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Abstract

In the first part of this thesis we make an attempt to review some of the element of the
theory of Combinatorial Games that have relevance to our work. Out of this vast area we
tried to list those that underline the deep connections in Mathematics, reveal the difficulty
of the process in giving exact proofs or even the right notions. We also wanted to stress
from the very beginning the most important speciality of that subject: we have a compass
to sail these troubled waters; the are the varying heuristics.

The theory started with the mathematical examination of such games that tic-tac-toe
or hex, where a player need to achieve certain position in order to win. For those both the
Achievement gameand thePositional gameterms are used. In the original forms the goal
of both players was the same, reaching a winning position; this version is called now in
retrospective as the strong or “Maker-Maker” version. The weak or “Maker-Breaker” is
already a heuristic to understand the strong games; here oneplayer (Maker) goes for the
goal as before, while the other (Breaker) wins by preventingMaker to achieve this goal.

This games have an intimate relation to the Probabilistic Method. Many tools that
has been developed to handle random events have counterpartin games, although the
transition not always apparent, and frequently far from being trivial. In this process other
heuristics, the “accelerated” and “biased” games help us. In the first more steps can be
done at each turn of the game, while in the second the accelerations of the players might
differ from each other.

This setup allows the development of several powerful methods for evaluating the pos-
sible outcome of games. Among those we describe strategy stealing arguments, pairing
strategies, weight functions, auxiliary games etc. We alsointroduce the Reader to the
recent development of a new variants of positional games, which are proved to be very
nice and useful tools for analysing complex games. These arethePicker-Chooser(P-C)
andChooser-Picker(C-P) games.

The main goal of this work is to understand Picker-Chooser (or Chooser-Picker)
games as deeply as possible. Undoubtedly, the central problem is here if these games
are really good heuristics for the Maker-Breaker games? Ourefforts are concentrated on
this so-called Beck’s conjecture. We confirm the conjecturefor a number of special cases,
and this path also leads us to other natural problems. This quest has three main parts.

At first we examine the complexity of Picker-Chooser and Chooser-Picker games.
Here we found that it is NP-hard to decide the winner for both P-C and C-P games [24].
Then we discuss the Picker-Chooser version of well-known games, to explore the dif-
ferences and similarities among the various types. The examined games are the C-P
4 × 4 Tic-Tac-Toe, the Picker-Chooser version of generalized Shannon switching game,
the Chooser-Picker version of thek-in-a-row and some of the Chooser-Picker, Maker-
Breakr and Picker-Chooser Torus games. We also generalize the idea of pairing strategies,
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and give a computer free proof for their non-existence in thecase of the most notorious
Harary game, the Snaky [24, 21]. We improve a little on the “Erdős-Selfridge” theorem
for Chooser-Picker games, although a gap still remains here[21].

Secondly, we solve with the Chooser-Picker 7-in-a-row game. This game is quite
interesting because the last really valuable result for the8-in-a-row game was made more
than 30 years ago. (Playing on the infinite board, the second player can achieve a draw
in the 8-in-a-row game.) Since then, many people has tried toprove a draw for the 7-
in-a-row, so far unsuccessfully. In light of Beck’s conjecture the Chooser-Picker version
of that game should be a Picker win, that we prove. The proof isa bit lengthy and a
non-trivial case study. After that, we sketch some ideas howmight attack the original
(Maker-Breaker) version of this game [22].

Finally we will discuss the Picker-Chooser diameter games.The diameter of random
graphs and the outcome of various Maker-Breaker games are both notoriously hard to
decide. Here we have found a very interesting result that howdifferent are the outcomes of
the Maker-Breaker versions and from that of the Picker-Chooser versions [2, 23]. Unlike
the Maker-Breaker case, here the upper and lower bounds are of the same order.
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Chapter 1

Introduction

1.1 All games bright and beautiful

What could be more appropriate than borrowing the title of John H. Conway’s paper from
1977 for a section intended to go through on the whole historyof Games? Games and
Mathematics do not blend easily: for long centuries the games, especially the games of
chance, had been treated with even more despise than Mathematics.1 Worse, playing
games were not only illegal sometimes, but dismissed as childish behavior, and a serious
scholar definitively cannot risk to endeavor such a frivolous activity, although the subtle
paradox of Zeno about the hare and turtle could have been a warning sign. Still, the old
habits die hard.

Then, in 1654, the ideas of Blaise Pascal and Pierre Fermat gave birth, and, more
importantly,respect,to a new field of Mathematics, Probability theory. After thatit took
less than 300 years that the notion of randomness became one of the most important ones
in science, somehow rehabilitating the suspicious dice.

The deterministic games had to wait longer, although it started earlier. Another French-
man, Bachet de Méziriac, published the first mathematical book that was devoted to recre-
ational mathematics completely in 1612, see [20]. Bachet’sfamoussubtraction game2

became a prototype for theCombinatorial Games; it is a two person game with a discrete
(and finite) set of states, it has rules governing the transition among those, and the player
who is unable to move according to these rules, loses the game. It contains the basic in-
gredients one might expect from a mathematical game: simplerules, clean but nontrivial
solution; in this case by the notion of divisibility.

The noble chess has also inspired a lots of efforts that led toZermelo’s great theo-
rem and it became a benchmark problem for Computer Science, and later for testing the
strength of hardware configuration. One might wonder, why the similarly adored game
of Go did not give more to the development of the theory? Whilethe main reason of
this is the difficulty of the game, the elusiveness of the rules also play some role. Elwyn
Berlekamp spent considerable effort to compare the “dialects” of Go that result in differ-

1While the mathematician had been banned from Rome for a certain period, laws against games were
constructed all the time [72].

2In fact, Bachet defined it by addition. Two players tell positive number by taking turns. Starting at zero,
they add an arbitrary integer between one and ten to the previous number, and the player, who announces
one hundred is the winner.
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ent outcomes in subtle situations. Since it makes mathematical approach impossible, he
introduced his own variation “Mathematical Go” instead, and solved hard endgames, see
[13]. Note, that the rules of chess contained loopholes, too.

The golden era of certain games started with John von Neumann3 and Emile Borel.
Neumann proved the famousminimax theoremin full generality that is a milestone in
the theory of matrix games. His followers (David Gale, Harold Kuhn and Alan Tucker)
connected Neumann’s theory to the newly formed subject of Linear Programming, that
is still one of the best understood and computable part of game theory [31]. Note that
von Neumann proposed the notion and investigation of LP duality and conjectured the
equivalence of the so-called Strong Duality theorem and theminimax theorem.

In to give a solid foundation to theoretical economy, Neumann, together with Oscar
Morgenstern, introduced the notion and study ofCooperative gamesin their classical
book, see [50]. The impact of that book was tremendous, it hasnot only reshaped econ-
omy, but its language and its point of view still dominates the field. However, one aspect
of the competition is missing from their approach, the case of non-cooperative players.
John Forbes Nash took this important new step in his seminal paper [47]. It turned out that
for general games the players’ strategies have distinguished distributions, now we called
thoseNash equilibriumssuch that a player does not win (in expectation) from deviating
from it by alone. Thereafter the theory of cooperative and non-cooperative games swal-
lowed the theoretical economy; while there is no mathematical Nobel prize, the Nobel
Memorial prize for Economy was given several times for game theoretical work.4

Better or worse, the entities have started to multiply. Nashhimself made attempts to
include the cooperative games to his theory, that is to find non-cooperativemechanisms
such that the arising Nash equilibrium(s) would be a solution of the cooperative version of
the game.5 The Nash equilibrium has been specialized (Kuhn, sub-game perfect equilib-
rium), generalized (Aumann, correlated equilibrium), ledto new notions (Shapley value),
and sometimes it has been even applied (Maynard-Smith, Evolutionary Stable Strategies).

In the shadow of these theories there were two other lines of games that are just special
classes of the “already solved” matrix games. One of those was started with Charles
Bouton’s NIM, continued with the Grundy-Sprague theory andculminated in Conway’s
games, see [13, 18]. Although Conway’s theory is a mixture ofset theory and arithmetic,
it was coined asCombinatorial Game Theory, since it usually deals with finite objects.

The other field that we discuss in detail also of combinatorial nature, and its origin is
even more humble than the previous one: those games come fromTic-Tac-Toe, 5-in-a-row
or Nine-Man-Morris. The common in those games is that in order to win, the player needs
to achieve a prescribed pattern; this explains the namePositional Games. No matter what
the name is, these games have numerous links to diverse partsof mathematics. Without
completeness we might mention Ramsey theory, on-line algorithms, Random Graphs,
Topology, Complexity etc, for an excellent guide see the recent book of József Beck, [10].
It is not a great surprise that the field inherits all the beauty and difficulty experienced in
the previous subjects. Therefore it is an appropriate language to express and study well-

3Of course his “real” name is Neumann János, or “Jancsi” to theinitiated, but he used mainly the von
Neumann form in his publications.

4Among those were Harsányi János, who received this prize together with John Nash and Reinhardt
Selten in 1994.

5This is the so-calledNash program.Its success or even its possibility is debated; one thing is sure: a
great number of works have been published on that.
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known old problems, and to get a fresh view on those.
Finally, let us say a few words about Mathematics, and the mathematics of Positional

Games. Mathematics is hard. Finite mathematics is even harder, since most of its laws
have no apparent cause, and the geometric intuition cannot capture the essence of the
phenomena. Indeed, we do not know the outcome of seemingly innocent small games, not
to mention how to play those, and we have not much hope to find out these recently. Still,
there are some beacons in the dark, making parts of the field tractable; these are what this
work all about. The most important of those are the random heuristics, the acceleration of
games and the Chooser-Picker versions. Here our main goal isto understand the last one
as much as possible.

1.2 Combinatorial games

The archetype of combinatorial games is the game of Chess. Among other lessons it also
shows that one can never really trust in rules written natural languages. Before 1972 the
official rules for castling by FIDE were:

Castling consists of moving the king two squares toward a rook, then placing the rook
on the other side of the king, adjacent to it.[2] Castling is only permissible if all of the
following conditions hold:

1. The king and rook involved in castling must not have previously moved;
2. There must be no pieces between the king and the rook;
3. The king may not currently be in check, nor may the king passthrough or end up in

a square that is under attack by an enemy piece (though the rook is permitted to be under
attack and to pass over an attacked square).

However, Tim Krabbé has composed the following piece that illustrated the incom-
pleteness or unwanted ambiguity of the rule:

Tim Krabbé, 1972

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0ZPZ0Z
5 Z0ZpZ0Z0
4 0ZpZ0ZpZ
3 ZpO0jPOp
2 0O0Z0Z0O
1 S0Z0J0ZR

a b c d e f g h
�

Mate in 3

The winning line is:

9



The Chooser-Picker games

1. e6-e7, Ke3×f3
2. e7-e8R, Kf3-g2
3. 0-0-0-0-0-0 mate!
Here the unusual notation “0-0-0-0-0-0” means the “long castle” of the white King

goes from e1 to e3 and the Rook goes from e8 to e2. Clearly, thismove conforms to the
rules 1. 2. and 3. To eliminate such bizarre possibilities anadditional assumption had
been added to the rule:

4. The king and the rook must be on the same rank.
From the Chess and thousands of others games the following scenario can be distilled,

that more or less formalize what we callCombinatorial Game.

• There are two players,I (White) andII (Black), andI starts the game.

• There are finitely many positions and a starting position isgiven.

• The feasible (legal) moves of the players are given in everypositions.

• The players take turns.

• Every sequence of legal moves are finite.

• A sequence of legal moves beginning with the starting position and ending with an
end position is a game.

• The outcome in every end position is determined; one of the players win or it is a
draw.

• Both players have all information; they know the rules and they legal moves, re-
member the moves they had already took, see all his/her and opponent moves etc.

• No moves or rules that depend on some randomness.

Zermelo used more or less the same definition to spell out and prove6 his famous
theorem:

Theorem 1.1.A combinatorial game is either win by one of the players, or both players
have a strategy resulting in a draw.

Sketch of the proof.One can built up a treeT such that the vertices are pairs sub games7.
For the (possible) sub gamesx, y the directed edge(x, y) exists if the player, who is about
to move atx, has a move that leads to the sub gamey. Let r be the sub game consisting of
the a starting position with empty history and White is aboutto move. With thisT is the
rooted tree that can be reached fromr along the edges defined before. Since all plays are
finite, the directed paths inT end up in leaves. The outcome of the sub game in each leaf
can be decided, and one may compute the outcome in each inner vertex ofT by backward
labeling. �

6The original proof of the theorem was wrong. It was fixed and the statement was considerably strength-
ened by K̋onig, Kalmár and Neumann, see [19, 76]. The result allows theuse ofindirect proofsfor finite
games, so sometimes it is referred asgame theoretic tertium non datur.

7That is not only positions, but a description about the actual play leading to that position.
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Remarks. In some sense the algorithm used in the proof of Theorem 1.1 solvesall com-
binatorial games, but this is just the theory. The treeT is usually too big, although some-
times symmetries may help, or one can use the method for solving important sub games.
We also have to mention that notions of position, play and strategies are more subtle then
one may think for the first glance. The position itself is not enough to determine the game
as we can see from the following piece that is a nice example for existence arguments.

W. LangstaffChess Amateur1922.

8 0Z0ZkZ0s
7 Z0Z0Z0Z0
6 0Z0Z0A0O
5 Z0ZRZKoP
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

Mate in 2

The computer chess programs usually get into trouble findingthe solution. After
some deliberation one realizes that there are two differentlines that the game has reached
this position.8 If King or Rook of Black has already moved, then 1. Kf5-e6 leads to the
inevitable mate 2. Rd5-d8. On the other hand, if neither of these pieces has moved before,
that is Black still has the right for castling, and fending off the Rd8 mate, another pattern
arises. In that case the only possible last move of Black was 0. -, g7-g5, since a pawn on
the square g6 would have attacked White’s King. So in that case White has the right to
capture the pawn on g5en passant, that is 1. h5×g6, and for 1. -, 0-0 White mates with
2. h6-h7, for any other steps with 2. Bd5-d8.

So the general rule is that history cannot be erased; we shallsee further example
for this later. Still another issue is the need to make the notion of strategies more precise.
Centuries ago there persisted a funny belief there might be a“winning formula” for Chess,
and if a player applies it, wins the game regardless the color. Certainly the better minds
dismissed this, asking what would happen ifbothplayers follow that magic formula?

The strict way to think about strategies is to call them functions that map the sub
games to the set of legal moves that are possible in the given sub game. However, this
approach also has paradoxical consequences. There are infinite games in which one of
the player surely wins at the end, but neither of them have winning strategies! The first
game of that nature was the Banach-Mazur game, then Gale and Steward, later McKenzie
and Paris gave interesting examples, see [9].

8A rule for chess compositions requires that the position must come from the standard starting position
by taking legal steps. Infairy chessproblems this rule does not apply.
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Finally, there are some games for which the labels of the sub games can be computed
without searching for the whole game-treeT . The best known example for that is the
game of Nim.

1.2.1 Nim

Nim is a two-player mathematical game of strategy in which players take turns removing
objects from distinct heaps. On each turn, a player must remove at least one object, and
may remove any number of objects provided they all come from the same heap. The
person who makes the last move (i.e., who takes the last object) wins.

Variants of Nim have been played since ancient times. The game is said to have
originated in China (it closely resembles the Chinese game of “Jianshizi”, or “picking
stones”), but the origin is uncertain; the earliest European references to Nim are from
the beginning of the 16th century. Its current name was coined by Charles L. Bouton of
Harvard University, who also developed the complete theoryof the game in 1901, but
the origins of the name were never fully explained. The name is probably derived from
German nimm meaning “take”, or the obsolete English verb nimof the same meaning. It
should also be noted that rotating the word NIM by 180 degreesresults in WIN [75].

Nim (or more precisely the system of nimbers) is fundamentalto the Sprague-Grundy
theorem, which essentially says that in normal play every impartial game is equivalent to
a Nim heap that yields the same outcome when played in parallel with other normal play
impartial games (see disjunctive sum).

Since the number of objects are finite, so the game can not be a draw. So if a player
could avoid the loss then he/she wins. This is the base of the strategy of Bouton. Let
suppose that we can define a propertyP of a NIM game in that way:

(i) If all of the heaps are empty, then P fulfilled.

(ii) If propertyP does not fulfilled, then it is possible to move such a way that after it P
is exists.

(iii) If P exists in a stage, then it won’t be in the next stage.

If at the beginning P does not exist, then the first player (because of (ii)) chooses a step
to satisfy P. Therefore after the second player’s turn (if there is any) the first is also in such
a situation that P does not exists (because of (ii) again). Itmeans that the first has a legal
move again, which drives to a stage with propertyP. Sooner or later the objects/stones
will be diminished,P holds at the end and the player who has to move loose. That looser
is the second player. (If at the beginning P exists then the result is a second player win).

Some words about the strategy:

Nim has been mathematically solved for any number of initialheaps and objects; that
is, there is an easily calculated way to determine which player will win and what winning
moves are open to that player. In a game that starts with heapsof 3, 4, and 5, the first
player will win with optimal play.

The key to the theory of the game is the binary digital sum of the heap sizes, that is,
the sum (in binary) neglecting all carries from one digit to another. This operation is also
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known as “exclusive or" (xor) or “vector addition overGF (2)". Within combinatorial
game theory it is usually called the nim-sum, as will be done here. The nim-sum of x
and y is writtenx ⊕ y to distinguish it from the ordinary sum,x+ y. In normal play, the
winning strategy is to finish every move with a Nim-sum of 0. For example of the sum of
heaps with size 3, 4, and 5 is the following:X = 3⊕ 4⊕ 5 = 2.

1.2.2 Conway theory

Here we just give some hint about this great theory, since it has little relevance to our
work, but it would be unfair to ignore it completely. For a detailed introduction see
[18, 13]. Conway melted the constructions of Dedekind, Cantor and Neumann into a very
general notion of games, that includes practicallyeverything9 that can be considered as
Mathematics. He builds up games recursively from small games that are listed as left
(L) and right (R). That is the form of all games is{L|R}, whereL andR are lists of
already defined games. The general element, oroptionof L (R) is denoted byxL (xR).
The players are also calledL andR, when it does not cause ambiguity. They take turns,
and a legal step forL (R) is to pick a game from the listL (R). The player, who cannot
make a legal step, loses the game; this is the connection to Nim.

Of course, the whole journey starts with the game{|} in which both lists are empty.
The next games are the{{|}|}, {|{|}} and{{|}|{|}}. The player who starts the game{|}
loses, since there is nothing to pick. The same argument shows thatL (R) wins {{|}|}
({|{|}}), while the player who moves wins{{|}|{|}}.

As more and more games appear in that process, one needs to order those and make
equivalence classes containing those that differ only formally. Let x ≥ y if xR ≤ y and
x ≤ yL holds for noxR, xL. An x = {L|R} is anumber, if for all xR, xL are numbers
andxR ≤ xL never holds.

The gamesx andy areidentical, x ≡ y, if their left and right sets are identical, while
those areequal, x = y, if x ≤ y andy ≤ x.

The sum and product of games are defined such a way that conformto the one
Dedekind used in the case ofcuts. If x = {L|R}, thenx 6≤ xL andxR 6≤ x. The
sum of the gamesx and y should be the game where the player on move decides to
take a game from eitherx or y, and the game continues on that game. That isx + y :=
{xL+y, x+yL|xR+y, x+yR},−x := {−xR|−xL} andxy := {xLy+xyL−xLyL, xRy+
xyR − xRyR|xLy + xyR − xLyR, xRy + xyL − xRyL}.

One possibility here is to develop the arithmetic of games. The games form a field in
which the numbers are an ordered subfield. The0 := {|}, 1 := {0|} and−1 := {|0} are
numbers, while{0|0} is not a number and cannot be compared by them. Therefore the
relations “≡" and “=" differ from each other. A numberx = {L|R} is determined by
the largest element ofL and the smallest element ofR, but it may very well happen that
xz 6= yz even thoughx = y, if x, y, z are not numbers. Some more numbers are:

2 := {1|} = {−1, 1|} = {0, 1|} = {−1, 0, 1|}, −2 := {| − 1} = {| − 1, 0} =
{| − 1, 1} = {| − 1, 0, 1}, 1/2 := {0|1} = {−1, 0|1}, −1/2 := {−1|0} = {−1|0, 1}.

To evaluate a complicated number the so-calledsimplicity theoremis very handy:

9If one stays within thecumulative hierarchy.
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Theorem 1.2.Suppose forx = {L|R} that some numberz satisfiesxL 6≥ z 6≥ xR for all
xL, xR-re, but no options ofz satisfies the same condition.10 Thenx = z.

We havex ≥ z unless somexR ≤ z or x ≤ zL. But from x ≤ zL we can deduce
xL 6≥ x ≤ zL < z 6≥ xL for all xR, xL, from which we havexL 6≥ zL 6≥ xR, contradiction
the assumption aboutz. That isx ≥ z, similarly z ≥ x, sox = z. �

Going on that line one can get the dyadic rationals and all real numbers embedded in
games. There are more exotic objects, too. Such are like the infinity ω := {0, 1, 2, . . .},
Leibniz infinitesimals, e. g. 1/ω = {0|1, 1/2, /1/4, . . .}, and not only the successor of
ω, ω + 1 = {0, 1, 2, . . . , ω|} but itspredecessorω − 1 = {0, 1, 2, . . . |ω}, which has no
equivalent among the ordinals.

The other way is to get use of the defined games. Every combinatorial games can be
written in the form{L|R}. The games has their value that, roughly, says that a player is
how much ahead to the opponent. If a gamex is the some of games, that isx =

∑
i∈ yi,

and the value of eachyi is known, then it is straightforward to compute the value (and the
outcome) ofx. 11

The following example came up in a real chess game, and Conway’s theory is quite
appropriate to explain the subtleties of the resulting position.

Schweda-Sika, Brno, 1929

8 0Z0Z0Z0Z
7 ZpZ0Z0Zp
6 pZ0Z0Z0Z
5 Z0Z0j0Z0
4 0Z0ZPo0Z
3 Z0Z0ZKZP
2 PO0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h
�

White starts and wins

In fact Euwe and Hooper noticed that the position is win by theplayer who moves,
and Elkies found an elegant proof for this claim [53]. One cansee right away the player
who is forced to move his King first loses the game.12 On the other hand, they will run
out of run pawn movements, and breakthrough (and consequently pawn promotion) is not
possible. The moves on the Queen side and King side are independent, that is a game
decomposes to thedisjunctive sumof the two sub games. In order to compute this sum,
we need some notations. Let∗ := {0|0} (star), ↑:= {0|∗} (up), ↑ ∗ := {0, ∗|0} =↑ +∗

10That is, eitherzR ≤ xL or zL ≥ xR hold for some choice.
11Indeed, the special case of this addition is the Nim addition.
12With other words, the central part of the game is{|} =: 0.
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(up-star), ⇑:= {0| ↑ ∗} =↑ + ↑ (double up), and⇑ ∗ := {0| ↑} =↑ + ↑ +∗ (double
up-star). Furthermore↓:= − ↑, ⇓:= − ⇑ and⇓ ∗ := − ⇑ ∗.

With this, the sub-game on the the h-file is⇓ ∗. The sub-game on Queen side needs
some case checking; it is↑, see [53]. Now↑ + ⇓ ∗ =↓ ∗. ↓ ∗||0, that is the game is a
first player win. White can start with 1. h4 giving Black the game↑ + ↓= 0, while Black
wins with 1. - a5.

However, the games we shall discuss are rarely of this nature; until the last few steps
those cannot be broken into sum of simpler games. So we will need other, mainly combi-
natorial tools to attack them.

1.3 Methods, issues and paradigms

We make an attempt to collect the most important stuff about combinatorial games. This
venture is far from being complete, the size of the subject prevents us from achieving this.
The volumes of Berlekamp, Conway and Guy [13], Beck [9], Nowakowski et al. [53] and
the collection of Fraenkel [30] give good references for that. Here we want to mention
only those parts of the theory that have close relation, or even continuation in our work.
Even in that case, we try to do it briefly.

First we go through on methods that can give the outcome of a gamewithoutexploring
the whole game-tree and then introduce heuristics that helpto understand to essence of
some games. Note that these methods and ideas are not independent, their elements come
up together in the examples and the applications.

1.3.1 Pairing

A really old chestnut is the infiniteplacing coins(to the table) game. In the easiest case
a round table is given, onto which the players have to take round coins in turns such that
(1) two coins must not overlap (2) the weight center of each coin must be supported by
the table. The player, who cannot make a legal move, loses thegame.

White has a winningpairing strategy: place the first coin to the center, and for each
step of Black, put down the next coin in a centrally symmetricplace. This way White
restores the central symmetry of the leftover table13, so whenever Black has a legal move
White also has. But the game is finite in length, since the areaof the table is finite, so one
of the player must lose, and from the previous argument it must be Black.

There are many relatives of that result. In a similar one, first appeared in lecture note
than in print [62], the unavoidable defeat of a player comes from a combinatorial fact. A
beautiful old result of Harper and Chvátalova, see e. g. [43]says that if one labels the
vertices of then× n grid with the numbers1, . . . , n2, then there will be two neighboring
vertices where the difference of the labels at leastn. Moreover there is a labeling in which
the differences are not more than that.14

13If the table is not centrally symmetric at the beginning, this strategy breaks down, and for the general
case nothing is known.

14That is thebandwidth of then × n grid is n. In general to decide the bandwidth of a graph is NP-
complete.
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We make the two players labeling the vertices of the grid withthe numbers1, . . . , n2,
using one number only once, and the player whose move first causes a difference at leastn
loses the game. Obviously the game is finite and it cannot be a draw, so from Theorem 1.1
one of the player has winning strategy. In fact, it is almost the same as in the Placing coins
game, just one pair up not only the vertices of the grid but thenumbers also. With the
pairingM = {(i, n2 − i+ 1) : 1 ≤ i ≤ bn2/2c} White wins ifn = 2k + 1, while Black
wins if n = 2k. (Again, if the graph is not central symmetric, not much is known. Note
that one can make out a game from a combinatorial impossibility theorem ofttimes.)

The well-known notion of different types ofoppositionin Chess endgames orbamboo
in Go are pairings used every day. Thecorrespondingor conjugatesquares in the famous
piece of Kornél Éberszt is a pinnacle of this direction, see [63].

K. Éberszt

8 0Z0Z0Z0Z
7 ZpZ0Z0Zk
6 0O0o0Z0Z
5 Z0ZpZ0Z0
4 0Z0OpZ0o
3 Z0J0O0Zp
2 0Z0Z0Z0O
1 Z0Z0Z0Z0

a b c d e f g h
�

White moves and draw

Here White has to protect the squares f3 and c6. In means that White’s King must
move to a5 (e2) if Black’s King moves to c6 (g4).15 From here one can pair up some other
squares recursively: b4-d7, a4-d8, c3-e6, b3-e7, a3-e8, d2-f5(h5), c2-f6(h6), b2-f7(h7),
a2-f8(h8), d1-g5, c1-g6, b1-g7, a1-g8. The squares a8, b8, c8 have no specific pairs, just
White has to make sure to occupy b4 or a4 when Black leaves these ones. (E.g. a5-c8,
b5-b8, a5-a8 is OK.)

1.3.2 Potential functions

The potential function appeared in special combinatorial games, in which Black does
nothing, just gives back the position to White.16 The best known examples are Conway’s
frogs [13] pp. 715–717, and the classification of the Peg gamepositions by de Bruijn
[15]. The board is the infinite two-dimensional lattice (or rather an infinite board with

15The pairing b5-d7 is not good, since from that position Whiteneeds 4 moves to reach e2, while Black
needs only 3 moves to get to g4.

16To put it differently, such a game is a one person game, orSolitaire, like the Rubik cube, or a formal
proof of a theorem.
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squares if we consider the dual) in the first and a finite subsetof it in the second. There
are pieces (men, frogs, pegs) on the board, and the legal steps are jumps. A piecex can
jump a neighboring piecey, if the squares on the other ofy is empty. Alas, the jump
costs the life ofy, so the number of pieces is decreasing.

Conway asked, if all frogs are placed on one side of a horizontal line `, how far the
frog may go to the other side of`. The goal of the Peg game is to remove all of the pegs
but one. Accordingly, de Bruijn was interested in describing the equivalence classes of
peg sets, that is those configuration that might be reached from each other with the legal
step or its reverse.

To answer these questions potential functions are developed. First one labels the cells
with some numbers, and compute the potential by adding up thelabels on the occupied
squares.17

However Conway used real labels that were decreasing exponentially in both ways
from a starting point, while de Bruijn appropriate pairs from GF (2). Conway showed
that his potential function is non-increasing, and with this he deduced that the frogs would
never reach the fifth row.

The potential function of de Bruijn’s one is, and together with other considerations
are enough to classify the reachability in the mentioned sense.

In one of the greatest examples the pairing and potential function approach is mixing:
the potential function helps in describing the pairing among positions of the game.

G. Broecker, London Chess Fortnightly, 1892.

8 ka0Z0ZRZ
7 ZbZ0Z0Z0
6 PZ0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Zp
2 0Z0Z0ZBO
1 Z0Z0Z0AK

a b c d e f g h
�

Selfmate18 in 9

While the solution was known, no one really understood the game (except perhaps
the composer). Then Gyula Neukomm [51] found a brilliant description for the winning
strategy.

17The function, parity of a permutation, in Samuel Lloyd famous “15-game” is rather a clever algebraic
invariant then a potential function.

18That is White forces Black to win the game. One can always construct the so-calledmiséreversion of
a game declaring that the winner is, who would lose with the original rules.

17



The Chooser-Picker games

It is obvious, that the only way to fulfill the requirement Black has to be forced to
capture White’s white square Bishop in such a way that the Rook cannot protect the
checkmate on the main diagonal. Neukomm gave values to the squares what the Rook
and the white squared Bishops, were about to use. These are (for the Rook) h8=1, c8=2,
d8=3, e8=4, f8=5 and g8=6. For the Bishops: g2=2, f3=3, e4=4,d5=5, c6=6 and b7=7.
Let the value of a piece the label of the square the piece occupies. Let the value of White
be the sum of the values of the Rook and the white colored whitesquare Bishop, while
the value of Black be the value of the black colored white squared Bishop.

Now White’s winning strategy is to move with the Rook or the Bishop that equalizes
his/her value with the value of Black. Furthermore White should increase the value of the
Bishop if it is possible. With this the play become finite, andthe longest variation takes
nine steps.

Let us give a less known, simple game, the “Breeding stones” game. The board is the
first quarter of the infinite board, see higher. One refers to acell like (i, j) if it is on the
ith column and thejth row. The game starts with one stone on(1, 1), and a legal step is
to duplicate a stone on(i, j) and to move its two successors to the squares(i + 1, j) and
(i, j + 1), provided those are empty. Our garden is

G = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}.

The goal is to rid ofG from stones. Let us label the square(i, j) with 22−i−j. This
results in a potential constant one. One the other hand, there are two other invariants: the
number of stones in the first row and column. It mean that to reach the goal we should
put stones to all available squares which is clearly impossible in finite steps.

1.3.3 Acceleration

When a game (or its researcher) is exhausted, it is always an option to consider theaccel-
erationof it. It means that in one turn a player might take more then one legal steps. The
role of the two players are not necessarily the same, the(a, b) affix mean that White takes
a, while Black takesb steps in turn, if it has sense at all, see [9, 59, 61].

There are several nice, playable games created this way, the(2, 2)-six-in-a-row19,
(2, 2)-Connect four (with the additional rule that White takes only one in the first round),
(1, 2)-Chess, where Black has only the pawn and the King etc.

For an unsettled game the motivation is the following: we hope that the outcome of
an accelerated game similar to the original one (with some natural changes) andeasierto
compute it. It is not always the case, accelerations can bring surprises [2].

A great frustration for the mathematicians that the outcomeof the Chess is still not
known. The only thing that we know from Theorem1.1 is that either some of the players
win, or it is a draw. Alas, no matter how extremely unlikely that Black win it, we cannot
even prove that White has a draw. What about some acceleration? White wins the(a, a)-
chess ifa ≥ 4 in the first round, and fora = 3 in the second round.20

The case of(2, 2)-chess is not solved completely, but at least we know that Black
cannot win. The usual argument goes like this. Suppose for contrary that Black has a

19It is possible to puta 6= b, and set up different goals for Black and White.
20After 1. e2-e3, Qd1-f3, Bf1-c4, it is impossible to protect the square f7, and hence the King.

18



The Chooser-Picker games

winning strategy. Let White starts with a pair of reversiblemoves, e. g. 1. Nb1-c3,
Nc3-b1, and then just pretend he/she is Black andstealthe opponent strategy.

In fact, this proof has a hole that was probably discovered several time, maybe the
first time by A. N. Kolmogorov see [33]. The problem is with theargument above that
White has already made a pair of steps, and according to the rules of Chess the player,
who could achieve a position third times may apply for a draw.So if the assumed winning
strategy of Black would lead the starting position two times, then Black can have a draw
that is not available for White!21

A way to fix the argument is to use two boards in it. On the first board start as before,
on the second play what was Black answer on the first board. Then play on the first board
as Black answered on the second and so on. This results in two games that are “mirror
images” of each other, on the other hand Black wins in both, because of the assumed
winning strategy, that is a contradiction.

1.3.4 Cake cuts

One of the oldest problem in life is how to achieve fair division? Having a two persons
and goods that are easy to separate, like a cake or gold-dust one can rely on thegold-
digger algorithm: one cuts the other chooses. Of course if there aremore persons and
they might get envy, we have more trouble, see [70, 71].

One might use the gold-digger method in games, such that one player makes a se-
lection (picks up something), while the other decides whichpart he/she likes, and takes
(chooses among the alternatives).22 For example if we have some money, we can di-
vide it by the classical gold-digger algorithm, or one player (call Picker) picks up two
coins/banknotes, and the other (Chooser) takes one, the other goes to Picker. One can see
right away, that playing greedily, Chooser gets at least half of the money. If the distributed
“goods” have some interactions, the game became more complex. If two captains want to
select their soccer teams from a bunch of kids, Picker may pair up a the best defender with
the best midfield player. Chooser faces problems, since giving up one of them seriously
restricts the later choices. (So they do not do this; the captains take turns to pick they
favorite players.)

In [69] Spencer studied a nice game, that illustrates both this cake-cutting approach
and randomness. In theTenured gamethe Dean and the Chair(man) play against each
other with the faculty of a department. The Chair makes two groups from the faculty, the
Dean can fire one group but has to promote every person in the other group. The Dean’s
goal to get rid of the whole faculty, while the Chair would like to save at least one person.
The Chair wins if after some promotions a person reaches a tenured position. Letai be
the number of faculty members, who needi promotion to be secure.

Theorem 1.3.The Dean wins iff
∑∞

i=0 ai2
−i < 1.

The “if” part only. The Dean just flips a fair coin, and choosesrandomly. The expected
number of people reaching tenure is exactly

∑∞
i=0 ai2

−i < 1. But if the Chair had a
winning strategy, there would be at least one tenured guy at the end. Since there is no
draw in this game, the Dean must have a winning strategy. �

21True, it is a quite weird scenario, but this is what Mathematics is all about. One have to be careful, it is
very easy to err dealing with obvious looking statements on games.

22This sequential selection is the opposite of the acceleration, it slows downthe gold-digger algorithm.
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1.3.5 Randomness

From the solution of theMoriarty paradox, or more broadly speaking from the invention
of mixed strategiesit has been clear that coin tossing can be extremely useful inplaying
matrix games. These games have a hidden23 element, while the players know their oppo-
nent strategies and the (expected) payoffs, they do not knowthe actual strategy that the
opponent are going to use.

One of the mysterious facts of life that randomness is so useful in completely deter-
ministic situations. There is no general theory for explanation; in the case of games we
have the following picture: instead of two perfect players imagine two perfectly mind-
less ones. They explore the game tree randomly, and get to a leaf (and the corresponding
outcome) accordingly. If one player tends to win in that random game, then perhaps the
same person can also win anyway.

Of course it is not a big deal to construct a game for which thisintuition fails. LetT
be a binary tree of hightn and the leaves are labeled by the binary numbers from00 . . . 0
to 11 . . . 1, meaning that theith digit describes that the player on move goes to left (zero)
or right (one). White wins iff the game ends up in a leaf with all odd digits are one, loses
otherwise. Of course, White loses the random game with probability 1−2b−n/2c, and still
wins the normal game.

Even when the random intuition predicts a win for a player, the actual winning strategy
might have little to do with randomness. However, this little is not nothing, as we can see
from the algorithmic approach of the Tenured game. One just have to recognize that the
condition

∑∞
i=0 ai2

−i < 1 should be maintained by the choice of the Dean, and apply
induction. When the Chair makes two groups out of the faculty, for at least one of those
the sum taken only on the members of group is less than one half. Let us promote this
group and fire the other one. The condition still holds but thenumber of faculty is less;
we are ready by the (implicit) induction hypothesis. �

With this we have completed the cycle: we started with a deterministic game, used a
random heuristic to conjecture the outcome (even gave a probabilistic proof), and finally
we derandomizedthe heuristic by apotential functionand got explicit winning strategy
in polynomial time.

1.3.6 Complexity

We assume that the Reader are familiar the basic concepts of Complexity theory as it is
presented for example in [55]. The approach of defining the various complexity measures
of certain languages can be very fruitful, and sometimes completely misleading.24 Indeed,
it is easier to argue, whynot to expect much from that tools.

First of all, for a concrete game, like chess, go or any given finite game of form
x = {L|R} has a constant complexity. Alas, this does not mean that thatone could tell
the outcome of small games readily. It is quite amusing (and rather frustrating at the same

23Some authors call theseincomplete information games, others reserve this name for those games which
really have unknown element. Note, that in matrix games the information provided is enough if one plays
the game several times.

24The sheer statements about e.g. the NP-completeness of a problem or the worst case behavior of an
algorithm are usually dismissed in the practice, where realproblems are to be solved.
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time) that no matter of the great theories and fast computers, the solution for tiny, innocent
looking games are still hopeless.

One also gets into a dead end considering families of games instead of concrete ones.
The proof of Theorem 1.1 shows that the outcome of a game can becomputed by back-
ward labeling the corresponding game tree inlinear time. Too bad, this linearity is mea-
sured by the size of the game tree and this tree might be a big one. (Going through on the
pairs ofall possible strategies of the players might need double exponential time in the
size of the input.) For certain games, where the history of a play does not matter (i. e. a
sub game can be identified with a position) the search reducesto aGame graph, and the
size of that graph is still exponential in the input.

Some of the (infinite) games are simply unsolvable in the sense that neither player has
winning or drawing strategies. The first example of those were the Banach-Mazur game,
later Gale and Stewart constructed simpler ones. McKenzie and Paris showed that this
phenomenon occurs even among thePositional games25, see [9].

One may think that this strange behavior comes from the fact the sets of possible
strategies are too big. (In the analysis of these games some forms of the Axiom of Choice
is used). So let us consider only thecomputable strategies. The game as follows. Let
U be an universal Turing machine, and White starts the game by giving a wordx. Then
Black wins iff he can tell how many (possibly infinite) stepsU will take on inputx. A
sure win for either players requires the solution of theHalting problem.26 It is amusing
that instead of the abstract machineU , finitely many marked node on the infinite grid and
some natural rules might also results in the same. We can makeout a two person game
from zero person Conway’s Game of Life: White places a finite number of cellsC and
Black has to tell, if the descendants ofC will live forever or die out. Black wins iff his
answer is good. But the computation of the universal Turing machine given any inputx
can be coded with appropriate initial cells in the Life game,see [13].

Even simple looking, finite games might become tricky if we restrict the computa-
tional power of the players. Jones in [44] proposed the following game: given the poly-
nomial

Q(x1, . . . , x5) = x21 + x22 + 2x1x2 − x3x5 − 2x3 − 2x5 − 3,

White and Black alternate in assigning nonnegative integervalues to the variables in
orderx1, . . . , x5. White wins if, with the substitution,Q = 0, otherwise Black wins. The
outcome of the game is depend on a yet unknown number theoretic problem. To see this
let us writeQ as

Q(x1, . . . , x5) = (x1 + x2)
2 + 1− (x3 + 2)(x5).

Since Black picksx2, he has a winning strategy if and only if there are infinitely many
primes of formn2 + 1.

In a similar game, see [29], the computing powers restrictedeven more. Now our
polynomial is

Q(x1, . . . , x4) = x1 − x2x4 − x2 − x4 − 1,

and the players alternately assign values tox1, x2, x3, x4 in this order. White has to
selectx1 as acompositeinteger,x1 > 1, x3 any positive integer, and Black selects any

25We shall discuss these games in detail in the following Chapters.
26More precisely, White should exhibit anx for which the halting is undecidable.
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positive integers. Black wins ifQ(x1, . . . , x4) = 0; otherwise White wins. Clearly Black
has a winning strategy, since

Q(x1, . . . , x4) = x1 − (x2 + 1)(x4 + 1),

andx1 is composite. But the computation of Black’s winning strategy requires signifi-
cantly greater resources than putting up a tough resistanceby White. White can find two
large primesp andq about the same size, and settingx1 = pq. Then, in order to win,
Black has to factorx1 that might be too hard problem if the time is limited.

Going through on all these irregularities we might try to measure the hardness of a
game not by itself, but by the computational complexity of aninfinite family. Perhaps the
best known example isGeography, see in [55]. A directed graphG and a distinguished
vertexx ∈ V (G) are given. The players alternately move a token along an edge, starting
from x, and a vertex may be visited only once. A player who cannot take a legal move,
looses the game. Let GEOGRAPHY be the language of all graphs for which White wins.

Theorem 1.4.GEOGRAPHY is a PSPACE-complete language.

The proof is quite standard, one takes an arbitrary instanceof QSAT27 and reduces it
to an word of GEOGRAPHY. QSAT is the language of true words of form

Φ = ∃x1∀x2x3 . . . x`∀x`+1 . . .∀xn−1xnφ,

whereφ is a Boolean formula in conjunctive normal form of variablesx1, . . . , xn.
Some problems (or rather languages) concerning games turn out to be NP-complete.

In these cases we might say that the game is hard, although these complexity issues in-
volve several possible inputs, not only the usual starting position of a (family of) game(s).
On the other hand, and it is more justifiable, a game is easy, ifthe outcome (winning
strategy etc.) can be given in polynomial time as a function of the input.

27Of course QSAT is a PSPACE-complete language.
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Chapter 2

Positional games

In the main part of the dissertation we will deal with games what we callPositional
games. In the positional games there is usually two player, they are moving alternately
and the aim of the game is to occupy (or prevent to occupy by theother) a winning set by
possessing all of the element of that set. Note, that misére versions of this games are also
possible; in those games the goal is theavoidanceof the winning sets.

2.1 Tic-Tac-Toe type of games

In this section we introduce a family of combinatorial gamesthat have very deep con-
nections with other parts of Combinatorics. Before specificdefinitions, let us see some
examples.

2.1.1 Tic-Tac-Toe

The most well-known hypergraph game is theTic-Tac-Toegame. Here the aim of the
game is to occupy a row, or a column or a diagonal on aN ×N board.

Figure 2.1: The3× 3 and the4× 4 Tic-Tac-Toegames. Usually X is the first player, O is
the second player

One remark on how complex these small games are: TheTic-Toc-Tac-Toeis similar
to theTic-Tac-Toe, but here the board is4× 4× 4. By playing a little, it is easy to see that
Tic-Tac-Toecan be won by the first player. The first player also can win theTic-Toc-Tac-
Toegame but there was needed 1500 hours calculation time for Oren Patashnik at 1979.
In the same year Allisstronglysolved the game, that is he computed the outcome ofall
possible positions. Still, there is no easily describable winning strategy, see [56]. The
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5 × 5 × 5 and6 × 6 × 6 the versions1 are still open, although probably these are draw
games.

To give a common frame for these games, we introduce the notion of hypergraph
games.

2.1.2 Hypergraph games

Given an arbitrary hypergraphF = (V,E) (or F = (V (F), E(F))) the first and second
players take elements ofV in turns. We call this gameshypergraph games. When we
think about hypergraph games, we usually think on aboard gamewhere the fields are the
vertices and certain subsets of the board are the winning sets.

We call these gamesMaker-Maker games(or strong games) where the player, who
takes all elements of an edgeA ∈ E first wins the game [7]. The Maker-Maker game are
associated to a (false) natural fairness; that is why so manyplayed version of those. In
fact, these games arehot2 by Conway’s terminology:

Theorem 2.1(Nash, Hales-Jewett). In the strong version of a game, the first player wins
or the game is draw.

Proof. Assume for contradiction that the second player has a winning strategyS. The
application of this strategy by the first player is as follows. The first player starts the game
arbitrarily and then forget about his first step and plays thesecond player assumed winning
strategyS. If S would require a field that the first player have already marked, then the
first player declares he take this move and make an arbitrarily move that he forgets. Since
to have an “extra field” on the board never cause harm to any player, the first player wins,
contradiction.3. �

This technique is called“strategy stealing.” The invention of it is attributed to John
Nash, who first applied it to the game calledHex. For positional games it was formally
proved by Alfred Hales and Robert Jewett in 1963, see [35].

2.1.3 Hex game

This game was invented independently by Piet Hein (1942) andJohn Nash. The players
are placing stones into a rhombus board withn × n hexagonal grid. The goal is to form
a connected path of one’s stones linking the opposing sides of the board marked by the
players color, before the opponent connects his or her sidesin a similar fashion. Note, that
Hex isnota hypergraph game. The first player who completes his or her connection, wins
the game. The Hex, unlike some of the games which are only interesting on mathematical
point of view, is exciting and addictive game. People make puzzles, competitions of it;
heren = 10 or n = 11. (These sizes are unexplored, the best result was achieved by
Kohei Noshita who gave explicit winning strategy forn ≤ 8 [52].)

1The boards are three dimensional cubes consisting53 = 125, and63 = 216 smaller cubes, and the
winning sets are the lines and diagonals.

2Stricly speaking this means that the player, who moves, winsthe game. In generally hot means that the
right of a move always an advantage in the game.

3Note that the proof is existential and does not provides information about how should play to win.
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Figure 2.2: The Hex game. The players alternately color the hexagons. The aim of the
game is to make a one color path between the two opposite sides.

Theorem 2.2(Nash - Gale). If all cells of the Hex board are colored by the two players
then there exist a N-E, S-W path.

Proof. This proof is a sketch of the proof given by David Gale in his article on Hex and
the Brouwer Fixed-Point Theorem, [32]. It is uses only some well-known facts of graph
theory.

Let G be a planar 2-connected graph in which all vertices have degree two or three
such each face ofG corresponds to a cell on a Hex board. We add four more edges
and pendant vertices; one to each corner of the board. We can assume that all cells are
occupied because a game of Hex cannot end before a player winsor no cell is available.
Now make a subgraphG′ of G created by keeping the edges that separate two faces of
different colors on the Hex board and the additional edges atthe corners.

It is easy to see thatG′ will mostly consist of vertices of degree zero or two. Exactly
four vertices will have degree one, namely the pendant vertices connecting to the four
corners:a, b, c andd. It is an exercise that graphs with vertices of degree less than three
consist of isolated vertices, simple cycles and simple paths. SinceG′ has exactly four
vertices of degree one there must be exactly two of these paths.

These two paths must connecta − b andc − d or a − d andb − c. In the first case
white will have won, in the second black. �

Now we can decide the outcome of the game Hex:

Theorem 2.3(John Nash, 1949). The first player wins the Hex.

Proof. Follows immediately from Theorem 2.2 and Theorem 2.1. �

2.2 Heuristics

Of course one has greatest motivation in solving Maker-Maker games, or in general those
games that proved to be worthy, like Chess or Go. But as we mentioned in the introduc-
tion, it is very hard even to have clues for what type of results can be proved at all. In
most part of Mathematics there are good examples and (relatively) simple exercises that
help to shape the consequent theories. In natural sciences the experiments play the same
role. Alas, one cannot rely on rich source of good examples ofwell understood hyper-
graph games. All but the smallest concrete games are still unsolved, and even when the
outcome is known, the existence or exhaustive search proofsare not really illuminating.
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We believe this problem was one of the main factors that slowed down the development
of the field for so long.

The breakthrough was the invention of new games that (1) preserve some characteris-
tics of the original game (2) hopefully easier to handle (3) the outcome can be related to
the original.

Some of these games are interesting or having significance ofthier own, while others,
like the random heuristics, are more diagnostic tools than games. The examination of
games needs both analysis and synthesis involving smaller games and combinatorial ar-
guments. This process leads to making tools for tools as it quite often happens elsewhere.
The most important heuristics are theMaker-Breaker games, the acceleration, the Picker-
Chooser (and Chooser-Picker) gamesandbiased games.The last approach is closely
related to therandom heuristic[9] or “Erdős paradigm” [45] that might be considered as
zero person game played on some board. Let us see some details.

2.2.1 The weak version of the games

It is quite natural to define the so-calledweak versionof the positional games [6], where
the the first player win by completing a winning set any time, while the second player
wins if he/she can prevent the first player’s win. It means that the first player do not have
to be afraid of that the second player occupies a winning set.This version is also called
asMaker-Breaker gamefrom obvious reason. Of course the first player is Maker, and the
second is Breaker. It is easy to see the following statement,see [7].

Statement 2.4.If the Breaker wins in the weak version of a game, then the strong version
is draw.

Remarks. If the first player wins in the weak version of the game, it doesnot follows
that the first player wins the strong game. A simple example for this phenomenon is the
3×3 Tic-Tac-Toe: In the picture 2.1 it can be seen, that in the weak version the Maker can
place to the lower right square and win; while in the strong game the first player should
defend, hence the chance of winning disappear. Since there is no tie at the game Hex, so
the two versions coincide. Generally the languages of both the strong and weak games
are PSPACE-complete languages, see [65, 16].4

2.2.2 Random heuristic

We have already sketched a idea of two players who randomly move in the game tree in
subsection 1.3.5. For a Maker-Breaker hypergraph game(V,F) this kind of randomness
can be approximated by a more comfortable probability space. Let us take the vertices
one by one, toss a (fair) coin; if it shows head, then give the vertex to Maker, otherwise to
Breaker. This way the hypergraph is2-colored, all vertices get the color of either Maker
or Breaker. A 2-coloring isgood, if all edges contains both colors.5 The expected number
of one-colored edges is

∑
A∈F 2−|A|+1, which immediately gives the following theorem.

4One has to be careful with these results. A concrete game is always of constant complexity. For the
PSPACE-completeness one need no only an infinite family, e. g. the Hex or Go forn ∈ N, but an infinite
family of starting positions.

5For the more formal general definition see subsection 2.3.1.
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Theorem 2.5(Erdős, 1963). There is a good 2-coloring of the hypergraphF = (V,E) if
∑

A∈E

2−|A|+1 < 1.

As a heuristic, one may think that the Maker-Breaker game on the hypergraph(V,E)
is a draw, that turned out to be true:

Theorem 2.6(Erdős-Selfridge, 1973). If Maker starts the weak version of the(F = V,E)
hypergraph game and ∑

A∈E

2−|A|+1 < 1,

then Breaker wins6.

We wait with the proof of Theorem 2.15 until subsection 2.3.2. Though, we have
to stress that one cannot overestimate the impact of the method developed for that. It
gave the Probabilistic method a new meaning and meant a breakthrough in the research
of Positional games.

2.2.3 Accelerated and biased games

If both of the players claimk > 1 vertices in each turn, then we talk about anaccelerated
games. In general, if the players claima andb vertices, then we call it thebiasedversion
of the game.7

We shall touch the acceleratedk-in-a-row in the next chapter, and discuss a biased
game diameter game deeply in section 5.2. Note that these areexamples where the heuris-
tic fails for the Maker-Breaker game, while be in great accordance with other heuristics,
e.g. with the random heuristic. A nice, and very useful result is an Erd̋os-Selfridge type
of theorem by Beck [4].

Theorem 2.7. [4] If E is the family of winning sets of a positional game, then Breaker
has a winning strategy in the(a : b) game when

∑

A∈E

(1 + b)1−|A|/a < 1.

Another striking line connects the theory of random graphs and the biased games
[17, 2, 5, 45, 12]. Here the theory of random graphs [14] and Positional Games blend
nicely with the following setup. As defined earlier, Maker wins if a monotone property
P holds for the subgraph of his edges. Our purpose is to find the smallestb0, for which
Breaker wins the(1 : b0)-game. While to get the exact value ofb0 is almost impossible,
one may shows asymptotic upper and lower bounds on it. Some ofthe best examples
are: for Hamiltonicity and maximum degree, see Beck and Hefetz et al. [8, 5, 40], for
planarity, colorability and graph minor games, Hefetz et al. [39], for building a specific
graphG or creating a large component, Bednarska and Łuczak [11, 12].

6The condition for the uniform case is sometimes spelled out as |E|+∆(F) < 2n, where∆(F) is the
maximum degree of the hypergraph.

7The biased games arise quite often and naturally when one builds a global strategy out of strategies of
auxiliary games defined on non disjoined sub boards.
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2.2.4 The Chooser-Picker and the Picker-Chooser games

Studying the very hard clique games, Beck [6] introduced a new type of heuristic, that
proved to be a great success. He defined thePicker-Chooseror shortly P-C and the
Chooser-Picker(C-P) versions of a Maker-Breaker game that resembles fair division,
(see [70, 71]).

In these versions Picker takes an unselected pair of elements and Chooser keeps one of
these elements and gives back the other to Picker. In the Picker-Chooser version Picker is
Maker and Chooser is Breaker, while the roles are swapped in the Chooser-Picker version.
When |V | is odd, the last element goes to Chooser. Beck obtained that conditions for
winning a Maker-Breaker game by Maker and winning the Picker-Chooser version of
that game by Pickercoincidein several cases. Furthermore, Breaker’s win in the Maker-
Breaker and Picker’s win in the Chooser-Picker version seemto occur together. That is the
Picker-Chooser (Chooser-Picker) games are themselves heuristics for the Maker-Breaker
games.

The probabilistic intuition also helps in studying Picker-Chooser (Chooser-Picker)
games. Leta = b = 1 and ||F|| = maxA∈E(F) |A| be therank of the hypergraph
F = (V (F), E(F)). In that case, there is an almost perfect analogue of Theorem2.7
as follows:

Theorem 2.8. [6, 21] 3.6 If

T (F) :=
∑

A∈E(F)

2−|A| <
1

3
√
||F||+ 0.5

,

then Picker has an explicit winning strategy in the Chooser-Picker game on hypergraph
F . If T (F) < 1, then Chooser wins the Picker-Chooser game onF .

2.2.5 Beck’s conjecture

Beck [6] has another interesting remark, namely that Pickermay win easily the Picker-
Chooser game if Maker wins the corresponding Maker-Breakergame. He formulates this
as follows:

“Note that Picker has much more control in the Picker-Chooser version than Chooser
does in the Chooser-Picker version, or Maker does in the Maker-Breaker version so the
Picker-Chooser game is far the simplest case. This relativesimplicity explains why we
start with the Picker-Chooser game instead of the perhaps more interesting Maker-Breaker
game.”

The study of these games gives invaluable insight to the Maker-Breaker version. For
some hypergraphs the outcome of the Maker-Breaker and Chooser-Picker versions is the
same [6, 21]. In all cases it seems that Picker’s position is at least as good as Breaker’s. It
was formalized in the following conjecture.

Conjecture 2.9. [21] If Maker (as the second player) wins the Maker-Breaker game, then
Picker wins the corresponding Picker-Chooser game. If Breaker (as the second player)
wins the Maker-Breaker game, then also Picker wins the Chooser-Picker game.

The definition of these games suggests, that the Chooser-Picker game is easier for
Picker, then the Maker-Breaker version for Breaker (the first player can be kept under
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strong control by Picker), although the other direction of this implication should stand in
the most cases. We have found only one non-trivial game, where the outcome is not the
same. [22]

One can ask what is the use of such a conjecture? Usually it is easier to analyze a
Chooser-Picker game than the corresponding Maker-Breakergame. So if we think that
Maker wins a weak game, then to confirm it we first check the Picker-Chooser version,
and we must see that Picker wins. Again, if Breaker’s win is expected, then the Chooser-
Picker version should be a Picker’s win.

So not just the Beck’s conjecture gives the importance of this games, but that paradigm,
that these games are very close to the weak version. (See moreabout Beck’s results on
clique-games in [6]). For example if we can prove that Pickerloses the6-in-a-row, it
would be a strong argument in addition to that the same could happen in the normal
version of that game. Therefore the following rule is not just an arbitrary trick for gener-
alization, but a useful and elegant tool for understand better the Maker-Breaker games.

It is therefore necessary for the Chooser-Picker Games infinite version the following
restriction: At the beginning Chooser can select a bounded subset of the board, where
they will play. Because if they play on the infinite board, then Picker could select points
far from each other, and it is a trivially winning strategy for Picker.

2.3 Tools

2.3.1 Pairing strategy

Thepairing strategieshas been extended to language of game theory. Here the aim is to
coloring the(V,F) hypergraph’s vertices by two colors so that none of the winning sets
are monochrome. Here the game can be a draw.

The pairing strategies of hypergraph games are from [35]. Alfred Hales and Robert
Jewett introduced the gamesHJ(n, d), wheren andd are natural numbers. The board of
theHJ(n, d) is ad dimensional cube, which is assembled bynd little cubes (in all edges
liesn tiny cubes). Formally the basic set of the hypergraph are thed length serials, where
each coordinates are integers between 1 andn. It means thatV (HJ(n, d)) = 1, ..., nd.
The edges of the hypergraph are suchn triples, which elements can be arranged on that
way that in a fixed coordinate the serials are1, 2, ..., n, n, n − 1, ..., 1 or constant. The
HJ(3, 2) is theTic-Tac-Toe, and theHJ(4, 3) is theTic-Toc-Tac-Toe.

Definition 2.10. An assignmentχ : V → 1, . . . , k of theF = (V,E) hypergraph is a
good coloring, if allA ∈ F subset has at least 2 elements. The minimalk, which has
good coloring is the chromatic number ofH. We mark it byχ(H).

If for a hypergraphF theχ(F) > 2, then the game on it cannot be a draw. A good
example for this the gameHJ(3, 3) or Tic-Tac-Toegame. On the other handHJ(4, 3)
(theTic-Toc-Tac-Toe) is an example for that the first player could have a winning strategy
even ifχ(F) = 2.

Theorem 2.11(Hales-Jewett). For all n natural number exist suchd > 0 integer, that the
hypergraph gameHJ(n, d) has chromatic number greater than 2.
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It means that ifd is enough large, then there is no tie at Hales-Jewett games, and due
to the strategy-steeling argument the first player wins. Butthis theorem also gives only
an existential proof, and moreover for a givenn the boulder ford is extremely high. The
best result is Shaharon Shelah’s, whered(n) is in E5 Grzegorczyk hyerarchy (see [66]).

The following theorem is one of the most basic one in Combinatorics:

Theorem 2.12(Kőnig D.-Ph. Hall). The{Ai}mi=1 system of finite sets has system of dis-
tinct representatives, iff for allI ⊆ 1, . . . , m stands| ∪i∈I Ai| ≥ |I|.

The game-theoretic application of this is the following theorem:

Theorem 2.13(Hales-Jewett). If in a finite (V,F) hypergraph game for allG ⊂ F the

|
⋃

A∈G

A| > 2|G|,

stands, then the game is draw.

– It means, that if all subsets of the hypergraph has two timesmore vertices then edges,
then the game is draw. The proof of this statement is following from Kőnig Dénes and
Philip Hall’s theorem. By using this theorem we can see that the5× 5 is a draw. (At the
beginning there is 25 point and 12 edges, and for allk length winning sets have at least
2k vertices. And also easy to see that the smallest vertices/edge rate is when we get the
whole board.)
Proof. If H = {A1, ..., Am}, then beH∗ = {A1, A

∗
1, A2, A

∗
2, ..., Am, A

∗
m}, whereAi =

A∗
i for all i = 1, ..., m-re. Easy to see, that from| ∪A∈G A| ≥ 2|G| follows that: for all

G∗ ⊂ H∗ choosing| ∪A∈G∗ A| ≥ |G|. It means that the theorem above can be applied for
the system ofH∗ . BeS = {a1, a∗1, a2, a∗2, ..., am, a∗m} a system of distinct representatives.
The second player should follow this strategy: For anytime when the first player chooses
an element fromS (these element can be eitherai-t or a∗i ), then the second should choose
an element with the same index (a∗i or ai), otherwise step freely. The first can not get an
Ai for i = 1, ..., m, because fromai, a∗i ∈ Ai at least one is owned by the second. �

Note that at the hypergraphHJ(n, d) wheren is odd then all vertices are member of
1
2
(3d − 1) winning sets. Ifn is even, then this number is2d − 1. By using this we can get

the following theorem:

Theorem 2.14(Hales-Jewett, 1963). The gameHJ(n, d) is draw, if n ≥ 3d − 1 and
n = 2l + 1, or if n ≥ 2d+1 − 2 andn = 2l.

For example the6 × 6- Tic-Tac-Toe (=HJ(6, 2)) is a draw. (We had seen before that
the5 × 5 is also a draw. Of course, a similar case study gives the same for 6 × 6, that is
the game is a draw, while Theorem 2.14 would not induce this result. It is quite common
in Combinatorics that a general theorems yield weaker results than special case studies.)

2.3.2 Weight functions

An another approach is by the usage ofweight functions. Here the dangerousness of a
position is represented by the weight of the game. If one player occupies many vertices
from an edge (and none by the other) then this edge has a “heavy” weight.
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The so called Erd̋os-Selfridge weights are frequently used. An edgeA ∈ F weight’s
is 2−|A| and doubles each time when Maker occupies a new vertex from it. Be m the
number of occupied vertices in the edgeA by Maker after itsith step. At this time the
weight ofA is:

wi(A) = 2−|A|+m,

if Breaker does not have vertices inA, otherwisewi(A) = 0. The weight of a vertex
is the sum of that edge-weights where the vertex is in the edge:

wi(x) =
∑

x∈A

wi(A)

It can be shown, that if Breaker always gets the largest weight of the graph, then the
functionwi =

∑
A∈F wi(A) is monotonously decreasing ini. Considering thatw1 ≤∑

A∈F 2−|A|+1 and that if Maker wins at thekth step thanwk ≥ 1, derives the following
theorem:

Theorem 2.15(Erdős-Selfridge, 1973). If Maker starts the weak version of the(V,E)
hypergraph game and ∑

A∈E

2−|A|+1 < 1,

then Breaker wins.

By using this, we can prove that the5×5 is a draw: there are 12 edges and all of them
are 5 length. Plugging in these to the condition of Theorem 2.15, we get:12∗1/32 < 1/2.

We should remark, that the Erdős-Selfridge theorem is sharp: it means that there are
such hypergraph families, where

∑
A∈E 2−|A|+1 = 1 and Maker wins.

The theorem above is a derandomization of Erdős’ previous theorem. Note that if we
coloring randomly the vertices of the graphV by two color, then

∑
A∈E 2−|A|+1 is the

expected number if monochrome edges. It means that there exists a good two coloring of
(V,E), what we found constructively.

There is an analogue for biased games too, see the theorem below 2.16. It is also sharp
for all p, q ∈ N, and forp = q = 1 it gives back Theorem 2.15.

Theorem 2.16(Beck). The(F , p, q) biased Maker-Breaker game is a draw, if

∑

A∈E(F)

(1 + q)−|A|/p <
1

1 + q
,

where Maker movesp, Breaker movesq-t steps afterward.

Another application for weights is that it might helps to finda good possible move
of a game: Maker and Breaker should try the most dangerous steps at first, where the
dangerousness is represented by E-S weights (see before):2|A|−m, wherem is the number
of occupied vertices.
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2.3.3 Back-tracking

Suppose that the board consists indexed cells (for example 1,2,3,4,5,....,32), and our duty
is to get through all of the possible cases by checking on which position who is the win-
ner, and who wins from the initial position.

The initial stance is:M = 1, B = 2, level = 1

1. Maker steps to the smallest unoccupied field, Breaker too.

2. If Maker does not win, thenlevel = level + 1, goto 1. (next steps)

3. If Maker occupies a winning-set:level = level − 1 and Breaker steps to the next
cell. (here Maker wins)

4. If there is no winning set without B:level = level − 1 and Maker steps to the next
cell. (here Maker cant win, it is good for Breaker)

5. Maker wins iflevel = 0; and Breaker steps to the next cell (e.g to 3); Breaker wins
if level = 0; and Maker steps to the next cell (e.g to 3);

Typically back-tracking goes together withbranch and boundtechniques, where are
other tricks which fastens stage 2, 3, 4.

We use that algorithm at the section 4.6, when we calculate the result of a specific
sub-game (an auxiliary game).

2.3.4 Auxiliary games

It usually help if we split the game to smallerauxiliary games. In fact the pairing is also
can be considered as an auxiliary game (where the sub-game’shypergraph has only two
vertices and one edges). The aim is to win the game by playing independently on these
subgraphs (sub-boards). Some applications are the proof ofthe 9-in-a-row is a draw,
8-in-a-row is a draw see below 4.1. We will also use it in the next chapter.

Here we list some simple facts from [21] that are very useful in analyzing concrete
games. For the sake of completeness we give the proofs, too.

2.3.5 Pairing lemma

Lemma 2.17. [21] If in the course of the (Chooser- Picker) game (or just already at the
beginning) there is a two element winning set{x, y} then Picker has an optimal strategy
starting with{x, y} .

Proof. It is enough to see that if Picker has a winning strategyp, then there exists a
starting with{x, y} – call it p∗ which is also Picker win. If the strategyp asks later{x, y}:
Assume that playingp∗ Chooser can win on given distribution of{x, y}, than Chooser
could pretend that this distribution already happened before. In this way playing strategy
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p also could use the same strategy. If in strategyp Picker compelled to ask not at oncex
andy:

Then Chooser could both askx andy when they are separately turns up with other
elements (or one of these is the remaining one for Chooser) instrategyp. And therefore
Chooser wins. �

For the better adaptability of the C-P games, we should provethe following lemma.

2.3.6 The monotonicity lemma

It looks very desirable to extend such a successful heuristic to games played on infinite
hypergraphs. However, one has to be careful since in that case Picker might offer a set
of verticesA ⊂ V such that every edge contain at most one element fromA, which is
a trivial winning strategy for Picker. A possible remedy is add a step at the beginning:
Chooser selects a finite setX ∈ V , and they play on theinduced sub-hypergraphthat is
keep only those edgesA ∈ F for whichA ⊂ X. More formally, given the hypergraph
(V,F) let (V \X,F(X)) denote the hypergraph whereF(X) = {A ∈ F , A ∩X = ∅} .

Lemma 2.18. [21] If Picker wins the Chooser-Picker game on(V,F), then Picker also
wins it on(V \X,F(X)).

Proof. By induction it is enough to prove the statement forX = {x}, i. e., |X| = 1.
Assume thatp is a winning strategy for Picker in the game on(V,F). That is in a certain
position of the game the value of the functionp is a pair of unselected elements that
Picker is to give to Chooser. We can modifyp in order to get a winning strategyp∗ for
the Chooser-Picker game on(V \ {x},F({x})). Let us followp while it does not give
a pair{x, y}. Getting a pair{x, y}, we ignore it, and pretend we are playing the game
on (V,F), where Chooser has takeny and has returnedx to us. If |V | is odd, there is a
z ∈ V at the end of the game that would go to Chooser. Here Picker’s last move is the
pair{y, z}. Picker wins, since Chooser could not win from this positioneven getting the
whole pair{y, z}. If |V | is even,p∗ leads to a position in whichy is the last element,
and it goes to Chooser. But the outcome is then the same as the outcome of the game on
(V,F), that is a Picker’s win. �

This lemma is useful tool at the next chapters, because if a bounded setS cannot be
partitioned into uniform sub-games, then it can be increased toS

′
, which can be split into

such sub-games. And if Picker wins onS
′
, then also can win onS.
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Chapter 3

Some results on Chooser-Picker games

3.1 Introduction

Studying the very hard clique games, Beck [6] introduced a different type of heuristic,
that proved to be a great success. He defined thePicker-Chooseror shortly P-C and the
Chooser-Picker(C-P) versions of a Maker-Breaker game that resembles fair division, (see
[70, 71]).

In these versions Picker takes an unselected pair of elements and Chooser keeps one of
these elements and gives back the other to Picker. In the Picker-Chooser version Picker is
Maker and Chooser is Breaker, while the roles are swapped in the Chooser-Picker version.
When|V | is odd, the last element goes to Chooser.

Beck obtained that conditions for winning a Maker-Breaker game by Maker and win-
ning the Picker-Chooser version of that game by Picker coincide in several cases. Further-
more, Breaker’s win in the Maker-Breaker and Picker’s win inthe Chooser-Picker version
seem to occur together.

However, one has to be careful to spell out a good conjecture,since it is easy to check
that Chooser wins the2× 2 hex.

The precise form of Beck’s conjecture was stated before 2.9.
Remarks. It is enough to prove Conjecture 2.9 for Picker-Chooser games since the
Chooser-Picker case would follow. To see this one just considers(V,F∗), thetransversal
hypergraphof (V,F). That isF∗ contains those minimal setsB ⊂ V such that for all
A ∈ F , A ∩ B 6= ∅. Note that Breaker as a first (second) player wins the Maker-Breaker
(V,F) iff Maker as a first (second) player wins the Maker-Breaker(V,F∗).

The decision problem that if Picker wins a Picker-Chooser (or Chooser-Picker) game
is at least NP-hard [62], but probably it is PSPACE-completeas that of the Maker-Breaker
games, shown by Schaefer [65]. Still, for concrete games it can be easier to decide the
outcome of the Picker-Chooser (Chooser-Picker) version than the Maker-Maker version.
That is if Conjecture 2.9 is proved for a class of hypergraphsthen the easier Picker-
Chooser (Chooser-Picker) games can be used in an alpha-betapruning algorithm for the
harder Maker-Breaker game. A natural class for that us the otherwise hopeless, Hales-
Jewett or torus games for low dimension (see [7, 35]). We discuss some examples and
useful tools for that direction in Section 4.2. Here we wouldemphasize the extension of
Picker-Chooser games to infinite hypergraphs and the role ofLemma 2.18 in this case.
These might be used in solving Harary-type of polyomino problems for Chooser-Picker
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games for which the Maker-Breaker versions were studied by Harary, Blass, Pluhár and
Sieben [13, 59, 67].

3.2 On the complexity of Chooser-Picker positional games

Since the Maker-Breaker (and the Maker-Maker) games are PSPACE-complete (see [65])
it would support both Conjecture 2.9, and the above coincidence with Chooser-Picker
games to see that the Chooser-Picker or Picker-Chooser games are not easy as well. To
prove PSPACE-completeness for positional games is more or less standard, see [64, 16].
Here we can prove something weaker because of the asymmetricnature of these games.

Theorem 3.1. It is NP-hard to decide the winner in a Picker-Chooser game.

Theorem 3.2. It is NP-hard to decide the winner in a Chooser-Picker game.

In Section 3.6 we generalize the pairing strategies first formalized by Hales and Jewett
[35]. As an application, we show there is no pairing strategyfor the game “Snaky,” see
[37, 38, 68]. Finally, we compare the actual complexity of these games on a specific
hypergraph, the4× 4 torus in Section 3.7.

3.3 Proofs of Theorems 3.1 and 3.2

Both proofs are based on the usual reduction method. We reduce 3 − SAT to Chooser-
Picker or Picker-Chooser games.

Proof of Theorem 3.1. Consider an arbitrary CNF formulaφ(x1, . . . , xn) ∈ 3− SAT.
We denoteφ = C1∧· · ·∧Ck, whereCi = `i1∨`i2∨`i3 and`ij is a literal fori ∈ {1, . . . , k}
andj = 1, 2, 3. With a slight abuse of notation, we useCi also to denote the set of literals
in it. That is, if there exists a clauseCi = x2 ∨ x̄5 ∨ x6, then we also denote the set
Ci = {x2, x̄5, x6}.

We will exhibit a hypergraphHφ = (V,E) such that the Picker-Chooser game is a
win for Chooser if and only ifφ is satisfiable.

The vertex set will beV = {x1, . . . , xn, x̄1, . . . , x̄n}. Let B ⊂ 2V have the property
thatB ∈ B if, for all i ∈ {1, . . . , n},B contains eitherxi or x̄i but not both. The edge set
E consists of the setsA such thatA = Ci ∪ B for somei and someB ∈ B.

Note thatB, and consequentlyE, has a short (polynomial inφ) description even
though|E| ≥ |B| = 2n.

Claim 1 allows us to restrict our attention to games in which Picker has a specific kind
of strategy.

Claim 1: If Picker fails to select pairs of the form{xi, x̄i} in each round, then Chooser
has a winning strategy.
Proof: We assume to the contrary: Let{x, y} be the first pair selected by Picker such that
{x, y} 6= {xi, x̄i} for any i ∈ {1, . . . , n}. In that case, Chooser keeps, say,x, and waits
until Picker offers up̄x in a pair. In that round, Chooser takesx̄, and wins the game, since
Picker cannot take anyB ∈ B. This proves Claim 1. �
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First we show that if Picker-Chooser onHφ is a win for Chooser, thenφ is satisfiable.
According to Claim 1, we may assume that Picker’s strategy isto select pairs of the form
{xi, x̄i} resulting in the fact that such pairs are shared among Pickerand Chooser for all
i. Assume that Chooser wins the game onHφ, and set̂xi = 1 if Chooser holdsxi, and
x̂i = 0 otherwise. Picker holds all elements of someB ∈ B, so the assumption means
that Chooser has an element in each of theCi’s. That is,φ(x̂1, . . . , x̂n) = 1.

Next we show that ifφ is satisfiable, then Picker-Chooser onHφ is a win for Chooser.
Sinceφ is satisfiable, there exist̂x1, . . . , x̂n, such thatφ(x̂1, . . . , x̂n) = 1. Consider the
Picker-Chooser game onHφ. By Claim 1, we may assume that, in each round, Picker
offers a pair of the form{xi, x̄i}. In that case, Chooser takesxi if and only if x̂i = 1, and
wins the game. This proves Theorem 3.1. �

Proof of Theorem 3.2.Let us use the same set-up and notation for the CNF formulaφ as
in the proof of Theorem 3.1. We want to define a hypergraphHφ = (V,E) such that the
Chooser-Picker game onHφ = (V,E) is a Picker’s win if and only ifφ is satisfiable.

Let the vertex set beV = {ai, bi, ci, di}ni=1. The edge set,E, consists of all edgesA
such that

• A ⊂ {ai, bi, ci, di} and|A| = 3 for somei ∈ {1, . . . , n},

• A = {ai, aj , ak, bi, bj, bk} for a clauseC = xi ∨ xj ∨ xk,

• A = {ai, aj , ak, bi, bj, ck} for a clauseC = xi ∨ xj ∨ x̄k,

• A = {ai, aj , ak, bi, cj, ck} for a clauseC = xi ∨ x̄j ∨ x̄k,

• A = {ai, aj , ak, ci, cj, ck} for a clauseC = x̄i ∨ x̄j ∨ x̄k.

Claim 2 allows us to restrict our attention to games in which Chooser has a specific
kind of strategy.

Claim 2:

• If Picker picks a pair(x, y) such that{x, y} 6⊂ {ai, bi, ci, di} for somei ∈ {1, . . . , n},
then Chooser has a winning strategy.

• Chooser has an optimal strategy that results in always choosingai and always giving
di to Picker.

In particular, this means that we may assume that for alli, Picker either picks{(ai, bi), (ci, di)}
or {(ai, ci), (bi, di)}. Moreover, Chooser will getai and Picker will getdi and each player
will get exactly one of(bi, ci).

Proof: Suppose Picker offers a pair(x, y) for whichx ∈ {ai, bi, ci, di} buty 6∈ {ai, bi, ci, di}.
Consider the first such instance. In that case, Chooser choosesx, and ultimately wins by
choosing at least two more elements from{ai, bi, ci, di} \ {x}, giving Chooser every el-
ement of someA of size 3. So, for alli, Picker will pick either{(ai, di), (bi, ci)} or
{(ai, bi), (ci, di)} or {(ai, ci), (bi, di)}. Hence, Chooser and Picker will have at least one
member of each set of size 3.

However, nodi appears in any of the sets of size 6 and so if Chooser wins by choosing
di, then he must also win by not choosingdi. Finally, suppose Picker picks the pair(ai, bi)
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or (ai, ci). Chooser will chooseai in either case because everyA of size 6 that contains
eitherbi or ci will also containai. So, once again, Chooser can only benefit by choosing
ai overbi or ci. Summarizing, if Picker plays optimally; i.e., always taking pairs with the
same subscript, then for every winning strategy in which Chooser choosesdi, there exists
a winning strategy in which he does not and for every winning strategy in which Chooser
does not chooseai, there exists a winning strategy in which he does.

So, we may assume that Picker picks either{(ai, bi), (ci, di)} or {(ai, ci), (bi, di)} for
all i because if Picker picks{(ai, di), (bi, ci)}, then the outcome is the same except that
he cannot control which of{bi, ci} he will be given by Chooser. This proves Claim 2.�

Now let Picker’s{(ai, bi), (ci, di)} or {(ai, ci), (bi, di)} moves correspond to setting
the value ofxi = 1 or xi = 0, respectively.

First we show that if Chooser-Picker onHφ is a win for Picker, thenφ is satisfiable. We
may assume that Chooser plays according to the restrictionsimposed by Claim 2. At the
end of the game, Picker has exactly one of{bi, ci}. Chooser hasai for all i ∈ {1, . . . , n}.
Let x̂i = 1 if Picker hasbi andx̂i = 0 otherwise. By the construction ofHφ, this means
thatφ(x̂1, . . . , x̂n) = 1.

Next we show that ifφ is satisfiable, then Picker-Chooser onHφ is a win for Picker.
Suppose that there is some assignment thatφ = (x̂1, . . . , x̂n). Picker makes sure to get
bi (i.e., Picker picks{(ai, bi), (ci, di)}) if x̂i = 1, and makes sure to getci (i.e., Picker
picks{(ai, ci), (bi, di)}) if x̂i = 0. Because of Claim 2, we may assume that Chooser will
always chooseai for all i ∈ {1, . . . , n}. As a result, Picker will get at least one element
from everyA ∈ E, and wins the game. This proves Theorem 3.2. �

Note that this theorem implies that Chooser-Picker games are NP-hard, even in the
case of hypergraphs(V,E), for which |A| ≤ 6 for all A ∈ E.

3.3.1 4× 4 tic-tac-toe

Before proving the harder Theorems 3.4 and 3.6 we demonstrate Picker’s strategies for
the Chooser-Picker version of well-known games. The4 × 4 tic-tac-toe is a draw game,
and Breaker wins it as a second player. The later statement can be proved by a little
strengthening of Theorem 2.7, see in [7].

One may rightfully expects that Picker wins the Chooser-Picker version of the4 × 4
tic-tac-toe, and indeed this is the case.

Proposition 3.3. Picker wins the Chooser-Picker version of the4× 4 tic-tac-toe.

Proof. Picker takes the two endpoints of the main diagonal, and thenthe two “middle
points” of the other diagonal first. Considering the symmetries, we get the picture on
Figure 1. (Chooser’s pieces are in white, Picker’s are in black.) Then Picker selects the
pairs indicated by the thin lines. �
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Figure 1

3.4 Picker-Chooser version of the generalized Shannon
switching game

Now we prove Conjecture 2.9 for the Picker-Chooser version of Shannon switching game
in the generalized version as Lehman did in [46]. Let(V,F) be a matroid, whereF is the
set of bases, and Picker wins by taking anA ∈ F . Note, that this is equivalent with the
Chooser-Picker game on(V, C), whereC is the collection ofcutsetsof the matroid(V,F),
that is for allA ∈ F andB ∈ C, A ∩ B 6= ∅.

Theorem 3.4. Let F be collection of bases of a matroid onV . Picker wins the Picker-
Chooser(V,F) game, if and only if there areA,B ∈ F such thatA ∩B = ∅.

The notation and the proof closely follow the ones given in [54] for the Maker-Breaker
case.
Proof. First we show that if there are no two disjointA,B ∈ F then Chooser wins. Let
M1 = (V,F) andM = M1 ∨ M1 be the union matroid ofM1 with itself. The rank
functionrM of the union matroid ofM =M1 ∨ · · · ∨Mk is the following,

rM(S) = min
T⊂S

{
|S \ T |+

k∑

i=1

ri(T )

}
,

where the matroids are defined on the same ground setS, and the matroidMi has the
rank functionri. We haveminT⊂V {|V \ T |+ 2r1(T )} = rM(V ) < 2r1(V ), sinceM1

does not have two disjoint bases. Equivalently,|V \ T | < 2(r1(V )− r1(T )). Receiving a
pair(x, y), Chooser keeps an element ofV \T if possible. At the end of the game Chooser
owns at leastd|V \ T |/2e elements ofV \ T .

That is Picker may own at mostb|V \ T |/2c < r1(V ) − r1(T ) elements ofV \ T at
the end of the game.

Let Y be the elements of Picker at the end of the game. Clearly,

r1(Y ) ≤ r1(Y ∩ (V \ T )) + r1(T ) < r1(V )− r1(T ) + r1(T ) = r1(V ),

that is Picker has lost the game.
For the other direction, we assume thatA,B ∈ F ,A ∩B = ∅, and use induction. We

consider the matroidM/y \ x given a pair(x, y) taken by Chooser and Picker, respec-
tively. Clearly Picker wins the game forM if he can win it forM/y \ x. (The dimension
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of M/y \ x is one less than that ofM, and ifA′ is a base ofM/y \ x, thenA′ ∪ {y} is a
base ofM.)

All we need here is thestrong base exchange axiom(or rather theorem), that says
if A andB are bases of a matroidM, then there existx ∈ A, y ∈ B such that both
{A \ {x}} ∪ {y} and{B \ {y}}∪ {x} are also bases ofM. Picker selects the pair(x, y)
such that the above applies, and reduces the game to eitherM/y \ x or M/x \ y. Since
A \ {x} andB \ {y} are disjoint bases both inM/y \x andM/x \ y, we can proceed.�

3.5 Erdős-Selfridge type theorems for P-C and C-P games

The Erd̋os-Selfridge theorem [27] gives a very useful condition forBreaker’s win in a
Maker-Breaker(V,F) game. Note, that here we use the simpler notion, and the set of
edges areF .

Using a stronger condition, Beck [6] proves Picker’s win in aChooser-Picker(V,F)
game. (For the P-C version he proved a sharp result that we include here.) Let||F|| =
maxA∈F |A| be the rank of the hypergraph(V,F).

Theorem 3.5. [6] If

T (F) :=
∑

A∈F

2−|A| <
1

8(||F||+ 1)
, (3.1)

then Picker has an explicit winning strategy in the Chooser-Picker game on hyper-
graph(V,F). If T (F) < 1, then Chooser wins the Picker-Chooser game on(V,F).

We improve on his result by showing:

Theorem 3.6. If ∑

A∈F

2−|A| <
1

3
√

||F||+ 1
2

, (3.2)

then Picker has an explicit winning strategy in the Chooser-Picker game on hyper-
graph(V,F).

It is worthwhile to spell out a special case of Conjecture 2.9for this case, that would
be the sharp extension of Erdős-Selfridge theorem to Chooser-Picker games.

Conjecture 3.7. If ∑

A∈F

2−|A| <
1

2
,

then Picker wins the Chooser-Picker game on the hypergraph(V,F).

Proof. We shall modify the proof of Theorem 3.5 appropriately. The idea of the proof
is to associate a weight functionT (F) to a hypergraph(V,F) that measures the danger
for Picker. The value ofT becomes1 iff Chooser wins the game, so Picker tries to keep
T down. In Maker-Breaker games the greedy selection works, see the classical Erd̋os-
Selfridge theorem in [27] or in [7]. Let
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T (F) =
∑

A∈F

2−|A|, T (F ; v) =
∑

v∈A∈F

2−|A| and T (F ; v, w) =
∑

{v,w}⊂A∈F

2−|A|

for an arbitrary hypergraph(V,F).
Assume that after theith turn Chooser already has the elementsx1, x2, . . . , xi and

Picker has the elementsy1, y2, . . . , yi. Now Picker picks a 2-element set{v, w}, from
which Chooser will choosexi+1, and the other one (i. e.yi+1) will go back to Picker.
Let Xi = {x1, x2, . . . , xi} andYi = {y1, y2, . . . , yi}. Let Vi = V \ (Xi ∪ Yi). Clearly
|Vi| = |V |−2i. LetF(i) be the truncated subfamily ofF which consists of the unoccupied
parts of the still dangerous winning sets:

F(i) = {A \Xi : A ∈ F , |A \Xi| ≤ d|Vi|/2e , A ∩ Yi = ∅}.

Here we will deviate a little from Beck’s proof, since he includes all setsA ∈ F ,
|A\Xi| ≤ |Vi| in F(i) if A∩Yi = ∅. But if |A\Xi| > d|Vi|/2e, then Pickerautomatically
gets an element ofA, so deleting these sets fromF(i) does not change the outcome of the
game.

Let F(end) = F(d|V |/2e), i. e., these are the unoccupied parts of the still dangerous
sets at the end of the play. Chooser wins iffT (F(end)) ≥ 1, so to guarantee Picker’s win
it is enough to show thatT (F(end)) < 1. Letxi+1 andyi+1 denote the(i+1)th elements
of Chooser and Picker, respectively.

Then we have

T (F(i+ 1)) = T (F(i)) + T (F(i); xi+1)− T (F(i); yi+1)− T (F(i); xi+1, yi+1).

It follows that

T (F(i+ 1)) ≤ T (F(i)) + |T (F(i); xi+1)− T (F(i); yi+1)|.
Introduce the function

g(v, w) = g(w, v) = |T (F(i); v)− T (F(i);w)|
which is defined for any 2-element subset{v, w} of Vi. Picker’s next move is that 2-

element subset{v0, w0} of Vi for which the functiong(v, w) achieves its minimum. Since
{v0, w0} = {xi+1, yi+1}, we have

T (F(i+ 1)) ≤ T (F(i)) + g(i), (3.3)

where

g(i) = min
v,w:v 6=w,v,w⊂Vi

|T (F(i); v)− T (F(i);w)|. (3.4)

To estimateg(i) we take a lemma from [6]. It is an easy exercise for the reader.

Lemma 3.8. If t1, t2, . . . , tm are non-negative real numbers andt1 + t2 + . . . + tm ≤ s,
then

min
1≤j<`≤m

|tj − t`| ≤
s(
m
2

) .
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We distinguish two phases of the play.
Phase 1: |Vi| = |V | − 2i > 2||F||. (Note that Beck uses|Vi| > ||F||.) Simple

counting shows that ∑

v∈Vi

T (F(i); v) ≤ ||F||T (F(i)).

By Lemma 3.8 and (3.4),

g(i) ≤ ||F||(
|Vi|
2

)T (F(i)),

so by (3.3),

T (F(i+ 1)) ≤ T (F(i))

{
1 +

||F||(
|Vi|
2

)
}
.

Since1 + x ≤ ex = exp(x), we have

T (F(i+ 1)) ≤ T (F) exp

{
||F||

i∑

j=0

1(
|Vj |
2

)
}
.

It is easy to see that ∑

i:|Vi|>2||F||

1(
|Vi|
2

) < 1

2||F|| ,

so if i0 denotes the last index of the first phase then

T (F(i0 + 1)) <
√
eT (F). (3.5)

Phase 2:|Vi| = |V | − 2i ≤ 2||F||. Then a similar counting as inPhase 1gives

∑

v∈Vi

T (F(i); v) ≤
⌈ |Vi|

2

⌉
T (F(i)).

One checks thatT (F(i + 1)) ≤ T (F(i)) when 2 ≤ |Vi| ≤ 4. If |Vi| ≥ 4, then by
Lemma 3.8 and (3.4),

g(i) ≤ 1

|Vi| − 1
T (F(i)),

so by (3.3),

T (F(i+ 1)) ≤ |Vi|
|Vi| − 1

T (F(i)). (3.6)

Let us recall the well-known Wallis’s formula,limn→∞
1

2n+1

∏n
i=1

(2i)2

(2i−1)2
= π

2
. Since

(2n+2)2

(2n+1)(2n+3)
> 1 for all n ∈ N , we have the inequality for alln ∈ N

n∏

i=1

2i

2i− 1
<

√
π

2
(2n+ 1). (3.7)

By repeated application of (3.6) we have

T (F(end)) ≤ T (F(i0 + 1))2
∏

i:2≤|Vi|≤2||F||

|Vi|
|Vi| − 1

≤ T (F(i0 + 1))2

||F||∏

j=2

2j

2j − 1
.
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Now using (3.7), (3.5) and (3.2), we have

T (F(end)) < T (F(i0 + 1))

√
π(||F||+ 1

2
) ≤ √

eπT (F)

√
||F||+ 1

2
< 1.

Since Chooser cannot completely occupy a winning set, Theorem 3.6 follows. �

To further explore this direction, a generalization of Theorem 3.6 for biased games is
needed. No attempt is made here to get the best possible form,for our needs the following
lemma will be sufficient and useful. See the proof of it in Chapter 5

Lemma 3.9. Picker wins the Chooser-Picker(1 : b) biased game on the hypergraph
F = (V (F), E(F)) if

v

b+ 1

∑

A∈E(F)

2−|A|/b < 1,

wherev = |V (F)|.

3.6 Pairing strategies revisited

3.6.1 Pairing strategies in general

Pairing strategies appear in a plethora of games, see [13]. Certain kind of pairing strategies
were introduced to the theory of Positional Games by Hales and Jewett in [35]. Based on
these pairing strategies they proved the following theorem.

Theorem 3.10. [35] Breaker wins a Maker-Breaker game on the hypergraph(V,E) if
| ∪A∈G A| ≥ 2|G| for all G ⊂ E.

The idea is to use the celebrated Kőnig-Hall theorem1, and exhibit a “double”system
of distinct representatives (SDR), in the hypergraph(V,E). A setX ⊂ V is an SDR if
|X| = |E|, and there is a bijectionφ : X → E such that for allx ∈ X, x ∈ φ(x). If X
andY are SDR’s of(V,E) with the bijectionsφ andψ whereX ∩Y = ∅, thenρ = ψ−1φ
is a bijectionρ : X → Y . Breaker, even as a second player, wins by usingρ. That is,
Breaker takesρ(x) [takesρ−1(y)] if Maker takes anx ∈ X [a y ∈ Y ], and an arbitrary
untaken elementv ∈ V if Maker takes aw ∈ V \ (X ∪ Y ).

While Theorem 3.10 works fine for some games, it has its drawbacks. It rarely
gives sharp results, which is not surprising considering the PSPACE-completeness of
those games. Another problem is that the Kőnig-Hall theorem (and consequently Theo-
rem 3.10) applies only to finite hypergraphs. A remedy for this is a lesser known theorem
of Marshall Hall Jr., that requires only the local finitenessof the hypergraph(V,E). We
say that(V,E) is locally finite if deg(x) := |{A : x ∈ A ∈ E}| <∞ for all x ∈ V .

Theorem 3.11.[36] There is a SDR in a locally finite hypergraph(V,E) iff | ∪A∈G A| ≥
|G| for all G ⊂ E.

Still, Theorem 3.10 does not apply directly if|V | < 2|E|, for instance, one must use
other ideas to tackle thek-in-a-row games in two or in higher dimensions, see [60].

1A generalized form of this theorem will be spelled out in the next paragraph as Theorem 3.11.

42



The Chooser-Picker games

Definition 3.12. The bijectionρ : X → Y , whereX ∩ Y = ∅ andX, Y ⊂ V , is a
winning pairing strategy for Breaker in the Maker-Breaker game on hypergraph(V,E)
if for all A ∈ E there is anx ∈ X such that{x, ρ(x)} ⊂ A.

Of course, we assume that both the functionρ and the decision problem that deter-
mining whether any setY ⊂ V has the property thatY ⊂ A ∈ E are computable in
polynomial time in the size of description of(V,E). (For the sake of simplicity we con-
sider only the case when bothV andE are finite.) Having the bijectionρ, Breaker wins
by takingρ(x) [takingρ−1(y)] if Maker’s last move wasx ∈ X [wasy ∈ Y ]. To decide
the existence ofρ is not easy in general. Let us denote the class of hypergraphsfor which
Breaker has a winning pairing strategy byB.

Theorem 3.13.Determining whether a hypergraph is inB is NP-complete.

Proof. Given a bijectionρ that witnesses a winning pairing strategy, one checks for an
A ∈ E if there is anx ∈ X such that{x, ρ(x)} ⊂ A. For any pair(A, x) it can be
done in polynomial time, and|E||V | is an upper bound on the number of such pairs.
Consequently,B ∈ NP.

To show thatB is NP-hard one can use basically the same argument as in the proof of
Theorem 3.2. There is, however, a simpler reduction. Letφ be an arbitrary CNF in3-SAT.
We construct a hypergraphHφ = (V,E) such thatV = {ri, bi, pi}ni=1 and the edge set,E,
consists of all edgesA such that

• A is {ri, bi, pi} for all i ∈ {1, . . . , n},

• A = {pi, ri, pj, rj, pk, rk} for a clauseC = xi ∨ xj ∨ xk,

• A = {pi, ri, pj, rj, pk, bk} for a clauseC = xi ∨ xj ∨ x̄k,

• A = {pi, ri, pj, bj , pk, bk} for a clauseC = xi ∨ x̄j ∨ x̄k,

• A = {pi, bi, pj, bj , pk, bk} for a clauseC = x̄i ∨ x̄j ∨ x̄k.

A winning pairing strategy for Breaker cannot contain both{pi, ri} or {pi, bi} for
1 ≤ i ≤ n, because the strategy is a bijection. But such a strategy must contain one of
{pi, ri} or {pi, bi} in order to have at least one pair of the form{x, ρ(x)} in each of the
edges of size 3. Letxi = 1 if {pi, ri} is present, whilexi = 0 otherwise. As a result,
a clauseC associated to its corresponding setA of size6 is satisfied if and only ifA
contains a pair.

Remarks. If the hypergraph(V,E) is almost disjoint, then Breaker has a winning pairing
strategy iff | ∪A∈G A| ≥ 2|G| for all G ⊂ E, that is one gets back the assumption of
Theorem 3.10. This case can be decided in polynomial time in the description of(V,E).
As in Theorem 3.2,B is NP-complete for hypergraphs(V,E), where|A| ≤ 6 for A ∈ E.
A result of Hegyháti [41] implies that the existence of a winning pairing strategy can be
decided in polynomial time if|A| ≤ 3 for A ∈ E. The cases when|A| ≤ 4 or |A| ≤ 5, to
the best of our knowledge, are open.
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3.6.2 Applications for k-in-a-row and Snaky

Let d2 be the maximum pair degree in(V,E), that is d2 = maxx 6=y d2(x, y), where
d2(x, y) = |{A : {x, y} ⊂ A ∈ E}|.

Proposition 3.14. If Breaker has a winning pairing strategy thend2|X|/2 ≥ |G| must
hold for allX ⊂ V , whereG = {A : A ∈ E,A ⊂ X}.

Proof. Simply locate the pairs in the winning pairing strategy. There are at most|X|/2
such pairs, which are disjoint. Each pair will be a subset of at mostd2 edges. Since each
edge ofG must have a pair as a subset, the number of edges must be at mostd2|X|/2.

Now we can explain why pairing strategies can work for the game k-in-a-row for
sufficiently largen only if k ≥ 9, see [13]. In thek-in-a-row game,d2 = k − 1, and ifX
is ann×n board, then|G| = 4n2 +O(kn). By Proposition 3.14, we have(k− 1)n2/2 ≥
4n2 +O(kn); that is,k ≥ 9 + o(n).

Another example in which we can use this ideas is the polyomino game Snaky, which
were examined by Harary [37], Harborth and Seeman [38], and Sieben [68]. This game
is a Maker-Breaker game in which the board consists of the cells of the infinite grid and
Maker’s goal is to occupy all of the cells in an isomorphic copy of the polyomino Snaky,
shown in Figure 3.1.

Figure 3.1: The polyomino Snaky. The “head” is the pair of cells in the upper row. The
“body” is the set of four consecutive cells in the lower row.

Using a computer search, Harborth and Seeman [38] showed that there is no pairing
strategy for Breaker in this game. We give a computer-free proof for their statement:

Theorem 3.15. [38] Breaker has no pairing strategy to avoid the isomorphiccopies of
the polyomino “Snaky.”

Proof. Assume to the contrary that there is a winning pairingρ for Breaker. LetP` be the
polyomino which consists of̀ consecutive squares of the table.

First we show thatρ cannot be a pairing for the polyominoP4. Let us assume thatρ
is such a pairing, and consider ann × n boardX such that the edges ofG consist of the
P4’s onX. Sinced2 = 3, Proposition 3.14 gives that3n2/2 ≥ 2n2 + O(n), which is a
contradiction ifn is sufficiently large.

On the other hand, ifρ is a pairing for Snaky, then we will show that it must be a
pairing forP5. To see this, we assign labels to the cells such that cells receive the same
label iff they are paired byρ. Let us take the longest set of consecutive cellsR such that
no labels are repeated onR. We may assume that either those labels are1, . . . , ` for some
` ≥ 5, orR is infinite.

We first consider the casè= 5, and in doing so let us refer to a cell of the grid by
its lower left lattice point. Ifρ is not a pairing forP5, then we may assume, without loss
of generality, that the set of cellsL = {(1, 0), . . . , (5, 0)} contains no pairs. These cells
are labeled by1, . . . , 5 on the left-hand side of Figure 3.2. Since` = 5, the both the cells
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Figure 3.2: The cases̀= 5 and` = 6.

(0, 0) and(6, 0) are in a pair with some cell ofL. (We indicate the cells that have indices
which matching with an element ofL by a diamond, otherwise by capital letters.) This
leaves only three elements ofL that can be matched with a cell the rows above and below
of L.

Consider the Snakys that have four cells inL. The head of the snake will have two
cells in one of 4 disjoint sets of three consecutive cells in the row above or the row
below L. Without loss of generality, we may assume that the three consecutive cells
{(4, 1), (5, 1), (6, 1)}. That is, no cell ofL is matched by the cells{(4, 1), (5, 1), (6, 1)},
labeled by “?” in Figure 3.2. But in that caseρ should contain, as pairs, both{(4, 1), (5, 1)}
and{(5, 1), (6, 1)}, which is impossible. So we may assume that` > 5.

Remark. In the case that̀ > 5, or ` is infinite, we again have a setL containing no
pairs such that|L| = `. Every three consecutive cells in the rows above and belowL
must contain at least one cell whose label is matched to a cellof L, otherwise we finish
the argument as in case` = 5. Here by “the rows above and belowL” we mean sets that
extend one cell longer than the end ofL if L is finite or ifL terminates in one direction.

Second is the case of` = 6 and we may assume that{(1, 0), . . . , (6, 0)} receive
distinct labels. We will show that the only possible patternis shown in the right-hand
side of Figure 3.2. There are diamonds in the cells(0, 0) and (7, 0). Four diamonds
remain to be placed and each set of three consecutive cells above and belowL. The only
possible locations do to so are(2,±1) and(5,±1). This ensures that{(0, 1), (1, 1)} and
{(0,−1), (1,−1)} form pairs, which we label with “A” and “B”, respectively.

Note that neither diamonds above and below the cell “2” can also be labeled by “2”,
otherwise the diamond, its right neighbor, and the cells3, 4, 5, 6 would be a pairing-free
Snaky. The cells above and below the cell “3” are labeled “C” and “D”, respectively. At
this momentC could be equal toD. However, if we consider a standing Snaky on the
cells{(1, 2), (1, 1), (2, 1), (2, 0), (2,−1), (2,−2)}, the only unpaired cells are those that
are labeled with “E”. If we consider a standing Snaky with the same body and the head
towards the upper right, the only unpaired cells are those labeled “C” in the right-hand
side of Figure 3.2. Symmetrically, we may assign labels “D” and “F ” as shown in the
figure. This, however, leads to a contradiction, since therewould be a pairing-free Snaky
again. In particular, the upperE andF cells make the head, and the body consists of the
diamond above the cell “2”, the cell of the lowerC, the empty cell above “4” and the
diamond above the cell “5”. So, we may assume that` > 6.

The third case, wherè= 7, is impossible since the rows above and belowL should
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contain three diamonds each to avoid the snakes and two are needed to the right and left
of L. This totals at least 8, more than the7 that are available.

L 1 2 3 4 5 6 7 8� �
� �A A

L 1 2 3 4 5 6 7 8 9

� � �

� � �

Figure 3.3: The cases̀= 8 and` ≥ 9.

In the fourth case, wherè= 8, we have at most eight diamonds aroundL, two of
those at the ends, and every three consecutive cells above and belowL containing at least
one diamond. So, there are ten cells aboveL and ten cells belowL to receive the re-
maining 6 diamonds. There must be one in the three leftmost cells aboveL, in the three
rightmost cells aboveL, in the three leftmost cells belowL and in the three rightmost
cells belowL. Only two diamonds remain. One must be above one of the cells labelled
“3”, “ 4”, “ 5” or “ 6”. A diamond cannot be above the cell labelled “4” or “ 5” because for
the two Snakys with heads equal to{(4, 1), (5, 1)} and bodies inL, the diamond either
represents one of{1, 2, 3, 4} or one of{5, 6, 7, 8}. Hence, one of these Snakys must be
pairing-free. As a result, the cells{(4, 1), (5, 1)} must be paired with each other and so
we label them with “A”. See the diagram in the left-hand side of Figure 3.3. Because
every three consecutive cells must contain at least one diamond, the cells above the cells
labeled “3” and “6” are labeled with a diamond. This is a contradiction to the fact that
only one diamond can be above these cells. So, we may assume that ` > 8.

In the fifth case, wherè ≥ 9 and is finite, all cells above and below the cells
4, . . . , ` − 3, the “critical region”, must be diamonds. It is the same ideaas in the pre-
vious case: If, say the cell above “4”, isA, then so is the cell above “5”. But the same
is true for the cells above “5” and “6”. Not only must the cellsin the critical region be
diamonds, there must be a total of at least 4 more above at below L to cover all of the
triples of consecutive cells. With the additional two on theendpoints, there must be at
least2(` − 6) + 4 + 2 diamonds, that is impossible, given that the total number ofdia-
monds is at most̀, which is at least 9.

Finally, supposeL is infinite. Take 13 consecutive cells ofL, call it L′. In the critical
region ofL′ there must be2(13 − 6) = 14 cells with diamonds, but they must repeat the
labels in the cells ofL′, a contradiction. This concludes the proof of the fact that apairing
for Snaky must be a pairing forP5.

We exhibit two pairings forP5. The pairingT1 is like a chessboard, where the fields
are2 × 2, and alternately packed by a standing and lying pairs of dominoes as in the
left-hand side of Figure 3.4. The pairingT2 is like an infinite zipper, repeated in both
directions, see the right-hand side of Figure 3.4.
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Figure 3.4: The paringsT1 andT2.

Lemma 3.16.A pairing forP5 is either the translated and rotated copy ofT1 or T2.

Proof. Let us consider a pairing,ρ, for P5. A pair {x, ρ(x)} is good if x andρ(x) are
neighbouring cells. If{x, ρ(x)} is good, thend2(x, ρ(x)) = 4, otherwise it is smaller.
The number ofP5’s are2n2+O(n) on ann×n sub-boardX, so Proposition 3.14 implies
that at all butO(n) pairs onX are good. It follows that, ifn is sufficiently large, then
there is aY ⊂ X, k × k square sub-board that contains only good pairs. I. e. thisk × k
sub-board is paired by dominoes.

There are either two dominoes meeting at their longer sides,or the two long sides
meet but are offset by one unit. In these cases the immediate neighbouring dominoes are
forced to be in the pattern ofT1 or T2, respectively.
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Figure 3.5: The forcing for pairs and filling.

We will show that if we have a large enough pattern of dominoes, then the pairs in
the neighbouring cells are forced to be in eitherT1 or T2. First suppose that, within
the pattern tiled by dominoes that two dominoes share a long edge, as in the dominoes
labelled with “1” in the left-hand side of Figure 3.5. Since the pairs can only occur as
dominoes, we can use horizontalP5’s to ensure the pairing is oriented as in the dominoes
labelled with “2”. VerticalP5’s ensure the orientations of the dominoes labelled “3”. We
can continue in this fashion, getting the8 × 8 pattern in the left-hand side of Figure 3.5.
Once this is determined, one can extend the pattern to a larger rectangle, forcing not just
the domino condition, but theT1 pattern itself. This can be seen by first taking horizontal
P5’s in rows 1,2,5,6 that have two cells outside of the pattern.Then taking verticalP5’s in
columns 9,10, the pattern can be extended to an8 × 10 rectangle. This can be continued
ad infinitum, showing that the entiren× n board must be in the patternT1.

Next, suppose that whenever two dominoes meet at their long edge in the sub-board,
that they are offset by one unit, since two dominoes meeting at their long edge will force
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the patternT1. See dominoes labelled “1” in the diagrams in the center or the right-hand
side of Figure 3.5. The pairs must occur as dominoes and so vertical P5’s ensure that the
dominoes labelled with “2” are placed in that location. Now,consider the right-hand side
of Figure 3.5. TwoP5’s are indicated by thin lines. Since the dominoes cannot share a
long side, this forces the placement of the dominoes labelled with “3”.

In fact, if we know that a sub-board is tiled with dominoes that do not share a long
edge, then the configuration must be that ofT2. It remains to show that if we have a large
enough fragment ofT2 in a sub-board, then, even if the board is not guaranteed to be
tiled with dominoes, it must be completed to aT2 pattern. The other pairs are forced even
without the assumption that those are in dominoes, since theotherwise aP5 containing
no pair would arise.

To see how we can use this sub-board to extendT2 to the whole board, we first show
in the center of Figure 3.5 how enough pairs can be formed under the assumption that
every pair forms a domino and no pair of dominoes can share a long edge. The numbers
show the order in which dominoes can be taken. Then, in Figure3.6 we show how, under
no assumptions that the pairs occur as dominoes, that the dominoes that cover the7 × 7
board can be extended to cover a9×9 board. Again, the numbers show the order in which
dominoes can be taken.

The general approach is that one can force new horizontal dominoes in every third row
that touch the left and right border of the small square and vertical dominoes in every third
column that touch the top and bottom border. From there, the rest of the larger square is
easy to complete. This can continuead infinitumuntil the board is filled. This concludes
the proof of Lemma 3.16.

10 10
12 11 12

13 13

10

10

13 13

12 11 12
10 10

· ·· ··· ·· ·· ·· ·· ·· ·· ··· ·· ·

Figure 3.6: Expanding a7× 7 square to a9× 9 square. The dominoes given by the7× 7
square are marked with “·”.

By Lemma 3.16, the pairs ofρ are either in the patternT1 or the patternT2, but none
of those are pairings for Snaky. This concludes the proof of Theorem 3.15.

3.7 Torus games

To test Beck’s paradigm from Conjecture 2.9that Chooser-Picker and Picker-Chooser
games are similar to Maker-Breaker games, we check the status of concrete games de-
fined on the4 × 4 torus. That is, we identify the opposite sides of the grid, and consider
all lines of slopes0 and±1 and size4 to be winning sets. We denote the torus, along
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with those winning sets with the notation42. For the general definition of torus games,
see [7]. We use a chess-like notation to refer to the elementsof the board. We note that
the hypergraph of winning sets on42 is not almost disjoint, see e. g. the two winning sets
{a2, b1, c4, d3} and{a4, b1, c2, d3}. See Figure 3.7. We consider four possible games on
42: Maker-Maker, Maker-Breaker, Chooser-Picker and Picker-Chooser. According to [7],
the Maker-Maker version of42 is a draw, and, according to [21], Picker wins the Chooser-
Picker version. Here, we investigate the Maker-Breaker andthe Picker-Chooser versions.
In fact, the statement of the Maker-Breaker version impliesthe result for the Maker-Maker
version, while the proof of it contains the proof of the Chooser-Picker version.

Proposition 3.17.Breaker wins the Maker-Breaker version of the42 torus game.

Proof. Using the symmetry of42, we may assume, without loss of generality, that Maker
takesa4. Breaker’s move will then be to taked1. Up to isomorphism, there are eight cases
depending on the next move of Maker. The first element of the pair is Maker’s move, while
the second is Breaker’s answer: 1.(c3, b2), 2. (b3, b2), 3. (c2, b2), 4. (b4, c3), 5. (c4, b4),
6. (d4, c3), 7. (d2, a3) and 8.(d3, b1).

In the first seven cases Breaker has winning pairing strategies. All eight cases are
shown in the first two rows of Figure 3.7 and the pairs appear under the labelsA, B, C,
D, andE. We leave it to the reader to check that the pairs block all 16 winning sets.

In the eighth case Breaker does not have pairing strategy, but the game reduces to one
of the seven prior cases unless Maker playsa3, a2 or a1 in the third step of the game. In
that case, Breaker playsb4, a3 or b2, respectively, and wins by the pairing strategy shown
in the third row of Figure 3.7.

Note that in the Chooser-Picker version of the game42, Picker can achieve a position
isomorphic to Case 1. That is, Picker wins.

If Conjecture 2.9 were true, then Breaker has an easier job inthe Maker-Breaker
version than Chooser has in the Picker-Chooser game. For the4× 4 torus the outcome of
these games are the same, although this is much harder to prove.

Proposition 3.18.Chooser wins the Picker-Chooser version of42, the4× 4 torus game.

Sketch of the proof. The full proof needs a lengthy exhaustive case analysis. However,
some branches of the game tree may be cut by the following result of Beck [6]: Chooser
wins the Picker-Chooser game onH if T (H) :=

∑
A∈E(H) 2

−|A| < 1.
In our case,T (H) = 16 × 2−4 = 1, which just falls short. Instead we use a similar

method using so-calledpotential functions. We assign weights to each edge at thei th

stage such thatwi(A) = 0 if Chooser has taken an element ofA, otherwise it is2−f(A),
wheref(A) is the number of untaken elements ofA. The weight of a vertexx iswi(x) =∑

x∈Awi(A), while the total weight iswi :=
∑

A∈E(H)wi(A).
Note that Picker wins if and only if bothw8 ≥ 1 andw0 = T (H) = 1. When a pair

(x, y) is offered, Chooser can always take the one with larger weight, which results in a
non-increasing total weight. In fact, if the weights ofx andy differ or bothx andy are
elements of anA of positive weight, then the total weight strictly decreases.

In order to have any possibility of winning, Picker has to select x and y of equal
weights and no edge of positive weight containing both. By the symmetries of the board,
we may assume Picker getsa4 and Chooser getsc3 in the first round. After that, Picker has

49



The Chooser-Picker games

i

i

y

y

i

i

y

y

i

i

y

y

i i

y

y

a b c d

1

2

3

4

A

A

B

B

C

C

D D

E E

F

F

A

A

B

B

C

C

D D

E E

F

F

A

A

B

B

C

C

D D

E E

F

F

A

A

B

BC

C D D

E E

F

F

i i

y

y i i

y

y

i

i

y

y

i

i

yy

a b c d

1

2

3

4

A

A

B

B

C C

D D

E

E

F

F

A

A

B

B

C CD

D

E E

F

F

A

A

B

B

CC D

D

E E

F

F

i

ii

yy

y i

i

i

yy

y

i

i

i yy

y

a b c d

1

2

3

4

A

A B

B

C C

DD

E

E A

A

B

B

C C

D

D

E E

A

A

B

B

C

C

DD

E E

Figure 3.7: The pairings used by Picker in the game42.
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only pairs(x, y) that do not result in a loss for Picker:(b4, d3), (a3, c4), (b3, d4), (a3, b3),
(a3, d3), (b3, d3), (a1, b2) and(a1, d2), see Figure 3.8. The letter P [C] designates the
vertex taken by Picker [Chooser] in the first step, the numbers are the weights of the
vertices.
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Figure 3.8: The beginning of the Picker-Chooser42 game.

The rest of the proof is similar to that of the prior step: one needs to check that
Chooser has winning strategy for each of the eight nontrivial responses of Picker. We
omit the details.
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The Chooser-Picker 7-in-a-row game

4.1 The k-in-a-row game

The k-in-a-row game is that hypergraph game, where the vertices of the graphs are the
fields of an infinite graph paper (Z2), and the winning sets are the consecutive cells (hor-
izontal, vertical or diagonal) of lengthk. If one of the players gets a lengthk line, then
he wins otherwise the game is draw. Note the assuming perfectplay, the winner is always
the first player, or it is a draw by the strategy stealing argument of John Nash, [13]. More
details aboutk-in-a-row games in [61, 62].

The board of the classical 5-in-a-row game is a graph paper orthe19× 19 Go board1,
and the players’ goal is to get five squares in a row vertically, horizontally or diagonally
first.

It is easy to see that the first player wins ifk ≤ 4, and a delicate case study by Allis
[1] shows that the first player wins fork = 5 on the19 × 19 or even in the15 × 15
board. From this result it doesnot follow that the same is true for the infinite board, as it
sometimes claimed, [25]. Theoretically it can be occurred,that by placing there an other
winning set - the new game is a draw. This phenomenon is calledExtra Set paradox. The
simplest example for it is the following: In the figure 4.1 there is a hypergraph with 8
branches (these are the winning sets). The players marks thevertices one-by-one. This
first player can easily win this game, but if we add that extra 3length wining set, then the
game is draw.

Figure 4.1: If the first player chooses one-one vertices for all of the branchings, then
he/she wins. But if the first player cares for the second player not to occupy the extra
winning set, then the first can not win.

So the casek = 5 is still open on the infinite board, but Allis’ result impliesthat
Maker wins fork = 5 in the Maker-Breaker version.

1The Go-Moku rules differs from the 5-in-a-row, see e. g. [13].
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It is much less known that the K̋onig-Hall theorem can be extended to the infinite case,
at least if the hypergraph islocally finite. This is due to Marshall Hall Jr., see [36].

Theorem 4.1(M. Hall Jr.). The system of finite sets{Ai}∞i=1 has system of distinct repre-
sentatives, if for all finiteI ⊂ N | ∪i∈I Ai| ≥ |I|.

We can use this theorem for thek-in-a-row game played in the infinite board. It gives
a draw fork ≥ 15 . If we play on ad dimensional board this number isk ≥ 2(3d− 1)− 1
[60]. If d = 2 then we getk ≥ 15, if d = 3 thenk ≥ 53, if d = 4 thenk ≥ 159 and so on...

The game is ablocking draw, i. e. Breaker wins the Maker-Breaker version a ifk ≥ 9,
proved first by Shannon and Pollak by usingH letter shape, auxiliary sub-boards. The
Breaker wins all of the sub-game, and it means that the game isdraw (even the weak and
the strong case). Later even a pairing strategy was given, [7, 13].

Figure 4.2: The 9-in-a-row draw: proof by two different tillings.

Finally Breaker’s win was published by A. Brouwer under the pseudo name T. G. L.
Zetters2 for k = 8, [34]. The proof is also uses sub-games. The authors made twoseri-
ous mistakes when they sent their solution to theAmerican Monthlyfor R. K. Guy and J.
L. Selfridge problem. One was that they believed that the 7-in-a-row also can be handled
such “easy” way. The other was the alias, because since 30 years nobody could improve
this result.3

2This pun certainly refers to the proof that Shannon and Pollak gave for the casek = 9. They used “H”
shaped sub-boards, here more sophisticated sub-boards areneeded. Note that “zetter” means “typesetter”
in Dutch.

3A. E. Brouwer’s homepage, see http://www.win.tue.nl/ aeb/publications.html#pubpapers refers to that
he was one on the authors.
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Figure 4.3: The original 8-in-a-row is draw [34] and the C-P version is also a draw [21].
Both uses this tilling (the winning sets are 3-4 length diagonal and straight lines and two
additional pairs). It can be seen, that neither direction can be marked 8 consecutive cells,
it means that none of them has a whole hyper-edge.

Both the Maker-Maker and the Maker-Breaker versions of thek-in-a-row fork = 6, 7
are open. These are wisely believed to be draws (Breaker’s win) but, despite of the efforts
spent on those, not much progress has been achieved.

4.1.1 Accelerated, and biasedk-in-a-row games

Now here comes an example for accelerated games: the acceleratedk-in-a-row. The
theorem below (see [61]) shows the length of the winning set in formulap + f(p) where
p is the speed of the acceleration.

Theorem 4.2(Pluhár, [61]). If f(p) ≥ 80 log(p) + 160 and p ≥ 1000, them Breaker
wins theAp+f(p)(p, p) accelerated game. Iff(n) = log2 p

log2 log2 p
− 1, then Maker wins the

Ap+f(p)(p, p) accelerated game.

In more specific cases there can be proved more. For example Wuand Huang [74]
found the following result :

Theorem 4.3(Wu-Huang [74]). The biased 6-in-a-row(p = 2, q = 3) (e.g.Connect(6, 2, 3))
is a second player win.
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Before proving the C-P7-in-a-row game, we prove the easier C-P8-in-a-row game:

4.2 The Chooser-Picker 8-in-a-row game

Proposition 4.4. Picker wins the Chooser-Picker version of the game8-in-a-row on any
B ⊆ Z

2.

Proof. First we need to use the lemma 2.18
We shall cut up the infinite board to sub-boards in the same wayas it was in [34], see

also Figure 3. The left tile and its mirror image are the basesof the tiling. The winning
sets for the these sub-boards are the rows, the diagonals of slope one, and the two pairs
indicated by the thin lines. The middle of the picture shows the tiling itself. We use one
type of tile in an infinite strip, and its mirror image in the neighboring stripes. On the
right side of Figure 3 the transformed tile is drawn, where the winning sets are the rows,
columns and the indicated two pairs.

@@

@@

Figure 3

Let B̄ be the union of those sub-boards meetingB. We show that Picker wins the
Chooser-Picker 8-in-a-row game for the boardB̄. Note thatB̄ is a union of sub-boards.
Picker plays auxiliary games on the sub-boards independently of each other with the goal
of preventing Chooser from getting a winning set of a sub-board.

To achieve this goal, Picker selects the two pairs first on anysub-board, that give rise
to the possible positions shown on Figure 4. Then Picker usesthe appropriate winning
pairing strategy indicated by the thin lines. One checks easily that if Picker wins all the
auxiliary games then he wins the Chooser-Picker 8-in-a-rowgame on playingB̄, too.
Finally, by Lemma 2.18, Picker wins onB. �

f f

v

v

f v

v

f

v v

f

f

Figure 4

Now we prove the C-P7-in-a-row game:

4.3 The Chooser-Picker 7-in-a-row game

Theorem 4.5.Picker wins the Chooser-Picker 7-in-a-row game on every A subset ofZ2.
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Let us start with the strategy of the proof. By applying the remedy mentioned before
Lemma 2.18 at first Chooser determines the finite boardS. We will consider a tiling of
the entire plane, and play an auxiliary game on each tile (sub-hypergraph). It is easy to
see, if Picker wins all of the sub-games, then Picker wins thegame played on anyK
board which is the union of disjoint tiles. LetK be the union of those tiles which meet
S. SinceS ⊂ K, Lemma 2.18 gives that Picker also wins the game onS, too. Now
we need to show a suitable tiling and to define and analyze the auxiliary games. The
tiling guarantees that if Picker wins on in each sub-games then Chooser cannot occupy
any seven consecutive squares onK.

Each tile is a4 × 8 sized rectangle and the winning sets, for the sake of better under-
standing, are drawn on the following four board:

Figure 4.4: These are the winning-sets of the4 × 8 rectangle. Easy to see, that there is
exactly one symmetry (along the double line). Later we will make use of it.

Figure 4.5: We can see, how to draw from playing on simple tile, the game played on the
infinite chessboard: neither vertically, nor horizontally, nor diagonally (there is only one
diagonal direction detailed) there are no seven consecutive squares without containing
one winning set of a sub-game.

The key lemma for our proof is the following.

Lemma 4.6. Picker wins the auxiliary game defined on the4× 8 rectangle.

Before starting the proof of Lemma 4.6, let us estimate the actual complexity of the
Maker-Breaker and Chooser-Picker versions of the auxiliary “4× 8-game.”
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4.3.1 Some words about the Maker-Breaker case

Before of proving the theorem, let us says a few words about the weak version of the
same subgame and the concept of its evaluation. The basic of the proof is a DFS algorithm
for the double steps (first Maker, after Breaker).4 An algorithm which tries all of the cases
needs32! steps. We usebranch and boundtechniques to reduce the cases. Regarding that
fact that there is only one symmetry in the board it is not so easy task. So we has to use
backtracking (see 2.3.3), weighting (see 2.3.2) and dominating techniques as well (see
here).

Some useful techniques to fasten the game

• general:
–It always helps if Breaker has a good defending heuristic, but it is “only” gets the
square root of the32!
–After 10-12 steps the board splits into pair-wise disjunctcomponents. It is enough
to study the separate components.
–The players should play “balanced” in the two parts of the graph.
– It is useful to make dictionaries for the often occurring stages (=final stages with
some unoccupied cells at the end).

• weighting:
–By using weighting techniques if Maker has a quick (one step) win then take it.
–Breaker should occupy first such fields where are a lot of unoccupied winning sets.

• dominating:
If Maker cannot win in the next step, then it is not worthwhilefor Maker to step to
a place where is at most one winning-set which is not marked byBreaker. It means
that it is not worthwhile to step places where is just one winning set and more then
two cells for it.

Remark. We checked with brute force computer search the M-B game on the same
auxiliary board (see 4.3.1), but it is a Maker win!

Figure 4.6: Encoding the table

4It is interesting that the proof is a BFS algorithm, but we useDFS, because we need to know the result
of a stance before we start to examine an other one. So we use use DFS to examine the board.
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Maker can force a win by the following moves (by using the encoding above). Not all
of the Breakers move are directly forced, but if Breaker doesnot take that move sooner or
later looses.

The begining:
A2-B1; G1-H2; C4-B3; E1-F1; A4-A3;
The trick:
(solution I) B2-B4; C3-C2; D4-A1; E2-D3
(solution II) B2-D4; E2-D3; D2-C2
Endgame:
G2-H3; G4-G3; F3-D1; E4-H1; F4 (Maker wins by double threat)

So we cannot use the same table again, to prove that the weak version (Maker-Breaker
version) of this game is a Breaker win. One is tempted to look for other auxiliary games,
which is not going to be easy. As a rule of thumb, it always goodidea to check the C-P
version of these games at first.

4.3.2 The Chooser-Picker case

In the Maker-Breaker version Maker has32 possible moves, then Breaker has31, so
clearly the (unpruned) game-tree has size32!. Even worse, it may be hard to write down
convincing evidence of the outcome after searching this tree. In the Chooser-Picker case,
provided that Picker win, there is always a much shorter proof of the outcome. Picker
exhibits two squares and depending on Chooser move, only twosmaller games have to be
searched. This leads to a game-tree of size216, which is reasonable to search. (Note that
if Chooser wins a Chooser-Picker game, the verification can be even harder than a proof
for the corresponding Maker-Breaker version.)

With some consideration the length of the case-study of the Chooser-Picker version
can be reduced, too. One tool of this is a classification on thepartially filled tables. Let us
denote the squares of a boardT taken by Chooser or Picker byTC andTP , respectively.
From Picker’s point of view the tableT is more dangerous than the tableT ′ (T > T ′) if
T ′
C ⊂ TC andTP ⊂ T ′

P . Thus if Picker has apwinning strategy onT , as a consequence of
Lemma 2.18 playing the modifiedp Picker also wins onT ′. See the application in 4.3.3.

An other gain is that Picker can ask an appearing two length winning set immediately
by Lemma 2.17. (In the defined4 × 8 auxiliary game there are two such pairs at the
beginning already, and some appears later.)

Finally, we do not always have to go down to the leaves to the game-tree, since an
appropriate pairing strategy may prove Picker’s win in an inner vertex of that tree.

Our plan is for proving the key lemma is

I. Separating cases: A) and B) type cases.

II. Filling up one side of the auxiliary table using breath first search.

III. After a case classification filling up the other side.
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4.3.3 The proof of the key lemma

The course of the proof is: We take the 2 piece of 2 length winning set. Picker picks them
at the beginning (Picker can do this without any disadvantage thanks to the Lemma 2.18).
Depending on Chooser selection, there are two cases:

A) Chooser gets the upper square at least one side.

B) Both side Chooser gets the lower ones.

Figure 4.7: The two cases: caseA), and caseB).

From the characteristic of the game, the tree which describes the game is binary-tree,
we should walk breadth first on the cases; thus the cases with the same parent are be-
side each other. (After Picker’s move, these are the two possible choices of Chooser).
According to this, the positions are indexed lexicographically: A, B, a, b, i, ii, I, II. . .

Somehow remarkable, that we the use breath first search to write down the proof, but
to find the value of the game we always use deep first search algorithms (because we have
to know the outcome of the game, before we are looking to the next branch of the tree).

case A)

Without loss of generality, we may assume Chooser occupies the upper square on the left
side (there might be the same on the right side). Now Picker’sstrategy is to fill up the
left side and leave the least possible crossing winning setsare left alive (see more detailed
at Index_A). On the pictures in the Appendix the special marks like =, *,+, etc. are the
pairs to be asked by Picker. At that stage it makes no difference which squares are chosen
by Chooser. And those marks also indicates the ending of a branch of the game-tree.

It is convenient to introduce to a new notation: It helps Chooser’s game if we change
one of Picker’s square to a free square, and it is also advantageous for Chooser if he/she
gets one of the free squares (P� FREE� C). It means that it is not necessary to prove a
case if there exists a more dangerous one.

From both Picker and Chooser point of view a square (be occupied or not) isuninter-
esting,if each winning set which contains it is “dead.” It does not change the outcome of
the game if we give these squares to Picker.

Then after filling up the left side we can create equivalence classes using the relations
and arrangements above. In this way one have to consider seven cases only:

The finish of these positions above (=filling up the right side) can be found detailed in
the Appendix of the paper (see IndexRa, IndexRb, ...IndexRg)
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Figure 4.8: If on the “left side” matching Chooser occupies the “upper” square, than
Picker can achieve one of this stages (or an equivalent or less perilous position, using
arrangement above).

case B)

If case B) happens, then Picker asks the following two matching (see below), hence, using
the symmetry, it is enough to examine the following three cases.

The results of the three cases are also detailed at the APPENDIX (see IndexBa,
IndexBb, IndexBc ), that concludes the proof of Lemma 4.6 and consequently Theo-
rem 4.5. �
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Figure 4.9: If at the beginning Chooser takes the “lower” squares on both side, then Picker
asks the two colored pair of squares in the middle. It gives rise to three cases.
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Chapter 5

The Picker-Chooser Diameter Game

5.1 Introduction to Graph Games

Large classes of Maker-Breaker games are defined on the complete graph onn vertices.
The players take the edges of the graph in turns; Maker wins iff his subgraph has a given,
usually monotone, propertyP, see [8, 5, 12, 17, 40]. As we mentioned in subsection 2.2.3,
in those cases a the random heuristic works very well. That isif p0 is thethreshold1 for
the propertyP, than Maker should win the if(1 : b)-game ifb < 1/p0, while Breaker
should win ifb > 1/p0.

This heuristic is so powerful, that sometimes even a random play confirm it [12].
After that the following results is quite surprising. Balogh et al. [2] introduced the

(a : b) d-diameter game, shortlyDd(a : b), which means that Maker wins iff the diameter
of his subgraph is at mostd. These games turned out to be very difficult and surprising; a
detailed discussion will be given in Section 5.2. The main result of Balogh et al. was that
Maker loses the gameD2(1 : 1) but Maker wins the gameD2(2 : 1

9
n1/8/(logn)3/8).

That is the acceleration of a game may change the outcome dramatically. This phe-
nomenon was first noted by Pluhár [61]. The outcome also changes a lot when one con-
siders the Picker-Chooser version of the gameD2(1 : 1). Our main result is the following
theorem.

Theorem 5.1. In the Chooser-Picker gameD2(1 : b), Picker wins ifb <
√
n/(16 log2 n),

while Chooser wins ifb > 3
√
n, provided thatn is large enough.

5.2 Diameter and degree games

Let us repeat the definition from the introduction. The diameter d gameDd(a : b) is
played on the edges of the complete graphKn, Maker (Breaker) takesa (b) edges in each
turn. If Maker’s edges form a subgraph of diameter at mostd at the end, then Maker wins
the game, otherwise Breaker wins.

Balogh et al. [2] observed that the gameD2(1 : 1) defies the probabilistic intuition
completely. Indeed, if one divides the edges ofKn among Maker and Breaker randomly,
then Maker’s subgraph will almost surely have diameter two.Still, Breaker has a simple

1It means roughly thatP holds forG(n, p) almost surely ifp− ε > p0 and fails ifp < p0 − ε, for any
ε > 0, n goes to infinity.
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pairing winning strategy forn > 3, [2]. First taking an edgeuv, such that neitherux nor
vx has been taken by Maker for any vertexx. Then if Maker takesux, takingvx follows,
and if Maker takesvx, Breaker takesux, otherwise an arbitrary edge is taken.

However, when playing the gameD2(2 : 2), this pairing strategy is not available for
Breaker. Maker wins the gameD2(2 : 2), and even more, the gameD2(2 : b), whereb
grows polynomially inn, provided thatn is large enough.

Theorem 5.2. [2] Maker wins the gameD2(2 : 1
9
n1/8/(lnn)3/8), and Breaker wins the

gameD2(2 : (2 + ε)
√
n/ lnn) for anyε > 0, providedn is large enough.

Note that the random graphG(n, p) has diameter two with probability close to one
if p > n−0.5+ε, while this probability is close to zero, ifp > n−0.5−ε andn is large
enough. The breaking pointb0 of Theorem 5.1 is within that interval, so we may say the
Picker-ChooserD2(1 : b) game follows the probabilistic intuition.

To prove Theorem 5.1 we need to study the so-calleddegree games. Székely, Beck
and Balogh et al. [73, 5, 2] showed that these games are interesting in their own right.

In such games one player tries to distribute his moves uniformly, while the other
player’s goal is to obtain as many edges incident to some vertex as possible. Given a
graphG and a prescribed degreed, Maker and Breaker play an(a : b) game on the edges
of G. Maker wins by getting at leastd edges incident to each vertex. ForG = Kn and
a = b = 1 this game was investigated thoroughly in [73] and [5]. It wasshown that Maker
wins if d < n/2−

√
n lnn, and Breaker wins ifd > n/2−√

n/12.
This is in agreement with the probabilistic intuition, since in Gn,1/2 the degrees of

all vertices fall into the interval[n/2 −√
n logn, n/2 +

√
n log n] almost surely. We are

interested only in the case ofG = Kn.
Balogh et al. [2] proved the following lemma:

Lemma 5.3. [2] Let a ≤ n/(4 lnn) andn be large enough. Then Maker wins the(a : b)
degree game onKn if d < a

a+b
n− 6ab

(a+b)3/2

√
n lnn.

As we do not wish to develop the complete theory of P-C (C-P) degree games, we state
only a simple form that suffices our needs and furthermore provides an elegant proof.

Lemma 5.4. Let b < n/(8 lnn) andn be large enough. Then Chooser wins the(1 : b)
Chooser-Picker degree game onKn if d < n− 1− 3n/b.

5.3 Proofs

5.3.1 The casea = b = 1

Both directions of Theorem 5.1 rely heavily on the weight function method. It is worth
noting that it is much easier to prove Picker’s win in a special case. A brief discussion
needs to follow so that we can introduce some of the notions used later.

Observation.
Picker wins the P-C gameD2(1 : 1) on the graphKn, if n > 22.

Proof. Let us start with a definition. Playing the game, Pickerlinksa set of vertices, if he
achieves that all the distances among those are at most two.
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At first Picker marks two non-incident edges(a, b) and(c, d). Chooser chooses one of
them, for instance(c, d), while (a, b) goes back to Picker. Then Picker picks all pairs of
edges((p, a), (p, b)) for p ∈ V \ {a, b} one by one. We can partitionV \ {a, b} = A∪B,
whereA andB are the vertices connected directly toa andb, respectively. The vertices
within A andB are linked together, and both sets are linked to botha andb.

Say, that|A| ≥ |B|, which also means|A| ≥ 10. We show that Picker can get a
complete matchingM for covering the vertices ofA, if A is even. IfA is odd, Picker can
get a matchingM and possibly a triangleT . Let the vertices ofA be 1, . . . , k. Picker
offers the edges(1, 2) and(1, 3) and gets back, for example, the edge(1, 2). Then Picker
offers the edges(3, 4) and(3, 5) and again we may assume that the edge(3, 4) goes back
to Picker and so on.

If A is even, Picker ends up with the almost perfect matchingM′ consisting of the
edges{(i, i+ 1)}, for i = 1, 3, 5, . . . , k− 2. Then Picker offers the pair(1, k− 1), (2, k),
and getting back, say,(1, k−1). Finally, Picker offers the pair(2, k), (k−1, k). Obviously,
either(k−1, k) or (2, k) leads to a perfect matchingM, since eitherM = M′∪{k−1, k},
orM = {M′ \ {(1, 2)} ∪ {(1, k − 1), (2, k)}}.

If A is odd,M′ is the same as before, exposing only the vertexk. Picker may ask for
(1, k), (3, k), then(5, k), (7, k). He gets back two of these edges, say(1, k) and(5, k),
and then asks for the pair(2, k), (6, k). This result is a matching and a triangle, covering
A.

Finally, Picker picks edges in pairs(b′, x), (b′, y), where(x, y) ∈ M, b′ ∈ B. It links
vertexb′ to bothx andy, or in case of a triangle{i, i+ 1, k}, to these vertices.

5.3.2 Proof of Lemma 5.4.

First, we transfer the degree game to a P-C game played on a hypergraph. The hypergraph
H = (V (H), E(H)) is such thatV (H) is the edges ofKn, whileA ∈ E(H) iff |A| =
d3n/be and all (graph) edges inA incident to a vertexx of Kn. To prove the lemma, it is
enough to show that Chooser wins a P-C game onH.

Let Chooser choose randomly and independently in each round, which means that
Picker gets back any edgee with probability1/(b+1). Hence, for any strategy of Picker,
the probability that Picker gets every edges of anA ∈ E(H) is not more than(b +
1)−d3n/be. By the Boole’s inequality and since

(
n
k

)
< (en/k)k, we have

Pr (Picker wins) ≤
∑

A∈E(H)

(b+ 1)−d 3n
b e = n

(
n⌈
3n
b

⌉
)
(b+ 1)−d 3n

b e ≤ n
(e
3

) 3n
b
< 1,

if b < n/(8 lnn), andn is large enough. This means that Picker cannot have a winning
strategy, and since the game has only two outcomes, Chooser must be the winner.

To prove Theorem 5.1, we prove Lemma 3.9 first.
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5.3.3 Proof of Lemma 3.9.

We use weight functions, for more details see [27, 9]. Letλ be such thatλb = 2. The
weight of an edgeA isw0(A) = λ−|A| at the beginning. The weight ofA at theith step is

wi(A) =

{
λ−|A|+k if Picker has no elements ofA

0 otherwise,

wherek is the number of vertices inA occupied by Maker (Chooser). Theweight
of a vertexx ∈ V (H) is wi(x) =

∑
x∈Awi(A). The total weightat theith round is

wi =
∑

A∈H wi(A).
Note that it is enough to show that Picker can guaranteewi < 1 for all i. Indeed, if

Chooser occupies an edgeA at theith round for somei, thenwi ≥ wi(A) = 1. We will
see how Picker keepswi small.

In each step Picker marksb+1 point and Chooser keepsb of those and one goes back
to Picker. Thus, in each roundi, the number of unoccupied vertices of the hypergraphvi
is decreased byb+ 1;

v0 = v, v1 = v − (b+ 1), . . . , vb v
b+1c = vlast < b+ 1.

Let w̃ be the largest weight of a vertex in theith round. By the pigeon hole principle,
there must beb + 1 vertices, such that their weights are all in an intervalI of length
D = w̃(b+ 1)/vi. Picker picks those vertices. Let the endpoints ofI bew andw∗, that is
I = [w,w∗].

The biggest possible growth of the total weight function occurs if one vertex has
weightw, b vertices have weightw∗ and Chooser keeps those. So, if Picker picks these
vertices, than the total weight in the(i+ 1)th round can be bounded as follows:

wi+1 ≤ wi − w + (λb − 1)w∗ ≤ wi + (λb − 2)w∗ + (w∗ − w) = wi + (λb − 2)w∗ +D.

Sinceλb = 2, we have thatwi+1 ≤ wi +D. Now we plug in thatD = w̃(b + 1)/vi and
w̃ ≤ wi:

wi+1 ≤ wi +
w̃(b+ 1)

vi
≤ wi +

(b+ 1)wi

vi
≤ · · · ≤ w0

b v
b+1c−1∏

k=0

(
1 +

b+ 1

vk

)
.

To ease the notation letB = b+ 1, ` =
⌊

v
b+1

⌋
, and we also use the inequality1 + x < ex.

We have that for alli = 0, . . . , `

wi ≤ w0

`−1∏

k=0

(
1 +

B

v − iB

)
≤ w0 exp

{
`−1∑

k=0

B

v − iB

}
≤

w0 exp ln
v

B
= w0

v

B
= w0

v

b+ 1
=

v

b+ 1

∑

A∈E(H)

2−|A|/b < 1,

by the assumption of the lemma.
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5.3.4 Proof of Theorem 5.1

The second part of the theorem, i. e. Chooser wins ifb > 3
√
n, comes from Lemma 5.4.

Let Chooser play accordingly to that lemma, then Picker getsat most(3n/b) − 1 edges
at any vertexx ∈ Kn, so the number of vertices that are linked tox is no more than
((3n/b)− 1)2 < n− 1.

To prove the first part of the theorem implies more work. We split the vertices of the
graph into three approximately equal parts,X1,X2 andX3. (LetXi beXi mod 3 if i > 3.)
The elements ofXi may be listed as1, 2, . . . , n/3.2 E(Xi, Xj) denotes the edges between
the setsXi andXj.

We will play two different games among and inside the parts. At the first game we
link the points ofXi usingE(Xi, Xi+1), for i = 1, 2, 3. At the second game we link the
setsXi with Xi+1 playing on the edges ofXi+1.

Linking vertices within Xi.

The first game consists ofn/3 auxiliary sub-games. At first, Picker links the vertices of
Xi, for i = 1, 2, 3 playing onE(Xi, Xi+1).

The 1st game: Picker asks for all the edges of the form(1, x), where1 ∈ Xi and

x ∈ Xi+1 are in arbitrary order. About
⌊
bn/3c
b+1

⌋
of those edges go back to Picker. The set

A1 = {x : Picker gets (1, x), x ∈ Xi+1}.

The 2nd game: Picker asks for all the edges of the form(2, x), where2 ∈ Xi and
x ∈ Xi+1, paying attention to get at least one edge(2, x) such thatx ∈ A1.
The setA2 = {x : Picker gets (2, x), x ∈ Xi+1}.

In general:

The kth game: Picker asks for all the edges of the form(k, x), wherek ∈ Xi and
x ∈ Xi+1, paying attention to get at least one edge to everyA1, . . . , Ak−1. Again, the set
Ak = {x : Picker gets (k, x), x ∈ Xi+1}.

Clearly, if Picker wins all auxiliary games1, . . . , dn/3e, then he also links the vertices
within Xi. Observe that Picker wins thekth game iff Chooser cannot occupy completely
any of the setsCk

j = {(k, x) : k ∈ Xi, x ∈ Aj}, where1 ≤ j < k.
Furthermore, if Picker can win the last game, then he wins thejth game forj < dn

3
e.

So, we have to consider only the last game.
Picker applies Lemma 3.9. Herev = bn/3c and for allj ∈ {1, . . . , dn/3e} |Aj| =

bbn/3c/(b+ 1)c > n/(3(b+ 2)). All we need to check is whether the inequality

v

b+ 1

∑

j

2−
|Aj |

b <
n

3(b+ 1)

dn/3e∑

i=1

2
− n

3(b+1)2 < 1

2It can also bebn/3c anddn/3e. In the proof we show that it works withdn/3e, and the casebn/3c
easily follows from that.
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holds. Developing this formula, we get that the inequality holds if
b ≤

√
n

8 log2 n
andn is large enough.

Linking vertices of Xi to Xi+1.

Now we define a game where the players play withinXi to link the vertices ofXi toXi+1,
i = 1, 2, 3 using the edges Picker has already got in the first game.

For all j ∈ Xi+1 Picker wants to get an edge to everyAk, for k = 1, . . . , dn/3e. It
obviously linksj to all elements ofXi. As before, it is enough to show that Chooser
cannot occupy completely any of the setsFk,j = {(x, j) : x ∈ Ak ∩Xi+1, j ∈ Xi+1}.

The number of these sets is
(
dn
3
e
)2

, and there arev =
(n

3
2

)
edges withinXi+1. Plug-

ging it into Lemma 3.9 we see Picker win if

(n
3
2

)

b+ 1

(n
3

)2

2
− n

3(b+1)2 < 1.

The inequality above clearly holds ifb ≤
√
n/(16 log2 n), which completes the proof

of Theorem 5.1.
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Conclusions

The main topics of the dissertation are the researches connected to Chooser-Picker (and
Picker-Chooser) games and the examination of Beck’s conjecture, Conjecture 2.9.

During the researches we have made the the following definitions and statements:

• We have redefined and specified the definition of Chooser-Picker and Picker-Chooser
games Chapter 3.1;

• We have examined the complexity of these games and we found that it is NP-hard
to decide the winner for both P-C and C-P games Theorem 3.2;

• We have formulated and proved the Pairing lemma, Lemma 2.17. We used this
lemma for taking the trivial moves (without any disadvantages for Picker) in small
board games, and with that we can increase the speed of findingwho wins a game.

• We have proved the monotonicity lemma, Lemma 2.18. We applied this lemma for
proving theorems for infinite boards by using finite auxiliary games and that lemma
4.2 and Theorem 4.5;

• We have improved Beck former Erdős-Selfridge type theorem for Chooser-Picker
games, Theorem 3.6;

• We have found Picker’s winning conditions in the Picker-Chooser version of the
generalized Shannon switching game, Theorem 3.4;

• We have proved, that Picker wins the Chooser-Picker4× 4 TIC - TAC -TOE game
3.3.1;

• We have proved that Chooser wins the Picker-Chooser4 × 4 torus game 3.18 it is
in accordance with that Breaker wins the Maker-Breaker version;

• In the paper [24] we have also dealt with pairing strategiesand we got the following
results:

1. Pairing strategies can work for the gamek-in-a-row for sufficiently largen
only if k ≥ 9, Proposition 3.14;

2. We gave a computer-free proof that Breaker has no pairing strategy to avoid
the isomorphic copies of the polyomino Snaky, Theorem 3.15;

3. We described Breaker’s all pairing strategies that avoidP5, Lemma 3.16.
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• We have defined the Chooser-Pickerk-in-a-row for infinite board and proved the
following theorems:

1. Picker wins the Chooser-Picker 8-in-a-row game Theorem 4.2;

2. Picker also wins the Chooser-Picker 7-in-a-row game Theorem 4.5;

3. For this we had proved that Picker wins a special auxiliarygame played on a
4× 8 board Lemma 4.6;

4. We had examined the Maker-Breaker case for the same sub-game and we
found that Breaker does not win there Subsection 4.3.1;

• We have defined the Chooser-Picker diameter game after the Maker-Breaker ver-
sion.

1. After Balogh et al [2] former results on Maker-Breaker diameter games [2]
we also defined the winning conditions of Picker and Chooser playing on the
complete graph withn vertices Theorem 5.1;

2. For that we proved a lemma for biased (asymmetric) Picker-Chooser degree
games, Lemma 5.4;

3. We observed that Maker loses the diameter two game, but Picker wins the
Picker-Chooser version of this, Observation 5.3.1.
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Chapter 6

Appendix

6.1 Case study for the Picker-Chooser4× 4 torus game

4 P 4 4 4 Where the numbers are the weights of the vertices multiplied by 16.
3 4 4 C 4
2 5 3 5 3
1 3 5 3 5

a b c d
A1 4 P 4 3 5 A2 4 P 4 5 3 E1 4 P 5 4 5 E2 4 P 3 4 3

3 P C C 4 3 C P C 4 3 3 5 C 4 3 5 3 C 4
2 6 3 3 4 2 4 3 7 2 2 4 P 6 4 2 6 C 4 2
1 5 4 5 2 1 1 6 1 8 1 C 5 3 4 1 P 5 3 6

a b c d a b c d a b c d a b c d
B1 4 P 4 3 5 B2 4 P 3 5 4 F1 4 P 3 4 3 F2 4 P 5 4 5

3 P 3 C C 3 C 4 C P 3 5 4 C 3 3 3 4 C 5
2 6 3 3 4 2 4 2 7 3 2 6 2 4 C 2 4 4 6 P
1 5 4 5 2 1 1 8 1 6 1 P 6 3 5 1 C 4 3 5

a b c d a b c d a b c d a b c d

C1 4 P 3 C 3 C2 4 P 5 P 5 G1 4 P 5 4 3 G2 4 P 3 4 5
3 P 3 C 3 3 C 5 C 5 3 4 P C C 3 4 C C P
2 5 4 5 4 2 5 2 5 2 2 5 4 5 2 2 5 2 5 4
1 5 4 5 4 1 1 6 1 6 1 3 3 3 7 1 3 7 3 3

a b c d a b c d a b c d a b c d
D1 4 P C 3 3 D2 4 P P 5 5 H1 4 P 3 3 C H2 4 P 5 5 P

3 3 3 C P 3 5 5 C C 3 3 P C 3 3 5 C C 5
2 6 2 7 3 2 4 4 3 3 2 6 3 7 2 2 4 3 3 4
1 3 7 2 6 1 3 3 4 4 1 3 6 2 7 1 3 4 4 3

a b c d a b c d a b c d a b c d
A1 4 P 4 3 5 A2 4 P 4 5 3

3 P C C 4 3 C P C 4
2 6 3 3 4 2 4 3 7 2
1 5 4 5 2 1 1 6 1 8

a b c d a b c d

A1a1 4 P P 4 6 A1a2 4 P C 2 4 A2a1 4 P P 4 5 A2a2 4 P C 6 1
3 P C C C 3 P C C P 3 C P C 3 3 C P C 5
2 5 3 1 5 2 7 3 5 3 2 C 4 6 1 2 P 2 8 3
1 5 1 7 1 1 5 7 3 3 1 1 7 1 6 1 1 5 1 10

a b c d a b c d a b c d a b c d
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A1b1 4 P 6 P 5 A1b2 4 P 2 C 5 A2b1 4 P P 6 4 A2b2 4 P C 4 2
3 P C C 5 3 P C C 3 3 C P C C 3 C P C P
2 6 C 2 3 2 6 P 4 5 2 3 5 5 1 2 5 1 9 3
1 5 5 3 2 1 5 3 7 2 1 1 5 1 7 1 1 7 1 9

a b c d a b c d a b c d a b c d
A1c1 4 P P 4 7 A1c2 4 P C 2 3 A2c1 4 P 4 3 C A2c2 4 P 4 7 P

3 P C C 1 3 P C C 7 3 C P C 3 3 C P C 5
2 5 3 1 6 2 7 3 5 2 2 5 P 8 2 2 3 C 6 2
1 4 C 6 1 1 6 P 4 3 1 1 8 1 7 1 1 4 1 9

a b c d a b c d a b c d a b c d
A1d1 4 P 6 2 6 A1d2 4 P 2 4 4

3 P C C 2 3 P C C 6
2 6 4 2 P 2 6 2 4 C
1 4 C 6 2 1 6 P 4 2

a b c d a b c d
B1 4 P 4 3 5 B2 4 P 3 5 4

3 P 3 C C 3 C 4 C P
2 6 3 3 4 2 4 2 7 3
1 5 4 5 2 1 1 8 1 6

a b c d a b c d

B1a1 4 P 5 P 6 B1a2 4 P 5 C 2 B2a1 4 P P 7 4 B2a2 4 P C 3 4
3 P 5 C C 3 P 3 C C 3 C 5 C P 3 C 3 C P
2 6 3 2 C 2 6 5 4 P 2 3 2 6 C 2 5 2 8 P
1 5 2 3 5 1 5 2 7 3 1 1 9 1 4 1 1 7 1 8

a b c d a b c d a b c d a b c d
B1b1 4 P 7 P 6 B1b2 4 P 3 C 2 B2b1 4 P 4 6 P B2b2 4 P 2 4 C

3 P 3 C C 3 P 5 C C 3 C C C P 3 C P C P
2 6 3 C 2 2 6 5 P 4 2 3 1 5 5 2 5 3 9 1
1 5 2 5 3 1 5 2 5 5 1 1 7 1 5 1 1 9 1 7

a b c d a b c d a b c d a b c d
B1c1 4 P 6 4 P B1c2 4 P 4 2 C B2c1 4 P 5 4 P B2c2 4 P 1 6 C

3 P C C C 3 P P C C 3 C 3 C P 3 C 5 C P
2 5 5 1 3 2 7 3 5 3 2 C 1 6 4 2 P 3 8 2
1 5 1 7 1 1 5 3 3 7 1 1 6 1 7 1 1 10 1 5

a b c d a b c d a b c d a b c d
B1d1 4 P 7 4 P B1d2 4 P 3 2 C

3 P 1 C C 3 P 7 C C
2 5 6 1 3 2 7 2 5 3
1 4 1 6 C 1 6 3 4 P

a b c d a b c d
B1e1 4 P 6 2 6 B1e2 4 P 4 4 2

3 P 2 C C 3 P 6 C C
2 6 P 2 4 2 6 C 4 2
1 4 2 6 C 1 6 2 4 P

a b c d a b c d
B1f1 4 P P 5 6 B1f2 4 P C 1 2

3 P 5 C C 3 P 3 C C
2 2 5 3 5 2 10 3 3 1
1 C 2 6 3 1 P 2 4 5

a b c d a b c d
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C1 4 P 3 C 3 C2 4 P 5 P 5
3 P 3 C 3 3 C 5 C 5
2 5 4 5 4 2 5 2 5 2
1 5 4 5 4 1 1 6 1 6

a b c d a b c d

C1a1 4 P P C C C1a2 4 P C C P C2a1 4 P P P 8 C2a2 4 P C P 2
3 P 4 C 2 3 P 2 C 4 3 C 6 C C 3 C 4 C P
2 5 3 5 5 2 5 5 5 3 2 3 3 3 1 2 7 1 7 3
1 5 5 5 3 1 5 3 5 5 1 1 3 1 5 1 1 9 1 7

a b c d a b c d a b c d a b c d
C1b1 4 P P C 2 C1b2 4 P C C 4 C2b1 4 P P P 9 C2b2 4 P C P 1

3 P 4 C C 3 P 2 C P 3 C 4 C 3 3 C 6 C 7
2 5 5 3 5 2 5 3 7 3 2 C 2 4 1 2 P 2 6 3
1 5 3 7 3 1 5 5 3 5 1 1 5 1 4 1 1 7 1 8

a b c d a b c d a b c d a b c d
C1c1 4 P 2 C P C1c2 4 P 4 C C C2c1 4 P P P 9 C2c2 4 P C P 1

3 P C C 4 3 P P C 2 3 C 4 C 3 3 C 6 C 7
2 5 5 3 5 2 5 3 7 3 2 4 2 C 1 2 6 2 P 3
1 5 3 7 3 1 5 5 3 5 1 1 5 1 4 1 1 7 1 8

a b c d a b c d a b c d a b c d
C1d1 4 P 1 C 1 C1d2 4 P 5 C 5 C2d1 4 P 8 P P C2d2 4 P 2 P C

3 P 3 C 3 3 P 3 C 3 3 C C C 6 3 C P C 4
2 P 3 6 3 2 C 5 4 5 2 3 1 3 3 2 7 3 7 1
1 8 3 C 3 1 2 5 P 5 1 1 5 1 3 1 1 7 1 9

a b c d a b c d a b c d a b c d
C1e1 4 P 4 C 4 C1e2 4 P 2 C 2 C2e1 4 P 9 P P C2e2 4 P 1 P C

3 P 2 C 2 3 P 4 C 4 3 C 3 C 4 3 C 7 C 6
2 6 P 4 4 2 4 C 6 4 2 C 1 4 2 2 P 3 6 2
1 4 4 6 C 1 6 4 4 P 1 1 4 1 5 1 1 8 1 7

a b c d a b c d a b c d a b c d
C1f1 4 P 4 C 4 C1f2 4 P 2 C 2 C2f1 4 P 9 P P C2f2 4 P 1 P C

3 P 2 C 2 3 P 4 C 4 3 C 3 C 4 3 C 7 C 6
2 6 4 4 P 2 4 4 6 C 2 4 1 C 2 2 6 3 P 2
1 4 C 6 4 1 6 P 4 4 1 1 4 1 5 1 1 8 1 7

a b c d a b c d a b c d a b c d
C1g1 4 P 3 C 3 C1g2 4 P 3 C 3 C2g1 4 P 4 P 6 C2g2 4 P 6 P 4

3 P 1 C 1 3 P 5 C 5 3 C C C P 3 C P C C
2 8 3 C 3 2 2 5 P 5 2 5 1 5 3 2 5 3 5 1
1 P 3 6 3 1 C 5 4 5 1 1 9 1 3 1 1 3 1 9

a b c d a b c d a b c d a b c d
D1 4 P C 3 3 D2 4 P P 5 5

3 3 3 C P 3 5 5 C C
2 6 2 7 3 2 4 4 3 3
1 3 7 2 6 1 3 3 4 4

a b c d a b c d

D1a1 4 P C P C D1a2 4 P C C P D2a1 4 P P P 8 D2a2 4 P P C 2
3 2 4 C P 3 4 2 C P 3 C 6 C C 3 P 4 C C
2 9 1 7 1 2 3 3 7 5 2 3 3 3 1 2 5 5 3 5
1 3 9 1 5 1 3 5 3 7 1 1 3 1 5 1 5 3 7 3

a b c d a b c d a b c d a b c d
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D1b1 4 P C P 2 D1b2 4 P C C 4 D2b1 4 P P 8 P D2b2 4 P P 2 C
3 C 4 C P 3 P 2 C P 3 6 C C C 3 4 P C C
2 7 1 7 3 2 5 3 7 3 2 3 3 1 3 2 5 5 5 3
1 1 9 1 7 1 5 5 3 5 1 3 1 5 1 1 3 5 3 7

a b c d a b c d a b c d a b c d
D1c1 4 P C P 1 D1c2 4 P C C 5 D2c1 4 P P 6 4 D2c2 4 P P 4 6

3 3 4 C P 3 3 2 C P 3 4 6 C C 3 6 4 C C
2 8 1 6 C 2 4 3 8 P 2 P 4 4 2 2 C 4 2 4
1 3 9 2 5 1 3 5 2 7 1 4 2 C 4 1 2 4 P 4

a b c d a b c d a b c d a b c d
D1d1 4 P C P 3 D1d2 4 P C C 3 D2d1 4 P P 4 6 D2d2 4 P P 6 4

3 1 4 C P 3 5 2 C P 3 6 4 C C 3 4 6 C C
2 7 2 7 3 2 5 2 7 3 2 4 P 2 4 2 4 C 4 2
1 C 8 1 6 1 P 6 3 6 1 2 4 4 C 1 4 2 4 P

a b c d a b c d a b c d a b c d
D1e1 4 P C 2 P D1e2 4 P C 4 C D2e1 4 P P 5 5 D2e2 4 P P 5 5

3 4 C C P 3 2 P C P 3 3 7 C C 3 7 3 C C
2 5 3 5 5 2 7 1 9 1 2 3 5 P 4 2 5 3 C 2
1 3 7 3 5 1 3 7 1 7 1 C 2 3 5 1 P 4 5 3

a b c d a b c d a b c d a b c d
D1f1 4 P C 3 P D1f2 4 P C 3 C D2f1 4 P P 5 5 D2f2 4 P P 5 5

3 2 3 C P 3 4 3 C P 3 5 5 C C 3 5 5 C C
2 4 3 7 5 2 8 1 7 1 2 5 3 P 4 2 3 5 C 2
1 C 6 2 7 1 P 8 2 5 1 2 C 3 5 1 4 P 5 3

a b c d a b c d a b c d a b c d
D1g1 4 P C 2 4 D1g2 4 P C 4 2 D2g1 4 P P 5 5 D2g2 4 P P 5 5

3 P C C P 3 C P C P 3 5 5 C C 3 5 5 C C
2 7 3 5 3 2 5 1 9 3 2 3 5 4 P 2 5 3 2 C
1 5 7 3 3 1 1 7 1 9 1 C 2 5 3 1 P 4 3 5

a b c d a b c d a b c d a b c d
D1h1 4 P C 3 2 D1h2 4 P C 3 4 D2h1 4 P P 5 5 D2h2 4 P P 5 5

3 P 3 C P 3 C 3 C P 3 7 3 C C 3 3 7 C C
2 7 2 6 C 2 5 2 8 P 2 5 3 4 P 2 3 5 2 C
1 5 7 3 4 1 1 7 1 8 1 2 C 5 3 1 4 P 3 5

a b c d a b c d a b c d a b c d
D1i1 4 P C 4 1 D1i2 4 P C 2 5

3 3 P C P 3 3 C C P
2 6 1 8 C 2 6 3 6 P
1 3 7 2 7 1 3 7 2 5

a b c d a b c d
D1j1 4 P C 4 3 D1j2 4 P C 2 3

3 1 P C P 3 5 C C P
2 5 2 9 3 2 7 2 5 3
1 C 6 1 8 1 P 8 3 4

a b c d a b c d
D1k1 4 P C 3 5 D1k2 4 P C 3 1

3 1 3 C P 3 5 3 C P
2 5 3 8 P 2 7 1 6 C
1 C 6 1 7 1 P 8 3 5

a b c d a b c d
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E1 4 P 5 4 5 E2 4 P 3 4 3
3 3 5 C 4 3 5 3 C 4
2 4 P 6 4 2 6 C 4 2
1 C 5 3 4 1 P 5 3 6

a b c d a b c d

E1a1 4 P 5 5 P E1a2 4 P 5 3 C E2a1 4 P P 5 5 E2a2 4 P C 3 1
3 5 3 C 2 3 1 7 C 6 3 6 C C 4 3 4 P C 4
2 3 P 4 5 2 5 P 8 3 2 5 C 2 3 2 7 C 6 1
1 C C 5 5 1 C P 1 3 1 P 5 4 3 1 P 5 2 9

a b c d a b c d a b c d a b c d
E1b1 4 P 5 5 P E1b2 4 P 5 3 C E2b1 4 P 5 P 5 E2b2 4 P 1 C 1

3 5 C C 5 3 1 P C 3 3 5 2 C 3 3 5 4 C 5
2 3 P 4 5 2 5 P 8 3 2 8 C C 2 2 4 C P 2
1 C 3 5 2 1 C 7 1 6 1 P 4 3 5 1 P 6 3 7

a b c d a b c d a b c d a b c d
E2c1 4 P 5 5 P E2c2 4 P 1 3 C

3 5 C C 5 3 5 P C 3
2 5 C 2 3 2 7 C 6 1
1 P 5 3 4 1 P 5 3 8

a b c d a b c d
E2d1 4 P 4 6 P E2d2 4 P 2 2 C

3 4 3 C 5 3 6 3 C 3
2 6 C 4 2 2 6 C 4 2
1 P 3 C 5 1 P 7 P 7

a b c d a b c d
E2e1 4 P 4 3 3 E2e2 4 P 2 5 3

3 P 3 C 1 3 C 3 C 7
2 9 C 2 3 2 3 C 6 1
1 P C 2 4 1 P P 4 8

a b c d a b c d
E2f1 4 P 2 5 3 E2f2 4 P 4 3 3

3 4 P C 4 3 6 C C 4
2 7 C 6 1 2 5 C 2 3
1 P 3 C 7 1 P 7 P 5

a b c d a b c d
F1 4 P 3 4 3 F2 4 P 5 4 5

3 5 4 C 3 3 3 4 C 5
2 6 2 4 C 2 4 4 6 P
1 P 6 3 5 1 C 4 3 5

a b c d a b c d

F1a1 4 P P 5 5 F1a2 4 P C 3 1 F2a1 4 P P 5 5 F1a2 4 P C 3 5
3 5 5 C C 3 5 3 C P 3 5 5 C C 3 1 3 C P
2 5 3 2 C 2 7 1 6 C 2 3 5 4 P 2 5 3 8 P
1 P 4 3 5 1 P 8 3 5 1 C 2 5 3 1 C 6 1 7

a b c d a b c d a b c d a b c d
F1b1 4 P P 6 4 F1b2 4 P C 2 2 F2b1 4 P P 5 5 F2b2 4 P C 3 5

3 4 5 C 3 3 6 3 C 3 3 5 2 C 3 3 1 6 C 7
2 6 2 4 C 2 6 2 4 C 2 3 5 4 P 2 5 3 8 P
1 P 5 C 3 1 P 7 P 7 1 C 5 5 C 1 C 3 1 P

a b c d a b c d a b c d a b c d
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F1c1 4 P 5 P 5 F1c2 4 P 1 C 1 F2c1 4 P 6 P 6 F2c2 4 P 4 C 4
3 5 3 C 2 3 5 5 C 4 3 2 4 C 6 3 4 4 C 4
2 8 2 C C 2 4 2 P C 2 4 C 4 P 2 4 P 8 P
1 P 5 3 4 1 P 7 3 6 1 C 4 2 6 1 C 4 4 4

a b c d a b c d a b c d a b c d
F1d1 4 P 3 3 4 F1d2 4 P 3 5 2

3 P 1 C 3 3 C 7 C 3
2 9 3 2 C 2 3 1 6 C
1 P 4 2 C 1 P 8 4 P

a b c d a b c d
F1e1 4 P 3 5 2 F1e2 4 P 3 3 4

3 4 4 C P 3 6 4 C C
2 7 1 6 C 2 5 3 2 C
1 P 7 C 3 1 P 5 P 7

a b c d a b c d
G1 4 P 5 4 3 G2 4 P 3 4 5

3 4 P C C 3 4 C C P
2 5 4 5 2 2 5 2 5 4
1 3 3 3 7 1 3 7 3 3

a b c d a b c d

G1a1 4 P P 4 5 G1a2 4 P C 4 1 G2a1 4 P P 6 7 G2a2 4 P C 2 3
3 3 P C C 3 5 P C C 3 3 C C P 3 5 C C P
2 C 5 4 2 2 P 3 6 2 2 3 2 5 5 2 7 2 5 3
1 1 5 4 5 1 5 1 2 9 1 C 6 3 2 1 P 8 3 4

a b c d a b c d a b c d a b c d
G1b1 4 P P 6 5 G1b2 4 P C 2 1 G2b1 4 P P 6 5 G2b2 4 P C 2 5

3 5 P C C 3 3 P C C 3 5 C C P 3 3 C C P
2 4 5 C 2 2 6 3 P 2 2 5 2 5 3 2 5 2 5 5
1 3 5 4 3 1 3 1 2 11 1 2 6 3 C 1 4 8 3 P

a b c d a b c d a b c d a b c d
G1c1 4 P 5 P 4 G1c2 4 P 5 C 2 G2c1 4 P 4 P 6 G2c2 4 P 2 C 4

3 3 P C C 3 5 P C C 3 C C C P 3 P C C P
2 6 C 4 1 2 4 P 6 3 2 5 1 5 3 2 5 3 5 5
1 3 1 2 9 1 3 5 4 5 1 1 9 1 3 1 5 5 5 3

a b c d a b c d a b c d a b c d
G1d1 4 P 7 6 P G1d2 4 P 3 2 C G2e1 4 P 4 P 5 G2e2 4 P 2 C 5

3 3 P C C 3 5 P C C 3 3 C C P 3 5 C C P
2 3 5 5 2 2 7 3 5 2 2 6 1 4 C 2 4 3 6 P
1 C 2 3 6 1 P 4 3 8 1 3 9 2 1 1 3 5 4 5

a b c d a b c d a b c d a b c d
G1e1 4 P 5 6 P G1e2 4 P 5 2 C G2f1 4 P 5 4 P G2f2 4 P 1 4 C

3 5 P C C 3 3 P C C 3 3 C C P 3 5 C C P
2 5 3 5 2 2 5 5 5 2 2 C 2 4 5 2 P 2 6 3
1 2 C 3 6 1 4 P 3 8 1 1 5 4 5 1 5 9 2 1

a b c d a b c d a b c d a b c d
G1f1 4 P 6 P 4 G1f2 4 P 4 C 2 G2g1 4 P 5 6 P G2g2 4 P 1 2 C

3 C P C C 3 P P C C 3 5 C C P 3 3 C C P
2 5 3 5 1 2 5 5 5 3 2 4 2 C 5 2 6 2 P 3
1 1 3 1 9 1 5 3 5 5 1 3 3 4 5 1 3 11 2 1

a b c d a b c d a b c d a b c d

75



The Chooser-Picker games

H1 4 P 3 3 C with more details…
3 3 P C 3
2 6 3 7 2
1 3 6 2 7

a b c d

4 P P C C 4 P C P C
3 4 P C 2 3 2 P C 4
2 3 5 7 3 2 9 1 7 1
1 3 7 3 5 1 3 5 1 9

a b c d a b c d

4 P P C C 4 P P C C 4 P C P C 4 P C P C
3 4 P C 2 3 4 P C 2 3 2 P C 4 3 2 P C 4
2 P 6 8 2 2 C 4 6 4 2 10 P 8 2 2 8 C 6 0
1 4 6 C 4 1 2 8 P 6 1 2 4 C 8 1 4 6 P 10

a b c d a b c d a b c d a b c d

4 P P C C 4 P P C C 4 P P C C 4 P P C C 4 P C P C 4 P C P C 4 P C P C 4 P C P C
3 P P C 2 3 C P C 2 3 P P C 2 3 C P C 2 3 P P C 4 3 C P C 4 3 0 P C P 3 4 P C C
2 P 6 4 2 2 P 6 12 2 2 C C 6 8 2 C P 6 0 2 10 P 6 C 2 10 P 10 P 2 8 C 8 0 2 8 C 4 0
1 8 6 C C 1 0 6 C P 1 2 4 P 6 1 2 12 P 6 1 4 4 C 8 1 0 4 C 8 1 C 8 P 8 1 P 4 P 12

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d

4 P P C C 4 P P C C 4 P P C C 4 P P C C 4 P C P C 4 P C P C
3 4 P C P 3 4 P C C 3 0 P C 2 3 8 P C 2 3 0 P C 4 3 4 P C 4
2 P 4 8 C 2 P 8 8 P 2 C P 6 C 2 C C 6 P 2 10 P 10 P 2 10 P 6 C
1 4 8 C 4 1 4 4 C 4 1 2 12 P 6 1 2 4 P 6 1 C 4 C 8 1 P 4 C 8

a b c d a b c d a b c d a b c d a b c d a b c d

4 P P C C 4 P P C C 4 P P C C 4 P P C C
3 8 P C 2 3 0 P C 2 3 4 P C P 3 4 P C C
2 P 6 4 2 2 P 6 12 2 2 C 4 8 4 2 C 4 4 4
1 P 6 C C 1 C 6 C P 1 C 8 P 4 1 P 8 P 8

a b c d a b c d a b c d a b c d

4 P P C C 4 P P C C 4 P C P C 4 P C P C
3 4 P C 2 3 4 P C 2 3 2 P C 4 3 2 P C 4
2 4 P 4 4 2 2 C 10 2 2 8 0 6 C 2 10 2 8 P
1 2 10 2 C 1 4 4 4 P 1 4 6 P 10 1 2 4 C 8

a b c d a b c d a b c d a b c d

4 P P C C 4 P P C C 4 P P C C 4 P P C C 4 P C P C 4 P C P C 4 P C P C 4 P C P C
3 P P C 0 3 C P C 4 3 C P C 4 3 P P C 0 3 0 P C P 3 4 P C C 3 P P C 4 3 C P C 4
2 4 P C 4 2 4 P P 4 2 0 C 12 0 2 4 C 8 4 2 8 0 8 C 2 8 0 4 C 2 10 C 6 P 2 10 P 10 P
1 4 8 4 C 1 0 12 0 C 1 4 P 4 P 1 4 C 4 P 1 C 8 P 8 1 P 4 P 12 1 4 4 C 8 1 0 4 C 8

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d

4 P P C C 4 P P C C 4 P P C C 4 P P C C 4 P C P C 4 P C P C
3 2 P C P 3 6 P C C 3 2 P C P 3 6 P C C 3 0 P C 4 3 4 P C 4
2 2 P 6 4 2 6 P 2 4 2 C C 12 2 2 P C 8 2 2 10 P 10 P 2 10 C 6 P
1 C 12 2 C 1 P 8 2 C 1 2 6 4 P 1 6 2 4 P 1 C 4 C 8 1 P 4 C 8

a b c d a b c d a b c d a b c d a b c d a b c d

4 P P C C 4 P P C C 4 P P C C 4 P P C C
3 2 P C P 3 6 P C C 3 2 P C P 3 6 P C C
2 4 P 6 2 2 4 P 2 6 2 2 C 12 C 2 2 C 8 P
1 2 12 C C 1 2 8 P C 1 4 6 2 P 1 4 2 6 P

a b c d a b c d a b c d a b c d

4 P P C C 4 P P C C 4 P P C C 4 P P C C
3 4 P C 2 3 4 P C 2 3 4 P C 2 3 4 P C 2
2 6 P 4 2 2 2 P 4 6 2 P C 10 C 2 C C 10 P
1 P 10 C C 1 C 10 P C 1 6 4 2 P 1 2 4 6 P

a b c d a b c d a b c d a b c d

4 P P 2 C 4 P C 4 C
3 4 P C C 3 2 P C P
2 5 5 5 3 2 7 1 9 1
1 3 5 3 7 1 3 7 1 7

a b c d a b c d

4 P P 2 C 4 P P 2 C 4 P C 4 C 4 P C 4 C
3 4 P C C 3 4 P C C 3 2 P C P 3 2 P C P
2 6 2 P 4 2 4 8 C 2 2 8 P 10 2 2 6 C 8 0
1 2 C 2 10 1 4 P 4 4 1 2 6 C 6 1 4 8 P 8

a b c d a b c d a b c d a b c d

4 P P P C 4 P P C C 4 P P P C 4 P P C C 4 P C 4 C 4 P C 4 C 4 P C P C 4 P C C C
3 2 P C C 3 6 P C C 3 2 P C C 3 6 P C C 3 P P C P 3 C P C P 3 0 P C P 3 4 P C P
2 6 2 P 4 2 6 2 P 4 2 6 8 C C 2 2 8 C P 2 8 P 8 C 2 8 P 12 P 2 8 C 8 0 2 4 C 8 0
1 C C 2 12 1 P C 2 8 1 4 P 2 6 1 4 P 6 2 1 4 6 C 6 1 0 6 C 6 1 C 8 P 8 1 P 8 P 8

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d

4 P P P C 4 P P C C 4 P P 0 C 4 P P 4 C 4 P C 4 C 4 P C 4 C
3 2 P C C 3 6 P C C 3 P P C C 3 C P C C 3 0 P C P 3 4 P C P
2 8 2 P 2 2 4 2 P 6 2 4 8 C 4 2 4 8 C 0 2 8 P 12 P 2 8 P 8 C
1 2 C C 12 1 2 C P 8 1 4 P 4 C 1 4 P 4 P 1 C 6 C 6 1 P 6 C 6

a b c d a b c d a b c d a b c d a b c d a b c d

4 P P P C 4 P P C C 4 P P 4 C 4 P P 0 C 4 P C 4 C 4 P C 4 C
3 4 P C C 3 4 P C C 3 4 P C C 3 4 P C C 3 2 P C P 3 2 P C P
2 6 C P 2 2 6 P P 6 2 P 8 C 0 2 C 8 C 4 2 8 P 10 2 2 8 P 10 2
1 2 C 2 12 1 2 C 2 8 1 4 P C 4 1 4 P P 4 1 2 P C C 1 2 C C P

a b c d a b c d a b c d a b c d a b c d a b c d

4 P P 2 C 4 P P 2 C
3 2 P C C 3 6 P C C
2 6 P P 6 2 6 C P 2
1 C C 2 10 1 P C 2 10

a b c d a b c d

4 P P 2 C 4 P P 2 C
3 2 P C C 3 6 P C C
2 8 P P 4 2 4 C P 4
1 2 C C 10 1 2 C P 10

a b c d a b c d
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The Chooser-Picker games

4 P P 4 C 4 P P 0 C
3 6 P C C 3 2 P C C
2 P 2 6 4 2 C 8 4 2
1 4 C 2 8 1 2 P 4 6

a b c d a b c d

4 P P P C 4 P P C C 4 P P 0 C 4 P P 0 C
3 4 P C C 3 8 P C C 3 P P C C 3 C P C C
2 P 0 4 C 2 P 4 8 P 2 C 8 4 4 2 C 8 4 0
1 4 C 0 12 1 4 C 4 4 1 C P 4 4 1 P P 4 8

a b c d a b c d a b c d a b c d

4 P P P C 4 P P C C 4 P P 0 C 4 P P 0 C
3 2 P C C 3 10 P C C 3 0 P C C 3 4 P C C
2 P 2 6 4 2 P 2 6 4 2 C 8 P 0 2 C 8 C 4
1 C C 2 12 1 P C 2 4 1 0 P C 8 1 4 P P 4

a b c d a b c d a b c d a b c d

4 P P 4 C 4 P P 4 C 4 P P 0 C 4 P P 0 C
3 P P C C 3 C P C C 3 4 P C C 3 0 P C C
2 P 0 C 4 2 P 4 P 4 2 C 8 4 P 2 C 8 4 C
1 8 C 4 4 1 0 C 0 12 1 C P 4 4 1 P P 4 8

a b c d a b c d a b c d a b c d

4 P P 4 C 4 P P 4 C
3 8 P C C 3 4 P C C
2 P 0 4 C 2 P 4 8 P
1 P C 0 8 1 C C 4 8

a b c d a b c d

4 P P 3 C 4 P C 3 C
3 2 P C 3 3 4 P C 3
2 4 5 7 3 2 8 1 7 1
1 C 7 2 6 1 P 5 2 8

a b c d a b c d

4 P P P C 4 P P C C
3 0 P C 4 3 4 P C 2
2 6 4 6 C 2 2 6 8 P OK
1 C 8 0 8 1 C 6 4 4

a b c d a b c d

4 P P P C 4 P P P C 4 P P C C 4 P P C C
3 0 P C P 3 0 P C C 3 P P C 2 3 C P C 2
2 8 C 8 C 2 4 P 4 C 2 2 6 4 P 2 2 6 12 P
1 C 8 0 8 1 C 8 0 8 1 C 6 8 C 1 C 6 0 P

a b c d a b c d a b c d a b c d

4 P P P C 4 P P P C 4 P P C C 4 P P C C
3 0 P C 4 3 0 P C 4 3 4 P C P 3 4 P C C
2 P 4 C C 2 C 4 P C 2 C 4 8 P 2 P 8 8 P
1 C 8 0 8 1 C 8 0 8 1 C 8 4 4 1 C 4 4 4

a b c d a b c d a b c d a b c d

4 P P P C 4 P P P C 4 P P C C 4 P P C C
3 0 P C 8 3 0 P C 0 3 8 P C 2 3 0 P C 2
2 4 8 4 C 2 8 0 8 C 2 2 6 4 P 2 2 6 12 P
1 C P 0 C 1 C C 0 P 1 C 6 P C 1 C 6 C P

a b c d a b c d a b c d a b c d

4 P P 4 C 4 P P 2 C
3 0 P C P 3 4 P C C
2 4 4 8 C 2 4 6 6 P
1 C 10 0 6 1 C 4 4 6

a b c d a b c d

4 P P P C 4 P P C C 4 P P 0 C 4 P P 4 C
3 0 P C P 3 0 P C P 3 P P C C 3 C P C C
2 8 C 8 C 2 0 P 8 C 2 C 4 4 P 2 P 8 8 P
1 C 8 0 8 1 C 12 0 4 1 C 4 8 4 1 C 4 0 8

a b c d a b c d a b c d a b c d

4 P P 8 C 4 P P 0 C 4 P P 2 C 4 P P 2 C
3 0 P C P 3 0 P C P 3 P P C C 3 C P C C
2 P C 8 C 2 C P 8 C 2 4 2 6 P 2 4 10 6 P
1 C 8 0 8 1 C 12 0 4 1 C C 8 6 1 C P 0 6

a b c d a b c d a b c d a b c d

4 P P 0 C 4 P P 4 C
3 4 P C C 3 4 P C C
2 4 P 4 P 2 4 C 8 P
1 C 8 4 C 1 C 0 4 P

a b c d a b c d

4 P P 2 C 4 P P 2 C
3 0 P C C 3 8 P C C
2 4 10 6 P 2 4 2 6 P
1 C P C 6 1 C C P 6

a b c d a b c d

4 P 2 P C 4 P 4 C C
3 C P C 4 3 P P C 2
2 7 3 7 1 2 5 3 7 3
1 1 7 1 9 1 5 5 3 5

a b c d a b c d

4 P 2 P C 4 P 2 P C 4 P 2 C C 4 P 6 C C
3 C P C 4 3 C P C 4 3 P P C 0 3 P P C 4
2 8 4 8 P 2 6 2 6 C 2 P 2 6 4 2 C 4 8 2
1 C 6 0 8 1 P 8 2 10 1 8 C 2 4 1 2 P 4 6

a b c d a b c d a b c d a b c d

4 P 0 P C 4 P 4 P C 4 P P P C 4 P C P C 4 P P C C 4 P C C C 4 P P C C 4 P C C C
3 C P C P 3 C P C C 3 C P C 4 3 C P C 4 3 P P C 0 3 P P C 0 3 P P C 4 3 P P C 4
2 8 C 8 P 2 8 P 8 P 2 6 4 6 C 2 6 0 6 C 2 P C 4 4 2 P P 8 4 2 C 8 4 4 2 C 0 12 0
1 C 8 0 8 1 C 4 0 8 1 P 8 C 8 1 P 8 P 12 1 8 C 4 4 1 8 C 0 4 1 0 P 4 C 1 4 P 4 P

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d

4 P 2 P C 4 P 2 P C 4 P 4 C C 4 P 0 C C 4 P 2 C C 4 P 10 C C
3 C P C 4 3 C P C 4 3 P P C 0 3 P P C 0 3 P P C P 3 P P C C
2 P 2 C C 2 C 2 P C 2 P 4 4 P 2 P 0 8 C 2 C C 12 2 2 C P 4 2
1 P 8 2 10 1 P 8 2 10 1 8 C 4 C 1 8 C 0 P 1 2 P 4 6 1 2 P 4 6

a b c d a b c d a b c d a b c d a b c d a b c d
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The Chooser-Picker games

4 P 4 P C 4 P 0 P C 4 P 4 C C 4 P 8 C C
3 C P C 4 3 C P C 4 3 P P C P 3 P P C C
2 6 P 6 C 2 6 C 6 C 2 C 4 12 0 2 C 4 4 4
1 P 8 C 8 1 P 8 P 12 1 0 P C 4 1 4 P P 8

a b c d a b c d a b c d a b c d

4 P 8 C C 4 P 4 C C
3 P P C 4 3 P P C 4
2 C P 8 0 2 C C 8 4
1 0 P C 4 1 4 P P 8

a b c d a b c d

4 P 8 C C 4 P 4 C C
3 P P C 4 3 P P C 4
2 C 4 8 P 2 C 4 8 C
1 C P 4 4 1 P P 4 8

a b c d a b c d

4 P 2 P C 4 P 2 P C 4 P 4 C C 4 P 4 C C
3 C P C 4 3 C P C 4 3 P P C 2 3 P P C 2
2 8 4 8 P 2 6 2 6 C 2 P 4 4 4 2 C 2 10 2
1 0 6 C 8 1 2 8 P 10 1 8 4 2 C 1 2 6 4 P

a b c d a b c d a b c d a b c d

4 P 0 P C 4 P 4 P C 4 P P P C 4 P C P C 4 P P C C 4 P C C C 4 P 2 C C 4 P 6 C C
3 C P C P 3 C P C C 3 C P C 4 3 C P C 4 3 P P C 0 3 P P C 4 3 P P C P 3 P P C C
2 8 C 8 P 2 8 P 8 P 2 6 4 6 C 2 6 0 6 C 2 P 4 C 4 2 P 4 P 4 2 C C 12 2 2 C P 8 2
1 0 8 C 8 1 0 4 C 8 1 C 8 P 8 1 P 8 P 12 1 8 4 4 C 1 8 4 0 C 1 2 6 4 P 1 2 6 4 P

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d

4 P 2 P C 4 P 2 P C 4 P 2 C C 4 P 6 C C 4 P 2 C C 4 P 6 C C
3 C P C 4 3 C P C 4 3 P P C P 3 P P C C 3 P P C P 3 P P C C
2 P 2 C C 2 C 2 P C 2 P 4 6 2 2 P 4 2 6 2 C 2 12 C 2 C 2 8 P
1 2 8 P 10 1 2 8 P 10 1 8 6 C C 1 8 2 P C 1 2 8 2 P 1 2 4 6 P

a b c d a b c d a b c d a b c d a b c d a b c d

4 P 4 C C 4 P 4 C C
3 P P C P 3 P P C C
2 C 2 12 2 2 C 2 8 2
1 C 6 2 P 1 P 6 6 P

a b c d a b c d

4 P 4 C C 4 P 4 C C
3 P P C 2 3 P P C 2
2 C P 10 C 2 C C 10 P
1 2 8 2 P 1 2 4 6 P

a b c d a b c d

4 P 6 C C 4 P 2 C C
3 P P C 2 3 P P C 2
2 C P 10 2 2 C C 10 2
1 C 6 2 P 1 P 6 6 P

a b c d a b c d

4 P 6 C C 4 P 2 C C
3 P P C 2 3 P P C 2
2 C 2 10 P 2 C 2 10 C
1 C 4 4 P 1 P 8 4 P

a b c d a b c d

4 P 4 C C 4 P 4 C C
3 P P C 2 3 P P C 2
2 6 P 8 2 2 4 C 6 4
1 4 6 C 4 1 6 4 P 6

a b c d a b c d

4 P P C C 4 P C C C 4 P P C C 4 P C C C
3 P P C 2 3 P P C 2 3 P P C 2 3 P P C 2
2 2 P 8 2 2 10 P 8 2 2 C C 6 8 2 P C 6 0
1 C 10 C 4 1 P 2 C 4 1 2 4 P 6 1 10 4 P 6

a b c d a b c d a b c d a b c d

4 P P C C 4 P C C C 4 P P C C 4 P C C C
3 P P C 2 3 P P C 2 3 P P C 0 3 P P C 4
2 6 P 4 2 2 6 P 12 2 2 4 C 4 8 2 4 C 8 0
1 4 10 C C 1 4 2 C P 1 4 C P 4 1 8 P P 8

a b c d a b c d a b c d a b c d

4 P 4 C C 4 P 4 C C 4 P 0 C C 4 P 8 C C
3 P P C P 3 P P C C 3 P P C 2 3 P P C 2
2 4 P 8 C 2 8 P 8 P 2 P C 6 C 2 C C 6 P
1 4 8 C 4 1 4 4 C 4 1 10 4 P 6 1 2 4 P 6

a b c d a b c d a b c d a b c d

4 P 0 C C 4 P 8 C C 4 P 4 C C 4 P 4 C C
3 P P C 0 3 P P C 4 3 P P C 0 3 P P C 4
2 P P 8 4 2 C P 8 0 2 P C 4 4 2 C C 8 4
1 8 C C 4 1 0 P C 4 1 8 C P 4 1 4 P P 8

a b c d a b c d a b c d a b c d

4 P 4 C C 4 P 4 C C 4 P 4 C C 4 P 4 C C
3 P P C 2 3 P P C 2 3 P P C 4 3 P P C 0
2 10 P 4 2 2 2 P 12 2 2 0 C P 4 2 8 C C 4
1 P 6 C C 1 C 6 C P 1 C 4 P 8 1 P 4 P 4

a b c d a b c d a b c d a b c d

4 P 4 2 C 4 P 2 4 C
3 P P C C 3 C P C P
2 7 3 5 3 2 5 3 9 1
1 5 3 3 7 1 1 9 1 7

a b c d a b c d

4 P 4 2 C 4 P 4 2 C 4 P 2 4 C 4 P 2 4 C
3 P P C C 3 P P C C 3 C P C P 3 C P C P
2 8 P 6 2 2 6 C 4 4 2 6 4 10 P 2 4 2 8 C
1 4 4 C 6 1 6 2 P 8 1 C 8 0 6 1 P 10 2 8

a b c d a b c d a b c d a b c d

4 P P 2 C 4 P C 2 C 4 P P 2 C 4 P C 2 C 4 P 0 P C 4 P 4 C C 4 P P 4 C 4 P C 4 C
3 P P C C 3 P P C C 3 P P C C 3 P P C C 3 C P C P 3 C P C P 3 C P C P 3 C P C P
2 4 P 6 2 2 12 P 6 2 2 6 C C 8 2 6 C P 0 2 8 C 8 P 2 4 P 12 P 2 4 4 8 C 2 4 0 8 C
1 C 8 C 6 1 P 0 C 6 1 6 2 P 4 1 6 2 P 12 1 C 8 0 8 1 C 8 0 4 1 P 10 C 6 1 P 10 P 10

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d
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The Chooser-Picker games

4 P 4 P C 4 P 4 C C 4 P 4 P C 4 P 4 C C 4 P 4 4 C 4 P 0 4 C
3 P P C C 3 P P C C 3 P P C C 3 P P C C 3 C P C P 3 C P C P
2 8 P 4 C 2 8 P 8 P 2 8 C 4 4 2 4 C 4 4 2 4 P 8 C 2 4 C 8 C
1 4 4 C 8 1 4 4 C 4 1 4 C P 8 1 8 P P 8 1 P 10 C 6 1 P 10 P 10

a b c d a b c d a b c d a b c d a b c d a b c d

4 P 0 2 C 4 P 8 2 C 4 P 0 2 C 4 P 8 2 C
3 P P C C 3 P P C C 3 P P C C 3 P P C C
2 12 P 6 2 2 4 P 6 2 2 6 C P C 2 6 C C P
1 P C C 6 1 C P C 6 1 6 2 P 12 1 6 2 P 4

a b c d a b c d a b c d a b c d

4 P 4 2 C 4 P 4 2 C 4 P 2 4 C 4 P 2 4 C
3 P P C C 3 P P C C 3 C P C P 3 C P C P
2 4 4 P 4 2 10 2 C 2 2 6 4 10 P 2 4 2 8 C
1 C 2 2 10 1 P 4 4 4 1 0 8 C 6 1 2 10 P 8

a b c d a b c d a b c d a b c d

4 P P 0 C 4 P C 4 C 4 P P 0 C 4 P C 4 C 4 P 0 P C 4 P 4 C C 4 P P 4 C 4 P C 4 C
3 P P C C 3 P P C C 3 P P C C 3 P P C C 3 C P C P 3 C P C P 3 C P C P 3 C P C P
2 C 4 P 4 2 P 4 P 4 2 8 4 C 4 2 12 0 C 0 2 8 C 8 P 2 4 P 12 P 2 4 4 8 C 2 4 0 8 C
1 C 4 4 8 1 C 0 0 12 1 P 4 4 C 1 P 4 4 P 1 0 8 C 8 1 0 8 C 4 1 C 10 P 6 1 P 10 P 10

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d

4 P 2 P C 4 P 6 C C 4 P 2 P C 4 P 6 C C 4 P 4 4 C 4 P 0 4 C
3 P P C C 3 P P C C 3 P P C C 3 P P C C 3 C P C P 3 C P C P
2 6 4 P 2 2 2 4 P 6 2 12 C C 2 2 8 P C 2 2 4 P 8 C 2 4 C 8 C
1 C 2 C 12 1 C 2 P 8 1 P 2 4 6 1 P 6 4 2 1 C 10 P 6 1 P 10 P 10

a b c d a b c d a b c d a b c d a b c d a b c d

4 P 2 P C 4 P 6 C C 4 P 2 P C 4 P 6 C C
3 P P C C 3 P P C C 3 P P C C 3 P P C C
2 6 2 P 4 2 2 6 P 4 2 12 2 C C 2 8 2 C P
1 C C 2 12 1 C P 2 8 1 P 4 2 6 1 P 4 6 2

a b c d a b c d a b c d a b c d

4 P 4 2 C 4 P 4 2 C 4 P 4 2 C 4 P 4 2 C
3 P P C C 3 P P C C 3 P P C C 3 P P C C
2 4 6 P 2 2 4 2 P 6 2 10 P C C 2 10 C C P
1 C P C 10 1 C C P 10 1 P 6 2 4 1 P 2 6 4

a b c d a b c d a b c d a b c d

4 P 4 2 C 4 P 4 2 C
3 P P C C 3 P P C C
2 8 2 6 P 2 6 4 4 C
1 4 C 4 6 1 6 P 2 8

a b c d a b c d

4 P P 2 C 4 P C 2 C 4 P P 2 C 4 P C 2 C
3 P P C C 3 P P C C 3 P P C C 3 P P C C
2 4 2 6 P 2 12 2 6 P 2 6 8 C C 2 6 0 P C
1 C C 8 6 1 P C 0 6 1 6 P 2 4 1 6 P 2 12

a b c d a b c d a b c d a b c d

4 P 4 P C 4 P 4 C C 4 P 8 2 C 4 P 0 2 C
3 P P C C 3 P P C C 3 P P C C 3 P P C C
2 8 C 4 P 2 8 P 8 P 2 6 P C C 2 6 C P C
1 4 C 4 8 1 4 C 4 4 1 6 P 2 4 1 6 P 2 12

a b c d a b c d a b c d a b c d

4 P 0 2 C 4 P 8 2 C 4 P 4 P C 4 P 4 C C
3 P P C C 3 P P C C 3 P P C C 3 P P C C
2 12 2 6 P 2 4 2 6 P 2 8 4 4 C 2 4 4 4 C
1 P C C 6 1 C C P 6 1 4 P C 8 1 8 P P 8

a b c d a b c d a b c d a b c d

4 P 2 3 C 4 P 4 3 C
3 P P C 3 3 C P C 3
2 7 C 6 2 2 5 P 8 2
1 5 4 3 7 1 1 8 1 7

a b c d a b c d

4 P 0 P C 4 P 4 C C OK
3 P P C 4 3 P P C 2
2 10 C 6 0 2 4 C 6 4
1 4 4 C 8 1 6 4 P 6

a b c d a b c d

4 P 0 P C 4 P 0 P C 4 P P C C 4 P C C C
3 P P C P 3 P P C C 3 P P C 2 3 P P C 2
2 8 C 8 0 2 12 C 4 0 2 C C 6 8 2 P C 6 0
1 C 8 C 8 1 P 0 C 8 1 2 4 P 6 1 10 4 P 6

a b c d a b c d a b c d a b c d

4 P 0 P C 4 P 0 P C 4 P P C C 4 P C C C
3 P P C 0 3 P P C 8 3 P P C 0 3 P P C 4
2 12 C 4 0 2 8 C 8 0 2 4 C 4 8 2 4 C 8 0
1 P C C 8 1 C P C 8 1 4 C P 4 1 8 P P 8

a b c d a b c d a b c d a b c d

4 P 0 C C 4 P 8 C C
3 P P C 2 3 P P C 2
2 P C 6 C 2 C C 6 P
1 10 4 P 6 1 2 4 P 6

a b c d a b c d

4 P 4 C C 4 P 4 C C
3 P P C 0 3 P P C 4
2 P C 4 4 2 C C 8 4
1 8 C P 4 1 4 P P 8

a b c d a b c d

4 P 1 4 C 4 P 5 2 C
3 3 P C P 3 3 P C C
2 6 C 8 1 2 6 P 6 3
1 3 7 2 7 1 3 5 2 7

a b c d a b c d

4 P 4 P C 4 P 6 C C
OK 3 2 P C C 3 4 P C C

2 8 P 6 2 2 4 P 6 4
1 2 4 C 8 1 4 6 P 6

a b c d a b c d

79



The Chooser-Picker games

4 P 4 P C 4 P 4 P C 4 P P C C 4 P C C C
3 P P C C 3 C P C C 3 6 P C C 3 2 P C C
2 8 P 4 C 2 8 P 8 P 2 2 P C 4 2 6 P P 4
1 4 4 C 8 1 0 4 C 8 1 4 10 P 2 1 4 2 P 10

a b c d a b c d a b c d a b c d

4 P 4 P C 4 P 4 P C 4 P P C C 4 P C C C
3 0 P C C 3 4 P C C 3 6 P C C 3 2 P C C
2 8 P 8 P 2 8 P 4 C 2 4 P 2 6 2 4 P 10 2
1 C 4 C 8 1 P 4 C 8 1 2 8 P C 1 6 4 P P

a b c d a b c d a b c d a b c d

4 P 8 C C 4 P 4 C C
3 4 P C C 3 4 P C C
2 4 P 8 P 2 4 P 4 C
1 C 4 P 4 1 P 8 P 8

a b c d a b c d

4 P 3 4 C 4 P 3 2 C
3 1 P C P 3 5 P C C
2 5 3 9 2 2 7 3 5 2
1 C 8 1 6 1 P 4 3 8

a b c d a b c d

OK 4 P 2 P C 4 P 4 C C
3 4 P C C 3 6 P C C
2 8 2 4 C 2 6 4 6 P
1 P 4 2 10 1 P 4 4 6

a b c d a b c d

4 P P P C 4 P C P C 4 P 6 C C 4 P 2 C C
3 4 P C C 3 4 P C C 3 P P C C 3 C P C C
2 8 4 4 C 2 8 0 4 C 2 8 2 C P 2 4 6 P P
1 P 4 C 8 1 P 4 P 12 1 P 4 6 2 1 P 4 2 10

a b c d a b c d a b c d a b c d

4 P 2 P C 4 P 2 P C 4 P 6 C C 4 P 2 C C
3 P P C C 3 C P C C 3 P P C C 3 C P C C
2 12 2 C C 2 4 2 P C 2 10 4 2 P 2 2 4 10 P
1 P 4 2 6 1 P 4 2 14 1 P 2 4 C 1 P 6 4 P

a b c d a b c d a b c d a b c d

4 P 0 P C 4 P 4 P C 4 P 4 C C 4 P 4 C C
3 P P C C 3 C P C C 3 10 P C C 3 2 P C C
2 12 0 4 C 2 4 4 4 C 2 P 6 4 P 2 C 2 8 P
1 P C 0 8 1 P P 4 12 1 P 2 2 C 1 P 6 6 P

a b c d a b c d a b c d a b c d

4 P 4 P C 4 P 0 P C 4 P 4 C C 4 P 4 C C
3 4 P C C 3 4 P C C 3 4 P C C 3 8 P C C
2 8 P 4 C 2 8 C 4 C 2 8 P 8 P 2 4 C 4 P
1 P 4 C 8 1 P 4 P 12 1 P 4 C 4 1 P 4 P 8

a b c d a b c d a b c d a b c d

4 P 0 P C 4 P 4 P C
3 4 P C C 3 4 P C C
2 8 0 P C 2 8 4 C C
1 P C 0 12 1 P P 4 8

a b c d a b c d

4 P 4 2 C 4 P 2 2 C
3 4 P C C 3 6 P C C
2 8 P 6 2 2 6 C 4 2
1 P 4 C 6 1 P 4 P 10

a b c d a b c d

4 P P 2 C 4 P C 2 C 4 P P C C 4 P C P C
3 C P C C 3 P P C C 3 8 P C C 3 4 P C C
2 4 P 6 2 2 12 P 6 2 2 4 C 4 4 2 8 C 4 0
1 P 8 C 6 1 P 0 C 6 1 P 4 P 8 1 P 4 P 12

a b c d a b c d a b c d a b c d

4 P 4 P C 4 P 4 C C 4 P 0 P C 4 P 4 C C
3 4 P C C 3 4 P C C 3 4 P C C 3 8 P C C
2 8 P 4 C 2 8 P 8 P 2 8 C 4 C 2 4 C 4 P
1 P 4 C 8 1 P 4 C 4 1 P 4 P 12 1 P 4 P 8

a b c d a b c d a b c d a b c d

4 P 0 2 C 4 P 8 2 C 4 P 2 2 C 4 P 2 2 C
3 P P C C 3 C P C C 3 6 P C C 3 6 P C C
2 12 P 6 2 2 4 P 6 2 2 6 C P 2 2 6 C C 2
1 P C C 6 1 P P C 6 1 P C P 10 1 P P P 10

a b c d a b c d a b c d a b c d

4 P 5 3 C 4 P 1 3 C
3 1 P C 3 3 5 P C 3
2 5 P 8 3 2 7 C 6 1
1 C 7 1 6 1 P 5 3 8

a b c d a b c d

4 P P 0 C 4 P C 6 C 4 P 0 P C 4 P 2 C C
3 2 P C 2 3 0 P C 4 3 4 P C 4 3 6 P C 2
2 C P 6 2 2 P P 10 4 2 10 C 6 0 2 4 C 6 2
1 C 10 2 4 1 C 4 0 8 1 P 4 C 8 1 P 6 P 8

a b c d a b c d a b c d a b c d

4 P P 0 C 4 P P 0 C 4 P C 8 C 4 P C 4 C 4 P 0 P C 4 P 0 P C 4 P P C C 4 P C C C
3 P P C C 3 C P C P 3 0 P C P 3 0 P C C 3 P P C C 3 C P C P 3 8 P C C 3 4 P C P
2 C P 4 4 2 C P 8 0 2 P P 8 C 2 P P 12 P 2 12 C 4 0 2 8 C 8 0 2 4 C 4 4 2 4 C 8 0
1 C 8 4 4 1 C 12 0 4 1 C 8 0 8 1 C 0 0 8 1 P 0 C 8 1 P 8 C 8 1 P 4 P 8 1 P 8 P 8

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d

4 P P 0 C 4 P P 0 C 4 P C 8 C 4 P C 4 C 4 P 0 P C 4 P 0 P C 4 P 4 C C 4 P 0 C C
3 0 P C P 3 4 P C C 3 0 P C 8 3 0 P C 0 3 P P C 0 3 C P C 8 3 P P C 0 3 C P C 4
2 C P 8 C 2 C P 4 P 2 P P 8 C 2 P P 12 P 2 12 C 4 0 2 8 C 8 0 2 8 C C 4 2 0 C P 0
1 C 12 0 4 1 C 8 4 4 1 C P 0 8 1 C C 0 8 1 P C C 8 1 P P C 8 1 P 4 P 4 1 P 8 P 12

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d

4 P 4 C C 4 P 0 C C
3 P P C 0 3 C P C 4
2 8 C 4 4 2 0 C 8 0
1 P C P 4 1 P P P 12

a b c d a b c d

4 P 0 C C 4 P 4 C C
3 4 P C P 3 8 P C C
2 4 C 8 C 2 4 C 4 P
1 P 8 P 8 1 P 4 P 8

a b c d a b c d
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4 P 2 2 C 4 P 0 4 C
3 P P C 0 3 C P C 6
2 10 C 4 2 2 4 C 8 0
1 P C 2 6 1 P P 4 10

a b c d a b c d

4 P P C C 4 P C P C 4 P 0 P C 4 P 0 C C
3 P P C 0 3 P P C 0 3 C P C 8 3 C P C 4
2 8 C 4 4 2 12 C 4 0 2 8 C 8 0 2 0 C 8 0
1 P C 4 4 1 P C 0 8 1 P P C 8 1 P P P 12

a b c d a b c d a b c d a b c d

4 P 0 P C 4 P 4 C C 4 P 0 8 C 4 P 0 0 C
3 P P C 0 3 P P C 0 3 C P C 8 3 C P C 4
2 12 C 4 C 2 8 C 4 P 2 P C 8 0 2 C C 8 0
1 P C 0 8 1 P C 4 4 1 P P C 8 1 P P P 12

a b c d a b c d a b c d a b c d

H1 4 P 3 3 C H2 4 P 5 5 P
3 3 P C 3 3 5 C C 5
2 6 3 7 2 2 4 3 3 4
1 3 6 2 7 1 3 4 4 3

a b c d a b c d

see above… H2a1 4 P P 8 P H2a2 4 P C 2 P
3 6 C C C 3 4 C C P
2 3 3 1 3 2 5 3 5 5
1 3 1 5 1 1 3 7 3 5

a b c d a b c d
H2b1 4 P 8 P P H2b2 4 P 2 C P

3 C C C 6 3 P C C 4
2 3 1 3 3 2 5 5 3 5
1 1 5 1 3 1 5 3 7 3

a b c d a b c d
H2c1 4 P 6 4 P H2c2 4 P 4 6 P

3 P C C C 3 C C C P
2 5 5 1 3 2 3 1 5 5
1 5 1 7 1 1 1 7 1 5

a b c d a b c d
H2d1 4 P 4 6 P H2d2 4 P 6 4 P

3 4 C C 6 3 6 C C 4
2 P 2 4 4 2 C 4 2 4
1 4 4 C 2 1 2 4 P 4

a b c d a b c d
H2e1 4 P 5 5 P H2e2 4 P 5 5 P

3 5 C C 5 3 5 C C 5
2 3 P 4 5 2 5 C 2 3
1 C 3 5 2 1 P 5 3 4

a b c d a b c d
H2f1 4 P 5 5 P H2f2 4 P 5 5 P

3 7 C C 3 3 3 C C 7
2 5 P 4 3 2 3 C 2 5
1 2 3 5 C 1 4 5 3 P

a b c d a b c d
H2g1 4 P 5 5 P H2g2 4 P 5 5 P

3 3 C C 7 3 7 C C 3
2 3 4 P 5 2 5 2 C 3
1 C 5 3 2 1 P 3 5 4

a b c d a b c d
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H2h1 4 P 5 5 P H2h2 4 P 5 5 P
3 5 C C 5 3 5 C C 5
2 5 4 P 3 2 3 2 C 5
1 2 5 3 C 1 4 3 5 P

a b c d a b c d
H2i1 4 P 6 4 P H2i2 4 P 4 6 P

3 6 C C 4 3 4 C C 6
2 4 4 2 P 2 4 2 4 C
1 2 C 4 4 1 4 P 4 2

a b c d a b c d

82



The Chooser-Picker games

6.2 Case studies for the Chooser-Picker 7-in-a-row-game
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minor games.SIAM Journal on Discrete Math22 (2008), 194–212.

[40] D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó, A sharp threshold for the
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dapest (1982).

[73] L. A. Székely, On two concepts of discrepancy in a class of combinatorial games.
Finite and Infinite Sets, Colloq. Math. Soc. János Bolyai, Vol. 37, North-Holland,
1984, 679–683.

[74] Wu, I-C. and Huang, D.-Y. (2006) A New Family of k-in-a-row Games.Advances
in Computer Games Lecture Notes in Computer Science, 2006, Volume 4250/2006,
180-194.

[75] http://en.wikipedia.org/wiki/Nim

[76] E. Zermelo, Über eine Anwendung der Mengenlehre und derTheorie des
Schachspiels,Proceedings of the Fifth International Congress of Mathematicians,
Cambridge, 501–504.

92



Acknowledgements

I would like to thank my mentor, Professor András Pluhár for his guidance, support, and
for introducing me to research.

93



Chapter 7

Summary

Abstract

The main goal of this work is to understand Picker-Chooser (or Chooser-Picker) games
and Beck’s conjecture as deeply as possible. The text has three main parts.

At first we examine the complexity of Picker-Chooser(P-C) and Chooser-Picker(C-
P) games. Here we found that it is NP-hard to decide the winnerfor both P-C and C-P
games [24]. Then we discuss the Picker-Chooser version of well-known games, to explore
the differences and similarities among the various types. The examined games are the C-
P 4 × 4 Tic-Tac-Toe, the P-C version of generalized Shannon switching game, theC-P
version of thek-in-a-row and some of the C-P, M-B (Maker-Breaker) and P-C Torus
games. We improve a little on the “Erdős-Selfridge” theorem for C-P games, although a
gap remains this and the conjectured form [21].

Secondly, we solve with the Chooser-Picker 7-in-a-row game. This game is quite
interesting because the last really valuable result for the8-in-a-row game (by playing on
infinite board the 8-in-a-row game the second player can achieve a draw), was made more
than 30 years ago. Since then all attempts to solve the 7-in-a-row was unsuccessful. The
thesis deals with the Chooser-Picker version of the same problem. In that section we
prove that the Chooser-Picker 8-in-a-row and the Chooser-Picker 7-in-a-row game is a
Picker win. The proof is a bit lengthy and a non- trivial case study. After we sketch some
idea how can we deal with the original (M-M or M-B) version of this game [22].

Finally we will discuss the P-C diameter games. Here we founda very interesting
result that how different result is given by the Maker-Breaker version and the Picker-
Chooser version [2, 23]. As we show the Picker-Chooser version restores the probabilistic
intuition, just like the acceleration of the game.
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7.1 Definitions, a conjecture and some new tools

7.1.1 The weak version of the games

There can be defined the weak version of the positional games [6], where the second
player wins if he/she can achieve a draw. It means that the first player do not have to be
afraid of (and defend against) that the second player occupies a winning set. Here the first
player is called Maker, and the second is called Breaker. It is easy to see the following
statement, see [7].

Statement 7.1. If the Breaker wins in the weak version of the game, then the strong
version is draw.

7.1.2 Chooser-Picker and the Picker-Chooser games

Studying the very hard clique games, Beck [6] introduced a new type of heuristic, that
proved to be a great success. He defined thePicker-Chooseror shortly P-C and the
Chooser-Picker(C-P) versions of a Maker-Breaker game that resembles fair division, (see
[71]). In these versions Picker takes an unselected pair of elements and Chooser keeps
one of these elements and gives back the other to Picker. In the Picker-Chooser version
Picker is Maker and Chooser is Breaker, while the roles are swapped in the Chooser-
Picker version. When|V | is odd, the last element goes to Chooser. Beck obtained that
conditions for winning a Maker-Breaker game by Maker and winning the Picker-Chooser
version of that game by Picker coincide in several cases. Furthermore, Breaker’s win in
the Maker-Breaker and Picker’s win in the Chooser-Picker version seem to occur together.

The study of these games gives invaluable insight to the Maker-Breaker version. For
some hypergraphs the outcome of the Maker-Breaker and Chooser-Picker versions is the
same [6, 21]. In all cases it seems that Picker’s position is at least as good as Breaker’s. It
was formalized in the following conjecture.

Conjecture 7.2. If Maker (as the second player) wins the Maker-Breaker game,then
Picker wins the corresponding Picker-Chooser game. If Breaker (as the second player)
wins the Maker-Breaker game, then also Picker wins the Chooser-Picker game.[21]

It is necessary for the Chooser-Picker Games infinite version the following restriction:
At the beginning Chooser can select a bounded subset of the board, where they will play.
Because if they play on the infinite board, then Picker could select points far from each
other, and it is a trivially winning strategy for Picker.

7.1.3 Toolbar

Pairing lemma

Lemma 7.3(Cs-P). If in the course of the (Chooser- Picker) game (or just already at the
beginning) there is a two element winning set{x, y} then Picker has an optimal strategy
starting with{x, y} .
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The monotonicity lemma

We mentioned that the at infinite version Chooser can select abounded subset. In practice
it means that Chooser selects a finite setX ∈ V , and they play on theinduced sub-
hypergraphthat is keep only those edgesA ∈ F for whichA ⊂ X. More formally, given
the hypergraph(V,F) let (V \ X,F(X)) denote the hypergraph whereF(X) = {A ∈
F , A ∩X = ∅} .

Lemma 7.4. [21] If Picker wins the Chooser-Picker game on(V,F), then Picker also
wins it on(V \X,F(X)).

This lemma is useful tool at the next chapters, because if a bounded setS cant be
partitioned into uniform sub-games, then it can be increased toS

′
, which can be split into

such sub-games. And if Picker wins onS
′
, then also can win onS.

7.1.4 Some results on Chooser-Picker games

Complexity of Chooser-Picker positional games

Since the Maker-Breaker (and the Maker-Maker) games are PSPACE-complete, see [65],
it would support both Conjecture 2.9, and the above heuristic to see that the Chooser-
Picker or Picker-Chooser games are not easy, too. To prove PSPACE-completeness for
positional games is more or less standard, see [65, 64, 16]. Here we can prove less because
of the asymmetric nature of these games.

Theorem 7.5. It is NP-hard to decide the winner in a Picker-Chooser game.

Theorem 7.6. It is NP-hard to decide the winner in a Chooser-Picker game.

Both proofs are based on the usual reduction method. We reduce3−SAT to Chooser-
Picker or Picker-Chooser games.

Note that Chooser-Picker games are NP-hard, even for hypergraphs(V,E), where
|A| ≤ 6 for A ∈ E.

4× 4 tic-tac-toe

Proposition 7.7. Picker wins the Chooser-Picker version of the4× 4 tic-tac-toe.

Picker-Chooser version of the generalized Shannon switching game

We prove Conjecture 2.9 for the Picker-Chooser version of Shannon switching game in
the generalized version as Lehman did in [46]. Let(V,F) be a matroid, whereF is the
set of bases, and Picker wins by taking anA ∈ F . Note, that this is equivalent with the
Chooser-Picker game on(V, C), whereC is the collection ofcutsetsof the matroid(V,F),
that is for allA ∈ F andB ∈ C, A ∩ B 6= ∅.

Theorem 7.8. Let F be collection of bases of a matroid onV . Picker wins the Picker-
Chooser(V,F) game, if and only if there areA,B ∈ F such thatA ∩B = ∅.

The proof closely follow the ones given by Oxley in [54] for the Maker-Breaker case.

96



The Chooser-Picker games

Erdős-Selfridge type theorems for P-C and C-P games

The Erd̋os-Selfridge theorem [27] gives a very useful condition forBreaker’s win in a
Maker-Breaker(V,F) game. Using a stronger condition, Beck [6] proves Picker’s win
in a Chooser-Picker(V,F) game. (For the P-C version he proved a sharp result that we
include here.) Let||F|| = maxA∈F |A| be the rank of the hypergraph(V,F).

Theorem 7.9. [6] If

T (F) :=
∑

A∈F

2−|A| <
1

8(||F||+ 1)
, (7.1)

then Picker has an explicit winning strategy in the Chooser-Picker game on hypergraph
(V,F). If T (F) < 1, then Chooser wins the Picker-Chooser game on(V,F).

We improved on his result by showing:

Theorem 7.10.If ∑

A∈F

2−|A| <
1

3
√

||F||+ 1
2

, (7.2)

then Picker has an explicit winning strategy in the Chooser-Picker game on hyper-
graph(V,F).

It is worthwhile to spell out a special case of Conjecture 2.9for this case, that would
be the sharp extension of Erdős-Selfridge theorem to Chooser-Picker games.

Conjecture 7.11. If ∑

A∈F

2−|A| <
1

2
,

then Picker wins the Chooser-Picker game on(V,F).

Torus games

To test Beck’s paradigm we check the status of concrete gamesdefined on the4×4 torus,
denoted by42. That is we glue together the opposite sides of the grid, and consider all
lines of slopes0 and±1 as winning sets. For the general definition of torus games see[7].
We use a chess-like notation to refer to the elements of the board. The hypergraph of42

is not almost disjoint, see e. g. the two winning sets{a2, b1, c4, d3} and{a4, b1, c2, d3}.
We can define four possible games on42, those are the Maker-Maker, the Maker-Breaker,
the Chooser-Picker and the Picker-Chooser versions. According to [7], the Maker-Maker
version of42 is a draw, and Picker wins the Chooser-Picker version, see [21]. In fact, the
statement of the Maker-Breaker version implies the result for the Maker-Maker version,
while the proof of it contains the proof of the Chooser-Picker version.

Proposition 7.12.Breaker wins the Maker-Breaker version of the42 torus game.

According to Conjecture 2.9, Breaker has an easier job in theMaker-Breaker version
than Chooser has in the Picker-Chooser game. For the4 × 4 torus the outcome of these
games are the same, although it is much harder to prove.
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Proposition 7.13.Chooser wins the Picker-Chooser version of the4× 4 torus game.

Proof. (sketch)The full proof needs a lengthy exhaustive case analysis. However, some
branches of the game tree may be cut by proof method of Beck’s following result [6]:
Chooser wins a Picker-Chooser game onH if T (H) :=

∑
A∈E(H) 2

−|A| < 1.

It is important to remark that above we have seen an ordering due to its complexity:
it is easier to get the result of the C-P case, then the M-B case, though it gives the same
result. And it is far more hard to determine the P-C case then the Maker-Breaker case.

7.2 The Chooser-Picker 7-in-a-row game

7.2.1 The k-in-a-row game

The k-in-a-row game is that hypergraph game, where the vertices of the graphs are the
fields of an infinite graph paper (Z2), and the winning sets are the consecutive cells (hor-
izontal, vertical or diagonal) of lengthk. If one of the players gets a lengthk line, then
he wins otherwise the game is draw. Note the assuming perfectplay, the winner is always
the first player, or it is a draw by the strategy stealing argument of John Nash, [13]. More
details aboutk-in-a-row games in [61, 62].

Both the Maker-Maker and the Maker-Breaker versions of thek-in-a-row fork = 6, 7
are open. These are wisely believed to be draws (Breaker’s win) but, despite of the efforts
spent on those, not much progress has been achieved.

7.2.2 The C-P k-in-a-row game

Before proving the C-P7-in-a-row game, we proved the easier C-P8-in-a-row game (by
playing auxiliary games in a "Z" shaped board, what used Zetters in [34]).

Proposition 7.14.Picker wins the Chooser-Picker version of the game8-in-a-row on any
B ⊆ Z

2.

Theorem 7.15.Picker wins the Chooser-Picker 7-in-a-row game on every A subset ofZ2.

By applying the remedy mentioned before Lemma 2.18 at first Chooser determines the
finite boardS. We will consider a tiling of the entire plane, and play an auxiliary game
on each tile (sub-hypergraph). It is easy to see, if Picker wins all of the sub-games, then
Picker wins the game played on anyK board which is the union of disjoint tiles. LetK be
the union of those tiles which meetS. SinceS ⊂ K, Lemma 2.18 gives that Picker also
wins the game onS, too. Now we need to show a suitable tiling and to define and analyze
the auxiliary games. The tiling guarantees that if Picker wins on in each sub-games then
Chooser cannot occupy any seven consecutive squares onK.
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Figure 7.1: These are the winning-sets of the4 × 8 rectangle. Easy to see, that there is
exactly one symmetry (along the double line). Later we will make use of it.

Figure 7.2: We can see, how to draw from playing on simple tile, the game played on the
infinite chessboard: neither vertically, nor horizontally, nor diagonally (there is only one
diagonal direction detailed) there are no seven consecutive squares without containing
one winning set of a sub-game.

Each tile is a4 × 8 sized rectangle and the winning sets, for the sake of better under-
standing, are drawn on the following four board:

The key lemma for our proof is the following.

Lemma 7.16.Picker wins the auxiliary game defined on the4× 8 rectangle.

Remark 7.17. We checked with brute force computer search the M-B game on the same
auxiliary board, but it is a Maker win! So we cannot use the same table again, to prove
that the weak version (=the Maker-Breaker version) of this game is a Breaker win. One
is tempted to look for other auxiliary games, which is not going to be easy. As a rule of
thumb, it always good idea to check the C-P version of these games at first.

7.3 The Picker-Chooser Diameter Game

7.3.1 Graph Games

Large classes of Maker-Breaker games are defined on the complete graph onn vertices.
The players take the edges of the graph in turns; Maker wins iff his subgraph has a given,
usually monotone, propertyP, see [8, 5, 12, 17]. Balogh et al. [2] introduced the(a : b)
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d-diameter game, shortlyDd(a : b), which means that Maker wins iff the diameter of
his subgraph is at mostd. These games turned out to be very difficult and surprising; a
detailed discussion will be given in Section 5.2. The main result of Balogh et al. was that
Maker loses the gameD2(1 : 1) but Maker wins the gameD2(2 : 1

9
n1/8/(logn)3/8).

This means that the acceleration of a game may change the outcome dramatically,
[61]. The outcome also changes a lot when one considers the Picker-Chooser version of
the gameD2(1 : 1). Our main result is the following theorem.
Observation.

Picker wins the P-C gameD2(1 : 1) on the graphKn, if n > 22.

Theorem 7.18.In the Chooser-Picker gameD2(1 : b), Picker wins ifb <
√
n/ log2 n/4,

while Chooser wins ifb > 3
√
n, provided thatn is large enough.

The Picker-Chooser (Chooser-Picker) games are themselvesheuristics for the Maker-
Breaker games. As Theorem 3.6 shows, the conditions for winning a Maker-Breaker game
by Breaker and winning the Chooser-Picker version of that game by Picker coincide in
several cases. Furthermore, Breaker’s win in the Maker-Breaker and Chooser’s win in
the Picker-Chooser version seem to occur together in some cases [6]. To further explore
this connection, a generalization of Theorem 3.6 for biasedgames is needed. No attempt
is made here to get the best possible form, for our needs the following lemma will be
sufficient.

Lemma 7.19. Picker wins the Chooser-Picker(1 : b) biased game on the hypergraph
H = (V (H), E(H)) if

v

b+ 1

∑

A∈E(H)

2−|A|/b < 1,

wherev = |V (H)|.

Diameter and degree games

Balogh et al. [2] observed that the gameD2(1 : 1) defies the probabilistic intuition
completely. Indeed, if one divides the edges ofKn among Maker and Breaker randomly,
then Maker’s subgraph will almost surely have diameter two.Still, Breaker has a simple
pairing winning strategy forn > 3, [2]. First taking an edgeuv, such that neitherux nor
vx has been taken by Maker for any vertexx. Then if Maker takesux, takingvx follows,
and if Maker takesvx, Breaker takesux, otherwise an arbitrary edge is taken.

However, when playing the gameD2(2 : 2), this pairing strategy is not available for
Breaker. Maker wins the gameD2(2 : 2), and even more, the gameD2(2 : b), whereb
grows polynomially inn, provided thatn is large enough.

Theorem 7.20. [2] Maker wins the gameD2(2 : 1
9
n1/8/(lnn)3/8), and Breaker wins the

gameD2(2 : (2 + ε)
√
n/ lnn) for anyε > 0, providedn is large enough.

To prove Theorem 5.1 we need to study the so-calleddegree games. Székely, Beck
and Balogh et al. [73, 5, 2] showed that these games are interesting in their own right.

In such games one player tries to distribute his moves uniformly, while the other
player’s goal is to obtain as many edges incident to some vertex as possible. Given a
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graphG and a prescribed degreed, Maker and Breaker play an(a : b) game on the edges
of G. Maker wins by getting at leastd edges incident to each vertex. We are interested
only in the case ofG = Kn. Balogh et al. [2] proved the following lemma:

Lemma 7.21. [2] Let a ≤ n/(4 lnn) andn be large enough. Then Maker wins the(a : b)
degree game onKn if d < a

a+b
n− 6ab

(a+b)3/2

√
n lnn.

As we do not wish to develop the complete theory of P-C (C-P) degree games, we
state only a simple form that suffices our needs

Lemma 7.22. Let b < n/(8 lnn) andn be large enough. Then Chooser wins the(1 : b)
Chooser-Picker degree game onKn if d < n− 1− 3n/b.

To prove Theorem 5.1, we proved Lemma 3.9 first.
The second part of the theorem, i. e. Chooser wins ifb > 3

√
n, comes from Lemma 5.4.

Let Chooser play accordingly to that lemma, then Picker getsat most(3n/b) − 1 edges
at any vertexx ∈ Kn, so the number of vertices that are linked tox is no more than
((3n/b)− 1)2 < n− 1.

To prove the first part of the theorem implies more work. We split the vertices of the
graph into three approximately equal parts,X1,X2 andX3. (LetXi beXi mod 3 if i > 3.)
The elements ofXi may be listed as1, 2, . . . , n/3.1 E(Xi, Xj) denotes the edges between
the setsXi andXj.

We will play two different games among and inside the parts. At the first game we
link the points ofXi usingE(Xi, Xi+1), for i = 1, 2, 3. At the second game we link the
setsXi with Xi+1 playing on the edges ofXi+1.

1It can also bebn/3c anddn/3e. In the proof we show that it works withdn/3e, and the casebn/3c
easily follows from that.
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Chapter 8

Összefoglaló

Absztrakt

Ennek a munkának az fő célja, hogy minél mélyebben megértsük a Picker-Chooser (vagy
Chooser-Picker) játékokat és Beck sejtését. A dolgozatnakhárom f̋o részb̋ol áll:

Először a Picker-Chooser(P-C) és a Chooser-Picker(C-P) játékok komlexitását vizs-
gáltuk meg. Itt azt találtuk, hogy mind a P-C és a C-P játékok esetében NP nehéz el-
dönteni, hogy melyik játékos a nyerő.[24]. Ezután bemutattuk néhány ismert példán
keresztül a Picker-Chooser játékokat, hogy felfedezzük azazonosságokat és eltéréseket a
különböz̋o játékok között. Megvizsgáltuk a C-P4 × 4 tic-tac-toe-t, a P-C változatát az
általánosított Shannon-féle kapcsolójátéknak, a C-P változatát ak-amőbának, valamint
a C-P, M-B és P-C tórusz játékoknak. Egy kicsit javítottunk aC-P játékokra vonatkozó
“Erdős-Selfridge” tételen is [21].

A második részben a Chooser-Picker 7-amőba játékot oldottuk meg. Ez a játék azért
is nagyon érdekes, mert a legutolsó igazán értékes eredménya 8-am̋oba játékra már több
mint 30 évvel ezel̋otti (a végtelen négyzetrácsos papíron a második játékos elérheti a
döntetlent). A 7-am̋oba megoldására tett kísésletek mindeddig sikertelenek. Atézis ennek
a játéknak a Chooser-Picker változatával foglalkozik. Ebben a fejezetben belátjuk, hogy
a Chooser-Picker 8-am̋obát és a Chooser-Picker 7-amőbát Picker nyeri. A bizonyítás
egy kissé hosszadalmas, nem triviális esetvizsgálat. Eztán felvázolunk egy elképzelést,
hogyan lehetne boldogulni az eredeti (M-M illetve M-B) változatával ennek a játéknak
[22].

Az utolsó részben a P-C átmérő játékkal foglalkozunk. Itt nagyon érdekes megfigyelni
az M-B és a P-C játékokra kapott eredmények különbözőségét [2, 23]. Megmutatjuk,
hogy a valószínűségi intuiciónkhoz közel álló eredményt hoz a Picker-Chooser változat,
csakúgy, mint a felgyorsítás..

8.1 Definíciók, egy sejtés és néhány eszköz

8.1.1 A játékok gyenge változata

A játékok gyenge változatának azt nevezzük, amikor a második játékos akkor nyer, ha
döntetlent tud elérni. Ez azt jelenti, hogy a kezdő játékosnak nem kell félnie/védekeznie
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az ellen, hogy a második játékos elfoglalhat egy nyerőhalmazt. Itt a kezd̋o játékost Maker-
nek (épít̋o), a másodikat Breaker-nek (romboló) hívjuk. Könnyű belátni az alábbi állítást,
lásd [7].

Állítás 8.1. Ha Breaker nyeri a a játék gyenge változatát, akkor az eredeti játék döntetlen.

8.1.2 Chooser-Picker és a Picker-Chooser játékok

Beck [6] az igen nehéz klikk játékok tanulmányozására bevezetett egy új típusú heu-
risztikát, mely igen sikeresnek bizonyult. Definiálta aPicker-Chooservagy röviden P-C
és aChooser-Picker(C-P) változatait a Maker-Breaker játékoknak, mely igen hasonló
a kétszemélyes torta felosztás problámához, (lásd [71]). Ezeknél a változatoknál Picker
mindig kiválaszt két mez̋ot, majd Chooser választ közülük egyet, a másik Pickerhez kerül.
A Picker-Chooser játékokban Picker felel meg Maker-nek és Chooser Breaker-nek, míg
a Chooser-Picker játékoknál fordítva. Ha|V | páratlan, akkor az utolsó elem Chooser-é.
Beck azt tapasztalta, hogy Maker igen sok esetben pontosan akkor nyeri meg a Maker-
Breaker játékot, amikor Picker a Picker-Chooser változatot. Ráadásul Breaker nyerései a
M-B játékban, illetve Picker nyerései a C-P játékban úgy tűnik, hogy egybe esnek.

Ezen játékok tanulmányozása felbecsülhetetlen rátekintést enged a Maker-Breaker
változatra. Néhány hipergráfra a végeredménye a Maker-Breaker és a Chooser-Picker
változatnak ugyanaz [6, 21]. Általában úgy tűnik, hogy Picker helyzete legalább olyan jó,
mint Breaker-é. Ezt az alábbi sejtésben mondható ki:

Sejtés 8.2.Ha a Maker-Breaker játékot Maker nyeri, akkor a Picker - Chooser játékot
(mint második játékos) Picker nyeri; ha a Maker-Breaker játékot Breaker nyeri, akkor a
Chooser-Picker játékot szintén (mint második játékos) Picker nyeri [21].

Szükséges a Chooser-Picker játékok végtelen változatánakhasználhatóságához az alábbi
megszorítás: Az elején Chooser kiválaszthatja egy korlátos részhalmazát a táblának, ahol
majd játszanak. Erre azért van szükség, mert egy végtelen táblán Picker mindig kérhet
egymástól távoles̋o pontokat és ez triviális nyerés Pickernek.

8.1.3 Eszköztár

Párosítási lemma

Lemma 8.3(Cs-P). Ha egy Chooser-Picker játék során (akár már a játék elején) van egy
két elemű nyer̋ohalmaz{x, y}, akkor Picker-nek van olyan optimális nyerőstratégiája,
amely{x, y}-nal kezd̋odik.

Monotonitási lemma

Korábban beláttuk, hogy végtelen tábla esetén Choosernek ki kell választania egy korlátos
részhalmazát a tálának. Ez a gyakorlatban azt jelenti, hogyChooser választ egyX ∈ V
részhalmazt, éa játszik az ígyindukált rész-hipergráfon, mely csak azokat azA ∈ F
éleket tartalmazza, aholA ⊂ X. Formálisabban: egy adott(V,F) hipergráfra legyen
(V \X,F(X)) az a rész-hipergráf, aholF(X) = {A ∈ F , A ∩X = ∅} .
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Lemma 8.4. [21] Ha Picker nyeri a Chooser-Picker játékot(V,F)-on, akkor Picker nyeri
a (V \X,F(X)) hipergráfon is.

Ez a lemma hasznos lesz a következő fejezeteknél, ugyanis, ha egy korlátosS halmazt
nem tudunk egyforma részekre feldarabolni, akkor megnövelhetjükS

′
-re, amit már fel

lehet darabolni egyenlő részekre. És ha Picker nyerS
′
-n, akkorS-en is nyerni fog.

8.1.4 Néhány eredmény a Chosser-Picker játékokról

A Chooser-Picker játékok komplexitása

Miután a Maker-Breaker játékok (és a Maker-Maker) játékok PSPACE-teljesek, lásd [65],
ezért mind a(z) 2.9 sejtés, mind a fenti heurisztika alapjána Picker-Chooser és a Chooser-
Picker játékok sem ígérkeznek könyebbnek. Játékok PSPACE-teljességének beláttása
többé-kevésbbé standard lásd [65, 64, 16]. Most mi ennél kevesebbet mutatunk be a
vizsgált játékok asszimetrikus természete miatt.

Tétel 8.1. A Picker-Chooser játékoknál NP-nehéz eldönteni, hogy ki nyer.

Tétel 8.2. A Chooser-Picker játékoknál NP-nehéz eldönteni, hogy ki nyer.

Mindkét bizonyításban a3 − SAT-ot vezetjük vissza Chooser-Picker, illetve Picker-
Chooser játékokra.

Fontos megjegyezni, hogy a Chooser-Picker játékok NP-nehezek még azokra a(V,E)
hipergráfokra is, ahol|A| ≤ 6 mindenA ∈ E.

4× 4 tic-tac-toe

Állítás 8.5. Picker nyeri a Chooser-Picker4× 4 tic-tac-toe játékot.

Az általánosított Shannon-féle kapcsolójáték Picker-Chooser változata

Beláttuk a(z) 2.9 sejtést az általánosított Shannon-féle kapcsolójáték Picker-Chooser vál-
tozatára, hasonlóan ahhoz, ahogy Lehman tette [46]. Legyen(V,F) egy matroid, aholF
a bázisok halmaza, és Picker nyer ha elfoglal egyA ∈ F elemet. Jegyezzük meg, hogy ez
ekvivalens egy(V, C)-on játszott Chooser-Picker játékkal a, aholC a (V,F) matroidból
kivágot halmazok egy gyűjteménye mindenA ∈ F ésB ∈ C, A ∩B 6= ∅-re.

Tétel 8.3. LegyenF a bázisok egy gyűjteménye aV csúcshalmazon értelmezett matroid-
nak. Picker akkor és csak akkor nyeri meg a játékot(V,F)-en, ha van olyanA,B ∈ F ,
hogyA ∩ B = ∅.

A bizonyítás Oxley [54] írásában található Maker-Breaker eset bizonyításához ha-
sonló.
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Erdős-Selfridge típusú tételek P-C és C-P játékokra

Maker-Breaker(V,F) játék esetén az Erdős-Selfridge tétel [27] nagyon jól használható
kritériumot fogalmaz meg Breaker nyerésére. A Chooser-Picker (V,F) játék esetében
Beck [6], jóval er̋osebb feltételt használva, bebizonyította Picker nyerését. (A P-C vál-
tozatra éles eredményt bizonyított, melyet szintén belefoglaltunk az alábbi tételbe) Legyen
||F|| = maxA∈F |A| a (V,F) hipergráf rangja.

Tétel 8.4. [6] A (V,F) hipergráfon játszott Chooser-Picker játékban, ha

T (F) :=
∑

A∈F

2−|A| <
1

8(||F||+ 1)
, (8.1)

akkor Pickernek van explicit nyerő stratégiája.
HaT (F) < 1, akkor Chooser nyeri a Picker-Chooser játékot a(V,F) hipergráfon.

Ezt az eredmény megjavítottuk avval, hogy beláttuk a következ̋ot:

Tétel 8.5. A (V,F) hipergráfon játszott Chooser-Picker játékban, ha

∑

A∈F

2−|A| <
1

3
√

||F||+ 1
2

, (8.2)

akkor Pickernek van explicit nyerő stratégiája.

Érdemes kiemelni egy speciális esetét a(z) 2.9 sejtésnek ésaz Erd̋os-Selfridge tételnek
a Chooser-Picker játékokra.

Sejtés 8.6.Ha ∑

A∈F

2−|A| <
1

2
,

akkor Picker nyeri a Chooser-Picker játékot a(V,F) hipergráfon.

Tórusz játékok

Beck paradigmáját leellenőriztük a4 × 4-es tóruszon definiálható játékokon. A tóruszt
a továbbiakban42-nek jelöljük. Itt összeragasztjuk a négyzetháló szemközti oldalait és
az 0 és±1 meredekségű vonalakból álló halmazokat tekintjük nyerőhalmazoknak. A
tórusz játékok általános definícija megtalálható [7]-ben.A cellákra továbbiakban úgy hi-
vatkozunk, mint ahogyan a sakkban szokták. A42 tórusz hipergráfjában az élek többször
is metszhetik egymást. Például a következő két nyer̋ohalmaznak két közös eleme is van:
{a2, b1, c4, d3} és{a4, b1, c2, d3}. Négy lehetséges játékot definiálunk a42 hipergráfon.
Ezek a Maker-Maker, a Maker-Breaker, a Chooser-Picker és a Picker-Chooser változatok.
[7]-ől ismert, hogy a Maker-Maker változat döntetlen, a [21] cikkből, hogy Picker nyeri a
Chooser-Picker játékot. Valójában, a Maker-Breaker változat eredményéb̋ol következik a
Maker-Maker változaté is, valamint a Chooser-Picker bizonyítása is.

Állítás 8.7. Breaker nyeri a Maker-Breaker változatás a42 tórusz játéknak.
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Beck sejtésével (2.9 ) összhangban, Breakernek könnyebb dolga van a Maker-Breaker
változatban, mint Choosernek a Picker-Chooser változatban. Bár a4 × 4 tóruszon a
kimenetele ugyanaz mindkét játéknak, ez utóbbit mégis sokkal nehezebb bizonyítani.

Állítás 8.8. Chooser nyeri a Picker-Chooser változatát a4× 4 tórusz játéknak.

Bizonyítás (vázlat)A teljes bizonyításhoz egy hosszú esetvizsgálatra van szükség.
Noha néhány ágát a teljes játékfának le lehet vágni Beck egyik eredménye alapján [6]:
Chooser nyeri a Picker-Chooser játékot aH halmazon, haT (H) :=

∑
A∈E(H) 2

−|A| < 1.
Fontos megjegyezni, hogy fent láthattunk egy rendezést a vizsgált játékváltozatok

komplexitására: könnyebb a C-P játék eredményét, mint az M-B játékét megkapni, habár
(a fenti esetben legalábbis) ugyanazt adják. és sokkal nehezebb a P-C esetet meghatározni,
mint a Maker-Breaker változatét.

8.2 A Chooser-Picker 7-am̋oba

8.2.1 A k-amőba játék

A k-amőba olyan hipergráf játék, ahol a gráf csúcsai egy végtelen négyzetrács (Z2)
mez̋oinek feleltethet̋ok meg, illetve a nyer̋ohalmazokk darab egymás utáni cellának (víz-
szintes, fűgg̋oleges, vagy átlós) felelnek meg. Ha az egyik játékos megszerez egyk hosszú
vonalat, akkor nyer - máskülönben a játék döntetlen. Jegyezzük meg, hogy tökéletes
játékot feltételezve vagy az első játékos nyer, vagy a játék döntetlen John Nash stratégia
lopásos érvelését alkalmazva [13]. További részletek ak-amőba játékról a [61, 62]-ben
találhatók.

A k-amőbának mind a Maker-Maker, mind a Maker-Breaker változatak = 6, 7-re
nyitott kérdés. Mindenki azt gondolja, hogy ezen játékok döntetlenek (Breaker nyer), de
a sok er̋ofeszítés ellenére jelentős eredményt eddig nem ért el senki.

8.2.2 A C-P k-am̋oba játék

Mielőtt bebizonyítottuk a C-P7-amőbára vonatkozó zételt, igazoltuk hogy Picker nyeri a
könyebb C-P8-amőbá játékot - ehhez a 12 mezőből álló, Zetters által alkalmazott (lásd
[34]) "Z" alakú résztáblát használtunk fel.

Állítás 8.9. Picker nyeri a8-amőba játék Chooser-Picker változatát, bármelyB ⊆ Z
2

halmazon.

Tétel 8.6. Picker nyeri a7-amőba játék Chooser-Picker változatát, bármelyA részhal-
mazánZ2-nek.

A korábban már említett 2.18 lemmát alkalmazva, Chooser előssz̋or kiválaszt egy véges
S halmazt. Tekinkjük az egész sík felbontását résztáblákra és ezeken játszunk külön-
külön segédjátékot. Könnyű belátni, hogy ha Picker megnyeri az összes segédjátékot,
akkor Picker nyer minden olyanK táblán játszott játékot, aholK ezen segédtáblák únió-
jaként áll össze. A 2.18 lemmából következik, hogy Picker nyer S ⊂ K -en is. Egy
megfelel̋o segédjátékokra történő felbontást kellett találnunk. A felbontás garantálja,
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hogy ha Picker nyer minden részjátékban, akkor Chooser nem tud hét egymás utáni cellát
elfoglalniK-n.

Minden résztábla egy4 × 8-as méretű téglalap, ahol a nyerőhalmazokat (a könnyebb
megértés kedvéért) négy különböző táblán ábrázoltuk:

Figure 8.1: Ezek a4 × 8as téglalap nyerőhalmazai. Könnyű látni, hogy pontosan egy
szimmetria van benne (a dupla vonal mentén). Ezt a bizonyításban hasznosítjuk.

Figure 8.2: Láthatjuk, hogy hogyan következik a segédtáblákon történ̋o játékból a dön-
tetlen az egész táblára: sem vizszintesen, sem függőlegesen, sem átlósan (most csak egy
átlós irányt részleteztünk), nincsen egymásutáni hét cella úgy, hogy ne tartalmazza egy
nyer̋ohalmazát valamelyik segédjátáknak.

Tehát a kulcs-lemma a bizonyításunkhoz a következő.

Lemma 8.10.Picker nyeri a4× 8-as táblán definiált segédjátékot.

Megjegyzés 8.11.A M-B esetre “brute-force" számítógépes vizsgálattal megnéztük ugyanezt
a segédtáblát, de az Maker nyerést adott! Tehát mi nem haszhatjuk ugyanazt a táblát, hogy
belássuk, hogy a játék gyenge változatát Breaker nyeri a 7-amőbára. Természetes gondo-
lat, hogy akkor keressünk más segédjátékokat, de ez nem igérkezik könnyű vállalkozás-
nak. Mindenesetre ökölszabályként érdemes először mindig a C-P esetet megvizsgálni.
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8.3 A Picker-Chooser átmér̋ojáték

8.3.1 Gráf játékok

Számos Maker-Breaker játék van definiálva azn csúcsú teljes gráfon. A játékosok felváltva
foglalnak el éleket; Maker akkor nyer, ha a részgráfjára teljesül egy el̋ore meghatározott
P (gyakran monoton) tulajdonság, lásd [8, 5, 12, 17]. Balogh és társai [2] bevezették
az (a : b) d-átmér̋o játékot, rövidenDd(a : b)-t, ahol Maker pontosan akkor nyer, ha a
részgráfjának az átmérője legfeljebbd. A [2] cikk legmeglep̋obb eredménye az volt, hogy
noha Maker elveszti aD2(1 : 1) játékot, de Maker megnyeri aD2(2 : 1

9
n1/8/(logn)3/8)

játékot.
Ez azt jelenti, hogy a játék felgyorsítása drámaian megváltoztathatja a játék kimenetelét,

[61]. A végeredmény szintén sokat módosul, amikor ugyanezen játék Picker-Chooser vál-
tozatát vesszük górcső alá. F̋o eredményünk a következő megfigyelés, illetve az azt köveő
tétel:
Megfigyelés.Picker nyeri a P-CD2(1 : 1) játékotKn-en, han > 22.

Tétel 8.7. A Chooser-PickerD2(1 : b) játékot Picker nyeri, hab <
√
n/ log2 n/4, míg

Chooser nyer, hab > 3
√
n, han elég nagy.

A Chooser-Picker játékok önmagukban heurisztikái a Maker-Breaker játékoknak. Ah-
ogyan a(z) 3.6 tétel mutatja, a Maker-Breaker és a Chooser-Picker játékok nyerési feltételei
gyakran egybeesnek. Ráadásul Breaker nyerése a Maker-Breaker játékban és Chooser
nyerése a Picker-Chooser játékban gyakran ugyanakkor teljesül , lásd [6]. Hogy tovább
vizsgálhassuk ezt a kapcsolatot, szükségünk volt a(z) 3.6 tétel elfogult változatára is. Nem
kíséreltük meg a legjobb alakot leírni, a céljainkhoz elég akövetkez̋o lemma.

Lemma 8.12.Picker nyeri a Chooser-Picker(1 : b) elfogult játékot aH = (V (H), E(H))
hipergráfon, ha

v

b+ 1

∑

A∈E(H)

2−|A|/b < 1,

aholv = |V (H)|.

Átmérő és fokszám játékok

Balogh és társai a [2] cikkben észrevették, hogy aD2(1 : 1) nem esik egybe a valószínűség-
számítási intuíciónkkal: Ugyanis, ha a aKn gráf élei véletlenszerűen kerülnek Makerhez
és Breakerhez, akkor majdnem biztosan 2 lesz a gráf átmérője; míg Breakernek van egy
egyszerű párosítási stratégiája, amiveln > 3, [2]. Először vesznek egy olyanuv élt, ahol
semelyikux vagyvx élt nem foglalta el Maker; majd ha Maker elfoglal egyux élt, akkor
Breaker avx élt foglalja el (havx-et már korábban elfoglalta, akkor egy tetszőleges élt
választ), illetve fordítva .

A D2(2 : 2) játékot játszva nincsen ilyen párosítási stratégiája Breakernek, és Maker
nyeri a játékot, s̋ot aD2(2 : b) játékot is, aholb polimonikusan n̋o n-nel, han elég nagy:

Tétel 8.8. [2] Maker nyeri aD2(2 : 1
9
n1/8/(lnn)3/8) játékot. és Breaker nyeri aD2(2 :

(2 + ε)
√
n/ lnn) játékot, mindenε > 0-ra, amennyibenn elég nagy.
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A 5.1 Tétel bizonyításához, szükséges afokszám játékokismerete. Székely, Beck,
Balogh és társai [73, 5, 2] megmutatták, hogy ezen játékok önmagukban is érdekesek.

Ezeknél a játékoknál az egyik játékos próbál éleket minnél egyenletesebben elfoglalni,
míg a másik célja hogy minél több élet foglaljon el valamelyik csúcsnál. Egy adottG
gráfnál és egy előre megadottd fokszámnál, Maker és Breaker egy(a, b) elfogult játékot
játszanakG élein. Maker akkor nyer, ha legalábbd éle van minden csúcsnál.

Minket aG = Kn eset érdekel. Balogh és társai [2] belátták a következő lemmát:

Lemma 8.13. [2] Legyena ≤ n/(4 lnn) ésn elég nagy. Maker nyeri az(a : b) fok-
számjátékotKn-en had < a

a+b
n− 6ab

(a+b)3/2

√
n lnn.

Nem akarjuk a teljes P-C (C-P ) fokszám játék elméletet felépíteni, csak egy egyszerű
állítást mondunk ki, mely céljainknak megfelel.

Lemma 8.14. Legyenb < n/(8 lnn) ésn elég nagy. Chooser nyeri az(1 : b) Chooser-
Picker fokszámjátékotKn-en, had < n− 1− 3n/b.

A 5.1 tétel bizonyításához, legelőször a 3.9 lemmát láttuk be.
A 5.4 tétel második felét láttuk be először, vagyis, hogy Chooser nyer, hab > 3

√
n,

ami a 5.4 lemmából jön. Játszon Chooser a lemma szerint, akkor Pickernek legfeljebb
(3n/b)− 1 éle lesz bármelyik csúcsot is nézzükx ∈ Kn-re, tehát a csúcsok száma, mely
x-hez van kapcsolva (2-átmérőnyire) kevesebb, mint((3n/b)− 1)2 < n− 1.

A tétel els̋o felének belátásához több munka kellett. Felbontjuk a gráfcsúcsait három
körülbelül azonos méretű részre:X1,X2 ésX3. (Továbbiakban legyenXi = Xi mod 3, ha
i > 3.) AzXi csúcsai legyenek rendre1, 2, . . . , n/3. 1 E(Xi, Xj) legyen az élek halmaza
Xi ésXj között.

Két külön játékot játszunk az egyes részeken belüli, illetve az egyes részek közötti
összekötés érdekében. Az első játákban összekötjük azXi-n belüli pontokat azE(Xi, Xi+1)
éleket használva (i = 1, 2, 3-ra). A második játékban összekötjükXi-etXi+1-vel azXi+1

élein játszva.

1Ez lehetbn/3c ésdn/3e is. A bizonyításban mi adn/3e-vel számoltunk és abn/3c eset könnyen jön
ebb̋ol.
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