
Statikus és dinamikus forráskód elemzés felhasználása
költségbecslés, szoftver vizualizáció,
és teszt minőség menedzsment során

Balogh Gergő

Szoftverfejlesztés Tanszék
Szegedi Tudományegyetem

Szeged, 2020

Témavezető:

Dr. Beszédes Árpád

A Ph.D. értekezés téziseinek összefoglalása

Szegedi Tudományegyetem
Informatikai Doktori Iskola

Bevezetés

A szoftverfejlesztés során számtalan elvont fogalmat használunk. Ezek közül
néhányat a felhasználók is jól ismernek. Általában azokat, melyek szoros kap-
csolatban állnak a vég-felhasználók számára is elérhető funkciókkal. Ezek az el-
vont elemek léırhatják magát a terméket vagy a fejlesztés folyamatát. Például
a felhasználó képes megbecsülni az elérhető funkciók számát és az ezek kifej-
lesztéséhez szükséges időt (mely végül a szoftver költségében nyilvánul meg).
De különböző felhasználói felületek általában csak egy kis részét jelentik annak
a hatalmas elvont elem és tulajdonság halmaznak, melyet szoftver rendszernek
nevezünk.

Bár, az összes szakember missziója azonos: létrehozni vagy tovább fej-
leszteni a meglévő szoftvert; mégis az egyéni céljaik eltérhetnek egymáséitól.
Például a menedzser arra törekszik hogy minél több új funkció készüljön el a
lehető legrövidebb idő alatt. Ezzel szemben a fejlesztők szeretnének különböző
technikai és esztétikai szabályokat betartani, melyek általában növelik a fej-
lesztési időt, de később csökkentik a karbantartási költségeket.

A kutatók felelőssége folyamatosan nő, hiszen az ő feladatuk azoknak a
módszereknek és technológiáknak a kifejlesztése, melyet a különböző szakem-
berek használnak a munkájuk során. Ezeknek a módszereknek (és a hozzájuk
kapcsolódó eszközöknek) figyelembe kell venniük a szoftver rendszerek össze-
tettségét és a fejlesztésük egyre gyorsuló ütemét. A gyakorlatban is használha-
tó navigációs lehetőségekre van szükség, melyek képesek rámutatni a rendszer
olyan pontjaira, amik később hibás működést eredményezhetnek. Az ilyen
részek kézi vizsgálatának csökkentésével a különböző fél- és teljesen automa-
tizált jav́ıtó és megelőző technikák (mint például az újratervezés) feltehetőleg
képesek csökkenteni a fejlesztése szánt időt.

Kih́ıvások

Kutatóként a felelősségem, hogy seǵıtsem a különböző szakembereket a közös
missziójuk során, úgy, hogy közben ne akadályozzam őket az egyéni céljaik
elérésében. Ezt a különböző eszközök és folyamatok tökéleteśıtése, valamint
a kezdők támogatása során érhetem el. Ezeket az elveket figyelembe véve, a
következő listában közzé tett általános kih́ıvások megoldását tűztem ki célul
a kutatásom során.

1. kih́ıvás: Szoftverek megértése. A kezdő és új csapattagoknak át kell
látniuk a korábban késźıtett, nagy-méretű kódbázist, valamint meg kell ismer-
kedniük a fejlesztés során használt elvont fogalmakkal. Továbbá szükséges egy

1

olyan módszer, mellyel a tapasztalt fejlesztők hatékonyan tudnak navigálni a
komplex forráskód szerkezetekben.

2. kih́ıvás: Hibakeresés. A fejlesztőknek és tesztelőknek meg kell találniuk
azokat a részeket a szoftverben és hozzá kapcsolódó teszt csomagban, amik
hibás működést okozhatnak, vagyis azokat, melyek sértik a szakmai tapaszta-
latok által megalapozott irányelveket.

3. kih́ıvás: Költségbecslés. A fejlesztési folyamatok jav́ıtása érdekében a
menedzsernek folyamatosan figyelemmel kell ḱısérnie ezek tulajdonságait. Azon-
ban a korábban elterjedt mennyiségi mérőszámok általában nem megfelelőek a
kreat́ıv munkát igénylő folyamatok jellemzésére, mint amilyen a szoftverfej-
lesztés.

4. kih́ıvás: Program szerkezetének elemzése. A szoftverfejlesztéssel kap-
csolatos kutatások gyakran támaszkodnak a különböző elemek hálózatának ana-
lizálására. Például, a szoftver elemzés gyakran használja a teszt és a forráskód
közötti kapcsolatokat, azonban ezek nem mindig kerülnek közvetlenül jelölésre.

Tézispontok

A szerző tudományos eredményei három fő tézispontba csoportośıthatóak.
Az ezekbe tartozó altézispontok és a szerző tudományos publikációi közötti
kapcsolatot az 1. ábra mutatja.

1. tézispont csoport 2. tézispont csoport 3. tézispont csoport

[8] 1.1, 1.2
[10] 1.3
[3] 1.4

[6] 2.1
[1] 2.1, 2.3
[5] 2.2
[7] 2.3
[2] 2.4

[9] 3.1, 3.2
[11] 3.2, 3.3
[12] 3.2, 3.3
[4]1 3.3

1. táblázat. Tézispontok és publikációk kapcsolata

1Ez a cikk jelenleg b́ırálat alatt van.

2

T1: A szoftverfejlesztői csapatok produktivitásának mérése és előre-
jelzése. A kutatásom célja, hogy válaszokat adjak a projekt menedzsmentet
érintő két fő kih́ıvás – a költségbecslés és az elpazarolt erőforrások kezelése –
által támasztott kih́ıvásokra (1. ábra).

1. ábra. A produktivitással kapcsolatos kutatásaink fázisai

A több eltérő produktivitás defińıció közül, felhasználtuk azt mely a meg-
termelt haszon és a befektetett erőforrás arányaként ı́rja le a fogalmat. Pon-
tosabban, a módośıtások súlyozott számának (TMod) és a befektetett időnek
(dt) a hányadosaként fejeztük ki a produktivitás mértékét (MEff).

produktivitás =
kimenet

bemenet
=

TMod

dt
= MEff (1)

T1.1: A produktivitás metrika ami figyelembe veszi a módośıtások
t́ıpusát nagyobb kifejezőerővel rendelkezik. A kutatásaim [8] során két
új metrikát definiáltam, melyek a módośıtások súlyozott száma (TMod) és az
azt felhasználó egységnyi erőforrással végzett módośıtás mennyisége (MEff).
Ezek a finomhangolható mérőszámok nagyobb kifejezőerővel rendelkeznek,
mint a produktivitás mérése során korábban használt módośıtott sorok száma
alapú változatok. A fejlesztők általában logikai egységekre bontják mind a
programot, mind az azon elvégzendő feladatokat, és csak nagyon ritkán végez-
nek sorszintű elemzést a munkájuk közben. Az általunk bevezetett új met-
rikák, jobban tükrözik ezt a gondolkodásmódot.

A MEff metrika, kifejezi az egységnyi idő által elvégzett módośıtások
mértékét. A fejlesztői produktivitás mértékének illusztrálásához az 1. kódrész-
letet fogjuk használni. Ennek a módośıtott változata (2. kódrészlet) két válto-
zást tartalmaz, mely három független sorban található. Az első egy

”
visszaté-

3

rési érték változás” a 2. sorban, a második egy a
”
metódus megvalóśıtást érintő

változás” a 4. és a 6. sorban. A példa kedvéért, tegyük fel hogy e változtatások
alkalmazása 8 percet vett igényebe. Ezen adatok alapján meghatározható a
MEff értéke.

1 visszatérési érték változás + 1 metódus megvalóśıtás változás

8 perc
= 0.25

Vegyük észre, hogy ez az érték eltér az egyszerű sorok számán alapuló méréstől,
mely 3 változott sor/8 perc = 0.375. Továbbá különböző súlyok választása
seǵıtségével kifejezhetjük az egyes módośıtás t́ıpusok elvégzéséhez szükséges
erőfesźıtés mértékét.

1. kódrészlet. Eredeti verzió

1 class In tSe t {
2 protected double Find (double l i m i t) {
3 for (int i =0; i<Count () ; i++) {
4 double cur rent=Items [i] ;
5 i f (current>l i m i t) {
6 return cur rent ;
7 }
8 }
9 }

10 }

2. kódrészlet. Módośıtott verzió

1 class In tSe t {
2 protected int � Find (double l i m i t) {
3 for (int i =0; i<Count () ; i++) {
4 int � cur rent = Items [i] ;
5 i f (current>l i m i t) {
6 return i ; �
7 }
8 }
9 }

10 }

T1.2: A produktivitást előrejelző modell hatékonysága növelhető a
módośıtás t́ıpusainak figyelembevételével. Sikeresen növeltem a haté-
konyságát a korábbi folyamat és termék metrikákon alapuló költség-előrejelző
modellnek az előző tézispontban ismertetett módszerek bevezetésével. Ku-
tatásaim [8] kimutatták, hogy az előrejelzés hatékonysága jelentősen, átlagosan
50%-ról 70%, nőtt az F-mérték szerint.

4

Az előrejelző modell a döntési fa t́ıpusú gépi tanulási algoritmuson alap-
szik. Továbbá felhasználtunk evolúciós algoritmusokat a modell finomhan-
golása során. Ebben a lépésben az egyes egyedek életképessége a különböző
súlyokkal vett előrejelző modell hatékonysága.

Az adatokat megközeĺıtőleg 800 verzióból gyűjtöttük, melyek egy 75 na-
pos fejlesztési periódust fedtek le. Vizsgáltunk ipari és k+f projekteket is.
Ezek többsége Java nyelven ı́ródott, Java ee 6 és Seam 2 technológiák fel-
használásával.

T1.3: Az elpazarolt erőforrások mértékének mérése seǵıtséget nyújt
a menedzsereknek, hogy jav́ıtsák a fejlesztési folyamataikat. A pro-
duktivitás időbeli változásait egy közepes méretű J2EE projekt vizsgálata
során tanulmányoztam [10], hét hónapot átfogó időszakban, 17 fejlesztő be-
vonásával. A ḱısérlet során gyűjtött adatok alapján a szakemberek képesek
voltak a fejlesztési folyamataik problémás pontjainak lokalizálására.

2. ábra. Mérési architektúra

Jelen fázis központi fogalma a Mikro-Produktivitás Profil (mppd) volt,
mely képes jellemezni a produktivitás mértékének változását különböző mérési
felbontások szerint (3. ábra). Az mppd görbe a fejlesztés során felhasznált
fölösleges erőforrások mértékét jelzi. Egy ideális világban ennek az értéke
zéró, és a görbe egy v́ızszintes egyenes vonal lenne. A valóságban azonban be-
folyásolja a pontatlan specifikáció és a fejlesztés során változó követelmények.
A görbe meredeksége a fejlesztők által újra-módośıtott kódrészletek mennyi-
ségét jelzi.

T1.4: A fejlesztők és a diákok forráskódjának átlagos minősége (az
egyik produktivitást befolyásoló tényező) nem mutat jelentős eltérést
az órai feladatok megoldása alapján. A ḱısérlet [3] során dákok és fej-
lesztők által késźıtett Java nyelvű feladatmegoldások minőségét hasonĺıtottam

5

3. ábra. Az mppd értelmezése

össze nem-funkcionális tulajdonságok seǵıtségével. Az adatok arra engednek
következtetni, hogy nincs jelentős eltérés a két csoport munkájának átlagos
minősége között, viszont a diákok esetében több kiugró érték is megfigyelhető,
amely nagyobb átlag körüli szórást eredményez (4. ábra)2.

T2: Izgalmas és magával ragadó szoftver és teszt vizualizációs tech-
nikák biztośıtása. Ez a tézis pont a szoftver rendszerek és a hozzájuk kötődő
elemek vizualizálásával kapcsolatos kutatásokat részletezi.

T2.1: Nýılt-terű játékok alkalmazása seǵıti a virtuális városként rep-
rezentált szoftver megértését. A fő eredményem az adatok vizuális meg-
jeleńıtésének összekapcsolása magas grafikai lehetőségeket biztośıtó játékkal.
Az általam bőv́ıtett vizualizációs megoldás és a hozzá kapcsolódó eszközkészlet,
seǵıti a összetett szoftver rendszerek megértését a fejlesztők és hallgatók szá-
mára. Ezt virtuális városok generálásával értem el, mely olyan különböző el-
vont fogalmakat jelképeznek, mint például a forráskód metrikák.

A vizualizációs folyamat során két szintet használunk az adatok és grafi-
kus elemek kezelésére. Az jelképezendő adatok szintjén, minden entitás ren-
delkezik egy tulajdonsághalmazzal, melyek például az egyes forráskód ele-
mek metrikáit tartalmazzák. Ezeket az információkat a metafora szintjéhez
tartozó grafikus elemek jeleńıtik meg. A várost alkotó épületek különböző
képi megjeleńıtést befolyásoló tulajdonságokkal rendelkeznek. Ezekhez a tu-
lajdonságokhoz rendeljük az adatok különböző elvont értékeit a vizualizálás
során.

2A félreértések elkerülése végett a nem-funkcionális metrikák megnevezése során az ere-
deti angol szakkifejezéseket használom.

6

(a) A diákok forráskód minőség metrikái

(b) A fejlesztők forráskód minőség metrikái

4. ábra. Magas szintű forráskód metrikák

T2.2: A valósághűség mértéke kifejezhető a generált városokat hasz-
náló szoftver vizualizáció során. A kutatásom során bevezetésre került
három alacsony- és egy magas-szintű metrika, melyek képesek kifejezni a ge-
nerált városok különböző jellemzőit és becslést adni a város valósághűségének
mértékére. Mind a négy metrika egy felhasználói kérdő́ıv seǵıtségével került
kiértékelésre [5]. Az eredmények azt mutatják, hogy lehetséges olyan automa-
tikus módszert definiálni, ami képes megbecsülni a generált és valós városok
közti hasonlóságot.

Az alacsony-szintű metrikák a következők: a kompaktság, ami a város

7

(a) Körletek az épületek csoportośıtására (b) Kertek különböző mennyiségű virágokkal

(c) Épületek kertekkel körülvéve (d) Többféle anyagból épült szintek

5. ábra. A metafora szint elemei

(a) Kompaktság (b) Homogenitás (c) Összekap-
csoltság

6. ábra. Alacsony-szintű metrikák

térbeli kiterjedését méri; az összekapcsoltság, ami az épületek közötti kis-
léptékű koherenciát fejezi ki; és a homogenitás, ami a látkép folytonosságát
jelzi.

A kiértékelés során 51 teljes és 20 részlegesen kitöltött kérdő́ıv adatait
használtam fel a magas-szintű metrika létrehozása során. A felhasználóknak
rangsorolnia kellett a különböző városokat a valósághűségük alapján, vala-

8

mint el kellett dönteniük, hogy a kapott példák közül melyik mutatja job-
ban az adott alacsony-szintű tulajdonság értékét. A felhasználók válaszait
reprezentáló rangsor kiválasztása során Kendall-tau korrelációs együtthatót
és közösség detektáló algoritmust használtam. Az ı́gy kapott egyenlőtlenség-
rendszer relaxált megoldása seǵıtségével határoztam meg a magas-szintű met-
rika konstruálásához szükséges súlyokat.

T2.3: A fejlesztő környezet és a szoftvervizualizáció integrálása seǵıti
a fejlesztőket a program rendszerek megértésében. Ebben a fázisban
egy új módszert mutattunk be, mely lehetővé tette a közismert Java nyelvű
fejlesztéseket támogató rendszer, az Eclipse, és a korábban részletezett város-
metaforát használó szoftvervizualizációs program csomag, a CodeMetropolis
együttes használatát. A korábbi független használati esetekkel ellentétben, je-
len verzió biztośıtja, hogy a felhasználó navigálhasson a forráskód és az azt
jelképező város elemei között. Ezeket a funkciókat egy Eclipse plug-in és egy
Minecraft mod biztośıtja.

7. ábra. Eclipse és CodeMetropolis integráció

T2.4: A város metafora lehetővé teszi teszt metrikák és teszt-kód
kapcsolatok vizualizálását. Az általunk bevezetett új módszer lehetővé
tette hogy kiterjesszük a korábban felhasznált metaforát tesztekkel kapcso-
latos adatokkal [2]. Ennek következtében a CodeMetropolis programcsomag
keretében egyeśıtsük a korábbi program struktúrát bemutató és az új teszt
minőséget metrikákkal jelző technológiákat.

A módszer alkalmazása során, például a forráskód elemeket jelképező háza-
kat a tesztek tulajdonságait szimbolizáló őrtornyok védelmezik. A tornyok
fizikai tulajdonságai, mint a magassága vagy az éṕıtési anyaga, teszt-kód cso-
portok különböző mérőszámait jelzik, például, hogy az adott teszt mekkora
mértékben fedte le az vizsgált forráskód elemet.

A megjeleńıtett teszt és forráskód elemek közti kapcsolatokat a korábban
emĺıtett őrtornyok elhelyezkedése jelzi. A teszt metrikákat jelképező épületek

9

8. ábra. Az őrtornyok részei

ugyan abba a kertbe kerülnek, mint a vizsgált forráskód elemet reprezentáló
házak. A központi torony és a körülötte lévő keŕıtés magassága különböző met-
rikák értékeit mutatják az adott teszt és a hozzá kapcsolódó funkció szerint.
Az egyes funkciók elkülöńıtését a különböző éṕıtési anyagok seǵıtik. Továbbá
a tornyok megfelelő pontjain tájékozódást könnýıtő táblákat helyeztünk el.

T3: Figyelmet érdemlő helyek azonośıtása a csomaghierarchiában
lefedettségi adatok alapján. Ebben a tézispontban összefoglalom a teszt
lefedettség anaĺızis során és az ennek felhasználásával elért eredményeket az
(egység) tesztek és a hozzá kapcsolódó kód elemek jav́ıtása közben.

T3.1: A közösség detektáló algoritmusok képesek a teszt és forráskód
elemek együttes klaszterezésére. A különböző teszt és forráskód anaĺızisek
automatizálásának érdekében, egy olyan módszert hoztam létre mely képes
tesztek és az általuk ellenőrzött forráskód elemek együttes csoportośıtására.
Ez a módszer további vizsgálatokat tett lehetővé.

A kutatás során két különböző klaszterező algoritmust definiáltunk a teszt
és kód elemek halmazán. Az első a teszt-kód lefedettségi adatokon alapszik és
kifejezi a teszt csomag dinamikus, vagyis futás közbeni viselkedését. Az ı́gy
kapott csoportok összehasonĺıtásra kerültek a második algoritmus által meg-
határozottakkal, mely a forráskód csomaghierarchiáján alapszik és a statikus
teszt-kód kapcsolatokat fejezi ki. A dinamikus csoportośıtás meghatározásához
közösség detektáló algoritmusokat használtunk a futás közben gyűjtött részle-
tes lefedettségi adatokon. Ez a módszer leegyszerűśıtve a a teszteset-metódus
lefedettségi mátrixok olyan részeit rendeli egy csoportba, melynek elemei kö-
zött jelentősen több kapcsolat található mint a csoporton ḱıvül.

10

T3.2: A teszt és kód elemek struktúrájának eltérésinek osztályozása
seǵıtséget nyújt a fejlesztők és tesztelők számára a teszt és forráskód
minőségének jav́ıtásában a teszt-kód kapcsolatok helyreálĺıtásában.
Ez a munka az egység tesztek minőségének vizsgálatát teszi lehetővé egy
újszerű nézőpontból. A módszer lényege a statikus, csomaghierarchia alapú
és a dinamikus, futás közbeni elemzésből származó teszt és kód elem csopor-
tok összehasonĺıtása.

A problémás helyek újratervezésére tett javaslatok megfogalmazása nagy
nýılt forráskódú rendszerek elemzésén alapszik, melyek számottevő méretű
teszt csomaggal rendelkeznek. A vizsgált rendszerek közepes és nagy Java nyel-
ven ı́ródott programok voltak, melyek tesztelését JUnit keretrendszer seǵıtsé-
gével valóśıtották meg. A választás során figyelembe vettük, hogy a rendszerek
a méretükhöz képest megfelelő számú teszt esettel rendelkezzenek. Az ezekből
gyűjtött adatokat a tesz és kód közötti kapcsolatok helyreálĺıtása során, az
adott elemek környezetének léırására használtuk fel. A módszer a statikus
és dinamikus elemzések során meghatározott kapcsolatok összehasonĺıtásán
alapszik. A hozzárendelések helyreálĺıtására vonatkozó végső döntést a fej-
lesztő hozza meg az eltéréseket mutató pontok vizsgálata után.

Ezek az eltérések egyfajta gyanús jelekként3 is értelmezhetőek, melyek
olyan pontokat jeleznek ahol a teszek vagy a hozzájuk kapcsolódó forráskód
elemek struktúrájában esetleg jav́ıtásra van szükség. A korrekció szükségessé-
gét egyéni mérlegelés után a fejlesztő dönti el. Kutatásunk első fázisa során a
saját szakmai tapasztalataink alapján definiáltunk alacsony felbontású eltéré-
seket léıró mintázatokat. Ezeket a második fázisban nagyobb felbontással ren-
delkező mintákra bontottuk szét, hogy seǵıtsük a fejlesztőt a hasonló jav́ıtáso-
kat igénylő helyek felismerésében. A vizsgáltatok a későbbi altézispontban be-
mutatásra kerülő UniGDA módszertan elemeit használja fel, például a minták
definiálására szolgáló dNDD léırókat.

T3.3: Általános gráf összehasonĺıtó módszertan biztośıtása. Az álta-
lam bevezetett és definiált általános gráf összehasonĺıtó módszertan az UniG-
DA nevet viseli. Ez a korábban bemutatott szakterület specifikus különbség
elemző technikák kiterjesztése terület független mintákkal és hasonlósági függ-
vényekkel. A kiterjesztés lehetővé teszi tetszőleges gráfok összehasonĺıtását.

Az UniGDA két fő fázisból áll (9a. ábra). Az első fázis során összeha-
sonĺıtjuk az elemzendő gráfok minden egyes csomópontját, majd a kapott
adatokat egy általános, különbségeket és hasonlóságokat léıró adatszerkezet-
ben tároljuk. Ezt a struktúrát fogjuk a későbbiekben felhasználni az eltérések

3Angolul:
”
bad smell”

11

(a) A folyamat áttekintése

(b) Példa gráf az dNDD
számı́tásához

9. ábra. Általános gráfok közti különbség elemző módszertan

elemzésére és osztályozására a kiértékelési fázisban.

Definiáltunk egy gráf alapú reprezentációt (csomópont hasonlóság gráf,
nsg), ami képes minden hasonlósági adat tárolására az eltérések lokalizáció-
jához. Ezen különbségek további elemzése megköveteli hogy képesek legyünk
jellemezni őket, vagyis szükségünk van egy eszközre, mely választ tud ad-
ni a következő informális kérdésre: A hasonló elemek hogyan viszonyulnak
a többi elemhez? A probléma megoldása érdekében bevezetésre került egy
általános léıró vektor és függvény (dNDD és cNDD), melyek képesek az
nsg csomópontjainak szomszédait és kapcsolatukat jellemezni. Ezek a szom-
szédos csomópontok fokszám szerinti eloszlását ı́rják le. Az nsg esetében,
seǵıtségükkel képesek vagyunk jellemezni az egyes csomópontok lokális ha-
sonlóságát más elemekhez képest.

Például a 9b. ábra középső csomópontjának dNDD vektora a következő:
d = (0, 1, 1, 2, 0, 0, . . .). A vörös kör az dNDD, hatósugarát jelzi mely, csak a
második szomszédságig képes jellemezni a csomópontok környezetét. A vektor
szerint a vizsgált csomópont az alábbi szomszédokkal rendelkezik.

d1 = 0 Nincs olyan szomszédja, melynek csak egy kapcsolata van.
d2 = 1 Egy olyan szomszédja van, melynek kettő kapcsolata van, a baloldali.
d3 = 1 Egy szomszédjának van három kapcsolata, a jobb oldalinak.
d4 = 2 Két szomszédos csomópontnak van négy kapcsolata, a felsőnek és az

12

alsónak.
Az ndd vektorok felhasználása lehetővé tette az elemek hasonlóságának

mélyebb elemzését. A léırókat felhasználhatjuk az ún. hasonlósági minták de-
finiálása során. Ezek olyan részgráfjai az nsg-nek, melyek képesek léırni a
vizsgált csomópont és hozzá hasonló elemek közti kapcsolatok szerkezetét.
A 10. ábra több példát is mutat ez ilyen területfüggetlen mintákra. Nehéz
általános, szakterület független jelentéstartalommal felruházni az egyes össze-
tettebb mintákat. De például a mostoha minta utalhat az elemzés során rosszul
megválasztott hasonlósági függvény használatára. Például, ha forráskódban
szereplő metódusokat minden lehetséges tulajdonságuk szerint hasonĺıtjuk
össze, beleértve a láthatóságukat is (private, public, protected), akkor el-
kerülhetetlen hogy több olyan elemet is kapunk, melyek csak nagyon kis
mértékben lesznek hasonlóak a vizsgálthoz.

(a) Ikrek (b) Testvérek (c) Mostoha

10. ábra. Hasonlósági minták

Az UniGDA alkalmazása során mind a megfelelő hasonlósági függvény
kiválasztása és a kapott minták értelmezése is a kih́ıvások közé tartozik.
Ezek mélyebb ismereteket igényelnek az adott szakterülettel kapcsolatban.
A tapasztalataim arra engednek következtetni, hogy ezen komponensek meg-
határozhatók manuális kiértékelés és elemzés seǵıtségével. Köztudott, hogy a
szakértűi tudás összegyűjtése és kiértékelése hosszadalmas és költséges fela-
dat. Azonban az általam bemutatott UniGDA módszertan lehetővé teszi,
hogy ezeket elég legyen egyszer elvégezni, hogy a további kutatások során
többször felhasználhassuk őket.

Bibliográpfia

[1] Gergo Balogh és Arpad Beszedes.
”
CodeMetrpolis—A minecraft based

collaboration tool for developers”. Software Visualization (VISSOFT),
2013 First IEEE Working Conference on. IEEE. 2013, 1–4. old.

13

[2] Gergo Balogh és tsai.
”
Using the City Metaphor for Visualizing Test-

Related Metrics”. 1st International Workshop on Validating Software
Tests. 2016.

[3] Gergő Balogh.
”
Comparison of Software Quality in the Work of Children

and Professional Developers Based on Their Classroom Exercises”. In-
ternational Conference on Computational Science and Its Applications.
Springer, Cham. 2015, 36–46. old.

[4] Gergő Balogh.
”
First Steps towards a Methodology for Unified Graph’s

Discrepancy Analysis”. submittted for review to 13th International Con-
ference of Graph Transformation, (part of STAF 2020).

[5] Gergő Balogh.
”
Validation of the city metaphor in software visualizati-

on”. International Conference on Computational Science and Its App-
lications. Springer, Cham. 2015, 73–85. old.

[6] Gergő Balogh és Arpad Beszedes.
”
CodeMetropolis-code visualisation

in MineCraft”. Source Code Analysis and Manipulation (SCAM), 2013
IEEE 13th International Working Conference on. IEEE. 2013, 136–
141. old.

[7] Gergő Balogh, Attila Szabolics és Arpád Beszédes.
”
CodeMetropolis:

Eclipse over the city of source code”. Source Code Analysis and Mani-
pulation (SCAM), 2015 IEEE 15th International Working Conference
on. IEEE. 2015, 271–276. old.

[8] Gergő Balogh, Ádám Zoltán Végh és Árpád Beszédes.
”
Prediction of

Software Development Modification Effort Enhanced by a Genetic Al-
gorithm”. SSBSE Fast Abstract track (2012), 1–6. old.

[9] Gergő Balogh és tsai.
”
Are My Unit Tests in the Right Package?”: Source

Code Analysis and Manipulation (SCAM), 2016 IEEE 16th Internatio-
nal Working Conference on. IEEE. 2016, 137–146. old.

[10] Gergő Balogh és tsai.
”
Identifying wasted effort in the field via developer

interaction data”. Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on. IEEE. 2015, 391–400. old.

[11] Tamás Gergely és tsai.
”
Analysis of Static and Dynamic Test-to-code

Traceability Information”. Acta Cybernetica 23.3 (2018), 903–919. old.

[12] Tamás Gergely és tsai.
”
Differences between a static and a dynamic test-

to-code traceability recovery method”. Software Quality Journal (2018),
1–26. old.

14

Társszerzői nyilatkozat

Kijelentem, hogy ismerem Balogh Gergő PhD fokozatra pa}yaző,,Utilizing static and dyna,rnic
software analysis to aid cost estimation, software visua]ization, and test quality management"1
című disszertációját, A disszertációban szerepLő és az,,Analysis of Static and Dynamic Test-to-
code T}aceability Information" ci]<kektlen publikát közös eredményekre vonatkozóan kijelentem
a következőket,
Az alábbi eredményekhez való bozzájarllásunk oszthatatlan:

r Eredmények kiértékelése

r kutatrás dokumentálása és bemutatása

A következő eredményekben az én hozzájárulá,som volt a meghat;írozó:

o Statikus és dinamikus teszt-kód csoportosítás közti eltérések értelmezése kórnyezeti in-
fbíffiáaiókéiit á hózzáíéiidéiés krapesolatok }ieli;reáIlítása soráii

o Az automatikus mérések alatt detektált eltérések manuális vizsgálata

. A kézi vizs§álat é§ á félísmért hásóhlósá§i iniiiiák alápjáh újráteiv€zési javxiatok megfo-
galmazása az teszt-kód kapcsolatok helyreállítá,sa érdekóben

Az érintett cikk teljes hivatkozása a következő:

Tamás Gergely és tsai. ,,Analysis of Static and Dynamic Test-to-code T}ace-
ability Information". Acta Cybernetica 23.3 (2018), 903-919. old.

2020. m:írcius 31.

1statikus ós dinamikus forráskód elemzés
minőségőség mene<izsment során

felhasznrilrisa költségbecsélés, szoftver vizualizáció, és teszt

Horváth Ferenc

Társszerzői nyilatkozat

Kijelentem, hogy ismerem Balogh Gergő PhD fokozatra pá|yáaő,,Uti}iaing static and dynamic
sofbware analysis to aid cost estimation, sofbware visualization, a,rrd test quatity management"l
című disszertaaiőját, A disszertációban szereplő és az uDifferenees between a statie and a dynamic
test-tcr,code traceability recovery method" cikkekben publikrátt közös eredményekre vonatkozóan
kijelentem a következőket.
Az alábbi eredményekhez való hozzájrárulá,sunk oszthatatlan:

o Eredménvek kiértékelése

e kutatiís dokumentálása és bemutatása

l A definiált minták detektráJását végző mődszerek kifejlesztése és megvalósítása

A következő eredményekben a pályázó hozzájaaiasa volt a meghatározól

e Az aaanosított hasonlósági (a}-)minták finomítása

A következő eredményekben aa én hozzájatuluom volt a meghatározó:

r A korábbi statikrrs és dinamikus tesz-kód csoportok eltéréseiben azonosított mintázatok
további al-mintákra bontása

r A mérési folyamatok végrehajtása ós felügyelete

Az érintett cikk teljes hivatkozása a következő:

Tamás Gergely és tsai. ,,Differences behrreen a static and a dynamic test-
}runnrla i}qnóohilirt, ma}hnrl,, q^f+.^^-" l)4,nl;+o, I^,,--^I /9n l 9\ 1_

26. old.

2020. március 31.

I§a+!k.9k
Horváth Ferenc

lstatikus és dinarnikus forráskód elemzés felhasználasa kóltségbecsélés, szofiver vizvűináció, és teszt
minöségöség menecizsment során

Társszerzői nyilatkozat

Kijeieritenr. hogv isrnererrr Birloglr Gergő PlrD fokozatra pr{li.ázó ,,Utilizirig static arrcl clynatriic
softna,re analysis to ilirl cost estimation, softrnare visttalization, and test qua,}itr. managentent"1
círníí c]isszr:rtációját. A rlisszcrtációban szereplő és a,z,,Ana}ysis of Static a,nc1 Dynarnic Telst-to-
coc}e Traceabilit;. Infor:matiorr" cikkekben prrblikált közös credmónl,clirc vcnatkozóan kijelcntem
rr kijvetkeztiket.
.Az a]ábbi ereclrrténl"ekhez \?1ó lrozzá.jálrilásunk oszthatatian:

o Ereclrrrénl-ek kiértékelése

r kutatlr,s clcikurrrentálása és berrrirtatásel

A következő ererlrrrérryekllerr az érlhozzájáttrlásorrr voit a nreglratároző,.

l Statiltrrs ós tlirlainikirs tcszt-kód csopoi,tosítás közti eltérések ér.,telrrrezése körlryezet,i iir-
forrná,ciókén t a hozzár endelés kap cscllatok helyreá,}lít ása sorá,rr

r Az automatikus mérések alatt detektált eltórések rnanuiilig r.izsgálata

r A kézi vizsgálat és a felismert lrason}ósági rninták alapján rrjratervezési jalasiatcrk nregfo-
ga}rirazása az tcszt -]rócl kapcsoiatok }re]vrcállítá,sa, órclckí:l,ir:rl

Az órirrtctt cikk telics hivatkozása a következő:

Tarrrás Gergely és tsai, ..Analvsis of Static and D.vnamic Tcst-to-codc ltircc-
abilit"v Inforrna,tiorr" . Acta Cybernetica 23.3 (2018). 903 919. old.

2020. ápri}is 1.

Ú^r,*ru, a
vancsics Béla

1Statikus és dinarnikus íbrráskri<i e}emzós fe]használása kóltségbecslés, szoftver vizualizáció, és teszt minőség
nrcncclzsnrerrt sor,án

Társszerzői eryilatkoz;,et

Kijelentem, hogy isnrerem Balogh Gergő PlrD fokozatra páIyázó,,Utilizing static and dynarnic
softrn are analysis to aid cost estimation, software visualization, and test quality managemerrt" t

címil disszertacióját. A disszertá,cióban szereplő és az,,Differences between a static and a dynamic
test-to-code traceability recovery method" cikkekben publikált közös eredményekre vonatkozóan
kijelentem a következőket,
Az alábbi eredményekhez való hozzájárulrásunk oszthatatlan:

r Eredmérryek kiértékeiése

r kutatás dokunrentálása és bemutatása

A következő eredményekben a pályázóhazzájárulása volt a meghatározó:

o Az azorrosított hasorrlósági (al-)nlinták finomítása

r A definiáIt minták detektálását végző módszerek kifejlesztése és megvalósítása

A következő eredményekben az énhozzájárulásorn volt a meglratározó:

r A korábbi statikus és dinarrrikus tesz-kóil csoportok eltéréseiben azonosított nrintázatok
továhbi al-mintákra bontása

r A mérési folyamatok végrehajtása és felügyelete

Az érintett cikk teljes hivatkozása a következő:

Tamá"s Gergely és tsai. ,,Differences between a static and a dynamic test-
to-code traceability íecovery rnethod". Software Quali,ty Journal (2018), 1-
26. oId,

2020. április 1 Ü*tü bú
\rarrcsics Béla

lstatikus és dinamikus forráskód elemzés felhasznáIása kö}tségbecslés, szoflver vizualizáció, és teszt minősóg
menedzsment során

l

