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Mária B. Szendrei

Doctoral School of Mathematics

and Computer Science

University of Szeged, Bolyai Institute

Szeged

2018



1 Introduction

Group extensions play a fundamental role both in the structure theory and
in the theory of varieties of groups. In 1950, Kaloujnine and Krasner proved
that any extension of a group N by a group H is embeddable in the wreath
product of N by H, see [6]. Note that the wreath product of N by H is a
special semidirect product of a direct power of N by H.

Semigroups are natural generalisations of groups. One of the important
classes of semigroups where the influence of the Kaloujnine–Krasner Theorem
is fundamental is the class of regular semigroups.

Inverse semigroups are one of the most natural generalisations of groups.
By Cayley’s Theorem we can think of groups (up to isomorphism) as sets of
permutations on a given set which are closed under composition and taking
inverse. A similar result, the Wagner–Preston Theorem, shows that inverse
semigroups are, (also up to isomorphism) sets of partial permutations on a set
X (i.e., bijection between subsets of X) which are closed under composition
of partial maps and taking inverse.

A regular semigroup is completely simple if it is a union of its maximal
subgroups and it contains only one D-class. Note that in a completely simple
semigroup all maximal subgroups are isomorphic to each other. Completely
simple semigroups are also natural generalisations of groups.

Let K and T be semigroups. The semidirect product of K by T and the
wreath product of K by T are defined analogously to the group case. They
are denoted by K o T and K o T , respectively. If K is a semigroup and T
is a group then K o T and K o T are regular [inverse, completely simple] if
and only if K is. However, in general, a semidirect product K o T is not
regular even if both K and T are inverse. This led Billhardt [2] to adapt these
constructions to the inverse case. This construction is called the λ-semidirect
product of K by T .

A congruence on an inverse semigroup S is said to be idempotent separat-
ing if every congruence class contains at most one idempotent and so, every
idempotent class is a subgroup of S. Billhardt and Szittyai [3] proved that if
S is an inverse semigroup and % is an idempotent separating congruence such
that every idempotent %-class is from a group variety V then S is embeddable
in a λ-semidirect product of a group from V by S/%.

The thesis concentrates on E-solid locally inverse semigroups which are
extensions by inverse semigroups and the idempotent classes are completely
simple. The main problem we will give an answer to is whether such ex-
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tensions are embeddable in a λ-semidirect product of a completely simple
semigroup by an inverse semigroup. This result is a generalisation of Bill-
hardt and Szittyai’s result.

2 Preliminaries

A congruence % is said to be a group [semilattice, . . . ] congruence, if S/%
is a group [semilattice, . . . ]. The kernel of a group congruence Ker % is the
inverse image of the identity element of S/%. If % is a semilattice congruence,
and ϕ : S → Y is a surjective homomorphism inducing the congruence % on S
(and so Y ∼= S/%), then S is said to be the semilattice Y of the subsemigroups
Sα (α ∈ Y ) of S where Sα is the inverse image of α. If there are certain kinds
of homomorphisms between these classes, called structure homomorphisms,
and we can express the multiplication of S with the help of the multiplication
of the Sα’s and the structure homomorphisms, then S is said to be a strong
semilattice Y of the subsemigroups Sα (α ∈ Y ).

A semigroup S is completely regular if it is the union of its maximal
subgroups. Recall that S is completely simple if it is completely regular and
it contains only one D-class. Every completely regular semigroup is known
to be a semilattice of completely simple semigroups.

By a Rees matrix semigroup we mean a semigroup S = M[G; I,Λ;P ]
where G is a group, I, Λ are non-empty sets and P = (pλi) is a Λ× I matrix
with elements from G, called a sandwich matrix. The underlying set of S is
I ×G× Λ, and the multiplication is defined by

(i, g, λ)(j, h, µ) = (i, gpλjh, µ).

Every Rees matrix semigroup is completely simple and conversely, by the
Rees–Suschkewitsch Theorem, every completely simple semigroup is isomor-
phic to a Rees matrix semigroup. We say that P is normalised if there exists
i ∈ I and λ ∈ Λ such that pµi = pλj = 1G for every j ∈ I and µ ∈ Λ.
Every Rees matrix semigroup is isomorphic to one with normalised sandwich
matrix.

A completely simple semigroup is called central if the product of any two
of its idempotents lies in the centre of the containing maximal subgroup. It is
well known that a Rees matrix semigroup M[G; I,Λ;P ] with P normalized
is central if and only if each entry of P belongs to the centre of G.
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The group congruences of a Rees matrix semigroup with a normalized
sandwich matrix are characterized as follows.

Proposition 2.1. Let S =M[G; I,Λ;P ] be a Rees matrix semigroup where
P is normalized. Assume that N is a normal subgroup of G such that every
entry of P belongs to N . Define a relation % on S such that, for every (i, g, λ),
(j, h, µ) ∈ S, let

(i, g, λ) % (j, h, µ) if and only if gh−1 ∈ N.

Then % is a group congruence on S such that S/% is isomorphic to G/N and
Ker % =M[N ; I,Λ;P ].

Conversely, every group congruence on S is of this form for some normal
subgroup N of G where all entries of P belong to N .

A semigroup S is called an inverse semigroup if every element a of S
has a unique inverse element denoted by a−1. Equivalently, a semigroup is
inverse if it is regular and the set of idempotents is a subsemilattice. An
inverse semigroup S is a group if and only if |ES| = 1.

Let S be a semigroup, and K a class of semigroups. If % is an inverse
semigroup congruence on S (i.e., S/% is an inverse semigroup) then % is said
to be a congruence over K if each idempotent %-class, as a subsemigroup of S,
belongs to K. In this case, the union of the idempotent %-classes, called the
kernel of % and denoted Ker %, is a semilattice of subsemigroups belonging
to K. If S is regular then each idempotent %-class and also Ker % are regular
subsemigroups.

A regular semigroup S is called locally inverse if each local submonoid
eSe (e ∈ ES) is an inverse subsemigroup. Note that each inverse semigroup
and each completely simple semigroup is locally inverse.

We can introduce another binary operation ∧ on a locally inverse semi-
group S, called the sandwich operation on S. It has the properties that s∧ t
is an idempotent and s∧ t = ss∗∧ t∗t for every s, t ∈ S and for any s∗ ∈ V (s)
and t∗ ∈ V (t).

A regular semigroup S is called E-solid if the core of S, that is, the sub-
semigroup generated by the idempotents of S is completely regular. In partic-
ular, completely regular semigroups and inverse semigroups are E-solid. It is
also known, that a regular semigroup is E-solid if and only if the least inverse
semigroup congruence is over the class of all completely simple semigroups,
see Yamada (and Hall) [8]. Thus the kernel of the least inverse semigroup
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congruence of an E-solid locally inverse semigroup is a locally inverse com-
pletely regular semigroup, that is, a strong semilattice of completely simple
semigroups.

Let K be a semigroup and T an inverse semigroup. If S is a semigroup
and % is a congruence on S such that S/% is isomorphic to T and Ker % is
isomorphic to K then the pair (S, %) is called an extension of K by T .

Let K, T be semigroups. We denote the endomorphism monoid of K by
EndK. We say that T acts on K by endomorphisms on the left, in short, T
acts on K if an antihomomorphism ε : T → EndK, t 7→ εt is given, that is
a map, where εuεt = εtu for any u, t ∈ T . For brevity, we will use the usual
notation ta to denote aεt (a ∈ K, t ∈ T ). The semidirect product K o T is
defined on the set K × T by multiplication

(a, t)(b, u) = (a · tb, tu).

A related construction is the following. For any semigroups K,T , an
action of T on the direct power KT can be defined in the following natural
way: for any f ∈ KT and t ∈ T , let tf be the element of KT where u(tf) =
(ut)f for any u ∈ T . The semidirect product KT o T defined by this action
is called the wreath product of K by T , and is denoted by K o T . In case
K and T are groups, these are the usual definitions of a semidirect product
K o T and of the wreath product K o T of K and T .

If K is a semigroup and T is a group then K o T and K o T are regu-
lar [inverse, completely simple] if and only if K is. However, in general, a
semidirect product K o T is not regular even if both K and T are inverse.
This led Billhardt [2] to adapt these constructions to the inverse case in the
following way. Let K be a semigroup and T an inverse semigroup acting on
K. The λ-semidirect product K oλ T is defined on the underlying set

{(a, t) ∈ K × T : tt
−1

a = a}

by multiplication
(a, t)(b, u) = ((tu)(tu)

−1

a · tb, tu),

for all a, b ∈ K, t, u ∈ T .
A class of regular semigroups is termed an existence variety, or, for short,

an e-variety if it is closed under taking direct products, homomorphic images
and regular subsemigroups. For example, LI, ES and CS form e-varieties.
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Note also that a class of inverse semigroups or a class of completely sim-
ple semigroups constitutes an e-variety if and only if it forms a variety of
semigroups with an additional operation −1.

If S is a regular semigroup then an inverse unary operation is defined to
be a mapping † : S → S with the property that s† ∈ V (s) for every s ∈ S.

By a binary semigroup we mean a semigroup having an additional binary
operation denoted by ∧. A homomorphism or a congruence of a binary
semigroup is always supposed to respect both the multiplication and the ∧
operation. As noticed above, each locally inverse semigroup is also a binary
semigroup with respect to the sandwich operation, and the homomorphisms
and congruences of locally inverse semigroups, considered as usual semigroups
and binary semigroups, respectively, coincide.

Let X be a non-empty set. The free semigroup on X is denoted by X+.
We ‘double’ X by forming X = X ∪ X ′ where x′ is a ‘formal’ inverse of x
(x ∈ X), and extend the definition of ′ by putting (x′)′ = x (x ∈ X).

Let S be a regular semigroup. A mapping ν : X → S is called matched if
x′ν is an inverse of xν in S for each x ∈ X. Now let K be a class of regular
semigroups. We say that a semigroup B ∈ K together with a matched
mapping ξ : X → B is a bifree object in K on X if, for any S ∈ K and any
matched mapping ν : X → S, there is a unique homomorphism ϕ : B → S
extending ν, that is, for which ξϕ = ν holds. It was essentially proved
by Yeh [9] that an e-variety admits a bifree object on any alphabet (or,
equivalently, on an alphabet of at least two elements) if and only if it is
contained either in LI or in ES.

The free binary semigroup F〈2,2〉(Y ) on the alphabet Y can be interpreted
as follows. Its underlying set is the smallest one among the sets W which
fulfill the following conditions:

(i) Y ⊆ W ⊆ (Y ∪ {(, ∧, )})+,

(ii) u, v ∈ W implies uv ∈ W ,

(iii) u, v ∈ W implies (u ∧ v) ∈ W .

The operations · and ∧ are the concatenation and the operation

F〈2,2〉(Y )× F〈2,2〉(Y )→ F〈2,2〉(Y ) , (u, v) 7→ (u ∧ v) ,

respectively.
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A bi-identity in LI is a formal equality u =̂ v among terms u, v ∈
F〈2,2〉

(
X
)
. We say that a semigroup S ∈ LI satisfies the bi-identity u =̂ v if

uν = vν for each matched mapping ν : X → S. The bi-identity u =̂ v holds
in the class K of locally inverse semigroups if it holds in every member of K.
For an e-variety V of locally inverse semigroups, define

Θ(V , X) = {(u, v) ∈ F〈2,2〉
(
X
)
× F〈2,2〉

(
X
)

:

the bi-identity u =̂ v holds in V}.

Then Θ(V , X) is a congruence, and F〈2,2〉
(
X
)
/Θ(V , X) is the bifree object

in V on X.
In the sequel we need the description, published in [1], of the bi-identities

satisfied in the e-variety CS.
For any term w ∈ F〈2,2〉

(
X
)
, denote by ιw [wτ ] the first [last] letter (i.e.,

element of X) appearing in w (reading w from the left to the right as a word
in the alphabet X ∪ {(,∧, )}). Similarly to the well-known model of free
groups, reductions of terms in F〈2,2〉

(
X
)

are introduced. It is proved that

every word w ∈ F〈2,2〉
(
X
)

has a uniquely determined reduced form which is
denoted by s (w).

One of these reductions is (u ∧ v)  (ιu ∧ vτ) for any u, v ∈ F〈2,2〉
(
X
)
.

Notice that, applying this reduction, we obtain for any term in F〈2,2〉
(
X
)

an

element of the free semigroup X̃+ on the alphabet X̃ = X ∪ (X ∧X) where
(X ∧X) stands for the set {(x∧ y) : x, y ∈ X}. This means that it is enough

to consider words of X̃+ instead of F〈2,2〉
(
X
)
.

Proposition 2.2. For any non-empty set X, we have

Θ(CS, X) = {(u, v) ∈ X̃+ × X̃+ : s (u) = s (v)}.

By considering all reductions, we have the following:

Lemma 2.3. The congruence Θ(CS, X) is generated on X̃+, as a semigroup
congruence, by the relation I ∪Υ where

I = {(xx′x, x) : x ∈ X},

and Υ is the union of the following three relations:

Υ3 = {
(
(x ∧ y)(x ∧ z), (x ∧ z)

)
: x, y, z ∈ X},

Υ4 = {
(
(z ∧ x)(y ∧ x), (z ∧ x)

)
: x, y, z ∈ X},

Υ5 = {
(
x′x, (x′ ∧ x)

)
: x ∈ X}.
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A graph X consists of a set of objects denoted by ObjX and, for every
pair g, h ∈ ObjX , a set of arrows from g to h which is denoted by X (g, h).
The sets of arrows corresponding to different pairs of objects are supposed
to be disjoint, and the set of all arrows is denoted by ArrX . If a ∈ X (g, h)
then we write that α(a) = g and ω(a) = h.

A semigroupoid is a graph X equipped with a composition which assigns
to every pair of consecutive arrows a ∈ X (g, h), b ∈ X (h, i) an arrow in
X (g, i), usually denoted by a ◦ b, such that the composition is associative,
that is, for any arrows a ∈ X (g, h), b ∈ X (h, i) and c ∈ X (i, j), we have
(a ◦ b) ◦ c = a ◦ (b ◦ c).

Let X be a semigroupoid and S a semigroup. If ` : X → S is a morphism
of semigroupoids, i.e., `(a ◦ b) = `(a) · `(b) for any pair of consecutive arrows
a, b in X then ` is said to be a labelling of X by S. For an arrow a ∈ ArrX ,
the element `(a) of S is called the label of a. Note that if both X and S are
locally inverse then ` is also a binary morphism.

3 Extensions of completely simple semigroups

by groups

In this section we present results of Chapter 3 of the thesis, which is based
on [4].

We present an isomorphic copy of the wreath product T o H of a Rees
matrix semigroup T =M[G; I,Λ;P ] by a group H which allows us to make
the calculation in this section easier. First, it is routine to see that the
direct power TH is isomorphic to M[GH ; IH ,ΛH ;PH ] where PH = (pHξη) is
the following sandwich matrix: for any ξ ∈ ΛH and η ∈ IH we have ApHξη =
pAξ,Aη (A ∈ H). Moreover, the action in the definition of the wreath product
determines the following action when replacing TH by M[GH ; IH ,ΛH ;PH ]:
for any A ∈ H and (η, f, ξ) ∈ M[GH ; IH ,ΛH ;PH ] we have A(η, f, ξ) =
(Aη, Af, Aξ), where Aη ∈ IH , Af ∈ GH and Aξ ∈ ΛH are the maps defined by
B(Aη) = (BA)η, B(Af) = (BA)f and B(Aξ) = (BA)ξ, respectively, for every
B ∈ H.

Notice that, for any A ∈ H, we have

A(BpHξη) = (AB)pHξη = p(AB)ξ,(AB)η = pA(Bξ),A(Bη) = ApHBξ,Bη,

and so
BpHξη = pHBξ,Bη
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for any B ∈ H.
Let S =M[G; I,Λ;P ] be an extension of a completely simple semigroup

U by a group H where P is chosen to be normalized. By Proposition 2.1, we
can assume that there is a normal subgroup N of the group G such that all
entries of the sandwich matrix P belong to N , and we have H = G/N and
U =M[N ; I,Λ;P ] ⊆ S.

First suppose that S is central, i.e., each entry of P belongs to the centre
of the group G. Note that, in this case, U is necessarily also central. In this
case, we can mimic the proof of the Kaloujnine–Krasner Theorem. For, it is
routine to check that the map

ν : S → U oH = UH oH, (i, g, λ) 7→ (f iλg , gN)

where
f iλg : H → U, A 7→ (i, Afg, λ)

is an embedding. This verifies the following statement.

Proposition 3.1. Each central completely simple semigroup which is an
extension of a (necessarily also central) completely simple semigroup U by a
group H is embeddable in the wreath product of U by H.

Now we turn to investigating the general case where S is an arbitrary
completely simple semigroup. Suppose that there exists an embedding S →
U oH, i.e., an embedding

ϕ : S →M[NH ; IH ,ΛH ;PH ] oH

where M[NH ; IH ,ΛH ;PH ] oH is the isomorphic copy of U oH introduced
above. In this case ϕ is necessarily of the form

(i, g, λ)ϕ = [(ηi, f
iλ
g , ξgN,λ), gN ],

where indexes on the right hand side show dependencies of elements. We
proved several important properties of such embeddings. Two of the more
important ones are

f iµpλj = f iλ1 p
H
ξληj

f jµ1 , for every i, j ∈ I and λ, µ ∈ Λ

and
f iλ
p−1
λi

= (pHξληi)
−1, for every i ∈ I and λ ∈ Λ.
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We give a suitable group G, a normal subgroup N of G and a Rees matrix
semigroup S =M[G; I,Λ;P ] for which no such injective morphism ϕ exists.

Let G be the non-commutative group of order 21. To ease our calcu-
lations, we present G in the form G = Z7 o

[
2
]

where Z7 is the additive
group of the ring of residues modulo 7,

[
2
]

= {1, 2, 4} is the subgroup of the
(multiplicative) group of units of the same ring generated by 2, and

[
2
]

acts
on Z7 by multiplication. Clearly, G is an extension of N = {(a, 1) : a ∈ Z7}
by [2], Define S as follows. Let I = Λ = {1, 2}, and denote by P the nor-
malized sandwich matrix of type Λ × I over G consisting of the elements
p11 = p12 = p21 = (0, 1), the identity element of N , and p22 = (1, 1) ∈ N , an
element of order 7.

Applying the above mentioned properties, we expressed a suitable element
of S by means of sandwich elements, and so we showed a contradiction to
injectivity of ϕ. This gives us the following result.

Theorem 3.2. There exists a completely simple semigroup which is an ex-
tension of a completely simple semigroup U by a group H and which is not
embeddable in the wreath product of U by H.

Next we present a modified version of the Kaloujnine–Krasner Theorem
which holds for all extensions of completely simple semigroups by groups.

Let S be an extension of a completely simple semigroup U by a group H.
Our goal is to give an embedding of S into a semidirect product V oH of a
completely simple semigroup V by H such that, in the special case where S is
a group (i.e., I and Λ are singletons), it is just the embedding constructed to
prove the Kaloujnine–Krasner Theorem. Unlike in the wreath product U oH,
in this semidirect product V o H the R- and L-classes of V , its sandwich
matrix and the action of H on V can be chosen appropriately.

Theorem 3.3. Any extension of a completely simple semigroup U by a group
H is embeddable in a semidirect product of a completely simple semigroup V
by the group H, where the maximal subgroups of V are direct powers of the
maximal subgroups of U .

More preciously, let S be an extension of U by H. As above, we can
assume that S =M[G; I,Λ;P ] where the sandwich matrix P is normalized,
and by Proposition 2.1, there is a normal subgroup N of G such that every
entry of P belongs to N , and H = G/N , U =M[N ; I,Λ;P ] ⊆ S. Consider
the action of H on NH defining the wreath product N o H, and, for any
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g ∈ G, the map fg ∈ NH defined in the proof of the Kaloujnine–Krasner
Theorem.

By means of S, we define a suitable semigroup V , an action of H on
V , and an embedding of S into the semidirect product of V by H. Let
V =M[NH ; I,H × Λ;Q], where the entries of Q belong to the direct power
NH : for any (B, λ) ∈ H × Λ and j ∈ I, let q(B,λ),j = Bfpλj .

Define an action of H on H × Λ by the rule A(B, λ) = (AB, λ) ((B, λ) ∈
H×Λ, A ∈ H). Now we give an action of H on V as follows: for any A ∈ H
and (i, f, (B, λ)) ∈ V , let A(i, f, (B, λ)) = (i, Af, A(B, λ)).

We proved that the mapping

ψ : S →M[NH ; I,H × Λ;Q] oH,

where
(i, g, λ)ψ = ((i, fg, (gN, λ)), gN)

is an embedding.

4 Extensions of completely simple semigroups

by inverse semigroups

In this section we present results of Chapter 4 of the thesis, which is based
on [5].

The main result of the thesis is the following:

Theorem 4.1. Let S be an E-solid locally inverse semigroup and % an in-
verse semigroup congruence on S such that the idempotent classes of % are
completely simple subsemigroups in S. Then the extension (S, %) can be em-
bedded into a λ-semidirect product extension of a completely simple semigroup
by S/%.

Recall that, in an E-solid semigroup, the idempotent congruence classes of
the least inverse semigroup congruence are completely simple subsemigroups.
Taking into account a result from [7] and that both classes of E-solid and of
locally inverse semigroups are closed under taking regular subsemigroups, we
deduced the following characterization of E-solid locally inverse semigroups.

Corollary 4.2. A regular semigroup is E-solid and locally inverse if and only
if it is embeddable in a λ-semidirect product of a completely simple semigroup
by an inverse semigroup.
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In particular, this statement provides a structure theorem that constructs
E-solid locally inverse semigroups from completely simple and inverse semi-
groups by means of two fairly simple constructions: forming λ-semidirect
product and taking regular subsemigroup.

Next we will summarize the construction and the main idea of this proof.
Let (S, %) be an extension by an inverse semigroup where S is an E-

solid locally inverse semigroup and % is over the class CS of all completely
simple semigroups. For brevity, denote the factor semigroup S/% by T and
its elements by lower case Greek letters.

First we define the derived semigroupoid C corresponding to the extension
(S, %) as follows. Let Obj C = T and, for any α, β ∈ T , let

C(α, β) =
{

(α, s, β) ∈ T × S × T : α · s% = β and β · (s%)−1 = α
}
.

Furthermore, by putting `(a) = s for every arrow a = (α, s, β) ∈ Arr C, we
define a labelling of C by S.

Let us ‘double’ the graph C by forming C = C ∪ C ′ where C ′ consists of
the ‘formal inverses’ a′ of the arrows a ∈ Arr C. Here α(a′) = ω(a) and
ω(a′) = α(a) for any a ∈ Arr C and define (a′)′ = a (a ∈ Arr C). Put
A = Arr C, A′ = Arr C ′. Then we have A = A ∪ A′ = Arr C. Moreover,
denote by C̃ the graph obtained from C by adding an arrow (a ∧ b) with
α(a ∧ b) = ω(a ∧ b) = t whenever a, b ∈ Arr C with α(a) = t = ω(b). Finally,

consider the free category C̃+ where the arrows are paths in C̃. These paths
are also called ‘binary paths’ in C̃.

Let us choose and fix an inverse unary operation † on S. This de-
termines an inverse unary operation, also denoted by †, on C by letting
(α, s, β)† = (β, s†, α) for every (α, s, β) ∈ Arr C. Consider the congruence

θ on the semigroup Ã+ generated by

Θ(CS, A) ∪ Ξ1 ∪ Ξ2

(see Proposition 2.2), where

Ξ1 =
{

(a′, a†) : a ∈ A
}
,

Ξ2 = {(ab, c) : a, b, c ∈ A and a ◦ b = c in C} .

The following important property is implied by the main result of [7]:

Result 4.3. Let S be an E-solid locally inverse semigroup, and let % be
an inverse semigroup congruence on S over CS. Then the extension (S, %)
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is embeddable in a λ-semidirect product extension of a completely simple
semigroup by an inverse semigroup if and only the relations s % t in S and
(s%(s%)−1, s, s%) θ (t%(t%)−1, t, t%) in Ã+ imply s = t for every s, t ∈ S.

We show that there are some special arrows in the semigroupoid, called
stable arrows, which played in important role in the proof. The set of stable
arrows is denoted by Arr Ĉ. Moreover a stable arrow â can be assigned to
each arrow a ∈ Arr C.

Essentially, to prove Theorem 4.1, we had to show that each θ-class con-
tains at most one word of the form (s%(s%)−1, s, s%) (s ∈ S). We had to
examine the combinatorial properties of the words in the congruence class of
these words. Compared to the paths of the semigroupoid, these words can
contain ‘breaks’. We defined two types of brackets to mark these breaks in
the words. We used these bracketed words to prove properties satisfied by
words in these congruence classes.

Consider the free monoid (Ã ∪ {bb, c, d, ee})∗ where the empty word is

denoted ε, and let W̃ be its smallest subset which has the following four
properties:

(i) ε ∈ W̃ ;

(ii) a ∈ W̃ for all a ∈ Ã;

(iii) w1w2 ∈ W̃ for all w1, w2 ∈ W̃ ;

(iv) bbwc, dwee ∈ W̃ for all w ∈ W̃ , where w 6= ε.

Notice that Ã+ ⊆ W̃ . In order to distinguish the elements of Ã+, called
words, from those of W̃ , the latter will be called bracketed words.

Now we define three subsets Wn, W right
n and W left

n of W̃ for every n ∈ N0.

Simultaneously, we attach a ‘binary path’ ℘(w) ∈ Arr C̃+ to each element w

of these subsets. If ℘(w) is defined then we use ℘̂(w) to denote ℘̂(w).

Let W0 = Arr C̃+, W ε
0 = W0∪{ε}, and for any w ∈ W0, define ℘(w) = w.

Moreover, define

W right
0 = {p(y ∧ x) : p ∈ W ε

0 , α(y) 6= ω(x), and ω(p) = α(y) if p 6= ε},

and for any w = p(y ∧ x) ∈ W right
0 , let ℘(w) = p(y ∧ y′). By assumptions,

this, indeed, belongs to Arr C̃+. Similarly, let

W left
0 = {(x ∧ y)p : p ∈ W ε

0 , α(x) 6= ω(y), and ω(y) = α(p) if p 6= ε},

12



and for any w = (x ∧ y)p ∈ W left
0 , let ℘(w) = (y′ ∧ y)p. Notice that W0 ∪

W right
0 ∪W left

0 ⊆ Ã+.
Assume that Wn [W right

n , W left
n ] is defined for some n ∈ N0, and a path

℘(w) ∈ Arr C̃+ is assigned to each of its elements w. For brevity, denote the
set of all idempotent arrows of C by E. Define the set Wn+1 [W right

n+1 , W
left
n+1]

to consist of the bracketed words in Wn [W right
n , W left

n ] and, additionally, of

all bracketed words w ∈ W̃ of the form

w = p0B1C1p1B2C2 · · ·BkCkpk (k ∈ N), (4.1)

where the following conditions are satisfied:

(E0)

(E0a) p1, . . . , pk−1 ∈ W0, p0 ∈ W ε
0 [W ε

0 , W
left
0 ], pk ∈ W ε

0 [W right
0 , W ε

0 ],
and ω(pi−1) = α(pi) for every i (1 ≤ i ≤ k),

(E0b) B1C1, . . . , BkCk 6= ε;

(E1) for any i (1 ≤ i ≤ k), we have

(E1a) Bi = bbw1cbbw2c · · · bbwsc, where s ∈ N0 and wj ∈ W right
n (1 ≤ j ≤

s), and

(E1b) for any j (1 ≤ j ≤ s), if wjT = (yj ∧ xj) then

(E1bi) ℘̂(wj) ∈ E and ŷj R ℘̂(wj), and

(E1bii) x̂j L ℘̂(pi−1) (in particular, p0 6= ε if B1 6= ε);

(E2) for any i (1 ≤ i ≤ k), we have

(E2a) Ci = dw1eedw2ee · · · dwsee, where s ∈ N0 and wj ∈ W left
n (1 ≤ j ≤ s),

and

(E2b) for any j (1 ≤ j ≤ s), if Iwj = (xj ∧ yj) then

(E2bi) ℘̂(wj) ∈ E and ŷj L ℘̂(wj), and

(E2bii) x̂j R ℘̂(pi) (in particular, pk 6= ε if Ck 6= ε).

We prove that this condition is satisfied when changing parts of a path
by rules defined by the congruence θ. More preciously, if w ∈ Ã+ is a word
that can be ‘bracketed’, that is we can add brackets to w such that the result
is in

⋃
n∈N0

Wn, then all words in the θ-class of w can be ‘bracketed’, and ℘̂
is constant in the θ-class. This is the above mentioned condition we used to
prove the implication in Result 4.3.
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