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Abstract

In the first part of this thesis we make an attempt to reviewesofithe element of the
theory of Combinatorial Games that have relevance to oukwut of this vast area we
tried to list those that underline the deep connections ithklaatics, reveal the difficulty
of the process in giving exact proofs or even the right natioiVe also wanted to stress
from the very beginning the most important speciality ot #h#bject: we have a compass
to sail these troubled waters; the are the varying heusistic

The theory started with the mathematical examination ohggames that tic-tac-toe
or hex, where a player need to achieve certain position iardoiwin. For those both the
Achievement gamand thePositional gameéerms are used. In the original forms the goal
of both players was the same, reaching a winning positiaa;vrsion is called now in
retrospective as the strong or “Maker-Maker” version. Theakor “Maker-Breaker” is
already a heuristic to understand the strong games; herplayer (Maker) goes for the
goal as before, while the other (Breaker) wins by preventiiager to achieve this goal.

This games have an intimate relation to the Probabilistithidé. Many tools that
has been developed to handle random events have countergamnes, although the
transition not always apparent, and frequently far frormgerivial. In this process other
heuristics, the “accelerated” and “biased” games help nghé first more steps can be
done at each turn of the game, while in the second the actielesaf the players might
differ from each other.

This setup allows the development of several powerful magtior evaluating the pos-
sible outcome of games. Among those we describe strateglrgfearguments, pairing
strategies, weight functions, auxiliary games etc. We altoduce the Reader to the
recent development of a new variants of positional gameg;hwdre proved to be very
nice and useful tools for analysing complex games. Thesthaiicker-ChoosefP-C)
andChooser-Picke(C-P) games.

The main goal of this work is to understand Picker-ChooserQloooser-Picker)
games as deeply as possible. Undoubtedly, the centralgmoisl here if these games
are really good heuristics for the Maker-Breaker games?e@arts are concentrated on
this so-called Beck’s conjecture. We confirm the conjectora number of special cases,
and this path also leads us to other natural problems. Tleistduas three main parts.

At first we examine the complexity of Picker-Chooser and Geodlicker games.
Here we found that it is NP-hard to decide the winner for both 8nd C-P games [24].
Then we discuss the Picker-Chooser version of well-knowneg to explore the dif-
ferences and similarities among the various types. The methgames are the C-P
4 x 4 Tic-Tac-Toe the Picker-Chooser version of generalized Shannon siwgalame,
the Chooser-Picker version of tliein-a-row and some of the Chooser-Picker, Maker-
Breakr and Picker-Chooser Torus games. We also generadéizdda of pairing strategies,
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The Chooser-Picker games

and give a computer free proof for their non-existence incée of the most notorious
Harary game, the Snaky [24, 21]. We improve a little on thed@&rSelfridge” theorem
for Chooser-Picker games, although a gap still remains[2aije

Secondly, we solve with the Chooser-Picker 7-in-a-row gamiis game is quite
interesting because the last really valuable result foBtirea-row game was made more
than 30 years ago. (Playing on the infinite board, the sectaypcan achieve a draw
in the 8-in-a-row game.) Since then, many people has triqutdge a draw for the 7-
in-a-row, so far unsuccessfully. In light of Beck’s conjaet the Chooser-Picker version
of that game should be a Picker win, that we prove. The proef lét lengthy and a
non-trivial case study. After that, we sketch some ideas hoght attack the original
(Maker-Breaker) version of this game [22].

Finally we will discuss the Picker-Chooser diameter ganié® diameter of random
graphs and the outcome of various Maker-Breaker games dheniodoriously hard to
decide. Here we have found a very interesting result thatdifferent are the outcomes of
the Maker-Breaker versions and from that of the Picker-Gkrowoersions [2, 23]. Unlike
the Maker-Breaker case, here the upper and lower bounds #re same order.



Chapter 1

Introduction

1.1 All games bright and beautiful

What could be more appropriate than borrowing the title dinJid. Conway’s paper from
1977 for a section intended to go through on the whole histéi@ames? Games and
Mathematics do not blend easily: for long centuries the garaespecially the games of
chance, had been treated with even more despise than MatbemaNorse, playing
games were not only illegal sometimes, but dismissed adishibehavior, and a serious
scholar definitively cannot risk to endeavor such a frivelagtivity, although the subtle
paradox of Zeno about the hare and turtle could have beenrangasign. Still, the old
habits die hard.

Then, in 1654, the ideas of Blaise Pascal and Pierre Fernvat lgeth, and, more
importantly,respectto a new field of Mathematics, Probability theory. After titabok
less than 300 years that the notion of randomness becamé threernost important ones
in science, somehow rehabilitating the suspicious dice.

The deterministic games had to wait longer, although itesteearlier. Another French-
man, Bachet de Méziriac, published the first mathematioaktloat was devoted to recre-
ational mathematics completely in 1612, see [20]. BacHatisoussubtraction game
became a prototype for ti@ombinatorial Gamest is a two person game with a discrete
(and finite) set of states, it has rules governing the tremmsémong those, and the player
who is unable to move according to these rules, loses the.gimmentains the basic in-
gredients one might expect from a mathematical game: simj#s, clean but nontrivial
solution; in this case by the notion of divisibility.

The noble chess has also inspired a lots of efforts that letktmelo’s great theo-
rem and it became a benchmark problem for Computer Scienddater for testing the
strength of hardware configuration. One might wonder, wieysimilarly adored game
of Go did not give more to the development of the theory? Witk main reason of
this is the difficulty of the game, the elusiveness of thegu@kso play some role. Elwyn
Berlekamp spent considerable effort to compare the “disllexf Go that result in differ-

lWhile the mathematician had been banned from Rome for aicqrégiod, laws against games were
constructed all the time [72].

2In fact, Bachet defined it by addition. Two players tell pwsinumber by taking turns. Starting at zero,
they add an arbitrary integer between one and ten to thequreviumber, and the player, who announces
one hundred is the winner.
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ent outcomes in subtle situations. Since it makes matheala@pproach impossible, he
introduced his own variation “Mathematical Go” insteadd aolved hard endgames, see
[13]. Note, that the rules of chess contained loopholes, too

The golden era of certain games started with John von NeutrethEmile Borel.
Neumann proved the famoumsinimax theoremn full generality that is a milestone in
the theory of matrix games. His followers (David Gale, Hdruhn and Alan Tucker)
connected Neumann'’s theory to the newly formed subject oé&i Programming, that
is still one of the best understood and computable part ofegdnaory [31]. Note that
von Neumann proposed the notion and investigation of LPityuahd conjectured the
equivalence of the so-called Strong Duality theorem andhtimemax theorem.

In to give a solid foundation to theoretical economy, Neumangether with Oscar
Morgenstern, introduced the notion and studyGafoperative games their classical
book, see [50]. The impact of that book was tremendous, inbasnly reshaped econ-
omy, but its language and its point of view still dominates tield. However, one aspect
of the competition is missing from their approach, the cadseom-cooperative players.
John Forbes Nash took this important new step in his semapai47]. It turned out that
for general games the players’ strategies have distingdidistributions, now we called
thoseNash equilibriumsuch that a player does not win (in expectation) from dawvati
from it by alone. Thereafter the theory of cooperative and-cooperative games swal-
lowed the theoretical economy; while there is no matherabhiobel prize, the Nobel
Memorial prize for Economy was given several times for ganestetical work'

Better or worse, the entities have started to multiply. Naishself made attempts to
include the cooperative games to his theory, that is to fintewoperativenechanisms
such that the arising Nash equilibrium(s) would be a sotutitthe cooperative version of
the gameé. The Nash equilibrium has been specialized (Kuhn, sub-garfeq equilib-
rium), generalized (Aumann, correlated equilibrium), iechew notions (Shapley value),
and sometimes it has been even applied (Maynard-Smithukwohry Stable Strategies).

In the shadow of these theories there were two other lineamokg that are just special
classes of the “already solved” matrix games. One of those started with Charles
Bouton’s NIM, continued with the Grundy-Sprague theory aotininated in Conway’s
games, see [13, 18]. Although Conway'’s theory is a mixtureavtheory and arithmetic,
it was coined a€ombinatorial Game Theorgince it usually deals with finite objects.

The other field that we discuss in detail also of combinatodure, and its origin is
even more humble than the previous one: those games comd&iterac-Toe, 5-in-a-row
or Nine-Man-Morris. The common in those games is that inot@®in, the player needs
to achieve a prescribed pattern; this explains the nams@ional GamesNo matter what
the name is, these games have numerous links to diversegbansthematics. Without
completeness we might mention Ramsey theory, on-line idgos, Random Graphs,
Topology, Complexity etc, for an excellent guide see themebook of J6zsef Beck, [10].
It is not a great surprise that the field inherits all the bgaumtd difficulty experienced in
the previous subjects. Therefore it is an appropriate lagguo express and study well-

30f course his “real” name is Neumann Janos, or “Jancsi” tarttiated, but he used mainly the von
Neumann form in his publications.

4Among those were Harsanyi Janos, who received this prizettieg with John Nash and Reinhardt
Selten in 1994.

SThis is the so-calle®lash program.ts success or even its possibility is debated; one thingrie:sa
great number of works have been published on that.
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known old problems, and to get a fresh view on those.

Finally, let us say a few words about Mathematics, and thénemaatics of Positional
Games. Mathematics is hard. Finite mathematics is everehasithce most of its laws
have no apparent cause, and the geometric intuition caramti@e the essence of the
phenomena. Indeed, we do not know the outcome of seemingbgént small games, not
to mention how to play those, and we have not much hope to finthese recently. Still,
there are some beacons in the dark, making parts of the fadthtrle; these are what this
work all about. The most important of those are the randomistges, the acceleration of
games and the Chooser-Picker versions. Here our main gmalligderstand the last one
as much as possible.

1.2 Combinatorial games

The archetype of combinatorial games is the game of Chessngrther lessons it also
shows that one can never really trust in rules written natarguages. Before 1972 the
official rules for castling by FIDE were:

Castling consists of moving the king two squares toward &, rtteen placing the rook
on the other side of the king, adjacent to it.[2] Castling méygoermissible if all of the
following conditions hold:

1. The king and rook involved in castling must not have prasip moved;

2. There must be no pieces between the king and the rook;

3. The king may not currently be in check, nor may the king plassigh or end up in
a square that is under attack by an enemy piece (though theéspermitted to be under
attack and to pass over an attacked square).

However, Tim Krabbé has composed the following piece thastilated the incom-
pleteness or unwanted ambiguity of the rule:

Tim Krabbé, 1972

D
%///////

R N W A~ OO N

Mate in 3

The winning line is:
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1. e6-e7, Kef3

2. e7-e8R, Kf3-g2

3. 0-0-0-0-0-0 mate!

Here the unusual notation “0-0-0-0-0-0" means the “longlea®f the white King
goes from el to e3 and the Rook goes from e8 to e2. Clearlyntbig conforms to the
rules 1. 2. and 3. To eliminate such bizarre possibilitiegdditional assumption had
been added to the rule:

4. The king and the rook must be on the same rank.

From the Chess and thousands of others games the follonamguso can be distilled,
that more or less formalize what we c@lbmbinatorial Game

» There are two playerd, (White) and/ I (Black), and!/ starts the game.
» There are finitely many positions and a starting positiagiven.

» The feasible (legal) moves of the players are given in epestions.

* The players take turns.

» Every sequence of legal moves are finite.

« A sequence of legal moves beginning with the starting posdnd ending with an
end position is a game.

* The outcome in every end position is determined; one of thggps win or it is a
draw.

» Both players have all information; they know the rules amelytlegal moves, re-
member the moves they had already took, see all his/her ggmhept moves etc.

* No moves or rules that depend on some randomness.

Zermelo used more or less the same definition to spell out amEphis famous
theorem:

Theorem 1.1. A combinatorial game is either win by one of the players, ahljayers
have a strategy resulting in a draw.

Sketch of the proof. One can built up a tre€ such that the vertices are pairs sub games
For the (possible) sub gamesy the directed edgér, y) exists if the player, who is about

to move atr, has a move that leads to the sub gamkeetr be the sub game consisting of
the a starting position with empty history and White is aliounove. With thisI is the
rooted tree that can be reached fromlong the edges defined before. Since all plays are
finite, the directed paths il end up in leaves. The outcome of the sub game in each leaf
can be decided, and one may compute the outcome in each entex of 7’ by backward
labeling. O

5The original proof of the theorem was wrong. It was fixed areddtatement was considerably strength-
ened by Kinig, Kalmar and Neumann, see [19, 76]. The result allowsutieeofindirect proofsfor finite
games, so sometimes it is referredyasne theoretic tertium non datur

"That is not only positions, but a description about the dgilagy leading to that position.
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Remarks. In some sense the algorithm used in the proof of Theorem lvésall com-
binatorial games, but this is just the theory. The ffeis usually too big, although some-
times symmetries may help, or one can use the method fomgpiwiportant sub games.
We also have to mention that notions of position, play aratatjies are more subtle then
one may think for the first glance. The position itself is nobegh to determine the game
as we can see from the following piece that is a nice examplexigtence arguments

W. LangstaffChess Amateut922.

B Bl
o m
5 BIETE.

%/

//%%
B B B H

B 5 6
///D

a b d f g h
Mate in 2

R N W s OO N

The computer chess programs usually get into trouble finthegsolution. After
some deliberation one realizes that there are two diffdireed that the game has reached
this position® If King or Rook of Black has already moved, then 1. Kf5-e6 leéalthe
inevitable mate 2. Rd5-d8. On the other hand, if neither efé&pieces has moved before,
that is Black still has the right for castling, and fendinfjtble Rd8 mate, another pattern
arises. In that case the only possible last move of Black wasdY-g5, since a pawn on
the square g6 would have attacked White’s King. So in thag &8kite has the right to
capture the pawn on gé&n passantthat is 1. h&g6, and for 1. -, 0-0 White mates with
2. h6-h7, for any other steps with 2. Bd5-d8.

So the general rule is that history cannot be erased; we sealfurther example
for this later. Still another issue is the need to make thenaif strategies more precise.
Centuries ago there persisted a funny belief there mighttenaing formula” for Chess,
and if a player applies it, wins the game regardless the c@ertainly the better minds
dismissed this, asking what would happehathplayers follow that magic formula?

The strict way to think about strategies is to call them fior that map the sub
games to the set of legal moves that are possible in the givergame. However, this
approach also has paradoxical consequences. There argeigimes in which one of
the player surely wins at the end, but neither of them havewwqstrategies! The first
game of that nature was the Banach-Mazur game, then Galetewdr8, later McKenzie
and Paris gave interesting examples, see [9].

8A rule for chess compositions requires that the positiontroaie from the standard starting position
by taking legal steps. Ifairy chesgproblems this rule does not apply.

11
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Finally, there are some games for which the labels of the suieg can be computed
without searching for the whole game-trée The best known example for that is the
game of Nim.

1.2.1 Nim

Nim is a two-player mathematical game of strategy in whidypts take turns removing
objects from distinct heaps. On each turn, a player mustverableast one object, and
may remove any number of objects provided they all come frloensame heap. The
person who makes the last move (i.e., who takes the lasttpbyjets.

Variants of Nim have been played since ancient times. Theegansaid to have
originated in China (it closely resembles the Chinese gahidianshizi”, or “picking
stones”), but the origin is uncertain; the earliest Europederences to Nim are from
the beginning of the 16th century. Its current name was cbinjeCharles L. Bouton of
Harvard University, who also developed the complete thedrthe game in 1901, but
the origins of the name were never fully explained. The nasr@ebably derived from
German nimm meaning “take”, or the obsolete English verbofithe same meaning. It
should also be noted that rotating the word NIM by 180 degressits in WIN [75].

Nim (or more precisely the system of nimbers) is fundamednttie Sprague-Grundy
theorem, which essentially says that in normal play evepairtial game is equivalent to
a Nim heap that yields the same outcome when played in panatleother normal play
impartial games (see disjunctive sum).

Since the number of objects are finite, so the game can not bena &o if a player
could avoid the loss then he/she wins. This is the base oftthtegy of Bouton. Let
suppose that we can define a propéd?tgf a NIM game in that way:

() If all of the heaps are empty, then P fulfilled.

(i) If property P does not fulfilled, then it is possible to move such a way tfiat & P
IS exists.

(iii) If P exists in a stage, then it won't be in the next stage.

If at the beginning P does not exist, then the first playerdhse of (ii)) chooses a step
to satisfy P. Therefore after the second player’s turn @féhis any) the first is also in such
a situation that P does not exists (because of (ii) agaimyetins that the first has a legal
move again, which drives to a stage with propépty Sooner or later the objects/stones
will be diminished,P holds at the end and the player who has to move loose. Tharoos
is the second player. (If at the beginning P exists then thaltres a second player win).

Some words about the strategy:

Nim has been mathematically solved for any number of inhiehps and objects; that
is, there is an easily calculated way to determine whichexlayll win and what winning
moves are open to that player. In a game that starts with hafaps4, and 5, the first
player will win with optimal play.

The key to the theory of the game is the binary digital sum effthap sizes, that is,
the sum (in binary) neglecting all carries from one digit tmtner. This operation is also

12
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known as “exclusive or" (xor) or “vector addition ovérF'(2)". Within combinatorial

game theory it is usually called the nim-sum, as will be doaeeh The nim-sum of x
and y is writtenr & y to distinguish it from the ordinary sune,+ . In normal play, the
winning strategy is to finish every move with a Nim-sum of Or Erample of the sum of
heaps with size 3, 4, and 5 is the following:=3 ® 4 ® 5 = 2.

1.2.2 Conway theory

Here we just give some hint about this great theory, sincasdtlttle relevance to our
work, but it would be unfair to ignore it completely. For a aiégd introduction see
[18, 13]. Conway melted the constructions of Dedekind, Gaahd Neumann into a very
general notion of games, that includes practicalhgrything® that can be considered as
Mathematics. He builds up games recursively from small gathat are listed as left
(L) and right ®). That is the form of all games i§L|R}, whereL and R are lists of
already defined games. The general elemenbptionof L (R) is denoted by:” (z5).
The players are also callddand R, when it does not cause ambiguity. They take turns,
and a legal step fok. (R) is to pick a game from the list (R). The player, who cannot
make a legal step, loses the game; this is the connectiomto Ni

Of course, the whole journey starts with the gaphein which both lists are empty.
The next games are tHé |}|}, {|{|} } and{{|}|{|}}. The player who starts the garg
loses, since there is nothing to pick. The same argumentstiwatL (R) wins {{|}|}
({|{I1}}), while the player who moves wing|}/{|}}.

As more and more games appear in that process, one needetdlmsge and make
equivalence classes containing those that differ only &iymLet z > y if 2% < y and
r < y* holds for noz®, z%. Anz = {L|R} is anumber if for all 2%, z* are numbers
andz® < z’ never holds.

The games: andy areidentical = = y, if their left and right sets are identical, while
those areequal z = y, if x < y andy < z.

The sum and product of games are defined such a way that conéothre one
Dedekind used in the case ofits If + = {L|R}, thenz £ z* andz® £ z. The
sum of the games andy should be the game where the player on move decides to
take a game from either or y, and the game continues on that game. Thatdsy :=
{2t 4y, a+yH| 2B +y, o+yf}, —2 = {—2B|—2l} andzy = {2ty +ayl —alyl, ofy+
oyl — pRyR|aly + ayf — plyR aBy + oyl — 2Byl

One possibility here is to develop the arithmetic of gamd®e games form a field in
which the numbers are an ordered subfield. The {|}, 1 := {0|} and—1 := {|0} are
numbers, while{0|0} is not a number and cannot be compared by them. Therefore the
relations =" and “=" differ from each other. A number = {L|R} is determined by
the largest element df and the smallest element & but it may very well happen that
xz # yz even though: = y, if x, y, z are not numbers. Some more numbers are:

2= {1} = {-L1}} ={0,1]} = {-1,0,1[}, =2 :={[ -1} = {| - 1,0} =
(=11} ={ - 1,0,1},1/2 := {01} = {~1,0[1}, —1/2 := {—1|0} = {—1]0, 1}.

To evaluate a complicated number the so-catlieablicity theorems very handy:

%If one stays within theumulative hierarchy.

13
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Theorem 1.2. Suppose for = {L| R} that some number satisfiesr” % = % 2% for all
xl, x®-re, but no options of satisfies the same conditiéhThenz = z.

We haver > z unless some’ < z orx < zF. But fromz < z* we can deduce
ol R o <P < 2 # alforall 2%, 2L, from which we haver” # 21 # 2%, contradiction
the assumption about That isx > z, similarly z > z, soz = z. O

Going on that line one can get the dyadic rationals and dlimeémbers embedded in
games. There are more exotic objects, too. Such are likenfimity w := {0,1,2,...},
Leibnizinfinitesimals e. g. 1/w = {0]1,1/2,/1/4,...}, and not only the successor of
w,w+1=14{0,1,2,...,w|} butitspredecessow — 1 = {0,1,2,...|w}, which has no
equivalent among the ordinals.

The other way is to get use of the defined games. Every condriabgjames can be
written in the form{L|R}. The games has their value that, roughly, says that a player i
how much ahead to the opponent. If a gamie the some of games, thatis= >, y;,
and the value of eac) is known, then it is straightforward to compute the valuel(tre
outcome) ofr. !

The following example came up in a real chess game, and Cdswagory is quite
appropriate to explain the subtleties of the resulting tjosi

Schweda-Sika, Brno, 1929

%/{//////
‘%4 %g %/
. %%/%/7 ,/%/

7//
%////

”%

R N W s OO N

White starts and wins

In fact Euwe and Hooper noticed that the position is win byplaer who moves,
and Elkies found an elegant proof for this claim [53]. One saa right away the player
who is forced to move his King first loses the gatheéOn the other hand, they will run
out of run pawn movements, and breakthrough (and consdgysamtn promotion) is not
possible. The moves on the Queen side and King side are indepg that is a game
decomposes to thdisjunctive sunof the two sub games. In order to compute this sum,
we need some notations. Let= {0]0} (star), T:= {0]*} (up), T * := {0,*|0} =T +=x

OThat is, either® <z or 2% > ¥ hold for some choice.
HIndeed, the special case of this addition is the Nim addition
12with other words, the central part of the gamé|is =: 0.

14



The Chooser-Picker games

(up-stap, 1:= {0] T *x} =1 + 1 (double up, and{} * := {0| 1} =1 + 1 += (double
up-stap. Furthermoreg:= — 1, |:= — ftand{} *x := — {} *.

With this, the sub-game on the the h-filelisx. The sub-game on Queen side needs
some case checking; it i see [53]. Nowt + |} * =] *. | x||0, that is the game is a
first player win. White can start with 1. h4 giving Black thengat + |= 0, while Black
wins with 1. - ab.

However, the games we shall discuss are rarely of this nataté the last few steps
those cannot be broken into sum of simpler games. So we vatl ogher, mainly combi-
natorial tools to attack them.

1.3 Methods, issues and paradigms

We make an attempt to collect the most important stuff aboothinatorial games. This
venture is far from being complete, the size of the subjemtgmts us from achieving this.
The volumes of Berlekamp, Conway and Guy [13], Beck [9], Nkoveski et al. [53] and
the collection of Fraenkel [30] give good references foit.thtdere we want to mention
only those parts of the theory that have close relation, en@ontinuation in our work.
Even in that case, we try to do it briefly.

First we go through on methods that can give the outcome afreegdthoutexploring
the whole game-tree and then introduce heuristics thattoelmderstand to essence of
some games. Note that these methods and ideas are not idéepeheir elements come
up together in the examples and the applications.

1.3.1 Pairing

A really old chestnut is the infinitplacing coins(to the table) game. In the easiest case
a round table is given, onto which the players have to taked@oins in turns such that
(1) two coins must not overlap (2) the weight center of eadh nwst be supported by
the table. The player, who cannot make a legal move, losegaime.

White has a winningpairing strategy place the first coin to the center, and for each
step of Black, put down the next coin in a centrally symmeptece. This way White
restores the central symmetry of the leftover tahleo whenever Black has a legal move
White also has. But the game is finite in length, since the airffze table is finite, so one
of the player must lose, and from the previous argument it ine8lack.

There are many relatives of that result. In a similar one dippeared in lecture note
than in print [62], the unavoidable defeat of a player commesifa combinatorial fact. A
beautiful old result of Harper and Chvatalova, see e. g. §&3k that if one labels the
vertices of ther x n grid with the numbers, ..., n2, then there will be two neighboring
vertices where the difference of the labels at lead¥loreover there is a labeling in which
the differences are not more than tffat.

B3)f the table is not centrally symmetric at the beginnings thirategy breaks down, and for the general
case nothing is known.

That is thebandwidth of thex x n grid is n. In general to decide the bandwidth of a graph is NP-
complete.
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We make the two players labeling the vertices of the grid Withnumbersg, ..., n?,
using one number only once, and the player whose move firsesaudifference at least
loses the game. Obviously the game is finite and it cannot bavg do from Theorem 1.1
one of the player has winning strategy. In fact, it is almbstdame as in the Placing coins
game, just one pair up not only the vertices of the grid butrilmabers also. With the
pairingM = {(i,n* —i+1) : 1 < i < |n?/2]} White wins ifn = 2k + 1, while Black
wins if n = 2k. (Again, if the graph is not central symmetric, not much is\Wn. Note
that one can make out a game from a combinatorial impoggibieorem ofttimes.)

The well-known notion of different types ofppositionn Chess endgames bamboo
in Go are pairings used every day. T¢w@respondingr conjugatesquares in the famous
piece of Kornél Eberszt is a pinnacle of this direction, 68.[

K. Eberszt

>
AT

P N W s OO N

White moves and draw

Here White has to protect the squares f3 and c6. In means thae¥/King must
move to a5 (e2) if Black’s King moves to c6 (g¥)From here one can pair up some other
squares recursively: b4-d7, a4-d8, c3-e6, b3-e7, a3-e&(U8), c2-f6(h6), b2-f7(h7),
a2-f8(h8), d1-g5, c1-g6, b1-g7, al-g8. The squares a8,8Bace no specific pairs, just
White has to make sure to occupy b4 or a4 when Black leaves thess. (E.g. a5-c8,
b5-b8, a5-a8 is OK.)

1.3.2 Potential functions

The potential function appeared in special combinatorahgs, in which Black does
nothing, just gives back the position to WhifeThe best known examples are Conway’s
frogs [13] pp. 715-717, and the classification of the Peg gpasitions by de Bruijn
[15]. The board is the infinite two-dimensional lattice (ather an infinite board with

15The pairing b5-d7 is not good, since from that position Whiteds 4 moves to reach e2, while Black
needs only 3 moves to get to g4.

16To put it differently, such a game is a one person gam&aditaire, like the Rubik cube, or a formal
proof of a theorem.
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squares if we consider the dual) in the first and a finite sutfsiin the second. There
are pieces (men, frogs, pegs) on the board, and the legal stegumps. A piece can
jump a neighboring piecg, if the squares on the other ofy is empty. Alas, the jump
costs the life ofy, so the number of pieces is decreasing.

Conway asked, if all frogs are placed on one side of a horadimie ¢, how far the
frog may go to the other side éf The goal of the Peg game is to remove all of the pegs
but one. Accordingly, de Bruijn was interested in descgbine equivalence classes of
peg sets, that is those configuration that might be reacload éach other with the legal
step or its reverse.

To answer these questions potential functions are develdpest one labels the cells
with some numbers, and compute the potential by adding ufabeds on the occupied
squares’

However Conway used real labels that were decreasing erpaliein both ways
from a starting point, while de Bruijn appropriate pairsnfré-£'(2). Conway showed
that his potential function is non-increasing, and witls the deduced that the frogs would
never reach the fifth row.

The potential function of de Bruijn’s one is, and togethettmother considerations
are enough to classify the reachability in the mentionedesen

In one of the greatest examples the pairing and potentiatimmapproach is mixing:
the potential function helps in describing the pairing ampositions of the game.

G. Broecker, London Chess Fortnightly, 1892.

R N W A~ OO N @

Selfmaté®in 9

While the solution was known, no one really understood thaeayéexcept perhaps
the composer). Then Gyula Neukomm [51] found a brilliantcdgsion for the winning
strategy.

"The function, parity of a permutation, in Samuel Lloyd faraéli5-game” is rather a clever algebraic
invariant then a potential function.

BThat is White forces Black to win the game. One can alwaystcocisthe so-calledniséreversion of
a game declaring that the winner is, who would lose with thgial rules.
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It is obvious, that the only way to fulfill the requirement Bkahas to be forced to
capture White’s white square Bishop in such a way that thekRmmmnot protect the
checkmate on the main diagonal. Neukomm gave values to tereswhat the Rook
and the white squared Bishops, were about to use. Theseoatbg¢fRook) h8=1, c8=2,
d8=3, e8=4, f8=5 and g8=6. For the Bishops: g2=2, f3=3, ed545, c6=6 and b7=7.
Let the value of a piece the label of the square the piece tesulpet the value of White
be the sum of the values of the Rook and the white colored velgjtere Bishop, while
the value of Black be the value of the black colored white sgi@ishop.

Now White’s winning strategy is to move with the Rook or thesBp that equalizes
his/her value with the value of Black. Furthermore Whitewddancrease the value of the
Bishop if it is possible. With this the play become finite, @hd longest variation takes
nine steps.

Let us give a less known, simple game, the “Breeding stonasieg The board is the
first quarter of the infinite board, see higher. One refersdelblike (i, j) if it is on the
i*® column and the*® row. The game starts with one stone @dn1), and a legal step is
to duplicate a stone ofi, j) and to move its two successors to the squéiesl, j) and
(i,j + 1), provided those are empty. Our garden is

G={(1,1),(1,2),(1,3),(2,1),(2,2),(3,1) }.

The goal is to rid ofG' from stones. Let us label the squdiej) with 22~=7. This
results in a potential constant one. One the other hanc #rertwo other invariants: the
number of stones in the first row and column. It mean that tolréhe goal we should
put stones to all available squares which is clearly imgxasn finite steps.

1.3.3 Acceleration

When a game (or its researcher) is exhausted, it is alwaypteondo consider thaccel-
erationof it. It means that in one turn a player might take more themlegal steps. The
role of the two players are not necessarily the same(dhe affix mean that White takes
a, while Black take$ steps in turn, if it has sense at all, see [9, 59, 61].

There are several nice, playable games created this way2tBé six-in-a-row®,
(2, 2)-Connect four (with the additional rule that White takesyomhe in the first round),
(1,2)-Chess, where Black has only the pawn and the King etc.

For an unsettled game the motivation is the following: weentiat the outcome of
an accelerated game similar to the original one (with songralbechanges) aneasierto
compute it. It is not always the case, accelerations camglsumprises [2].

A great frustration for the mathematicians that the outcofihe Chess is still not
known. The only thing that we know from Theorem1.1 is that@itsome of the players
win, or it is a draw. Alas, no matter how extremely unlikelattBlack win it, we cannot
even prove that White has a draw. What about some accele?aiithite wins théa, a)-
chess ifa > 4 in the first round, and fot = 3 in the second rountP.

The case of2, 2)-chess is not solved completely, but at least we know thatkBla
cannot win. The usual argument goes like this. Suppose fotraxy that Black has a

Pt is possible to put: # b, and set up different goals for Black and White.
20After 1. e2-e3, Qd1-f3, Bf1-c4, it is impossible to protedue square 7, and hence the King.
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winning strategy. Let White starts with a pair of reversibleves, e. g. 1. Nbl-c3,
Nc3-bl, and then just pretend he/she is Black stedlthe opponent strategy.

In fact, this proof has a hole that was probably discovereersé time, maybe the
first time by A. N. Kolmogorov see [33]. The problem is with talgument above that
White has already made a pair of steps, and according to tee ofl Chess the player,
who could achieve a position third times may apply for a di@wif the assumed winning
strategy of Black would lead the starting position two tiptéen Black can have a draw
that is not available for Whité}

A way to fix the argument is to use two boards in it. On the firgrdostart as before,
on the second play what was Black answer on the first boarch plag on the first board
as Black answered on the second and so on. This results inamegthat are “mirror
images” of each other, on the other hand Black wins in botlkabse of the assumed
winning strategy, that is a contradiction.

1.3.4 Cake cuts

One of the oldest problem in life is how to achieve fair digis? Having a two persons
and goods that are easy to separate, like a cake or gold-destam rely on thegold-
digger algorithm: one cuts the other chooses. Of course if theremame persons and
they might get envy, we have more trouble, see [70, 71].

One might use the gold-digger method in games, such that layerpmakes a se-
lection (picks up something), while the other decides wigalt he/she likes, and takes
(chooses among the alternativé®)For example if we have some money, we can di-
vide it by the classical gold-digger algorithm, or one plageall Picker) picks up two
coins/banknotes, and the other (Chooser) takes one, teegils to Picker. One can see
right away, that playing greedily, Chooser gets at leadtdiahe money. If the distributed
“goods” have some interactions, the game became more canipte/o captains want to
select their soccer teams from a bunch of kids, Picker mayupaa the best defender with
the best midfield player. Chooser faces problems, sincaegp one of them seriously
restricts the later choices. (So they do not do this; theamapttake turns to pick they
favorite players.)

In [69] Spencer studied a nice game, that illustrates baghdéke-cutting approach
and randomness. In theenured gamehe Dean and the Chair(man) play against each
other with the faculty of a department. The Chair makes tvaugs from the faculty, the
Dean can fire one group but has to promote every person in tiee gtoup. The Dean’s
goal to get rid of the whole faculty, while the Chair woulddito save at least one person.
The Chair wins if after some promotions a person reachesuagdrposition. Let; be
the number of faculty members, who negatomotion to be secure.

Theorem 1.3. The Dean wins iffy"° ;27" < 1.

The “if” part only. The Dean just flips a fair coin, and choosmsdomly. The expected
number of people reaching tenure is exactly ;27" < 1. But if the Chair had a
winning strategy, there would be at least one tenured gulgeaehd. Since there is no
draw in this game, the Dean must have a winning strategy. O

2!True, it is a quite weird scenario, but this is what Matheosaig all about. One have to be careful, it is
very easy to err dealing with obvious looking statementsames.
22This sequential selection is the opposite of the acceteraitislows dowrthe gold-digger algorithm.
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1.3.5 Randomness

From the solution of th&loriarty paradox or more broadly speaking from the invention
of mixed strategies has been clear that coin tossing can be extremely usefullying
matrix games. These games have a hidtlelement, while the players know their oppo-
nent strategies and the (expected) payoffs, they do not khewactual strategy that the
opponent are going to use.

One of the mysterious facts of life that randomness is saulgetompletely deter-
ministic situations. There is no general theory for explexma in the case of games we
have the following picture: instead of two perfect playemagine two perfectly mind-
less ones. They explore the game tree randomly, and get & @aled the corresponding
outcome) accordingly. If one player tends to win in that mndyame, then perhaps the
same person can also win anyway.

Of course it is not a big deal to construct a game for whichititigition fails. LetT
be a binary tree of hight and the leaves are labeled by the binary numbers fiom. 0
to11...1, meaning that théh digit describes that the player on move goes to left (zero)
or right (one). White wins iff the game ends up in a leaf withoald digits are one, loses
otherwise. Of course, White loses the random game with itityal — 2L/2/ and still
wins the normal game.

Even when the random intuition predicts a win for a playe,abtual winning strategy
might have little to do with randomness. However, thisditd not nothing, as we can see
from the algorithmic approach of the Tenured game. One jagt o recognize that the
condition Y~ ;27" < 1 should be maintained by the choice of the Dean, and apply
induction. When the Chair makes two groups out of the facidiyat least one of those
the sum taken only on the members of group is less than one lbetlfus promote this
group and fire the other one. The condition still holds butrtbheber of faculty is less;
we are ready by the (implicit) induction hypothesis. O

With this we have completed the cycle: we started with a datastic game, used a
random heuristic to conjecture the outcome (even gave apilidtic proof), and finally
we derandomizedhe heuristic by gotential functiorand got explicit winning strategy
in polynomial time

1.3.6 Complexity

We assume that the Reader are familiar the basic conceptsropléxity theory as it is
presented for example in [55]. The approach of defining thi®wa complexity measures
of certain languages can be very fruitful, and sometimesgatetaly misleading? Indeed,
it is easier to argue, whyotto expect much from that tools.

First of all, for a concrete game, like chess, go or any givaitefigame of form
x = {L|R} has a constant complexity. Alas, this does not mean thaotiatould tell
the outcome of small games readily. It is quite amusing (atfter frustrating at the same

23some authors call thegecomplete information gamgsthers reserve this name for those games which
really have unknown element. Note, that in matrix gamesnfarination provided is enough if one plays
the game several times.

24The sheer statements about e.g. the NP-completeness oblemror the worst case behavior of an
algorithm are usually dismissed in the practice, wherepeathlems are to be solved.
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time) that no matter of the great theories and fast computersolution for tiny, innocent
looking games are still hopeless.

One also gets into a dead end considering families of gansésaid of concrete ones.
The proof of Theorem 1.1 shows that the outcome of a game canrbputed by back-
ward labeling the corresponding game tredinear time. Too bad, this linearity is mea-
sured by the size of the game tree and this tree might be a big({Gwoing through on the
pairs ofall possible strategies of the players might need double expahéme in the
size of the input.) For certain games, where the history dag goes not matter (i. e. a
sub game can be identified with a position) the search redoc@&ame graphand the
size of that graph is still exponential in the input.

Some of the (infinite) games are simply unsolvable in thees#ret neither player has
winning or drawing strategies. The first example of thoseawiee Banach-Mazur game,
later Gale and Stewart constructed simpler ones. McKenmrieParis showed that this
phenomenon occurs even among Bositional game®, see [9].

One may think that this strange behavior comes from the faetsets of possible
strategies are too big. (In the analysis of these games sanmes bf the Axiom of Choice
is used). So let us consider only themputable strategiesThe game as follows. Let
U be an universal Turing machine, and White starts the gamevioygga wordz. Then
Black wins iff he can tell how many (possibly infinite) stefgswill take on inputz. A
sure win for either players requires the solution of Hadting problem?® It is amusing
that instead of the abstract machfiigfinitely many marked node on the infinite grid and
some natural rules might also results in the same. We can make two person game
from zero person Conway’s Game of Life: White places a finuenher of cellsC' and
Black has to tell, if the descendants@fwill live forever or die out. Black wins iff his
answer is good. But the computation of the universal Turigimme given any input
can be coded with appropriate initial cells in the Life gaseg [13].

Even simple looking, finite games might become tricky if wetret the computa-
tional power of the players. Jones in [44] proposed the ¥ahg game: given the poly-
nomial

Q(zy1,...,25) = 23 + 22 + 22129 — T375 — 223 — 225 — 3,

White and Black alternate in assigning nonnegative intggkres to the variables in
orderxy, ..., z5. White wins if, with the substitution) = 0, otherwise Black wins. The
outcome of the game is depend on a yet unknown number thepretolem. To see this
let us write() as

Q(z1,...,25) = (21 +22)* + 1 — (23 + 2)(5).

Since Black picks:,, he has a winning strategy if and only if there are infinitelgny
primes of formn? + 1.
In a similar game, see [29], the computing powers restrietegh more. Now our
polynomial is
Q(l‘l,...,l‘4) = T1 — XLy — T2 — Ty — 1,

and the players alternately assign valuestor,, x5, x4 in this order. White has to
selectr; as acompositdanteger,z; > 1, x3 any positive integer, and Black selects any

25We shall discuss these games in detail in the following Givapt
26More precisely, White should exhibit anfor which the halting is undecidable.
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positive integers. Black wins if)(z1, . .., z4) = 0; otherwise White wins. Clearly Black
has a winning strategy, since

Q(l‘l, .. .,ZL‘4) =T — (1‘2 + 1)(1‘4 + 1),

andz, is composite. But the computation of Black’s winning stggteequires signifi-
cantly greater resources than putting up a tough resistanéhite. White can find two
large primesp andg about the same size, and setting= pg. Then, in order to win,
Black has to factor; that might be too hard problem if the time is limited.

Going through on all these irregularities we might try to sw@a the hardness of a
game not by itself, but by the computational complexity ofrgmite family Perhaps the
best known example iGeography see in [55]. A directed grap& and a distinguished
vertexz € V(@) are given. The players alternately move a token along an, stigging
from z, and a vertex may be visited only once. A player who canna talegal move,
looses the game. Let GEOGRAPHY be the language of all graphstfich White wins.

Theorem 1.4. GEOGRAPHY is a PSPACE-complete language.

The proof is quite standard, one takes an arbitrary instah@SAT?” and reduces it
to an word of GEOGRAPHY. QSAT is the language of true wordooff

b =\ Vs ... x)Vep .V, 12,0,

where¢ is a Boolean formula in conjunctive normal form of variahlgs. . ., z,,.

Some problems (or rather languages) concerning games uitito be NP-complete.
In these cases we might say that the game is hard, althougé teenplexity issues in-
volve several possible inputs, not only the usual startogjtppn of a (family of) game(s).
On the other hand, and it is more justifiable, a game is easkeifoutcome (winning
strategy etc.) can be given in polynomial time as a functicthe input.

270f course QSAT is a PSPACE-complete language.
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Chapter 2

Positional games

In the main part of the dissertation we will deal with gamesatwve call Positional
games In the positional games there is usually two player, the&yraoving alternately
and the aim of the game is to occupy (or prevent to occupy byptiner) a winning set by
possessing all of the element of that set. Note, that misgngons of this games are also
possible; in those games the goal is #weidanceof the winning sets.

2.1 Tic-Tac-Toe type of games

In this section we introduce a family of combinatorial gantiest have very deep con-
nections with other parts of Combinatorics. Before sped#étnitions, let us see some
examples.

2.1.1 Tic-Tac-Toe

The most well-known hypergraph game is ffie-Tac-Toegame. Here the aim of the
game is to occupy a row, or a column or a diagonal oy a NV board.

Figure 2.1: The3 x 3 and thed x 4 Tic-Tac-Toegames. Usually X is the first player, O is
the second player

One remark on how complex these small games are: Tididoc-Tac-Toas similar
to theTic-Tac-Toebut here the board isx 4 x 4. By playing a little, it is easy to see that
Tic-Tac-Toecan be won by the first player. The first player also can winlibeloc-Tac-
Toegame but there was needed 1500 hours calculation time for Raiashnik at 1979.
In the same year Allistronglysolved the game, that is he computed the outcomned! of
possible positions. Still, there is no easily describabilemng strategy, see [56]. The
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5x 5 x 5and6 x 6 x 6 the versionsare still open, although probably these are draw
games.

To give a common frame for these games, we introduce the matidypergraph
games

2.1.2 Hypergraph games

Given an arbitrary hypergraph = (V, E) (or F = (V(F), E(F))) the first and second
players take elements &f in turns. We call this gamesypergraph gamesWhen we
think about hypergraph games, we usually think dioard gamewhere the fields are the
vertices and certain subsets of the board are the winnisg set

We call these gameslaker-Maker gamesor strong gameswhere the player, who
takes all elements of an edgec F first wins the game [7]. The Maker-Maker game are
associated to a (false) natural fairness; that is why so m&yed version of those. In
fact, these games ah®t® by Conway’s terminology:

Theorem 2.1(Nash, Hales-Jewett)n the strong version of a game, the first player wins
or the game is draw.

Proof. Assume for contradiction that the second player has a winsirategyS. The
application of this strategy by the first player is as followke first player starts the game
arbitrarily and then forget about his first step and playsteond player assumed winning
strategysS. If S would require a field that the first player have already markeeh the
first player declares he take this move and make an arbjtraole that he forgets. Since
to have an “extra field” on the board never cause harm to aryeplthe first player wins,
contradictior®. O

This technique is calletstrategy stealing.” The invention of it is attributed to John
Nash, who first applied it to the game calleléx For positional games it was formally
proved by Alfred Hales and Robert Jewett in 1963, see [35].

2.1.3 Hexgame

This game was invented independently by Piet Hein (1942)Jahd Nash. The players
are placing stones into a rhombus board witk n hexagonal grid. The goal is to form

a connected path of one’s stones linking the opposing sifldseedoard marked by the
players color, before the opponent connects his or her gidesimilar fashion. Note, that
Hex isnota hypergraph game. The first player who completes his or heresttion, wins

the game. The Hex, unlike some of the games which are onlgestiag on mathematical
point of view, is exciting and addictive game. People makezfmss, competitions of it;
heren = 10 orn = 11. (These sizes are unexplored, the best result was achigved b
Kohei Noshita who gave explicit winning strategy for< 8 [52].)

1The boards are three dimensional cubes consisting: 125, and6® = 216 smaller cubes, and the
winning sets are the lines and diagonals.

2Stricly speaking this means that the player, who moves, thi@giame. In generally hot means that the
right of a move always an advantage in the game.

3Note that the proof is existential and does not providesrinfdion about how should play to win.
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Figure 2.2: The Hex game. The players alternately color th@gons. The aim of the
game is to make a one color path between the two opposite sides

Theorem 2.2(Nash - Gale) If all cells of the Hex board are colored by the two players
then there exist a N-E, S-W path.

Proof. This proof is a sketch of the proof given by David Gale in hiscée on Hex and
the Brouwer Fixed-Point Theorem, [32]. It is uses only soned-known facts of graph
theory.

Let G be a planar 2-connected graph in which all vertices haveegetyvo or three
such each face off corresponds to a cell on a Hex board. We add four more edges
and pendant vertices; one to each corner of the board. Wessaime that all cells are
occupied because a game of Hex cannot end before a playepwmscell is available.
Now make a subgrapty’ of G created by keeping the edges that separate two faces of
different colors on the Hex board and the additional edgéseatorners.

It is easy to see tha®’ will mostly consist of vertices of degree zero or two. Exactl
four vertices will have degree one, namely the pendantoestconnecting to the four
corners:a, b, c andd. It is an exercise that graphs with vertices of degree lems three
consist of isolated vertices, simple cycles and simplegatinceG’ has exactly four
vertices of degree one there must be exactly two of these path

These two paths must connect- b andc — d ora — d andb — c. In the first case
white will have won, in the second black. O

Now we can decide the outcome of the game Hex:

Theorem 2.3(John Nash, 1949)The first player wins the Hex.

Proof. Follows immediately from Theorem 2.2 and Theorem 2.1. O

2.2 Heuristics

Of course one has greatest motivation in solving Maker-Mgkenes, or in general those
games that proved to be worthy, like Chess or Go. But as weiamedt in the introduc-
tion, it is very hard even to have clues for what type of ressofin be proved at all. In
most part of Mathematics there are good examples and (elgtisimple exercises that
help to shape the consequent theories. In natural scieheexperiments play the same
role. Alas, one cannot rely on rich source of good exampleseadf understood hyper-
graph games. All but the smallest concrete games are s$itilued, and even when the
outcome is known, the existence or exhaustive search pavefaot really illuminating.
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We believe this problem was one of the main factors that sfios@vn the development
of the field for so long.

The breakthrough was the invention of new games that (1ppresome characteris-
tics of the original game (2) hopefully easier to handle [®) dutcome can be related to
the original.

Some of these games are interesting or having significantésofown, while others,
like the random heuristics, are more diagnostic tools tremes. The examination of
games needs both analysis and synthesis involving smalteeg and combinatorial ar-
guments. This process leads to making tools for tools asti géten happens elsewhere.
The most important heuristics are thkaker-Breaker games, the acceleration, the Picker-
Chooser (and Chooser-Picker) gamasd biased games.The last approach is closely
related to theandom heuristi¢9] or “Erd6s paradigm” [45] that might be considered as
zero person game played on some board. Let us see some.details

2.2.1 The weak version of the games

It is quite natural to define the so-calleaak versiorof the positional games [6], where
the the first player win by completing a winning set any timdjle/the second player
wins if he/she can prevent the first player’s win. It means tir first player do not have
to be afraid of that the second player occupies a winningHas version is also called
asMaker-Breaker gam&om obvious reason. Of course the first player is Maker, &ied t
second is Breaker. It is easy to see the following statensest[7].

Statement 2.4.1f the Breaker wins in the weak version of a game, then thegtversion
Is draw.

Remarks. If the first player wins in the weak version of the game, it doesfollows
that the first player wins the strong game. A simple exampléhic phenomenon is the
3 x 3 Tic-Tac-Toe: In the picture 2.1 it can be seen, that in thekweasion the Maker can
place to the lower right square and win; while in the stronggahe first player should
defend, hence the chance of winning disappear. Since theetie at the game Hex, so
the two versions coincide. Generally the languages of dwtstrong and weak games
are PSPACE-complete languages, see [65#16].

2.2.2 Random heuristic

We have already sketched a idea of two players who randomyenmothe game tree in
subsection 1.3.5. For a Maker-Breaker hypergraph gamé) this kind of randomness
can be approximated by a more comfortable probability spaee us take the vertices
one by one, toss a (fair) coin; if it shows head, then give #réex to Maker, otherwise to
Breaker. This way the hypergraph2scolored all vertices get the color of either Maker
or Breaker. A 2-coloring igood if all edges contains both colotsThe expected number
of one-colored edges 5 ,_ > 271", which immediately gives the following theorem.

40One has to be careful with these results. A concrete gamevisyalof constant complexity. For the
PSPACE-completeness one need no only an infinite family, ¢hegHex or Go fom € N, but an infinite
family of starting positions.

SFor the more formal general definition see subsection 2.3.1.
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Theorem 2.5(Erdds, 1963) There is a good 2-coloring of the hypergragh= (V, E) if

Z oA .

AeFE

As a heuristic, one may think that the Maker-Breaker gaménerhypergraphV, £)
is a draw, that turned out to be true:

Theorem 2.6(Erdds-Selfridge, 1973)If Maker starts the weak version of thé = V| F)
hypergraph game and
Z 27|A‘+1 < 1’

AcE

then Breaker wirfs

We wait with the proof of Theorem 2.15 until subsection 2.3Though, we have
to stress that one cannot overestimate the impact of theametbveloped for that. It
gave the Probabilistic method a new meaning and meant athreagh in the research
of Positional games.

2.2.3 Accelerated and biased games

If both of the players claint > 1 vertices in each turn, then we talk aboutsatelerated
games. In general, if the players clainandb vertices, then we call it thbiasedversion
of the gamé€.

We shall touch the acceleratédin-a-row in the next chapter, and discuss a biased
game diameter game deeply in section 5.2. Note that thesxaneples where the heuris-
tic fails for the Maker-Breaker game, while be in great adeoice with other heuristics,
e.g. with the random heuristic. A nice, and very useful reisun Erdds-Selfridge type
of theorem by Beck [4].

Theorem 2.7.[4] If E is the family of winning sets of a positional game, then Beeak
has a winning strategy in the : b)) game when

> (@) < .

AcE

Another striking line connects the theory of random graphg #ne biased games
[17, 2, 5, 45, 12]. Here the theory of random graphs [14] ansitPmal Games blend
nicely with the following setup. As defined earlier, Makemwiif a monotone property
P holds for the subgraph of his edges. Our purpose is to findrttadlastd,, for which
Breaker wins thé1 : by)-game. While to get the exact value ifis almost impossible,
one may shows asymptotic upper and lower bounds on it. Sontgedbest examples
are: for Hamiltonicity and maximum degree, see Beck and tdefeal. [8, 5, 40], for
planarity, colorability and graph minor games, Hefetz et[@9], for building a specific
graphdG or creating a large component, Bednarska and tuczak [11, 12]

The condition for the uniform case is sometimes spelled syEa+ A(F) < 27, whereA(F) is the
maximum degree of the hypergraph.

"The biased games arise quite often and naturally when oldskaglobal strategy out of strategies of
auxiliary games defined on non disjoined sub boards.
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2.2.4 The Chooser-Picker and the Picker-Chooser games

Studying the very hard clique games, Beck [6] introducedwa type of heuristic, that
proved to be a great success. He definedRlsker-Chooseror shortly P-C and the
Chooser-Picker(C-P) versions of a Maker-Breaker game that resembles faision,
(see [70, 71)).

In these versions Picker takes an unselected pair of elsraadtChooser keeps one of
these elements and gives back the other to Picker. In theiP&kooser version Picker is
Maker and Chooser is Breaker, while the roles are swappéeiGihooser-Picker version.
When |V| is odd, the last element goes to Chooser. Beck obtained ¢malittons for
winning a Maker-Breaker game by Maker and winning the Pickleooser version of
that game by Pickeroincidein several cases. Furthermore, Breaker’s win in the Maker-
Breaker and Picker’s win in the Chooser-Picker version seesocur together. That is the
Picker-Chooser (Chooser-Picker) games are themselvestiesifor the Maker-Breaker
games.

The probabilistic intuition also helps in studying Pickenooser (Chooser-Picker)
games. Letn = b = 1 and||F|| = maxacpr) |A| be therank of the hypergraph
F = (V(F),E(F)). Inthat case, there is an almost perfect analogue of The@rém
as follows:

Theorem 2.8.[6, 21] 3.6 If

1
T(F) = 27—
W - R

then Picker has an explicit winning strategy in the ChodBmikker game on hypergraph
F.If T(F) < 1, then Chooser wins the Picker-Chooser gameron

2.2.5 Beck’s conjecture

Beck [6] has another interesting remark, namely that Piokay win easily the Picker-
Chooser game if Maker wins the corresponding Maker-Breglare. He formulates this
as follows:

“Note that Picker has much more control in the Picker-Chowesesion than Chooser
does in the Chooser-Picker version, or Maker does in the MBkeaker version so the
Picker-Chooser game is far the simplest case. This relatmplicity explains why we
start with the Picker-Chooser game instead of the perhaps imeresting Maker-Breaker
game.”

The study of these games gives invaluable insight to the MBkeaker version. For
some hypergraphs the outcome of the Maker-Breaker and @h&icker versions is the
same [6, 21]. In all cases it seems that Picker’s positiohlesast as good as Breaker’s. It
was formalized in the following conjecture.

Conjecture 2.9.[21] If Maker (as the second player) wins the Maker-Breakamg, then
Picker wins the corresponding Picker-Chooser game. If Beedas the second player)
wins the Maker-Breaker game, then also Picker wins the GiveBgker game.

The definition of these games suggests, that the ChoosezrRiame is easier for
Picker, then the Maker-Breaker version for Breaker (the fitayer can be kept under
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strong control by Picker), although the other directionfa$ implication should stand in
the most cases. We have found only one non-trivial game, eviner outcome is not the
same. [22]

One can ask what is the use of such a conjecture? Usually @isiereto analyze a
Chooser-Picker game than the corresponding Maker-Bregdme. So if we think that
Maker wins a weak game, then to confirm it we first check the @?€khooser version,
and we must see that Picker wins. Again, if Breaker’s win jgeeted, then the Chooser-
Picker version should be a Picker’s win.

So notjust the Beck’s conjecture gives the importance sfghimes, but that paradigm,
that these games are very close to the weak version. (Seeahout Beck’s results on
cligue-games in [6]). For example if we can prove that Pidkses thes-in-a-row, it
would be a strong argument in addition to that the same coafipén in the normal
version of that game. Therefore the following rule is not pus arbitrary trick for gener-
alization, but a useful and elegant tool for understancebétie Maker-Breaker games.

It is therefore necessary for the Chooser-Picker Gamestafiarsion the following
restriction: At the beginning Chooser can select a boundédet of the board, where
they will play. Because if they play on the infinite board,ritf&cker could select points
far from each other, and it is a trivially winning strategy Ricker.

2.3 Tools

2.3.1 Pairing strategy

The pairing strategieas been extended to language of game theory. Here the am is t
coloring the(V, F) hypergraph’s vertices by two colors so that none of the wigrsiets
are monochrome. Here the game can be a draw.

The pairing strategies of hypergraph games are from [35fredIHales and Robert
Jewett introduced the gamék/(n, d), wheren andd are natural numbers. The board of
the H.J(n, d) is ad dimensional cube, which is assemblediisyfittle cubes (in all edges
liesn tiny cubes). Formally the basic set of the hypergraph ard teagth serials, where
each coordinates are integers between 1antt means that/ (HJ(n,d)) = 1,...,n%
The edges of the hypergraph are suctriples, which elements can be arranged on that
way that in a fixed coordinate the serials are,...,n, n,n — 1, ..., 1 or constant. The
HJ(3,2)is theTic-Tac-Toeand theH J(4, 3) is theTic-Toc-Tac-Toe

Definition 2.10. An assignment : V' — 1,... k of the F = (V, E) hypergraph is a
good coloring, if allA € F subset has at least 2 elements. The minilmakhich has
good coloring is the chromatic number&f We mark it byy (#).

If for a hypergraphF the x(F) > 2, then the game on it cannot be a draw. A good
example for this the gam#& .J(3, 3) or Tic-Tac-Toegame. On the other hand.J (4, 3)
(theTic-Toc-Tac-Togis an example for that the first player could have a winningtsgy
even if y (F) = 2.

Theorem 2.11(Hales-Jewett)For all » natural number exist suah > 0 integer, that the
hypergraph gamé{ J(n, d) has chromatic number greater than 2.
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It means that it/ is enough large, then there is no tie at Hales-Jewett gamds]jue
to the strategy-steeling argument the first player wins. tBigttheorem also gives only
an existential proof, and moreover for a givethe boulder ford is extremely high. The
best result is Shaharon Shelah’s, whéfe) is in £> Grzegorczyk hyerarchy (see [66]).

The following theorem is one of the most basic one in Combined:

Theorem 2.12(Ko6nig D.-Ph. Hall) The{A;}", system of finite sets has system of dis-
tinct representatives, iff forall C 1,...,m standg U;c; A;| > |1].

The game-theoretic application of this is the followingdhem:

Theorem 2.13(Hales-Jewett)If in a finite (V, F) hypergraph game for alf C F the

U Al =2l

Aeg

stands, then the game is draw.

— It means, that if all subsets of the hypergraph has two timae vertices then edges,
then the game is draw. The proof of this statement is follgwinom Kénig Dénes and
Philip Hall's theorem. By using this theorem we can see th@btx 5 is a draw. (At the
beginning there is 25 point and 12 edges, and fok aingth winning sets have at least
2k vertices. And also easy to see that the smallest vertiogs/ede is when we get the
whole board.)

Proof. If H = {Ay,..., A}, then beH* = {Ay, AT, Ay, AL, ... A, AL}, where A, =

Al foralli = 1,...,m-re. Easy to see, that fromJscc A| > 2|G| follows that: for all

G* C H* choosing Uxcq+ A > |G|. It means that the theorem above can be applied for
the system of{*. BeS = {a4, a}, as, a3, ..., a,, al, } @ system of distinct representatives.
The second player should follow this strategy: For anytinhemvthe first player chooses
an element front (these element can be eithgft or ), then the second should choose
an element with the same index (or a;), otherwise step freely. The first can not get an
A;forv=1,...,m, because from;,, a} € A, at least one is owned by the second. [

Note that at the hypergrapti.J(n, d) wheren is odd then all vertices are member of
(37 — 1) winning sets. Ifn is even, then this number 2§ — 1. By using this we can get
the following theorem:

Theorem 2.14(Hales-Jewett, 1963)The gameH J(n,d) is draw, ifn > 3¢ — 1 and
n=2+1,orifn > 2% —2andn = 2.

For example thé x 6- Tic-Tac-Toe (# J(6, 2)) is a draw. (We had seen before that
theb x 5 is also a draw. Of course, a similar case study gives the santex 6, that is
the game is a draw, while Theorem 2.14 would not induce ttsisltelt is quite common
in Combinatorics that a general theorems yield weaker te#uhn special case studies.)

2.3.2 Weight functions

An another approach is by the usagenaight functions Here the dangerousness of a
position is represented by the weight of the game. If onegrlagcupies many vertices
from an edge (and none by the other) then this edge has a “heauyht.
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The so called Erdls-Selfridge weights are frequently used. An edge F weight's
is 2-141 and doubles each time when Maker occupies a new vertex froBdtm the
number of occupied vertices in the edgeby Maker after itsith step. At this time the
weight of A is:

wi(A) = 2k,

if Breaker does not have vertices /) otherwisew;(A) = 0. The weight of a vertex
is the sum of that edge-weights where the vertex is in the:edge

wi(z) = wi(A)
TEA
It can be shown, that if Breaker always gets the largest vi@fjthe graph, then the
functionw; = ), »w;(A) is monotonously decreasing in Considering thaty,; <
> acr 2741+ and that if Maker wins at théth step thanu, > 1, derives the following
theorem:

Theorem 2.15(Erdds-Selfridge, 1973)If Maker starts the weak version of thi&, F)
hypergraph game and
> oAt <

AcE
then Breaker wins.

By using this, we can prove that thex 5 is a draw: there are 12 edges and all of them
are 5 length. Plugging in these to the condition of Theorelb 2ve get12x1/32 < 1/2.

We should remark, that the E¥d-Selfridge theorem is sharp: it means that there are
such hypergraph families, whe}€ ,_,, 27141*! = 1 and Maker wins.

The theorem above is a derandomization of@stgrevious theorem. Note that if we
coloring randomly the vertices of the graphby two color, theny_ , .. 2-141+1 s the
expected number if monochrome edges. It means that theses @xgood two coloring of
(V, E'), what we found constructively.

There is an analogue for biased games too, see the theorembdb. It is also sharp
forall p,q € N, and forp = ¢ = 1 it gives back Theorem 2.15.

Theorem 2.16(Beck). The(F,p, q) biased Maker-Breaker game is a draw, if
> g <
A€E(F)

where Maker moves, Breaker movesg-t steps afterward.

Another application for weights is that it might helps to fiadjood possible move
of a game: Maker and Breaker should try the most dangerops stefirst, where the
dangerousness is represented by E-S weights (see befdte):, wherem is the number
of occupied vertices.
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2.3.3 Back-tracking

Suppose that the board consists indexed cells (for exanmp|@,4,5,....,32), and our duty
is to get through all of the possible cases by checking onhvpasition who is the win-
ner, and who wins from the initial position.

The initial stance isM =1, B =2, level =1

1. Maker steps to the smallest unoccupied field, Breaker too.
2. If Maker does not win, thefevel = level + 1, goto 1. (next steps)

3. If Maker occupies a winning-setzvel = level — 1 and Breaker steps to the next
cell. (here Maker wins)

4. If there is no winning set without Bevel = level — 1 and Maker steps to the next
cell. (here Maker cant win, it is good for Breaker)

5. Maker wins iflevel = 0; and Breaker steps to the next cell (e.g to 3); Breaker wins
if level = 0; and Maker steps to the next cell (e.g to 3);

Typically back-tracking goes together withhanch and boundechniques, where are
other tricks which fastens stage 2, 3, 4.

We use that algorithm at the section 4.6, when we calculaedbult of a specific
sub-game (an auxiliary game).

2.3.4 Auxiliary games

It usually help if we split the game to smallauxiliary games In fact the pairing is also

can be considered as an auxiliary game (where the sub-gaym@sgraph has only two
vertices and one edges). The aim is to win the game by playidependently on these
subgraphs (sub-boards). Some applications are the proibfeo®-in-a-row is a draw,

8-in-a-row is a draw see below 4.1. We will also use it in thetmbapter.

Here we list some simple facts from [21] that are very usef@dnalyzing concrete
games. For the sake of completeness we give the proofs, too.

2.3.5 Pairing lemma

Lemma 2.17.[21] If in the course of the (Chooser- Picker) game (or jusealy at the
beginning) there is a two element winning $ety} then Picker has an optimal strategy
starting with{z, y} .

Proof. It is enough to see that if Picker has a winning stratggyhen there exists a
starting with{z, y} — call it p* which is also Picker win. If the strategyasks latef z, y }:

Assume that playing* Chooser can win on given distribution ¢, v}, than Chooser
could pretend that this distribution already happenedreefm this way playing strategy
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p also could use the same strategy. If in strateddicker compelled to ask not at once
andy:

Then Chooser could both agskandy when they are separately turns up with other
elements (or one of these is the remaining one for Chooseatyategyp. And therefore
Chooser wins. O

For the better adaptability of the C-P games, we should pitevéollowing lemma.

2.3.6 The monotonicity lemma

It looks very desirable to extend such a successful hetitistgames played on infinite
hypergraphs. However, one has to be careful since in thateker might offer a set
of verticesA C V such that every edge contain at most one element fdgwhich is
a trivial winning strategy for Picker. A possible remedy ddea step at the beginning:
Chooser selects a finite s&t € 1/, and they play on thenduced sub-hypergraptat is
keep only those edge$ < F for which A C X. More formally, given the hypergraph
(V,F)let(V\ X, F(X)) denote the hypergraph whefg§ X) = {A € F, AN X =0} .

Lemma 2.18.[21] If Picker wins the Chooser-Picker game ¢W, F), then Picker also
wins iton(V \ X, F(X)).

Proof. By induction it is enough to prove the statement for= {z}, i. e., | X| = 1.
Assume thap is a winning strategy for Picker in the game @n F). That is in a certain
position of the game the value of the functipris a pair of unselected elements that
Picker is to give to Chooser. We can modifyn order to get a winning strategy for
the Chooser-Picker game ¢l \ {z}, F({z})). Let us followp while it does not give
a pair{z,y}. Getting a pai{x,y}, we ignore it, and pretend we are playing the game
on (V, F), where Chooser has takgrand has returned to us. If|V/| is odd, there is a
z € V at the end of the game that would go to Chooser. Here Pickastanhove is the
pair {y, z}. Picker wins, since Chooser could not win from this posigéeen getting the
whole pair{y, z}. If |V| is even,p* leads to a position in which is the last element,
and it goes to Chooser. But the outcome is then the same astiten@e of the game on
(V, F), that is a Picker’s win. O
This lemma is useful tool at the next chapters, because iuaded setS cannot be
partitioned into uniform sub-games, then it can be incréasé’, which can be split into
such sub-games. And if Picker wins 6n then also can win of.
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Chapter 3

Some results on Chooser-Picker games

3.1 Introduction

Studying the very hard cligue games, Beck [6] introducedffemint type of heuristic,
that proved to be a great success. He definedPtbieer-Choosepor shortly P-C and the
Chooser-Picke(C-P) versions of a Maker-Breaker game that resemblesifagian, (see
[70, 71]).

In these versions Picker takes an unselected pair of elsraadtChooser keeps one of
these elements and gives back the other to Picker. In theiP&kooser version Picker is
Maker and Chooser is Breaker, while the roles are swappéeiGihooser-Picker version.
When|V| is odd, the last element goes to Chooser.

Beck obtained that conditions for winning a Maker-Breakamg by Maker and win-
ning the Picker-Chooser version of that game by Picker edéio several cases. Further-
more, Breaker’s win in the Maker-Breaker and Picker’s withiea Chooser-Picker version
seem to occur together.

However, one has to be careful to spell out a good conjectureg it is easy to check
that Chooser wins th2 x 2 hex.

The precise form of Beck’s conjecture was stated before 2.9.

Remarks. It is enough to prove Conjecture 2.9 for Picker-Chooser gasiece the
Chooser-Picker case would follow. To see this one just camsiV, 7*), thetransversal
hypergraphof (V, F). That isF* contains those minimal sef$ C V' such that for all
A e F, AN B # (). Note that Breaker as a first (second) player wins the Makeadger
(V, F) iff Maker as a first (second) player wins the Maker-BreaRérr™).

The decision problem that if Picker wins a Picker-ChooseQmooser-Picker) game
is at least NP-hard [62], but probably it is PSPACE-compéetéhat of the Maker-Breaker
games, shown by Schaefer [65]. Still, for concrete gameanthe easier to decide the
outcome of the Picker-Chooser (Chooser-Picker) versian the Maker-Maker version.
That is if Conjecture 2.9 is proved for a class of hypergraihte the easier Picker-
Chooser (Chooser-Picker) games can be used in an alpha+tbeiag algorithm for the
harder Maker-Breaker game. A natural class for that us theraise hopeless, Hales-
Jewett or torus games for low dimension (see [7, 35]). Weudissome examples and
useful tools for that direction in Section 4.2. Here we woethdphasize the extension of
Picker-Chooser games to infinite hypergraphs and the roleewfma 2.18 in this case.
These might be used in solving Harary-type of polyomino fewis for Chooser-Picker
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games for which the Maker-Breaker versions were studied d&raky, Blass, Pluhar and
Sieben [13, 59, 67].

3.2 Onthe complexity of Chooser-Picker positional games

Since the Maker-Breaker (and the Maker-Maker) games arA@SRomplete (see [65])
it would support both Conjecture 2.9, and the above coimadewnith Chooser-Picker
games to see that the Chooser-Picker or Picker-Choosersgamaaot easy as well. To
prove PSPACE-completeness for positional games is momserdtandard, see [64, 16].
Here we can prove something weaker because of the asymmatnie of these games.

Theorem 3.1.1t is NP-hard to decide the winner in a Picker-Chooser game.
Theorem 3.2.1t is NP-hard to decide the winner in a Chooser-Picker game.

In Section 3.6 we generalize the pairing strategies firsh&dized by Hales and Jewett
[35]. As an application, we show there is no pairing strategythe game “Snaky,” see
[37, 38, 68]. Finally, we compare the actual complexity acédb games on a specific
hypergraph, the x 4 torus in Section 3.7.

3.3 Proofs of Theorems 3.1 and 3.2

Both proofs are based on the usual reduction method. We eelducSAT to Chooser-
Picker or Picker-Chooser games.

Proof of Theorem 3.1. Consider an arbitrary CNF formul&(x, ..., z,) € 3 — SAT.
We denote) = C1A- - -ACy, whereC; = (;, VI;, Vi, andl;, is aliteral fori € {1,...,k}
andj; = 1,2, 3. With a slight abuse of notation, we uSgalso to denote the set of literals
in it. That is, if there exists a clausg, = x, V 75 V x4, then we also denote the set
C; = {2, T5, x4}

We will exhibit a hypergrapit, = (V, E') such that the Picker-Chooser game is a
win for Chooser if and only it is satisfiable.

The vertex set will bed/ = {xy,...,2,,71,...,7,}. Let B C 2V have the property
thatB € Bif, forall : € {1,...,n}, B contains eithex; or z; but not both. The edge set
E consists of the setd such thatd = C; U B for some: and someB € B.

Note thatB, and consequently, has a short (polynomial i) description even
though|E| > |B| = 2™.

Claim 1 allows us to restrict our attention to games in whiak& has a specific kind
of strategy.

Claim 1: If Picker fails to select pairs of the forfw;, z;} in each round, then Chooser
has a winning strategy.

Proof: We assume to the contrary: Lgt, y} be the first pair selected by Picker such that
{z,y} # {z;,z;} foranyi € {1,...,n}. In that case, Chooser keeps, sayand waits
until Picker offers upr in a pair. In that round, Chooser takesand wins the game, since
Picker cannot take an§ € B. This proves Claim 1. O
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First we show that if Picker-Chooser @), is a win for Chooser, thea is satisfiable.
According to Claim 1, we may assume that Picker’s strateqyy s&lect pairs of the form
{z;, z;} resulting in the fact that such pairs are shared among PaieChooser for all
. Assume that Chooser wins the game?dp, and sett; = 1 if Chooser holdse;, and
z; = 0 otherwise. Picker holds all elements of sofec 3, so the assumption means

that Chooser has an element in each of@kis. Thatis,¢(2y,...,2,) = 1.
Next we show that ity is satisfiable, then Picker-Chooser&y is a win for Chooser.
Sinceg is satisfiable, there exist, .. ., z,, such that(zy,...,z,) = 1. Consider the

Picker-Chooser game oH,. By Claim 1, we may assume that, in each round, Picker
offers a pair of the forn{x;, z;}. In that case, Chooser takesif and only if z; = 1, and
wins the game. This proves Theorem 3.1. g

Proof of Theorem 3.2.Let us use the same set-up and notation for the CNF formaka
in the proof of Theorem 3.1. We want to define a hypergréph= (V, E) such that the
Chooser-Picker game dit, = (V, E) is a Picker's win if and only ify is satisfiable.

Let the vertex set b& = {a;, b;, ¢;, d;}!,. The edge set’, consists of all edged
such that

o AcC{ajbic,d;} and|A| = 3 for somei € {1,...,n},
*» A={a,aj,ax,b;,b;, by} foraclause” = z; V z; V xy,
* A={a;,a;j,ak b;,b;,c} foraclause’ = z; V z; V 7y,
» A={a,aj,ax,b;, cj,c} foraclauseC = z; V z; V 7y,
» A={a,aj,ax,c;,cj, e} foraclause” =z, V z; V Zy.

Claim 2 allows us to restrict our attention to games in whi¢to@ser has a specific
kind of strategy.

Claim 2:

* If Picker picks a paifz,y) suchthafz, y} ¢ {a;, b;, ¢;,d;} forsomei € {1,...,n},
then Chooser has a winning strategy.

» Chooser has an optimal strategy that results in alwayssthge; and always giving
d; to Picker.

In particular, this means that we may assume that far Riicker either pick$(a;, b;), (¢, d;)}
or{(a;, ), (b;, d;)}. Moreover, Chooser will get; and Picker will get/; and each player
will get exactly one ofb;, ¢;).
Proof: Suppose Picker offers a pait, y) for whichz € {a;, b;, ¢;, d;} buty & {a;, b;, ¢;, d;}.
Consider the first such instance. In that case, Chooser ekopand ultimately wins by
choosing at least two more elements frém, b;, ¢;, d; } \ {z}, giving Chooser every el-
ement of somed of size 3. So, for alli, Picker will pick either{(a;, d;), (b;,c;)} or
{(a;, b;), (¢;, dy) } or {(a;, ¢;), (b, d;) }. Hence, Chooser and Picker will have at least one
member of each set of size 3.

However, nal; appears in any of the sets of size 6 and so if Chooser wins lysatng
d;, then he must also win by not choosisg Finally, suppose Picker picks the péir, b;)
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or (a;, ¢;). Chooser will choose; in either case because evetyof size 6 that contains
eitherb; or ¢; will also containa;. So, once again, Chooser can only benefit by choosing
a; overb; or ¢;, Summarizing, if Picker plays optimally; i.e., always tadipairs with the
same subscript, then for every winning strategy in whichd@3eo chooses;, there exists
a winning strategy in which he does not and for every winningtegy in which Chooser
does not choose;, there exists a winning strategy in which he does.

So, we may assume that Picker picks either;, b;), (c;, d;)} or {(a;, ¢;), (b;, d;)} for
all + because if Picker pick§(a;, d;), (b;, ;) }, then the outcome is the same except that
he cannot control which ofb;, ¢;} he will be given by Chooser. This proves Claim 21

Now let Picker's{(a;,b;), (¢;,d;)} or {(a;, ), (b;,d;)} moves correspond to setting
the value ofr; = 1 or z; = 0, respectively.

First we show that if Chooser-Picker &), is a win for Picker, thew is satisfiable. We
may assume that Chooser plays according to the restriatigmssed by Claim 2. At the
end of the game, Picker has exactly ondif ¢;}. Chooser has,; foralli € {1,...,n}.

Let z; = 1 if Picker hash; andz; = 0 otherwise. By the construction @{,, this means
thatp(iy, . .., &,) = 1.

Next we show that ify is satisfiable, then Picker-Chooser & is a win for Picker.
Suppose that there is some assignmentdhat (z4,...,2,). Picker makes sure to get
b; (i.e., Picker picks{(a;, b;), (¢;,d;)}) if 2; = 1, and makes sure to get (i.e., Picker
picks{(a;, ¢;), (b;, d;)}) if &; = 0. Because of Claim 2, we may assume that Chooser will
always choose; for all i € {1,...,n}. As aresult, Picker will get at least one element
from everyA € F, and wins the game. This proves Theorem 3.2. O

Note that this theorem implies that Chooser-Picker gamesN&-hard, even in the
case of hypergraph®/, £), for which|A| < 6 forall A € E.

3.3.1 4 x 4 tic-tac-toe

Before proving the harder Theorems 3.4 and 3.6 we demoed®ieker’s strategies for
the Chooser-Picker version of well-known games. The4 tic-tac-toe is a draw game,
and Breaker wins it as a second player. The later statemenb&groved by a little
strengthening of Theorem 2.7, see in [7].

One may rightfully expects that Picker wins the Choosek&iwersion of thel x 4
tic-tac-toe, and indeed this is the case.

Proposition 3.3. Picker wins the Chooser-Picker version of the 4 tic-tac-toe.

Proof. Picker takes the two endpoints of the main diagonal, and thenwo “middle
points” of the other diagonal first. Considering the symmasirwe get the picture on
Figure 1. (Chooser’s pieces are in white, Picker’s are igk)aThen Picker selects the
pairs indicated by the thin lines. O

37



The Chooser-Picker games

Figure 1

3.4 Picker-Chooser version of the generalized Shannon
switching game

Now we prove Conjecture 2.9 for the Picker-Chooser versi@hannon switching game
in the generalized version as Lehman did in [46]. UétF) be a matroid, wher& is the
set of bases, and Picker wins by taking4re F. Note, that this is equivalent with the
Chooser-Picker game @i, C), whereC is the collection otutsetf the matroid V, F),
thatis forallA € FandB € C, AN B # 0.

Theorem 3.4.Let F be collection of bases of a matroid dn Picker wins the Picker-
Chooser(V, ) game, if and only if there ard, B € F such thatA N B = ().

The notation and the proof closely follow the ones given # [for the Maker-Breaker
case.
Proof. First we show that if there are no two disjoidt B € F then Chooser wins. Let
M, = (V,F)and M = M; V M, be the union matroid ofM; with itself. The rank
functionr,, of the union matroid o\ = M; Vv - - - vV M, is the following,

k
() ZITnCig{|S\T| +Zn—(T)},

where the matroids are defined on the same ground,sehd the matroid\; has the
rank functionr;. We haveminycy {|V \ 7|+ 2r(T)} = rym(V) < 2r(V), sinceM,
does not have two disjoint bases. Equivalentfy) 7’| < 2(r, (V') —r1(T)). Receiving a
pair(x,y), Chooser keeps an elementiof 7" if possible. At the end of the game Chooser
owns at leasf|V '\ T'|/2] elements ol \ T.

That is Picker may own at mostV' \ 7'| /2] < r (V) — r(T") elements of/ \ T at
the end of the game.

Let Y be the elements of Picker at the end of the game. Clearly,

T’l(Y) S T’l(Yﬂ (V\T)) +T’1(T) < Tl(V) - Tl(T) +T1(T) = T’l(V),

that is Picker has lost the game.

For the other direction, we assume thatB € 7, AN B = (), and use induction. We
consider the matroidM /y \ = given a pair(x, y) taken by Chooser and Picker, respec-
tively. Clearly Picker wins the game fav1 if he can win it forM /y \ z. (The dimension
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of M/y \ x is one less than that 0¥1, and if A’ is a base of\ /y \ z, thenA’ U {y}is a
base ofM.)

All we need here is thetrong base exchange axiofor rather theorem), that says
if A and B are bases of a matroi, then there exist € A, y € B such that both
{A\{z}}U{y} and{B\ {y}} U {z} are also bases d¥1. Picker selects the pait, y)
such that the above applies, and reduces the game to dilier\ x or M /z \ y. Since
A\ {z} andB\ {y} are disjoint bases both i /y \  andM /z \ y, we can proceed.]

3.5 Erdos-Selfridge type theorems for P-C and C-P games

The Erdds-Selfridge theorem [27] gives a very useful condition Boeaker's win in a
Maker-Breaker(V, ) game. Note, that here we use the simpler notion, and the set of
edges areF.

Using a stronger condition, Beck [6] proves Picker’s win i€@laooser-Picke(V, F)
game. (For the P-C version he proved a sharp result that iediedere.) Let|F|| =
max 4c 7 |A| be the rank of the hypergragh, 7).

Theorem 3.5.[6] If

Nl L
T(F):=>)_ 2 < SFAT D (3.1)

AeF

then Picker has an explicit winning strategy in the Chod3ker game on hyper-
graph(V, F). If T(F) < 1, then Chooser wins the Picker-Chooser gamé&gnF).

We improve on his result by showing:

Theorem 3.6. If
1
Z 214l ~ _— (3.2)
AeF 3,/||.7:||+%

then Picker has an explicit winning strategy in the Chod3ieker game on hyper-
graph(V, F).

It is worthwhile to spell out a special case of Conjecturef@rahis case, that would
be the sharp extension of ErstSelfridge theorem to Chooser-Picker games.

Conjecture 3.7. If

» 2« %,

AeF
then Picker wins the Chooser-Picker game on the hyperg(&plt).

Proof. We shall modify the proof of Theorem 3.5 appropriately. Ttiea of the proof

is to associate a weight functidn(F) to a hypergraphV, F) that measures the danger
for Picker. The value of’ becomed iff Chooser wins the game, so Picker tries to keep
T down. In Maker-Breaker games the greedy selection worles ttse classical Efibs-
Selfridge theorem in [27] or in [7]. Let

39



The Chooser-Picker games

T(F)=>Y 2 T(Fv)= Y 27 and T(Fio,w)= > 274

AeF vEAEF {v,w}CAeF

for an arbitrary hypergrapti/, F).

Assume that after thé&h turn Chooser already has the elementsrs, ..., z; and
Picker has the elements, v, ..., y;. Now Picker picks a 2-element sét, w}, from
which Chooser will choose;,;, and the other one (i. ey; 1) will go back to Picker.
Let X; = {z1,29,...,2;} andY; = {y1,v2,...,y:}. LetV; =V \ (X; UY;). Clearly
|Vi| = |V |—2i. Let F (i) be the truncated subfamily gf which consists of the unoccupied
parts of the still dangerous winning sets:

Fli)={A\X;: A€ F, [A\ X, < [[Vil/2], ANY; = 0}.

Here we will deviate a little from Beck’s proof, since he indes all setsA € F,
A\ X;| < |Vi|in F(i) if ANY; = 0. Butif |A\ X;| > [|V;|/2], then Pickemutomatically
gets an element of, so deleting these sets fraf(:) does not change the outcome of the
game.

Let F(end) = F([|V|/2]), i. e., these are the unoccupied parts of the still dangerous
sets at the end of the play. Chooser windiffF (end)) > 1, so to guarantee Picker’s win
it is enough to show th&t(F(end)) < 1. Letz;,; andy;,, denote thdi + 1)th elements
of Chooser and Picker, respectively.

Then we have

T(F(i+1)=T(F@) +T(F(i);rip1) — T(F(); yir1) — T(F(i); Tig1, Yigr)-

It follows that

T(F(+1) <T(F@G) +[T(F@); wirr) — T(F(@); yira)|-
Introduce the function

9(v,w) = g(w,v) = [T(F(i);v) = T(F(i);w)]

which is defined for any 2-element subgetw} of V. Picker's next move is that 2-
element subsetvy, wy } of V; for which the functiony(v, w) achieves its minimum. Since

{vo, wo} = {xi11,vi+1}, we have
T(F(i+1) <T(F@E) + g(0), (3.3)
where

g(0) = min _[T(F(i);v) = T(F(i);w)|. (3.4)

v,W:VFEW,V,wWwCV;

To estimatg)(:) we take a lemma from [6]. It is an easy exercise for the reader.

Lemma 3.8.If ¢4, o, ..., t, are non-negative real numbers and+ ¢, + ... + t,, < s,
then )
i ti — 1ty < —.
1§Iﬁlzn§m‘ L )
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We distinguish two phases of the play.
Phase 1:|V;| = |V| — 2i > 2||F]||. (Note that Beck use§/| > ||F]||.) Simple
counting shows that
Y T(F(i);v) < IFIT(F (@)
veV;

By Lemma 3.8 and (3.4),

A :
910) < {7y TP ().
so by (3.3),
. . F
T(F(i+1)) <T(F(i)) {1 + ‘(‘M‘)‘ } :
2
Sincel + z < e = exp(x), we have
. L1
T(F(i+1)) < T(F)exp {||f|| - } .
=0 ( 2 )
It is easy to see that
1 1
PR STETE
i:|Vi|>2| | F| (|2 ‘) il
so if iy denotes the last index of the first phase then
T(F(ig+ 1)) < V/eT(F). (3.5)

Phase 2:|V;| = |V| — 2i < 2||F||. Then a similar counting as ihase Igives
N Vil ,

SO T(F)v) < |5 TFG):

veV;

One checks thal'(F(i + 1)) < T(F(i)) when2 < |V;| < 4. If |V;] > 4, then by
Lemma 3.8 and (3.4),

1
N < T (;
g9(i) < T (F(2)),
so by (3.3),
: \4 :
T(F i+ 1) < S TFEO). (3.6)
Let us recall the well-known Wallis's formuldim,, o 525 [ 17, (Q(ff)lz)2 = . Since
% > 1for alln € N, we have the inequality for atl € N
ﬁ 2 T en+) (3.7)
U517 V2 ' '

By repeated application of (3.6) we have

|IF1I

. V; . 2j
T(F(end)) < T(F(io + 1))2i:2<w11”|| I\/ll _‘ < T(F(ig 4+ 1))2 jHQ % i -
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Now using (3.7), (3.5) and (3.2), we have

T(F(end)) < T(Flio + 1))\ /x(I1F] + 3) < vVerT(F) I+ 5 < 1

Since Chooser cannot completely occupy a winning set, EHme&:6 follows. [

To further explore this direction, a generalization of Tien 3.6 for biased games is
needed. No attempt is made here to get the best possibleffarour needs the following
lemma will be sufficient and useful. See the proof of it in Clea/®

Lemma 3.9. Picker wins the Chooser-Pickél : b) biased game on the hypergraph
F=V(F),EF))If
v —Al/b
b+ 1 Z )2 <1

AEE(F

wherev = |V (F)|.

3.6 Pairing strategies revisited

3.6.1 Pairing strategies in general

Pairing strategies appear in a plethora of games, see [£8ai@ kind of pairing strategies
were introduced to the theory of Positional Games by HaldsJawett in [35]. Based on
these pairing strategies they proved the following theorem

Theorem 3.10.[35] Breaker wins a Maker-Breaker game on the hypergrdphFE) if
| Uaeg A| > 2|G| forall G C F.

The idea is to use the celebratedrig-Hall theorenh, and exhibit a “doublesystem
of distinct representatives (SDRj the hypergraptiV, E'). A setX C V is an SDR if
|X| = |E|, and there is a bijection : X — FE such thatfor al: € X, z € ¢(x). If X
andY are SDR’s of(V, E)) with the bijectionsp andy whereX NY = (), thenp = ¢ ~1¢
Is a bijectionp : X — Y. Breaker, even as a second player, wins by ugin@hat is,
Breaker takeg(z) [takesp~'(y)] if Maker takes anz € X [ay € Y], and an arbitrary
untaken element € V' if Maker takesav € V' \ (X UY).

While Theorem 3.10 works fine for some games, it has its dralga It rarely
gives sharp results, which is not surprising consideriregy RSPACE-completeness of
those games. Another problem is that thénig-Hall theorem (and consequently Theo-
rem 3.10) applies only to finite hypergraphs. A remedy fos thia lesser known theorem
of Marshall Hall Jr., that requires only the local finitene$she hypergraphV, E). We
say that(V, E) is locally finiteif deg(x) := |{A:x € A€ E}| < cforallz € V.

Theorem 3.11.[36] There is a SDR in a locally finite hypergragh, E) iff | Uscg A| >
|G| forall G C E.

Still, Theorem 3.10 does not apply directly|if| < 2|E]|, for instance, one must use
other ideas to tackle thiein-a-row games in two or in higher dimensions, see [60].

A generalized form of this theorem will be spelled out in tlextparagraph as Theorem 3.11.
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Definition 3.12. The bijectionp : X — Y, whereX NY = (and X, Y C V,is a
winning pairing strategy for Breaker in the Maker-Breaker game on hypergraphF)
if forall A € E thereis anr € X such that{z, p(z)} C A.

Of course, we assume that both the functioand the decision problem that deter-
mining whether any set” C V has the property thatt ¢ A € E are computable in
polynomial time in the size of description ¢F, F). (For the sake of simplicity we con-
sider only the case when bothand £’ are finite.) Having the bijectiop, Breaker wins
by takingp(z) [taking p~!(y)] if Maker’s last move was € X [wasy € Y]. To decide
the existence of is not easy in general. Let us denote the class of hypergfaphsich
Breaker has a winning pairing strategy By

Theorem 3.13.Determining whether a hypergraph is fhis NP-complete.

Proof. Given a bijectiornp that witnesses a winning pairing strategy, one checks for an
A € Eifthereis anz € X such that{z, p(x)} C A. For any pair(A, x) it can be
done in polynomial time, an¢l¥||V| is an upper bound on the number of such pairs.
Consequently3 € NP.

To show thatB3 is NP-hard one can use basically the same argument as indbegsr
Theorem 3.2. There is, however, a simpler reduction.¢llet an arbitrary CNF i3-SAT.
We construct a hypergrafti, = (V, £') such thal” = {r;, b;, p; }, and the edge sek,
consists of all edged such that

o Ais{r;,by,p;} foralli e {1,...,n},

o A={pi,ri,p;,rj, pi, 7k} fOraclauseC = z; vV x; V xy,
o A= {p;,7i,pj,7j, Pk, bi.} for a clauses' = x; vV z; v 7y,
o A= {p;,7i,pj,b;,x, b} for a clauseC' = z; vV 7; V 7y,
* A={p;, bi,p;,b;,pr, by} foraclause’ = z; V z, V 7y.

A winning pairing strategy for Breaker cannot contain bégh, r;} or {p;, b;} for
1 < i < n, because the strategy is a bijection. But such a strategy consain one of
{p:i,r:} or{p;, b;} in order to have at least one pair of the fofm p(x)} in each of the
edges of size 3. Let; = 1if {p;,r;} is present, whiler; = 0 otherwise. As a result,
a clauseC' associated to its corresponding sebf size6 is satisfied if and only ifA
contains a pair. O

Remarks. If the hypergraphV, F) is almost disjoint, then Breaker has a winning pairing
strategy iff| Useg A| > 2|G| for all G C F, that is one gets back the assumption of
Theorem 3.10. This case can be decided in polynomial timedrdescription ofV, E).

As in Theorem 3.213 is NP-complete for hypergraphi¥’, £'), where|A| < 6 for A € E.

A result of Hegyhati [41] implies that the existence of a wirgnpairing strategy can be
decided in polynomial time ifA| < 3 for A € E. The cases whefd| < 4 or |A| <5, to
the best of our knowledge, are open.
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3.6.2 Applications for k-in-a-row and Snaky

Let d; be the maximum pair degree {iV, E), that isd, = max,,d>(z,y), where
dz(:{?’y) = |{A : {SC,’y} CAe E}‘

Proposition 3.14. If Breaker has a winning pairing strategy theh|X|/2 > |G| must
holdforall X ¢ V,whereG ={A: Ac F,AC X}.

Proof. Simply locate the pairs in the winning pairing strategy. fEhare at mostx|/2
such pairs, which are disjoint. Each pair will be a subset ofi@std, edges. Since each
edge ofG must have a pair as a subset, the number of edges must be ab,dost. [

Now we can explain why pairing strategies can work for the g&nrmn-a-row for
sufficiently largen only if £ > 9, see [13]. In the&:-in-a-row gamed, = k£ — 1, and if X
is ann x n board, theng| = 4n* + O(kn). By Proposition 3.14, we haé — 1)n?/2 >
4n® + O(kn); thatis,k > 9 + o(n).

Another example in which we can use this ideas is the polyorgame Snaky, which
were examined by Harary [37], Harborth and Seeman [38], agloe® [68]. This game
is a Maker-Breaker game in which the board consists of tHe oéthe infinite grid and
Maker’s goal is to occupy all of the cells in an isomorphic gop the polyomino Snaky,
shown in Figure 3.1.

Figure 3.1: The polyomino Snaky. The “head” is the pair ofcil the upper row. The
“body” is the set of four consecutive cells in the lower row.

Using a computer search, Harborth and Seeman [38] showethtra is no pairing
strategy for Breaker in this game. We give a computer-freefgdior their statement:

Theorem 3.15.[38] Breaker has no pairing strategy to avoid the isomorpbapies of
the polyomino “Snaky.”

Proof. Assume to the contrary that there is a winning paiprfgr Breaker. LetP, be the
polyomino which consists df consecutive squares of the table.

First we show thap cannot be a pairing for the polyomirfé. Let us assume that
is such a pairing, and consider anx n boardX such that the edges ¢f consist of the
Pys on X. Sinced, = 3, Proposition 3.14 gives that?/2 > 2n? + O(n), which is a
contradiction ifn is sufficiently large.

On the other hand, ip is a pairing for Snaky, then we will show that it must be a
pairing for P5. To see this, we assign labels to the cells such that ceksvwethe same
label iff they are paired by. Let us take the longest set of consecutive cBlisuch that
no labels are repeated éh We may assume that either those labelslare. , ¢ for some
¢ > 5, or Ris infinite.

We first consider the cage= 5, and in doing so let us refer to a cell of the grid by
its lower left lattice point. Ifp is not a pairing forPs, then we may assume, without loss
of generality, that the set of cells = {(1,0), ..., (5,0)} contains no pairs. These cells
are labeled by, .. ., 5 on the left-hand side of Figure 3.2. Since- 5, the both the cells
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E|lF|C
? ? AlAlo|C <&
L [of1[2]3 o ©1112[3[4]|5]6]¢°
B|B|¢|D o
F\E|D

Figure 3.2: The case&s= 5 and/ = 6.

(0,0) and(6,0) are in a pair with some cell aof. (We indicate the cells that have indices
which matching with an element df by a diamond, otherwise by capital letters.) This
leaves only three elements bfthat can be matched with a cell the rows above and below
of L.

Consider the Snakys that have four cellslin The head of the snake will have two
cells in one of 4 disjoint sets of three consecutive cellshia tow above or the row
below L. Without loss of generality, we may assume that the threesenrtive cells
{(4,1),(5,1),(6,1)}. Thatis, no cell ofL is matched by the cell§(4, 1), (5,1),(6,1)},
labeled by “?” in Figure 3.2. Butin that cagshould contain, as pairs, boft, 1), (5,1)}
and{(5,1), (6, 1)}, which is impossible. So we may assume that 5.

Remark. In the case that > 5, or / is infinite, we again have a sét containing no
pairs such thatL| = ¢. Every three consecutive cells in the rows above and bdlow
must contain at least one cell whose label is matched to atél| otherwise we finish
the argument as in cage= 5. Here by “the rows above and beldW we mean sets that
extend one cell longer than the endloif L is finite or if L terminates in one direction.

Second is the case df = 6 and we may assume th&f1,0),...,(6,0)} receive
distinct labels. We will show that the only possible pattexrshown in the right-hand
side of Figure 3.2. There are diamonds in the céll®) and (7,0). Four diamonds
remain to be placed and each set of three consecutive ceNg @nd belowl.. The only
possible locations do to so af® +1) and(5, £1). This ensures th&t(0,1), (1,1)} and
{(0,—1), (1,—1)} form pairs, which we label withA” and “B”, respectively.

Note that neither diamonds above and below the cell “2” can bk labeled by “2”,
otherwise the diamond, its right neighbor, and the cglls 5, 6 would be a pairing-free
Snaky. The cells above and below the cell “3” are label@tidnd “D”, respectively. At
this moment”' could be equal td>. However, if we consider a standing Snaky on the
cells{(1,2),(1,1),(2,1),(2,0),(2,—1),(2,—2)}, the only unpaired cells are those that
are labeled with £”. If we consider a standing Snaky with the same body and tlael he
towards the upper right, the only unpaired cells are thoseldal ‘C” in the right-hand
side of Figure 3.2. Symmetrically, we may assign labdls and “F” as shown in the
figure. This, however, leads to a contradiction, since theneld be a pairing-free Snaky
again. In particular, the uppéf and F' cells make the head, and the body consists of the
diamond above the cell “2”, the cell of the lowér, the empty cell above “4” and the
diamond above the cell “5”. So, we may assume that6.

The third case, wheré= 7, is impossible since the rows above and belowhould
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contain three diamonds each to avoid the snakes and two edeaé¢o the right and left
of L. This totals at least 8, more than théhat are available.

Ol Al Al © olol o
L [¢|1]12]3|4]|5|6]|7|8]|° L 112]13[4|5[6]7[8]9
ololo

Figure 3.3: The cases= 8 and/ > 9.

In the fourth case, wheré = 8, we have at most eight diamonds arouidtwo of
those at the ends, and every three consecutive cells abdveetow . containing at least
one diamond. So, there are ten cells abavand ten cells below. to receive the re-
maining 6 diamonds. There must be one in the three leftmdistalgovel, in the three
rightmost cells abovéd., in the three leftmost cells below and in the three rightmost
cells belowL. Only two diamonds remain. One must be above one of the ediisled
“37, %47, “5" or “6”. A diamond cannot be above the cell labelled br “5” because for
the two Snakys with heads equal {64, 1), (5,1)} and bodies in_, the diamond either
represents one dfl, 2, 3,4} or one of{5,6,7,8}. Hence, one of these Snakys must be
pairing-free. As a result, the cel{34, 1), (5, 1)} must be paired with each other and so
we label them with A”. See the diagram in the left-hand side of Figure 3.3. Begaus
every three consecutive cells must contain at least oneatidnthe cells above the cells
labeled “3” and “6” are labeled with a diamond. This is a cadiction to the fact that
only one diamond can be above these cells. So, we may assatiet!s.

In the fifth case, wheré > 9 and is finite, all cells above and below the cells
4,...,¢ — 3, the “critical region”, must be diamonds. It is the same idsan the pre-
vious case: If, say the cell above “4”, i§, then so is the cell above “5”. But the same
is true for the cells above “5” and “6”. Not only must the cahisthe critical region be
diamonds, there must be a total of at least 4 more above awvhbelw cover all of the
triples of consecutive cells. With the additional two on #relpoints, there must be at
least2(¢ — 6) + 4 + 2 diamonds, that is impossible, given that the total numbetiaf
monds is at most, which is at least 9.

Finally, supposé. is infinite. Take 13 consecutive cells bf call it L'. In the critical
region of L’ there must b&(13 — 6) = 14 cells with diamonds, but they must repeat the
labels in the cells of/, a contradiction. This concludes the proof of the fact thaaiaing
for Snaky must be a pairing fd#s.

We exhibit two pairings forP;. The pairing?; is like a chessboard, where the fields
are2 x 2, and alternately packed by a standing and lying pairs of doss as in the
left-hand side of Figure 3.4. The pairirig is like an infinite zipper, repeated in both
directions, see the right-hand side of Figure 3.4.
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Figure 3.4: The parings; andT5.

Lemma 3.16. A pairing for P is either the translated and rotated copyiafor 7.

Proof. Let us consider a pairings, for Ps. A pair {z, p(x)} is goodif = andp(x) are
neighbouring cells. 1§z, p(x)} is good, thendy(z, p(x)) = 4, otherwise it is smaller.
The number ofP;’s are2n?+ O(n) on ann x n sub-boardX, so Proposition 3.14 implies
that at all butO(n) pairs onX are good. It follows that, if» is sufficiently large, then
thereis & C X, k x k square sub-board that contains only good pairs. |. e.kthkisk
sub-board is paired by dominoes.

There are either two dominoes meeting at their longer sidlethe two long sides
meet but are offset by one unit. In these cases the immedaiblvouring dominoes are
forced to be in the pattern @f, or T, respectively.

Figure 3.5: The forcing for pairs and filling.

We will show that if we have a large enough pattern of domintiesn the pairs in
the neighbouring cells are forced to be in eitfigror 7. First suppose that, within
the pattern tiled by dominoes that two dominoes share a ldgg,eas in the dominoes
labelled with “1” in the left-hand side of Figure 3.5. Sindeetpairs can only occur as
dominoes, we can use horizonfal's to ensure the pairing is oriented as in the dominoes
labelled with “2”. Vertical P5’s ensure the orientations of the dominoes labelled “3”. We
can continue in this fashion, getting tRe< 8 pattern in the left-hand side of Figure 3.5.
Once this is determined, one can extend the pattern to a legngle, forcing not just
the domino condition, but th&, pattern itself. This can be seen by first taking horizontal
Ps’'sinrows 1,2,5,6 that have two cells outside of the patt&iren taking verticaPs’s in
columns 9,10, the pattern can be extended t8 anl0 rectangle. This can be continued
ad infinitum, showing that the entirex n board must be in the pattein.

Next, suppose that whenever two dominoes meet at their ldgg & the sub-board,
that they are offset by one unit, since two dominoes meetitigedr long edge will force
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the patterri/;. See dominoes labelled “1” in the diagrams in the center @ritfht-hand
side of Figure 3.5. The pairs must occur as dominoes and $icale?s’s ensure that the
dominoes labelled with “2” are placed in that location. Noansider the right-hand side
of Figure 3.5. TwoP5’s are indicated by thin lines. Since the dominoes cannatesha
long side, this forces the placement of the dominoes latb&lieh “3”.

In fact, if we know that a sub-board is tiled with dominoestttia not share a long
edge, then the configuration must be thafaflt remains to show that if we have a large
enough fragment of; in a sub-board, then, even if the board is not guaranteed to be
tiled with dominoes, it must be completed t@:apattern. The other pairs are forced even
without the assumption that those are in dominoes, sincettierwise aP; containing
no pair would arise.

To see how we can use this sub-board to extBntb the whole board, we first show
in the center of Figure 3.5 how enough pairs can be formedruh@eassumption that
every pair forms a domino and no pair of dominoes can sharegaddge. The numbers
show the order in which dominoes can be taken. Then, in Fig@&e show how, under
no assumptions that the pairs occur as dominoes, that thendesithat cover thé x 7
board can be extended to covera9 board. Again, the numbers show the order in which
dominoes can be taken.

The general approach is that one can force new horizontala@®in every third row
that touch the left and right border of the small square amticat dominoes in every third
column that touch the top and bottom border. From there,gbkiaf the larger square is
easy to complete. This can contina@ infinitumuntil the board is filled. This concludes
the proof of Lemma 3.16. O

10 10

13 . 13

13 . 13

10 10

Figure 3.6: Expanding @ax 7 square to & x 9 square. The dominoes given by the 7
square are marked with™

By Lemma 3.16, the pairs ¢f are either in the patterf, or the patterri;, but none
of those are pairings for Snaky. This concludes the proofr@forem 3.15. O

3.7 Torus games

To test Beck’s paradigm from Conjecture 2.9that Choosekd?iand Picker-Chooser
games are similar to Maker-Breaker games, we check thessthtconcrete games de-
fined on thet x 4 torus. That is, we identify the opposite sides of the grid] eonsider

all lines of slopeg) and+1 and sizet to be winning sets. We denote the torus, along
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with those winning sets with the notatidd. For the general definition of torus games,
see [7]. We use a chess-like notation to refer to the elentdnitse board. We note that
the hypergraph of winning sets dh is not almost disjoint, see e. g. the two winning sets
{a2,b1,c4,d3} and{a4,bl, c2,d3}. See Figure 3.7. We consider four possible games on
4%: Maker-Maker, Maker-Breaker, Chooser-Picker and Pi¢kieooser. According to [7],
the Maker-Maker version of? is a draw, and, according to [21], Picker wins the Chooser-
Picker version. Here, we investigate the Maker-BreakerthadPicker-Chooser versions.
In fact, the statement of the Maker-Breaker version imghesesult for the Maker-Maker
version, while the proof of it contains the proof of the CheeRicker version.

Proposition 3.17. Breaker wins the Maker-Breaker version of tifetorus game.

Proof. Using the symmetry of?, we may assume, without loss of generality, that Maker
takesa4. Breaker’'s move will then be to takd. Up to isomorphism, there are eight cases
depending on the next move of Maker. The first element of tiragslaker's move, while
the second is Breaker’s answer:(&3, b2), 2. (b3,02), 3. (¢2,02), 4. (b4, ¢c3), 5. (¢4, b4),

6. (d4,c3), 7. (d2,a3) and 8.(d3,b1).

In the first seven cases Breaker has winning pairing stegeghll eight cases are
shown in the first two rows of Figure 3.7 and the pairs appedeuthe labelsA, B, C,

D, andE. We leave it to the reader to check that the pairs block all it#ing sets.

In the eighth case Breaker does not have pairing strategth®&game reduces to one
of the seven prior cases unless Maker playsa2 or al in the third step of the game. In
that case, Breaker playsg, a3 or 02, respectively, and wins by the pairing strategy shown
in the third row of Figure 3.7. O

Note that in the Chooser-Picker version of the gafePicker can achieve a position
isomorphic to Case 1. That is, Picker wins.

If Conjecture 2.9 were true, then Breaker has an easier jdhanMaker-Breaker
version than Chooser has in the Picker-Chooser game. Fanthetorus the outcome of
these games are the same, although this is much harder t®. prov

Proposition 3.18. Chooser wins the Picker-Chooser versionttfthe4 x 4 torus game.

Sketch of the proof. The full proof needs a lengthy exhaustive case analysis. edeny
some branches of the game tree may be cut by the followindf i&fsBeck [6]: Chooser
wins the Picker-Chooser game #hif T'(1) := 3 4 gy 27 < 1.

In our casel'(H) = 16 x 2=* = 1, which just falls short. Instead we use a similar
method using so-callegotential functions We assign weights to each edge at tHe
stage such that;(A) = 0 if Chooser has taken an element4f otherwise it is2=/(4),
wheref(A) is the number of untaken elementsAfThe weight of a vertex is w;(z) =
> zea wi(A), while the total weight isv; := 3, 5y wi(A).

Note that Picker wins if and only if botlrg > 1 andw, = T(H) = 1. When a pair
(z,y) is offered, Chooser can always take the one with larger viewghich results in a
non-increasing total weight. In fact, if the weightsaotindy differ or bothz andy are
elements of am of positive weight, then the total weight strictly decrease

In order to have any possibility of winning, Picker has toesek andy of equal
weights and no edge of positive weight containing both. Bysyimmetries of the board,
we may assume Picker getsand Chooser gets in the first round. After that, Picker has
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only pairs(z, y) that do not result in a loss for Pickgiti4, d3), (a3, c4), (b3, d4), (a3, b3),
(a3,d3), (b3,d3), (al,02) and(al, d2), see Figure 3.8. The letter P [C] designates the
vertex taken by Picker [Chooser] in the first step, the nusiaee the weights of the
vertices.

4 4 4

41P 16 | 16 | 16
4 4 4

3 16 | 16 C 16
B
16 | 16 | 16 | 16
l2la2l2l2
16 | 16 | 16 | 16

S
o
S8

Figure 3.8: The beginning of the Picker-Choosegame.

The rest of the proof is similar to that of the prior step: omds to check that
Chooser has winning strategy for each of the eight nontriéisponses of Picker. We
omit the details. O
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Chapter 4

The Chooser-Picker 7-in-a-row game

4.1 The k-in-a-row game

The k-in-a-row game is that hypergraph game, where thecesriof the graphs are the
fields of an infinite graph pape?t), and the winning sets are the consecutive cells (hor-
izontal, vertical or diagonal) of length. If one of the players gets a lengthline, then
he wins otherwise the game is draw. Note the assuming pgifegtthe winner is always
the first player, or it is a draw by the strategy stealing argoihof John Nash, [13]. More
details abouk-in-a-row games in [61, 62].

The board of the classical 5-in-a-row game is a graph papiied® x 19 Go board,
and the players’ goal is to get five squares in a row vertichltyizontally or diagonally
first.

It is easy to see that the first player wingif< 4, and a delicate case study by Allis
[1] shows that the first player wins fdr = 5 on the19 x 19 or even in thel5 x 15
board. From this result it doe®t follow that the same is true for the infinite board, as it
sometimes claimed, [25]. Theoretically it can be occurtkdi by placing there an other
winning set - the new game is a draw. This phenomenon is cBléad Set paradoxThe
simplest example for it is the following: In the figure 4.1 thes a hypergraph with 8
branches (these are the winning sets). The players marksettiees one-by-one. This
first player can easily win this game, but if we add that extiength wining set, then the
game is draw.

extra set

Figure 4.1: If the first player chooses one-one vertices loofathe branchings, then
he/she wins. But if the first player cares for the second plage to occupy the extra
winning set, then the first can not win.

So the casé& = 5 is still open on the infinite board, but Allis’ result implig¢sat
Maker wins fork = 5 in the Maker-Breaker version.

1The Go-Moku rules differs from the 5-in-a-row, see e. g. [13]
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Itis much less known that thedfig-Hall theorem can be extended to the infinite case,
at least if the hypergraph Iscally finite This is due to Marshall Hall Jr., see [36].

Theorem 4.1(M. Hall Jr.). The system of finite sefsl; }>°, has system of distinct repre-
sentatives, if for all finitd C N | U;cr A;| > |1].

We can use this theorem for then-a-row game played in the infinite board. It gives
adraw fork > 15 . If we play on ad dimensional board this numberks> 2(3¢ — 1) — 1
[60]. If d = 2then we gek > 15, if d = 3thenk > 53, if d = 4thenk > 159 and so on...

The game is dlocking drawi. e. Breaker wins the Maker-Breaker version & it 9,
proved first by Shannon and Pollak by usiAgletter shape, auxiliary sub-boards. The
Breaker wins all of the sub-game, and it means that the gadrave (even the weak and
the strong case). Later even a pairing strategy was givet3[7

Figure 4.2: The 9-in-a-row draw: proof by two differentinlgs.

Finally Breaker’s win was published by A. Brouwer under tiseypdo name T. G. L.
Zetterg for k = 8, [34]. The proof is also uses sub-games. The authors madseiico
ous mistakes when they sent their solution toAlmeerican Monthlyor R. K. Guy and J.
L. Selfridge problem. One was that they believed that the-@-row also can be handled
such “easy” way. The other was the alias, because since 38 gebody could improve
this result.3

2This pun certainly refers to the proof that Shannon and Rgjéve for the casé = 9. They used “H”
shaped sub-boards, here more sophisticated sub-boardeeded. Note that “zetter” means “typesetter”
in Dutch.

3A. E. Brouwer's homepage, see http://www.win.tue.nl/ peblications.html#pubpapers refers to that
he was one on the authors.
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Figure 4.3: The original 8-in-a-row is draw [34] and the Cé?sion is also a draw [21].
Both uses this tilling (the winning sets are 3-4 length drsgj@and straight lines and two
additional pairs). It can be seen, that neither directiontmamarked 8 consecutive cells,
it means that none of them has a whole hyper-edge.

Both the Maker-Maker and the Maker-Breaker versions oftea-row fork = 6,7
are open. These are wisely believed to be draws (Breakamnshwt, despite of the efforts
spent on those, not much progress has been achieved.

4.1.1 Accelerated, and biased#-in-a-row games

Now here comes an example for accelerated games: the ateelgérin-a-row. The
theorem below (see [61]) shows the length of the winningrsé&rimulap + f(p) where
p is the speed of the acceleration.

Theorem 4.2 (Pluhér, [61]) If f(p) > 80log(p) + 160 andp > 1000, them Breaker
wins the A, s, (p, p) accelerated game. If(n) = —2%22_ _ 1, then Maker wins the

logy logy p
Apt 5 (p, p) accelerated game.

In more specific cases there can be proved more. For examplend/iduang [74]
found the following result :

Theorem 4.3(Wu-Huang [74]) The biased 6-in-a-roMp = 2, g = 3) (e.g.Connect(6, 2, 3))
is a second player win.
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Before proving the C-R-in-a-row game, we prove the easier Gkh-a-row game:

4.2 The Chooser-Picker 8-in-a-row game

Proposition 4.4. Picker wins the Chooser-Picker version of the gasna-a-row on any
B C 72

Proof. First we need to use the lemma 2.18

We shall cut up the infinite board to sub-boards in the sameasawas in [34], see
also Figure 3. The left tile and its mirror image are the badedhe tiling. The winning
sets for the these sub-boards are the rows, the diagondispef sne, and the two pairs
indicated by the thin lines. The middle of the picture shoestiling itself. We use one
type of tile in an infinite strip, and its mirror image in theigiegboring stripes. On the
right side of Figure 3 the transformed tile is drawn, wher\hnning sets are the rows,
columns and the indicated two pairs.

TN

Figure 3

Let B be the union of those sub-boards meetifig We show that Picker wins the
Chooser-Picker 8-in-a-row game for the bodid Note that5 is a union of sub-boards.
Picker plays auxiliary games on the sub-boards indepelydeirgach other with the goal
of preventing Chooser from getting a winning set of a subrtboa

To achieve this goal, Picker selects the two pairs first onsatyyboard, that give rise
to the possible positions shown on Figure 4. Then Picker theesppropriate winning
pairing strategy indicated by the thin lines. One checkdyetmsat if Picker wins all the
auxiliary games then he wins the Chooser-Picker 8-in-a-game on playing3, too.

Finally, by Lemma 2.18, Picker wins aB. O
o O | O
ol + |0 ol |,|e o' |o
° o' of'
Figure 4

Now we prove the C-RF-in-a-row game:

4.3 The Chooser-Picker 7-in-a-row game

Theorem 4.5. Picker wins the Chooser-Picker 7-in-a-row game on everyl#sstiofZ>.
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Let us start with the strategy of the proof. By applying theneely mentioned before
Lemma 2.18 at first Chooser determines the finite bgardlVe will consider a tiling of
the entire plane, and play an auxiliary game on each tile-(gygergraph). It is easy to
see, if Picker wins all of the sub-games, then Picker winsgdmme played on any
board which is the union of disjoint tiles. L&f be the union of those tiles which meet
S. SinceS C K, Lemma 2.18 gives that Picker also wins the gameSomoo. Now
we need to show a suitable tiling and to define and analyze uk#iaay games. The
tiling guarantees that if Picker wins on in each sub-games tbhooser cannot occupy
any seven consecutive squaresion

Each tile is a4 x 8 sized rectangle and the winning sets, for the sake of betiden
standing, are drawn on the following four board:

RERIRNN

Figure 4.4: These are the winning-sets of the 8 rectangle. Easy to see, that there is
exactly one symmetry (along the double line). Later we wiik@ use of it.

DA RaseY A
77
Y az7Z4
72

Figure 4.5: We can see, how to draw from playing on simplettile game played on the
infinite chessboard: neither vertically, nor horizontatigr diagonally (there is only one
diagonal direction detailed) there are no seven consecstjuares without containing
one winning set of a sub-game.

The key lemma for our proof is the following.
Lemma 4.6. Picker wins the auxiliary game defined on the 8 rectangle.

Before starting the proof of Lemma 4.6, let us estimate theahcomplexity of the
Maker-Breaker and Chooser-Picker versions of the auyiliar< 8-game.”

56



The Chooser-Picker games

4.3.1 Some words about the Maker-Breaker case

Before of proving the theorem, let us says a few words abautvak version of the
same subgame and the concept of its evaluation. The basie pfoof is a DFS algorithm
for the double steps (first Maker, after Breakérjin algorithm which tries all of the cases
needs32! steps. We usbranch and boundechniques to reduce the cases. Regarding that
fact that there is only one symmetry in the board it is not syeask. So we has to use
backtracking (see 2.3.3), weighting (see 2.3.2) and damigdechniques as well (see
here).

Some useful techniques to fasten the game

e general:
—It always helps if Breaker has a good defending heuristitiths “only” gets the
square root of thg2!
—After 10-12 steps the board splits into pair-wise disjunmrhponents. It is enough
to study the separate components.
—The players should play “balanced” in the two parts of trepgr
— Itis useful to make dictionaries for the often occurringggts (=final stages with
some unoccupied cells at the end).

* weighting:
—By using weighting techniques if Maker has a quick (one)stép then take it.
—Breaker should occupy first such fields where are a lot of cun@ed winning sets.

» dominating:
If Maker cannot win in the next step, then it is not worthwHide Maker to step to
a place where is at most one winning-set which is not markdgrbgker. It means
that it is not worthwhile to step places where is just one wigrset and more then
two cells for it.

Remark. We checked with brute force computer search the M-B game ersdme
auxiliary board (see 4.3.1), but it is a Maker win!

= P LW

A B C DE F G H

Figure 4.6: Encoding the table

4t is interesting that the proof is a BFS algorithm, but we D&, because we need to know the result
of a stance before we start to examine an other one. So we e$2A%to examine the board.
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Maker can force a win by the following moves (by using the ehicg above). Not all
of the Breakers move are directly forced, but if Breaker dusdake that move sooner or
later looses.

The begining:

A2-B1l; G1-H2; C4-B3; E1-F1; A4-A3;

The trick:

(solution 1) B2-B4; C3-C2; D4-Al; E2-D3

(solution 1) B2-D4; E2-D3; D2-C2

Endgame:

G2-H3; G4-G3; F3-D1; E4-H1; F4 (Maker wins by double threat)

So we cannot use the same table again, to prove that the wesaérvéMaker-Breaker
version) of this game is a Breaker win. One is tempted to laolother auxiliary games,
which is not going to be easy. As a rule of thumb, it always guolea to check the C-P
version of these games at first.

4.3.2 The Chooser-Picker case

In the Maker-Breaker version Maker ha8 possible moves, then Breaker h#ls so
clearly the (unpruned) game-tree has sizk Even worse, it may be hard to write down
convincing evidence of the outcome after searching thes tirethe Chooser-Picker case,
provided that Picker win, there is always a much shorter fpobdhe outcome. Picker
exhibits two squares and depending on Chooser move, onlgrivedier games have to be
searched. This leads to a game-tree of 8t2ewhich is reasonable to search. (Note that
if Chooser wins a Chooser-Picker game, the verification @even harder than a proof
for the corresponding Maker-Breaker version.)

With some consideration the length of the case-study of th@o€er-Picker version
can be reduced, too. One tool of this is a classification op#ngally filled tables. Let us
denote the squares of a boardaken by Chooser or Picker By and7’», respectively.
From Picker’s point of view the tabl& is more dangerous than the tatile(7" > 77) if
T¢, C Tc andTp C Tp. Thus if Picker has awinning strategy ofl’, as a consequence of
Lemma 2.18 playing the modifiedPicker also wins off”. See the application in 4.3.3.

An other gain is that Picker can ask an appearing two lengtinvwg set immediately
by Lemma 2.17. (In the definetl x 8 auxiliary game there are two such pairs at the
beginning already, and some appears later.)

Finally, we do not always have to go down to the leaves to theegtiee, since an
appropriate pairing strategy may prove Picker’s win in areimvertex of that tree.

Our plan is for proving the key lemma is

|. Separating cases: A) and B) type cases.
[I. Filling up one side of the auxiliary table using breatlsfisearch.

lll. After a case classification filling up the other side.
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4.3.3 The proof of the key lemma

The course of the proof is: We take the 2 piece of 2 length wigsiet. Picker picks them
at the beginning (Picker can do this without any disadvanthgnks to the Lemma 2.18).
Depending on Chooser selection, there are two cases:

A) Chooser gets the upper square at least one side.
B) Both side Chooser gets the lower ones.

A B:

Figure 4.7: The two cases: cagg, and caseB).

From the characteristic of the game, the tree which descthe game is binary-tree,
we should walk breadth first on the cases; thus the cases lvdteame parent are be-
side each other. (After Picker's move, these are the twoilplesshoices of Chooser).
According to this, the positions are indexed lexicograglyc A, B, a, b, i, ii, I, 11...

Somehow remarkable, that we the use breath first search t® dawn the proof, but
to find the value of the game we always use deep first searchthlys (because we have
to know the outcome of the game, before we are looking to tkebranch of the tree).

case A)

Without loss of generality, we may assume Chooser occupegpper square on the left
side (there might be the same on the right side). Now Picletr&tegy is to fill up the
left side and leave the least possible crossing winningssetkeft alive (see more detailed
atIndex_A). On the pictures in the Appendix the special marks like =t,*etc. are the
pairs to be asked by Picker. At that stage it makes no diftererhich squares are chosen
by Chooser. And those marks also indicates the ending ofrechraf the game-tree.

It is convenient to introduce to a new notation: It helps Gets game if we change
one of Picker’'s square to a free square, and it is also adyeots for Chooser if he/she
gets one of the free squares«PFREE < C). It means that it is not necessary to prove a
case if there exists a more dangerous one.

From both Picker and Chooser point of view a square (be oedugi not) isuninter-
esting,if each winning set which contains it is “dead.” It does noae the outcome of
the game if we give these squares to Picker.

Then after filling up the left side we can create equivalet@sses using the relations
and arrangements above. In this way one have to considan sases only:

The finish of these positions above (=filling up the right ¥ickn be found detailed in
the Appendix of the paper (see Indgxindexg;, ...Index;,)
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Fa: Rh:
PIP|C|C P PIP|C
P P|P P PIP|P
P PIP|P P PIP|P
P P|P PIPIP|C
Fc: Rd:
P PIP|P P PIP|P
P PIP|P P PIP|P
P P|P P PIP|P
PIP|IC|C P PP C
Re: Rf:
P P PIPIC|P
P P|IC|P P PIP|C
P P|P P PIP|P
P P|C P PP
Ry
PIP|P|C
PIP|IP|P
PIP|P
PIP|C|P

Figure 4.8: If on the “left side” matching Chooser occupiks tupper” square, than
Picker can achieve one of this stages (or an equivalent srgeslous position, using
arrangement above).

case B)

If case B) happens, then Picker asks the following two matgfsee below), hence, using
the symmetry, it is enough to examine the following threeesas

The results of the three cases are also detailed at the APPERHee Index g,
Indexp;,, Indexg. ), that concludes the proof of Lemma 4.6 and consequentlp-The
rem4.5. U
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Ba: Bh:

I
I
a3
a3

Be:

o
I

Figure 4.9: If at the beginning Chooser takes the “lower’ags on both side, then Picker
asks the two colored pair of squares in the middle. It gives to three cases.
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Chapter 5

The Picker-Chooser Diameter Game

5.1 Introduction to Graph Games

Large classes of Maker-Breaker games are defined on the etengyvbph om vertices.
The players take the edges of the graph in turns; Maker wissisubgraph has a given,
usually monotone, proper#, see [8, 5, 12, 17, 40]. As we mentioned in subsection 2.2.3,
in those cases a the random heuristic works very well. Thifitrigis thethreshold for

the propertyP, than Maker should win the ifl : b)-game ifb < 1/py, while Breaker
should win ifb > 1/po.

This heuristic is so powerful, that sometimes even a randaspngonfirm it [12].

After that the following results is quite surprising. Balogt al. [2] introduced the
(a : b) d-diameter game, shortl®,(a : b), which means that Maker wins iff the diameter
of his subgraph is at mogt These games turned out to be very difficult and surprising; a
detailed discussion will be given in Section 5.2. The masuleof Balogh et al. was that
Maker loses the gan®,(1 : 1) but Maker wins the gam®, (2 : in'/%/(logn)*/®).

That is the acceleration of a game may change the outcomeaticatty. This phe-
nomenon was first noted by Pluhar [61]. The outcome also @wmadot when one con-
siders the Picker-Chooser version of the gdmél : 1). Our main result is the following
theorem.

Theorem 5.1.In the Chooser-Picker gani,(1 : b), Picker wins ifb < /n/(16log, n),
while Chooser wins i§ > 3./n, provided that is large enough.

5.2 Diameter and degree games

Let us repeat the definition from the introduction. The ditené gameD,(a : b) is
played on the edges of the complete graph Maker (Breaker) takes (b) edges in each
turn. If Maker’s edges form a subgraph of diameter at madtthe end, then Maker wins
the game, otherwise Breaker wins.

Balogh et al. [2] observed that the garfe(1 : 1) defies the probabilistic intuition
completely. Indeed, if one divides the edged®famong Maker and Breaker randomly,
then Maker’s subgraph will almost surely have diameter t@#ill, Breaker has a simple

LIt means roughly thaP holds forG(n, p) almost surely ifp — e > po and fails ifp < py — ¢, for any
€ > 0, n goes to infinity.
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pairing winning strategy fon > 3, [2]. First taking an edgev, such that neithetiz nor
vz has been taken by Maker for any vertexThen if Maker takes.x, takingvz follows,
and if Maker takesx, Breaker takesz, otherwise an arbitrary edge is taken.

However, when playing the gani®,(2 : 2), this pairing strategy is not available for
Breaker. Maker wins the gane,(2 : 2), and even more, the gani® (2 : b), whereb
grows polynomially inn, provided that is large enough.

Theorem 5.2.[2] Maker wins the gaméD, (2 : in'/®/(Inn)**), and Breaker wins the
gameD, (2 : (2+ €)y/n/Inn) for anye > 0, providedn is large enough.

Note that the random grapH(n, p) has diameter two with probability close to one
if p > n=05%¢, while this probability is close to zero, f > n=%5"¢ andn is large
enough. The breaking poihg of Theorem 5.1 is within that interval, so we may say the
Picker-ChooseD;, (1 : b) game follows the probabilistic intuition.

To prove Theorem 5.1 we need to study the so-callegree gamesSzékely, Beck
and Balogh et al. [73, 5, 2] showed that these games are stitggen their own right.

In such games one player tries to distribute his moves unifgrwhile the other
player’s goal is to obtain as many edges incident to somexe$ possible. Given a
graphG and a prescribed degrédeMaker and Breaker play & : b)) game on the edges
of G. Maker wins by getting at least edges incident to each vertex. Kér= K,, and
a = b = 1 this game was investigated thoroughly in [73] and [5]. It whewn that Maker
wins if d < n/2 — v/nlnn, and Breaker wins ifl > n/2 — \/n/12.

This is in agreement with the probabilistic intuition, snin G, ; /» the degrees of
all vertices fall into the intervdln/2 — \/nlogn,n/2 + v/nlogn] almost surely. We are
interested only in the case 6f = K,,.

Balogh et al. [2] proved the following lemma:

Lemma 5.3.[2] Let « < n/(41nn) andn be large enough. Then Maker wins the: b)

degree game oi, if d < —4;n — % nlnn.
As we do not wish to develop the complete theory of P-C (C-gjekgames, we state

only a simple form that suffices our needs and furthermoreiges an elegant proof.

Lemma 5.4. Letb < n/(81nn) andn be large enough. Then Chooser wins the b)
Chooser-Picker degree game éf, if d < n — 1 — 3n/b.

5.3 Proofs

531 Thecasa=b =1

Both directions of Theorem 5.1 rely heavily on the weightdion method. It is worth
noting that it is much easier to prove Picker’s win in a specgse. A brief discussion
needs to follow so that we can introduce some of the notioed laer.

Observation.

Picker wins the P-C gamB,(1 : 1) on the graphk,,, if n > 22.
Proof. Let us start with a definition. Playing the game, Piclkeks a set of vertices, if he
achieves that all the distances among those are at most two.

63



The Chooser-Picker games

At first Picker marks two non-incident edges b) and(c, d). Chooser chooses one of
them, for instancéc, d), while (a, b) goes back to Picker. Then Picker picks all pairs of
edgeq(p,a), (p,b)) for p € V'\ {a, b} one by one. We can partitidn \ {a,b} = AU B,
where A and B are the vertices connected directlyd@ndb, respectively. The vertices
within A and B are linked together, and both sets are linked to lacdhdb.

Say, that|A| > |B|, which also meangA| > 10. We show that Picker can get a
complete matchingV for covering the vertices o, if A is even. IfA is odd, Picker can
get a matchingM and possibly a trianglé’. Let the vertices oA bel,..., k. Picker
offers the edgesl, 2) and(1, 3) and gets back, for example, the edge2). Then Picker
offers the edges3, 4) and(3, 5) and again we may assume that the edye) goes back
to Picker and so on.

If A is even, Picker ends up with the almost perfect matchitgconsisting of the
edges{(i,i+ 1)}, fori = 1,3,5,...,k — 2. Then Picker offers the paft, £ — 1), (2, k),
and getting back, sayl, k—1). Finally, Picker offers the pai2, k), (k—1, k). Obviously,
either(k—1, k) or (2, k) leads to a perfect matchingt, since eithetM = M'U{k—1, k},
or M = {M\ {(1,2)} U{(1.k —1),(2.k)}}.

If Aisodd, M’ isthe same as before, exposing only the vekteRicker may ask for
(1,k), (3,k), then(5,k), (7, k). He gets back two of these edges, $ayk) and (5, k),
and then asks for the p4&i2, k), (6, k). This result is a matching and a triangle, covering
A.

Finally, Picker picks edges in pai(§, z), (V',y), where(z,y) € M,V € B. Itlinks
vertexd' to bothz andy, or in case of a triangléi, i + 1, k}, to these vertices. O

5.3.2 Proof of Lemma 5.4.

First, we transfer the degree game to a P-C game played oreagngph. The hypergraph
H = (V(H),E(H)) is such that/(#) is the edges of(,,, while A € E(H) iff |A| =
[3n/b] and all (graph) edges iA incident to a vertex: of K,,. To prove the lemma, it is
enough to show that Chooser wins a P-C gam&{on

Let Chooser choose randomly and independently in each romhidh means that
Picker gets back any edgevith probability1/(b+ 1). Hence, for any strategy of Picker,
the probability that Picker gets every edges of &inc E(H) is not more thanb +
1)~13/%1. By the Boole’s inequality and sind¢) < (en/k)*, we have

3n

Pr (Picker wins) < > (b+1)7 %] :n((;w)(m 1%l <n (g) b <,

AEE(H) b

if b < n/(81nn), andn is large enough. This means that Picker cannot have a winning
strategy, and since the game has only two outcomes, Choastib@the winner. [

To prove Theorem 5.1, we prove Lemma 3.9 first.
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5.3.3 Proof of Lemma 3.9.

We use weight functions, for more details see [27, 9]. Aéte such thap® = 2. The
weight of an edgel is wy(A) = A4l at the beginning. The weight of at thei*® step is
{ \~I4I+Fif picker has no elements of

0 otherwise,

wherek is the number of vertices il occupied by Maker (Chooser). Theeight
of a vertexz € V(H) is wi(z) = >, , wi(A). Thetotal weightat thei" round is
Wi = Y 4eq WilA).

Note that it is enough to show that Picker can guaraniee 1 for all 7. Indeed, if
Chooser occupies an edgeat thei'" round for some, thenw; > w;(A) = 1. We will
see how Picker keeps; small.

In each step Picker markst 1 point and Chooser keepof those and one goes back
to Picker. Thus, in each rounigdthe number of unoccupied vertices of the hypergraph
is decreased by + 1;

vo=v,v1 =v— (b+ 1),...,ULLJ = Vgst < b+ 1.
b+1

Let w be the largest weight of a vertex in ti#é round. By the pigeon hole principle,
there must bé + 1 vertices, such that their weights are all in an interbaif length
D = w(b+ 1)/v;. Picker picks those vertices. Let the endpointg bkw andw*, that is
I = [w,w?].

The biggest possible growth of the total weight functionwscif one vertex has
weightw, b vertices have weight* and Chooser keeps those. So, if Picker picks these
vertices, than the total weight in tiie+ 1) round can be bounded as follows:

Wiy < w; —w+ (N — Dw* <w; + (N = 2)w* + (w* —@) = w; + (N = 2)w* + D.

Since\’ = 2, we have thatv;,; < w; + D. Now we plug in thatD = w(b + 1)/v; and
w < Wi

~ Lbi1J*1
bt 1 b+ 1w, bt 1
we <+ 20D O DT <1+ + )

v v 0 Uk

To ease the notation lét = b+ 1, ¢ = |
We have that forall =0, ...,/

-1 B -1 B
wi§w0H<1+v_iB) gwoexp{zv_m} <
k=0

b+1J and we also use the inequality- x < e*

k=0
v v
i [Al/b
woexplnB—woB—wob+1 XE: 2” <1,
by the assumption of the lemma. O
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5.3.4 Proof of Theorem 5.1

The second part of the theorem, i. e. Chooser winsif3./n, comes from Lemma 5.4.
Let Chooser play accordingly to that lemma, then Picker getaost(3n/b) — 1 edges

at any vertext € K,, so the number of vertices that are linkedaztas no more than
((3n/b) —1)? <n—1.

To prove the first part of the theorem implies more work. Wet $pk vertices of the
graph into three approximately equal patts, X, and Xs. (Let X; be X; 0q3if i > 3.)
The elements ok; may be listed as, 2, ..., n/3.2 E(X;, X;) denotes the edges between
the setsX; and.X.

We will play two different games among and inside the partsth& first game we
link the points ofX; using £(X;, X;.1), fori = 1,2, 3. At the second game we link the
setsX; with X; ; playing on the edges of,, ;.

Linking vertices within X;.

The first game consists af/3 auxiliary sub-games. At first, Picker links the vertices of
X;, fori =1,2,3 playing onE(X;, X;1).

The 1°* game: Picker asks for all the edges of the formz), wherel € X; and

x € X;,1 are in arbitrary order. Abouk LgﬁJJ of those edges go back to Picker. The set

Ay = {x : Picker gets (1,z),z € X;41}.

The 2"¢ game: Picker asks for all the edges of the foiinz), where2 € X; and
x € X1, paying attention to get at least one edBger) such thate € A;.
The setd, = {x : Picker gets (2,2),x € X;,1}.

In general:

The k' game: Picker asks for all the edges of the fqimz), wherek € X; and
x € X;11, paying attention to get at least one edge to evéry .., Ax_,. Again, the set
Ay, = {x : Picker gets (k,z),z € X1}

Clearly, if Picker wins all auxiliary gamess . . ., [rn/3], then he also links the vertices
within X;. Observe that Picker wins thig¢" game iff Chooser cannot occupy completely
any of the set€’” = {(k,z) : k € X;,x € A;}, wherel < j < k.

Furthermore, if Picker can win the last game, then he wingthgame forj < [%].
So, we have to consider only the last game.

Picker applies Lemma 3.9. Here= |n/3| and for allj € {1,...,[n/3]} |4;| =
|[n/3]/(b+1)] >n/(3(b+ 2)). All we need to check is whether the inequality

[n/3]
v 1441 n __n _
27 < —— ) 27Em? < ]
b+1 Z 3(b+1) ;

J

2It can also bgn/3] and[n/3]. In the proof we show that it works withn/3], and the casén/3]
easily follows from that.
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holds. Developing this formula, we get that the inequalijdis if

- :
b < \/Soerm andn is large enough.

Linking vertices of X; to X, ;.

Now we define a game where the players play witkijrto link the vertices ofX; to X 1,
i = 1,2, 3 using the edges Picker has already got in the first game.

For allj € X;,, Picker wants to get an edge to evety, fork = 1,...,[n/3]. It
obviously links; to all elements ofX;. As before, it is enough to show that Chooser
cannot occupy completely any of the séis; = {(z,j) : v € A, N Xi41,7 € Xita )

The number of these sets(ié%})z, and there are = (3) edges withinX, ;. Plug-
ging itinto Lemma 3.9 we see Picker win if

(3)
b+ 1

The inequality above clearly holdstif< \/n /(16 log, n), which completes the proof
of Theorem 5.1. O

n\2 __n _
_ 9 3(b+1)2 < 1.
(3)

67



Conclusions

The main topics of the dissertation are the researches ctathe®d Chooser-Picker (and
Picker-Chooser) games and the examination of Beck’s cngoConjecture 2.9.

During the researches we have made the the following defirstand statements:

We have redefined and specified the definition of ChooséePand Picker-Chooser
games Chapter 3.1;

We have examined the complexity of these games and we fdwadt is NP-hard
to decide the winner for both P-C and C-P games Theorem 3.2;

We have formulated and proved the Pairing lemma, Lemma. 2W& used this
lemma for taking the trivial moves (without any disadvamsfpr Picker) in small
board games, and with that we can increase the speed of fintiogvins a game.

We have proved the monotonicity lemma, Lemma 2.18. We aghis lemma for
proving theorems for infinite boards by using finite auxijigames and that lemma
4.2 and Theorem 4.5;

We have improved Beck former Evd-Selfridge type theorem for Chooser-Picker
games, Theorem 3.6;

We have found Picker’s winning conditions in the Pickeme@ser version of the
generalized Shannon switching game, Theorem 3.4;

We have proved, that Picker wins the Chooser-Pidker4 TIC - TAC -TOE game
3.3.1;

We have proved that Chooser wins the Picker-Chodser torus game 3.18 it is
in accordance with that Breaker wins the Maker-Breakeriwers

In the paper [24] we have also dealt with pairing strategreswe got the following
results:

1. Pairing strategies can work for the gaién-a-row for sufficiently largen
only if £ > 9, Proposition 3.14;

2. We gave a computer-free proof that Breaker has no paitmategy to avoid
the isomorphic copies of the polyomino Snaky, Theorem 3.15;

3. We described Breaker’s all pairing strategies that a¥gjd.emma 3.16.
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* We have defined the Chooser-Pickem-a-row for infinite board and proved the
following theorems:

1. Picker wins the Chooser-Picker 8-in-a-row game Theor&n 4

2. Picker also wins the Chooser-Picker 7-in-a-row game fidraat.5;

3. For this we had proved that Picker wins a special auxiligmne played on a
4 x 8 board Lemma 4.6;

4. We had examined the Maker-Breaker case for the same sub-gad we
found that Breaker does not win there Subsection 4.3.1;

* We have defined the Chooser-Picker diameter game after dieMBreaker ver-
sion.

1. After Balogh et al [2] former results on Maker-Breakerrdeter games [2]
we also defined the winning conditions of Picker and Chookssyipg on the
complete graph with vertices Theorem 5.1;

2. For that we proved a lemma for biased (asymmetric) PiCkeyoser degree
games, Lemma 5.4;

3. We observed that Maker loses the diameter two game, bkePwins the
Picker-Chooser version of this, Observation 5.3.1.
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Appendix

6.1 Case study for the Picker-Chooset x 4 torus game

Where the numbers are the weights of the vertices multiplied by 16.

[P 3 2 3

3]5 3 C 4

216 1€ 4 2

1Jj#1 5 3 6

4@P 5 4 5

313 4 C 5

214 4 6 F

1Jj€1 4 3 5

4@ P 3 4 5

314/€C C|P

215 2 5 4

13 7 3 3

4P 5 5 [P

3]50€ C 5

214 3 3 4

1]3 4 4 3

4P C 6 1

3]C P C 5

2P 2 8 3

11 5 1 10

b

4P 5 4 5|E2

3]3 5 C 4

El

22090 6 4

1Jj€ 5 3 4

4P 3 4 3|2

315 4 C 3

F1

216 2 4 C

1Jj#1 6 3 5

4P 5 4 3]G2

314 P CC

G1

215 4 5 2

13 3 3 7

4 P 3 3[C|H2

H1
3]3/P C 3

PRERY 5 5

216 3 7 2

1|3 6 2 7

4P 4 5 3

3€ B C 4

214 3 7 2

1]1 6 1 8

4P 3 5 4

B2

P 4 3 5

3€ 4 C R

214 2 7 3

1]1 8 1 6

4P 5B 5

Cc2

P 3 8 3

3€ 5 C 5

215 2 5 2

1J]1 6 1 6

4

D2

PRy 3 3

315 5 C|C

214 4 3 3

1|3 3 4 4

4@ P 4 5 3

A2

3J€ P C 4

214 3 7 2

1J]1 6 1 8

4P P 4 5]|A2a2

3]C P C 3

A2al

2l1C 4 6 1

11 7 1 6

4@ P C 2 4

3P C C P

217 3 5 3

1]5 7 3 3

a b c d

4P 4 4 4

314 4 C 4

25 3 5 3

1|3 5 3 5

4P 4 3 5]A2

3P € C 4

Al

26 3 3 4

1|5 4 5 2

4

Bl

3Ry 3 C €

26 3 3 4

1|5 4 5 2

4

C1

3P| 3 C 3

2]5 4 5 4

1|5 4 5 4

4

D1

313 3 CP

216 2 7 3

13 7 2 6

4P 4 3 5

Al

3P € C 4

216 3 3 4

1|5 4 5 2

Alal 4P P 4 6|]Ala2

3P C C C

25 3 1 5

115 1 7 1
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6.2 Case studies for the Chooser-Picker 7-in-a-row-game
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Chapter 7

Summary

Abstract

The main goal of this work is to understand Picker-ChooseC{moser-Picker) games
and Beck’s conjecture as deeply as possible. The text has thain parts.

At first we examine the complexity of Picker-Chooser(P-QJ @mooser-Picker(C-
P) games. Here we found that it is NP-hard to decide the wifordsoth P-C and C-P
games [24]. Then we discuss the Picker-Chooser versionlekwewn games, to explore
the differences and similarities among the various typé& dxamined games are the C-
P 4 x 4 Tic-Tac-Toe the P-C version of generalized Shannon switching gameCtRe
version of thek-in-a-row and some of the C-P, M-B (Maker-Breaker) and P-@u3o
games. We improve a little on the “Ed8-Selfridge” theorem for C-P games, although a
gap remains this and the conjectured form [21].

Secondly, we solve with the Chooser-Picker 7-in-a-row gafrtes game is quite
interesting because the last really valuable result foBtirea-row game (by playing on
infinite board the 8-in-a-row game the second player careaeta draw), was made more
than 30 years ago. Since then all attempts to solve the #ranvavas unsuccessful. The
thesis deals with the Chooser-Picker version of the samilgaro In that section we
prove that the Chooser-Picker 8-in-a-row and the ChoorxeP 7-in-a-row game is a
Picker win. The proof is a bit lengthy and a non- trivial cagelyg. After we sketch some
idea how can we deal with the original (M-M or M-B) version bid game [22].

Finally we will discuss the P-C diameter games. Here we faumdry interesting
result that how different result is given by the Maker-Bresakersion and the Picker-
Chooser version [2, 23]. As we show the Picker-Chooser eergstores the probabilistic
intuition, just like the acceleration of the game.

94



The Chooser-Picker games

7.1 Definitions, a conjecture and some new tools

7.1.1 The weak version of the games

There can be defined the weak version of the positional gaBjesvhere the second
player wins if he/she can achieve a draw. It means that thepfager do not have to be
afraid of (and defend against) that the second player oeswpwinning set. Here the first
player is called Maker, and the second is called Breakes éiasy to see the following
statement, see [7].

Statement 7.1.If the Breaker wins in the weak version of the game, then ttoagt
version is draw.

7.1.2 Chooser-Picker and the Picker-Chooser games

Studying the very hard cliqgue games, Beck [6] introducedwa type of heuristic, that
proved to be a great success. He definedRloker-Choosernor shortly P-C and the
Chooser-Picke(C-P) versions of a Maker-Breaker game that resemblesifagian, (see
[71]). In these versions Picker takes an unselected paileofients and Chooser keeps
one of these elements and gives back the other to PickerelRittker-Chooser version
Picker is Maker and Chooser is Breaker, while the roles ampped in the Chooser-
Picker version. WhenV/| is odd, the last element goes to Chooser. Beck obtained that
conditions for winning a Maker-Breaker game by Maker andniig the Picker-Chooser
version of that game by Picker coincide in several casesh&umore, Breaker’s win in
the Maker-Breaker and Picker’s win in the Chooser-Pickesioa seem to occur together.

The study of these games gives invaluable insight to the MBkeaker version. For
some hypergraphs the outcome of the Maker-Breaker and €h&icker versions is the
same [6, 21]. In all cases it seems that Picker’s positiohlsast as good as Breaker's. It
was formalized in the following conjecture.

Conjecture 7.2. If Maker (as the second player) wins the Maker-Breaker gatime
Picker wins the corresponding Picker-Chooser game. If Beedas the second player)
wins the Maker-Breaker game, then also Picker wins the GireBgcker game.[21]

It is necessary for the Chooser-Picker Games infinite vet$ie following restriction:
At the beginning Chooser can select a bounded subset of #rd heshere they will play.
Because if they play on the infinite board, then Picker coeldd points far from each
other, and it is a trivially winning strategy for Picker.

7.1.3 Toolbar
Pairing lemma

Lemma 7.3(Cs-P) If in the course of the (Chooser- Picker) game (or just algeatithe
beginning) there is a two element winning $ety} then Picker has an optimal strategy
starting with{z, y} .
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The monotonicity lemma

We mentioned that the at infinite version Chooser can selestiaded subset. In practice
it means that Chooser selects a finite &ete V, and they play on thénduced sub-
hypergraphthat is keep only those edgésc F for which A C X. More formally, given
the hypergraphV, F) let (V \ X, F(X)) denote the hypergraph whefg X) = {A €
F,ANX =0}.

Lemma 7.4. [21] If Picker wins the Chooser-Picker game oW, F), then Picker also
wins iton(V \ X, F(X)).

This lemma is useful tool at the next chapters, because ifumded setS cant be
partitioned into uniform sub-games, then it can be incréasé’, which can be split into
such sub-games. And if Picker wins 6n then also can win of.

7.1.4 Some results on Chooser-Picker games
Complexity of Chooser-Picker positional games

Since the Maker-Breaker (and the Maker-Maker) games arA@Sfomplete, see [65],

it would support both Conjecture 2.9, and the above hearistisee that the Chooser-
Picker or Picker-Chooser games are not easy, too. To proPA®S-completeness for
positional games is more or less standard, see [65, 64, B8¢ \Me can prove less because
of the asymmetric nature of these games.

Theorem 7.5.1t is NP-hard to decide the winner in a Picker-Chooser game.
Theorem 7.6. It is NP-hard to decide the winner in a Chooser-Picker game.

Both proofs are based on the usual reduction method. Wee&duSAT to Chooser-
Picker or Picker-Chooser games.

Note that Chooser-Picker games are NP-hard, even for higprg(V, E), where
|A| <6for AcE.

4 x 4 tic-tac-toe

Proposition 7.7. Picker wins the Chooser-Picker version of the 4 tic-tac-toe.

Picker-Chooser version of the generalized Shannon switahg game

We prove Conjecture 2.9 for the Picker-Chooser version @h8bn switching game in
the generalized version as Lehman did in [46]. [&tF) be a matroid, wherg is the
set of bases, and Picker wins by taking4re F. Note, that this is equivalent with the
Chooser-Picker game @i, C), whereC is the collection otutsetof the matroid V, F),
thatis forallA € FandB € C, AN B # 0.

Theorem 7.8. Let F be collection of bases of a matroid dn Picker wins the Picker-
Chooser(V, ) game, if and only if there ard, B € F such thatA N B = ().

The proof closely follow the ones given by Oxley in [54] foetMaker-Breaker case.
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Erd 6s-Selfridge type theorems for P-C and C-P games

The Erdds-Selfridge theorem [27] gives a very useful condition Boeaker's win in a
Maker-Breaker(V, 7) game. Using a stronger condition, Beck [6] proves Pickeiis w

in a Chooser-PickefV, ) game. (For the P-C version he proved a sharp result that we
include here.) Let|F|| = maxscr |A| be the rank of the hypergragh, F).

Theorem 7.9.[6] If
1
214l 7.1
=2 2" < gAY (7.1)

AeF

then Picker has an explicit winning strategy in the ChodBmiker game on hypergraph
(V,F). If T(F) < 1, then Chooser wins the Picker-Chooser gamednF).

We improved on his result by showing:

Theorem 7.10.If
A 1
St
AcF 3 ||.7:||+%

then Picker has an explicit winning strategy in the Chod3ker game on hyper-
graph(V, F).

(7.2)

It is worthwhile to spell out a special case of Conjecturef@r@his case, that would
be the sharp extension of KrglSelfridge theorem to Chooser-Picker games.

Conjecture 7.11. If

> 2 < %,

AeF
then Picker wins the Chooser-Picker game(dh.F).

Torus games

To test Beck’s paradigm we check the status of concrete gdeiegd on the x 4 torus,
denoted byt?. That is we glue together the opposite sides of the grid, amdider all
lines of slope® and+1 as winning sets. For the general definition of torus gamefr3ee
We use a chess-like notation to refer to the elements of thedbd he hypergraph af

is not almost disjoint, see e. g. the two winning sgt8, b1, ¢4, d3} and{a4, b1, c2, d3}.
We can define four possible games43nthose are the Maker-Maker, the Maker-Breaker,
the Chooser-Picker and the Picker-Chooser versions. Aoapto [7], the Maker-Maker
version of4? is a draw, and Picker wins the Chooser-Picker version, sHe [i2 fact, the
statement of the Maker-Breaker version implies the resultffe Maker-Maker version,
while the proof of it contains the proof of the Chooser-Prokersion.

Proposition 7.12. Breaker wins the Maker-Breaker version of tffetorus game.

According to Conjecture 2.9, Breaker has an easier job ilvihlker-Breaker version
than Chooser has in the Picker-Chooser game. Fot the torus the outcome of these
games are the same, although it is much harder to prove.
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Proposition 7.13. Chooser wins the Picker-Chooser version of the 4 torus game.

Proof. (sketch) The full proof needs a lengthy exhaustive case analysis.adewsome
branches of the game tree may be cut by proof method of Beok@®niing result [6]:
Chooser wins a Picker-Chooser gameoif T'(H) := > ;5 27 < 1.

U

It is important to remark that above we have seen an ordeuegal its complexity:
it is easier to get the result of the C-P case, then the M-B, ¢hsagh it gives the same
result. And it is far more hard to determine the P-C case theiMaker-Breaker case.

7.2 The Chooser-Picker 7-in-a-row game

7.2.1 The k-in-a-row game

The k-in-a-row game is that hypergraph game, where thecesriof the graphs are the
fields of an infinite graph papeZt), and the winning sets are the consecutive cells (hor-
izontal, vertical or diagonal) of length. If one of the players gets a lengthline, then
he wins otherwise the game is draw. Note the assuming pgiffegtthe winner is always
the first player, or it is a draw by the strategy stealing argoinof John Nash, [13]. More
details abouk-in-a-row games in [61, 62].

Both the Maker-Maker and the Maker-Breaker versions ofitea-row fork = 6,7
are open. These are wisely believed to be draws (Breakamshwi, despite of the efforts
spent on those, not much progress has been achieved.

7.2.2 The C-P k-in-a-row game

Before proving the C-R-in-a-row game, we proved the easier G-ih-a-row game (by
playing auxiliary games in a "Z" shaped board, what useder®th [34]).

Proposition 7.14. Picker wins the Chooser-Picker version of the gaisie-a-row on any
B C 7.

Theorem 7.15.Picker wins the Chooser-Picker 7-in-a-row game on everylsstiofZ?.

By applying the remedy mentioned before Lemma 2.18 at firstoSar determines the
finite boardS. We will consider a tiling of the entire plane, and play anidary game
on each tile (sub-hypergraph). It is easy to see, if Pickeswil of the sub-games, then
Picker wins the game played on aRyboard which is the union of disjoint tiles. L&t be
the union of those tiles which mest SinceS C K, Lemma 2.18 gives that Picker also
wins the game o1%, too. Now we need to show a suitable tiling and to define antyaea
the auxiliary games. The tiling guarantees that if Pickersaon in each sub-games then
Chooser cannot occupy any seven consecutive squarks on
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RERIRNN

Figure 7.1: These are the winning-sets of the 8 rectangle. Easy to see, that there is
exactly one symmetry (along the double line). Later we wiik@ use of it.

DA RaseY A
77
Y az7Z4
72

Figure 7.2: We can see, how to draw from playing on simplettile game played on the
infinite chessboard: neither vertically, nor horizontaligr diagonally (there is only one
diagonal direction detailed) there are no seven consecstjuares without containing
one winning set of a sub-game.

Each tile is a1 x 8 sized rectangle and the winning sets, for the sake of betigen
standing, are drawn on the following four board:
The key lemma for our proof is the following.

Lemma 7.16. Picker wins the auxiliary game defined on the 8 rectangle.

Remark 7.17. We checked with brute force computer search the M-B gameeosatime
auxiliary board, but it is a Maker win! So we cannot use the sdable again, to prove
that the weak version (=the Maker-Breaker version) of ttasng is a Breaker win. One
is tempted to look for other auxiliary games, which is nothgato be easy. As a rule of
thumb, it always good idea to check the C-P version of theseegaat first.

7.3 The Picker-Chooser Diameter Game

7.3.1 Graph Games

Large classes of Maker-Breaker games are defined on the etengyrbph om vertices.
The players take the edges of the graph in turns; Maker wihgsisubgraph has a given,
usually monotone, property, see [8, 5, 12, 17]. Balogh et al. [2] introduced the b)
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d-diameter game, shorti,;(a : b), which means that Maker wins iff the diameter of
his subgraph is at mogt These games turned out to be very difficult and surprising; a
detailed discussion will be given in Section 5.2. The masuleof Balogh et al. was that
Maker loses the gant®;(1 : 1) but Maker wins the gam®,(2 : $n'/%/(logn)*/*).

This means that the acceleration of a game may change thenoeitdramatically,
[61]. The outcome also changes a lot when one considers therRChooser version of
the gameD,(1 : 1). Our main result is the following theorem.

Observation.
Picker wins the P-C gamB,(1 : 1) on the graphk,,, if n > 22.

Theorem 7.18.In the Chooser-Picker gani@, (1 : b), Picker wins ifb < \/n/log, n/4,
while Chooser wins i§ > 3./n, provided that is large enough.

The Picker-Chooser (Chooser-Picker) games are themdeueistics for the Maker-
Breaker games. As Theorem 3.6 shows, the conditions forimgramMaker-Breaker game
by Breaker and winning the Chooser-Picker version of thateyay Picker coincide in
several cases. Furthermore, Breaker's win in the Makealgreand Chooser’s win in
the Picker-Chooser version seem to occur together in soses¢é]. To further explore
this connection, a generalization of Theorem 3.6 for biagedes is needed. No attempt
is made here to get the best possible form, for our needs tlosving lemma will be
sufficient.

Lemma 7.19. Picker wins the Chooser-Pickét : b) biased game on the hypergraph
H=(V(H),EH))Iif
v
o-14l/b -1
b+1 Z =

AEE(H)

wherev = |V (H)|.

Diameter and degree games

Balogh et al. [2] observed that the garflg(1 : 1) defies the probabilistic intuition
completely. Indeed, if one divides the edgedwfamong Maker and Breaker randomly,
then Maker’s subgraph will almost surely have diameter t@#ill, Breaker has a simple
pairing winning strategy fon > 3, [2]. First taking an edgev, such that neithetiz nor
vz has been taken by Maker for any vertexThen if Maker takes.x, takinguvz follows,
and if Maker takesx, Breaker takesz, otherwise an arbitrary edge is taken.

However, when playing the gani®,(2 : 2), this pairing strategy is not available for
Breaker. Maker wins the gani®,(2 : 2), and even more, the gani® (2 : b), whereb
grows polynomially inn, provided that is large enough.

Theorem 7.20.[2] Maker wins the gaméD,(2 : $n'/®/(Inn)**#), and Breaker wins the
gameD, (2 : (2 + ¢)y/n/Inn) for anye > 0, providedn is large enough.

To prove Theorem 5.1 we need to study the so-callegiee gamesSzékely, Beck
and Balogh et al. [73, 5, 2] showed that these games are stitggen their own right.

In such games one player tries to distribute his moves unifgrwhile the other
player's goal is to obtain as many edges incident to somexe$ possible. Given a
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graphG and a prescribed degrédeMaker and Breaker play & : b)) game on the edges
of G. Maker wins by getting at leastedges incident to each vertex. We are interested
only in the case off = K,,. Balogh et al. [2] proved the following lemma:

Lemma 7.21.[2] Let « < n/(4Inn) andn be large enough. Then Maker wins tfe: b)

degree game oK, if d < -%;n — %vnln n.

As we do not wish to develop the complete theory of P-C (C-Rjrele games, we
state only a simple form that suffices our needs

Lemma 7.22. Letb < n/(81nn) andn be large enough. Then Chooser wins tie b)
Chooser-Picker degree game éf, if d <n — 1 — 3n/b.

To prove Theorem 5.1, we proved Lemma 3.9 first.

The second part of the theorem, i. e. Chooser wihsif3,/n, comes from Lemma5.4.
Let Chooser play accordingly to that lemma, then Picker getaost(3n/b) — 1 edges
at any vertext € K,, so the number of vertices that are linkedaztas no more than
((3n/b) —1)> <n—1.

To prove the first part of the theorem implies more work. Weét $spk vertices of the
graph into three approximately equal patts, X, and Xs. (Let X; be X; 0q3if i > 3.)
The elements ok; may be listed a$, 2, ...,n/3.! F(X;, X;) denotes the edges between
the setsX; and.X;.

We will play two different games among and inside the partsth& first game we
link the points ofX; using £(X;, X;,1), fori = 1,2, 3. At the second game we link the
setsX; with X; ; playing on the edges of,, ;.

LIt can also bgn/3] and[n/3]. In the proof we show that it works witfr./3], and the casén /3|
easily follows from that.
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Chapter 8

Osszefoglal6

Absztrakt

Ennek a munkanak ad ttélja, hogy minél mélyebben megértsiik a Picker-Chooseyy(v
Chooser-Picker) jatékokat és Beck sejtését. A dolgozdiaatm B részidl all:

El6szo6r a Picker-Chooser(P-C) és a Chooser-Picker(C-Rojatéomlexitasat vizs-
galtuk meg. Itt azt talaltuk, hogy mind a P-C és a C-P jatékedtében NP nehéz el-
donteni, hogy melyik jatékos a ny®f24]. Ezutan bemutattuk néhany ismert példan
keresztul a Picker-Chooser jatékokat, hogy felfedezzidkzanossagokat és eltéréseket a
kilonbod jatékok kozott. Megvizsgaltuk a CPx 4 tic-tac-toet, a P-C valtozatat az
altalanositott Shannon-féle kapcsoléjatéknak, a C-Poxalat ak-amdbanak, valamint
a C-P, M-B és P-C torusz jatékoknak. Egy kicsit javitottun®-& jatékokra vonatkozo6
“Erd6s-Selfridge” tételen is [21].

A masodik részben a Chooser-Picker 7éda jatékot oldottuk meg. Ez a jaték azért
is nagyon érdekes, mert a legutolso igazan értékes eredan@mndba jatékra mar tébb
mint 30 évvel ezditti (a végtelen négyzetracsos papiron a masodik jatékobetl a
dontetlent). A 7-ariba megoldasara tett kisésletek mindeddig sikertelenédzid ennek
a jatéknak a Chooser-Picker valtozataval foglalkozik. étbl fejezetben belatjuk, hogy
a Chooser-Picker 8-abbhat és a Chooser-Picker 7-ab@t Picker nyeri. A bizonyitas
egy kissé hosszadalmas, nem trividlis esetvizsgalat.nHetaazolunk egy elképzelést,
hogyan lehetne boldogulni az eredeti (M-M illetve M-B) \e@ataval ennek a jatéknak
[22].

Az utolsé részben a P-C atnigatékkal foglalkozunk. Itt nagyon érdekes megfigyelni
az M-B és a P-C jatékokra kapott eredmények kulodlségét [2, 23]. Megmutatjuk,
hogy a valdszinliségi intuicionkhoz kozel all6 eredmérma & Picker-Chooser valtozat,
csakugy, mint a felgyorsitas..

8.1 Definicidk, egy sejtés és nehany eszkoz

8.1.1 A jatékok gyenge valtozata

A jatékok gyenge valtozatanak azt nevezzik, amikor a migatikos akkor nyer, ha
dontetlent tud elérni. Ez azt jelenti, hogy a kéjétékosnak nem kell félnie/védekeznie
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az ellen, hogy a masodik jatékos elfoglalhat egy Ghatmazt. Itt a kezdljatékost Maker-
nek (épib), a masodikat Breaker-nek (rombold) hivjuk. Konnyi beldz aldbbi allitast,
lasd [7].

Allitas 8.1. Ha Breaker nyeri a a jaték gyenge valtozatat, akkor az drijédék dontetlen.

8.1.2 Chooser-Picker és a Picker-Chooser jatékok

Beck [6] az igen nehéz klikk jatékok tanulmanyozasara betetizegy Uj tipusu heu-
risztikat, mely igen sikeresnek bizonyult. Definialt®gker-Choosewragy réviden P-C
és aChooser-Pickel(C-P) valtozatait a Maker-Breaker jatékoknak, mely igeadmo

a kétszemélyes torta felosztas problamahoz, (lasd [7Hgkiel a valtozatoknal Picker
mindig kivalaszt két md#, majd Chooser valaszt kozllik egyet, a masik Pickerhei.ke
A Picker-Chooser jatékokban Picker felel meg Maker-nek lésdSer Breaker-nek, mig
a Chooser-Picker jatékoknal forditva. Ha| paratlan, akkor az utols6 elem Chooser-é€.
Beck azt tapasztalta, hogy Maker igen sok esetben pontdsan ayeri meg a Maker-
Breaker jatékot, amikor Picker a Picker-Chooser valtaz&éaadasul Breaker nyerései a
M-B jatékban, illetve Picker nyerései a C-P jatékban ugykiihogy egybe esnek.

Ezen jatékok tanulmanyozasa felbecsiilhetetlen ratedtiméged a Maker-Breaker
valtozatra. Néhany hipergrafra a végeredménye a MakeaakBreés a Chooser-Picker
véltozatnak ugyanaz [6, 21]. Altalaban Ggy tlinik, hogykBichelyzete legalabb olyan jo,
mint Breaker-€. Ezt az alabbi sejtésben mondhato ki:

Sejtés 8.2.Ha a Maker-Breaker jatékot Maker nyeri, akkor a Picker - GGawgatékot
(mint masodik jatékos) Picker nyeri; ha a Maker-Breakegkat Breaker nyeri, akkor a
Chooser-Picker jatékot szintén (mint masodik jatékoskétiayeri [21].

Szukséges a Chooser-Picker jatékok végtelen valtozahasakalhatosagahoz az alabbi
megszoritas: Az elején Chooser kivalaszthatja egy karl@szhalmazat a tablanak, ahol
majd jatszanak. Erre azért van szikség, mert egy végtadmt&icker mindig kérhet
egymastol tavolgspontokat és ez trivialis nyerés Pickernek.

8.1.3 Eszkoztar
Parositasi lemma

Lemma 8.3(Cs-P) Ha egy Chooser-Picker jaték soran (akar mar a jaték elepmpyy
két eleml nyeshalmaz{z,y}, akkor Picker-nek van olyan optimalis ngstratégiaja,
amely{z, y}-nal kezddik.

Monotonitasi lemma

Korabban belattuk, hogy végtelen tabla esetén Chooserikek kalasztania egy korlatos
részhalmazat a tdlanak. Ez a gyakorlatban azt jelenti, Kbgposer valaszt eg¥ € V
részhalmazt, éa jatszik az igydukalt rész-hipergrafonmely csak azokat ad € F
éleket tartalmazza, ahol C X. Formalisabban: egy adotV, F) hipergrafra legyen
(V\ X, F(X)) az arész-hipergraf, ahdl(X) = {A € F,An X = 0} .
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Lemma 8.4.[21] Ha Picker nyeri a Chooser-Picker jatékbt F)-on, akkor Picker nyeri
a(V \ X, F(X)) hipergrafon is.

Ez alemma hasznos lesz a kbvetkégiezeteknél, ugyanis, ha egy korlathhalmazt
nem tudunk egyforma részekre feldarabolni, akkor megmélk S'-re, amit mar fel
lehet darabolni egye@ilrészekre. Es ha Picker nygrn, akkorS-en is nyerni fog.

8.1.4 Neéhany eredmény a Chosser-Picker jatékokrol
A Chooser-Picker jatéekok komplexitasa

Miutdn a Maker-Breaker jatékok (és a Maker-Maker) jatekBIPRCE-teljesek, lasd [65],
ezért mind a(z) 2.9 sejtés, mind a fenti heurisztika alapjRicker-Chooser és a Chooser-
Picker jatékok sem igérkeznek kdnyebbnek. Jatékok PSRAIpSségének belattasa
tébbé-kevésbbé standard lasd [65, 64, 16]. Most mi ennédabbet mutatunk be a
vizsgalt jatékok asszimetrikus természete miatt.

Tétel 8.1. A Picker-Chooser jatékoknal NP-nehéz elddnteni, hogy krny
Tétel 8.2. A Chooser-Picker jatékoknal NP-nehéz elddnteni, hogy krny

Mindkét bizonyitadsban & — SAT-ot vezetjiuk vissza Chooser-Picker, illetve Picker-
Chooser jatékokra.

Fontos megjegyezni, hogy a Chooser-Picker jatékok NPzemég azokra @/, F)
hipergrafokra is, ahdl4| < 6 mindenA € E.

4 x 4 tic-tac-toe

Allitas 8.5. Picker nyeri a Chooser-Pickérx 4 tic-tac-toe jatékot.

Az éaltalanositott Shannon-féle kapcsolojaték Picker-Choser véltozata

Belattuk a(z) 2.9 sejtést az altalanositott Shannon-fépe&oldjaték Picker-Chooser val-
tozatara, hasonl6an ahhoz, ahogy Lehman tette [46]. Le@yeh) egy matroid, aholF

a bazisok halmaza, és Picker nyer ha elfoglal agy F elemet. Jegyezziik meg, hogy ez
ekvivalens egy(V, C)-on jatszott Chooser-Picker jatékkal a, alich (V, F) matroidbol
kivagot halmazok egy gyUjteménye mindére F ésB € C, AN B # (-re.

Tétel 8.3. LegyenF a bazisok egy gyljteménydacsucshalmazon értelmezett matroid-
nak. Picker akkor és csak akkor nyeri meg a jatékotF)-en, ha van olyam, B € F,
hogyANn B = 0.

A bizonyitas Oxley [54] irasaban talalhat6 Maker-Breaksetebizonyitasahoz ha-
sonlo.
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Erd 6s-Selfridge tipusu tételek P-C és C-P jatékokra

Maker-Breaker(V, F) jaték esetén az Eés-Selfridge tétel [27] nagyon jél hasznalhat6
kritériumot fogalmaz meg Breaker nyerésére. A ChoosekdPifl/, F) jaték esetében
Beck [6], j6val ebsebb feltételt hasznalva, bebizonyitotta Picker nyérggeP-C val-
tozatra éles eredményt bizonyitott, melyet szintén bglaftunk az alabbi tételbe) Legyen
|| F|| = maxacr |A| a(V, F) hipergraf rangja.

Tétel 8.4.[6] A (V, F) hipergrafon jatszott Chooser-Picker jatékban, ha

1A L
;2 <3 FES (8.1)

akkor Pickernek van explicit ny@rstratégigja.
HaT(F) < 1, akkor Chooser nyeri a Picker-Chooser jatéekovar) hipergrafon.

Ezt az eredmény megjavitottuk avval, hogy belattuk a kdadtk

Tétel 8.5. A (V, F) hipergrafon jatszott Chooser-Picker jatékban, ha

Yoo — ! (8.2)

AcF \/||}"||+—

akkor Pickernek van explicit ny@rstratégigja.

Erdemes kiemelni egy specidlis esetét a(z) 2.9 sejtésrakEsbs-Selfridge tételnek
a Chooser-Picker jatékokra.

Sejtés 8.6.Ha

2« %,

AceF

akkor Picker nyeri a Chooser-Picker jatékdfia.fF) hipergrafon.

Torusz jatékok

Beck paradigmajat leellémiztilk a4 x 4-es téruszon definialhat6 jatékokon. A téruszt
a tovabbiakbar?-nek jeloljuk. Itt 0sszeragasztjuk a négyzethald szenilddalait és
az 0 és+1 meredekségl vonalakbdl allo halmazokat tekintjik éjiaimazoknak. A
torusz jatékok altalanos definicija megtalalhato [7]-b&mrellakra tovabbiakban ugy hi-
vatkozunk, mint ahogyan a sakkban szoktaki?Aérusz hipergrafjaban az élek tobbszor
is metszhetik egymast. Példaul a kdvetk&et nyedbhalmaznak két kbzos eleme is van:
{a2,b1,c4,d3} és{a4,bl,c2,d3}. Négy lehetséges jatékot definialunkahipergrafon.
Ezek a Maker-Maker, a Maker-Breaker, a Chooser-Picker éskaiPChooser valtozatok.
[7]-6l ismert, hogy a Maker-Maker valtozat dontetlen, a [21kbii, hogy Picker nyeri a
Chooser-Picker jatékot. Valéjaban, a Maker-Breaker valteredményéi kovetkezik a
Maker-Maker valtozaté is, valamint a Chooser-Picker byf@sa is.

Allitas 8.7. Breaker nyeri a Maker-Breaker valtozata$*dorusz jatéknak.
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Beck sejtésével (2.9 ) dsszhangban, Breakernek konnyeégh dan a Maker-Breaker
valtozatban, mint Choosernek a Picker-Chooser valtomattidar a4 x 4 téruszon a
kimenetele ugyanaz mindkét jatéknak, ez utdbbit mégisalatdhezebb bizonyitani.

Allitas 8.8. Chooser nyeri a Picker-Chooser valtozatata 4 torusz jatéknak.

Bizonyitas (vazlat) A teljes bizonyitashoz egy hosszu esetvizsgalatra vanssgilk
Noha néhany agat a teljes jatékfanak le lehet vagni Beckkezrgdmeénye alapjan [6]:
Chooser nyeri a Picker-Chooser jatékdtdalmazon, hd'(H) := Y- 1 ppy 271 < 1.

Fontos megjegyezni, hogy fent lathattunk egy rendezéstsgalt jatékvaltozatok
komplexitasara: kbnnyebb a C-P jatek eredményét, mint & j&tekét megkapni, habar
(afenti esetben legalabbis) ugyanazt adjak. és sokkazebbe P-C esetet meghatarozni,
mint a Maker-Breaker valtozatét.

8.2 A Chooser-Picker 7-anbba

8.2.1 A k-amdba jaték

A k-amdba olyan hipergraf jaték, ahol a graf cslcsai egy végtelsgyretracs 4?)
medinek feleltethdik meg, illetve a nyérhalmazoki darab egymas utani cellanak (viz-
szintes, fliggleges, vagy atlos) felelnek meg. Ha az eqgyik jatékos megsagyk hosszu
vonalat, akkor nyer - maskulonben a jaték dontetlen. Jetijemeg, hogy tokéletes
jatékot feltételezve vagy az élgatékos nyer, vagy a jaték dontetlen John Nash stratégia
lopésos érvelését alkalmazva [13]. Tovabbi részletékaabba jatékrol a [61, 62]-ben
talalhatok.

A k-amBbanak mind a Maker-Maker, mind a Maker-Breaker valtozata 6, 7-re
nyitott kérdés. Mindenki azt gondolja, hogy ezen jatékoktdtienek (Breaker nyer), de
a sok ebfeszités ellenére jelgr eredményt eddig nem ért el senki.

8.2.2 A C-P k-anBba jaték

Miel6tt bebizonyitottuk a C-FP-ambbéra vonatkoz6 zételt, igazoltuk hogy Picker nyeri a
konyebb C-Ps-amdba jatékot - ehhez a 12 n@dl 4ll6, Zetters altal alkalmazott (lasd
[34]) "Z" alaku résztablat hasznaltunk fel.

Allitas 8.9. Picker nyeri a8-ambba jaték Chooser-Picker valtozatat, barmsBlyC 7>
halmazon.

Tétel 8.6. Picker nyeri ar-ambba jaték Chooser-Picker valtozatat, barmelyészhal-
mazanz>2-nek.

A korabban mar emlitett 2.18 lemméat alkalmazva, Choo$esdir kivalaszt egy véges
S halmazt. Tekinkjuk az egész sik felbontasat résztablékrazéken jatszunk kilon-
kilon segedjatékot. Konnyl belatni, hogy ha Picker megrge 6sszes segédjatékot,
akkor Picker nyer minden olyali tablan jatszott jatékot, ahdl ezen segédtablak unio-
jaként all 6ssze. A 2.18 lemmabdl kovetkezik, hogy Pickegrrty ¢ K -enis. Egy
megfeleb segédjatékokra torténfelbontast kellett taldlnunk. A felbontds garantélja,

106



The Chooser-Picker games

hogy ha Picker nyer minden részjatékban, akkor Chooser néimét egymas utani cellat
elfoglalni K-n.

Minden résztabla egy x 8-as méretl téglalap, ahol a ngbalmazokat (a konnyebb
megértés kedvéért) négy kuloniddablan abrazoltuk:

RERIIRNE

Figure 8.1: Ezek a x 8as téglalap nyé&halmazai. KénnyU latni, hogy pontosan egy
szimmetria van benne (a dupla vonal mentén). Ezt a bizahatdhasznositjuk.

A
77
N
7

Figure 8.2: Lathatjuk, hogy hogyan kovetkezik a segédidindortérd jatékbol a don-
tetlen az egész tablara: sem vizszintesen, senbfaggsen, sem atlésan (most csak egy
atlés iranyt részleteztiink), nincsen egymasutani héa caejy, hogy ne tartalmazza egy
nyedhalmazat valamelyik segédjataknak.

Tehat a kulcs-lemma a bizonyitasunkhoz a koveikez
Lemma 8.10. Picker nyeri al x 8-as tablan definiélt segédjatékot.

Megjegyzés 8.11A M-B esetre “brute-force" szamitdégépes vizsgalattal néegiik ugyanezt
a segédtablat, de az Maker nyerést adott! Tehat mi nem hagzhgyanazt a tablat, hogy
beldssuk, hogy a jaték gyenge valtozatat Breaker nyerirmdbara. Természetes gondo-
lat, hogy akkor keressiink mas segédjatékokat, de ez nekegekonnyl vallalkozas-
nak. Mindenesetre dkdlszabalyként érdemésair mindig a C-P esetet megvizsgalni.
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8.3 A Picker-Chooser atméjaték

8.3.1 Gréaf jatékok

Szamos Maker-Breaker jaték van definialvaasicsu teljes grafon. A jatékosok felvaltva
foglalnak el éleket; Maker akkor nyer, ha a részgréafjargsél egy ebre meghatérozott
P (gyakran monoton) tulajdonsag, lasd [8, 5, 12, 17]. Baloghaésai [2] bevezettek
az(a : b) d-atméo jatékot, roviderD,(a : b)-t, ahol Maker pontosan akkor nyer, ha a
részgrafjanak az atm@e legfeljebhi. A [2] cikk legmegle@bb eredménye az volt, hogy
noha Maker elveszti @,(1 : 1) jatékot, de Maker megnyeriB,(2 : in'/®/(logn)*/®)
jatékot.

Ez azt jelenti, hogy a jaték felgyorsitasa dramaian meggtdthatja a jaték kimenetelét,
[61]. Avégeredmeény szintén sokat moédosul, amikor ugyamgék Picker-Chooser val-
tozatét vesszik gorésla. © eredmeényunk a kovetkémedfigyelés, illetve az azt kodre
tétel:

Megfigyelés.Picker nyeri a P-@y(1 : 1) jatékot K ,,-en, han > 22.

Tétel 8.7. A Chooser-PickeD,(1 : b) jatékot Picker nyeri, ha < /n/log, n/4, mig
Chooser nyer, ha> 3,/n, han elég nagy.

A Chooser-Picker jatekok 6nmagukban heurisztikai a Mdkeaker jatékoknak. Ah-
ogyan a(z) 3.6 tétel mutatja, a Maker-Breaker és a ChodskeRatékok nyerési feltételei
gyakran egybeesnek. Réadasul Breaker nyerése a MakekeBiiddeékban és Chooser
nyerése a Picker-Chooser jatékban gyakran ugyanakkesiitlj lasd [6]. Hogy tovabb
vizsgalhassuk ezt a kapcsolatot, szikségunk volt a(zg8bdlfogult valtozatara is. Nem
kiséreltiik meg a legjobb alakot leirni, a céljainkhoz elégeetked lemma.

Lemma 8.12.Picker nyeri a Chooser-Pickér : b) elfogult jatékot e = (V(H), E(H))

hipergrafon, ha
v —|A]/b
b+1 Z 2 < 1’

A€E(H)

aholv = |V(H)].

Atmér6 és fokszam jatékok
Balogh és tarsai a [2] cikkben észrevették, ho@él : 1) nem esik egybe a valoszinliség-
szamitasi intuicionkkal: Ugyanis, ha d@ graf élei véletlenszeriien kertilnek Makerhez
és Breakerhez, akkor majdnem biztosan 2 lesz a graf &jeénig Breakernek van egy
egyszer( parositasi stratégiaja, amivet 3, [2]. EI6sz6r vesznek egy olyam élt, ahol
semelyikux vagyvz €lt nem foglalta el Maker; majd ha Maker elfoglal egy élt, akkor
Breaker avx élt foglalja el (havxz-et mar korabban elfoglalta, akkor egy teéikeges élt
valaszt), illetve forditva .

A D,(2 : 2) jatékot jatszva nincsen ilyen parositasi stratégiaja IBreeek, és Maker
nyeri a jatékot, 8t aD, (2 : b) jatékot is, ahob polimonikusan 0 n-nel, han elég nagy:

Tétel 8.8. [2] Maker nyeri aD,(2 : $n'/%/(Inn)*®) jatékot. és Breaker nyeriBy(2 :
(2 + €)y/n/Inn) jatékot, minder > 0-ra, amennyiben elég nagy.
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A 5.1 Tétel bizonyitasahoz, szikségetokszam jatékoksmerete. Szeékely, Beck,
Balogh és tarsai [73, 5, 2] megmutattak, hogy ezen jatékokaiyukban is érdekesek.

Ezeknél a jatékoknal az egyik jatékos prébal éleket mingyderletesebben elfoglalni,
mig a masik célja hogy minél tobb élet foglaljon el valamielgstcsnal. Egy adott
grafnal és egy ére megadott fokszamnal, Maker és Breaker e@y b) elfogult jatékot
jatszanalG élein. Maker akkor nyer, ha legalaldl#le van minden csucsnal.

Minket aG = K, eset érdekel. Balogh és tarsai [2] belattak a kovetkemmat:

Lemma 8.13.[2] Legyena < n/(4Inn) ésn elég nagy. Maker nyeri a@ : b) fok-

szémjatékok ,-en had < —4:n — %vnln n.

Nem akarjuk a teljes P-C (C-P ) fokszam jaték elméletet fed@p csak egy egyszeri
allitast mondunk ki, mely céljainknak megfelel.

Lemma 8.14. Legyend < n/(81nn) ésn elég nagy. Chooser nyeri &z : b) Chooser-
Picker fokszamjatékak’,-en, had < n — 1 — 3n/b.

A 5.1 tétel bizonyitdsahoz, legelzor a 3.9 lemmat lattuk be.

A 5.4 tétel masodik felét lattuk be@zor, vagyis, hogy Chooser nyer, ha 3/n,
ami a 5.4 lemmabadl jon. Jatszon Chooser a lemma szerinty &kkkernek legfeljebb
(3n/b) — 1 éle lesz barmelyik csucsot is nézziike K,,-re, tehat a csicsok szama, mely
z-hez van kapcsolva (2-atnéyire) kevesebb, mint(3n/b) — 1) < n — 1.

A tétel el$ felének belatdsahoz tébb munka kellett. Felbontjuk acgé€sait harom
kordlbellil azonos méreti résziE;, X, és.X3. (Tovabbiakban legyeX; = X; 04 3, ha
i > 3.) Az X, csUcsai legyenek rendte2, ..., n/3. * E(X;, X;) legyen az élek halmaza
X, ésX; kozott.

Két kilon jatékot jatszunk az egyes részeken bellli, ez egyes részek kozotti
0sszekotés erdekében. Az@jatakban 6sszekotjiuk a¢;-n beldli pontokat a2 ( X;, X1 1)
éleket hasznalvai(= 1, 2, 3-ra). A masodik jatékban dsszekotjik-et X, -vel az.X; 4
élein jatszva.

1EZ lehet|n/3] és[n/3] is. A bizonyitasban mi &n/3]-vel szamoltunk és &n/3| eset kdnnyen jon
eblpl.
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