions with real pixel values and (with the proper
setup) can produce images which are closest (in the Euclidean sense) to the initial
image.

Simultaneous Iterative Reconstruction Technique (SIRT) The difference between
ART and SIRT is that SIRT backprojects the error of the system of equations simul-
taneously during one iteration. In a single iteration, it determines the error for all
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FIGURE 1.4: Equation system-based representation of the parallel-
beam projection geometry.

the rays passing through a certain pixel. Still, it modi�es the pixel value only once,
namely with the average of the backprojected errors. It converges slower than ART
but provides smoother results. When a binary image is needed as the output, we
will use the thresholded version of the SIRT (TSIRT), which differs from the result of
the SIRT algorithm in a way that

xi =

(
0 if xi < 0.5,

1 otherwise.

This modi�cation is applied to the output image of the SIRT reconstruction [37, 40,
113]. We refer to the SIRT algorithm asboundedSIRT when x 2 [0, 1]N .

In Fig. 1.5, one can see the difference between FBP and bounded SIRT in the
reconstruction quality, in the case of small number of projections.

(a) (b) (c) (d)

FIGURE 1.5: Reconstruction of the Fig. 1.2a image. (a) and (b) show
the reconstructions with FBP using 4 and 8 projections, respectively.
(c) and (d) show the reconstructions with bounded SIRT using 4 and

8 projections, respectively.

Simultaneous Algebraic Reconstruction Technique (SART) This technique aims
to combine the bene�ts of ART and SIRT. Therefore, SART provides fast convergence
and images with good quality. The main difference is that the projection errors are
not propagated evenly, but using a Hamming window, which propagates the error
in the middle of the image with bigger weights than in the borders of the image.
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The weights are proportional to the distance between the propagated part and the
border of the image. For more details, see [5, 49].

Conjugate Gradient Least Squares (CGLS) CGLS is considered a CG-type me-
thod. In this case, instead of Eq. (1.4), the following equation should be solved:

A TAx = A Tb, A 2 Rm� N , x 2 R N , b 2 Rm . (1.5)

This form ensures that the equation system always has a solution. It has a faster
convergence than the SIRT-type methods [100, 109].

1.2 Measurement of the reconstruction quality

The Relative Mean Error (RME) [60] is often used in previous works [115, 116] to
measure the reconstruction error when a blueprint (ground truth) image was avail-
able for BT cases. RME is the total number of different pixels between the original
and the reconstructed binary images divided by the number of object pixels in the
original image, which is de�ned as:

RME(x� , xS) =
å i jx�

i � xS
i j

å i x�
i

, (1.6)

where x� is the original (blueprint) and xS is the reconstructed image from angle
set S. Values of 0 will correspond to perfect reconstructions, and higher values de-
note a more signi�cant error. RME is a widely accepted formula for measuring the
difference between binary images. We use RME in Chapters 2, 3, and 5.

In the case of (non-binary) CT images, the quality of the reconstructions can be
evaluated by the Signal-to-noise ratio (SNR). SNR is sometimes quanti�ed in deci-
bels (dB) of signal power relative to the noise power, though in the imaging �eld the
concept of "power" is sometimes taken to be the intensity of a certain pixel and the
noise could be equivalent to the standard deviation. Therefore, the SNR is given as
the ratio of the mean gray value inside the object mo, and its standard deviation so:

SNR(x) =
mo

so
. (1.7)

When the noise is high, the SNR is lower. Thus, the higher the value is, the better
the quality. This measurement method will be used in Chapter 4.
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Chapter 2

Of�ine Projection Selection
Algorithms and their Scale
Invariance

2.1 Introduction

Ideally, in the noiseless case, the exact reconstruction needs at leastmPp
2

projections,
when the number of detectors is m. Taking so many projections, however, is not
always possible (e.g., missing wedge problem [83], dynamic tomography [16]) or
can cause unwanted effects. Furthermore, we often cannot take more than a few
(say, up to 18) projections in NDT, due to physical and/or time considerations. This
brings new approaches of reconstruction alive ensuring accurate results from fewer
projections. For example, in BT, we use the prior information that the object consists
of a single material, and the gaps are �lled with air. In some cases, this constraint
can lead to accurate results, even from just 4–8 projections.

In the paper [78], the authors noted that when using a low number of projections,
the accuracy of a binary reconstruction can depend on the projection angles. Further
investigated in [115], this phenomenon was found to depend on the structure of the
object of study. Thus, further attention was paid on how the “most informative”
projections can be found. Projection selection methods can be classi�ed as online
and of�ine ones. In this chapter, we will focus on the latter.

In the of�ine case, a blueprint image of the object to be reconstructed is given
(which is rather typical, e.g., in industrial NDT), on which the whole projection data
can be simulated, and the proper projection set can be identi�ed. In this context,
the projections are not always gathered by real physical measurements. They can
be simulated using a golden standard (ground-truth or blueprint) that is often avail-
able in industrial quality testing, e.g., as a CAD model. The authors of [92] used a
CAD-projector [72] to simulate the projection data from the CAD model to apply
equiangular view angle selection for CT. Even though this is easier than �nding the
angles on-the-�y, the excessive search space of the possible projection sets makes the
problem computationally challenging, as an exhaustive search is often not feasible.
In [116], several approaches have been published aiming to �nd good projection an-
gles for BT, all of them reducing the search space of projection sets in various ways.

In this chapter, we suggest sequential search methods [94] to �nd projection an-
gles with high information content and show that these methods outperform former
practices by providing better image quality. First, we work with images in their orig-
inal sizes. However, dealing with lower resolution images in order to achieve higher
resolution images of good quality is a general trick that is also used in DT (see [4]
and its references). Therefore, as a next step we show that in BT the resolution of
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the processed image can be lowered for projection selection purposes as well, and
it will still provide almost as good angle sets as the original sized image does. This
phenomenon opens doors to different areas as an opportunity for optimization. We
also propose an approach to predict the lowest resolution that is still as informative
as the original one, concerning projection selection.

2.2 Projection selection algorithms

In this section, we �rst recall three projection selection strategies from [116] that will
serve as references for comparison with our suggested methods. The approaches
given in [116] are the best performing state-of-the-art methods in this �eld. Then,
we present our sequential search based approaches.

2.2.1 Equiangular approaches

One of the simplest methods is when the projection angles are distributed propor-
tionally, with equiangular spacing. One can distinguish two variants. In the �rst
case, the starting angle is positioned to 0� . As an improved version, in the second
case, all the integer starting angles are analyzed between 0� and

� 180
r

�
� , where r is

the number of projections. In the end, the angle set ensuring the best quality (with
the smallest RME value) is kept. The authors of [116] referred to these methods as
Naiveand EquiAng angle selections, respectively, and so do we in this thesis.

2.2.2 Simulated annealing

When arbitrary angles can serve as candidates for taking projections from, the prob-
lem of projection selection becomes intractable. Thus, an exhaustive search is most
often no longer possible. To handle this issue, in [116], the authors presented the
problem as an energy minimization task. An optimal set of angles must satisfy

RME(x� , xS�
) = min

S
RME(x� , xS) , (2.1)

where S is an arbitrary set of angles, S� is the optimal set of angles, xS and xS�
are

the reconstructions from the projections with S and S� angle sets, respectively.
Simulated annealing [73] was proposed for the minimization. In a brief descrip-

tion, the algorithm starts with a basic �xed-size angle set. In each iteration, a ran-
domly chosen angle is altered. If this update results in a better angle set, it will be
accepted. Otherwise, it can be only accepted with a certain probability which is con-
stantly decreasing during the process. We refer to this method as SA. This approach
is stochastic, i.e., every run may produce different output angle sets.

2.2.3 Proposed sequential search methods

By the observation that projections can serve as features of the image to reconstruct,
we examined numerous types of feature selection algorithms, following the sum-
mary of [74]. According to this examination, the �oating search methods [94] seemed
to be the best options in this area. Other algorithms contain too much randomiza-
tion, use exhaustive search, or tree structure which makes them hardly applicable for
this task. In the following, we propose two different projection selection algorithms
using sequential selection methods, and a �oating search based algorithm, which
can serve as a post-processing step for any types of projection selection methods.
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SFS - Sequential Forward Selection The process starts with the initialization of a
feature subset. Then it iteratively adds features to the initial subset. The feature to be
added is chosen based on the improvement it gives to a speci�ed measure. A partic-
ular feature is added if it provides the biggest improvement among all the available
features. The process stops when no improvement happens in the evaluation mea-
sure in the last t steps, where t is a prede�ned threshold variable, or when all the
features have been added to the set. In Alg. 1, one can see theSFSalgorithm for our
purpose. At the end of the process, the suggested angle set is stored in setS.

Algorithm 1: Angle selection with SFSalgorithm

1: let S = f q1, q2g where q1 and q2 are randomly chosen integer angles
2: repeat
3: for all angle q 2 f 0, 1, . . . , 179g nS do
4: calculate RME(x� , xS[f qg)
5: qmin  angle corresponding to the smallest RME value
6: end for
7: S  S [ {qmin}
8: until the prede�ned number of projections is reached

SBS - Sequential Backward Selection SBSis the backward counterpart of SFS.
The initial feature set contains all the features. Then, iteratively, one feature will be
removed from the set, namely whose deletion causes the least loss in the evaluation
measure. The process also stops when no improvement happens in the evaluation
measure in the last t steps, where t is a prede�ned threshold variable, or all the
necessary number of features has been deleted from the set. In Alg. 2, one can see
the SBSalgorithm for our purpose. At the end of the process, the suggested angle
set is stored in set S.

Algorithm 2: Angle selection with SBSalgorithm

1: let S = f 0, 1, . . . , 179g
2: repeat
3: for all angle q 2 S do
4: calculate RME(x� , xSnf qg)
5: qmin  angle corresponding to the smallest RME value
6: end for
7: S  Sn f qming
8: until the prede�ned number of projections is reached

SFFS - Sequential Forward Floating Search Both SFSand SBSsuffer from a so-
called “nesting effect”. It means that the features cannot be later discarded once
selected by SFS. In SBS, the discarded features cannot be reselected. The result is
that the methods are only suboptimal. The SFFSis a bottom-up search procedure. It
starts with an SFSstep. If the desired size of the solution is not reached yet, an SBS
step can be applied to exclude features. A feature will be permanently excluded if
this action yields the best subset found so far, otherwise the excluded feature is put
back and the process continues again with the SFSstep. This process iterates until
the desired size of the feature set is reached.
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SBFS - Sequential Backward Floating Search The SBFSis the backward counter-
part of SFFS, i.e., it is a top-down search procedure. The basic idea is the same as it
is in the case ofSFFS, but the SFSand SBSsteps are swapped.

The original SFFSand SBFSmethods both contain a deviation constant, which
allows the algorithm to exceed the desired size of the solution during the searching
process and even to end with more or fewer features. In our case, when these algo-
rithms are used for projection selection, we do not allow the algorithm to �nish with
more or fewer projections than the prede�ned number.

Based on the idea ofSFFSand SBFS, we propose a Re�nementalgorithm. In our
interpretation, the algorithm starts with an initial angle set, which can be the output
of any type of projection selection algorithm, and then we apply the Re�nement. De-
pending on which algorithm is used as the �rst step, we refer to these algorithms as
NaiveR, EquiAngR, SAR, SFSR, and SBSR, i.e., the original name is extended with the
letter R (R is for Re�nement). The Re�nementalgorithm can be seen in Alg. 3, which is
capable of re�ning the result of the output of any other algorithm. Therefore, we will
show later on, how the already published angle selection methods can be improved
by applying Re�nementon their output angle sets, besides SFSand SBS.

Algorithm 3: Angle selection with Re�nement
1: let S be the set of the actual angles - output of an angle selection algorithm
2: �x Q  the last element inserted into S
3: repeat
4: for all angle q 2 S n {�x Q} do
5: calculate RME(x� , xSnf qg)
6: qmin  angle corresponding to the smallest RME value
7: end for
8: S  S n {qmin}
9: for q  0 to 179do

10: calculate RME(x� , xS[f qg)
11: qmin  angle corresponding to the smallest RME value
12: end for
13: S  S [ {qmin}
14: �x Q  qmin

15: until the RME cannot be decreased any more.

As a brief explanation of Alg. 3: The last element inserted to the projection set
will be �xed (Line 2). Then, the non-�xed projection angles are eliminated one-by-
one, and the RME is computed (Line 4-7). We keep the angle combination with the
smallest RME (Line 8). In the second part, again, all the integer angles between
0� and 179� are taken, and the RME value is computed by adding each of them to
the current set of projections (Line 9-12). We insert the angle with the smallest RME
value into the projection set (Line 13) and �x it (Line 14). Lines 4-14 are repeated until
the RME value cannot be decreased anymore. We note that we used integer angles
between 0� and 179� , but it can be changed to any angle interval. The sampling
could be more dense or even sparser.
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2.3 Scale Invariance in Projection Selection

In this section, we discuss two different approaches how scale invariance could be
used before or during projection selection.

2.3.1 Technique (T1): Resizing the image

In industrial NDT, often hundreds or thousands of projections of the examined ob-
ject are acquired, and the number of detector pixels can also be of the same magni-
tude. This allows us to reconstruct a high-quality image from its projections. How-
ever, if we want to apply a projection selection method on the reconstructed image,
it could take an unacceptably long time due to the high resolution. To speed up this
process, one can downscale the reconstructed image and then apply the projection
selection algorithm just after this step.

By reducing the resolution, one may lose information, and the object in the im-
age may deform due to structural and topological changes. For projection selec-
tion, however, we do not need that much and detailed projection information. If
the image preserves the most speci�c structural information about its content, it is
completely enough to �nd the most informative angles.

For downscaling, we used the Gaussian pyramid [17]. In Fig. 2.1a, G0 is the
original image. To get G1, a low-pass �ltering is applied on G0. G1 is called the
“reduced” version of G0 in that both resolution and sample density are decreased.
In a similar way, G2 is also the reduced version of G1. The sequence ofG0, G1,. . . ,GL

is called the Gaussian pyramid, where L + 1 is the number of levels in the pyramid.
Each value in level l is computed as a weighted average of values in level l � 1 within
a 5 � 5 window:

Gl ( i , j) =
2

å
p= � 2

2

å
r= � 2

w(p, r)Gl � 1(2i + p, 2j + r), i = 0, . . . ,Cl � 1, j = 0, . . . ,Rl � 1,

(2.2)
w(p, r) = ŵ(p)ŵ(r) , (2.3)

ŵ =
�
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,
1
4

�
a
2

�
, (2.4)

where l = 1, . . . ,L is the actual level, Cl is the number of columns, and Rl is the
number of rows on the l th level, ŵ is the used kernel with a = 0.375. For more
details about the Gaussian pyramid and the kernel see [17].

After reducing an image, the pixels hold grayscale values. We want to deal with
binary images, so before applying any projection selection, we binarize the reduced
images as the last step of the downscaling process, by a simple threshold T = 0.5.

2.3.2 Technique (T2): Summing the projection values

Another possible technique preserves the original size of the blueprint image and
takes the normalized sum of every d neighboring projection value, where d will
specify the magnitude of reduction:

D l ( i) =
å

j< d�i+ d
j= d�i+ 1 D l � 1( j)

d2 , i = 0, . . . ,ml � 1 . (2.5)

Here D l represents the new projection vector and ml is the number of the detectors
on the l th level. For example, if we sum every 2 nd neighboring projection value, we
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halve the size of the projection vector and thus also the size of the sinogram. This
approach can be followed in Fig. 2.1b. D0 is the original projection vector, D1 and D2

are the reduced ones. We emphasize that during the backprojection, the resolution
of the images is halved, therefore d2 pixels of the original image correspond to 1
reconstructed pixel. Thus, the denominator in Eq. (2.5) is d2. In Fig. 2.2, one can see
the approximate difference between using d and d2 as the denominator in Eq. (2.5)
(having a binary image with a disk in it). For SIRT, our goal is to produce pixel
values between 0 and 1.

(a) (b)

FIGURE 2.1: (a) Resizing the image. (b) Summing the projection val-
ues.

FIGURE 2.2: An approximate difference between scaling with d and
d2, when d = 2.

2.3.3 Perimetric complexity

Finding the connection between the characteristics of objects and how similar they
are in the sense of direction dependency is an actively studied area of research. For
that, a formula is needed that tells us whether two objects share the same set of
most informative angles. In our case, it is also an important question since we want
to predict how much we can rescale an image still preserving the main character-
istics of its direction dependency. Therefore, we tried several different approaches,
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e.g., the RME, topological and local properties [36], moments [93], Universal Image
Quality Index [121], and convexity [6] to measure the similarity in the abovemen-
tioned sense, but none of them gave reliable results. In [122], the author proposed a
measure named perimetric complexity to describe the complexity of a binary digital
image, which is de�ned as

PC(x) =
P2

4p F
, (2.6)

where P is the sum of the inside and outside perimeters of the foreground (the unit
is the length of one pixel side) and F is the area of the foreground. Eq. (2.6) serves
to calculate the perimetric complexity of one object. If there are more objects in the
image, their complexity values can be summed to get the complexity of the whole
image. Using this measure, we can determine which is the lowest “safe” resolution
where we have to stop the downscaling.

Perimetric complexity is also useful to predict how many projections one will
need for a reconstruction to keep the RME value below a speci�ed threshold. In
certain applications, the 3D models of the objects are available (e.g., as a CAD �le
[92]). In these cases, one can tell how many projections are needed for an appro-
priate reconstruction even before the real projection acquisition, by simulating the
projections on the model.

2.4 Test environment

We conducted several experiments on binary software phantom images. It was
shown in [115] that with less projections, the result of projection selection does not
signi�cantly depend on the reconstruction technique applied. That is, the recon-
struction algorithm will not in�uence the selected projection set seriously. We chose
to use the TSIRT algebraic reconstruction technique. Our dataset consisted of 22
structurally and topologically different phantoms (see Fig. 2.3). Some phantoms
were used for testing reconstruction algorithms in previous studies [7, 123], and
some come from the 2D image database of the IAPR Technical Committee on Dis-
crete Geometry (TC18)1. We used parallel beam geometry. The distance between
the beams and the detectors was set to 1 for every projection, and the number of
the beams wasdnl �

p
2e to cover the whole image, where nl � nl is the size of the

image on the l th level, in the case of testing scale invariance. The distance between
the consecutive beams as well as between the consecutive detectors was equal to the
length of the side of one pixel. The center of rotation was positioned to the center of
the image.

For the comparison of the different projection selection algorithms, we used the
software phantoms with a size of 256 � 256 pixels. Due to their stochastic nature,
in the case of SA, SAR, SFS, and SFSR, we used the multistart strategy in different
ways to �nd the best possible results. We applied exactly the same parameterization
for SA that was used in [116], i.e., the random angle changes stopped after 200 it-
erations or when the RME decreased to zero. Then, we ran the process 5 times and
chose the projection set with the lowest RME value. For SAR, the Re�nementstep
was applied on all the 5 SA outputs, and again, the one with the smallest RME was
chosen. In the case ofSFS, we ran the process 18 times from different random inte-
ger angle pairs in order to try to avoid getting stuck into a local minimum. In this
way, assuming uniform random distribution, each angle region of 5 � can be covered
with a high probability by at least one angle in at least one initialization. We used

1http://tc18.org/
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couples of angles instead of just a single starting angle since – after experiments –
we noticed that in the latter case, the process could still very likely stick into a local
minimum. This is the only non-deterministic part of the sequential procedures. In
the followings, some slight differences may be noticeable between the RME values
when one of these algorithms is used in various occasions. This is exclusively due
to this property. Re�nementwas also applied on all the 18 different output angle sets
to produce the result of SFSR.

Although it is already known (and it will be shown in Section 2.5as well) that
the methods selecting the projection angles arbitrarily may easily outperform the
equiangular ones [116], we wanted to test our scale invariance theory with the Equi-
Ang algorithm too, since this latter technique is still frequently used. For this reason,
we used the same squared phantom images of Fig. 2.3 but with a side length of 16, 32,
64, 128, 256, 1024, and 2048 pixels. The �rst step was to select the most informative
angles for the highest resolution, 2048 � 2048 sized phantoms. We considered these
images as originals. With this, we calculated the best RME value we could obtain.
We refer to this RME value as our benchmark. The next step was to perform the
projection selection with the reduced images. After the angle sets were identi�ed,
we reconstructed the original sized images one more time, now with these angle
sets. As the last step, we compared the obtained RME values with the benchmark.
Then, to test this theory in the case of non-equangular approaches also, we repeated
the experiment with the SFSRalgorithm. This time we used phantoms of size up
to 256 � 256 (due to time considerations), and again the highest resolution images
were regarded as originals.

The TSIRT and the projection selection algorithms with their scale invariance
extensions were implemented in C++, using the CUDA sdk 2, with GPU acceleration.
The tests were performed on a machine powered with 4 NVIDIA Tesla K10 G2 8GB
GPUs. According to our experiments, with a difference smaller than 0.01 in two
consecutive iterations, the changes in quality are negligible. Therefore, we set this as
the terminal condition the TSIRT.

2.5 Results

In Table 2.1, we present the RME values of the different projection selection methods,
in the case of projection sets with 4 angles. The smallest RME values are highlighted
in every row. One can notice that the SBSand SBSRare missing, that is because
these algorithms provided the poorest reconstruction quality and the longest run-
ning time. Therefore, there was no reason to compare SBSand SBSRto the other
methods from any point of view. It can be observed that in 18 out of 22 cases the
SFSRperformed the best or has the same RME value as some other algorithms. It
is also worth to be noticed, that in the case of the rotation independent P2, even
the Naive method could �nd the best solution, as for this image all the projections
have the same information content. One can also see that although SFSRhas the
ultimate smallest average in RME, all the other algorithms with Re�nement(NaiveR,
EquiAngR, SAR) are really close to that result. The differences are almost negligible.
It can be declared that in the case of all the different methods, Re�nementimproved
the result of the input algorithm, especially by taking the equiangular approaches
under examination.

2https://www.developer.nvidia.com/cuda-zone
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FIGURE 2.3: The software phantoms used for testing.
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TABLE 2.1: RME values belonging to different methods in case of 4
projections

Naive NaiveR EquiAng EquiAngR SA SAR SFS SFSR

P1 0.269 0.101 0.135 0.078 0.059 0.055 0.060 0.056
P2 0.067 0.067 0.067 0.067 0.067 0.067 0.249 0.067
P3 0.041 0.036 0.041 0.036 0.039 0.036 0.043 0.036
P4 0.237 0.072 0.152 0.074 0.079 0.072 0.067 0.062
P5 0.398 0.129 0.184 0.097 0.097 0.091 0.104 0.091
P6 0.371 0.065 0.191 0.089 0.068 0.066 0.067 0.067
P7 0.108 0.086 0.106 0.090 0.074 0.074 0.081 0.075
P8 0.160 0.120 0.154 0.147 0.137 0.119 0.123 0.119
P9 0.206 0.067 0.191 0.073 0.061 0.045 0.051 0.042
P10 0.073 0.044 0.073 0.044 0.031 0.031 0.034 0.031
P11 0.357 0.092 0.284 0.157 0.094 0.090 0.113 0.089
P12 0.008 0.008 0.008 0.008 0.011 0.008 0.010 0.008
P13 0.089 0.058 0.089 0.058 0.055 0.055 0.063 0.058
P14 0.446 0.406 0.446 0.406 0.423 0.405 0.405 0.405
P15 0.481 0.419 0.454 0.378 0.404 0.354 0.353 0.350
P16 0.516 0.478 0.516 0.478 0.483 0.478 0.483 0.478
P17 0.879 0.869 0.879 0.869 0.887 0.867 0.874 0.866
P18 0.472 0.433 0.472 0.433 0.446 0.413 0.425 0.411
P19 0.092 0.059 0.092 0.059 0.061 0.058 0.060 0.051
P20 0.105 0.036 0.105 0.036 0.037 0.037 0.081 0.036
P21 0.344 0.138 0.344 0.138 0.136 0.134 0.159 0.134
P22 0.524 0.487 0.524 0.487 0.455 0.447 0.477 0.438

Avg. 0.284 0.194 0.250 0.196 0.191 0.182 0.199 0.180

For the next type of comparison, in Table 2.2, one can follow the running times of
the different methods. We notice that the original (previously published) equiangu-
lar methods are fast but provide really weak quality reconstructions. All the Re�ne-
ment-extended algorithms performed well, but the running times are very variable.
We emphasize that in the case ofSA and SAR, we took 5 (as the authors of the origi-
nal paper did), and in the case of SFSand SFSR18 multistart runnings. This means
that one single SA and SAR run is about 1/5 times shorter, and one single SFSand
SFSRrun is about 1/18 times faster than the corresponding values in Table 2.2. These
scaled running times can be seen in the last row of Table 2.2. However, in most of the
cases, these methods need the above detailed multistart strategy to reach the recon-
struction accuracy shown in Table 2.1. As we mentioned, examining the RME values
and the reconstructed images belonging to them, the difference is almost negligible
when we talk about comparing the projection selection methods extended with Re-
�nement. The running time of NaiveRand EquiAngR is still very fast. Furthermore,
these algorithms are completely deterministic, while the results of SA, SAR, SFS, and
SFSRreally depend on the random initialization.

We summarize the results of Table 2.1 and Table 2.2 in Fig. 2.4. The RME values
and running times are proportionally normalized between 0 and 1, for better visual-
ization. One can draw the conclusion that applying the Re�nementstep, NaiveRand
EquiAngR become very competitive against the other algorithms, considering their
good quality and fast execution time.
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TABLE 2.2: Running time in minutes belonging to different methods
in case of 4 projections

Naive NaiveR EquiAng EquiAngR SA SAR SFS SFSR

P1 0.010 2.72 0.32 4.26 07.52 24.80 40.70 128.12
P2 0.012 1.10 0.25 1.29 06.77 12.14 33.15 096.87
P3 0.010 3.39 0.26 3.79 10.13 27.88 47.75 164.63
P4 0.006 3.51 0.31 4.87 07.29 26.70 39.45 116.18
P5 0.007 2.95 0.32 4.80 06.56 16.97 35.78 120.07
P6 0.004 4.95 0.23 6.40 07.49 23.54 40.02 139.15
P7 0.009 6.24 0.40 3.09 07.37 30.02 42.18 123.42
P8 0.006 6.38 0.22 3.01 06.63 19.69 37.17 117.98
P9 0.006 8.28 0.26 6.57 07.88 25.43 45.60 130.48
P10 0.008 8.03 0.28 8.07 08.16 22.74 45.35 140.18
P11 0.004 6.69 0.25 4.00 07.62 16.70 38.30 137.88
P12 0.006 1.26 0.36 1.57 07.27 29.32 50.32 116.80
P13 0.007 2.57 0.22 2.82 07.82 27.85 44.17 117.15
P14 0.005 3.26 0.17 3.59 05.43 18.32 29.45 089.85
P15 0.005 2.90 0.24 1.79 04.84 13.81 23.45 073.48
P16 0.004 3.29 0.19 3.61 05.64 17.30 31.08 092.13
P17 0.003 2.38 0.09 2.50 03.96 12.84 25.57 076.60
P18 0.005 6.32 0.16 6.74 05.19 19.20 28.03 094.18
P19 0.009 2.71 0.25 2.87 08.55 27.59 44.65 144.22
P20 0.008 6.86 0.13 6.94 06.75 22.36 23.48 119.75
P21 0.006 5.25 0.21 5.43 07.78 30.64 39.85 138.60
P22 0.007 4.09 0.27 4.15 06.12 19.22 30.98 104.65

Avg. 0.007 4.32 0.24 4.19 06.95 22.05 37.11 117.38

Avg. 0.007 4.32 0.24 4.19 01.39 04.41 02.06 006.52

FIGURE 2.4: Diagram for Table 2.1 and Table 2.2
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