Collaborative Mobile Gossip Learning
Arpad Berta

Supervisor
Dr. Mdrk Jelasity

Department of Computer Algorithms and Artificial Intelligence

Doctoral School of Computer Science

University of Szeged

NTIARy,
O M.

A thesis submitted for the degree of
Doctor of Philosophy

Szeged
2020

Acknowledgements

First of all I would like to express my gratitude to my supervisor, Dr. Mark Jelasity,
for supporting my research and being a great source of inspiration to me over the past
eight years. He showed me how to think scientifically and acquire new knowledge. His
constructive and thoughtful comments have always been of great value to me.

Next, I would like to thank to my colleagues who helped me to discover interesting
areas of science and helped give birth to new ideas during our discussions. In alphabetic
order: Dr. Vilmos Bilicki, Gdbor Danner, Dr. Istvdn Heged(is, Dr. Rébert Orméndi and
Zoltan Szabé. I would like to thank to Jilia Bustya and David P. Curley for correcting
this thesis from a linguistic point of view.

Of course, I would like to thank my wife, Renata for all her support. She has been by
my side all the time and she has always been a great motivating force. I am also grateful to
my daughter Bordka for all the love and joy I have received from her, and all the patience
she showed towards me during the preparation of this thesis. Last but not least, I would
like to thank my parents for supporting me throughout my years of education.

This research work was supported by the Hungarian Government and the European
Regional Development Fund under the grant number GINOP-2.3.2-15-2016-00037 (“In-
ternet of Living Things”), supported by grant 20391-3/2018/FEKUSTRAT of the Hungar-
ian Ministry of Human Capacities, supported by grant TUDFO/47138-1/2019-ITM of the

Hungarian Ministry for Innovation and Technology and supported by the European Union

11

and the European Social Fund under the grant number TAMOP-4.2.2.C-11/1/KONV-
2012-0013 (“FuturICT.hu”). I am very grateful for this support, which definitely acted

as a spur for the submission of this thesis.

Contents

Contents iii
List of Algorithms vi
List of Tables vii
List of Figures viii
1 Introduction 1
2 Background 5
2.1 Stochastic Gradient Descent 5
2.2 System Model and Data Distribution 7
23 GossipLearning 8
3 Smartphone Trace 9
3.1 CollectingtheData 11
3.2 A Markovian Model for Simulating Smartphone Churn 15
3.3 Simulations on a Smartphone Trace 20

3.4 Lessons Learned on Smartphone Trace Over the Years 23

v

CONTENTS

3.5 Conclusions

Dimension Reduction Methods
Related Works

4.1
4.2

4.3

4.4

4.5 Conclusions

Management of Random Walks

The Single Random Walk Service
5.1.1 Background on Differentially Private SGD
5.1.2 Privacy Budget
5.1.3 Algorithm
5.1.4 Experiments
The Multiple Random Walk Service
5.2.1 Algorithm
5.2.2 Experiments

5.1

5.2

5.3

Mini-Batch Gradient Descent
Related Work

6.2 Adversarial model

6.1

3.4.1 Data Cleansing
3.4.2 NAT Type Distribution
3.4.3 Real P2P Connection Measurement Results

Background

4.2.1 Dimension Reduction

4.2.2 Low-Rank and Singular Value Decomposition

Algorithms

4.3.1 Random Projection Selection
4.3.2 Singular Value Decomposition
4.3.3 Communication complexity
4.3.4 A Hybrid Algorithm
Experimental Results
4.4.1 Experimental Setup

4.4.2 Discussion

Conclusions

6.3

6.4

6.5
6.6

6.7

OurSolution.
6.3.1 Mini-Batch Tree Topology
6.3.2 Calculating the Gradient
6.3.3 Working With Vectors,
6.3.4 Practical Considerations and Optimizations
6.3.5 Variants
Analysis
6.4.1 Security
642 Complexity
Compressing the Gradient
Experimental Evaluation
6.6.1 Time Consumption
6.6.2 Simulating Tree Building
6.6.3 Machine Learning Results
Conclusion L

7 Summary

7.1
7.2
7.3
7.4

Smartphone Trace
Dimension Reduction Methods
Management of Random Walks

Mini-Batch Gradient Descent,

8 Osszefoglalé

8.1 Okostelefonostrace

8.2 Dimenziocsokkentd modszerek

8.3 Véletlen sétak menedzselése

8.4 Mini-batch gradiens médszer L.
References

115
115
116
117
118

119
119
120
121
122

123

vi LIST OF ALGORITHMS

List of Algorithms
2.1 Gossip Learning Framework 0o 8
4.2 Random projection selectionatnodei 41
4.3 P2P low-rank factorizationatnode i 44
4.4 rank-kupdateatnodei 45
4.5 rank-k SVDupdateatnodei 46
5.6 Single Random Walk Protocol 63
5.7 Multiple Random Walk Protocol 74
6.8 Fully distributed algorithm for computing a mini-batch gradient 97

List of Tables

1.1

3.1

4.1

4.2

5.1

5.2

6.1

The relationship between the chapters and the corresponding publications

(where e and o indicate the core and the related publications, respectively). 4

Comparison between various NAT measurement campaigns 11
The key properties of thedatasets 49
Parameter settings oL L 50
Fixed Parameterso 80

Overview of the results concerning the Multiple Random Walk Protocol
at the end of the simulatedday 82

Parameter setups for realistic simulations. Time consumption of the pro-

tocol. Rate of allowed trees based on distributions. 108

viil

LIST OF FIGURES

List of Figures

3.1

3.2

3.3

34
3.5

3.6

3.7

3.8

Locations of the contributions to our data set. The color coding represents
the number of different network providers we collected NAT data from.
Diurnal pattern of availability. The plot shows the proportion (empirical
probability) of different types of phones, as well as the prediction of our
churn model, as a functionof time.
Conditional distributions of the logarithm of available and unavailable
session lengths with the hour of day and previous session length as con-
ditions. In the heatmaps warmer (lighter) colors indicate higher values.
The original session lengths were measured in minutes.
Results of experiments on push-pull gossip broadcast.
Validation experiments — Push-pull gossip broadcast under different churn
models including a trace-based simulation (n=140 for all churn models). .
Proportion of users online, and proportion of users that have been online,
as a function of time. The indicated time is GMT. The bars denote the pro-
portion of the simulated users that log in and log out (shown as a negative
proportion), respectively, in a given period. L.
Expected availability of smartphones that have been online for at least 10
seconds. The hour-of-day is in UTC. All battery levels are allowed.

Discovery result code enclosed by sessions.

13

22

LIST OF FIGURES

1X

39
3.10
3.11

3.12

3.13
3.14

4.1
4.2

5.1

5.2

53

Length of candidate sessions.
Relative frequency of NAT types in use aggregated over time.
(1) NAT distribution per day over 5 years. (2) Session length distribution.
Examined NAT types: SC - Symmetric Cone, PRC - Port Restricted Cone,
RC - Restricted Cone, FC - Full Cone, SF - Symmetric UDP Firewall, FB
- Firewall blocked, OA - Open Access

NAT type distribution by continent in 4 different years (top) and NAT
type distribution by the top 10 providers in 4 different years (bottom).
The colors represent types as defined in Figure 3.11..

Proportions of the possible outcomes of P2P connection attempts.

Statistics over successful connection as a function of NAT type. The area
of a disk is proportional to its observed frequency, the color signifying the
success rate. The examined NAT types are: OA - Open Access, FC - Full
Cone, RC - Restricted Cone, PRC - Port Restricted Cone, SC - Symmetric
Cone, SF - Symmetric UDP Firewall, FB - Firewall blocked, N/A-missing

LYPE .« o o e e e e

Accuracy after two days of simulated time as a functionof k.

Experimental results showing the prediction accuracy as it evolves in time

(time is on a logarithmicscale).

Experiments with all the combinations of d,,, and 6. The number of ran-
dom walks is shown as green dots (integers, translated slightly vertically
by random noise to illustrate density) and the step count of the oldest
random walk is represented as colored points, different colors indicating
differentrandom walks. 0oL
Experiments with a 5% drop probability. The number of random walks
is shown as green dots (integers, translated slightly vertically by random
noise to illustrate density) and the step count of the oldest random walk is
represented as colored points, different colors indicating different random
walks. . ..
Experimental results with n = 1000, and small payload (1000 ms trans-

mission time) with a varying number of random walks.

LIST OF FIGURES

5.4

5.5

5.6

6.1

6.2

6.3

Experimental results with n = 1000, and mixed payload (between 1000 ms
and 10000 ms transmission time) with a varying number of random walks.
Experimental results with n = 1000, and large payload (10000 ms trans-
mission time) with a varying number of random walks.
The histograms of the sendQueue sizes in the three scenarios with 1000 ms
payload transmission time. The notations n/10,n and 10n represent our

three settings for the number of random walks.

Classification accuracy of the compressed gradient update on the data sets
with various batch sizes.0 0oL
Distribution of effective mini-batch sizes for scenario of 10,000 features.
The histograms have a logarithmicscale.
Classification accuracy of the compressed gradient update on the data sets
based on trace-based simulation. We vary the key size (1024 or 2048) and

maximum tree size (190r67).

84

85

CHAPTER 1

Introduction

Over the past few decades, we have witnessed an explosive growth of mobile and smart
devices and their widespread use. These devices are present in almost every aspect of our
daily lives. This trend has led to numerous intelligent applications based on data mining
[109]. It is usually performed over collected data at a central location. This conventional
process has become evermore problematic due to the increasing public awareness of the
privacy issue. In the last few years stricter privacy protection laws have come into force
[1]. For this reason, there is an increasing interest in methods that allow us to keep our
private data in our devices and process them using collaborative algorithms.

There are, of course, many ways to address this challenge. We opted for gossip
learning [82] due to the fact that it is fully decentralized, hence no central server is
needed. Nodes exchange and aggregate models directly. This makes scalability signif-
icantly cheaper than the alternatives. It is a good opportunity for startups or commu-
nities with low budgets to provide robust intelligent smartphone services. It can serve
the common good (e.g. public healthcare and public education). Although we focus on
collaborative mobile platforms [85], gossip learning applications can be found in smart
metering [89] and over Internet of Things platforms [106] as well.

Google introduced centralized federated learning to meet this challenge [56, 76].

This method performs data mining similar to the well-known parameter server archi-

tecture [25], but with the difference that here the data remains on device. The server
maintains the current model, aggregates the received models and regularly distributes it
to the nodes. There, an update step is performed on local data and propagated back to the
parameter server. Therefore the method is optimized to minimize these communication
costs. They handled this problem with some novel compression techniques. However,
gossip learning is not only comparable to federated learning in terms of performance, but
it can even outperform it in certain cases [44, 45].

In gossip learning, privacy is not guaranteed by default, but it is much easier to
achieve. Moreover, theoretical notions of privacy such as differential privacy can be in-
cluded as well. From this point of view, we propose a random walk service that can
maintain a single walk and drive down the privacy budget. In addition to this, we present
a secure sum protocol to prevent the collusion attack. Our long-term goal is to provide
a fully open collaborative environment where those who provide data can enjoy the ben-
efits of mining the collective data of the community. To realize this goal, we propose a
multiple random walk service for maintaining independent decentralized tasks that might
belong to different users. We also introduce a smartphone trace based on collected data
in order to create more realistic simulations. It contains network properties and patterns
of user behavior. We can also take into account the improving performance of the gossip
learning. Hence, it is crucial to minimize the communication cost by reducing the dimen-
sionality of the data mining tasks. For this reason, we propose a number of robust and
efficient approaches to handle this.

As we can see, the main aim of this thesis is to offer several fully distributed protocols
that make gossip learning more suitable for performing collaborative data mining. We
provide methods with very diverse aspects and they can address the most interesting open
questions of the gossip learning.

The thesis is organized as follows. First, we give a brief overview of the background in
Chapter 2. It includes an introduction to stochastic gradient descent (SGD) machine learn-
ing optimization method, an outline of the applied system model and the data distribution;
and we introduce the basic idea of the Gossip Learning Framework. Next, in chapters 3
— 6, we present our main contributions. We introduce our proposal for data collection
over smartphone networks and a real trace of smartphone user behavior that can provide
realistic network simulations. Afterwards, we present several fully distributed methods

for the dimension reduction task. Then we propose solo and multiple random walk man-

CHAPTER 1. INTRODUCTION 3

agement algorithms. Lastly, we describe a tree-based mini-batch gradient descent method
for privacy preservation.

We present a smartphone trace in Chapter 3 for simulating real user behavior. It helps
us to make more realistic simulations for evaluating our proposed distributed protocols
which are described this thesis. We present our locally developed Android app Stunner
that collects information about the users such as NAT (network address translation) type,
the availability of WiFi and cellular networks, the battery level, and many other attributes.
Based on this data we identify and model the sessions during which a user can participate
in, with a fully distributed protocol. We also demonstrate through the simulation of gossip
protocols that it is feasible to develop smartphone-friendly applications. For many years
we have been collecting data via smartphones, and we enhanced our app by taking actual
P2P measurements. We outline our updated data collection method and the technical
details, including some challenges we faced with data cleansing. We present a set of
statistics based on the collected data.

In Chapter 4, we outline a number of robust and efficient decentralized approaches to
dimension reduction. The first algorithm that we describe builds on searching for good
random projections. We conclude that this method is preferable and provides good quality
results when the output is required on a very short timescale, within tens of minutes. We
propose a fully distributed variant of singular value decomposition (SVD) for dimension
reduction. We also present a hybrid method that combines the advantages of random
projections and SVD. We present a detailed experimental comparison of the proposed
algorithms and compare them with each other. We demonstrate that the hybrid method
provides a good performance over all time scales.

We present an approach in Chapter 5 for implementing a single random walk service.
Our solution is based on a cheap gossip layer to broadcast a small global state and a
replication mechanism based on this state. It meets our three major requirements. First,
the random walk should be agile: it should progress as quickly as possible. Second, the
implementation should be efficient: for example, it should induce only a minimal extra
cost to achieve robustness. Third, the random walk should be long-lived, that is, it should
perform as many steps as possible without resetting its state. Such a single random walk
protocol can provide differentially private implementation of fully distributed SGD. In
Chapter 5, we also propose a protocol to manage O(n) random walks in a network of

n nodes. Although our motivation is gossip learning, this protocol may be viewed as a

Table 1.1. The relationship between the chapters and the corresponding publications (where e and
o indicate the core and the related publications, respectively).

Chapter 3 | Chapter 4 | Chapter 5 | Chapter 6
P2P 2014 [9] . o o o
TIST 2016 [43] . . o o
ICCGI 2017 [101] °
DAIS 2019 [103] o
PDP 2016 [5] o °
JOWUA 2016 [42] o °
PDP 2017 [6] o °
SCN 2018 [22] o °
ESANN 2014 [10] o
IJASO 2018 [102] o

general middleware service for the management of multiple walks over networks. A key
element of this protocol is a multi-level restarting mechanism designed to prevent the fail-
ure of random walks due to node churn, while respecting a set of bandwidth constraints.
We demonstrate that the random walks are kept alive and are run at close to optimal speed

under the given bandwidth constraints.
In Chapter 6, we propose a light-weight protocol to quickly and securely compute

the sum query over a subset of participants, assuming a semi-honest adversary. During
the computation the participants learn no individual values. We apply this protocol to
efficiently calculate the sum of gradients as part of a fully distributed mini-batch stochastic
gradient descent algorithm. The protocol achieves scalability and robustness by exploiting
the fact that in this application domain a “quick and dirty” sum computation is acceptable.
We utilize the Paillier homomorphic cryptosystem as part of our solution combined with
extreme lossy gradient compression to make the cost of the cryptographic algorithms
affordable. We demonstrate both theoretically and experimentally that the protocol is

indeed practically viable.
Then, in Chapter 7 we summarize our research contributions. Finally, in Chapter 8 an

overview of this thesis is given in Hungarian as well. And in Table 1.1 above, we list the

relationship among the relevant publications and the thesis chapters.

CHAPTER 2

Background

We give an overview of this chapter, which summarizes the necessary background that
plays a crucial role in understanding our results. First, we briefly introduce the Stochastic
Gradient Descent optimization method for solving classification problem. Then later, we
describe our fully distributed system model and data distribution. After, we turn to discuss

the basics of the Gossip Learning Framework.

2.1 Stochastic Gradient Descent

Classification is an important problem in machine learning. Given a data set D = {(xy, y1),
..., (x,,y,)} of n observations, where an object or an example is represented by a pair of
a feature vector x € R? and the corresponding class label y € C, where d is the dimension
of the problem and C is the domain of class labels. In the case of binary classification the
number of possible class labels is two (e.g. C = {0, 1}). The problem of classification is
often expressed as finding the parameters w of a function f,, : R? — C that can correctly
classify as many examples in D as possible, as well as outside D (this latter property is

called generalization). In other words, we are looking for a parameter vector to optimize

6 2.1. STOCHASTIC GRADIENT DESCENT

the objective function of the problem

w = arg min J(w) = arg min Zl (e, 0 + 1P, 2.1
where the £() is a loss function and (1/2)||w]||? is the regularization term with parameter A.
Function f,, is called the model of the data set. The regularization term helps the model to
avoid overfitting the data set, thus aiding generalization. The labeled data set is often split
into two non-overlapping subsets; namely a training set for optimizing the parameters w
of the model and a test set for measuring the generalization performance of the optimized

model.

Gradient descent (GD) is an iterative method that can find the optimum of a convex
function. It is often used for optimizing the above objective function. The parameter vec-
tor w is iteratively updated using the derivative of the objective function that is computed

on the whole training set

W1 = wy — 1, VJ (W)

| & (2.2)
= Wy = (Aw + Zl Vol (fo(X), y)s

where 7; is the learning rate at time ¢ that scales the size of the gradient step.

Stochastic gradient descent (SGD) is similar, only it visits each example one at a time
instead of working with the entire database. It computes the gradient based on only one
training sample in an iteration instead of the whole training set. For index i, the update

rule becomes
W1 = w; — 1(Aw + V C(fi.(x0), yi)). (2.3)

SGD is more preferable on very large training sets, or in distributed applications. It
has two restrictions regarding the learning rate, namely we have to have 3,777 < oo and

>, 1 = co. These turn out to be necessary conditions for convergence [17].

A popular way to accelerate the convergence is the use of mini-batches, that is, to
update the model with the gradient of the sum of the loss functions of a few training
examples (instead of only one) in each iteration. This allows for fast distributed imple-

mentations as well [36].

CHAPTER 2. BACKGROUND 7

In this thesis, we use Logistic Regression [78] optimization algorithm. It has an as-
sociated loss function that we can use along with SGD to train the corresponding model.
In this case, the optimization problem is expressed as a maximization problem, since it is

more natural to think of it as maximizing the logarithm of the likelihood
1 ¢ P I
W = arg max — Z In POy;lxi, w) — =|Iwll%, (2.4)
w n P 2

where y; € {0, 1}, P(Olx;, w) = (1 + exp(w” x))™" and P(1|x;, w) = 1 — P(0|x;, w).

Although we have only discussed binary classification, here we will experiment with
the more general multi-class algorithms, where we have instances taken from K different
classes (C = {0,1,...,K — 1}). A popular approach is to learn K distinct binary classi-
fiers [14], one for each class. When using logistic regression the objective function can

be readily generalized to multiple classes [14].

2.2 System Model and Data Distribution

As our system model we consider a network of a potentially large number of compu-
tational units (e.g. personal computers, smart phones, tablets, wearable units, or smart
meters), called nodes. The nodes in the network can communicate via messaging with
their neighbors. At every point in time each node has a set of neighbors forming a con-
nected network.

The set of neighbors is either hard-wired, or given by other physical constraints (for
example, proximity), or set by an overlay service [49, 91]. Such overlay services are
described in the literature, but fall outside of the scope of our present discussion. It is
not strictly required that the set of neighbors be random; however, we will assume this
for the sake of simplicity. If the set is not random, then implementing a random walk
with a uniform stationary distribution requires additional well-proven techniques such as
Metropolis-Hastings sampling and structured routing [100].

Nodes can leave the network or fail at any time. In our simulations we will assume
that when a node leaves the network it retains a subset of its state until it joins the net-
work again; but this is not a critical assumption. We assume a reliable transfer protocol.

This implies that messages are not dropped, so communication fails only if the source or

8 2.3. GOSSIP LEARNING

Algorithm 2.1 Gossip Learning Framework
1: (x,y) « local training example
2: currentModel « initModel()

3: loop 8: procedure oNRECEIVEMODEL(m)
4 wait(A) 9: m.updateModel(x, y)

5 p < selectPeer() 10: currentModel « m

6: send currentModel to p 11: end procedure

7: end loop

target node fails before transferring the full message. Messages can be delayed up to a
finite delay. We do not assume synchronized time. In our experiments we will base our
simulated model on a real smartphone trace.

We assume a horizontal distribution, which means that each node has full data records.
We are mostly interested in the extreme case where each node has only a single record.
The database that we wish to perform data mining over is given by the union of the records
stored by the nodes. Hence, we shall suppose that the network size is equal to the number

of all record and we will denote both by n.

2.3 Gossip Learning

The Gossip Learning Framework [82] is a possible way to learn models in fully distributed
environment. The basic idea is that in the network many models perform random walks
and are updated at each node using the local example. More precisely, every node executes
Algorithm 2.1. A node in the network first initializes a local model, then iteratively sends
its local model to a randomly selected node in the network. The address of the randomly
selected node is provided by a peer sampling service (e.g. the NewsCast [105] protocol).
When a node receives a model, it updates it via its locally stored training example using
the SGD update rule, and then stores the updated model as its local model. Using this
protocol, the models stored by the nodes will converge to the same global optimum. It is
possible to replace the local update step with a more sophisticated aggregation operation.
Upon receiving a model, the node can merge it with the local model. Merging is typically
achieved by averaging the model parameters. A node may have information about multi-
ple data records instead of just a single record. In this case, a minibatch approach can be

implemented.

CHAPTER 3

Smartphone Trace

Today in smart systems, distributed computing over the edge is becoming a popular re-
search topic [33]. Research into algorithms that are suitable for such environments often
involves actual deployments, because realistic conditions are non-trivial to model, but
they are crucial for finding an optimally efficient and robust solution. However, this diffi-
culty severely limits the possibilities of exploratory research. Smart portable devices also
represent a seemingly ideal platform for peer-to-peer (P2P) protocols for a wide range
of applications, but the adoption of P2P technology has been very slow. One important
domain is smartphone applications, which can form a part of a variety of smart systems
like smart city and e-health solutions [109]. In this domain, it is vital to fully understand
the capabilities and limitations of the devices and their network access as well. This in-
cludes battery charging patterns, network availability (churn) and network attributes (for
example, NAT type).

One important open problem is to understand the patterns of availability; that is, to
build models of churn which reflect the intervals when a given device can potentially
participate in a P2P protocol. Understanding these patterns could answer the question of
what applications are feasible without cloud support, and what applications are of little

use. It would also allow one to design specific algorithms that maximize the utility of the

10

available time of the devices.

For desktop systems, in-depth churn studies are available [99] but, as we will show,
these are not applicable for smart devices. There are numerous data collection efforts
related to energy usage [32, 51] or data traffic [52], but these are not sufficient to enable
research over the edge. There are generic data collecting platforms, the closest to our work
is Device Analyzer [108]. However, it does not detect the NAT type, which is a crucial
part of P2P communication models; it only logs locally available data. What is more,
the incentive model builds on the desire of users to contribute to scientific projects. In
contrast, we wish to offer good functionality as the main incentive for people to download
and use our client application [32].

Over the years, there have been many data collection campaigns that target smart-
phones. This includes the famous Mobile Data Challenge (MDC) [61], which sought
to collect large amounts of data from smartphones for various research studies, includ-
ing sensory data, cell towers and calls. It ran between 2009 and 2011 and produced the
largest and most widely known mobile big data set so far. Later, the project that had
similar results was the Device Analyzer Experiment. It commenced in 2011 at the Uni-
versity of Cambridge, and the team attempted to not only record similar attributes to the
MDC, but also to record system-level information such as phone type, OS version, energy
and charging [18, 107]. This trace was used, for example, to determine the most energy
greedy Android APIs [65] and to reconstruct the states of battery levels on the monitored
smartphones [34]. Our dataset is unique in that, apart from being over 5 years in duration,
it contains all the necessary attributes to simulate decentralized applications.

Another set of projects was concerned with measuring the network (e.g., detecting
NAT boxes) as opposed to collecting a full trace from the devices, which is our main goal.
For instance, in 2014 a study was initiated to analyze the deployment rate of carrier-grade
NATSs that can hide entire areas behind a single public IP address [90]. The measure-
ment was based on NETALYZR, as well as on crawls of BitTorrent DHT tables to detect
possible leaked internal addresses due to hairpin NAT traversal. In another study across
Europe, an application called NAT ReveLio was developed [73]. Yet another data collec-
tion campaign attempted to collect traceroute sessions from smartphones using the custom
TraceBox ANDRoID application [104]. The application detects the exact number of middle-
boxes and NAT translations encountered between the device and a specified test target.

In a similar two-week campaign, the NETPICULAR application was deployed [110]. Also, a

CHAPTER 3. SMARTPHONE TRACE 11

Table 3.1. Comparison between various NAT measurement campaigns

Source | Collected Attributes | Length | Public | Tools
[90] local, external and public IP | 2014-2016 No Netalyzr
addresses

[73] external IP, mapped port, | 2016 May and | No NAT Revelio
traceroute results, UPnP | August
query results

[113] traceroute results 2016 February - | No Mobile Tracebox
2017 February
[110] traceroute results, number of | 2011 January, 2 | No Netpiculet
detected middleboxes weeks
[104] traceroute results, number of | 2014 May - | No TraceboxAndroid
detected middleboxes September

mobile application called MosiL TrRacEBOX was deployed to carry out traceroute measure-
ments [113]. This campaign ran for an entire year. A summary of these NAT studies can
be found in Table 3.1.

Next, we will give an outline of how we carried out our data collection and we give
a brief summary of the main milestones achieved. Then, we will introduce a time-
inhomogeneous Markovian model and the smart phone trace for simulating churn. We
shall use this gathered churn trace throughout the thesis for evaluating our fully distributed
protocols, because we can realize more realistic network churn simulations based on it.
After, we will describe some lessons that we learned from data collection over the years.

We will include results obtained from real P2P connection experiments.

3.1 Collecting the Data

We developed and deployed an Android app that collects data covering most of the aspect
that are relevant to the design of P2P protocols over networks of smartphones, including
time series of network and battery status complete with information about NAT types,
network types, and network providers. We have made our trace publicly available'. This
allows the research community to design and validate, if they wish, realistic simulation
models.

In 2014, we developed an Android app called STUNNER that informs the user about the

Thttp: //www.inf.u-szeged.hu/stunner

http://www.inf.u-szeged.hu/stunner

12 3.1. COLLECTING THE DATA

current network environment of the phone: private and public IP, NAT type, and other

details.?

The app was launched in April 2014, when it was simply made public without much
advertising. Most of the users in our survey installed our app voluntarily because it was
useful for them. About 30 users were local students recruited for the survey. They in-

stalled the app, but they received no further instructions.

In the initial release of STUNNER, the data is collected by a background service that can
be disabled by the user at any time. This background service listened to various events
broadcast by Android that were related to the network interface and the status of the bat-
tery. In particular, it listened to TELEPHONYMANAGER, WIFIMANAGER, and BATTERY M ANAGER.
When such an event arrived, or when the user explicitly ran the app, it collected the status
of the network and the battery and logged this information. There were periodic measure-
ments as well every 10 minutes, if no other events occurred. The network properties we
collected include network type (WiFi/cellular), carrier, signal strength, bandwidth, public
and private IP and NAT type. Regarding the battery, we stored the temperature, voltage,
load percentage, health and charging status (from AC/USB/WiFi). The data was times-
tamped using the UTC real-time clock of the phone, along with time zone information so
that the local time can be calculated. The data was periodically uploaded to our server in
an anonymized form. The devices were identified by a 128-bit random number that was
generated during the installation of the application. After a month of data collection there
were 622 installations to different mobile phones and we collected data from 91 countries
and from 1425 different networks.? The geographic distribution of the first users is shown

in Figure 3.1.

Over years, we found many pitfalls related to data collection. The data collector server
was down in 2015, when the project was temporarily neglected. However, we continued
the development in 2016 after a year shutdown. We had an intensive review on the source
code of STunner and we proposed multiple data cleansing methods [101, 102]. Also,
some of the STUN servers that were initially wired in to the clients disappeared over

the years. Therefore, it was crucial to correct this error and also correct the failed NAT

The type of the NAT is detected with the help of the STUN protocol using public STUN servers. We
used the implementation http://jstun.javawi.de.

3Based on the AS number and the city determined by the public IP address using the service provided
by Telize: https://www.telize.com

http://jstun.javawi.de
https://www.telize.com

CHAPTER 3. SMARTPHONE TRACE 13

1 iy

Figure 3.1. Locations of the contributions to our data set. The color coding represents the number
of different network providers we collected NAT data from.

measurements. Later, we will describe a method that is used to tackle this problem in
Section 3.4.1.

The latest version was completely redesigned and it was released in 2019. This was
necessary because Android had become very hostile to background processes when the
phone was not on a charger, in an effort to save energy. For this reason, we now collect
data only when the phone is on a charger. This, however, is not a real issue, because for
decentralized applications these are the most useful intervals, when it is much cheaper to
communicate and to perform computing tasks in the background. Android event handlers
have also became more restricted, so we can use them only under limited circumstances or
on early Androids. The events raised by connecting to a charger or a network can still be

captured by the Android job scheduler, but the timing of these events is not very reliable.

For this reason, instead of relying on event handlers, we decided to check the state
of the phone every minute; and if there is a change in any important locally available
networking parameter or in charging availability, we perform a full measurement. A
measurement is still triggered if the user explicitly requests one, and it is also triggered
by an incoming P2P measurement request. Also, if there is no measurement for at least

10 minutes, a full measurement is performed.

P2P connection measurements are also a new feature in the latest version that are per-

14 3.1. COLLECTING THE DATA

0.8 T T T T

0.7 W

06 P(on network) —— |
P(on charger) ——

05 our mode] ——

P(on charger and network)
P(on charger)P(on network)

0.4

empirical probability

0.3

0.2

0.1 L L L L
0 5 10 15 20

time (hour of day)

Figure 3.2. Diurnal pattern of availability. The plot shows the proportion (empirical probability)
of different types of phones, as well as the prediction of our churn model, as a function of time.

formed every time a measurement is made. They are based on the WebRTC protocol [2],
with Firebase as a signaling server [80], and a STUN server [70]. We build and measure
only direct connections and the TURN protocol for relaying is not used. Every node that
is online (has network access and is on a charger) attempts to connect to a peer. To do
this, the node sends a request to the Firebase server after collecting its own network data.
The server attempts to find a random online peer and manages the information exchange
using the Session Description Protocol (SDP) to help create a two-way P2P connection
over UDP. If the two-way channel is successfully opened then a tiny data message is ex-
changed. The channel is always closed at the end of the measurement. One connection
is allowed at a time and every additional offer is rejected. The signaling server main-
tains an online membership list. The first version of our P2P connection measurement

implementation also induced some downtime in 2018.

Over the years, at any point in time we had a user base of a few hundred to a few
thousand users, and over 40 million measurements have been collected from all over the
world. Now, we should add that these changes are in our latest article on STUNNER. So we
have not yet exploited its advantages. We will describe it in some detail in Section 3.4.
However, note that throughout this thesis we will just use the trace that was collected in
2014.

CHAPTER 3. SMARTPHONE TRACE 15

3.2 A Markovian Model for Simulating Smartphone Churn

Here, we describe and analyze a time-inhomogeneous Markovian model of churn that
predicts the length of the next session based on the length of the previous session and
the time of day. We validate our model by comparing it with the trace we collected.
Simulating churn with such a synthetic trace is a good option when we wish to simulate a
larger network than one available based on the real trace. This study was conducted on a
data set that was collected in the first month of the data collection. We will restrict our data
set to those continuous measurements that cover at least one day without interruptions.
This is done so as to reduce the bias introduced by short measurement intervals arising

from the diurnal pattern in the data.

When is a Phone Available?

We model each phone as a series of alternating available and unavailable sessions. Intu-
itively, the available sessions are those during which the phone can participate in a P2P
protocol.

Unlike desktop systems, with smartphones the battery state is more important for
determining availability than network connectivity. P2P applications crucially rely on
bi-directional communication that costs energy, which is a precious resource on mobile
devices. As shown in Figure 3.2, phones have a network connectivity around 75% of the
time. Recall that this is a statistic over traces that are at least a day long, which indicates
excellent connectivity in general. This is made more complicated because NAT types
need to be taken into account (see Section 3.4.2). In spite of this, the major problem is
energy, not communication.

Based on these observations, we can say that the peer is available if it has network
connectivity and if it is on a charger. In this section, we do not differentiate between net-
work types (WiFi or 3G) and charging types (USB or AC), although a finer grain analysis
is also possible based on our data. Figure 3.2 tells us that being on a charger is more
decisive. It is interesting to note that being on a charger and on a network are not inde-
pendent properties. As seen in the figure, the observed probability of the co-occurrence
of these two properties is higher than that predicted by an independence assumption. In
other words, being on a charger increases the probability of the phone being connected to

the Internet.

16 3.2. A MARKOVIAN MODEL FOR SIMULATING SMARTPHONE CHURN

Modeling Availability

We model a user j as a series of alternating available and unavailable sessions will be

denoted as

e i1, U js Qg1 js Ujs D s - - 3.1

where a;; and u; ; denote the length of the ith available or unavailable session of user
J» respectively. Let t;; denote the starting time of the ith session of user j. Note that
tiv1,j = t;j + x;j (where x = a or x = u, depending on i).

We would like to stochastically model this series based on our measurement data so
that we can generate traces for the purposes of simulation. More precisely, for a given i
and j, we wish to learn the distribution of a; ; (or u; ;, respectively). In the general case,

this probability distribution can be formulated as the conditional distribution

P(aj jlt; j, wi-y j, tic1,j> Qizn js tiz2 js - - 2)- (3.2)

A similar formula can be given for u; ;.
Evidently, this expression has too many parameters to approximate so we will now
introduce a time-inhomogeneous Markovian model that considers only the length of the

previous session and the starting time of the session:
P(a; jlt; j, ui-1 j), and P(u; jlt; j, a1 ;). (3.3)

In principle all users j will have their own specific versions of these two distributions.
However, since we had data that was collected for only a month, we did not have sufficient
data for most of the users. For this reason, here we will assume that all the users have the
same distributions. In other words, we will create a model of an average user. Note that
the data will allow us in the future to identify user types and thus to create more specific
models involving mixtures of users.

To make clear why we need to keep the previous session length and the starting time
as conditions, Figure 3.3 shows the distributions P(In a; jt; ;), P(Inu; j|t; ;), P(In a; jlu;_; ;),
and P(Inu; jla;_, ;), respectively. To be more exact, instead of absolute time we plot the
dependence on the hour within a day as the condition, since the dependence on time is
mainly due to the diurnal pattern of phone usage behavior. Note also that we work with the

logarithm of the session lengths. This is because we noticed that the interesting patterns

CHAPTER 3. SMARTPHONE TRACE 17

7 .‘ 7 .‘
0 0
0 5 10 15 20 0 5 10 15 20

@)}
@)}

9}
|9}

~
~

w
w

\S)
N

available session length (In)
unavailable session length (In)

—_—
—

time (hour of day) time (hour of day)

7 7
=6 6
het £
= D %5
=)
5 2
= 4 g 4
.S 'z
3 ;3
2)
g2 =2
E 2
<1 51

0 0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

prev. unavailable session length (In) prev. available session length (In)

Figure 3.3. Conditional distributions of the logarithm of available and unavailable session lengths
with the hour of day and previous session length as conditions. In the heatmaps warmer (lighter)
colors indicate higher values. The original session lengths were measured in minutes.

of the distribution were more obvious on the log scale. On the linear scale the distribu-
tion appears to be a simple heavy tailed distribution without any apparent structure. For
this reason we model the distribution of the logarithm of the lengths and then take the

exponential to generate actual session lengths during simulation.

As can be seen, the distributions have complex patterns. For example, it is clear that
after 8pm many long available sessions start that last roughly till the morning Similarly,

in the morning at around 6-7am many long unavailable sessions start. This has to do with

18 3.2. A MARKOVIAN MODEL FOR SIMULATING SMARTPHONE CHURN

the fact that many phones are left on a charger during the night. Figure 3.2 also supports
this particular interpretation. Also, most of the sessions are rather short, lasting only a
few minutes. After inspecting the data carefully, we hypothesize that this behavior is
mostly the result of a weak unreliable WiFi or mobile network signal that induces quickly
alternating short sessions, as implied by the rightmost two plots in Figure 3.3.

In our model, instead of introducing a parametric approximation of (3.3), we kept the
original data (session lengths classified by starting time and previous session length) and
resampled these classes when generating the next session length. In order to have enough
data in each class, we reduced the resolution of the time and session length parameters
that condition the distributions. As for time, we differentiate between 8 different intervals
and divide the 24-hour day into 3 hour intervals starting at midnight. As regards previ-
ous session length, we define three different intervals over the logarithm of the lengths
heuristically based on the observed distributions in Figure 3.3. These three intervals are
[0:2),[2,5) and [5, 9]. These two low resolution variables define 8 - 3 = 24 classes for
both available and unavailable sessions.

Figure 3.2 shows the observed proportion of available phones when using the model.
We modeled a network of 1000 nodes for 1000 days and calculated the statistics based
on this. Note that the model does not control the proportion of available nodes directly;
it is an emergent property that is suitable for validating the model. We can see that our
predictions are slightly higher than the actual observed proportion. This is due to the
fact that currently we are not always able to account for intervals when the phone is
switched off and therefore the lengths of unavailable sessions are slightly underestimated.
By taking into consideration only long continuous measurement intervals we minimize
this effect.

An Example Application

Here we illustrate the application of our churn model using the simulation of a simple
push-pull gossip broadcast protocol. Our motivation is to shed light on the importance
of having a realistic churn model to help understand the behavior of fully distributed
protocols. As we will see, in our model gossip behaves in a radically different way from
that in simpler churn models.

The protocol we simulate is a classical push-pull gossip broadcast protocol over a

CHAPTER 3. SMARTPHONE TRACE 19

3am, n=1,000
09 9pm, n=1,000
noon, n=1,000
0.8 | 3am, n=10,000

9pm, n=10,000
0.7 noon, n=10,000
0.6

0.5 f
04
03
02 f
0.1

09
0.8 |
0.7 |
0.6 |
05 |
04 |
03
02 |
0.1 |

no churn, n=1,000
our model, n=1,000
log-normal, n=1,000
no churn, n=10,000
our model, n=10,000
log-normal, n=10,000

proportion of infected nodes
proportion of infected nodes

0.1 1 10 0.1 1 10
time (hour of day) time (hour of day)

(a) under different churn models. (b) started at different hours, using our churn model.

Figure 3.4. Results of experiments on push-pull gossip broadcast.

static overlay network. That is, each node has a fixed set of neighbors throughout the sim-
ulation. Each node i contacts one random available neighbor j (if there is one available)
for each round and if i has the update, it sends it to j, and if j has the update, it sends
it to i. The round length is one minute. Initially, one random node has the update. We
ensure this initial node is available (online) at the start of the broadcast. Unless otherwise
stated, the plots show the average of 1000 runs and are based on a random 20-out overlay
topology (each node has 20 random out-neighbors).

In the first set of experiments, we compare three churn models; namely no churn, log-
normal churn (a classical model generally used in P2P simulations [99]), and our model.
The parameters of log-normal churn were set so that the average and the variance of the
available session lengths were the same as in our model, and we also made sure that the
average proportion of available nodes (that is kept constant) matches the daily average of
our model as well. The log-normal model works by drawing the available session lengths
from the log-normal distribution, and if the proportion of available nodes drops below the
fixed threshold, unavailable nodes are made available at random.

Figure 3.4a shows the results for two different network sizes. It is striking how dif-
ferent the dynamics are from the more homogeneous log-normal model. The reason will
become clearer after considering our next set of experiments, where we commenced the
broadcast at specific hours. Figure 3.4b shows the results we got.

It is apparent that the broadcast reaches the nodes that are available at the start of

the broadcast in a few rounds (see also Figure 3.2). Then progress slows down since

20 3.3. SIMULATIONS ON A SMARTPHONE TRACE

proportion of infected nodes

no churn
log-normal

our model
trace-based

0.1 1 10
time (hour of day)

Figure 3.5. Validation experiments — Push-pull gossip broadcast under different churn models
including a trace-based simulation (n=140 for all churn models).

new nodes join slowly. However, clearly, the speed at which it spread also depends on
the distribution of session lengths in the different time intervals during spreading (see
Figure 3.3).

We will also include a validation experiment, during which we simulate churn based
on the exact trace we collected. That is, we select those users for which we have at
least a 3-day long continuous measurement interval. We found 140 such users. In our
simulation we simulated the exact availability of these users as recorded in our data. In
Figure 3.5 we compare this trace-based simulation with the churn models we examined in
Figure 3.4a. Here we used a 10-out random topology, and the plot shows the average of 3
days where spreading is started at midnight. The trace-based simulation closely follows

our time-inhomogeneous Markovian model, which confirms the validity of the approach.

3.3 Simulations on a Smartphone Trace

Now, we introduce multiple network churn simulation techniques that will make the sim-
ulations more realistic. We base all of our simulations on a real trace of smartphone user
behavior. Alongside this, we present a detailed description of trace properties. Through-

out this thesis, we evaluate all of our proposed fully distributed protocols by using simu-

CHAPTER 3. SMARTPHONE TRACE 21

On charger Battery level > 50% Battery level > 0%

1 1

" has been online
| s online 1

0.8 . up 08

. down

0.6 | 0.6

0.8 |

0.6 |

0.4 0.4 0.4

0.

-0.2

0 6 12 18 24 30 36 42 48 0 6 12 18 24 30 36 42 48 0 6 12 18 24 30 36 42 48
time (hours) time (hours) time (hours)

o

om|||||||||||||||||||||III|||||||||||||||||||||||II|IIII‘ .

-0.2

Figure 3.6. Proportion of users online, and proportion of users that have been online, as a function
of time. The indicated time is GMT. The bars denote the proportion of the simulated users that log
in and log out (shown as a negative proportion), respectively, in a given period.

lations with presented setups.

The examined trace was collected in 2014, which was the first year of the data collec-
tion. We have traces of varying lengths harvested from 1,191 different users. We divided
these traces into one-day segments, resulting in 41,849 segments altogether. With the
help of these segments, we can simulate a virtual period of up to one day by assigning a
different, randomly selected segment to each simulated node. The sampling of one-day
segments is performed without replacement. When the pool of segments runs out (which
happens when we need more nodes than there are segments) we re-initialize the pool with
the original 41,849 segments and continue the sampling without replacement. This way,
we can simulate networks larger than 41,849 nodes. For example, later we will simulate
a network of size 100,000 for a one-day period. Also, we created 2-day long segments

(with a one-day overlap) for longer simulations. It resulted in 40,658 segments altogether.

The requirement of being on a charger or the expected minimum level of battery power
can be a free parameter of any evaluation. We can implement different scenario by defin-
ing requirements of availability in network. If the predefined requirements are fulfilled
on a node then it is available for communication. To ensure an algorithm is phone and
user friendly, we can define a user to be online (available) when the user has a network
connection and the phone is connected to a charger; then we never use battery power at
all. In another approach, we can simulate the case where a participating phone is required

to have at least a certain battery level. From the point of view of churn, though, the worst

22 3.3. SIMULATIONS ON A SMARTPHONE TRACE

L e e T N HI IR S

3 098 . x 1
s} X X
g 096 | XX X X x x X %
o XX % x x X
2 094} X X X X
=
S
S 0.92
S
= 09 |
g
5 0.88 |
? 0.86 | + online for at least 1 more minute
& X online for at least 5 more minutes

0.84 online for at least 10 more minutes ‘

0 5 10 15 20

hour-of-day

Figure 3.7. Expected availability of smartphones that have been online for at least 10 seconds.
The hour-of-day is in UTC. All battery levels are allowed.

case is when phones with any battery level are allowed to join, because this results in a

more dynamic scenario.

The observed churn pattern is shown in Figure 3.6 based on 2-day periods we iden-
tified. Here, we should add that these patterns of availability are based on significantly
larger amounts of data than we have displayed in Figure 3.2. Although our sample con-
tains users from all over the world, they were mostly from Europe, and some were from
the USA. The indicated time is GMT, thus we did not convert times to local time. It is
interesting to note that if we consider only network availability (any battery level is al-
lowed), then the diurnal pattern becomes apparent in the login and logout frequencies due
to short session lengths during the day, and long sessions during the night. The network
availability itself is static. If we require the phone to be on a charger, then the diurnal
pattern of availability becomes clear. During the night, more phones are available (as
they tend to be on a charger), but the churn rate remains lower. Note that, due to this
sampling method, users are represented with a probability proportional to the number of
days they were online. This is motivated by the observation that our proposed protocols
at any given point in time can operate only with users that are actually online, hence those
types of users that spend more time online are indeed encountered proportionally to their

online-time.

Figure 3.7 presents statistics about smartphone availability. For each hour, we calcu-
lated the probability that a node that has been online for at least a 10 seconds remains
online for 1, 5 or 10 more minutes. Note that for us these probabilities are important

because our protocols have to remain connected at least for the short amount of time that

CHAPTER 3. SMARTPHONE TRACE 23

it takes to propagate a message. As can be seen in the figure, these probabilities are rather
high even for a 10 minute extra time. However, the first 10 seconds of each online session
(or the entire session if it is shorter) are considered offline because extremely short online
sessions would introduce unreliability. This technique was also explicitly implemented as
part of our protocols: a node should simply wait 10 seconds before joining the network.

Users with a bandwidth of less than 1 Mbps were treated as offline. This choice was
motivated by two factors. First, the Internet bandwidth available to users exceeds 1 Mbps
in many developed countries, even for uploads [97]. Indeed, in our trace the probabil-
ity of encountering a connection with a bandwidth lower than 1 Mbps was only 3.86%.
Thus, excluding such devices will cause only a minimal loss of data but in return slow
devices will not slow the entire network down. Second, utilizing a device with such a
low bandwidth would place too much of a burden on the device, and user-friendly appli-
cations might wish to avoid this. Applications based on our algorithm will mostly run in
the background while collecting data and communicating with other devices. To ensure
that an application of this kind is user-friendly, all the background processing needs to be
transparent to the user.

With this consideration, in our experiments we will use 1 Mbps not only as a lower
bound, but also as an upper bound. That is, the algorithm is allowed to utilize at most
1 Mbps of the available bandwidth, irrespective of the total available bandwidth, in order
to avoid overloading the device. Of course, utilizing all the available bandwidth would

result in a more favorable convergence speed.

3.4 Lessons Learned on Smartphone Trace Over the Years

Our team began developing the smartphone app called STUNNER in 2014. Since then, we
have collected a huge trace involving millions of individual measurements. This amount
of data naturally contains noise and some incorrect records. We took great care to clean
this data. Here, we propose a method to correct failed NAT measurements.

Our application called STUNNER has been collecting data for a much longer time than
any of the other related applications, and this allows us to identify trends over time. We
collected a wide range of properties simultaneously, including NAT type, battery level,
network availability, and so on, to be able to fully model decentralized protocols.

In this section, we present some base statistics on NAT type distribution and real P2P

connection measurements.

24 3.4. LESSONS LEARNED ON SMARTPHONE TRACE OVER THE YEARS

3.4.1 Data Cleansing

The main feature of our application is the discovery of the NAT type. Users can ask the
application about their NAT information and public IP address. This method is based on
User Datagram Protocol (UDP) message-based communication between the device and a
randomly picked STUN server. A STUN server can discover the public IP address and
the type of NAT that the clients are behind.

We were confronted by a problem that was caused by the prefixed STUN server list.
It contains a list of 12 reliable servers that are suitable for NAT detection, this list being
embedded inside the application code. It allows the device to randomly pick a STUN
server. As aresult, every measured NAT type in the timeline is based on a different STUN
server’s NAT test. Hence it makes the measured data more trustworthy. This random pick
approach was well designed and worked well initially. However, after a time four of the
STUN servers went offline without any prior notice. Since then these four failed STUN
servers provide the same NAT discovery result code as firewall blocked connections, even
though a part of those records had an online NAT type. Therefore we proposed a solution
on how to correct it and make the collected data useable afterwards. Quite surprisingly,
another solution was required to avoid connections to a failed STUN server. This problem
appeared in year 2016. We had already corrected this problem in one of the previous
versions of STUNNER. This kind of uncertainty in data appears in data only before the
changes in implementation. Hence, the below-mentioned properties (e.g. trigger events)
became obsolete after the latest release.

The server fails appeared with a 4/12 probability, and the event of consecutive re-
peated fails has an exponential pattern. Consequently we define sessions with consecutive
repeated Firewall blocked discovery result codes and looked at their distribution. If the
distribution is roughly an exponential distribution, then we can interpret them as online
and we can define their network properties. Otherwise, the others that do not have an
exponential fit will remain Firewall blocked. This means that in this way we cannot prove
the opposite (a firewall blocks the connection). In general, we look for a session that be-
gins and ends with the same network property and there are only uncertain online states
between them. These sessions may be interpretable based on the begin-end enclosures.

More specifically, the sessions must

e begin and end with the same NAT discovery result code

CHAPTER 3. SMARTPHONE TRACE 25

o
~

iy
o
o

o o
w (-]
oy

=

o o

-~ w

o
w
T
iy
(=)
N
T

o
~
T

o
-
=
o
=
T

sessions that interpretable
[= = = = = =
o
=
sessions that interpretable
=
o
©

5 10 15
unknown discovery result codes in session

o
N
o

fuy
o
=3

20 40 60 80 100 120
length of session {minute)

o

Figure 3.8. Discovery result code enclosed by

. Figure 3.9. Length of candidate sessions.
sessions.

e begin and end with the same IP address
e contain only uncertain online states

e contain a time gap between two records only in a range of 0 to 15 minutes based on
the fact that the maximum time gap between two regular online records is almost 10
minutes. However, it is not very accurate because of the Android support scheduler

with its inexact trigger time requirements.

e not be interrupted by trigger events that correspond to any potential change in net-

work properties.

We show these candidate sessions in Figure 3.8 and Figure 3.9. Let us first take a look
at how many uncertain discovery result codes are enclosed by these sessions in Figure
3.8. It is clear that the first four points seem to fit an exponential curve. Consequently, it
is still open to interpretation and the rest of the points remain undefined. Next, Figure 3.9
shows the length of the above-defined sessions. There are some peaks roughly every 10
minutes. These peaks correspond to the trigger event that was scheduled every 10 minutes
and this was the most common trigger event. For instance, if there is exactly one uncertain
Firewall blocked value in the appropriate session and every taking of a measurement is
triggered by this schedule event, then its length of time is around 20 minutes. Based on
this example, an above-defined session that contains three unknown records lasts for 50
minutes. Accordingly, we examined the points from the first phase up to 50 minutes. Our
analysis revealed that it also had an exponential pattern. In contrast to the distribution
in Figure 3.8, this distribution appears more complex, but it is still acceptable. Next,
we associate the two findings. More specifically, the intersection of the two sets is an

above-defined session that contains fewer than five uncertain elements and it lasts no

26 3.4. LESSONS LEARNED ON SMARTPHONE TRACE OVER THE YEARS

T

4jo 40 mobiie —

desktop 1 -
S
=
Q
=
Q
=
o
0]
&
5} 16
= 14
g 131
e
1
Vi, Sy, Lre
7] Mey.. “Waj
ticg, i ., Clic . by,
Cleg co o fz,«ewa]]o%s

Figure 3.10. Relative frequency of NAT types in use aggregated over time.

longer than 50 minutes. Based on this rule we can correct the network properties of 6.7%
measurement records.
In a paper, we give further details about data cleansing, such as cleaning data record

duplication and correcting the overlap of the client-side timestamps [101].

3.4.2 NAT Type Distribution

As one of the unique aspects of the data we collected is that it includes NAT types, here
we will briefly present some interesting statistics about NATs. Although in many cases
NAT devices can be dealt with via low level “hole punching” solutions[92], they can
also represent design constraints at higher levels due to the potentially high cost of (and
perhaps the complete lack of) such solutions [91].

The results of our measurements show similar trends to that of earlier measurements [21]
in the predominantly desktop P2P ecosystem, as shown in Figure 3.10. The chart is based
only on successfully identified “classical” NAT types (in order to allow a comparison with
earlier desktop data), and 10% of the identification attempts were unsuccessful. We used
only those continuously measured time series that covered at least one day for a phone
without interruptions to restrict bias due to diurnal patterns in the data. The chart is based
on data that was captured without any server-related error in the first month of data col-

lection. The most significant difference is the very low percentage of open access peers

CHAPTER 3. SMARTPHONE TRACE 27

1.01

0.8 1

0.61

number

0.4 1

0.21

0.01

Q 1
‘3 ‘)’ 6’ 6’ ’\’ ’\’ 9' 2 3 4
’LQ\ ')9\ NGNS QN o 0 o N o N 'LQ ’LQ session length (In)

Figure 3.11. (1) NAT distribution per day over 5 years. (2) Session length distribution. Examined
NAT types: SC - Symmetric Cone, PRC - Port Restricted Cone, RC - Restricted Cone, FC - Full
Cone, SF - Symmetric UDP Firewall, FB - Firewall blocked, OA - Open Access

and a higher percentage of the symmetric cone NAT type. That is, smartphone users are
slightly more restricted than desktop users.

Now, we illustrate the dynamics of the NAT distribution over the years (see Figure
3.11, left). The distribution is based on continuous sessions of online users. These con-
tinuous sessions of homogeneous network conditions were determined based on the mea-
surement records. A session has a start time, a duration, and a NAT type. The distribution
is calculated based on the number of aggregated milliseconds of session durations falling
on the given day. The distribution of online time per day is always about 8%. Recall that
here the online state is meant to imply that the phone is on a charger.

The plot has gaps because of the previously mentioned downtime in data collection.
We also said that some of the STUN servers have stop working over the years. As a result,
the Firewall blocked NAT type is not reliable, so we will exclude this category from the
figure. Note that the distribution is surprisingly stable over the years.

We display the session length distribution as well in Figure 3.11 (right). The session
length is in minutes and the bins for the histogram are defined on a logarithmic scale.
Sessions shorter than one minute are not always measured accurately due to our one-
minute period of observation, so we will group such sessions in one bin (<= 0).

Figure 3.12 contains stacked bar charts showing the distribution of different NAT types
in the 6 continents and in the networks of the top 10 most represented providers in 4 dif-

ferent years. The most common NAT type is the Port Restricted Cone, except in Africa

28 3.4. LESSONS LEARNED ON SMARTPHONE TRACE OVER THE YEARS

1.0
0.
0.
0.
0.
0.0

2014 2016 2017 2018 2014 2016 2017 2018 2014 2016 2017 2018 2014 2016 2017 2018 2014 2016 2017 2018 2014 2016 2017 2018

o0

o

S

(¥}

South America North America Europe Asia Africa Oceania
1.0
0.8
0.6
0.4
0.2
0.0
2014201620172018 2014201620172018 2014201620172018 2014201620172018 2014201620172018 2014201620172018 2014201620172018 2014201620172018 2014201620172018 201420162017 2018
VODACOM Chunghwa Telecom AT&T Magyar Telekom Korea Telecom PCS Systems TWC Internet Xfinity Verizon Deutsche Telekom

Figure 3.12. NAT type distribution by continent in 4 different years (top) and NAT type distribution
by the top 10 providers in 4 different years (bottom). The colors represent types as defined in
Figure 3.11.

where the Symmetric Cone has a relatively larger share. According to the chart the rarest
NAT type is Open Access everywhere. Interestingly, the NAT type distribution is very
different among the different providers, unlike the distributions based on geographic lo-

cation.

3.4.3 Real P2P Connection Measurement Results

We extended the application called STUNNER to collect data concerning direct peer-to-peer
capabilities based on a basic WebRTC implementation. Although our NAT measurements
are simply based on STUN server feedback [70] (thus they underestimate the complexity
of the network), our P2P measurements tell us that our NAT type data is offer a good basis
for predicting connection success. As an illustration, we shall present some of the inter-
esting patterns in our trace related to P2P connection measurements. Figure 3.13 shows
the proportions of the outcome of 63184 P2P connection attempts. The successfully com-
pleted connections amount to 34%. Let us briefly outline the possible reasons for failure.

First, signaling related error means that the SDP data exchange via the signaling server

CHAPTER 3. SMARTPHONE TRACE 29

/—’ Connection open failed

’ Connection open but transport error
Connection lost x

’ Timed out after successful signaling [——

‘ J' \’ Timed out with peer ‘

Offer re] jected

\—’ Timed out without peer ‘

B Unsuccessful connection or transport (40%)
B Successful connection and transport (34%)
W Signaling related error (26%)

Figure 3.13. Proportions of the possible outcomes of P2P connection attempts.

failed. This can happen if the server contacts a possible peer but the peer replies with a
reject message (offer rejected), or it does not reply in time (timed out with peer), or we
cannot see any proof in the trace that a peer was actually connected (timed out without
peer). Note that a peer rejects a connection if it has an ongoing connection attempt of its
own.

If the signaling phase succeeds, we have a pair of nodes ready to connect. The most
frequent error here is failing to open the channel, most likely due to incompatible NAT
types. After the channel is open, sending the test message is still not guaranteed to succeed
(transport error). Participant nodes may disconnect with an open connection (connection
lost). In some rare cases a timeout also occurred after successful signaling; that is, the
WebRTC call did not return in time.

Figure 3.14 shows some statistics over successful connections as a function of NAT
type. Here, we do not include signaling related errors. Note that NAT type discovery is an
independent process executed in parallel with the P2P connection test. Therefore, there
are some cases where the NAT type information is missing but the signaling process is

completed nevertheless.

3.5 Conclusions

In this chapter we argued that it is important to understand availability patterns of smart-

phones in order to assess the feasibility of P2P techniques. Our motivation was to enable

30 3.5. CONCLUSIONS

T T T T T T T T 100
N/A | : ° . @ o . . i
FB | ° o Y i 80
Q
4% SF B . .
= 60
< scp - @ o e o
- PRC | o ‘ ° .
g o 40
E RCF} : °) . . .
5
FCr . ® ©] 20
OA B . [} ° i
L L L L L L L L 0

OA FC RC PRC SC SF FB N/A
peer’s NAT type

Figure 3.14. Statistics over successful connection as a function of NAT type. The area of a disk is
proportional to its observed frequency, the color signifying the success rate. The examined NAT
types are: OA - Open Access, FC - Full Cone, RC - Restricted Cone, PRC - Port Restricted Cone,
SC - Symmetric Cone, SF - Symmetric UDP Firewall, FB - Firewall blocked, N/A-missing type

exploratory research into decentralized algorithms for edge systems. In order to be able
to model the availability patterns of devices, we implemented an Android app to col-
lect data. Our trace contains locally observable attributes such as battery status and net-
work availability, STUN measurements, as well as direct P2P connection data. With this
unique combination, we can combine these sources of data to be able to predict things like
P2P connection success, or to simulate distributed protocols over the overlay networks of
smartphones. Our trace spans over five years and contains over 40 million measurements.
We summarized lessons that we learned over the years of data collection and analysis.
We also made the anonymized version of our trace publicly available. Since our data is
available, it becomes possible for the community to explore applications that can tolerate
or even exploit these availability patterns.

Here, we proposed a time-inhomogeneous Markovian model based on the collected
data where the conditional probability distributions of session lengths are captured by a set
of the actual observations in the data that we resample when creating synthetic traces of
users to model churn. We validated this model in multiple ways (see figures 3.2 and 3.5),

and we found that the model captures observed availability as well as the behavior of

CHAPTER 3. SMARTPHONE TRACE 31

push-pull gossip broadcast.

We also proposed a real smartphone trace for simulating fully distributed protocols.
We highlighted the trace main properties, then we examined the free parameter for battery
related requirements. From these, we can have two significantly different scenarios. In
the worst case churn scenario, we can state the expectation for a participant smartphone
having at least a certain battery level. In a more user and phone friendly scenario, we
expect the device to be on a charger.

Lastly, we briefly discussed some measurements details on NAT types and real P2P

connections.

Contribution

The contributions of the author are processing and analyzing the collected data for trace
based simulations, the development of trace-based simulation techniques, the develop-
ment of a time-inhomogeneous Markovian model and the development of a data cleansing
method to correct failed NAT measurements. The author regards most of the presented
smartphone trace statistics as his own contribution with only some exceptions. The loca-
tions distribution map of users in Figure 3.1 was made by Vilmos Bilicki. And the NAT
type distribution by continent and providers in Figure 3.12 was made by Krisztidn Téglas.

The above-presented smartphone trace was collected by the STuNNER Android app that
was a joint development. The contribution of the author includes the implementation of
the latest release of STUNNER with its updated data collection methodology. The initial
development of real P2P connection attempts was carried out by Krisztidn Téglas. The
release management of STUNNER and the description of NAT measurement module were
both done by Zoltdn Richéard Janki. The interpretation of the anomalies in the measure-
ments; implementation of a preceding release; and an exploration of the related work was
done by Zoltdn Szabd. His work includes a summary of NAT studies presented in Table
3.1.

CHAPTER 4

Dimension Reduction Methods

Our research targets networked systems where each networked device stores only a small
amount of data (typically collected locally), while there are possibly millions of partici-
pating devices in the network. This model covers a wide range of applications including
smart metering [89], collaborative mobile platforms [85] and Internet of Things plat-
forms [106]. To implement machine learning algorithms in such a system model, we
opted for gossip learning algorithms [82]. There are, of course, many ways to perform
data mining over data originating from a fully distributed environment [94], so one has
to make a number of design choices. We opted for gossip learning [82] due to its natu-
ral emphasis on privacy and full decentralization, while being efficient enough for most
data mining tasks. Privacy is achieved in part by assuming that devices do not share
raw data either with each other or with any external party. In addition, theoretical no-
tions of privacy such as differential privacy can be incorporated into this framework as
well [28, 82, 96]. In-place data processing could also provide better scalability for cer-
tain tasks in the limit of extremely large systems compared to cloud-based solutions by
exploiting local resources and networks, as proposed e.g. by Cisco in its ongoing fog
computing initiative [16].

However, one key concern in the above scenario is communication complexity, which
is often proportional to the size of the raw data. Raw data might be very high dimen-

sional, such as images from a surveillance camera, or text documents containing private

34 4.1. RELATED WORKS

communications. It is essential to compress these data locally using a shared method.
Algorithms that compress raw data while preserving its information content are called di-
mension reduction methods [40]. Our goal in this study is to propose practical, distributed
dimension reduction algorithms for gossip learning that are efficient yet perform well in
given learning tasks.

We propose dimension reduction methods that are compatible with the gossip learning
framework. Our first algorithm is based on evolving random projections through a dis-
tributed selection process. The second method is a fully distributed implementation of the
singular value decomposition (SVD) algorithm. The third method is a hybrid algorithm

based on random projection selection and SVD. Our contributions are the following:

e We propose a method for dimension reduction based on selecting good random

projections using an algorithm compatible with the decentralized system model.

e We propose a gossip-based fully distributed robust SVD algorithm to approximate
the projection matrix of Principal Component Analysis (PCA).

e We propose a hybrid algorithm based on SVD and random projections that com-

bines the advantages of both pure algorithms.

e We perform an extensive empirical analysis of these algorithms using real smart-

phone traces over several learning tasks.

4.1 Related Works

Unlike our methods, most known methods for distributed dimension reduction are un-
suitable for gossip learning. Often it is assumed that there is an aggregator node that
processes and aggregates output from all the networked nodes [71]. It is also usually as-
sumed that all the nodes have sufficient data to produce meaningful partial results to be
aggregated. These assumptions violate both our system model (where there is very little
data at each node) and our objective of decentralization. Methods in this class include
several feature selection methods that have been implemented in the MapReduce frame-
work [59]. Landmark-based methods also have distributed variants [72]. Here, extremal
points are selected from the raw data that are used to encode a lower dimensional distance
preserving representation. Many methods seek to find an optimal linear mapping based
on spectral properties of the data such as Principal Component Analysis (PCA) [53].

CHAPTER 4. DIMENSION REDUCTION METHODS 35

Calculating SVD is a well-studied problem. One can define a raw data matrix A of
dimensions n X d where n in number of data and d is the number of the features. The
essence of the matrix A is computed by finding a low-rank decomposition A ~ XY7,
where matrices X and Y7 are of dimension n X k and k X d, respectively, and where k is
a free parameter. The X matrix is the compressed representation of A in a k-dimensional
feature space. Y can be interpreted as a projection matrix. SVD is a special low-rank
decomposition that exists for any fully defined matrix A with the attractive property that
the decomposition consists of orthogonal matrices. One approach is based on treating it
as an optimization problem (see Section 4.2) and using gradient search to solve it [37].
Guan et al. also follow this approach adapted for the non-negative case and propose an

efficient gradient algorithm [38].

In general, parallel versions of gradient search often assume the MapReduce frame-
work [19] or a similar, less constrained, but still centralized model [62]. In these ap-
proaches, partial gradients are calculated over batches of data in parallel, and these are
either applied to blocks of X and Y in the map phase or summed up in the reduce phase.
Zinkevich et al. propose a different approach in which SGD is applied on batches of data
and the resulting models are then combined [112]. Petroni et al. propose performance op-
timizations based on graph partitioning in a similar framework [86]. Gemulla et al. [35]
propose an efficient parallel technique in which blocks of X and Y are iteratively updated
while only blocks of Y are exchanged. In contrast to these approaches, we work with
fully distributed data: we do not wish to make X public and we do not rely on central
components or synchronization—a set of requirements ruling out the direct application of

earlier approaches.

Another possibility is using fully distributed iterative methods. GraphLab [68] sup-
ports iterative methods for various problems including SVD. In these approaches, the
communication graph in the network is defined by the non-zero elements of matrix A;
in other words, A is stored as edge-weights in the network. This is feasible only if A is
(very) sparse and well balanced; a constraint rarely met in practice. In addition, iterative
methods need access to AT as well, which violates our constraint that the rows of A are
not shared. Using the same edge-weight representation of A, one can implement another
optimization approach for matrix decomposition: an iterative optimization of subprob-
lems over overlapping local subnetworks [66]. The drawback of this approach is, again,

that the structure of A defines the communication network and access to AT is required.

36 4.2. BACKGROUND

The approach of Ling et al. [67] also needs global information: in each iteration step, a
global average needs to be calculated.

The first fully distributed algorithm for spectral analysis was given in [55] where data
is kept at the compute nodes and partial results are sent through the network. This algo-
rithm, however, does not compute the whole projection matrix and hence is insufficient
to provide dimension reduction. Similarly, the algorithm described in [57] computes the
low-rank approximation but not the decomposition. This drawback is also circumvented
in [48]. Our approach is based on a stochastic gradient algorithm similar to the online
algorithm presented in [39], which calculates Y under an additional non-negativity con-
straint with the help of a constant-sized buffer of samples. We, however, work in a differ-
ent, non-streaming setting: we are given a fixed decentralized database where we wish to
calculate X as well. Also, in order to preserve data privacy, only one row of A is processed

in each step and X is strictly decentralized, so no buffering can be implemented.

4.2 Background

Here, we summarize the necessary background on the dimension reduction. We will
mention the Random Projection, Principal Component Analysis and Singular Value De-
composition (SVD) methods. As a motivation to understanding SVD, we will also take a

brief look at the base concept of Low—Rank Decomposition.

4.2.1 Dimension Reduction

Dimension reduction is an important tool of data mining to overcome the problem of the
curse of dimensionality.

In machine learning we are given a set of training examples from an unknown distri-
bution. Here we assume that an example is of the form (x, y), where x is a d dimensional
real feature vector (x € R?) and y is the class of the example. In the classification task,
we look for a function f(x;w) : RY — C that categorizes any feature vector x into a finite
number of classes, where C is the set of classes and w is a parameter vector that we wish
to learn. The function f(x;w) is often called the model of the data. Parameter w is typi-
cally found through some local gradient method that optimizes a loss (or error) function,

which characterizes the accuracy of the model over a set of classified training examples.

CHAPTER 4. DIMENSION REDUCTION METHODS 37

If the number of features d is high, we might experience the curse of dimensionality,
which means that classification algorithms will perform poorly [14]. Formally, the di-
mension reduction methods are functions that transform the data into a lower dimensional
space R¥, where k < d.

Dimension reduction methods can be classified as feature selection and feature ex-
traction techniques. A good overview can be found in [40]. Feature selection algorithms
try to find a subset of the original features such that the size of this subset is small yet
it preserves most of the information. The basic idea is that these algorithms define an
evaluation function over subsets of features based on the accuracy of a machine learning
method over the given subset to characterize the performance of the selected features.
This function then guides a search algorithm. The idea is simple, but a naive implementa-
tion would be rather expensive, as the number of possible subsets is exponentially large.
Thus, the applied search algorithm is mostly a greedy heuristic. One such common heuris-
tic is forward feature selection (FFS). As the name of this method suggests, the method
starts with an empty set and iteratively adds the feature that results in the highest increase
in the accuracy of a given machine learning algorithm until the desired dimension & is
reached. A wide range of variants and optimizations of this method is known [40].

In feature extraction, the methods project the training examples into a lower dimen-
sional space. This generalizes selecting only a subset of features. Here we focus on linear
projection methods, as this is the focus of our study. In the case of linear projection, we
wish to find a matrix P € R® with k rows and d columns. Thus the projection of a train-
ing example x is a simple vector-matrix multiplication Px. Here we consider two feature
extraction methods, namely the Random Projection [12] and the Principal Component
Analysis (PCA) [53].

The simpler method is random projection, where the data is transformed by a random
matrix to a lower dimension. The Johnson-Lindenstrauss lemma gives a lower and upper
bound on the error of the projection, and the random projection technique exploits this
result [3, 12].

Principal Component Analysis (PCA) is a method to find those k directions in the d
dimensional space that span a subspace where the covariance of the data is maximized.
As a side effect, PCA optimally preserves the distances between data points. Now, let us
define matrix A = [ay, ..., a,]” € R™ that consists of the training examples (one example

in each column). The projection matrix here is given by the matrix of the eigenvectors

38 4.2. BACKGROUND

that correspond to the first k eigenvalues of the covariance matrix of the training examples
ATA.

In this chapter we will present a distributed algorithm for calculating the singular value
decomposition (SVD) of A to get the projection matrix of PCA. We first assume that the
database is such that all the dimensions (features) have zero mean. When using PCA,
one first computes the covariance matrix of the data ATA € R¥“, which is a symmetric,

positive semidefinite matrix. Diagonalizing the covariance matrix

ATA = PDPT “4.1)

gives the matrix P. The projection matrix of PCA is given by keeping the first k rows of
PT. Matrix P can be calculated using the SVD of A, where

A=UxVT, 4.2)

By substituting this into the covariance matrix, we get

ATA = wwzvHI(uzvh). 4.3)

Since U is orthonormalized, we have

ATA = vz2vT, 4.4)

Letting D = ¥> we have P = V..

As a final note, consider the fact that both random projection and PCA are independent
of the machine learning algorithm we wish to apply on the data, while feature selection
methods heavily depend on it and can thus be optimized for a given algorithm. At the
same time, feature selection represents only a very limited subset of projections, which

limits its ability to find an optimal dimension reduction.

4.2.2 Low-Rank and Singular Value Decomposition

The rank k£ matrix approximation problem is defined as follows. We are given a matrix

A € R™4_ We are looking for matrices X € R™* and Y € R®* such that the error function

Xiry jl)2 4.5)

n d
1 1
JX.Y) = SIA-XYT I = 5 D > (ay -
1

k
i=1 j=1 =

CHAPTER 4. DIMENSION REDUCTION METHODS 39

is minimized. We say that the matrix XY” that minimizes this function is an optimal rank
k approximation of A. Clearly, matrices X and ¥ —and hence XY”—have a rank of at
most k. Normally we select k such that k < min(n, d) in order to achieve a significant
compression of the data. As a result, matrices X and Y7 can be thought of as high level
features (such as topics of documents or semantic categories for words) that can be used
to represent the original raw data in a compact way.

Singular value decomposition (SVD) is closely related to the above matrix decompo-
sition problem. The SVD of a matrix A € R involves two orthogonal matrices U € R"™"
and V € R such that

A=UsV" = qup], (4.6)
i=1

where the columns of the matrices U = [ujuy---u,] and V = [viv,---v,] are the left
and right singular vectors, and ¥ € R™ is a diagonal matrix containing the singular
values 01,0%,...,0, > 0 of A (r = min(n, d)). The relationship between SVD and-low
rank decomposition is that U2, V] is an optimal rank-k approximation of A, where the
matrices U, € R™* and V, € R¥* are derived from U and V by keeping the first k
columns, and ¥; € RP* is derived from X by keeping the top left k X k rectangular area,
assuming without loss of generality that ooy > 0 > --- > o, [98]. In order to unify the

notation, we use an alternate definition of SVD as a matrix factorization A ~ X*Y*7 with

X" =UZy, Y =VZy, 4.7)

such that £, and Xy are diagonal and £,Xy = X;. In other words, although X* and Y~
are not uniquely defined, we require that they contain orthogonal columns that are scaled

versions of left and right singular vectors of A, respectively.

4.3 Algorithms

Here, we present three algorithms for fully distributed dimension reduction. The first
one is based on the idea of generating random projections, evaluating them by quickly
training a model using only a few updates, and selecting the projection that results in the
best preliminary model.

The second one is a fully distributed variant of SVD that keeps X and A strictly local.
As a special feature, our algorithm updates several versions of Y by sending them around

the network.

40 4.3. ALGORITHMS

The third is a hybrid algorithm that combines SVD and random projections. This way
we have a very quick convergence, inherited from the random projection method, and
high quality, inherited from SVD.

4.3.1 Random Projection Selection

Random projections are very cheap to generate, and a random matrix can be communi-
cated by sending just the corresponding random seed. Due to this, we have the possibility
of evaluating a lot of different random matrices and searching for the best one for the
problem at hand. Given a fixed machine learning problem (data and a learning algorithm),
our idea is to evaluate a random projection based on the accuracy of the outcome of the
learning algorithm, provided that the given random projection is used as the dimension
reduction algorithm.

To evaluate a random projection, a naive approach would be to fully train a model
based on the given random projection and then fully evaluate this model on a test set.
Instead of this, we train the model using gossip learning and before each update step we
evaluate it on the local training example (using it as a test example). We then use the
running average of these evaluations as a rough approximation of the true performance
of the model. Based on this evaluation method, we would like to find the best random
matrices that can be generated for the machine learning problem at hand.

The skeleton of our algorithm to be run on each node is shown in Algorithm 4.2. The
algorithm resembles the periodic gossip learning algorithm (Algorithm 2.1), but there is
an important difference. Instead of being periodic, the algorithm implements the random

walks in a “hot potato” style. We shall now describe the algorithm in more detail.

Local state and initialization

Each node is initialized when joining the network. This consists of setting up the local
variables and potentially starting a random walk of a new model to initiate gossip learning.

The local data includes the training example (x, y) and models under training. Since
we would like to find the best possible projection (that is, the one that results in the best
model) and we also wish to keep exploring new projections, every node needs to keep

track of two different models:

e The BesTMobEL: the best model known by the node

e The currReNTMoODEL: the model currently under evaluation (as in gossip learning)

CHAPTER 4. DIMENSION REDUCTION METHODS 41

Algorithm 4.2 Random projection selection at node i
1: procedure INITNODE
2 (x,y) « local training example
3 initModel(currentModel)
4 initModel(bestModel)
5: if selectedAtRandom(r) then
6
7
8
9

p < selectPeer()
send currentModel and bestModel to p
end if
: end procedure

10: procedure oNRECEIVEMODELS(m1,., m;,)

11: currentModel « m,

12: update(currentModel)

13: bestModel « getBetter(bestModel,m;,)
14: update(bestModel)

15: if currentModel.age > minAge then

16: bestModel « getBetter(bestModel,currentModel)
17: initModel(currentModel)

18: end if

19: p < selectPeer()
20: send currentModel and bestModel to p
21: end procedure

22: procedure UPDATE(m)

23: R « createSparseRandomMatrix(k, d, m.seed)
24: Xreqd < RX

25: y « predict(m.model, X,.;)

26: m.error < (1 — Y)m.error + Aly - J|

27: m.model < updateSGD(m.model, x,.4,y)

28: m.age «— m.age + 1

29: end procedure

30: procedure INITMODEL(712)

31: m.age < 0

32: m.error < (

33: m.seed «— getNextRandomSeed()
34: m.model < initSGD()

35: end procedure

Each model stores the random seed that is used to generate the random projection

that in turn is used to compress the local data x. In addition, the model stores the machine

42 4.3. ALGORITHMS

learning model itself, which is being trained via gossip learning. We also keep track of the
number of updates (age) and the accumulating error that is used to assess the performance
of the model, and hence the performance of the random projection.

Every node initially picks a random seed for a new projection matrix at random. Based
on the seed, the projection matrix R € R¥ is always generated in line 23 as follows: for
any index (i, j) let

+1 with probability 1/6
rii= V310 with probability 2/3 (4.8)
-1 with probability 1/6.

With this choice, the matrices are sparse but still satisfy the Johnson-Lindenstrauss lemma [3,
12]. Obviously, the same pseudo random generator should be used at each node so that
the same projection matrix is generated for the same seed.

Finally, with probability 7 the node initiates a random walk. The probability defines
the number of overall random walks in the network, which is 7n in expectation. This

defines, among other properties, the overall bandwidth utilization.

Updating the models

In the method called UPppATE, first dimension reduction is performed on the local example
that creates vector x,,; of length k. Next, before performing the model update step, we
update the running average of the prediction error using the local example. This is used to
approximate the prediction performance of the model (and thus the random projection).
The running average has a parameter A that determines the balance of old and new infor-
mation. If A is too large then only the most recent examples will count and the measure
will contain too much noise. If it is too low then the old examples will count too much,
and the improvement in time is not reflected sufficiently.

We then perform the model update according to gossip learning; that is, we apply a
stochastic gradient descent (SGD) update step using the local data. The implementation
of the SGD update depends on the learning algorithm of choice. In our experimental

evaluation, we will use logistic regression as our learning algorithm.

Processing received models

Models arrive in pairs. Model m;, is the sending node’s approximation of the best model.

This model participates in a gossip-based minimum search; that is, we compare it with

CHAPTER 4. DIMENSION REDUCTION METHODS 43

the local approximation of the best model and keep the better one of the two. The method
called GeTBETTER selects the model with the smaller error, or with the higher age in case
at least one of the models is younger than MINAGE steps. Model m, participates only in
the gossip learning algorithm. When it reaches the age (number of updates) of MINAGE
(a parameter), it becomes eligible for competing for the title of best model in the net-
work. Since cURRENTMODEL is now participating in the global minimum search, we start
a new model to test. This is our exploration strategy: new random projections are tested
continuously while the mature ones contribute to the global minimum search.

Before reaching the age of MINAGE the error approximation of a model is considered
to be too unreliable. That is, the value of parameter MINAGE will determine the number
of updates needed to get the first reliable error approximation. Note that our goal is to
have an error approximation that is suitable for ordering different candidates as opposed
to approximating the exact error. This means that after MINAGE updates the error might be
quite different from the exact error, so MINAGE could in principle be rather small. We will

take a closer look at this issue in Section 4.4.

4.3.2 Singular Value Decomposition

Our SVD algorithm also has its roots in the GoLF framework [82]. Algorithm 4.3 con-
tains a version of the GoLF algorithm adapted to our problem. Each node i has its own
approximation of the full matrix ¥* and an approximation x; of row i of X*. Thus, the
nodes collectively store one version of the matrix X (the approximation of X*) distributed
just like matrix A with each node storing one row. Note that at every point in time, every
node has its local approximation of the full matrix Y* that may differ across the nodes.
As we will see, these approximations interact through the single approximation of X* and
should converge to the same matrix Y*. The output of the algorithm at any point in time is
readily available as the local approximation at each node, so there is no need to explicitly
combine the different approximations centrally.

All local approximate versions of Y* perform a random walk in the network and get
updated by the local data (a row of A and X) when visiting a node. First, each node i in
the network initializes Y and x; uniformly at random from the interval [0, 1]. The nodes
then periodically send all the approximations of Y they received in the previous round to
a randomly selected peer from the network. To select a random peer, we rely on a peer

sampling service, as mentioned in Section 4.2. When receiving an approximation Y (see

44

4.3. ALGORITHMS

Algorithm 4.3 P2P low-rank factorization at node i

1: a;
2: initialize Y
3: receivedY.add(Y)
4: initialize x;
5: quiet « 0
6: loop
7: wait(A)
8: if receivedY.isEmpty() then
9: quiet < quiet+1
10: if quiet > A, then
11: p « selectPeer()
12: send Y to p
13: end if
14: else
15: quiet < 0
16: repeat
17: Y « receivedY.remove()
18: p < selectPeer()
19: send Y to p
20: until receivedY.isEmpty()
21: end if
22: end loop

23: procedure oNRECEIVEY (Y)
24: (Y, x;) « update(f’, Xi, d;)
25: receivedY.add(Y)

26: end procedure

> row i of A
> initialize receivedY

>r1ow i of X
> rounds without receiving models

> send all the received models

procedure oNRECEIVEY) the node updates both Y and x; using a stochastic gradient rule

and it subsequently stores this approximation in a list to be forwarded in the next round.

The algorithm involves periodic message sending from every node with a period of

A. Later on, when we refer to one iferation or round of the algorithm, we simply mean

a time interval of length A. Note that we do not require any synchronization of rounds

over the network. Messages are sent independently. To avoid the termination of random

walks due to failures, the algorithm includes a restarting mechanism based on the length

of time during which no models are received. The timeout for this restart is A, - A. Unless

otherwise stated, we use A, = 10. Note that if peer sampling is uniform, the distribution

of the number of received models in a round is Poisson(1), which means that not receiving

models for 10 rounds has a probability of e7! ~ 4.5 - 107.

CHAPTER 4. DIMENSION REDUCTION METHODS 45

Algorithm 4.4 rank-k update at node i

I:n > learning rate
2: procedure upDATE(Y, X;, a;)

3 err «— a; — x; Y7

4 X, —xj+n-err-Y

5: Y «Y+n-er! -x

6 return (Y’, x7)

7: end procedure

Algorithm 4.3 requires an implementation of the procedure uppaTE that computes the
new approximations of Y* and x;. We will now elaborate on two different versions that

implement different stochastic gradient update rules.

Update Rules for General Rank-k Factorization

Let us first consider the error function given in Equation (4.5) and derive an update rule to
optimize this error function. The gradients of J(X, Y) by X and Y based on Equation (4.5)
are

ViJ(X,Y)= XY —A)Y, VyJXY)=XX" -ADHX. 4.9)
Since only x; is available at node i, the gradient is calculated only w.r.t. x; instead of X.
Accordingly, the stochastic gradient update rule with a learning rate n can be derived by
substituting x; in the way shown in Algorithm 4.4. Although function J is not convex,
it has been shown that all the local optima of J are also global [98]. Thus, for a small
enough 7, any stable fix point of the dynamical system implemented by Algorithm 4.3

with the update rule in Algorithm 4.4 is guaranteed to be a global optimum.

Update Rule for Rank-k SVD

Apart from minimizing the error function given in Equation (4.5), let us now also set the
additional goal that the algorithm converges to the SVD in the form of X* and Y*, as de-
fined by Equation (4.7). This is indeed a harder problem: while (X*, Y*) minimizes (4.5),
any other pair of matrices (X*R™!, Y*R”) will also minimize for any invertible matrix
R € R and Algorithm 4.4 is free to converge to any of them.

From now on, we will assume that the non-zero singular values of A are all unique,
and that the rank of A is at least k; that is, oy > --- > o > 0. This makes the discussion

simpler, but these assumptions can be relaxed, and the algorithm is applicable even if

46 4.3. ALGORITHMS

Algorithm 4.5 rank-k SVD update at node i

I:n > learning rate
2: procedure uprDATE(Y, X;, a;)

3: a < a;

4: for { =1to kdo > y¢ : column € of Y
5: err<—al’.—x,-g-y?

6: xl’,£,<—x,-g+7]-err-yg

7: y2,<—y5+77-errT~x,-g

8: al’.:al’.—x,-g-yg

9: end for

10: return (Y’, x7)

11: end procedure

these assumptions do not hold.

Our key observation is that any optimal rank-1 approximation X; Y| of A is such that
X, € R™ contains the (unnormalized) left singular vector of A that belongs to o, the
largest singular value of A. Similarly, ¥; contains the corresponding right singular vector.
This is because for any optimal rank-k approximation XY, there is an invertible matrix
R € RP* such that X = X*R and Y7 = R'Y*T[98]. For k = 1 this proves our observation

because, as defined in Section 4.2, X* ~ u; and Y* ~ v,. Furthermore, for k = 1,

X Y'=xv" = ojup?, (4.10)

which means that (using Equation (4.6)) we have

A=XiY] =Y o], (4.11)
i=2

Thus, a rank-1 approximation of the matrix A — X; Y] will reveal the direction of the sin-
gular vectors corresponding to the second largest singular value o,. A simple approach
based on these observations is to first compute X; Y|, a rank-1 approximation of A. Subse-
quently, we compute a rank-1 approximation X,Y, of A—X,Y[. The rank-2 approximation
of A containing the first two left and right singular vectors is obtained as [X;, X,][Y;, Y»]"
according to the above observations. We then repeat this procedure k times to get the
desired decomposition X* and Y* by filling in one column at a time sequentially in both
matrices.

A more efficient and robust approach is to let all rank-1 approximations in this se-

CHAPTER 4. DIMENSION REDUCTION METHODS 47

quential naive approach evolve at the same time. Intuitively, when there is a reasonable
estimate of the singular vector corresponding to the largest singular value, the next vector
can already start progressing in the right direction, and so on. This idea is implemented
in Algorithm 4.5.

4.3.3 Communication complexity

As for the size of a single message in the Random Projection protocol, the nodes send
two models in a message that contains only the seed of the random projection matrix, and
the model parameters, which—as we will see—have a size of O(k) in the case of linear
learning algorithms. To be more precise, assuming an 8 byte representation of both the
floating point and integer parameters, we have a message size of 2 - (8 - k + 3 - 8). This
leads to a very small, by today’s standards practically negligible, message size since k is
typically small. In contrast to this, in the SVD protocol the whole projection matrix of
size O(k - d) needs to be sent in each message [47]. This can be very large since d is
potentially in the order of millions.

In both protocols the overall communication complexity can be controlled by the num-
ber of random walks 7z in the network that determines the overall bandwidth consump-
tion. Thus, given any bandwidth quota, these protocols can be executed within that quota
by setting the number of random walks. Note that, due to the extremely different message
sizes, this means that with the same bandwidth quota, the two algorithms will have a very

different iteration speed.

4.3.4 A Hybrid Algorithm

The motivation is that the SVD algorithm requires a messages size of O(k - d) that can be
very large for a large d. Thus, with a fixed bandwidth, the SVD algorithm converges much
slower than random projection selection. At the same time, the SVD algorithm provides a
very high quality projection that is expected to outperform random projections. Our goal
is to combine the advantages of the two algorithms; that is, with a fixed bandwidth we
would like to get a good projection at any point in time that eventually arrives at the SVD
output.

Now, let R, be the best random projection at time ¢ and P, be the projection calculated
by the SVD algorithm at the same time. Another detail of the SVD algorithm is that the

48 4.4. EXPERIMENTAL RESULTS

rows of the projection matrix converge in a sequential order, and in the converged state the
rows are pairwise orthogonal. Our basic idea is that we run the two algorithms in parallel
and define a projection PI(R,, P,) that will use the converged rows from P, and it fills in
the rest of the rows from R,.

Hence, all we need is a method to determine the row index up to which P, is considered

to have converged. We first introduce a measure of orthogonality o; for a given row p :

1 pl - pt
0 = , (4.12)
k-1 ;‘ I/ P

which is the average cosine distance of p! from the rest of the rows. We include in P,
the first i rows of P; where i is such that o; < MINORT but 0,,; > MINORT (or i = k). Here,
MINORT is a threshold parameter that defines how aggressively we include SVD vectors.
A value close to zero is conservative, while a smaller value is more aggressive.

Although we propose to run the two algorithms in parallel, we do not assign the same
bandwidth quota to each. Instead, we allow the SVD algorithm to consume almost all the

bandwidth quota, and assign only 1% of it to random projection selection.

4.4 Experimental Results

4.4.1 Experimental Setup

Here, our goal is to demonstrate that the proposed methods can be applied over real-world
datasets under realistic network conditions. The key parameter in dimension reduction is
k; that is, the reduced dimensionality. Our motivation is to demonstrate empirically how
our distributed algorithms perform with different values of k, so here k is our main free

parameter.

Trace Properties

We simulate node churn based on a real trace of smartphone user behavior. We also ensure
that we use the phone only when it is connected to a charger, so as to save the battery.
The trace we used was collected by a locally developed openly available smartphone app

called STUNner, as described previously in Section 3.3. We divided these traces into

CHAPTER 4.

DIMENSION REDUCTION METHODS

Table 4.1. The key properties of the data sets

MNIST | Farm ads | HAR
Training set size 60 000 3314 | 7352
Test set size 10 000 829 2947
Number of features 784 54 877 561
Original number of classes 10 2 6
Positive examples 10% 53% 17%

2-day segments (with a one-day overlap), resulting in 40,658 segments altogether. With
the help of these segments, we were able to simulate a virtual 2-day period by assigning
a different segment to each simulated node. When we needed more users than segments

(e.g. 60,000 user), we re-sampled the segments to artificially inflate the number of users.

Data sets

In our experiments we used data sets taken from various machine-learning domains with
different properties. Our first data set, called MNIST [64], contains gray level images of
size 28%28 of handwritten digits (from O to 9).

The remaining two data sets are part of the UCI machine-learning repository [32].
The second data set we chose was the Farm ads data set. This is a text classification data
set that has a large number of features. These features include those extracted by the well-
known bag-of-words technique from websites as well as higher level features. The task is
to decide whether the owner of a Web content approves an ad or not.

Finally, we used the Human Activity Recognition (HAR) data set as well. Here the
features were preprocessed by the owner of the data. The goal is to discriminate different
activities based on the data of smart phone sensors (e.g., accelerometer and gyroscope).

In our experiments, we performed binary classification. For this reason, we had to
transform the MNIST and HAR data sets to binary classification problems. To achieve
this, we selected the classes “number 77 and “walking” as positive classes from the
MNIST and HAR data sets, respectively, and the examples in the remaining classes were
treated as negative examples. The key properties of these three data sets are summarized
in Table 4.1.

50 4.4. EXPERIMENTAL RESULTS

Table 4.2. Parameter settings

Alg. MNIST | Farm ads | HAR
RPSVD | MINORT 0.5 0.5 0.5
RP A 0.05 0.05 0.05
MINAGE 200 200 200

message size (Mbit, k = 1) | 0.0003 | 0.0003 | 0.0003
message size (Mbit, k = 64) | 0.0084 | 0.0084 | 0.0084
SVD a 10~ 1072 1072
message size (Mbit, k = 1) 0.05 3.51 0.03
message size (Mbit, k = 64) 3.21 224.77 2.29

Log. Reg. | « 1072 1072 1072

Algorithm parameters

The algorithm parameters are summarized in Table 4.2.
From now on, RPSVD will denote the hybrid algorithm and RP will denote random
projection selection. Logistic regression is used inside RP as the gossip learning compo-

nent. In logistic regression, the model is given by

1
xw,b) = ———. 4.13
flew.b) = ——os (4.13)
The corresponding stochastic gradient update rule is given by
w1 =ya)w —y(y = f(x;w, b)x, (4.14)

b—b-aly—- f(x;w,b)),

where y € {0, 1}, and y < 1/(1 + at). Based on preliminary experiments we set @ = 0.01.
The communication cost of each protocol was limited so that a node consumes 1 Mbit/s

on average. This was achieved by limiting bandwidth in the simulation. In the case of
RPSVD we set 7 = 0.01 in the RP component and everywhere else we set 7 = 1.

Recall that we use only those nodes that are on a charger, and that we include only
those nodes that have a larger bandwidth than 1 Mbit/s. As a result, a node typically

experiences much less load when averaged over the simulation period unless it is on a

CHAPTER 4. DIMENSION REDUCTION METHODS 51

Effect of k on Farm database Effect of k on MNIST database Effect of k on UCI-HAR database
0.9 0.97 0.98

0.85 0.96 ’ 0.96
08 095 094

0.75 > 0.94
[3 1) r

0.7 % 0.93 \ 5 N)

.y = o 086 o e SvD —e—
o] o o
0.55 0.9 0824 offline g I

Accuracy

0.5 0.89 0.8
1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

k k k

Figure 4.1. Accuracy after two days of simulated time as a function of k.

charger as well as online all the time. That is, based on the real trace we use, this is a
practical setting.

Apart from bandwidth, message latency also limits the speed of the random walks.
When the message size is very small (as in the case of RP), this can be the main limiting
factor, so the RP algorithms will use much less bandwidth than allowed. We simulated
a 100 ms latency. This means that in RP algorithms it takes as little as 20 seconds to
evaluate a random projection candidate (assuming MINAGE=200), as the computation time
is practically negligible.

The peer sampling service is assumed to be based on a static network, in which every
node has 50 random neighbors from the whole population. This is a realistic setup on the
real Internet, since in the case of stable connections one needs to perform NAT traversal
only once, potentially with the assistance of a server in the connection phase [91]. Note

that most neighbors are offline at any point in time (see Figure 3.6).

4.4.2 Discussion

Figure 4.1 shows the prediction accuracy of our three distributed algorithms at the end of

the simulated two days. Accuracy is the fraction of correctly classified instances:

Accuracy = % >80 = flw), (4.15)
i=1

where 7 is the number of test examples. To evaluate our distributed protocols, we chose
a uniform random online node from the network and calculated its current dimension re-
duction offline. This was done by taking the dimension reduction matrix, transforming

the training set and then training using R (the optim gradient solver), and calculating the

52 4.4. EXPERIMENTAL RESULTS

Results on Farm database Results on MNIST database Results on HAR database
085 1 1 :
0o offline SVD
y VD —
08 0.8 SvbRp —
0.96 offline RP ———
07 096 094 Rp =——
a
L ogg 094 092
5 09
g X
£ 065 A 092 o
8 .
< 09 P Ap —\f 1
06 L~ W 0.86 V
0388 0.84
055
05 038
085 1 1
0.8 0.98 0.98
0.96
075 096 094
*
1., | I 094 092
§ ! 09
5 065 092
g 0.88
<
0.6 09 0.86
0388 0.84
03 0.82
— VY 086 -
05 038
085 1 1
0.8 0.98 0.98

8)

0.88

0.96
075 096 n 094
A
07 0.94 v 0.92
0.9
0.92
065 n

Accuracy (k

0.6 0.86

0.88 0.84
0.55

0.82

0.5
0.85

0.8

0.98
0.8

’ 0.96
075 096 094
07 094 092
092 09
0.65 / 4 ‘ 0.88
0.6 09 | 0.86
0388 0.84
055 082
_“ n 086 -
05

0.8
0.85 1 1

Accuracy (k=16)

08 098 098

0.96
A\) 0.94

07 m . 0.92
#—' 0.92 0.9

0.65 0.88

0.75

0.6 09 0.86

0.88 0.84
0.55

0.86 0.82

0.5 0.8
0.85 1 1

0.98
0.96
0.94
0.92

0.9
0.88
0.86
0.84
0.82

=64)

Accuracy (k

]
<13
/|
i =

5 08
003125 0.15625 078125 390625 19.5312 003125 015625 078125 390625 19.5312 003125 0.15625 078125 390625 195312
time (hours) time (hours) time (hours)

Figure 4.2. Experimental results showing the prediction accuracy as it evolves in time (time is on
a logarithmic scale).

CHAPTER 4. DIMENSION REDUCTION METHODS 53

accuracy on the test set. We opted for this methodology because it was not computation-
ally feasible for us to report statistics at every measurement point. However, variance
is illustrated by the smoothness of the curves. The algorithms are compared to offline
(centralized) variants. The offline SVD was calculated using R (the svp function) and the
offline RP is the best of 10,000 random projections, where the evaluation during the se-
lection process is identical to that of the distributed version. We also include the accuracy
based on training a logistic regression model that uses all the features.

We may conclude that the distributed algorithms approximate the offline variants very
well at the end of the second day. As we increase k, we can approximate the performance
of the full feature set, except in the highest dimensional data set. It is also clear that the
SVD-based dimension reduction method outperforms random projections for larger k-s.
Clearly, the hybrid method, by design, is identical to the SVD algorithm in its converged
State.

Figure 4.2 shows our results as a function of time. Now, we plot the accuracy of
the distributed methods for each minute, following the same evaluation methodology as
before.

It is clear that, for SVD, the most important parameter is d, the original number of
features. In the Farm Ads data set we have the largest number of features and thus SVD
converges rather late (note the logarithmic scale of the plots). This is because the mes-
sage size (hence the number of iterations) depends on d. However, RP converges almost
instantly, independently of d. This is not surprising as the communication complexity of
RP is independent of d and the message size is very small, allowing for a large number of
iterations in a very short time. However, the best performance of RP remains below that
of SVD, especially for larger values of k.

The hybrid approach SVDRP combines the advantages of the two methods, and pro-
vides a good dimension reduction transformation at all timescales, at the same cost as any
of the individual algorithms. The significance of this finding is that SVDRP is a method
that is more robust than either SVD or RP alone and it can be applied with minimal
knowledge to the problem at hand without parameter tuning for a certain wall-clock-time
budget. The only exceptions are the smallest values of k, where RP is better on its own.

However, in practice, one rarely uses such an extreme dimension reduction.

54 4.5. CONCLUSIONS

4.5 Conclusions

In this study we presented a fully distributed algorithm for selecting a good random pro-
jection and a gossip-based fully distributed robust SVD algorithm that can be used to
reduce the dimensionality of a machine learning problem. We also proposed a hybrid ap-
proach which combines random projection selection with a fully distributed SVD solver.
We evaluated these algorithms over a real smartphone trace over three machine-learning
data sets. The simulations assumed that we use only phones that are on a charger and that
have a bandwidth of at least 1 Mbit/s, hence we took into account the energy problem in
mobile computing.

We conclude that the proposed random projection selection algorithm is very fast
and efficient, but the quality of the dimension reduction is somewhat lower than that
of SVD. However, the SVD algorithm converges in a time proportional to the original
dimensionality of the problem, which can be quite slow. Our hybrid approach combines
the best aspects of the two approaches and (assuming the same communication cost) it
can provide a good quality dimension reduction, independently of the time available for

convergence.

Contribution

In this chapter, the contributions of the author were the development of an algorithm that
builds on searching for good random projections; the development of a hybrid method
that combines the advantages of random projections and SVD; and the evaluation of the
distributed SVD on dimension reduction in a comparative study. The core idea of the
distributed low rank matrix decomposition and the distributed SVD was developed by
Istvan Hegedds [43].

CHAPTER 5

Management of Random Walks

In large decentralized systems, random walks have found many applications. One exam-
ple, gossip learning [82], is a decentralized approach to machine learning that is based on
stochastic gradient descent (SGD) search. Here, the model that is being fit on the data
performs a uniform random walk over the network and it is updated before each step us-
ing the local data. Recently, the same idea has been applied to matrix factorization and
this is useful, for instance, in implementing a decentralized recommender system [43]. It
should be mentioned here that—although our motivation is gossip learning for distributed
environments—the random walk management middleware services are potentially useful
in a more general context as well as random walks have been applied to many different
functions other than machine learning. In early peer-to-peer systems they were proposed
to implement a search [69], and since then random walk techniques have been applied to
various functions that include a membership service [8, 74, 91], sampling [60], and com-
puting various queries including community detection in large networks [87] and network
size [74].

Despite the large number of applications, we are not aware of related work where
random walks are treated as a general abstraction that is implemented in a robust manner.

Such an abstraction should provide the illusion of a reliable single random walk while

56

in the background it should manage the walk by possibly restarting or replicating it to
cope with node and communication failures. Self-stabilizing leader election algorithms
are perhaps the closest in that they provide the abstraction of a single entity despite faults
and dynamism in arbitrary networks (see, for instance, [27]). However, our problem, our

system model and our priorities will be quite different.

A reliable random walk abstraction is very useful, especially when only a small num-
ber of important random walks need to be run carrying valuable states. If we also take
into account techniques for privacy preservation, such as differential privacy [31] that we
applied to our random walk based machine learning framework [46], this requirement be-
comes crucial, since with differential privacy every data item can be visited only a limited

number of times so losing a walk can cause irrecoverable damage.

Our other long-term research goal is to allow gossip learning to be deployed in a multi-
user decentralized environment where users or software agents can launch learning tasks
over the collection of the local data of the participants of the network. We are interested
in multi-user environments as our goal is to create a fully open collaborative environment
where those who provide data can also enjoy the benefits of mining the collective data of
the community. The notion of decentralization is also important, as has been recognized
by other researchers as well. One reason is that distributed computing allows better scal-
ability compared to cloud-based solutions by exploiting local resources and networks, as
proposed e.g. by Cisco in its ongoing fog computing initiative [16]. Another reason is the
increasing need for privacy as the personal data collected and stored by ubiquitous per-
sonal computing devices such as smart meters, sensors and mobile devices is becoming

richer and richer [24].

The requirement of differential privacy that every data item can be visited only a lim-
ited number of times can be satisfied by maintaining a very limited number of random
walks. Hence, our contribution for this goal is the Single Random Walk Service, which
was presented in Section 5.1. In contrast, an entirely different aspect is when we have to
deal with O(n) random walks to realize a multi-user decentralized environment. Hence,
we introduce the Multiple Random Walk Service in Section 5.2 to tackle this other prob-

lem.

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 57

5.1 The Single Random Walk Service

Our contribution is an approach to implement a reliable random walk abstraction. We
identify three requirements for this abstraction. First, the implemented random walk has
to be agile; that is, it should progress as quickly as possible. Second, the implementation
should be efficient, so it should induce only a minimal extra cost to achieve robustness. For
example, maintaining several replicated walks is not acceptable; ideally, the cost should
be very close to that of running a single walk in a reliable system. Third, the random walk
should be long-lived; that is, it should perform as many steps as possible without resetting

its state.

Our solution relies on maintaining a very small shared state through gossip that de-
scribes the progress of the random walk. Based on this shared state, each node decides
independently whether to restart the random walk. Nodes that store a more recent state
restart the walk with a higher probability. The approach is fully decentralized and only
incurs a relatively small overhead if the random walk has a large state. Motivated by the
fact that our machine-learning applications are intended for networks of smart devices,
we demonstrate the main properties of our solution using a real smartphone trace that we

collected.

Our present study is based on gossip learning in the sense that we focus on SGD
algorithms that are implemented through a random walk of the evolving model over the
network. We will assume that this random walk itself is secure. Ideas for achieving secure
random walks were recently outlined in [13] and elsewhere. Here, we focus on privacy. In
order to achieve privacy, we will apply a differentially private variant of the local update

step, as explained below.

The network nodes hold one training example (x, y) and they calculate the local gra-
dient for a given model w and time ¢ locally, and they also add the appropriate noise term
N, to achieve differential privacy based on Equation (5.3). They are free to publish the
resulting w,,; and to send it to the next node. Here, the parameter € of differential privacy

is a globally known constant.

58 5.1. THE SINGLE RANDOM WALK SERVICE

5.1.1 Background on Differentially Private SGD

Differential privacy [28] is concerned with the leakage of personal information due to
publication of the results of a given query over a database. Even if performed securely,
the result of a query can leak information about individual records. For instance, the max-
imum of a set of values is an individual record in itself. Differential privacy is achieved if

noise is added to the query result in such a way that the following definition is satisfied.

Definition 1 (Differential Privacy). A randomized query F : D +— R? is e-differentially

private iff
v_x : e_E S w S eE
P(F(D') = x)

for all pairs of databases D and D’ that differ in at most one record, where D is the set of

5.1

possible databases.

That is, if we change one element in the database, the same output should be expected
with a probability close to that over the original database. This way, one record never
“matters too much”, thereby limiting the information leakage as a result of the query.

A randomized query typically means adding noise to an otherwise deterministic query.
This added noise is designed specifically for a given query and parameter € such that the
definition of e—differential privacy is satisfied. In more detail, to generate the additive
noise we need to pick a noise distribution and the right distribution parameters. A com-

mon approach to take is to first determine the so-called sensitivity of the query [28, 30]:

Definition 2 (Global Sensitivity). The global L!-sensitivity Zx of F is given by

Zp = max IF(D) = F(D)I1, (5.2)

p,» differ in one record
where || - ||, is the L' norm.

The definition can be generalized by replacing the L' norm with a different norm.
However, the usual norm to apply is the L' norm. In this case, the following noise distri-
bution can be used: we need to add to all the dimensions of the output independent noise
drawn from Laplace(0,Z/€) (where Z is the global sensitivity of the query), which will
result in e—differential privacy. Based on the theoretical results described in [30], noise

can be generated for any other norms.

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 59

Now, for one SGD update (as defined in Equation (2.3)) the private query we need to
compute is the gradient V,,¢(f,,(x;), y;). If we can guarantee that this gradient is bounded,
the bound defines sensitivity directly. Having determined the sensitivity, we can then add

the appropriate noise N, to the gradient and perform the differentially private local update
Wirr = wy — ni(Aw; + Vo (f (), yi) + No). (5.3)

We are then free to publish w,,; and send it to the next node.

To run SGD, we require multiple queries because we need the gradients based on many
learning examples multiple times. Having seen how one can protect a single update, let us
mention two useful concepts from differential privacy; namely the sequential and parallel
composition of queries [77].

In a sequential composition we are given a series of queries F;, i = 1,...,k. It can be
proven that if all of these queries are e-differentially private, then the entire sequence of
these k queries will be k - e-differentially private. Note that the queries can depend on the
results of the previous queries.

However, in the special case where the k queries are executed over pairwise disjoint
subsets D;, i = 1,...,k—a case we call parallel composition—the entire sequence of
queries will remain e-differentially private. Most importantly, in the case of SGD we have
parallel composition, since updates are typically performed on a disjoint subset—in our
case on a single record. Naturally the same record can be visited many times, and these
updates will compose sequentially.

In general, we can think of each example as having a privacy budget of €, which is
spent when the given example is visited but which is not affected otherwise. This way,
when each example has spent its privacy budget of e, the entire SGD algorithm over the

entire database will spend only € due to parallel composition.

5.1.2 Privacy Budget

The € parameter is often called the privacy budget because, owing to the different com-
positional properties of series of queries, one can, say, decide to run one query with pa-
rameter € or two sequentially composing queries with parameter €/2, or several parallel

queries with parameter €. All of these options result in an overall e-differential privacy.

60 5.1. THE SINGLE RANDOM WALK SERVICE

Now, let us elaborate on the management of the privacy budget for SGD.

As mentioned in Section 5.1.1, every training example (i.e., every node) in effect has
its own € budget for the updates. This budget can be used in a number of different ways.
One can, for instance, set a finite number of k allowed updates and use €/k for each one.
This means multiplying the magnitude of the noise term by k for each update. We can
also follow a different approach and divide € into an infinite number of parts by using €/2’
for update ¢. This way, the noise increases exponentially, but we can execute as many
updates as we wish using the same example. Note, however, that SGD will not converge
in this case due to the exponentially increasing noise, so this approach is practical only
for a small finite number of rounds.

The above implies a deeper result: it is not possible to run SGD until we get con-
vergence with differential privacy because we either compute just a finite number of up-
dates (and SGD needs an unlimited number of updates for theoretical convergence) or
the signal-to-noise ratio will tend to zero in the update rule, which also prevents conver-
gence. So the best we can achieve in theory is an approximation based on a relatively
small number of updates per sample. For a large number of samples, however, this may
be sufficient.

Let us point out a major difference between our differentially private SGD implemen-
tation and gossip learning. In our SGD implementation there is only one random walk
in the entire network, while in gossip learning there are many parallel walks. However,
if there are many walks in parallel, they all “burn” the privacy budget so each walk will
be assigned a smaller number of updates that is inversely proportional to the number of
walks. It is therefore essential to run only one walk. However, the state of the walk is
public, so it is possible to continuously broadcast the latest model w, in the network if
required. The broadcast can be implemented in a distributed way (e.g. via gossip), or
by publishing the latest update on a server. With public key cryptography the broadcast
can be implemented securely as well. As mentioned before, it is non-trivial to run only a
single random walk robustly in an unreliable system. Here, we present a service to realize
this problem.

As a last point connected to using the budget, let us consider the exact method of
peer sampling used by our random walk. If we use uniform sampling with replacement,
then the walk will take needless steps when it visits a training example that has no more

budget left. To be precise, the probability that a node is not visited at all during the first

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 61

n updates in a network of size n is exp(—1) according to the Poisson distribution, which
is quite a large probability. Depending on the budget management option, this results in
wasted bandwidth and time. This shows that the ideal random walk should use sampling
without replacement; that is, it should follow a permutation of the network, and when all
nodes have been visited, it should start a new permutation until the privacy budget has

been spent. This, however, is hard to realize in a decentralized manner.

Notes on Privacy and Security

It should be stressed here that any uncorrupted node is protected by this scheme regardless
of fabricated input or the security of the random walk in general. In other words, even if
the random walk is compromised and a given uncorrupted node gets arbitrary input and
gets queried an arbitrary number of times, the node will be protected by e-differential
privacy.

Now, we focus on privacy only. Based on the comment above, this is indeed an inde-
pendent problem as we can guarantee the privacy of uncompromised nodes regardless of
the security of any other components of the implementation. Nevertheless, security is still
vital in a complete system as without it the global output can be corrupted and vandalized.
In particular, the random walk needs to be secure to maintain an unbiased sampling of the
learning examples. Also, an adequate protection is required against vandalism, when ad-
versaries or faulty nodes inject arbitrary information into the system. Again, however, the
privacy of local data is completely in the hands of the local node, and it is independent of

the outside world.

5.1.3 Algorithm

Let us now turn our attention to the implementation of the single random walk service. A
random walk can be viewed as a mobile agent that has a state and that jumps from node to
node based on local decisions at each node. The state of the walk is application dependent;
for example, it can represent a machine learning model that is updated at each node based
on local information. As we mentioned before, our goal here is to propose a protocol that
robustly maintains a single random walk in the system, since any extra random walks will
waste the privacy budgets of the nodes without contributing to the final model. In this

chapter the statistical properties of the random walk are irrelevant. The selection of the

62 5.1. THE SINGLE RANDOM WALK SERVICE

next peer at each node is performed by the method seLEcTPEER, which we treat as a black
box here. By default, one can for example assume a uniform random walk.

Owing to our agility requirement, the walk is performed in a “hot potato” style, that
is, the walk moves on as soon as the local state update is performed. We should mention
here that the state of the walk can be very large, possibly in the order of megabytes or
more.

Let us now describe the protocol that maintains a single random walk. At any point
in time, ideally there is only a single walk in the network, but—as we will see—there can
be more than one walk in practice due to restarted walks based on false alarms. We will
manage these walks by broadcasting a small global state about the progress of the best

walk.

Broadcasting Global Updates

Every time a walk completes a new step an update is broadcast about this event. This
update contains the step count of the walk in question, as well as a unique id. Thus, the
update is extremely small as it contains only two integer values.

The update is broadcast via a standard push-pull gossip algorithm (see Algorithm 5.6)
that runs continuously with a period of A.

Every node stores only a single update locally in a variable called Rwprops. This vari-
able represents the local approximation of the step count of the leader random walk in the
system. When a new update is received through gossip (procedure oNRECEIVERWPRroPS)
it has to be decided whether the new update should replace the locally stored one. In-
tuitively, we should replace the local update if the new update represents fresher, more
up-to-date information about the best live random walk than the local RwpROPS.

In order to decide whether the update represents a live random walk, we use a timeout
mechanism that is based on the age of the update. Clearly, live random walks generate
events every time they make a new step. We can measure the age of these events, without
global synchronization, if we accumulate the time intervals that an update spent on the
nodes it visited and the total transfer time the update spent traveling over network links.
This approach introduces some error into the age approximation, but our protocol is not
sensitive to this error. We will revisit this issue later on.

Algorithm 5.6 does not contain details about the above-mentioned age accounting

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 63

Algorithm 5.6 Single Random Walk Protocol

1: rwprop: > local variable storing information about the random walk
2: rw: > local variable storing the state of latest visiting walk
3 A > gossip period
4: o: > update timeout
5:
6: loop > push-pull gossip protocol to broadcast walk updates
7 wait(A)
8: p « selectPeer()
9: send rwprop to p
10: send pull request to p
11: end loop
12:
13: procedure oNREcEIVERWPRroOPS(rwprop’)
14: if (rwprop.steps < rwprop’.steps and
(rwprop.age() < rwprop’.age() < ¢ or rwprop.age() > rwprop’.age()))
or (rwprop.steps > rwprop’.steps and
(rwprop.age() > 6 > rwprop’.age() or rwprop.age() > rwprop’.age() +96)) then
15: rwprop <« rwprop’
16: end if
17: end procedure
18:
19: procedure oNUppaTETIMEOUT(7) > called when rwprop.age() reaches i - &
20: if rwprop.rwsteps — rw.steps < i then
21: forwardRandomWalk() > a walk is restarted
22: end if
23: end procedure
24:
25: procedure oNRECEIVERANDOMWALK (rw”)
26: rw’.steps «— rw’.steps+1
27: if rw.steps < rw’.steps then
28: w—rw’
29: end if
30: if rwprop.steps < rw.steps or rwprop.age() > ¢ then
31: rwprop < new RWProp(rw.steps)
32: forwardRandomWalk()
33: end if

34: end procedure

mechanism of the updates, as it is rather technical. The approximated age is presented by
the method called RwPrOPS.AGE that returns the current age of the update in terms of the
wall-clock time elapsed since the update was created.

Now, we introduce a timeout threshold 6, which represents our heuristic that if a given
update is older than ¢ then it probably belongs to a dead random walk. The idea behind

this is that if a walk does not generate updates for more than a ¢ time, then the last update

64 5.1. THE SINGLE RANDOM WALK SERVICE

it created will time out at all nodes at about the same time, clearing the way for any new
walks to compete for the leadership position again.

The exact conditions for replacing the local update with the incoming one are stated
in line 14. This complex formula takes into account all possible combinations of local
and incoming step counts and ages, and maximizes the probability that the local update
will belong to a live random walk with a maximal step count. For example, even if the
local update records a larger step count, it is replaced by the incoming update if its age
is smaller by at least 0, since we assume that—although the incoming update can also be
outdated—the random walk recorded by the local update was probably already dead when
the incoming update was created so the incoming update almost certainly represents more

up-to-date information. The rest of the cases are more straightforward.

Restarting and Dropping Random Walks

In our system model—where we assumed reliable connections—a live random walk can
crash only if the node that currently hosts the walk is not able to transmit the walk to
any neighbor before crashing or leaving the network. With a small random walk state
the probability of this is very small, but with the large state we have in mind it is more
common for a node to crash before completing the transmission to the next node. This
means that, with a positive probability, every walk can crash in each step, so the number
of walks will decrease if there is no restarting mechanism in place.

First of all, to allow restarting, each node maintains a local copy of the state of the
best random walk it has been visited by (variable Rw) managed by the method called
oNREecervERaNDOMWaALK. There, we store the received random walk if it has a larger step
count than the previous local copy. In addition, if the random walk has a larger step count
than the current best live random walk the node knows about, then the random walk is
forwarded and a new update is generated. Otherwise the random walk is dropped.

As explained above, we can detect the crashing of the leader random walk due to
our timeout mechanism. The restarting method is based on this timeout, also taking into
account our requirement that random walks should be long-lived.

In Algorithm 5.6 event handler oNUppaTETIMEOUT takes care of restarting random
walks. This handler is called when the age of the current update (RwproPs) reaches i - 0.
When i = 1, only the node right before the last step of the walk will try to restart the walk.

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 65

If this is successful, we lose only the last step. During the next period of ¢, the new walk
will propagate its new updates, or the nodes will reach a timeout of 26. In the latter case,
now both the last two nodes try to restart the walk (i = 2), and so on. This continues until
eventually a node can successfully restart a walk. This walk will generate and broadcast
new update events that will replace the timed-out updates at all the nodes.

The method called FoRwWARDRANDOMWALK is responsible for sending the local random
walk state Rw to a neighbor, thus implementing one step of the walk. Here, we will not go
into details about the method used in Algorithm 5.6. The implementation picks a neighbor
and attempts to transfer the walk. This is repeated until the transfer is successful or until
the forwarding is no longer necessary. The latter condition occurs if in the meantime the
node gets a new update about a live walk that has a larger step count than the walk that

the node is trying to forward.

Analysis

First let us give a sketch of the proof that if there are online nodes that have received at
least one update before and that form a connected network then there will always be a
live walk after at most a finite amount of waiting time. This is easy to see, because if
there is no live walk in the network then no new events are generated, so all the nodes
will eventually reach a timeout of d. This will trigger the restart mechanism, which will
eventually be successful if there is at least one online node, since eventually i will become
large enough to involve all the online nodes (see the method called oNUPDATETIMEOUT(T)).
From this point, all the online nodes will attempt a restart in every period ¢ until the first
successful update overwrites the timed-out update.

Let us note, however, that our method does not actually guarantee that eventually there
will be only a single walk. Indeed, for example, if there are two walks with the same step
count that progress exactly in synchrony, making steps at exactly the same time then it is
in principle possible that both of them survive indefinitely. However, we did not feel it
necessary to improve our protocol to deal with this case (it would be possible with some
complications) since this scenario has a very low probability. Also, if symmetry is broken
then there is a positive probability that the walk with the smaller step count will hit a
node that has a fresh-enough update about the walk with the larger step count, which will

eventually end the walk. Instead, we opted for keeping the protocol simple and we prove

66 5.1. THE SINGLE RANDOM WALK SERVICE

experimentally that the number of concurrent walks is close to one in practice.

Let us now consider the cost of the protocol. The push-pull broadcast involves very
small messages of a few dozen bytes that generate a negligible traffic on a link even if A
is small (will will use A = 100 ms in our tests). At the same time, push-pull broadcast
results in an expected convergence time of O(A log n) (where n is the network size) if peer
selection is random [54]. This, considering that A is small, results in a reasonably fast
broadcast process. To give an illustration, if the random walk has a state of 1 MB, and we
set a bandwidth limit of 100 kbit/s for our application then it takes over a minute to make
one step. This is about an order of magnitude more time than the broadcast convergence
time in a typical network.

The random walk itself induces little traffic overall, given that we maintain just a single
walk that visits any given node very rarely. Of course, with extremely bad parameter
settings one could generate many random walks in parallel. Here, we will evaluate the

parameters experimentally later on.

Additional Details

We close the discussion of the algorithm by mentioning a few improvements and details
that were omitted from Algorithm 5.6 for the sake of clarity. As mentioned above, each
update has a unique id. We use this id in two ways. First, when we restart a walk it carries
the id of the (timed-out) update that triggered its restart. This way, when the walk visits a
node where the same update has not yet timed out—recall that we cannot achieve perfect
agreement about the age of an update—the update will be forced to time out so the walk
is forwarded and not dropped.

Second, each update is accepted only once; that is, in the method called oNRECEIVER-
WProps if the id of the update is the same as that of the current local update RwPROPS
then we drop the received update. This is needed to overcome another problem related to
the lack of agreement about update age: it is possible that Rwprops has already timed out
while RwpPropPs’ has not. With our solution it is guaranteed that whenever an update times
out, it will not be revived again.

Let us now consider the case where a node rejoins the network after an offline period.
In this case, the node waits until it receives a fresh gossip message either via push or

pull before taking part in the protocol. This is to prevent premature restarted walks based

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 67

on outdated updates. Typically, a fresh message will be received almost immediately
after joining the network. Note that this fresh message could have the same id as the
old update of the joining node, in which case the node will of course participate in the
ongoing restarting effort.

In the special case when the joining node was trying to forward a walk when going
offline, after receiving the first fresh update it determines whether it is still supposed to
forward the same walk; that is, whether the walk is still considered the leader. This
situation occurs if the offline period was relatively short, which is a typical situation in,
for example, mobile networks.

Finally, we also need to discuss how to start the very first walk. This is a special case
because at that point the local variables at the nodes (Rw and RwproPs) are undefined, so
our restarting mechanism is not functional. This can be solved by initializing Rw at every
node using an initial random walk state and a uniform random negative step count from the
interval [—n, —1] where 7 is the network size, and initializing RwpPROP to a special update
that never times out. Knowing the exact network size is not critical, it can be approximated
by piggybacking the push-pull gossip broadcast protocol using known methods [63]. The
node that starts the first walk will broadcast an update with step count zero (note that
normally only the receiving node creates a new update). We assume that the node that
starts the walk is online and connected to the network long enough to broadcast this first
update. Of course, when a walk with a negative step count is picked for restarting, it

should set the step count to zero.

5.1.4 Experiments

In order to experimentally analyze the Single Random Walk Service, we simulate node
churn based on a real trace of smartphone user behavior. To perform the simulations, we
used PeerSim [79].

Parameters and Evaluation Metrics

The trace we used and its properties were presented previously in Section 3.3. We divided
these traces into 2-day segments (with a one-day overlap), resulting in 40,658 segments
altogether. With the help of these segments, we are able to simulate a virtual period of

up to 2 days by assigning a different segment to each simulated node. To achieve more

68 5.1. THE SINGLE RANDOM WALK SERVICE

dynamic churn scenario, we allow user to participate with any battery levels.

We set A = 100 ms. Our two free parameters are ¢ and the random walk transmission
time 6,,,. Transmission time is a function of the size of the random walk state and the
bandwidth allocated to the application; it is more convenient to vary transmission time
directly. The network size was n = 10000.

In our overlay network every node had 50 fixed neighbors. Most of these neighbors
were offline at any given time, but the online nodes still formed a connected network. The
random walk as well as the gossip messages select a uniform random online neighbor.

The free parameters ¢ and 9, took values from ¢,, € {A,100A} and 6 € {6, +
10A, 6,,, +20A, 6,,, + 100A} taking all possible 6 combinations. Note that we have to have
0 > 0,, because an update will not be overwritten for a time period of ¢,,, on average. In
addition, ¢ has to account for the logarithmic dissemination time of the gossip broadcast.
Thus, the three values of ¢ can be considered small, realistic, and large, respectively.

We wish to measure agility, efficiency and longevity. As a function of time, we
recorded the age of the oldest random walk, which characterizes both agility (the steep-
ness of this function) and longevity (the absolute value of this function). We recorded the
number of random walks that were propagating concurrently as a function of time, which

characterizes efficiency.

Results

Figure 5.1 shows our results. The number of random walks is shown as dots (integers,
translated slightly vertically by random noise to illustrate density) and the step count
of the oldest random walk is represented as colored points, different colors indicating
different random walks. We also give the average number of concurrent walks during the
experiment in each plot.

In these simulations agility and longevity are optimal, in the sense that the maximal
age grows at the theoretical maximum speed (whose speed is in fact indicated by a straight
line, which is completely covered by the dots). As expected, the smallest value of &
results in the largest number of restarts, as the gossip broadcast is not always able to
converge. Clearly, as we increase ¢, the number of random walks quickly decreases to
one, sometimes dropping to zero or jumping to two for a very short time. Interestingly,

the very large ¢ does not result in a visible slowdown of the walks. This is because the

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 69

Orw = A Orw = 100A
1800 6 18 30
P
< 1600 | ave. walk number: 1.06707 /] 16 | ave. walk number: 2.43524]
~ 5 45 = 125
3 g 400t | 2 g st ~] g
= £ = e =
4+ = 1200} -~ 14 2 = 12} P {120 Z
B 5 1o00} E 5 ol 1 £
& L 3 £ 2 115 £
= 800 | S = 8 I 1 3
= s B =
Il = 600 42 3 E 6F - {10 3
e £ 2 E
2
o 5 400 2 3 a4t / 1 E
1 5
200 | 2 3
0 0 0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (minutes) Time (minutes)
1800 45 18 - 9
/ opumal slep count
4 1600 } avg. walk number: 1.00734 44 16 | ave. walk number: 1.09991 / 8
- > = ,
(?] g 1400 ¢ 135 £ g g 17 £
= 1200 | 13 i = 12t 16 %:
T oz E oz £
2 1000 | 125 5 & 10} 1s &
2 @ 9 b2l]
& 3 800 | z 12 S = st 14 S
= / s = bt
g 600 | 415 5 = 6 13 &5
|- £ £ £
2 E}
e & 400 / 1 2 8 4 F 12 2
200 { os 2 1
l.“,
0 0 0 0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (minutes) Time (minutes)
1800 45 18
g 1600 | ave. walk number: 1.00199 14 16 | -avg. walk number: 1.0635 / 8
S £ 1400} {135 £ & 1} ; 17 £
- S S =
= 1200 {3 i = 12 f {6 i
+ z g z g
B £ 1000 F 125 2 2 10} 1s =
2 g
Iy = 800 | ~ 12 S 3 st 14 S
= - 5 B =
Il £ 600 [115 5 E 6} -~ 13 B
B] < =2
E E £] !
o 2 400 ,, 1 Z 5 4 2 2
200 | / 4{ os 2 1
0 0 0 [
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (minutes) Time (minutes)

Figure 5.1. Experiments with all the combinations of d,,, and . The number of random walks is
shown as green dots (integers, translated slightly vertically by random noise to illustrate density)
and the step count of the oldest random walk is represented as colored points, different colors
indicating different random walks.

extinction events are actually quite rare in our simulated trace: they are indicated by the
number of walks dropping to zero.

We also wanted to stress-test the algorithm by artificially increasing the number of
random walks that die out. For this reason, we artificially killed each random walk with
a probability of 5% for each step of the walk, thereby allowing 20 steps on average. This
is an extreme and highly unrealistic scenario. We repeated our experiments, as shown in
Figure 5.2.

In this extreme scenario the effect of the different parameter settings is more clearly

70 5.1. THE SINGLE RANDOM WALK SERVICE

Orw = A Orw = 100A
1800 14 18 90
g 1600 [ave. walk number: 1.61862 112 16 [ave. walk number: 3.7731 1 80
- 8 1400 | E Z 2 4p {70 £
g 02 = =
+ = 1200 g = oz o12f 160 %
1 5 2 5
= 2 1000 P 18 5 2 o} {s0 5
= Z o e Z £
o) = 800 - A 16 S E 8§ {4 S
- 3 S
Il g 600 = 5 E o6f {13 3
S e 4 £ 2
o 400 e E E 4f 120 5
& P zZ = i z
200 F = 2 2 | /‘L 10
0 0 0 0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (minutes) Time (minutes)
1800 12 18 60
< 1600 [ave. walk number: 1.30395 10 16 [avg. walk number: 1.65687 T 5
(?] g 1400 ¢ £ g 4t 2
= = = =
4 & 100f 18 = = 12} {40 Z
&) . g & g
2 1000 7 5 5 w0t] g
g 2z {e £ Z {30 2
(0"' = 800 h e S = 8t S
z / T 2 s
g 600 F 4 5 E e6f 20 5
I e £ £ £
o & ol = LR I :
- o 2 10
200 2
o o
Z’ R
0 0 0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (minutes) Time (minutes)
1800 9 18 160
=) 1600 [ave. walk number: 0.42619 8 16 [avg. walk number: 1.60324 140
S g 1400 1 7 f‘; g uaf 1 120 f‘;
R 6 =z = 12F] 100 B
2 g2 & 2
g & 1000 [s 5 & w0t 1 3
2 4 80 2
Iy = 800 |- 4+ S F st - S
2 s £ le =
Il £ 600 3 08 £ 6 E B
= =
S 400 w2 5 5 af 40 5
o = SR z = Z
200 e 1 2t 4 20
e s
J—
0 = 0 0 L
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (minutes) Time (minutes)

Figure 5.2. Experiments with a 5% drop probability. The number of random walks is shown as
green dots (integers, translated slightly vertically by random noise to illustrate density) and the
step count of the oldest random walk is represented as colored points, different colors indicating
different random walks.

visible. Increasing ¢ decreases the redundant walks to close to optimal levels, although
very rarely for very short periods of time there may be many walks (the plots span the full
range covering the outliers as well). On average, however, the efficiency is acceptable. At
the same time, the speed of the walks is noticeably reduced.

If we increase ¢ further, we can no longer increase the efficiency; however, the speed
of the walks continues to decrease. We stress again that this scenario has been included
only to illustrate an extreme corner of our parameter space. Nevertheless, if the random

walks go extinct very frequently then the slowing effect of 6 becomes more pronounced,

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 71

and there will be a tradeoff between agility and efficiency. Also, the system is more
stable assuming large transmission times (that is, large random walk states), as the average

number of walks is close to one.

5.2 The Multiple Random Walk Service

Multi-user gossip learning itself raises many research issues. Among these, here we also
focus on the management of multiple random walks. As we describe in more detail later
on, we will assume that in an overlay network many random walks are run, each repre-
senting a learning task. Each task might be owned by a separate user. Our problem here
is to ensure that all the walks keep progressing in spite of benign faults caused by nodes
joining and leaving (that is, node churn). Also, we would like all the walks to progress
quickly; that is, without delay, taking into account the bandwidth that is assigned to the
nodes.

The challenge lies in the decentralized nature of the system. Our solution is based
on a multi-level protocol in which we have three “lines of defense” that are similar to
competence levels in a hierarchical organization. Problem solving is first attempted at
the lowest level and in the case of failure the problem is escalated to the next level. The
first two levels are completely decentralized. Ideally, these two decentralized mechanisms
should handle the vast majority of faults and the third level—which is implemented by the
central control of the owner—should be reached only very rarely. The motivation behind
this design philosophy is that we wish to offer a conceptually simple and cheap solution
that avoids accessing central resources almost all the time, as opposed to a complex and/or
expensive protocol that provably works without any central control all the time.

We should add that this is a quite different problem from the one we tackled via the
Single Random Walk Service described in Section 5.1. Here, we cannot apply the above-
proposed method because it does not scale well. In this case, the shared state size tends to
O(n) and it can be very large since n is potentially in the order of millions. Broadcasting
with this amount of transmission cost is not feasible along with the payload of multiple
random walks.

Here, our contribution is twofold. First, we propose a multi-level decentralized pro-
tocol to run O(n) random walks in a network of n nodes that can tolerate benign failures.

Second, we demonstrate through simulation that the protocol indeed protects the random

72 5.2. THE MULTIPLE RANDOM WALK SERVICE

walks and that the walks progress at a near-optimal speed. We base our simulations on a

real trace of smart phones which is detailed in Section 3.3.

5.2.1 Algorithm

Let us first define random walks at the level of abstraction that is required for the descrip-
tion of our algorithms. A random walk may be viewed as a mobile agent with a state
(consisting of payload and metadata) that jumps from node to node at random. The na-
ture of random neighbor selection is not critical here, but it does affect load balancing,
so here we assume a random node is picked from the network with the help of a suitable
peer sampling service. The payload of the walk is application dependent. In gossip learn-
ing, it represents a machine-learning model that is updated at each node based on local
information.

The metadata of the random walk includes a unique walk ID, a restart ID unique within
the scope of the same walk ID, and a step count that counts the hops completed by the
walk. When the node responsible for the current hop fails before successfully completing
the hop, the walk will be restarted using an earlier state that is (hopefully) still available
in some previously visited nodes. The restarted walk will have the same walk ID, but it
will get a new restart ID.

In the systems we envision there will be n nodes and O(n) random walks each working
on different tasks. What we wish to provide is a fault tolerant implementation that is able

to restart the failed walks without creating redundant copies.

Bird’s Eye View
In a nutshell, our solution is made up of three conceptual levels. At the first (lowest) level
a local mechanism is implemented. Here, after completing a random walk hop, every
node monitors the success of the next hop. In the case of a failure, the monitoring node
will restart the walk. This mechanism is local because the monitoring node retains a copy
of the payload that it has just transmitted to the monitored node.

The idea is that in the vast majority of failures this local mechanism will fix the prob-
lem, but when it does not, the problem gets escalated to level two. This happens when the
monitoring node fails before it can detect the failure of the walk. The node performing

the current hop therefore monitors the monitoring node (called the supervisor) and invites

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 73

a new supervisor if the current supervisor fails. This new supervisor, however, might not
store the payload, or it might store only an outdated copy, so at level two a more expensive
mechanism has to be used. Namely, when detecting a failure, the supervisor broadcasts
the restarting request that will eventually reach those nodes that have fresh versions of the
payload. These nodes then attempt to restart the walk in a sequential order determined by
how old their copy of the payload is. After a successful restart another broadcast is sent
about the success, which prevents further attempts at restarting. A simple mechanism is
also in place to stop most of the redundant restarted walks.

The third (and final) level is implemented by the central control carried out by the
owner of the walk. The random walk can report its state to the owner regularly (if the
owner is reachable), which allows for appropriate interventions. In our simulations this
happens extremely rarely, as we will demonstrate later on.

As can be seen from this short summary, we opt for a best effort multi-level mech-
anism without formal guarantees that nevertheless attempts to escalate as little work as
possible to the increasingly expensive upper levels. We think that in the complex sys-
tems we focus on this is a preferable approach that allows us to carry out most of the
control tasks in a decentralized way while keeping the system conceptually simple and

manageable.

Detailed Description of the Protocol

The pseudo code of the protocol run by all the nodes can be seen in Algorithm 5.7.

As for the local state of the node, sendQueue is a FIFO queue that keeps sending its
next entry to a random node until the queue is not empty. If the recipient node fails before
completing the transaction, the queue selects another random node and tries sending the
current entry again until the transmission succeeds. This queue also informs the node
about each successful transmission by invoking the method onTransmissionComplete().
In this method we simply cancel the monitoring (supervision) of this completed hop and
start to monitor the next hop. We also store the walk in storageQueue, which is also a
FIFO queue with a fixed storage capacity. When it is full, the next entry is removed.

When a random walk arrives successfully, onRandomWalkArrival() is invoked where
the node records which node its level one supervisor is, then the payload is updated and
the next hop is scheduled.

Failure detection is implemented via the event handler onConnectionTimeout() that

74 5.2. THE MULTIPLE RANDOM WALK SERVICE

Algorithm 5.7 Multiple Random Walk Protocol

1: o: > estimated time for full broadcast
2: A > gossip round length
3: sendQueue: > queue where walks to be forwarded wait
4: storageQueue: > queue where we store recent random walks
5: rwEvents: > fresh events broadcast to manage random walks

6: loop > push-pull gossip protocol to broadcast walk events
7 wait(A)
8: p < selectPeer()

9: rwEvents.cleanup()
10: send rwEvents to p
11: send pull request to p
12: end loop
13: procedure oNReEcetvERWEVENTS(rwEvents’)
14: for event in rwEvents’ \ rwEvents do > examine the new events
15: if rwEvents.isObsolete(event) then
16: continue > jump to next event
17: end if
18: if event type is RestartRequest then
19: if storageQueue.contains(event.rw) then
20: restartThreadsFactory.start(event)
21: end if
22: else if event type is Restarted then
23: restartThreadsFactory.stop(event)
24 if rwEevents.containsConflict(event) then
25: event < new MultipleRestarts(rwEvents,event)
26: end if
27: end if
28: if event type is MultipleRestarts then
29: restartThreadsFactory.stop(event)
30: for rw in sendQueue do
31: if conflict(rw,event.rw) then > kill redundant walk
32: sendQueue.remove(rw)
33: p < getSupervisor(rw) > either level 1 or 2
34: send cancelSupervision(rw) to p
35: end if
36: end for
37: end if
38: rwEvents.add(event)
39: rwEvents.cleanup()
40: end for

41: end procedure

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 75

42: procedure RESTART THREADSFACTORY.START(event)

43: > this should be run in a new thread, presentation is simplified
44: rw « storageQueue.get(event.rw)

45: window « event.rw.steps — rw.steps

46: restartWindowStart < window-6+ event.creationTime()

47: restartWindowEnd «— (window+1)-0+ event.creationTime()

48: wait while currentTime() < restartWindowStart

49: if currentTime() < restartWindowEnd then

50: sendQueue.add(rw) > level 2 restart
51: supervisorAtLevel2.add(newSupervisor(rw))

52: rwEvents.add(new Restarted(rw))

53: end if

54: end procedure

55: procedure oNCoNNECTIONTIMEOUT(p)

56: for rw in getSupervisedRWsAtLevell(p) do

57: sendQueue.add(rw) > level 1 restart
58: supervisorAtLevel2.add(newSupervisor(rw))

59: end for

60: for rw in getSupervisedRWsAtLevel2(p) do

61: rwEvents.add(new RestartRequest(rw))

62: end for

63: if isSupervisor(p) then > either level 1 or 2
64: supervisorAtLevel2.add(replaceSupervisor(p))

65: end if

66: end procedure

67: procedure oNRANDOMWALKARRIVAL(rw, p)
68: supervisorAtLevell.add(rw, p)

69: update(rw)

70: sendQueue.add(rw)

71: end procedure

72: procedure oNTRANSMISSIONCOMPLETE(rw, p)

73: q < getSupervisor(rw) > either level 1 or 2
74: send cancelSupervision(rw) to g

75: supervisedAtLevell.add(rw, p)

76: storageQueue.add(rw)

77: end procedure

76 5.2. THE MULTIPLE RANDOM WALK SERVICE

is invoked when a neighbor that the node is currently in contact with fails. Here, if a
monitored node fails then in the case of level one monitoring (the node was the previous
sender) the node simply schedules the restarting of the walk while also assigning a su-
pervisor to itself. In the case of level two monitoring (the node does not have the (fresh)
payload) the node schedules for broadcast a new request for restarting the walk. Finally,
if the failing node was the node’s supervisor then a new one is selected. Note that we do
not detail the algorithm for finding (or replacing) supervisors here; it involves contacting
live nodes from the network and negotiating with them. Note also that the failing node
might have been the supervisor for more than one walk at both level one and two, so all
instances need to be replaced.

Let us now move on to the discussion of the second level where restarting is achieved
through various broadcast messages. To implement the broadcast primitive, each node
runs a basic push-pull gossip broadcast protocol in an active loop with round length
A. The local set rwEvents contains those messages that are currently actively broad-
cast. Each message is gossiped up to a given maximal number of hops that is set such
that all the nodes receive the broadcast with very high probability. The method called
rwEvents.cleanup() removes those messages that have reached this limit.

There are three kinds of gossip messages, namely RestartRequest, Restarted and Mul-
tipleRestarts. All of these messages refer to the failure of a given random walk instance,
identified by the walk ID and the restart ID. For this reason, from now on we will assume
that the messages mentioned in the discussion belong to the same failure event, unless
otherwise stated.

A RestartRequest is generated by a level two supervisor when it detects that a walk
has failed. This request has a reference to the walk ID and the restart ID that failed. A
Restarted message is generated by a node when it decides to restart a walk based on a
RestartRequest. Apart from the walk ID and the old restart ID, this event also refers to
the restart ID of the new walk. A MultipleRestarts message is generated by a node that
receives multiple Restarted messages that belong to independent restarts of the same walk
following the same failure event. Once again, this event refers to the walk ID and the old
restart ID, and in addition it contains the new restart ID that is picked to be kept alive.

The method called onReceiveRWEvents() processes the incoming broadcast mes-
sages. There, only the new messages are processed that are not already included in the

local set. First it is checked whether a given message is obsolete or not. This is defined

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 77

based on a natural dominance relation over the messages. Restarted messages dominate

RestartRequests and MultipleRestarts messages dominate the other two types.

In addition, within a given type, an older RestartRequest (with the larger step count)
dominates a younger one. Note that normally there should be only one RestartRequest be-
ing broadcast but due to the unreliability of the applied failure detector we could in theory
have more than one active supervisor for the same walk so more requests may get gener-
ated. Messages of type Restarted do not dominate each other, instead, multiple Restarted
messages indicate a failure (redundant restarts). In this case a MultipleRestarts message
is generated that contains information about which new walk to keep alive: this will be
the one with the minimal restart ID. MultipleRestarts messages also have a dominance
relation: the message with the smaller restart ID to keep alive wins. Note that due to the
timing variance and unreliability of the broadcast primitive, different conflicts might be
picked up by different nodes so we may indeed have various different MultipleRestarts

messages.

The non-dominated new messages are then processed. In the case of a RestartRequest
event if the node has a copy of the payload then a restart timer is started in a separate timer
thread. This thread calculates a restart window in which this node is allowed to restart the
walk. The window depends on the age of the local copy of the payload. This way, the
different copies of the payload in the network attempt a restart in a sequential order with a
high probability, avoiding redundant copies. The window is relative to the first creation of
the RestartRequest. Knowing the creation time of the request does not necessarily require
synchronized clocks, as an approximation is sufficient that can be computed via summing

the approximate hop-times during broadcast.

When a Restarted event is received, we stop any restart timers for this walk and check
for conflicting (that is, redundant) restarts. Should there be any such redundant restarts, a

new MultipleRestarts event is placed in the broadcast message set.

Finally, when a MultipleRestarts event arrives, the node stops any related restart timers
and it also removes all the copies of the redundant walk while also canceling any supervi-
sors for these walks. The method called sendQueue also checks rwEvents before sending

the next message for possible conflicts (not shown in the pseudo code).

The new event is then added to rwEvents that is also cleaned up, which means that the

dominated events and the old events are removed.

78 5.2. THE MULTIPLE RANDOM WALK SERVICE

Additional Details and Remarks

Let us now discuss a number of issues that were left out of the discussion above. For
example, the behavior of re-joining nodes needs to be considered. In our approach we
assume that nodes that leave the network (detected as failed) will keep their storageQueue
when joining again, but they empty their rwEvents cache. In addition, they move the
content of their old sendQueue to storageQueue. This prevents outdated messages from
arising as a result of re-joining.

It is also worth mentioning that the broadcast messages are temporary, that is, we
delete them immediately after their maximal hop-count is reached. This means that with-
out failure events no broadcasting is going on as all the caches are empty.

Let us now clarify the handling of the different restart IDs in the message process-
ing. When determining the dominance relation and the conflicts described previously, we
compare only those messages where the walk ID and the old restart ID are the same. In
other words, only those messages are compared that belong to the same failure event. This
means that, for instance, it is possible that we have two Restarted messages with the same
walk ID but with different old restart IDs, and in this case there will be no conflict. The
reason is that in principle this could be a situation when the walk failed, was restarted,
then failed again and was restarted again within a short time.

However, when removing conflicting walks in response to a MultipleRestarts mes-
sage, we remove all the walks with the same walk ID and different restart ID irrespective
of the previous (old) restart ID of the removed walk. For the above reasons, there is a tiny
probability that some walks that should not be removed are in fact removed.

It is possible to handle these temporal ordering issues, but we opted for simplicity and
we follow our multi-level principle, namely those problems resulting from such obscure
corner cases are escalated to the next level of the system. We justify this choice in our

simulation experiments.

Best Effort Design

We stress again that the first two levels of our algorithm may fail in various ways, many of
which we have not discussed here. For example, because of the inevitable delay between
a failure event and its detection, it is possible that no supervisor is present for a short

interval, during which the node might fail, resulting in a failed random walk. Another

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 79

example is that it is theoretically possible that no node receives the restart request that
has a copy of the payload of the given walk. This could be due to the unreliability of the
broadcast or to the fact that most copies were deleted from storage. It is also theoretically
possible that the walk will stay alive when (mistakenly) detected as failed due to the
unreliability of the failure detector, which will result in undetected redundant walks. It is
also possible that a restart attempt at level two eventually fails after emitting a Restarted
message (which is sent before and not after the transfer completes) and although this
will be detected by the supervisor of the restarter node, this can still result in incorrectly
detected multiple restarts with a very small probability. Temporary network partitioning
is also a problem if the supervisor and the supervised nodes are in different partitions. The
list goes on.

Obviously, one could set the goal of designing a solution with provable properties
under carefully selected assumptions. In a complex problem like ours, this approach
would almost certainly lead to a protocol that is very hard to implement, understand and
manage.

Instead, we propose a multi-level protocol with each level doing its best and escalat-
ing any unsolved problems to the next level. The function of the levels is rather clear and
all of the levels allow for failures as these will be handled by the next level. Thus, the
design process of the algorithms of each level is not an “all or nothing” task but rather
a multi-objective optimization process where we minimize the number of failures while
maximizing the simplicity and manageability of the protocol. As for research method-
ology, our main tool is simulation where we demonstrate the cost and reliability of the
system as a whole under realistic settings.

The design goal is to ensure that our final fallback mechanism (level three) has a
minimal load. At this level, the owner of the walk (and the associated task) has to provide
only minimal resources like a mobile phone for 10 minutes each day, or a very limited
public cloud service. During, for example, one short daily visit by the user, the walks of
the user (if any) report back to the user who can remove or restart walks as needed. Thus,
the system as a whole does not require an expensive infrastructure and can remain open
and free for all the potential users.

Note that this approach is in line with several related studies in the area of P2P-assisted
systems that use unreliable distributed protocols only as a first level and a central service

provides the guarantees for the reliability of the application (for example, [58, 84]). Here

80 5.2. THE MULTIPLE RANDOM WALK SERVICE

Table 5.1. Fixed Parameters

A 100 ms

0 2000 ms

storageQueue size 10 entries of maximal size

max gossip hop count 20 steps

our goal is slightly different in that we wish to reduce the contribution of the central final
level to an absolute minimum, and also in that we organize the distributed protocol itself

into hierarchical levels in a similar manner.

5.2.2 Experiments

In order to experimentally analyze our protocol, we simulate node churn based on a real

trace of smartphone user behavior. To perform the simulations, we used PeerSim [79].

Experimental Setup

All our experiments were run on top of the churn trace described in Section 3.3. We sim-
ulate the network based on the worst case churn scenario when phones with any battery
level are allowed to join. This results a more dynamic scenario to evaluate our proposed
protocol. In each experiment the algorithm parameters listed in Table 5.1 were fixed.
Note that ¢ (the length of the restarting window) is calculated as 20A, which is the longest
time a given broadcast message is expected to spend in the network. This increases the
possibility that restarting windows are indeed sequential and non-overlapping. The max-
imum allowable amount of data in the storage queue is set so that the queue could store
ten entries of the maximal size. Thus, in scenarios where the payload size is variable, the
queue might store more than ten entries.

In our experiments we varied three main parameters of the application environment.
These were the network size, the number of random walks to maintain, and the distribu-
tion of the size of the payload of the random walks. As for network size, we experimented
with n = 1000 and n = 100, 000.

Regarding the number of random walks, we designed three scenarios with an expo-

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 81

nentially increasing number of random walks. To determine how many walks to start, we
first examined the churn trace and found that, on average, 54% of the nodes are online.
Based on this, as a baseline setup we started 0.54n random walks in expectation. As for
the implementation, each node was assigned a walk initially with a probability of 0.54.
We also ran experiments with ten times more and ten times fewer walks than this baseline.
The exact number of random walks can be found in Table 5.2.

The payload size was defined in terms of transmission time assuming a fixed band-
width limit at the nodes. We defined a small and a large payload with a transmission
time of 1000 ms, and 10,000 ms, respectively. We ran simulations with only small and
only large payloads, as well as with a mixture of payloads where each random walk
was assigned a transmission time at random with a uniform distribution over the interval
[1000 ms,10,000 ms].

The overlay network was implemented by independently assigning 50 randomly se-
lected neighbors to each node. This setting was used for all the network sizes. We assume
that each node maintains an active TCP connection with its neighbors as suggested in [91].
If a node fails, its neighbors will detect this only with a one second delay. The neighbor
set is constant in our simulations; that is, when a neighbor fails it remains on the list and it
is reconnected when it comes back online. The size of our neighbor set was large enough
for the overlay network to remain connected.

We should also mention that we applied a short warm-up period before the simulation
that is not included in our reported statistics. We did this to model the realistic usage
scenario where new random walks are added to the system by their owners, making sure
that the walk completes at least a few hops so that there are copies in the network to restart
from. For this reason, those nodes that were assigned a walk to start were kept online for
five minutes and we started the trace-based simulation only after this period. In addition,
to avoid an immediate synchronized spike in failures (a simulation artifact), we made sure

the nodes that started a walk were assigned a trace with an initial online period.

Results

Let us first take a look at the statistics of the various experimental scenarios at the end of
the simulated day in Table 5.2. We can see that in all the cases there is a large number of
restarts, more than ten times as many as the number of walks. The most important result

is that the vast majority of these restarts happen at level one.

5.2. THE MULTIPLE RANDOM WALK SERVICE

82

%001 (T9Th) BES'L 6198S8 S (LOY) %YL 0O 81y LSBL88 €8¢ers 01
%001 (Tr920) »S8v 19688 %4 (16€) BILO 69¢C 06,06 €8ers (01°1)pued <0l
%001 (08L) %EY'1 896CC6 € (61%) HTS0 6L¢ 8E6ETO €8¢ers I
%001 (6871) %LELT 9€Cs9 L (1) %SL0 ¢s0c 8816L orys
%001 (0F) BET'L 7988 ! (8) %1 9% 1106 134 0T
%001 (€) »0OS'L SOL ! (0) %000 I ¥S9 ov
%001 (€L8) %1091 $96L9 L (T€) %8S 0 €801 0S9SL orvs
%001 (LE) %699 S916 I (11) %86'1 0¢ (4894 139 (01°Dpuel 0l
%001 (€) %0S°L £v9 ! (1) %08°C € 199 ov
%001 (0T€) %88'S 81806 € (¥€) %T9°0 (344 029¢6 orys
%001 (8) w11 766 I (#) %TLO % 8886 139 I
%001 (0) %000 L9 0 (0) %000 0 CL9 ov
! [4 I
Syrem syTem [9A9 38 | Iseopeoiq syTem [9A9] I [9A9] I syrem
wopuel wopuel S1I8)SQI SIUQAQ wopuel S)IB)SaI SJeISaI | wopuel (s) owm VAN
150] 150] # # "Xew 150] # # # UOISSIWSURT} YI0M)ou
$1I8)SQI INOYIIM _ S)IBISAI 7 [9AS] INOYIIM 10903014 [eAr wopuey idnny SOLIBUQOS

Kep paje[nuuis ay) JO pU Ay} Je [020101] [EA\ Wopuey] S[dnnA ay) SUIIoou0d $)Nsal 9y JO MIIAIAQ 'S J[qeL

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 83

90000 : : : 50
80000 | / g
2, 70000 40 g
5,
7 60000 E
§ 50000 | t 139 g
avg step
= 40000 | min step 1,0 £
< 30000 | max step —_— S
= optimal step — 2
v 20000 no restart —10 E
MRWP no 12 2
10000 | MRWP -
0 1 1 1 0
0 360 720 1080 1440
90000 . : : 600
80000 - 9
. 1500 =
&, 70000 =
5,
@ 60000 1400 £
v o
= 50000 | k=
= 1300 3
= 40000 | e
S 30000 | 1200
S 20000 | =
4100 =
10000 | Z.
0 - ' 0
0 360 720 1080 1440
9000 : : : 6000
8000 i 50003
£ 7000 =
26000 | . 4000§
= 5000 | =
13000 S
E 4000 | R
é 3000 | 12000 g
S 2000 | X<
=2 11000 £
1000 | >
O 1 1 1 0
0 360 720 1080 1440

Time (minutes)
Figure 5.3. Experimental results with n = 1000, and small payload (1000 ms transmission time)
with a varying number of random walks.

84

5.2. THE MULTIPLE RANDOM WALK SERVICE

Random Walk Steps Random Walk Steps

Random Walk Steps

60000 . . . 50
50000 =
40 3
=
40000 £
30 3
30000 5
20 =
20000 -
10 E
10000
z
0 0
1440
35000 . . . 600
30000 — 500 £
25000 w2 B
b 1400 £
20000 M::;:ﬂ g g
o +:.*¢*:¢-§£H 300 8
15000 "Jﬁw Hadnad o
M 200
10000 3
£
5000 100 2
0 ' L ' 0
360 720 1080 1440
2000 . . . 6000
1800 £
1600 5000
1400 14000 §
1200 <
1000 13000 3
800 =
600 step samples + 12000
400 no restart s
MRWP no 12 11000 £
200 MRWP ~ —— Z
0 ' . ' 0
0 360 720 1080 1440

Time (minutes)

Figure 5.4. Experimental results with n = 1000, and mixed payload (between 1000 ms and
10000 ms transmission time) with a varying number of random walks.

CHAPTER 5. MANAGEMENT OF RANDOM WALKS

9000 : : : 50
8000 | / 2
2, 7000 [— 40 2
j3)
2 6000 E
§ 5000 | t 130 g
avg step
= 4000 | min step 1o &
S 3000 | max step — °
= optimal step —— 2
v 2000 no restart — 110 E
MRWP no 12 =
1000 | MRWP - Z.
0 1 1 1 O
0 360 720 1080 1440
9000 . . . > 600
8000 = Z
- 1500 =
& 7000 =
j3)
@ 6000 | 1400 £
- @)
= 5000 | e
= 1300 3
= 4000 | R
@)
< 3000 | 1200 =
& 2000 | =
41100 =
1000 | Z.
O 1 1 1 O
0 360 720 1080 1440
900 . . . 6000
800 ~ Z
2 15000
5700 =
2600 | - 4000§
= 500 2
13000 S
E 400 | R
é 300 | - 2000§
3 200 | <
= 11000 E
100 | >
O 1 1 1 O
0 360 720 1080 1440

Time (minutes)

Figure 5.5. Experimental results with n = 1000, and large payload (10000 ms transmission time)
with a varying number of random walks.

86 5.2. THE MULTIPLE RANDOM WALK SERVICE

500 F n/10 o=y
n Em—
400 10n Ex==a
L 300 | -
o
z.
200 -
)
100 S]
]
K]
Nl N N N —_— K

0 2 4 6 8 10 12 14

Models in queue

Figure 5.6. The histograms of the sendQueue sizes in the three scenarios with 1000 ms payload
transmission time. The notations n/10,n and 10n represent our three settings for the number of
random walks.

It is clear that the number of level two restarts depends mostly on the size of the
payload of the walks. With a large payload (and long transmission time) there is a larger
probability that the level one supervisor fails before the transmission gets completed, thus
triggering a level two process.

Also, we get a disproportionate increase in the number of level two restarts when we
increase the number of walks beyond the number of online nodes. In that scenario, apart
from the fact that there are more walks and thus more restarts, the walks spend a lot of
time in the sending queues of the nodes, so the expected time for the supervision becomes
an order of magnitude longer. This in turn increases the probability of the failure of the
level one supervisor.

As for level three events, we did not observe any instances of redundant walks, and
only around one percent of the walks got lost.

A very interesting issue is the communication cost of the protocol. From the table,
we can see that the maximal size of the broadcast table is extremely small; it is in fact
negligible when considering that the entries in the table are also very small. Note that the
maximal value is indicated, but in fact the broadcast tables are empty most of the time.
This means that the overhead of the protocol is small, so the communication costs are
dominated by the random walks.

Let us now examine the effect of the various levels. When omitting level two, not

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 87

surprisingly, slightly fewer restarts happen at level one, since those walks that get lost
will not need further restarts. When there is no restarting mechanism in place, we lose all
the walks.

Finally, let us note that our experiment with the large network size of n = 100, 000 also
produces very few level three failures and the broadcast cost is as low as in the smaller
networks. This confirms the scalability of the approach.

Table 5.2 does not show the dynamic properties of the statistics, and the speed of the
random walks cannot be seen either, which is a key property we wish to maximize. Thus,
we include plots as well that contain the number of hops the random walks complete along
with the the number of walks that are alive as a function of time.

Figures 5.3, 5.4 and 5.5 were obtained using the three different payload size distribu-
tions we experimented with, and each figure contains three plots that correspond to the
three different numbers of random walks.

The plots tell us how quickly the random walks die out without any restart mechanism.
As we saw in Table 5.2, here we also observe that relying only on level one restarts (and
not using level two) more walks get lost, although, as we saw previously, the difference is
not large.

The plots also contain statistics about the number of hops (steps) the random walks
completed by the given point in time in the form of average, minimum and maximum in
the homogeneous payload scenarios and in the form of samples from individual walks in
the mixed scenario. The optimal speed is also included. When calculating the optimal
speed, we took the number of walks into account. That is, when there are ten walks
on average for each online node, the optimal speed gets divided by ten to account for
the fixed bandwidth limit we assume when transmitting random walks. Otherwise, the
optimal speed is given by always transmitting the walk without any delay at the maximum
bandwidth.

Clearly, in the case of the scenarios with a small number of models we achieve a
near-optimal random walk speed in the homogeneous payload size scenarios. In the case
of mixed payload sizes, the speed of the walks with a large payload is close to optimal,
but the walks with a small payload suffer delays due to queuing behind large payloads.
Note that, although for all the walks the average queuing time for one hop is the same
irrespective of the payload size, for walks with a small payload there are a larger number

of hops on average so these walks spend more time in the queues in total.

88 5.3. CONCLUSIONS

In the scenario where the number of walks is the same as that of the average online
nodes, walks slow down somewhat even in the homogeneous scenarios. This is because in
this case the sending queue will often contain one or more walks to queue behind, which
causes delays. This is illustrated well by the histograms shown in Figure 5.6 where the
variance of the queue size can also be seen.

Interestingly, in the case of the largest number of walks the speed is again close to
optimal. This is because here the queuing time is the most important factor that determines
the speed and in the queues the waiting time can average out due to the larger number of
walks. The histograms in Figure 5.6 show the queue size distribution for this scenario as

well.

5.3 Conclusions

First, we introduced a protocol to implement a robust random walk that is fast, efficient
and long-lived in a dynamic network. Our motivation was that in many applications,
most importantly, in distributed data mining, the random walk is an important primitive
that has to be implemented reliably in realistic network environments. Furthermore, if
we want to reduce the privacy budget then every data item can be visited only a lim-
ited number of times. We demonstrated that the proposed Single Random Walk Service
meets our requirements—agility, longevity and efficiency—in a network of mobile smart-
phones. We simulated this service over a smartphone trace and we found that the protocol
is robust to its main parameter, the timeout threshold ¢, which determines when a random
walk is considered dead. We obtained an acceptable performance even in an unrealistic
extreme scenario where we artificially removed random walks with a 5% probability in
each step. In this case, this protocol is more sensitive to d, but with a sensible setting a
good compromise can be achieved between efficiency and agility.

In this chapter we also introduced a protocol to maintain O(n) random walks over
an overlay network, where the random walks represent independent decentralized tasks
that might belong to different users. We motivated this service with a decentralized data
mining application, gossip learning, but any applications based on random walks could
be supported. The protocol follows a three-level design where problems not solved at a
lower level get escalated to the next level. During our experimental evaluation we used

a smartphone trace to model churn. We demonstrated that in all the scenarios we tested

CHAPTER 5. MANAGEMENT OF RANDOM WALKS 89

the vast majority of failures are dealt with at the lowest level, which is purely local and
therefore scalable. Only a small fraction of the problems get escalated to level two, which
is based on a broadcast primitive. In this case the cost of broadcast messages was shown
to be almost negligible due to the small number of failure cases that reach this level. Thus,
the overhead introduced by level two is small relative to the communication cost of the
random walks. Level three, the central control by the task owner, was reached only a few
times during all our simulations. We also demonstrated in experiments that the speed of

the random walks is close to optimal.

Contribution

In this chapter, most of the above-presented results are regarded as main contributions
of the author of this dissertation. More specifically, he developed and evaluated both of
the presented random walk services. The contribution by Istvan Hegedds to this topic
deserves a mention as well. He developed and evaluated a robust decentralized stochastic
gradient descent method that satisfies the criteria of differential privacy [42]. His results
rely heavily on advantages of our single random walk service. The statements in this chap-
ter that related to differential privacy were proposed based on his contribution. However,

the actual details of his results fall outside the scope of this dissertation.

CHAPTER 6

Mini-Batch Gradient Descent

Data mining over personal data harvested from mobile devices is a very sensitive problem
due to the strong requirements of privacy preservation and security. Recently, the feder-
ated learning approach was proposed to solve this problem by not collecting the data in
the first place but instead processing the data in place and creating the final models in the
cloud based on the models created locally [56, 76].

We go one step further and propose a solution that does not utilize centralized re-
sources at all. The main motivation for a fully distributed solution in our cloud-based
era is to preserve privacy by avoiding the central collection of any personal data, even
in pre-processed form. Another advantage of distributed processing is that this way we
can make full use of all the local personal data, which is impossible in cloud-based or
private centralized data silos that store only specific subsets of the data. The key issue
here of course is to offer decentralized algorithms that are competitive with approaches
like federated learning in terms of time and communication complexity, and that provide
increased levels of privacy and security.

Previously, we proposed numerous distributed machine-learning algorithms in a frame-
work called gossip learning. In this framework models perform random walks over the
network and are trained using stochastic gradient descent [82] (see Chapter 2). This in-
volves an update step in which nodes use their local data to improve each model they

receive, and then forward the updated model along the next step of the random walk.

92

Assuming the random walk is secure—which is a research problem on its own, see
e.g. [50]—it is hard for an adversary to obtain the two versions of the model right be-
fore and right after the local update step at any given node. This provides reasonable
protection against uncovering private data.

However, this method is susceptible to collusion. If the nodes before and after an
update in the random walk collude they can recover private data. In this chapter we
address this problem, and improve gossip learning so that it can tolerate a much higher
proportion of honest but curious (or semi-honest) adversaries. The key idea behind the
approach is that in each step of the random walk we form groups of peers that securely
compute the sum of their gradients, and the model update step is performed using this
aggregated gradient. In machine learning this is called mini-batch learning, which—
apart from increasing the resistance to collusion—is known to often speed up the learning
algorithm as well (see, for example, [26]).

It might seem attractive to run a secure multiparty computation (MPC) algorithm
within the mini-batch to compute the sum of the gradients. The goal of MPC is to com-
pute a function of the private inputs of the parties in such a way that at the end of the
computation, no party knows anything except what can be determined from the result
and its own input [111]. Secure sum computation is an important application of secure
MPC [20].

However, we not only require our algorithm to be secure but also fast, light-weight,
and robust, since the participating nodes may go offline at any time (see Chapter 3) and
they might have limited resources. One key observation is that for the mini-batch algo-
rithm we do not need a precise sum; in fact, the sum over any group that is large enough
to protect privacy will do. At the same time, it is unlikely that all the nodes will stay on-
line until the end of the computation. We propose a protocol that—using a binomial tree
topology and Paillier homomorphic encryption—can produce a “quick and dirty” partial
sum even in the event of failures, has adjustable capability of resisting collusion, and can
be completed in logarithmic time.

We also laid great emphasis on demonstrating that the proposed protocol is practically
viable. This is a non-trivial question because homomorphic cryptosystems can quickly
become very expensive when applied along with large-enough key-sizes (such as 2048 bit
keys), especially considering that in machine learning the gradients can be rather large. To

achieve practical viability, we propose an extreme lossy compression, where we discretize

CHAPTER 6. MINI-BATCH GRADIENT DESCENT 93

floating point gradient values to as few as two bits. We demonstrate experimentally that
this does not affect learning accuracy yet allows for an affordable cryptography cost. Our

simulations are based on a real smartphone trace which are detailed in Section 3.3.

6.1 Related Work

There are many approaches that have goals similar to ours, namely to perform compu-
tations over a large and highly distributed database or network in a secure and privacy
preserving way. Our work touches upon several fields of research including machine
learning, distributed systems and algorithms, secure multiparty computation and privacy.
Our contribution lies in the intersection of these areas. Here we focus only on related
work that is directly relevant to our present contributions.

Algorithms exist for completely generic secure computations, Saia and Zamani give a
comprehensive overview with a focus on scalability [93]. However, due to their focus on
generic computations, these approaches are relatively complex and in the context of our
application they still do not scale well enough, and do not tolerate dynamic membership
either.

Approaches targeted at specific problems are more promising. Clifton et al. propose,
among other things, an algorithm to compute a sum [20]. This algorithm requires linear
time in the network size and it does not tolerate node failure either. Bickson et al. focus on
a class of computations over graphs, where the computation is performed in an iterative
manner through a series of local updates [11]. They introduce a secure algorithm to
compute local sums over neighboring nodes based on secret sharing. Unfortunately, this
model of computation does not cover our problem as we wish to compute mini-batches of
a size independent of the size of the direct neighborhood, and the proposed approach does
not scale well in that sense. Besides this, the robustness of the method is not satisfactory
either [81]. Han et al. address stochastic gradient search explicitly [41]. However, they
assume that the parties involved have large portions of the database, so their solution is
not applicable in our scenario.

Bonawitz et al. [15] address a similar problem setting where the goal is to compute a
secure sum in an efficient and robust manner. They also assume a semi-honest adversarial
model (with a limited set of potentially malicious behaviors by a server). However, their

solution requires a server and an all-to-all broadcast primitive even in the most efficient

94 6.2. ADVERSARIAL MODEL

version of their protocol. Our solution requires a linear number of messages only.

The algorithm of Ahmad and Khokhar is similar to ours [4], as they also use a tree
to aggregate values using homomorphic encryption. However, in their solution all the
nodes have the same public key and the private key is distributed over a subset of elite
nodes using secret sharing. The problem with this approach in our mini-batch gradient
descent application is that for each mini-batch a new key set has to be generated for the
group, which requires frequent access to a trusted server, otherwise the method is highly
vulnerable in the key generation phase. In our solution, all the nodes have their own
public/private key pair and no keys have to be shared at any point in time. What is more,
these key pairs may remain the same in every mini-batch the given node participates in
without compromising our security guarantees.

We need to mention the area of differential privacy [28], which is concerned with the
the problem that the (perhaps securely computed) output itself might contain information
about individual records. The approach is that a carefully designed noise term is added to
the output. Gradient search has been addressed in this framework (for example, [88]). In
our distributed setup, this noise term can be computed in a distributed and secure way [29].

We also strongly build on our previous work [23]. There, we proposed an algorithm
very similar to the one presented here. In this study we offer several optimizations of
the algorithm and we propose the binomial topology for building the mini-batch overlay
tree. We also explore the issue of gradient compression necessary for keeping the cost of
cryptography under control and we perform a detailed experimental study of the algorithm

based on a smartphone churn trace.

6.2 Adversarial model

We assume that the adversaries are honest but curious (or semi-honest). That is, nodes
corrupted by an adversary will follow the protocol but the adversary can see the internal
state of the node. The goal of the adversary is to learn about the private data of other
nodes (note that the adversary can obviously see the private data on the node it observes
directly). Wiretapping is allowed, since all the sensitive messages in our protocol are
encrypted.

We assume a static adversarial model, which means that the corrupted nodes are
picked a priori, independently of the state of the protocol or the network. As of the

CHAPTER 6. MINI-BATCH GRADIENT DESCENT 95

number of corrupted nodes, we will consider the threshold model, in which at most a
given number of nodes are corrupted, as well as a probabilistic model, in which any node
can be corrupted with a given constant probability [75].

We also assume that adversaries are not able to manipulate the set of neighbors. In
each application domain this assumption translates to different requirements. For exam-
ple, if an overlay service is used to maintain the neighbors then this service has to be itself

Secure.

6.3 Our Solution

As explained previously, at each step, when a node receives a model to update, it coor-
dinates the distributed computation of a mini-batch gradient and then uses this gradient
to update the model. Based on the assumptions stated in Section 2.2, Section 6.2 and
building on the GOLF framework outlined in Section 2.3 we now present our algorithm

for computing a mini-batch gradient.

6.3.1 Mini-Batch Tree Topology

The very first step for computing a mini-batch gradient is to create a temporary group of
random nodes that form the mini-batch. In our decentralized environment we do this by
building a rooted overlay tree. The basic version of our algorithm will require the overlay

tree not only to be rooted at the node computing the gradient but also to be trunked.

Definition 3 (trunked tree). Any rooted tree is 1-trunked. For k > 1, a rooted tree is k-
trunked if the root has exactly one child node, and the corresponding subtree is a (k — 1)-

trunked tree.

Let N denote the intended size of the mini-batch group. We assume that N is sig-
nificantly less than the network size. Let S be a parameter that determines the desired
security level (N > § > 2). We can now state that we require an S -trunked tree rooted at
the node that is being visited by gossip learning. As we will see later, this is to prevent a
malicious root from collecting too much information.

Apart from the trunk, the tree can be arbitrary, but here we propose a binomial tree as
a preferable choice. If every node already in the tree spawns a new child node in periodic

rounds (starting from a single root node) then the result is a binomial tree. It is not possible

96 6.3. OUR SOLUTION

to construct a tree of a given size faster, since in the case of a binomial tree each node
keeps working continuously so the efficiency is maximal. Of course we assumed here that
child nodes can be added only sequentially at a given node. However, if we also assume
that all the nodes have the same up- and download bandwidth cap then adding nodes
in parallel will be proportionally slower thus parallelism provides no advantage as long
as we utilize the maximal available bandwidth. The same up- and download bandwidth
requirement is naturally satisfied in our application domain because we assume that the
protocol is allowed to use only a fixed, relatively small amount of bandwidth (such as
1 Mbps) and low bandwidth connections are excluded from the set of possible overlay
connections.

Another advantage of binomial trees is that we can use the links in reverse order of
construction for uploading and aggregating data along the tree. This way, we get a data
aggregation schedule that is similarly efficient and also collision-free in the sense that
each node communicates with at most one node at a given time.

The tree overlay network we have described so far can be constructed over a random
overlay network by first building the trunk (which takes a random walk of § —1 steps) and
then recursively constructing a binomial tree of depth D, resulting in an S -trunked tree of
size 2P + S — 1 and total depth d = D + S — 1. Every child node is chosen randomly from
those neighbors of the node that are both online and not in the tree already. No attention
needs to be paid to reliability. We generate the tree quickly and use it only once quickly.
Normally, some subtrees will be lost in the process because of churn but our algorithm
is designed to tolerate this. The effect of certain parameters, such as the binomial tree

parameter and node failures, will be discussed later in the evaluation.

6.3.2 Calculating the Gradient

The sum we want to calculate is over vectors of real numbers. Without loss of generality,
we discuss the one-dimensional case from now on for simplicity. Homomorphic encryp-
tion works over integers, to be precise, over the set of residue classes Z, for some large n.
For this reason we need to discretize the real interval that includes all possible sums we
might calculate, and we need to map the resulting discrete intervals to residue classes in
Zy, where M defines the granularity of the resolution of the discretization. This mapping

is natural and we do not go into details here. Since the gradient of the loss function for

CHAPTER 6. MINI-BATCH GRADIENT DESCENT 97

Algorithm 6.8 Fully distributed algorithm for computing a mini-batch gradient

procedure INiT
shares < new array[1..S]
fori — 1toS do
shares[i] < Encrypt(0, Ancestor(7))
end for
knownShare « 0
end procedure

procedure ONMESSAGERECEIVED(MmSg)
fori—1toS —1do
shares[i] < shares[i] ® msg[i + 1]
end for
knownShare « knownShare + Decrypt(msg[1])
end procedure

procedure ONNoOMOREMESSAGESEXPECTED
if IAmTheRoot() then
fori—1toS —1do
knownShare < knownShare + Decrypt(shares[i])
end for
Publish((knownShare + localValue) mod M)
else
randSum « 0
fori — 1toS —1do
rand <« Random(M)
randSum <« randSum + rand
shares[i] < shares[i] @ Encrypt(rand, Ancestor(7))
end for
knownShare < knownShare + localValue — randSum
shares[S] < Encrypt(knownShare mod M, Ancestor(S))
SendToParent(shares)
end if
end procedure

most learning algorithms is bounded, this is not a practical limitation. Also, in Section 6.5
we evaluate the effect of discretization on learning performance and we show that even an
extreme compression (discretizing the gradient down to two bits) is tolerable due to the

high robustness of the mini-batch gradient method itself.

In a nutshell, the basic idea of the algorithm is to divide the local value at each node

98 6.3. OUR SOLUTION

into S shares, encrypt these with asymmetric additively homomorphic encryption (such as
the Paillier cryptosystem), and send them to the root via the chain of ancestors. Although
the shares travel together, they are encrypted with the public keys of different ancestors.
Along the route, the arrays of shares are aggregated, and periodically re-encrypted. Fi-
nally, the root calculates the sum.

The algorithm consists of three procedures, shown in Algorithm 6.8. These are run
locally on the individual nodes. Procedure Init is called once after the node becomes part
of the tree. Here, the function call ANcesTor(i) returns the descriptor of the ith ancestor
on the path towards the root. The descriptor contains the necessary public keys as well.
During tree building this information can be given to each node so the nodes can look up
the keys of their ancestors locally. For the purposes of the ANcesTor function, the parent
of the root is defined to be itself. Function ENcrypT(x, y) encrypts the integer x with the
public key of node y using an asymmetric additively homomorphic cryptosystem.

Procedure ONMESsSAGERECEIVED is called whenever a message is received by the node.
A message contains an array of dimension S that contains shares encoded for the S closest
ancestors to the sender child. The first element (msg[1]) is thus encrypted for the current
node, so it can decrypt it. The rest of the shares are shifted down by one position and
added (with homomorphic encryption) to the local array of shares to be sent (operation
a ® b performs the homomorphic addition of the two encrypted integers a and b to get the
encrypted form of the sum of these integers). Note that the ith element (1 <i < S — 1) of
the array sHAREs is encrypted with the public key of the ith ancestor of the current node
and is used to aggregate a share of the sum of the subtree except the local value of the
current node. The Sth share is aggregated in variable KkKNOwWNSHARE unencrypted. The
value of share[S] is not modified in this method, it will be initialized using KNOWNSHARE
after all the child nodes that are alive have responded.

After all the shares have been processed, procedure ONNOMOREMESSAGESEXPECTED is
called. This happens when the node has received a message from all of its children, or
when the remaining children are considered to be dead by a failure detector. The timeout
used here has to take into account the depth of the given subtree and the maximal delay of
a message. In the case of leaf nodes, this procedure is called right after Inrt. When calling
ONNoMoreMEssAGESEXPECTED, we know that the ith element (1 <i < S — 1) of the array
SHARES already contains the ith share of the sum of the subtree rooted at the current node

(except the local value of the current) encrypted with the public key of the ith ancestor of

CHAPTER 6. MINI-BATCH GRADIENT DESCENT 99

the current node. We also know that KNOWNSHARE contains the S th share of the same sum
unencrypted.

Now, if the current node is the root then the elements of the received array are de-
crypted and summed. The root can decrypt all the elements because it is the parent of
itself, so all the elements are encrypted for the root when the message reaches it. Here,
DEecryPT(x) decrypts x using the private key of the current node. Function PuBLIsH(x)
announces x, the output of the algorithm; that is, the final unencrypted sum.

If the current node is not the root then the local value has to be added, and the Sth
element of the array has to be filled. First, the local value is split into S shares according
to the S -out-of-S secret-sharing scheme discussed in [75]: § — 1 out of the S shares are
uniformly distributed random integers between O and M—1. The last share is the difference
between the local value and the sum of the random numbers (mod M). This way, the sum
of shares equals the local value (mod M). Also, the sum of any non-empty proper subset
of these shares is uniformly distributed, therefore nothing can be learned about the local
value without knowing all the shares. Function Ranpom(x) returns a uniformly distributed
random integer in the range [0, x — 1].

The shares calculated this way are then encrypted and added to the corresponding
shares, and finally the remaining Sth share is encrypted with the public key of the Sth
ancestor and put into the end of the array. This array—which now contains the S shares

of the sum of the full sub-tree including the current node—is sent to the parent.

6.3.3 Working With Vectors

We now describe how to efficiently extend our method to vectors of discrete numbers, by
packaging multiple elements into a single block of encrypted data. Let us first calculate
the number of bits that are required to represent one vector element. Assume that the
elements of the input vectors are in the range [0,m]. This means that the elements of
the output vector fall in range [0, Nm], where N is the mini-batch (tree) size. That is,
M = Nm + 1. After applying the secret-sharing scheme on an input vector, the elements
of the resulting shares also fall in the range [0, Nm] due to the S -out-of-S secret-sharing
scheme we apply.

However, when working with homomorphic cryptography, we keep adding encrypted

shares together without performing the modulo operation that is required for the correct

100 6.3. OUR SOLUTION

decoding in our § -out-of-S secret-sharing scheme and for keeping the values in the range
[0, Nm]. Hence, we need a larger range to accommodate the sum of at most N shares
giving us the range of [0, N*m]. This means that [log,(1 + N?m)] bits are required per
element.

Using this many bits, we can simply concatenate the elements of a share together
to form a single bit vector before encryption. Homomorphic addition will result in the
corresponding elements being added together. After decryption, the vector can be restored
by splitting the bit vector, and element-wise modulo can be performed. This method can
be trivially extended to arrays of blocks of a desired size, by packaging the elements into

multiple blocks.

6.3.4 Practical Considerations and Optimizations

We stress again that if during the algorithm a child node never responds then its subtree
will be essentially missing (will have a sum of zero), but other than that the algorithm
will terminate normally. This is acceptable in our application, because for a mini-batch
we simply need the sum of any number of gradients, and this will not threaten the conver-
gence of the gradient descent algorithm.

The pseudocode discussed above describes a simple and basic version of our algorithm
that allows for optimizations to speed up execution. Execution time is important because a
shorter execution time allows less time for nodes to fail; in addition, the machine learning
algorithm will execute faster as well. A simple optimization is, for example, if, as part of
their initialization, all the nodes instantly start encrypting the S — 1 shares of their local
data with the public keys of its § — 1 closest ancestors.

Another optimization is the parallelization of encryption and sending. Note that en-
crypting data typically takes much longer than sending it; we will evaluate this in more
detail later on. Here, when calculating the message to send to the parent, the node im-
mediately sends the first encoded share to the parent (that is, the share that the parent can
decrypt) so that the parent can start working on the decryption. The node then sends all
the remaining shares except the S th share, while calculating its own encryption of the S th
share. Finally, when the encryption is ready, the node sends the S th share as well.

Also, consider that due to the binomial tree structure, all the leaves are created at

about the same time, so they will start to send their message to the parent at about the

CHAPTER 6. MINI-BATCH GRADIENT DESCENT 101

same time resulting in a more or less round-based aggregation protocol. This makes the
time complexity of one such aggregation round in which the aggregation moves up one
level (starting from the leaves) E + T + L, where E is the encryption/decryption time of
a share, T is the transmission time of an encrypted share, and L is the network latency
(assuming E+T > ST and that the cost of homomorphic addition is negligible). Note that
the actual algorithm does not rely on the existence of synchronized aggregation rounds. In
fact, in realistic environments these rounds often overlap if, for example, a node finishes
sooner due to losing its children. The rounds are merely an emergent property in reliable
environments, a side-effect of using binomial trees as our tree topology.

Another possibility for optimization is based on the observation that shares that would
be encrypted with the public keys of the ancestors of the root do not need to be encrypted

at all, so the root in fact performs only a single decryption.

6.3.5 Variants

Apart from optimizations, one can consider slightly modified versions of the algorithm
that can be useful for trading off security and robustness or that allow for a minimal
involvement of a central server.

The first variation—that we will actually utilize during our evaluation in Section 6.6—
is setting a lower bound on the size of the subtree that we accept. Indeed, we have to be
careful when publishing a sum based on too few participants. Let us denote by R the
minimal required number of actual participants (S < R < N). Let the nodes pad their
messages with an (unencrypted) integer n indicating the number of nodes its data is based
on. When the node exactly S — 1 steps away from the root (thus in the trunk) is about
to send its message, it checks whether n + S — 1 > R holds (since the remaining nodes
towards the root have no children except the one on this path). If not, it sends a failure
message instead. The nodes fewer than S — 1 steps away from the root transmit a failure
message if they receive one, or if they fail to receive any messages. This way, no nodes
can decode the sum of a set that is not large enough.

On a different issue: one can ask the question whether the trunk is needed, as the
protocol can be executed on any tree unmodified. However, having no trunk makes it
easier to steal information about subtrees close to the root. If the tree is well-balanced and

the probability of failure is small, these subtrees can be large enough for the stolen partial

102 6.4. ANALYSIS

sums to not pose a practical privacy problem in certain applications. The advantages
include a simpler topology, a faster running time, and increased robustness.

Another option is to replace the top S — 1 nodes with a central server. To be more
precise, we can have a server simulate the top S — 1 nodes with the local values of these
nodes set to zero. This server acts as the root of a 2-trunked tree. From a security point
of view, if the server is corrupted by a semi-honest adversary, we have the same situation
when the top S — 1 nodes are corrupted by the same adversary. As we have shown in
Section 6.4.1, one needs to corrupt at least S nodes in a chain to gain any extra advantage,
so on its own the server is not able to obtain extra information other than the global sum.
Also, the server does not need more computational capacity or bandwidth than the other
nodes. This variation can be combined with the size propagation technique described

above. Here, the child of the server can check whether n > R holds.

6.4 Analysis

We first consider the level of security that our solution provides, and we also characterize

the complexity of the algorithm.

6.4.1 Security

To steal information, i.e. to learn the sum over a subtree, the adversary needs to catch
and decrypt all the S shares of the corresponding message that was sent by the root of
the subtree in question. Recall that if the adversary decrypts less than S shares from any
message, it still has only a uniform random value due to our construction. To be more
precise, to completely decrypt a message sent to node c;, the adversary needs to corrupt
cy; and all its § — 1 closest ancestors, denoted by ¢, .., cs, so he can obtain the necessary
private keys.

The only situation when the shares of a message are not encrypted with the public keys
of § different nodes—and hence when less than § nodes are sufficient to be corrupted—is
when the distance of the sender from the root is less than S. In this case, the sender node
is located in the trunk of the tree. However, decrypting such a message does not yield any
more information than what can be calculated from the (public) result of the protocol and

the local values (gradients) of the nodes needed to be corrupted for the decryption. This

CHAPTER 6. MINI-BATCH GRADIENT DESCENT 103

is because in the trunk the sender of the message in question is surely the only child of
the first corrupted node, and the message represents the sum of the local values of all the
nodes, except for the ones needed to be corrupted. To put it in a different way, corrupting
less than S nodes never gives more leverage than learning the private data of the corrupted
nodes only.

Therefore, the only way to steal extra information (other than the local values of the
corrupted nodes) is to form a continuous chain of corrupted nodes c, .., cs towards the
root, where c;,; is the parent of ¢;. This makes it possible to steal the partial sums of the
subtrees rooted at the children of ¢;. For this reason we now focus only on the N — §
vulnerable subtrees not rooted in the trunk.

As a consequence, a threshold adversary cannot steal information if he corrupts at
most S — 1 nodes. A probabilistic adversary that corrupts each node with probability
p can steal the exact partial sum of a given subtree whose root is not corrupted with
probability p°.

Even if the sum of a given subtree is not stolen, some information can be learned
about it by stealing the sums of other subtrees. However, this information is limited, as

demonstrated by the following theorem.

Theorem 1. The private value of a node that is not corrupted cannot be exactly deter-
mined by the adversary as long as at least one of the S closest ancestors of the node is

not corrupted.

Proof. Let us denote by ¢ the target node, and by u the closest ancestor of ¢ that is not
corrupted. The message sent by 7 cannot be decrypted by the adversary, because one of its
shares is encrypted to u (because u is one of the S closest ancestors of 7). The same holds
for all the nodes between ¢ and u. Therefore the smallest subtree that contains t and whose
sum can be stolen also contains u. Due to the nested nature of subtrees, bigger subtrees
that contains ¢ also contains u as well. Also, any subtree that contains u also contains ¢
(since t is the descendant of). Therefore u and 7 cannot be separated. Even if every other
node is corrupted in the subtree whose sum is stolen, only the sum of the private values

of u and ¢ can be determined. O

Therefore p® is also an upper bound on the probability of stealing the exact private

value of a given node that is not corrupted.

104 6.5. COMPRESSING THE GRADIENT

6.4.2 Complexity

In a tree with a maximal branching factor of B each node sends only one message, and
receives at most B. The length of a message (which is an array of S encrypted integers)
is O(S C), where C is the length of the encrypted form of an integer. Let us now elaborate
on C. First, as stated before, the sum is represented on O(log M) bits, where M is a design
choice defining the precision of the fixed point representation of the real values. Let us
assume for now that we use the Paillier cryptosystem [83]. In this case, we need to set the
parameters of our cryptosystem in such a way that the largest number it can represent is
no less than n = min(B® M, NM), which is the upper bound of any share being computed
by the algorithm (assuming B > 2). In the Paillier cryptosystem the ciphertext for this

parameter setting has an upper bound of O(n?) for a single share. Since
S logn® = S logmin(B* M, NM)* < 2(S*log B + S log M), (6.1)

the number of bits required is O(S?log B + S log M).
The computational complexity is O(BS E) per node, where E is the cost of encryption,

decryption, or homomorphic addition. All these three operations boil down to one or
two exponentiations in modular arithmetic in the Paillier cryptosystem. Note that this is
independent of N.

The time complexity of the protocol is proportional to the depth of the tree. If the tree
is balanced, this results in § + O(logN) steps altogether.

6.5 Compressing the Gradient

As mentioned in Section 6.3.2, it is essential that we compress the gradient because in a
realistic machine learning problem there are at least a few hundred parameters, often a lot
more. Encoding and decoding this many floating point numbers with full precision can be
prohibitively expensive for our protocol, especially on a mobile device. For this reason,
we evaluated the effect of gradient compression on the performance of gradient descent
learning. Similar techniques have been used before in a slightly different context [56].
Let us first introduce the exact algorithms and learning tasks we used for this evalu-
ation. As for the learning tasks, we used two data sets. The first is the Spambase binary
classification data set from the UCI repository[7], which consists of 4601 records with 57

features. Each of these records belongs to an email that was classified either as spam or

CHAPTER 6. MINI-BATCH GRADIENT DESCENT 105

as a regular email. The features that represent a piece of email are based on, for example,
word and character frequencies or the length of capital letter sequences within the email.
39.4% of the records are positive examples. 10% of the records were reserved for testing.
Each node had one record resulting in a network size of 4140, the remaining part of the
data set (461 records) was used for testing. The second dataset we used was based on
Reuters articles.! It contains 1000 positive and 1000 negative examples, with 600 addi-
tional examples used for testing. The examples have 9947 features. The dataset contains
Reuters articles and the task is to decide whether a given document is about “corporate
acquisitions” or not. The documents are represented by word stem feature vectors, where
each feature corresponds to the occurrence of a word. Hence, the representation is very

high-dimensional and sparse (that is, each vector contains mostly zeros).

We tested two machine learning algorithms. The first is logistic regression [14]. We

used the L2-regularized logistic regression online update rule

t n
—w+ —(p— 6.2
e t+1(p X (0:2)
where w is the weight vector of the model, ¢ is the number of samples seen by the model
(not including the new one), x is the feature vector of the training example, y is the correct
label (1 or 0), p is the prediction of the model (probability of the label being 1), and 7 is

the learning parameter. We generalize this rule to mini-batches of size E as follows:

t

W w
t+ E

E
n
e ;@, YOX; (6.3)

where (y; — p;)x; is supposed to be calculated by the individual nodes, and summed using
Algorithm 6.8. After the update, 7 is increased by E instead of 1. 7 was set to 10°.
The second algorithm was linear SVM [95]. The setup is very similar to that of logistic

regression, only the batch update rule we used is

t

W w
t+ E

E
n T
+ T E ;[)’iw x; < 1yix;, (6.4)

where [-] is the Iverson bracket notation (1 if its parameter is true, otherwise 0). Here y is

'http://download.joachims.org/svm_light/examples/examplel.tar.gz

http://download.joachims.org/svm_light/examples/example1.tar.gz

106 6.5. COMPRESSING THE GRADIENT

LogReg on Reuters data set SVM on Reuters data set
1 1
09 | 0.9
508 508
£ g
3 3 SGD
<07 <07 C-SGD ,
BGD (E=10) m—
C-BGD (E=10) =
| | BGD (E=50) |
0o /N 06 C-BGD (E=50) ==
/\/ J BGD (E=100) BGD (E=100) —
-BGD (E=100) C-BGD (E=100) ===
0.5 - 0.5 -
1 10 100 1000 10000 1 10 100 1000 10000
used training examples # used training examples
LogReg on Spambase data set SVM on Spambase data set
1 1
09 | 0.9
2 0.8 Y 0.8
3 3 SGD =—
<07 <07 C-SGD ,
BGD (E=10) m—
BGD (E=10) = C-BGD (E=10) =
0.6 46, GD (E=50) e 0.6 BGD (E=50) |
: ,‘ ("BGD (E=50) s : C-BGD (E=50) s
p (\y BGD (E=100) m— /_J BGD (E=100) —
05 J \! -BGD (E=100) === 05)) C-BGD (E=100) =
T 10 100 1000 10000 100000 T 10 100 1000 10000 100000
used training examples # used training examples

Figure 6.1. Classification accuracy of the compressed gradient update on the data sets with various
batch sizes.

the correct label as before, however, now y € {—1, +1}.

The compression method we used was the following. All the individual gradients
within the mini-batch were computed using a 32-bit floating point representation. These
gradients were then quantized by mapping each attribute to one of only three possible val-
ues: 1, 0 and -1. This mapping was achieved by stochastic quantization. The quantized
value requires only 2 bits to encode, a dramatic compression compared to the original
floating point representation of 32 bits. In fact, since we have only three levels, theo-
retically only a trit is needed for the encoding. We exploit this fact when summing the
gradients: the upper bound of the sum of trits (represented on two bits) is lower than the
sum of two-bit values. These compressed gradients were then used in equations (6.3)

and (6.4) where no further compression is applied.

We ran experiments with all the four possible combinations of learning algorithms and

datasets, using four different batch sizes: £ = 1, 10, 50, and 100. The results are shown

CHAPTER 6. MINI-BATCH GRADIENT DESCENT 107

in Figure 6.1. The figure shows how the classification accuracy evolves as a function of
the number of training examples seen. Accuracy is the proportion of correctly classified
instances; that is, the sum of the number of the true positive and the true negative test
examples divided by the size of the test set. The databases are well balanced with respect
to the class labels, making this metric adequate. The compressed versions are indicated
by the “C-” prefix. It is clear that in these experiments there is virtually no difference be-
tween the compressed and original versions. This result is quite striking, and is probably
explained by the fact that mini-batch gradients still contain a lot of noise compared to the
full gradient even if they are computed exactly.

In the following, we assume that gradient attributes can be safely encoded in two bits

only.

6.6 Experimental Evaluation

In this section, our goal is to demonstrate that the decentralized secure mini-batch gradient
search we proposed is practically viable; that is, the running time in a real system with
realistic parameters is acceptable and the learning algorithm offers a good performance
under realistic failure conditions.

Recall that the solution we proposed consists of three components. The first is the
overlay tree building algorithm, which defines the mini-batches. The second is the secure
sum computation algorithm, which assumes that an overlay tree is given. The third is
the applied machine learning algorithm. These three components are modular, different
solutions for any of these components can be combined.

We exploit this modularity in our experimental evaluation. First, for each scenario
we determine the time that is needed to encrypt and decrypt the messages defined by
our secure sum protocol based on the Paillier cryptosystem. We then plug these values
into a simulation of the tree building and aggregation protocols under realistic network
and failure conditions. The end result of this simulation is a series of mini-batch sizes
that are defined by the effective tree-sizes we observe, along with a time-stamp for each
mini-batch that depends on the simulated duration of the secure mini-batch gradient com-
putation. Finally, we use these series of mini-batch sizes as well as their timing to assess
the performance of the machine learning algorithm in our system. This is possible, be-

cause the only important factor for machine learning is the effective size of the tree in

108 6.6. EXPERIMENTAL EVALUATION

Table 6.1. Parameter setups for realistic simulations. Time consumption of the protocol. Rate of
allowed trees based on distributions.

Parameter setups Time consumption (seconds) Results
S #featureD max bits key blocksmessage | encrypt send encrypt one overall | prob.
f) tree per size rﬁ} size to /de- plain- S -1 aggre- time of of
size fea- (n) - parent crypt text shares gation mini- good
(N) ture S Zn[ﬁ 1 a model round batch tree
() n | block
4 19 10 1024 1 8192 0.041 0.103 0.123 0.143 1.847 0.999
102 2048 1 16384 0.300 0.103 0.900 0.404 4.451 0.997
6 6 14 1024 2 16384 0.041 0.103 0.246 0.186 2.850 0.997
2048 1 16384 0.300 0.103 0.900 0.404 5.466 0.996
4
4 19 10 1024 99 811008 0.041 0.420 12.177 4362 45.649 0.969
104 2048 50 819200 0.300 0.420 45.000 15.305 155.074 0.904
6 6 14 1024 137 1122304 0.041 0.420 16.851 5.998 74.609 0.951

2048 69 1130496 0.300 0.420 62.100 21.083 255.624 0.850

each step. We assume that each tree defines a uniform random subset, which is a good
approximation if the underlying overlay network is random.

To model the network required for simulating the tree building protocol, we used a real
trace of smartphone user behavior. The rest of the parameters defining the computational
cost and network utilization were set based on realistic examples. We used PeerSim [79]

for our simulations.

6.6.1 Time Consumption

As mentioned above, we first describe the time consumption of the most important oper-
ations in our protocol. In order to do this, we carefully have to consider the size of each
message that is transmitted and the time needed for encrypting and decrypting these mes-
sages. We performed these calculations in a number of scenarios with different parameters
that represent interesting use cases. The different scenarios as well as the corresponding
message sizes and the amount of time needed to complete a number of different tasks are

shown in Table 6.1. In the following we explain these scenarios and the computed values

CHAPTER 6. MINI-BATCH GRADIENT DESCENT 109

within these scenarios in detail.

For all the trees that we would like to build we fix § = 4, as indicated in the first
column. This is our security parameter, introduced in Section 6.3.1. The value of § =
4 represents a good tradeoff between efficiency and the offered level of security. The
binomial tree parameter D (the number of rounds used to build the tree) was set to 4 or 6,
giving us the maximum tree sizes of 19 and 67, computed by the formula N = 2P +§ -1,
which was explained in detail in Section 6.3.1. The motivation for these settings is that our
preliminary experiments with our machine-learning application told us that increasing the
mini-batch size beyond 67 is not beneficial. The lower value of 19 is motivated by the fact
that smaller trees do not offer a sufficient level of privacy, since the sum is computed based
on too few nodes. Also, in a very small tree, the trunk represents a considerable proportion
of the tree, which limits the possibilities for parallelization; hence the efficiency is not

ideal.

The number of features in the learning problem was modeled to be 100 or 10,000. This
setting accommodates the number of features in our datasets that are 57 for the Spambase
dataset and 9947 for the Reuters dataset (see Section 6.5). Note that we rounded the
number up to the closest power of 10 so that we have a 100 times scaling factor, which

makes comparison more intuitive.

Based on the tree size N and the quantization parameter m, we can compute the num-
ber of bits (b) needed to represent a share of one element of the secret-shared gradient vec-
tor. As explained in Section 6.3.3 in detail, the formula is given by b = [log,(1 + N’m)].
We used m = 2 based on our results on compressing the gradient vector in Section 6.5.
The next column shows the key size (or block size) n, a parameter for the Paillier cryp-
tosystem that defines the level of security. We examine the common values 1024 and

2048. Note that 2048 is currently recommended for sufficient security?.

Based on the parameters we have already defined, we can now compute the number
of blocks to be encoded per gradient share: [%]. Finally, let us compute the message size
to be sent by a node in the tree to its parent. According to the protocol, this message is
composed of the S encrypted shares of the compressed gradient. The size of the message
is § ZnF%] bits. This is due to the fact that the size of an encrypted block is 2n, and we
need [%1 blocks per share.

’https://www.keylength.com/

https://www.keylength.com/

110 6.6. EXPERIMENTAL EVALUATION

We have now computed almost all the values necessary to determine the time con-
sumption of some important operations of the protocol. The last bit of information re-
quired for that is the time consumption of encoding a single block. The Paillier encryption
and decryption time of a block is experimentally measured using an unoptimized Java im-
plementation based on Biglntegers on a real Android device (Samsung SM-T280). This
can be considered a worst case scenario because the implementation we used has a lot of
room for optimization and the device itself is not an up-to-date model. Both the encryp-
tion and decryption take 0.041 s with a 1024 bit key and 0.300 s with a 2048 bit key.

Sending the model in plaintext from the parent to the child is required when building
the tree. We assume single precision floating-point arithmetic (32 bits) so the sizes of the
linear models are 3,200 bit and 320,000 bit for 100 and 10,000 features, respectively. The
actual sending time is given by the 1 Mbps bandwidth we allow between online nodes
and assuming a 100 ms latency. After receiving the model in plaintext the node instantly
starts encrypting S — 1 shares as discussed in Section 6.3.4. This takes S — 1 times the
encryption time of all the required blocks. The computed values are shown in Table 6.1.

The next column shows the time of one aggregation round, that is, the time needed
for a child node to propagate information up to the parent. In Section 6.3.4 we described
a number of variants of the protocol that involve different optimizations compared to the
basic variant. Here, we assume the variant, in which children in the tree start encrypting
their share while they simultaneously upload the other S — 1 shares to their parents. In all
our scenarios uploading § — 1 shares is faster than encrypting one share. This means that
the time needed for one aggregation round is the time of encoding one share plus the time
of uploading this share (which consists of transmission time and network latency). The
column indicating the time needed for one aggregation round shows this value for each
parameter setting.

The column that corresponds to the overall mini-batch time sums up all the required
times for completing the mini-batch, assuming the network is error free. This involves
sending the plain text model to the children down the tree during tree building as well as
the aggregation rounds up to the root. These operations are performed for each level of
the tree; note that the depth of the whole tree is D + § — 1. The time of encoding § — 1
shares also needs to be added because the leaves must first complete this encoding before
starting the first aggregation round. If nodes can fail, in an actual run these times may
be slightly longer because of the delay introduced by the failure detector, but they may

CHAPTER 6. MINI-BATCH GRADIENT DESCENT 111

n=1024 m—
n=2048 m—

0.1 F

0.01

Rate

0.001 F

0.0001

1234567 8910111213141516171819
Batch size

n=1024 m—
n=2048 mm——

0.1 F

Rate

0.01 f

0.001 f

0.0001

—=IWRAUNNIO

Figure 6.2. Distribution of effective mini-batch sizes for scenario of 10,000 features. The his-
tograms have a logarithmic scale.

also be slightly shorter, due to a smaller tree. Our simulations account for these effects.
Note that we ignored the time consumption of the single gradient update step that has to
be performed as well at every node. This is because the encryption operation is orders of

magnitude slower than the gradient update.

6.6.2 Simulating Tree Building

All of our experiments were run on top of the churn trace described in Section 3.3. Here,
we should mention that we can simulate the case where a participating phone is required
to have at least a certain battery level. From the point of view of churn, though, the worst
case is when when phones with any battery level are allowed to join, because this results
in a more dynamic scenario. The network size was 100,000. The membership overlay

network was implemented by independently assigning 100 randomly selected outgoing

112 6.6. EXPERIMENTAL EVALUATION

LogReg on Reuters data set SVM on Reuters data set
1 1
0.9 0.9
> 0.8 038
= =1
S 8
<07 <07
SGD —— SGD ——
0.6 C-GD (19, 1024)] 06 F C-GD (19, 1024) m—]
‘ CGD (19, 2018) — ' C-GD (19, 2048
os ‘ C-GD (67, 2048) =—— 0s ‘ C-GD (67, 2048) =—
" 100 1000 10000 “100 1000 10000
Time in Seconds Time in Seconds
LogReg on Spambase data set SVM on Spambase data set
1 1
09 09
> 0.8 038
<07 <07
SGD —— SGD ——
0.6 C-GD (19, 1024) e] 0.6 C-GD (19, 1024) me—
‘ CGD (19, 2018) — ' CLGD (19, 2048
os ‘ | C-GD (67, 2048) =— 0s ‘ . C-GD (67, 2048) =——
10 100 1000 10000 10 100 1000 10000
Time in Seconds Time in Seconds

Figure 6.3. Classification accuracy of the compressed gradient update on the data sets based on
trace-based simulation. We vary the key size (1024 or 2048) and maximum tree size (19 or 67).

neighbors to each node and then dropping the directionality of the links. This network
forms the basis of tree building, the tree neighbors are selected from these nodes. We
assume that each node maintains an active TCP connection with its neighbors as suggested
in [91]. If a node fails, its neighbors will detect this only with a one second delay. The
neighbor set is constant in our simulations; that is, when a neighbor fails it remains on
the list and it is reconnected when it comes back online. The size of our neighbor set was

large enough for the overlay network to remain connected.

Initially a random online node is picked from the network at time 0:00 and we simu-
late building the first tree using that node as root. This simulation involves building the
tree and propagating the aggregated gradient up to the root, simulated based on the time
consumption of these operations described previously. When this is completed, we pick a
new random node that is online at the time of finishing the first mini-batch and simulate a

new mini-batch round. We repeat this procedure until the end of the simulated day. With

CHAPTER 6. MINI-BATCH GRADIENT DESCENT 113

this methodology, we record the effective mini-batch sizes (which determines the number
of gradients the sum of which the root actually received) and we examine the distribution

of these effective mini-batch sizes.

The empirical distributions of the effective mini-batch sizes for the case of 10,000
features are shown in Figure 6.2. In every scenario we simulated a sample of at least
15,000 tree building attempts. The figure shows the histograms based on these samples.
The histograms use a logarithmic scale to better illustrate the structure of the distribution.
However, note that most of the probability mass belongs to the largest effective sizes.
For 100 features almost all the trees are complete due to the very quick building times
(not shown). The relatively high probability mass for tree sizes 1, 2 and 3 are due to the
vulnerability of the trunk.

In our experiments, we used the variant of the protocol that limits the effective tree
size from below, as explained in Section 6.3.5. We accepted a mini-batch for gradient
update only if its size was greater than or equal to L%J. The reason is that smaller trees
represent reduced privacy. We call such trees a “good tree”. The last column of Table 6.1
contains the probability of getting a good tree. Clearly, only a very small proportion of

tree building attempts are unsuccessful.

6.6.3 Machine Learning Results

We now present our results with the actual learning tasks. The setup for the learning
problems is identical to that presented in Section 6.5. The only difference is that now the
batch sizes used in each update step are variable and depend on the effective batch size
that is obtained in our tree building simulation based on the smartphone trace, and the
time needed to complete a given mini-batch is also given by the output of the simulation.
The results are shown in Figure 6.3. Note that the horizontal axis of the plots now shows
the time, covering one full day. It is clear that the main factor for convergence speed is
the encryption key size, with 2048 being significantly slower than 1024. This could be
expected based on Table 6.1 as well. We see that our example learning tasks can converge

within one day, which is adequate for many practically interesting learning problems.

114 6.7. CONCLUSION

6.7 Conclusion

We proposed a secure sum protocol to prevent the collusion attack in gossip learning. The
main idea is that instead of SGD we implement a mini-batch method and the sum within
the mini-batch is calculated using our novel secure algorithm. We can achieve high levels
of robustness and good scalability in our tree building protocol through exploiting the
fact that the mini-batch gradient algorithm does not require the sum to be precise. The
algorithm runs in logarithmic time and it is designed to calculate a partial sum in case of
node failures. It can tolerate collusion unless there are S consecutive colluding nodes on
any path to the root of the aggregation tree, where S is a free parameter. The algorithm is
completely local therefore it has the same time-complexity independently of the network
size.

We evaluated the protocol in realistic simulations where we took into account the
time needed for encryption and message transmission, and we used a real smartphone
trace to simulate churn. We demonstrated on a number of learning tasks that the approach
is indeed practically viable even with a key size of 2048. We also demonstrated that
the gradients can be compressed by an order of magnitude without sacrificing prediction

accuracy.

Contribution

In this chapter, most of the above-presented results rely heavily on the achievements of
Gabor Danner. His work includes a robust secure sum protocol and a theoretical proof
about its capability of preventing the collusion attack. The fully distributed mini-batch
gradient descent that relies on the construction of a k-long-trunked binomial overlay tree
is based on the secure sum protocol that was also developed by Gabor Danner. Here, it
was crucial to demonstrate that the proposed overlay tree building is practically viable.
Accordingly, the author of this dissertation performed a detailed empirical evaluation on
top of the smartphone churn trace. This result has led to further progress in understanding

the smartphone trace that was described in Chapter 3.

CHAPTER 7

Summary

The main aim of the thesis was to tackle a number of diverse problems on mobile gossip
learning in order to make gossip learning more suitable for performing distributed data
mining. In this chapter, we give a brief summary of each chapter (chapters 3-6). At
the end of each section the results that the author regards as his main contributions are

presented in an itemized list.

7.1 Smartphone Trace

We proposed a real smartphone trace for simulating fully distributed protocols. The pre-
sented trace was collected by a locally developed Android app. We highlighted the trace
main properties, and we examined its free parameter about battery-related requirements.
Accordingly, we can obtain two significantly different simulation scenarios. In the worst
case churn scenario, we can state the expectation for a participant smartphone having at
least a certain battery level. In another approach, we expect the device to be on charger
for a more user and phone friendly scenario. We also proposed a time-inhomogeneous
Markovian model based on the collected data in which the conditional probability distri-

butions of session lengths are captured by a set of the actual observations in the data that

116 7.2. DIMENSION REDUCTION METHODS

we resample when creating synthetic traces of users to model churn. We found that the
model captures observed availability as well as the behavior of push-pull gossip broadcast.
Since the initial release of our data collection app, we have collected a very large trace
involving millions of individual measurements. We took great care to clean this data. We
proposed a method to correct failed NAT measurements. We extended the application to
collect data related to direct P2P capabilities based on a basic WebRTC implementation.

Then, we presented a brief introduction on its base statistics and properties.

The main contributions of the author are
e A trace for simulating realistic smartphone churn.
e An introduction on the base statistics and properties of a smartphone trace.
e A time-inhomogeneous Markovian model as an alternative to simulating churn.

e A data cleansing method to correct failed NAT measurements.

7.2 Dimension Reduction Methods

Here, we presented a fully distributed algorithm for selecting a good random projection
and a gossip-based fully distributed robust SVD algorithm that can be used to reduce
the dimensionality of a machine learning problem. We also proposed a hybrid approach
which combines random projection selection with a fully distributed SVD solver. We
evaluated these algorithms over a real smartphone trace and we took into account the
energy problem in mobile computing. We conclude that the proposed random projection
selection algorithm is very fast and efficient, but the quality of the dimension reduction
is slightly lower than that of SVD. However, the SVD algorithm converges in a time
proportional to the original dimensionality of the problem, which can be quite slow. Our
hybrid approach combines the advantages of the two approaches and it can provide a good

quality dimension reduction, independently of the time available for convergence.

The main contributions of the author are:

e An algorithm that builds on searching for good random projections.

CHAPTER 7. SUMMARY 117

e A hybrid method that combines the advantages of random projections and SVD.

e The proposed methods on dimension reduction were evaluated in a comparative

study.

7.3 Management of Random Walks

Here, we introduced two random walk management services with quite different goals.
Both our presented studies are based on gossip learning and evaluated over a real smart-
phone trace.

We proposed the Single Random Walk Service for a differentially private random
walk management. It relies on maintaining a very small shared state through gossip. The
approach is fully decentralized and only incurs a relatively small overhead if the random
walk has a large state. We proposed to implement SGD on top of this. Hence, every
data record is visited only a limited number of times and this keeps the privacy budget
low. We demonstrated that the proposed method is agile, efficient and long-lived. We
found that the protocol is robust to its main parameter and we obtained an acceptable
performance even in an unrealistic, extreme scenario. We also presented the Multiple
Random Walk Service to maintain O(n) random walks over an overlay network, where
the random walks represent independent decentralized tasks that might belong to different
users. The protocol follows a three-level design where problems not solved at a lower
level get escalated to the next level. We demonstrated that in all the scenarios we tested
the vast majority of failures are dealt with at the lowest level, which is purely local and
therefore scalable. Only a small fraction of the problems get escalated to level two, which
is based on a broadcast primitive that has a small overhead. Level three, the central control
by the task owner, was reached only a few times. We also demonstrated that the speed of

the random walks is close to optimal.

The main contributions of the author are:
e A method for managing a single random walk.

e A method for managing multiple random walks.

118 7.4. MINI-BATCH GRADIENT DESCENT

7.4 Mini-Batch Gradient Descent

We proposed a secure sum protocol to prevent the collusion attack in gossip learning. The
main idea is that we implement a mini-batch method and the sum within the mini-batch
is calculated using our novel secure algorithm. We can achieve high levels of robustness
and good scalability in our tree building protocol by exploiting the fact that the mini-batch
gradient algorithm does not require the sum to be precise. The algorithm runs in logarith-
mic time and it has to calculate a partial sum in the case of node failures. It can tolerate
collusion unless there are S consecutive colluding nodes on any path to the root of the
aggregation tree, where S is a free parameter. The algorithm is completely local therefore
it has the same time-complexity independently of the network size. We evaluated the pro-
tocol in realistic simulations where we took into account the time needed for encryption
and message transmission, and we used a real smartphone trace to simulate churn. We
demonstrated on a number of learning tasks that the approach is indeed practically viable.
We also demonstrated that the gradients can be compressed by an order of magnitude

without sacrificing prediction accuracy.

The main contribution of the author is:

e The empirical evaluation of a fully distributed mini-batch gradient descent that is
based on a secure sum protocol and the construction of a k-long-trunked binomial

overlay tree on top of the smartphone trace.

CHAPTER 8

Osszefoglald

A tézis 16 célkitlizéseként szamos, valtozatos okostelefonos pletykaalapu tanuldsi problé-
madra mutattunk be robusztus mddszereket annak érdekében, hogy a pletykaalapu tanulds
még kedvezGbb alternativdja legyen a jelenleg alkalmazott, kozponti szerveren torténd
adatbdnydszatnak. Az aldbbiakban roviden 0sszefoglaljuk az eredményeket, majd min-
den fejezet végén kiemeljiik azokat az eredményeket, amelyeket a szerzd a sajat hozzaja-

rulasanak tekint.

8.1 Okostelefonos trace

A teljesen elosztott protokollok kiértékeléséhez mutattunk be egy valds okostelefonos
felhaszndl6i viselkedési adatokon alapul6 trace-t. Az ehhez sziikséges adatokat egy sajat
fejlesztésli Android alkalmazas segitségével gy(jtottiik ossze. A fejezetben részletesen
kiemeltiik a trace f6bb jellemzdit. Megvizsgaltuk az akkumulator toltottséggel kapcsola-
tos szabad paraméterét. Ennek deklarédldsa alapjan két jelentsen kiilonbdz forgatokonyv
szimulalhat6. A fel- és lekapcsoldddsok szempontjdbol legdinamikusabb forgatokonyvet
akkor érhetjiik el, ha nem szabunk meg semmilyen feltételt a toltottséggel kapcsolatban.

Ezzel szemben ha késziilék- és felhasznéldbarét elosztott alkalmazds mogott allé pro-

120 8.2. DIMENZIOCSOKKENTO MODSZEREK

tokollok kiértékelését szeretnénk elvégezni, akkor csak olyankor tekintiink egy eszkozt
elérhetdnek, ha a tolt6hoz és a halézathoz is kapcsolédva van. Ezen feliil bemutattunk
egy idében inhomogén Markov-modellt, amely alternativaja lehet a le- és felcsatlakoza-
sok szimuldci6janak, és amely szintén az okostelefonos alkalmazds altal gy(jtott ada-
tokon alapul. Ennek elérése érdekében megvizsgaltuk az elérhet6ségi dllapotok hossza-
nak a feltételes valdszintiségi eloszlasait az el6z6 dllapot hossza illetve az aktudlis nap-
szak fliggvényében. A megfigyelt eloszlds djramintavételezésével szintetikus trace-t hoz-
tunk létre a felhasznalok viselkedésérdl. Az adatgyijtoé alkalmazds megjelenése Gta tobb
millié adatrekord gyilt ossze. Ilyen mértékdi adatmennyiség esetén fontos volt, hogy
figyelmet forditsunk a megfeleld adattisztitdsra. Javasoltunk egy mddszert, amely javi-
tani tud a hibds NAT méréseken. Bemutattuk az ajanldsainkat az évek sordn lezajlott
adatgyjtés tanulsdgai alapjan. Tovabba kiegészitettiik az adatgydjtést tényleges P2P
kapcsolat-kiépitési probalkozds mérésével. Ezekrdl jol érthetd, tomor leirdst €s alapvetd

statisztikdkat is kozoltiink.
A szerzo6 kapcsolodo fobb eredményei:
e Val6s okostelefon-felhasznaldi szokdsokon alapulé trace a le- és felkapcsoléddsok
szimuldcidjara.
e Az okostelfonos trace jellemzése és alapvetd statisztikdk bemutatésa.

e [d6ben inhomogén Markov-modell a le- és felkapcsoléddsok szimuldcidjara.

o Adattisztito eljards hibas NAT mérések javitasara.

8.2 Dimenziocsokkentd modszerek

Ebben a fejezetben jo véletlen projekcidés matrix kivdlasztasdn alapuld teljesen elosztott
modszert mutattunk be. Ezen feliil bemutattunk egy pletykaalapu teljesen elosztott SVD
metddust gépi tanuldsi problémdk dimenzidjanak csokkentésére. Tovabba bemutattunk
egy hibrid mddszert is, amely 6tvozi az el6bbi kettd eldnyeit. Kiértékeltiik ezeket a mod-
szereket okostelefonos trace-en alapuld szimuldcidk révén, tobb kdzismert tanité halma-
zon. Ezek soran arra jutottunk, hogy a véletlen projekcidk koziil valaszté médszer gyors

és hatékony, de mindségi szempontbdl az SVD valamivel elorébb tart. Ugyanakkor az

CHAPTER 8. OSSZEFOGLALO 121

SVD szamara nagysagrendekkel tobb id6re van sziikség a konvergencia eléréséhez, min-
daddig pedig elmarad a teljesitménye. A hibrid mddszeriink azonnal elfogadhat6 teljesit-
ményt tud nyujtani, majd az SVD konvergencidjaval kozel azonos idGben javitani tud a

kezdeti teljesitményén. Tehat a legtobb idépontban kiemelkedd teljesitményre képes.
A szerzo kapcsol6dé fobb eredményei:
e Egy olyan elosztott algoritmus, amely a legjobb véletlen projekcidés matrixot keresi.

e Egy hibrid algoritmus, amely egyesiti az el6nyeit a véletlen projekciés mddszernek
és az SVD-nek.

e Az elosztott SVD algoritmus dimenzidcsokkentéssel kapcsolatos kiértékelése, be-

mutatott algoritmusokkal val6 dsszevetése.

8.3 Véletlen sétak menedzselése

Ebben a tézispontban két véletlenséta-menedzseld hdlézati szolgaltatasra tettiink javasla-
tot két jelentdsen eltérd feladatra. A mddszereket okostelefonos trace-en értékeltiik ki.

Az els6 feladat esetében az a célunk, hogy az egész hdlézatban lehetSleg minél ke-
vesebb, legjobb esetben egyetlen véletlen séta legyen. Ez azért fontos, mert igy az SGD
modszer esetén a privacy biidzsé alacsony marad. Ezzel pedig elérhetd a differential pri-
vacy, amennyiben mindemellett az SGD modell a megfeleld mértéki zajjal lett terhelve.
Ehhez egy teljesen elosztott véletlenséta-menedzseld eljarast mutattunk be, amelyre egy
okostelefon-hdlézatban teljesiil, hogy agilis, hosszi-€letli és hatékony. Ezen feliil kije-
lenthetd az is, hogy a javasolt mddszer robusztus a f6 paraméterére és még a valosagtol
elrugaszkodott, extrém forgatokonyv mellett is elfogadhato teljesitményre képes.

A masodik probléma esetében egy olyan kornyezetben oldottuk meg a véletlen séta
menedzselését, ahol minden felhaszndlé szdméra elérhetd az a szolgdltatds, hogy egy
egyedi véletlen sétat inditson a hdlézatban. Tehat O(n)) véletlen séta menedzselésének
igényére lehet szdmitani. Erre a problémdra mutattunk be egy olyan moédszert, amely
harom konceptudlis szinttel rendelkezik, annak eldontésére, hogy sziikséges-e egy séta
Ujrainditdsa. A lokalis szinttdl 1épiink tovabb egy kis koltségii kollaborativ szintre, majd
legvégsd esetben a kdzponti vezérlés szintjére. Az altalunk vizsgalt 6sszes forgatokonyv

esetében a hibdk jelentGs hdnyadaval az elsd, lokdlis szinten megbirkdztak a hélézat

122 8.4. MINI-BATCH GRADIENS MODSZER

résztvevoi. A hibak kis része eszkaldlodott a masodik szintre, és a teljes kiértékelés soran
csupan néhany esetben jutottunk el a harmadik, kozponti irdnyitdsd szintre. Ezenkiviil

demonstréltuk a véletlen sétdk sebességét, amely nagyon kozel van az optimalishoz.
A szerzo6 kapcsol6dé fobb eredményei:
e Egy teljesen elosztott mddszer egyetlen véletlen séta menedzselésére.

e Egy robusztus médszer O(n) véletlen séta menedzselésére egy olyan hédlézatban,

ahol n résztvevd van.

8.4 Mini-batch gradiens modszer

Ebben a fejezetben egy olyan biztonsdgos 6sszegzd protokollt mutattunk be, amely képes
védekezni az Osszeeskiivéses tdmadas ellen. A protokoll egy teljesen elosztott mini-batch
gradiens alapi mdédszert valésit meg, amely ideiglenesen onszervez6dd csoportokat hoz
létre a halézatban. A csoportok kollaborativan szdmoljdk ki a gradienst. A moddszer
alkalmazdsa sordn azt haszndljuk ki, hogy nem sziikséges a csoport minden tagjanak
végig jelen lennie, mivel a mini-batch gradiens moédszer szdméra nem sziikséges, hogy
az Osszeg pontos legyen. Az Osszeget kozosen szdmold csoportok ugy alakulnak ki,
hogy egy gyokérbdl induld k hosszu torzzsel rendelkez6 binomidlis fa épiil az overlay
halézaton. A fa gyokerének elérhetdnek kell maradnia ahhoz, hogy elfogadhat6 legyen az
0sszeg. Ezért ebben a munkdban kiemelked6en fontos volt bemutatni, hogy praktikusan
megvaldsithat6-e egy ilyen overlay hdlézat. Az okostelefonos trace-en végrehajtott em-
pirikus vizsgdlataink alapjan teljesen vildgossa valt, hogy csak nagyon kis részben sikerte-
len az ilyen faépitési probdlkozas. Ezenkiviil azt is bemutattuk, hogy a gradiens 0sszeg

titkositott megvaldsitdsa sordn nem veszitiink a modell predikcids teljesitményébdl.
A szerzo6 kapcsolodo fobb eredménye:

e Egy k hosszu torzzsel rendelkez6 binomidlis fa épitésén, és egy biztonsagos 0sszegzd
protokollon alapul6 decentralizdlt mini-batch mdédszer empirikus kiértékelése okos-

telefonos trace-en alapul6 overlay hdlézaton.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

[9]

European commission: General data protection regulation (GDPR). 2018. https://
ec.europa.eu/commission/priorities/justice-and-fundamental-rights/
data-protection/2018-reform-eu-data-protection-rules.

Webrtc 1.0: Real-time communication between browsers. 2018. https://www.w3.0rg/
TR/webrtc/.

Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with
binary coins. Journal of Computer and System Sciences, 66(4):671-687, June 2003.

Waseem Ahmad and Ashfaq Khokhar. Secure aggregation in large scale overlay networks.
In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM ’06),
San Francisco, CA, USA, November 2006.

Arpad Berta, Istvan Hegediis, and Mark Jelasity. Dimension reduction methods for col-
laborative mobile gossip learning. In 2016 24th Euromicro International Conference on
Farallel, Distributed, and Network-Based Processing (PDP), pages 393-397, Feb 2016.

Arpad Berta and Mark Jelasity. Decentralized management of random walks over a mobile
phone network. In 2017 25th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP), pages 100-107, Mar 2017.

Kevin Bache and Moshe Lichman. UCI machine learning repository, 2013.

Ziv Bar-Yossef, Roy Friedman, and Gabriel Kliot. RaWMS — random walk based
lightweight membership service for wireless ad hoc networks. ACM Transactions on Com-
puter Systems, 26(2):5:1-5:66, June 2008.

Arpad Berta, Vilmos Bilicki, and Mark Jelasity. Defining and understanding smartphone

https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/

124

REFERENCES

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

churn over the internet: a measurement study. In /4-th IEEE International Conference on
Peer-to-Peer Computing (P2P), pages 1-5, Sept 2014.

Arpad Berta, Istvan Hegediis, and Rébert Ormandi. Lightning fast asynchronous distributed
k-means clustering. In 22th European Symposium on Artificial Neural Networks, ESANN
2014, pages 99-104, 2014.

Danny Bickson, Tzachy Reinman, Danny Dolev, and Benny Pinkas. Peer-to-peer secure
multi-party numerical computation facing malicious adversaries. Peer-to-Peer Networking
and Applications, 3(2):129-144, 2010.

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: Appli-
cations to image and text data. In Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 01, pages 245-250, New
York, NY, USA, August 2001. ACM.

Ken Birman, Mark Jelasity, Robert Kleinberg, and Edward Tremel. Building a secure and
privacy-preserving smart grid. ACM SIGOPS Operating Systems Review, 49(1):131-136,
January 2015.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMa-
han, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggrega-
tion for federated learning on user-held data. In Proceedings of the Workshop on Private
Multi-Party Machine Learning (NIPS 2016 Workshop), Barcelona, Spain, April 2016.

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its
role in the internet of things. In Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC 12, pages 13—-16, New York, NY, USA, August 2012.
ACM.

Léon Bottou. Stochastic gradient descent tricks. In Grégoire Montavon, Genevieve B. Orr,
and Klaus-Robert Miiller, editors, Neural Networks: Tricks of the Trade, volume 7700 of
Lecture Notes in Computer Science, pages 421-436. Springer, 2012.

Xiang Cheng, Luoyang Fang, Xuemin Hong, and Liuqing Yang. Exploiting mobile big
data: Sources, features, and applications. IEEE Network, 31(1):72-79, 2017.

Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Y. Ng,
and Kunle Olukotun. Map-reduce for machine learning on multicore. In B. Scholkopf,
J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19
(NIPS 2006), pages 281-288. MIT Press, 2007.

Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya, Xiaodong Lin, and Michael Y. Zhu.
Tools for privacy preserving distributed data mining. SIGKDD Explorations Newsletter,
4(2):28-34, December 2002.

REFERENCES 125

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

L. D’Acunto, J. A. Pouwelse, and H. J. Sips. A measurement of NAT and firewall char-
acteristics in peer-to-peer systems. In Proc. 15-th ASCI Conference, pages 1-5. Advanced
School for Computing and Imaging (ASCI), June 2009.

Gébor Danner, Arpad Berta, Istvan Hegedis, and Mark Jelasity. Robust fully distributed
mini-batch gradient descent with privacy preservation. Security and Communication Net-
works, 2018:15, 2018.

Gabor Danner and Mark Jelasity. Fully distributed privacy preserving mini-batch gradient
descent learning. In Alysson Bessani and Sara Bouchenak, editors, Proceedings of the
15th IFIP International Conference on Distributed Applications and Interoperable Systems
(DAIS 2015), volume 9038 of Lecture Notes in Computer Science, pages 30-44. Springer,
2015.

Yves-Alexandre de Montjoye, Erez Shmueli, and Alex Sandy Wang, Samuel Sand Pent-
land. Openpds: Protecting the privacy of metadata through safeanswers. PloS One,
9(7):98790, 2014.

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,
Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and An-
drew Y. Ng. Large scale distributed deep networks. In Proceedings of the 25th Interna-
tional Conference on Neural Information Processing Systems - Volume 1, NIPS’12, pages
1223—1231, Red Hook, NY, USA, 2012. Curran Associates Inc.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction using mini-batches. Journal of Machine Learning Research, 13(1):165-202,
January 2012.

Shlomi Dolev, Amos Israeli, and Shlomo Moran. Uniform dynamic self-stabilizing leader
election. Parallel and Distributed Systems, IEEE Transactions on, 8(4):424-440, April
1997.

Cynthia Dwork. A firm foundation for private data analysis. Communications of the ACM,
54(1):86-95, January 2011.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Proceedings of the 24th
Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques - Advances in Cryptology - EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 486-503, St. Petersburg, Russia, May 2006. Springer.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of Cryp-
tography, volume 3876 of LNCS, pages 265-284. Springer Berlin Heidelberg, 2006.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foun-
dations and Trends in Theoretical Computer Science, 9(3-4):211-407, August 2014.

126

REFERENCES

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Denzil Ferreira, Vassilis Kostakos, and Anind K. Dey. Lessons learned from large-scale
user studies: Using android market as a source of data. International Journal of Mobile
Human Computer Interaction, 4(3), 2012.

Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo Higashino,
Adriana Iamnitchi, Marinho Barcellos, Pascal Felber, and Etienne Riviere. Edge-centric
computing: Vision and challenges. SIGCOMM Comput. Commun. Rev., 45(5):37-42,
September 2015.

Franck Gechter, Alastair R. Beresford, and Andrew Rice. Reconstruction of battery level
curves based on user data collected from a smartphone. In Proceedings of the 17th Interna-
tional Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA
2016), pages 289-298, Cham, September 2016. Springer.

Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix
factorization with distributed stochastic gradient descent. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pages 69-77. ACM, 2011.

Kevin Gimpel, Dipanjan Das, and Noah A. Smith. Distributed asynchronous online learning
for natural language processing. In Proceedings of the Fourteenth Conference on Compu-
tational Natural Language Learning (CoNLL’10), pages 213-222, Uppsala, Sweden, July
2010. Association for Computational Linguistics.

Genevieve Gorrell. Generalized hebbian algorithm for incremental singular value decom-
position in natural language processing. In Diana McCarthy and Shuly Wintner, editors,
Proceedings of the 11th Conference of the European Chapter of the Association for Com-
putational Linguistics (EACL), Stroudsburg, PA, USA, April 2006. The Association for
Computer Linguistics.

Naiyang Guan, Dacheng Tao, Zhigang Luo, and Bo Yuan. Nenmf: An optimal gradient
method for nonnegative matrix factorization. IEEE Transactions on Signal Processing,
60(6):2882-2898, 2012.

Naiyang Guan, Dacheng Tao, Zhigang Luo, and Bo Yuan. Online nonnegative matrix
factorization with robust stochastic approximation. /EEE Transactions on Neural Networks
and Learning Systems, 23(7):1087-1099, 2012.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157-1182, March 2003.

Shuguo Han, Wee Keong Ng, Li Wan, and Vincent C. S. Lee. Privacy-preserving gradient-
descent methods. IEEE Transactions on Knowledge and Data Engineering, 22(6):884—899,
2010.

Istvan Hegedis, Arpad Berta, and Mark Jelasity. Robust decentralized differentially private

REFERENCES 127

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

stochastic gradient descent. Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications (JoWUA), 7(2):20—40, June 2016.

Istvan Hegediis, Arpad Berta, Levente Kocsis, Andrds A. Bencziir, and Mérk Jelasity. Ro-
bust decentralized low-rank matrix decomposition. ACM Transactions on Intelligent Sys-
tems and Technology, 7(4):62:1-62:24, May 2016.

Istvdn Hegediis, Gabor Danner, and Mark Jelasity. Gossip learning as a decentralized al-
ternative to federated learning. In José Pereira and Laura Ricci, editors, /9th IFIP Inter-
national Conference on Distributed Applications and Interoperable Systems (DAIS 2019),
pages 74-90. Springer International Publishing, 2019.

Istvdn Heged(is, Gdbor Danner, and Mark Jelasity. Decentralized recommendation based
on matrix factorization: A comparison of gossip and federated learning. In Peggy Cellier
and Kurt Driessens, editors, International Workshops of ECML PKDD 2019, Decentral-
ized Machine Learning at the Edge, number 1167 in Communications in Computer and
Information Science, page 317-332. Springer Nature Switzerland AG, 2020.

Istvan Hegediis and Mark Jelasity. Distributed differentially private stochastic gradient
descent: An empirical study. In Proceedings of the 24th Euromicro Conference on Parallel,
Distributed and Network-Based Processing (PDP’16), Heraklion, Greece, February 2016.
IEEE Computer Society.

Istvan Hegedts, Mark Jelasity, Levente Kocsis, and Andrds A. Benczir. Fully distributed
robust singular value decomposition. In Proceedings of the 14th IEEE International Con-
ference on Peer-to-Peer Computing (P2P 2014). IEEE, 2014.

Sibren Isaacman, Stratis Ioannidis, Augustin Chaintreau, and Margaret Martonosi. Dis-
tributed rating prediction in user generated content streams. In Proceedings of the Fifth
ACM Conference on Recommender Systems, pages 69-76, Chicago, IL, USA, October
2011. ACM.

Mark Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten
van Steen. Gossip-based peer sampling. ACM Transactions on Computer Systems, 25(3):8,
August 2007.

Gian Paolo Jesi, Alberto Montresor, and Maarten van Steen. Secure peer sampling. Com-
puter Networks, 54(12):2086-2098, 2010.

Raul Jimenez, Gunnar Kreitz, Bjorn Knutsson, Marcus Isaksson, and Seif Haridi. Inte-
grating smartphones in spotify’s peer-assisted music streaming service. Technical Report
diva-134609, KTH, Stockholm, Sweden, 2013.

Yu Jin, Nick Duffield, Alexandre Gerber, Patrick Haffner, Wen-Ling Hsu, Guy Jacobson,
Subhabrata Sen, Shobha Venkataraman, and Zhi-Li Zhang. Characterizing data usage pat-
terns in a large cellular network. In Proceedings of the 2012 ACM SIGCOMM Workshop on

128

REFERENCES

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Cellular Networks: Operations, Challenges, and Future Design (CellNet’12), pages 7-12,
New York, NY, USA, 2012. ACM.

Ian T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer-Verlag,
New York, 2nd edition, 2002.

Richard Manning Karp, Christian Schindelhauer, Scott Shenker, and Berthold V&cking.
Randomized rumor spreading. In Proceedings of the 41st Annual Symposium on Founda-
tions of Computer Science (FOCS’00), pages 565574, Washington, DC, USA, 2000. IEEE
Computer Society.

David Kempe and Frank McSherry. A decentralized algorithm for spectral analysis. In Pro-
ceedings of the 36th Symposium on Theory of Computing (STOC), pages 561-568, Chicago,
IL, USA, June 2004. ACM.

Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. In Proceedings of the Workshop on Private Multi-Party Machine Learning (NIPS
2016 Workshop), Barcelona, Spain, April 2016.

Satish Babu Korada, Andrea Montanari, and Sewoong Oh. Gossip pca. In Proceedings of
the ACM SIGMETRICS Joint International Conference on Measurement and Modeling of
Computer Systems, pages 209-220. ACM, June 2011.

Gunnar Kreitz and Fredrik Niemela. Spotify — large scale, low latency, P2P Music-on-
Demand streaming. In Tenth IEEE Intl. Conf. Peer-to-Peer Computing (P2P’10), pages
1-10. IEEE, 2010.

Jeremy Kubica, Sameer Singh, and Daria Sorokina. Parallel large-scale feature selection. In
Ron Bekkerman, Mikhail Bilenko, and John Langford, editors, Scaling up Machine Learn-
ing: Parallel and Distributed Approaches, pages 352-370. Cambridge University Press,
2011.

Maciej Kurant, Minas Gjoka, Carter T. Butts, and Athina Markopoulou. Walking on a graph
with a magnifying glass: stratified sampling via weighted random walks. In Proceedings
of the ACM SIGMETRICS joint international conference on Measurement and modeling of
computer systems (SIGMETRICS ’11), pages 281-292. ACM, June 2011.

Juha Laurila, Daniel Gatica-Perez, Imad Aad, Jan Blom, Olivier Bornet, T.-M.-T Do,
Olivier Dousse, Julien Eberle, and Markus Miettinen. The mobile data challenge: Big
data for mobile computing research. In Proceedings of the 10th International Conference
on Pervasive Computing, Newcastle, UK, June 2012. Springer.

Quoc Le, Marc’ Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg Corrado,
Jeff Dean, and Andrew Ng. Building high-level features using large scale unsupervised
learning. In John Langford and Joelle Pineau, editors, Proceedings of the 29th International

REFERENCES 129

[63]

[64]

[65]

[66]

[68]

[70]

[71]

[72]

[73]

Conference on Machine Learning (ICML), pages 81-88, Madison, WI, USA, June 2012.
Omnipress.

E. Le Merrer, A.-M. Kermarrec, and L. Massoulie. Peer to peer size estimation in large and
dynamic networks: A comparative study. In Proceedings of the 15th IEEE International
Symposium on High Performance Distributed Computing (HPDC’06), pages 7—17, 2006.

Yann Lecun, Corinna Cortes, and Burges Christopher, J.C. The MNIST database of hand-
written digits. http://yann.lecun.com/exdb/mnist/.

Li Li, Bruce Beitman, Mai Zheng, Xiaorui Wang, and Feng Qin. edelta: Pinpointing en-
ergy deviations in smartphone apps via comparative trace analysis. In Proceedings of the
8th International Green and Sustainable Computing Conference (IGSC 2017), pages 1-8,
Orlando, Florida, October 2017. IEEE.

Yongjun Liao, Pierre Geurts, and Guy Leduc. Network distance prediction based on de-
centralized matrix factorization. In Mark Crovella, LauraMarie Feeney, Dan Rubenstein,
and S.V. Raghavan, editors, Proceedings of the 9th International IFIP TC 6 Networking
Conference, volume 6091 of LNCS, pages 15-26, Chennai, India, May 2010. Springer.

Qing Ling, Yangyang Xu, Wotao Yin, and Zaiwen Wen. Decentralized low-rank matrix
completion. In Proceedings of the 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2925-2928, March 2012.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Graphlab: A new parallel framework for machine learning. In
Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010),
Catalina Island, CA, USA, July 2010.

Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replication in unstruc-
tured peer-to-peer networks. In Proceedings of the 16th ACM International Conference on
Supercomputing (ICS’02), New York, NY, USA, June 2002.

Derek C. MacDonald and Bruce Lowekamp. Nat behavior discovery using session traver-
sal utilities for nat (stun). no. rfc 5780. (2010). http://www.rfc-editor.org/info/
rfc5780.

Panagis Magdalinos. Linear and non linear dimensionality reduction for distributed knowl-
edge discovery. PhD thesis, Athens University of Economics and Business, Greece, 2010.

Panagis Magdalinos, Christos Doulkeridis, and Michalis Vazirgiannis. Enhancing cluster-
ing quality through landmark-based dimensionality reduction. ACM Trans. Knowl. Discov.
Data, 5(2):11:1-11:44, February 2011.

Anna Maria Mandalari, Andra Lutu, Amogh Dhamdhere, Marcelo Bagnulo, and KC Clafty.
Tracking the big nat across europe and the u.s. ArXiv, abs/1704.01296, April 2017.

http://yann.lecun.com/exdb/mnist/
http://www.rfc-editor.org/info/rfc5780
http://www.rfc-editor.org/info/rfc5780

130

REFERENCES

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

Laurent Massoulié, Erwan Le Merrer, Anne-Marie Kermarrec, and Ayalvadi Ganesh. Peer
counting and sampling in overlay networks: random walk methods. In Proceedings of the
twenty-fifth annual ACM symposium on Principles of distributed computing (PODC 06),
pages 123—-132, New York, NY, USA, July 2006. ACM.

Ueli Maurer. Secure multi-party computation made simple. Discrete Applied Mathematics,
154(2):370-381, 2006.

Brendan McMabhan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Pro-
ceedings of the 20th International Conference on Artificial Intelligence and Statistics (AIS-
TATS), volume 54 of Proceedings of Machine Learning Research, pages 1273-1282, Fort
Lauderdale, FL, USA, April 2017. PMLR.

Frank D. McSherry. Privacy integrated queries: An extensible platform for privacy-
preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’09, pages 19-30, New York, NY, USA, 2009.
ACM.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 2 edition, 1997.

Alberto Montresor and Mérk Jelasity. Peersim: A scalable P2P simulator. In Proceedings of
9th IEEE Int. Conf. on Peer-to-Peer Comp., pages 99—100. IEEE, 2009. extended abstract.

Laurence Moroney. Firebase Cloud Messaging, pages 163—188. Apress, Berkeley, CA,
USA, 2017.

Juan A. M. Naranjo, Leocadio G. Casado, and Mark Jelasity. Asynchronous privacy-
preserving iterative computation on peer-to-peer networks. Computing, 94(8-10):763-782,
2012.

Rébert Ormandi, Istvdn Hegedds, and Mark Jelasity. Gossip learning with linear models on
fully distributed data. Concurrency and Computation: Practice and Experience, 25(4):556—
571, 2013.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Proceedings of the International Conference on the Theory and Applications of Crypto-
graphic Techniques - Advances in Cryptology — EUROCRYPT 99, volume 1592 of Lecture
Notes in Computer Science, pages 223-238, Prague, Czech Republic, May 1999. Springer.

Amir H. Payberah, Hanna Kavalionak, Vimalkumar Kumaresan, Alberto Montresor, and
Seif Haridi. Clive: Cloud-assisted p2p live streaming. In IEEE 12th International Confer-
ence on Peer-to-Peer Computing (P2P), pages 79-90, September 2012.

Alex (Sandy) Pentland. Society’s nervous system: Building effective government, energy,
and public health systems. Computer, 45(1):31-38, January 2012.

REFERENCES 131

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Fabio Petroni and Leonardo Querzoni. Gasgd: Stochastic gradient descent for distributed
asynchronous matrix completion via graph partitioning. In Proceedings of the 8th ACM
Conference on Recommender Systems, RecSys 14, pages 241-248, New York, NY, USA,
2014. ACM.

Pascal Pons and Matthieu Latapy. Computing communities in large networks using random
walks. In Pinar Yolum, Tunga Giingor, Fikret Giirgen, and Can Ozturan, editors, Proceed-
ings of the 20th International Symposium on Computer and Information Sciences (ISCIS
2005), volume 3733 of Lecture Notes in Computer Science, pages 284-293. Springer, Oc-
tober 2005.

Arun Rajkumar and Shivani Agarwal. A differentially private stochastic gradient descent al-
gorithm for multiparty classification. In Proceedings of the Fifteenth International Confer-
ence on Artificial Intelligence and Statistics, volume 22 of Proceedings of Machine Learn-
ing Research, pages 933-941, La Palma, Canary Islands, April 2012. PMLR.

Alfredo Rial and George Danezis. Privacy-preserving smart metering. In Proceedings of the
10th annual ACM workshop on Privacy in the electronic society (WPES’11), pages 49-60,
New York, NY, USA, October 2011. ACM.

Philipp Richter, Florian Wohlfart, Narseo Vallina-Rodriguez, Mark Allman, Randy Bush,
Anja Feldmann, Christian Kreibich, Nicholas Weaver, and Vern Paxson. A multi-
perspective analysis of carrier-grade nat deployment. In Proceedings of the 2016 ACM
on Internet Measurement Conference (IMC16), Santa Monica, CA, USA, November 2016.
ACM.

Roberto Roverso, Jim Dowling, and Mérk Jelasity. Through the wormhole: Low cost, fresh
peer sampling for the internet. In Proceedings of the 13th IEEE International Conference
on Peer-to-Peer Computing (P2P 2013). IEEE, 2013.

Roberto Roverso, Sameh El-Ansary, and Seif Haridi. NATCracker: NAT combinations
matter. In Proceedings of 18th Internatonal Conference on Computer Communications and
Networks (ICCCN), pages 1-7, August 2009.

Jared Saia and Mahdi Zamani. Recent results in scalable multi-party computation. In Pro-
ceedings of the 41st International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM’15), volume 8939 of LNCS, Pec pod Snézkou, Czech Repub-
lic, January 2015. Springer.

Ali Sayed. Adaptation, learning, and optimization over networks. Foundations and Trends
in Machine Learning, 7(4-5):311-801, July 2014.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: primal
estimated sub-gradient solver for SVM. Mathematical Programming B, 2010.

Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent

132

REFERENCES

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

with differentially private updates. In Proceedings of the Ist IEEE Global Conference on
Signal and Information Processing (GlobalSIP), pages 245-248, Austin, TX, USA, De-
cember 2013.

Speedtest. Market reports, 2017.

Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In Proceedings
of the 20th International Conference on Machine Learning (ICML), pages 720-727. AAAI
Press, 2003.

Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks. In
Proceedings of the 6th ACM SIGCOMM conference on Internet measurement (IMC’06),
pages 189-202, New York, NY, USA, 2006. ACM.

Daniel Stutzbach, Reza Rejaie, Nick Duffield, Subhabrata Sen, and Walter Willinger. On
unbiased sampling for unstructured peer-to-peer networks. [EEE/ACM Transactions on
Networking, 17(2):377-390, April 2009.

Zoltan Szabd, Vilmos Bilicki, Arpéd Berta, and Zoltan Richard Janki. Smartphone-based
data collection with Stunner using crowdsourcing: Lessons learnt while cleaning the data.
In The Twelfth International Multi-Conference on Computing in the Global Information
Technology (ICCGI 2017), pages 28-35, Jul 2017.

Zoltan Szabd, Vilmos Bilicki, Arpéd Berta, and Zoltan Richard Janki. Smartphone-based
data collection with Stunner, the reality of peer-to-peer connectivity and web real-time com-
munications using crowdsourcing: Lessons learnt while cleaning the data. International
Journal On Advances in Software, 11(1-2):120-130, 2018.

Zoltan Szabo, Krisztidn Téglés, Arpéd Berta, Mark Jelasity, and Vilmos Bilicki. Stun-
ner: A smart phone trace for developing decentralized edge systems. In José Pereira and
Laura Ricci, editors, Proceedings of the 19th International Conference on Distributed Ap-
plications and Interoperable Systems (DAIS 2019), pages 108—115, Cham, 2019. Springer
International Publishing.

Valentin Thirion, Korian Edeline, and Benoit Donnet. Tracking middleboxes in the mobile
world with traceboxandroid. In Proceedings of the 7th International Workshop on Traffic
Monitoring and Analysis (TMA 2015), Barcelona, Spain, April 2015.

Norbert Tolgyesi and Mdérk Jelasity. Adaptive peer sampling with newscast. In Euro-Par
2009, volume 5704 of LNCS, pages 523-534. Springer, 2009.

Chun-Wei Tsai, Chin-Feng Lai, Ming-Chao Chiang, and L.T. Yang. Data mining for inter-
net of things: A survey. Communications Surveys Tutorials, IEEE, 16(1):77-97, 2014.

Daniel Wagner, Andrew Rice, and Alastair Beresford. Device analyzer: Understanding
smartphone usage. In Proceedings of the 10th International Conference on Mobile and

REFERENCES 133

[108]

[109]

[110]

[111]

[112]

[113]

Ubiquitous Systems: Computing, Networking, and Services, pages 195-208, Tokyo, Japan,
December 2013. Springer.

Daniel T. Wagner, Andrew Rice, and Alastair R. Beresford. Device analyzer: Large-scale
mobile data collection. In Workshop on Big Data Analytics, 2013.

Ji Wang, Bokai Cao, Philip S. Yu, Lichao Sun, Weidong Bao, and Xiaomin Zhu. Deep learn-
ing towards mobile applications. In Proceedings of the IEEE 38th International Conference
on Distributed Computing Systems (ICDCS 2018), pages 1385-1393, Vienna, Austria, July
2018. IEEE.

Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao, and Ming Zhang. An un-
told story of middleboxes in cellular networks. SIGCOMM Comput. Commun. Rev.,
41(4):374—-385, 2011.

Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 160-164, Chicago, IL ,
USA, November 1982.

Martin A. Zinkevich, Alex Smola, Markus Weimer, and Lihong Li. Parallelized stochastic
gradient descent. In Advances in Neural Information Processing Systems 23 (NIPS 2010),
pages 2595-2603, Vancouver, Canada, December 2010. MIT Press.

Raffaele Zullo, Antonio Pescape, Korian Edeline, and Benoit Donnet. Hic sunt nats: Un-
covering address translation with a smart traceroute. In Proceedings of the 2017 Network
Traffic Measurement and Analysis Conference (TMA 2017), Dublin, Ireland, June 2017.
IEEE.

	Contents
	List of Algorithms
	List of Tables
	List of Figures
	1 Introduction
	2 Background
	2.1 Stochastic Gradient Descent
	2.2 System Model and Data Distribution
	2.3 Gossip Learning

	3 Smartphone Trace
	3.1 Collecting the Data
	3.2 A Markovian Model for Simulating Smartphone Churn
	3.3 Simulations on a Smartphone Trace
	3.4 Lessons Learned on Smartphone Trace Over the Years
	3.4.1 Data Cleansing
	3.4.2 NAT Type Distribution
	3.4.3 Real P2P Connection Measurement Results

	3.5 Conclusions

	4 Dimension Reduction Methods
	4.1 Related Works
	4.2 Background
	4.2.1 Dimension Reduction
	4.2.2 Low–Rank and Singular Value Decomposition

	4.3 Algorithms
	4.3.1 Random Projection Selection
	4.3.2 Singular Value Decomposition
	4.3.3 Communication complexity
	4.3.4 A Hybrid Algorithm

	4.4 Experimental Results
	4.4.1 Experimental Setup
	4.4.2 Discussion

	4.5 Conclusions

	5 Management of Random Walks
	5.1 The Single Random Walk Service
	5.1.1 Background on Differentially Private SGD
	5.1.2 Privacy Budget
	5.1.3 Algorithm
	5.1.4 Experiments

	5.2 The Multiple Random Walk Service
	5.2.1 Algorithm
	5.2.2 Experiments

	5.3 Conclusions

	6 Mini-Batch Gradient Descent
	6.1 Related Work
	6.2 Adversarial model
	6.3 Our Solution
	6.3.1 Mini-Batch Tree Topology
	6.3.2 Calculating the Gradient
	6.3.3 Working With Vectors
	6.3.4 Practical Considerations and Optimizations
	6.3.5 Variants

	6.4 Analysis
	6.4.1 Security
	6.4.2 Complexity

	6.5 Compressing the Gradient
	6.6 Experimental Evaluation
	6.6.1 Time Consumption
	6.6.2 Simulating Tree Building
	6.6.3 Machine Learning Results

	6.7 Conclusion

	7 Summary
	7.1 Smartphone Trace
	7.2 Dimension Reduction Methods
	7.3 Management of Random Walks
	7.4 Mini-Batch Gradient Descent

	8 Összefoglaló
	8.1 Okostelefonos trace
	8.2 Dimenziócsökkento módszerek
	8.3 Véletlen séták menedzselése
	8.4 Mini-batch gradiens módszer

	References

