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Bevezetés és kutatási háttér 

 

A fotoszintézis az élőlények egyik legalapvetőbb anyagcsere folyamata, ezért már 

évtizedek óta mind az alap-, mind az alkalmazott kutatások fókuszában van. Igen részletesen 

ismerjük a fényelnyelést követő energiavándorlás, töltésszétválasztás és -stabilizálódás 

mechanizmusát, az elektron- és protontranszport folyamatokat. Hasonlóképpen bőséges 

ismerettel rendelkezünk a kémiai potenciál kialakulásáról és az ehhez kapcsolódó ATP-szintézis 

folyamatáról, az ezekhez kapcsolódó struktúrákról és szerkezet-funkció kapcsolatokról. Az eddig 

felhalmozott tudás inherensen hozta magával annak az igényét, de lehetőséget is teremtett arra, 

hogy az élő rendszerekben lejátszódó folyamatokat mesterséges (ún. biosimilar/-mimiking) 

rendszerekben lemásoljuk, utánozzuk. A biológiai rendszerek, a jellemző molekuláik (fehérjék, 

nukleinsavak) az evolúciós folyamatok során képessé váltak adott feladatok nagyon specifikus és 

nagy hatékonyságú elvégzésére. Adódik tehát a lehetőség, hogy ezeket a jól működő 

rendszereket, vagy azok részeit általunk alkotott eszközökbe építve alkalmazzuk. Továbbá, a 

biológiai rendszerek megismerése modellként szolgálhat egyéb rendszerek tervezéséhez és 

megalkotásához. 

Ahhoz, hogy a biológiai anyagok specifikus tulajdonságait általunk alkotott 

eszközökben kamatoztatni tudjuk, olyan környezetet kell teremteni számukra, ahol aktivitásukat 

továbbra is megőrzik. Lehetőségként adódik kompozit anyagok létrehozása, melyekben az aktív 

komponenst a biológiai anyag, a hordozó szerepét pedig egy másik szerves, vagy akár szervetlen 

anyag képezi. 

A nanoanyagok napjainkban szintén a tudomány érdeklődési tárgyát képezik, számos, a 

tömbi fázistól eltérő előnyös tulajdonságuk miatt. Ilyen széles körben kutatott és napjainkban már 

számos helyen alkalmazott anyagok például a szén módosulatai, a különböző szén nanocsövek és 

a grafén, vagy különböző nanométeres tartományba eső fém vagy fém-oxid részecskék. A 

nanoanyagok előnyös tulajdonságai, úgymint a nagy fajlagos felület, vagy a speciális optikai 

tulajdonságok kiaknázhatóak kompozit anyagok készítése során. 

Nanoanyagok és biológiai eredetű anyagok kombinálásával úgynevezett 

bionanokompozit anyagok készíthetők, melyeket a jövő anyagainak is neveznek. 



Alkalmazhatóságuk igen széles körű, bionanokompozit anyagokat alkalmaznak a napenergia 

hasznosításban, fotodetektorként, fototranzisztorként, herbicid szenzorokként, üzemanyag 

cellákban és egyéb optoelektronikai alkalmazásokban. Külön kiemelendő, hogy az 

orvostudomány területén is nagy jelentőséggel bírnak, hiszen a különböző rekonstrukciós 

eljárások esetén nem mindig van lehetőség emberi szövettel pótolni a sérült vagy esetlegesen 

hiányzó szöveti részeket. Ilyen esetekben mesterséges anyagok használatára kényszerülünk, 

melyeknek alapvető követelménye, hogy biokompatibilisek legyenek, így a bio- és szervetlen 

anyagok kapcsolatának a tanulmányozása kiemelt jelentőségű. 

A Szegedi Tudományegyetem Orvosi Fizikai és Orvosi Informatikai Intézetében nagy 

hagyománya van a fotoszintézis kutatásának, azon belül is a bakteriális rendszerek 

tanulmányozásának. A bakteriális fotoszintézis első lépései a reakciócentrum fehérjében 

játszódnak le, amely a primer töltésszétválasztásért és töltésstabilizálódásért felelős, ezzel 

megalapozva a fényenergia átalakítását. A Dr. Nagy László vezette Nano-bionika kutatócsoport 

fehérjék (főként bíborbaktériumokból preparált fotoszintetikus reakciócentrum fehérje – RC) 

bionanokompozitokba építésével és tulajdonságaik karakterizálásával foglalkozik. 

Kutatómunkámat a Nano-bionika csoportban végeztem. Munkám során Rhodobacter sphaeroides 

R26 bíborbaktériumból kinyert bakteriális reakciócentrum fehérjét alkalmaztam mesterségesen 

előállított bionanorendszerek kialakítására. A RC fehérjén megszerzett tapasztalatainkat más, 

főképp redox-fehérjét alkalmazó nanorendszerekre is megpróbálhatjuk alkalmazni, ezt a 

tormaperoxidáz enzim alapú kompozit példáján mutatom be. 

 

Célkitűzések 

1. ITO-ból és RC-ből kompozit anyag létrehozását és ennek spektroszkópiai és elektromos 

tulajdonságainak karakterizálását száraz körülménye között. 

2. Fénnyel gerjeszthető vezető polimer rétegstruktúra (PEDOT:PSS, P3HT) létrehozását ITO és 

ezüst elektródok alkalmazásával, továbbá a kialakított struktúra RC-vel való érzékenyítését, 

valamit a minta spektroszkópiai és fotoelektromos tulajdonságainak karakterizálását, a fehérje 

érzékenyítő tulajdonságának kimutatását. 



3. Egy háromelektródos elektrokémiai cella kialakítását, melynek munkaelektródját 

ITO/MWCNT/RC kompozit, ellen és referencia elektródját pedig platina és Ag/AgCl alkotja.  

A rendszerrel fotoáram generálását, továbbá a donor és akceptor típusú mediátor fotoáramra 

gyakorolt hatásának kimutatását.   

4. Az előbbi pontban már ismertetett elektrokémiai cella létrehozását és karakterizálását, melyben 

a munkaelektródra az RC rögzítését PTAA vezető polimer biztosítja. 

5. A hordozóként használt heteroatommal dópolt és dópolatlan többfalú szén nanocsövek izotóp 

összetételének meghatározását továbbá a dopolás szerkezetre gyakorolt hatásának 

bemutatását. 

6. MWCNT/RC kompozit fehérje/hordozó arányának meghatározását gyorsításos 

tömegspektrometria alkalmazásával.  

7. MWCNT/HRP kompozit fehérje/hordozó arányának meghatározását gyorsításos 

tömegspektrometria alkalmazásával.  

 

Alkalmazott módszerek 

Reakciócentrum preparálása 

 

A méréseimhez használt reakciócentrum fehérjét Rhodobacter (Rb.) sphaeroides R-26 

bíborbaktériumból preparáltuk. A baktériumok anaerob környezetben, megvilágítás mellett, 

fotoheterotróf módon növekedtek. A megvilágítás előtt a sejteket 5-8 órán keresztül sötétben 

tartottuk, hogy a tápoldatban oldott oxigén a sejtlélegzés során felhasználódjon. A RC 

szolubilizálása a fotoszintetikus membránból N,N-Dimetil-dodecil-amin-N-oxid (LDAO) 

detergens segítségével történt. A fehérje tisztításához frakcionált ammónium szulfátos kicsapást, 

majd DEAE Sephacel anioncserélő oszlopkromatográfiát alkalmaztunk. A preparálást követően a 

QB oldal helyreállítása ubikinon-10 (UQ-10, 2,3-dimetoxi-5-metil-6-dekaizoprenol-p-

benzokinon, Sigma) segítségével történt. A fehérje koncentrációját a tároláshoz centrifugával 



történő ultraszűrés segítségével 80-100 µM-ra állítottuk be. A fehérjét felhasználásig rutinszerűen 

-20 °C-os mélyhűtőben tároltuk. 

 

ITO/RC kompozit előállítása 

Az indium ón oxiddal (ITO) bevont üveglapot (specifikus ellenállás 20±6 Ω/cm
2
, 

boroszilikát üveg felületén) kereskedelmi forgalomból szereztük be (Praezisions Glass  Optik 

Gmbh, Iserlohn, Németország, Cat No: CEC020B). A gyártás során az ITO felvitele porlasztásos 

eljárással (sputter-coating) készült. Az ITO/RC kompozitot rászárításos eljárással állítottam elő. 

A minta előkészítése során a detergenst dialízis segítségével távolítottam el a mintából, majd 

megfelelő hígítást követően (1 pM-0,1 µM) nitrogénáram segítségével szárítottam a felszínre. 

 

Szén nanocsövek előállítása 

A szén nanocsövek előállítása CCVD (Catalytic Chemical Vapor Deposition – kémiai 

gázfázisú leválasztás) módszerrel zajlott. A folyamat során katalizátorként Fe(III)–

Co(II)/kálcium-karbonátot vagy nikkel(II)-oxidot alkalmaztunk. A katalizátor 5 m/m % vasat és 5 

m/m % kobaltot tartalmazott, melyet impregnációval vittünk fel a hordozó felületére.  A számított 

mennyiségű Co(II)-acetilacetát, Fe(III)-acetilacetát és CaCO3 összemérése és feloldása után az 

elegyet ultrahang segítségével homogenizáltuk az aggregációk elkerülése érdekében. Az oldat 

pH-ját ammónia hozzáadásával állítottuk be 9,0-ra. A diszperziót 70 C-on intenzív mágneses 

kevertetés mellett hevítettük addig, amíg az oldószer elpárolgott. Az oldószer elpárologtatását 

követően a katalizátort további 24 órán keresztül 100 C-on szárítottuk. Nikkel(II)-oxid esetén a 

NiO-ot acetonban szuszpendáltuk, majd ezt követően cseppentettük fel a szilícium hordozóra. 

CCVD eljárás segítségével heteroatommal dópolt szén nanocső is előállítható. A szintézis 

során nitrogén- és hidrogéngáz elegye áramlik át a reaktoron annak érdekében, hogy megfelelő 

inert környezetet biztosítsunk a magas hőmérsékleten bekövetkező oxidáció elkerülése 

érdekében. Az általunk alkalmazott körülmények között a nitrogéngáz nem vesz részt a MWCNT 

dópolásában, ezért a szintézis során acetiléngáz, tiofén és tripropil-amin (TPA) szolgál szén, kén 



és nitrogénforrásként. Az acetilén- és a nitrogéngáz egy Y szelep segítségével kerül 

összekeverésre, míg a folyadékfázisú TPA és a tiofén buborékoltatás segítségével kerül a 

reaktorba. Intenzívebb TPA bejuttatás egy syringe pumpa segítségével oldható meg (5. ábra) 

[Szekeres és mtsai., 2015]. 

  

RC rögzítése szén nanocső felületén 

Az RC fehérjét karboxilcsoporttal funkcionált szén nanocső felületére rögzítettem. A 

folyamat során EDC (1-etil-3-(3-dimetilaminopropil)karbodiimid) és NHS (N-

hidroxiszukcinimid) aktiválószereket alkalmaztam. Az EDC aktiválja az MWCNT karboxil 

funkciós csoportjait, így azok képesek az aminokkal reagálni. Az NHS jelentősége a folyamat 

köztitermékének stabilizálása, ezáltal a keresztkötés nagyobb valószínűséggel való kialakításának 

az elősegítése. 

A preparálás során a karboxilcsoporttal funkcionált szén nanocsövet (500 µL, 0,14 

mg/mL) foszfát pufferben (PBS) dializáltam (0,1 M; pH 7,0; 0,006% LDAO), ezt követően 1 

órán keresztül ultrahanggal homogenizáltam (ELMA Transsonic 310; 35 kHz; 70 W; folyamatos 

üzemmód). A szén nanocsöveket az EDC és NHS oldattal (100 µL, 0,125 M) két órán keresztül 

kevertettem, ezt követően dializálással távolítottam el a felesleges aktiválószert (PBS 0,1 M; pH 

7,0; 0,006% LDAO). A reakciócentrumot hozzáadva (50 μL, c ≈ 65 μM) egy éjszakán át 

kevertettem a mintát. A nem kötődött reakciócentrumot ultracentrifugálással távolítottam el a 

keletkezett komplextől (4 C, 15 perc, 135000 × g). A kialakított komplex felépítésének 

sematikus rajza a 6. ábrán látható. 

A módszer nem csak oldatfázisban, hanem hasonló módon, felületen is elvégezhető. 

Ebben az esetben a dializációs lépések egyszerű pufferrel, majd desztillált vízzel történő mosásra 

egyszerűsödnek. 

 

 

 



RC rögzítése vezető polimeren keresztül 

Vezető polimeren keresztüli kötéshez PTAA (poli(3-tiofén ecetsav)) vezető polimert 

használtam, mint kötőszert és mint az elektronok vezetését segítő vezető anyagot egyaránt. Mivel 

ebben az esetben a PTAA rendelkezik a kötés kialakításához szükséges karboxilcsoporttal, a szén 

nanocsövek amincsoporttal való funkcionalizálása szükséges. A kötés kialakításához 1 mg/mL 

PTAA (0,1 M PBS, pH 8,0) és 0,14 mg/mL amincsoporttal funkcionalizált MWCNT oldatot 

összekevertem, majd 2 órán keresztül kevertettem szobahőmérsékleten. A kialakult komplexet a 

feleslegben lévő polimertől ultracentrifugálással távolítottam el (20 perc, 130000 g), melyet PBS-

ben szuszpendáltam vissza. Ehhez a szuszpenzióhoz adtam hozzá az RC-ot (65 μM 

törzsoldatból), majd a mintát újra kevertettem két órán keresztül a RC degradálódásának 

minimalizálása érdekében, 4 C-on. Végül a MWCNT/PTAA/RC komplex elválasztása a nem 

kötött RC-tól szintén ultracentrifugálással történt (20 perc, 130000 g).  

 

RC vezető polimer rétegstruktúrában 

A fehérje és a szervetlen hordozó közötti elektromos kapcsolat jellegének jobb megértése 

érdekében egy kételektródos rendszert dolgoztam ki. A méréseket jelen esetben is leszárított 

mintákon végeztem. Elektródként ITO-t és ezüstöt alkalmaztam, melyek közé két vezető polimer 

réteget vittem fel. Az egyik réteget PEDOT:PSS (poli(3,4-etiléndietoxitiofén):polisztirén-

szulfonát), a másikat P3HT (poli-3-hexiltiofén) alkotta. A RC kompozit érzékenyítőként került a 

rendszerbe. A PEDOT:PSS réteget elektrokémiai polimerizációval vittem fel az ITO felületére. A 

leválasztás vizes közegben zajlott (EDOT 9,8 mM; PSS 165 µM). A ciklikus voltammetria 

mérések során a kezdő és végpotenciál (-0,5 V és 1,1V) között 50 mV/perc pásztázási sebességet 

alkalmaztam (8. ábra). A rétegvastagságot a ciklusok számával állítottam be (kb. 200 nm). A 

P3HT-ből szálas struktúrát alakítottam ki az MWCNT felületén. Ehhez a már előzetesen 

kémiailag polimerizált P3HT-t kloroform/anizol 9:1 arányú elegyében oldottam fel, majd ehhez 

az oldathoz adtam hozzá az MWCNT-t. A szén nanocsövek diszpergálása 70 C-os 

ultrahangfürdőben történt 30 percen keresztül folyamatos ultrahangozással (35 kHz, 70 W), majd 

az ultrahangozott szuszpenziót jeges fürdőben hűtöttem le. Ezen gyors lehűlési folyamat során 



alakult ki a megfelelő szálas szerkezet [Liu és mtsai., 2009]. Ezt követően porlasztásos eljárással 

vittem fel a már kialakított PEDOT:PSS rétegre, melyre záró rétegként egy ezüst katód került. 

 

Példa egyéb fehérje alkalmazására: Tormaperoxidáz enzim 

A bemutatott preparatív és az általam használt karakterizálási eljárások egyéb fehérjékre 

is alkalmazhatóak. Jelen esetben ezt egy tormaperoxidáz enzim (HRP) példáján mutatom be, 

melyet EDC/NHS módszerrel rögzítettem MWCNT felületére, az alábbi protokoll szerint. 

A preparálás során a karboxilcsoporttal funkcionált szén nanocsövet (500 µL, 0,14 

mg/mL) foszfát pufferben dializáltam (0,1 M; pH 7,0; 0,006% LDAO), melyet ezt követően 1 

órán keresztül ultrahanggal homogenizáltam (ELMA Transsonic 310; 35 kHz; 70 W; folyamatos 

üzemmód). A szén nanocsöveket az EDC és NHS oldattal (100 µL; 0,125 M) két órán keresztül 

kevertettem, ezt követően dializálással távolítottam el a felesleges aktiválószert (PBS 0,1 M; pH 

7,0; 0,006% LDAO). A HRP enzimet hozzáadva (1 mg/mL, Sigma Aldrich) egy éjszakán át 

kevertettem. A nem kötődött tormaperoxidáz enzimet ultracentrifugálással távolítottam el a 

keletkezett komplextől (4 C, 15 perc, 135000 × g).  

 

Vizsgálati módszerek 

 

Atomi erő mikroszkópia 

Az elkészített kompozitok szerkezetének vizsgálatára különböző képalkotási módszereket 

alkalmaztam, melyek közül egyik az atomi erő mikroszkópia. A felvételekhez egy Molecular 

Force Probe 3D (Asylum Research, Santa Barbara, CA, USA) AFM készüléket használtam, 

amely egy Asylum MFP-3D fej segítségével működött. A felvételek tapogató módban Olympus 

AC160 AFM tű alkalmazásával száraz körülmények között készültek. 



 

Transzmissziós elektronmikroszkópia 

A minták szerkezetét transzmissziós elektronmikroszkópiával (TEM) is vizsgáltam. A 

mérésekhez egy FEI Technai G2 20 X-TWIN típusú készüléket használtam. A TEM vizsgálatok 

információval szolgálnak az MWCNT szerkezetéről is, így a dópolás szerkezetre gyakorolt 

hatása is tanulmányozható. A méréshez a mintát abszolút etanolban diszpergáltam ultrahang 

segítségével (Transsonic T570/H, 35 kHz, 320 W), ezt követően csöppentettem fel egy 

szénbevonatos Cu TEM gridre (200 Mesh).  

 

Spektroszkópiai 

A RC fehérje jellemző abszorpciós spektrummal bír a látható és a közeli infravörös 

tartományban, így egyensúlyi spektroszkópiai mérésekkel a reakciócentrum jelenléte és 

koncentrációja is meghatározható. Az egyensúlyi spektroszkópiai mérésekhez egy UNICAM 

UV4 típusú kétsugaras készüléket használtam. A fényszórás minimalizálásának érdekében közeli 

mintatartó helyzetet alkalmaztam. 

Fénygerjesztést követően a reakciócentrumban lezajló folyamatok szintén követhetőek 

kinetikai spektroszkópiai módszerekkel, így a folyamatok dinamikája is tanulmányozható. 

Méréseimhez egy saját építésű kinetikai spektrofotométert használtam, melynek a sematikus rajza 

a 10. ábrán szerepel. Ezzel a mórszerrel a P/P
+
 primer elektrondonor bakterioklorofill dimer (P) 

redoxváltozása (860 nm), valamint a bakteriofeofitin (Bfeo) elektrokromikus eltolódása (771 nm) 

is követhető, mely a QA
-
QB és QAQB

-
 állapotok közötti elektronátmenetet jellemzi. 

 

Ellenállásmérés 

A minták ellenállás változásának mérését egy Keithley 2400s típusú multiméterrel 7 digit 

feloldással végeztem, 4 pontos elrendezésben. A készüléket számítógép segítségével USB porton 

keresztül vezéreltem, egy erre a célra általam készített LabVIEW program segítségével. A mérés 



során a fénnyel való gerjesztést egy 250W teljesítményű wolframszálas izzólámpa fénye 

szolgáltatta, melyből egy 400 nm levágási frekvenciájú aluláteresztő szűrő segítségével 

választottam ki megfelelő gerjesztő fényt. 

 

Elektrokémiai mérések 

A RC aktivitását az előállított kompozitokban spektroszkópiai mérések mellet 

elektrokémiai mérésekkel is igazoltam. A mérések háromelektródos elrendezésben történtek. 

Munkaelektródként ITO-val borított üvegelektródot használtam. Ennek előnye, hogy a látható 

tartományban igen jó transzmisszióval rendelkezik, így a fénnyel való gerjesztés könnyen 

megoldható, emellett a vezetési tulajdonságai is megfelelőek maradnak elektródként való 

alkalmazásra. Az elkészített kompozitokat minden esetben kémiai kötéssel rögzítettem a 

munkaelektród felszínére kizárva annak a lehetőségét, hogy a kompozit vizes környezetben 

leoldódjon az elektródfelszínről. A rendszerben ellenelektródként platinát, míg referenciaként 

Ag/AgCl elektródot használtam. Az elektrokémiai mérések során a munkaelektród felülete 

minden esetben 1 cm
2
 volt. 

 

Szénizotóp-tartalom meghatározása 

C14 izotóp méréséhez először a minta széntartalmának feltárására volt szükség, amelyet 

egy zárt csöves égetéses eljárással értünk el. A mintát és az oxidálószerként használt MnO2-ot 

egy kvarccsőbe mértem. Amennyiben a minta vizet is tartalmazott azt fagyasztva szárítással 

távolítottam el. A minta tömegét ebben az esetben a kvarccső és a fagyasztva szárítást követő 

tömeg különbségeként határoztam meg. A bemérést követően a csőben lévő nyomást <5∙10
-3

 

mbar-ra csökkentettem, majd leforrasztottam. A mintát a leforrasztott csőben, egy kemencében 

550 C-on 48 órán keresztül égettem el. A keletkezett CO2-ot az esetlegesen képződött egyéb 

gázoktól egy kriotechnikai csapda segítségével választottam el. A CO2 mennyiségét jól definiált 

térfogaton egy precíziós nyomásszenzor segítségével határoztam meg [Janovics 2016]. A szén 

kitermelésének hatásfoka a keletkezett CO2 mennyiségének segítségével számítható. A kinyert 

tisztított CO2 grafittá alakítása cink felhasználásával szintén zárt csöves eljárássál zajlott [Rinyu 



és mtsai. 2013, Orsovszki és Rinyu 2015]. Kevesebb mint 100 µg szén esetén mikro gafitizációs 

eljárás szükséges [Rinyu és mtsai.. 2015]. 

A szénizotóp mérésekhez egy MICADAS típusú tömegspektrométert alkalmaztunk 

[Synal és mtsai. 2004, Synal és mtsai. 2007, Molnár és mtsai. 2013]. A méréseket az MTA 

Atommagkutató intézetében Debrecenben végeztem. Az előkezelés és égetés során a legnagyobb 

körültekintés mellett is lehetőség van arra, hogy a mintába radioaktív szén izotóp kerüljön a 

jelenkori légkörben előforduló szénforrásból. Ennek követése érdekében jól definiált szénizotóp 

tartalmú standardokon (IAEA C7 and C8, [Le Clercq és mtsai. 1998]) is végrehajtottuk a 

kezeléseket és a mérés során ezeket referenciaként alkalmaztuk. A kiértékelés során a BATS 

AMS szoftvert használtuk [Wacker és mtsai. 2010].  

 

Stabilizotóp-mérések 

A stabilizotóp megahtározásokhoz egy Thermo Finnigan Delta
Plus

XP típusú izotóparányt 

mérő spektofotométert alkalmaztam, mely egy Fisons NA1500 NCS elemanalizátorhoz 

csatlakozott. Ez az eljárás a minta gyors elégetésén alapul, mely során mind a szerves, mind a 

szervetlen komponensek égéstermékekké alakulnak. A keletkezett gázok elválasztása egy 

kromatográfiás oszlop segítségével történik, a detektálást egy tömegspektrométer végzi [Major és 

mtsai. 2017]. Az eredményeket az alábbi formalizmussal adjuk meg δ (‰) = (Rminta/ Rreferencia-1) 

* 1000, ahol R 
13

C/
12

C, vagy a 
15

N/
14

N arányt jelöli a minta és a referenciaként alkalmazott 

standard esetén. A mérés bizonytalansága 0.2‰ δ
13

C és ±0.3‰ δ
15

N esetén. 

 

Kéntartalom-mérése 

A kéntartalom méréséhez a szén nanocső minták feltárása egy Mars 5 típusú 

mikrohullámú feltáró segítségével történt. A feltárás során a minta 50 mg-ját 2 ml 67%-os 

salétromsavval egy teflonbombába helyezzük, melyet mikrohullám alkalmazásával (800W) 200 

C-ra hevítünk. A folyamat 20 percet vesz igénybe, majd további 30 percig tartjuk a megadott 

hőmérsékleten a rendszert. Ezt követően a mintát ultratiszta víz segítségével 50 ml-re hígítjuk. 



A kéntartalom meghatározását egy Agilent 8800 ICP-QQQ-MS tömegspektrométerrel 

elemeztük MS/MS módban. A kéntartalom meghatározása 48 tömeg/töltés hányadosú elem 

tömegeltolódás mérésén alapszik, az alábbi egyenlet szerint: 

32
S

+
 + 

32
O2 = 

32
S

16
O

+
 + 

16
O 

 

Eredmények és tézispontok 

1. Indium ón oxid felületén rászárítással rögzítettem Rhodobacter sphaeroides 

bíborbaktériumból preparált fotoszintetikus reakciócentrum fehérjét (RC). 

Spektroszkópiai mérések segítségével megállapítottam, hogy a fehérje ezen környezetben 

akár száraz körülmények között is aktív marad. Fénnyel való gerjesztés esetén az ITO/RC 

komplex ellenállása lecsökken, melyet a két anyag közti elektrontranszferrel 

magyaráztam. A mérés érzékenysége igen jónak mondható, néhány pM RC is mérhető 

ellenállás változást eredményez. [Szabó és mtsai., Materials Science and Engineering 

C, 2012] 

 

2. ITO és ezüst elektródok közé helyezett poli-3-hexiltiofénből (P3HT) és poli(3,4-

etiléndietoxitiofén):polisztirén-szulfonátból (PEDOT:PSS) készített optoelektronikai 

eszköz reakciócentrum fehérjével érzékenyíthető, mely száraz körülmények között 

fénygerjesztés hatására megnövekedett fotoáramot mutat. Szelektív (a fehérjére jellemző) 

fénnyel való gerjesztéssel igazoltam, hogy a növekmény a reakciócentrum érzékenyítő 

hatásából származik. [Szabó és mtsai., Phys. Status Solidi B, 2015] 

 

3. ITO felületre többfalú szén-nanocsöveken keresztül rögzített reakciócentrumfehérje 

elektrokémiai cellában fotoáramot termel, mely elérheti az 1 µA nagyságot is. A 

rendszerhez adott akceptor típusú mediátor (UQ-0) háromszorosára növeli a keletkező 

fotoáram nagyságát. A cellában alkalmazott pufferoldatban a só jelenléte lassítja a 



fotoáram felfutását, továbbá az ionerősség befolyásolja a donoroldal redoxmediátorokkal 

való hozzáférhetőségét. [Szabó és mtsai., Phys. Status Solidi B, 2015] 

 

4. Reakciócentrum fehérje sikeresen rögzíthető többfalú szénnanocsövek felületére 

politiofén ecetsav (PTAA) vezető polimer segítségével. Megállapítottam, hogy a 

MWCNT/PTAA/RC komplexet ITO elektród felületére helyezve elektrokémiai cellában 

fénygerjesztés hatására a rendszer fotoáramot termel, melyet a hozzáadott mediátor 

jelentős mértékben befolyásol. A keletkező fotoáram közel egy nagyságrenddel nagyobb 

(7 µA), mint a különböző nem vezető kötőszerek alkalmazásával kapott áram, mivel a 

PTAA a rendszerben nem csak a kötőszer szerepét látja el, hanem elősegíti az elektronok 

elektródhoz jutását is. [Szabó és mtsai., Phys. Status Solidi B, 2012; Szabó és mtsai., 

Nanoscale Research Letters, 2015] 

 

5. Szén nanocsövekből és reakciócentrum fehérjéből készített komplexek összetételét 

vizsgáltam izotópanalitikai módszerek segítségével. Megállapítottam, hogy a módszer 

segítségével pontos kvantitatív információ nyerhető az összetételről. EDC-NHS 

aktiválószerrel kialakított kompozit esetén a RC/MWCNT aránya 53 m/m%-nak adódott. 

[Szabó és mtsai., Radiocarbon, 2018] 

 

6. Tormaperoxidáz enzimből (HRP) és szén nanocsövekből előállított kompozit összetétele 

14
C izotópmérés segítségével meghatározható, melynek segítségével az enzim specifikus 

enzimaktivitása megadható. A HRP/MWCNT arány 72 m/m%-nak adódott. [Magyar és 

mtsai., Journal of Nanomaterials, 2016] 
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