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Bevezetés és kutatasi hattér

A fotoszintézis az ¢éldlények egyik legalapvetobb anyagcsere folyamata, ezért mar
évtizedek oOta mind az alap-, mind az alkalmazott kutatdsok fokuszaban van. Igen részletesen
ismerjiilk a fényelnyelést kovetd energiavandorlas, toltésszétvalasztds ¢€s -stabilizalodas
mechanizmusat, az elektron- ¢és protontranszport folyamatokat. Hasonloképpen bdséges
ismerettel rendelkeziink a kémiai potencial kialakulasarol és az ehhez kapcsolédd ATP-szintézis
folyamatarol, az ezekhez kapcsolodo struktarakrol és szerkezet-funkcié kapcsolatokrol. Az eddig
felhalmozott tudas inherensen hozta magéval annak az igényét, de lehetdséget is teremtett arra,
hogy az ¢él6 rendszerekben lejatszodd folyamatokat mesterséges (n. biosimilar/-mimiking)
rendszerekben lemasoljuk, utdnozzuk. A bioldgiai rendszerek, a jellemzd molekuldik (fehérjék,
nukleinsavak) az evolucios folyamatok soran képessé valtak adott feladatok nagyon specifikus és
nagy hatékonysagu elvégzésére. Adodik tehat a lehetdség, hogy ezeket a jol mikodo
rendszereket, vagy azok részeit altalunk alkotott eszk6zdkbe épitve alkalmazzuk. Tovabba, a
bioldgiai rendszerek megismerése modellként szolgalhat egyéb rendszerek tervezéséhez és

megalkotasahoz.

Ahhoz, hogy a biologiai anyagok specifikus tulajdonsagait daltalunk alkotott
eszk6zokben kamatoztatni tudjuk, olyan kornyezetet kell teremteni szamukra, ahol aktivitasukat
tovabbra is megdrzik. Lehetdségként adodik kompozit anyagok 1étrehozasa, melyekben az aktiv
komponenst a bioldgiai anyag, a hordozo szerepét pedig egy masik szerves, vagy akar szervetlen

anyag képezi.

A nanoanyagok napjainkban szintén a tudomany érdeklddési targyat képezik, szdmos, a
tombi fazistol eltérd elonyos tulajdonsaguk miatt. Ilyen széles korben kutatott és napjainkban mar
szamos helyen alkalmazott anyagok péld4ul a szén modosulatai, a kiilonb6z6 szén nanocsovek €s
a grafén, vagy kiilonb6z6 nanométeres tartomanyba esé fém vagy fém-oxid részecskék. A
nanoanyagok elonyds tulajdonsagai, ugymint a nagy fajlagos felillet, vagy a specialis optikali

tulajdonsagok kiaknazhatéak kompozit anyagok készitése soran.

Nanoanyagok ¢és bioldgiai eredeti anyagok kombindldsaval ugynevezett

bionanokompozit anyagok készithetOk, melyeket a jovO anyagainak 1is neveznek.



Alkalmazhatosaguk igen széles korti, bionanokompozit anyagokat alkalmaznak a napenergia
hasznositasban, fotodetektorként, fototranzisztorként, herbicid szenzorokként, {izemanyag
celldkban ¢és egyéb optoelektronikai alkalmazisokban. Kiilon kiemelendd, hogy az
orvostudomany teriiletén is nagy jelent0séggel birnak, hiszen a kiilonb6z6 rekonstrukcios
eljarasok esetén nem mindig van lehetdség emberi szdvettel potolni a sériilt vagy esetlegesen
hianyz6 szoveti részeket. Ilyen esetekben mesterséges anyagok hasznalatdra kényszeriiliink,
melyeknek alapvetd kovetelménye, hogy biokompatibilisek legyenek, igy a bio- és szervetlen

anyagok kapcsolatdnak a tanulmanyozasa kiemelt jelentdségii.

A Szegedi Tudomanyegyetem Orvosi Fizikai és Orvosi Informatikai Intézetében nagy
hagyomanya van a fotoszintézis kutatdsdnak, azon beliill is a bakteridlis rendszerek
tanulmanyozasanak. A bakteridlis fotoszintézis elsé 1épései a reakcidocentrum fehérjében
jatszdédnak le, amely a primer toltésszétvalasztasért és toltésstabilizalodasért felelds, ezzel
megalapozva a fényenergia atalakitasat. A Dr. Nagy Lészl6 vezette Nano-bionika kutatdcsoport
fehérjék (foként biborbaktériumokbdl preparalt fotoszintetikus reakciocentrum fehérje — RC)
bionanokompozitokba  épitésével €s  tulajdonsdgaik  karakterizaldsaval  foglalkozik.
Kutatomunkamat a Nano-bionika csoportban végeztem. Munkam soran Rhodobacter sphaeroides
R26 biborbaktériumbdl kinyert bakteridlis reakcidcentrum fehérjét alkalmaztam mesterségesen
eléallitott bionanorendszerek kialakitdsdra. A RC fehérjén megszerzett tapasztalatainkat mas,
foképp redox-fehérjét alkalmazd nanorendszerekre is megprobalhatjuk alkalmazni, ezt a

tormaperoxidaz enzim alapi kompozit példajan mutatom be.

Célkitiizések
1. ITO-bdl és RC-b6l kompozit anyag létrehozasat és ennek spektroszkopiai és elektromos

tulajdonsagainak karakterizalasat szaraz koriilménye kozott.

2. Fénnyel gerjeszthetd vezetd polimer rétegstruktara (PEDOT:PSS, P3HT) létrehozasat ITO és
eziist elektrodok alkalmazaséaval, tovabba a kialakitott struktira RC-vel valo érzékenyitését,
valamit a minta spektroszkopiai és fotoelektromos tulajdonsagainak karakterizalasat, a fehérje

érzékenyitd tulajdonsaganak kimutatdsat.



3. Egy haromelektrodos elektrokémiai cella kialakitasat, melynek munkaelektrodjat
ITO/IMWCNT/RC kompozit, ellen és referencia elektrodjat pedig platina és Ag/AgCl alkotja.
A rendszerrel fotodram generalasat, tovabba a donor és akceptor tipusi mediator fotoaramra

gyakorolt hatasanak kimutatasat.

4. Az elobbi pontban mar ismertetett elektrokémiai cella 1étrehozésat és karakterizalasat, melyben

a munkaelektrodra az RC rogzitését PTAA vezetd polimer biztositja.

5. A hordozoként hasznalt heteroatommal dopolt és dopolatlan tobbfalti szén nanocsévek izotop
Osszetételének meghatarozasat tovabba a dopolds szerkezetre gyakorolt hatasanak

bemutatasat.

6. MWCNT/RC kompozit fehérje/hordozd ardnydnak meghatarozasat gyorsitasos

tomegspektrometria alkalmazasaval.

7. MWCNT/HRP kompozit fehérje/hordozé aranyanak meghatdrozasat gyorsitasos

tomegspektrometria alkalmazaséval.

Alkalmazott modszerek

Reakciocentrum preparalasa

A méréseimhez hasznalt reakciécentrum fehérjét Rhodobacter (Rb.) sphaeroides R-26
biborbaktériumbol preparaltuk. A baktériumok anaerob kornyezetben, megvilagitds mellett,
fotoheterotrof modon novekedtek. A megvilagitas eldtt a sejteket 5-8 oran keresztiil sotétben
tartottuk, hogy a tapoldatban oldott oxigén a sejtlélegzés soran felhasznalédjon. A RC
szolubilizalasa a fotoszintetikus membranbol N,N-Dimetil-dodecil-amin-N-oxid (LDAO)
detergens segitségével tortént. A fehérje tisztitdsahoz frakcionalt ammonium szulfatos kicsapast,
majd DEAE Sephacel anioncseréld oszlopkromatografiat alkalmaztunk. A preparalast kovetden a

Qs oldal helyreallitaisa ubikinon-10 (UQ-10, 2,3-dimetoxi-5-metil-6-dekaizoprenol-p-

crer



torténo ultrasziirés segitségével 80-100 uM-ra allitottuk be. A fehérjét felhasznalasig rutinszertien

-20 °C-os mélyhtitdben taroltuk.

ITO/RC kompozit eloallitasa

Az indium 6n oxiddal (ITO) bevont iiveglapot (specifikus ellenallas 2046 Q/cm?
boroszilikat tiveg feliiletén) kereskedelmi forgalombdl szereztiik be (Praezisions Glass & Optik
Gmbh, Iserlohn, Németorszag, Cat No: CEC020B). A gyartas soran az ITO felvitele porlasztasos
eljarassal (sputter-coating) késziilt. Az ITO/RC kompozitot raszaritasos eljarassal allitottam eld.
A minta el6készitése soran a detergenst dializis segitségével tavolitottam el a mintabol, majd

megfeleld higitast kovetden (1 pM-0,1 uM) nitrogénaram segitségével szaritottam a felszinre.

Szén nanocsovek eloallitasa

A szén nanocsovek eldallitasa CCVD (Catalytic Chemical Vapor Deposition — kémiai
gazfazisu levalasztas) modszerrel zajlott. A folyamat soran katalizatorként Fe(lll)—
Co(ll)/kalcium-karbonatot vagy nikkel(IT)-oxidot alkalmaztunk. A katalizator 5 m/m % vasat és 5
m/m % kobaltot tartalmazott, melyet impregnaciéval vittiink fel a hordozo feliiletére. A szamitott
mennyisegli Co(Il)-acetilacetat, Fe(Ill)-acetilacetat és CaCO3 Osszemérése és feloldasa utan az
elegyet ultrahang segitségével homogenizaltuk az aggregaciok elkeriilése érdekében. Az oldat
pH-jat ammoénia hozzaadasaval allitottuk be 9,0-ra. A diszperziot 70 °C-on intenziv magneses
kevertetés mellett hevitettiikk addig, amig az olddszer elparolgott. Az olddszer elparologtatasat
kovetden a katalizatort tovabbi 24 6ran keresztiil 100 °C-on szaritottuk. Nikkel(IT)-oxid esetén a

NiO-ot acetonban szuszpendaltuk, majd ezt kovetden cseppentettiik fel a szilicium hordozora.

CCVD eljaras segitségével heteroatommal dopolt szén nanocs6 is eldallithatod. A szintézis
soran nitrogén- és hidrogéngaz elegye aramlik at a reaktoron annak érdekében, hogy megfeleld
inert kornyezetet biztositsunk a magas hOmérseékleten bekovetkezd oxidacid elkeriilése
érdekében. Az altalunk alkalmazott koriilmények kozott a nitrogéngaz nem vesz részt a MWCNT

dopolasaban, ezért a szintézis sordn acetiléngaz, tiofén és tripropil-amin (TPA) szolgél szén, kén



¢s nitrogénforrasként. Az acetilén- ¢és a nitrogéngaz egy Y szelep segitségével Kkeriil
Osszekeverésre, mig a folyadékfazisu TPA és a tiofén buborékoltatas segitségével keril a
reaktorba. Intenzivebb TPA bejuttatds egy syringe pumpa segitségével oldhatd meg (5. abra)

[Szekeres és mtsai., 2015].

RC rogzitése szén nanocso feliiletén

Az RC fehérjét karboxilcsoporttal funkcionalt szén nanocsé felilletére rogzitettem. A
folyamat soran EDC  (1-etil-3-(3-dimetilaminopropil)karbodiimid) és  NHS  (N-
hidroxiszukcinimid) aktivaloszereket alkalmaztam. Az EDC aktivalja az MWCNT karboxil
funkcids csoportjait, igy azok képesek az aminokkal reagalni. Az NHS jelentdsége a folyamat
koztitermékének stabilizdldsa, ezaltal a keresztkotés nagyobb valdszinliséggel valo kialakitdsanak

az eldsegitése.

A preparalas soran a karboxilcsoporttal funkcionalt szén nanocsévet (500 pL, 0,14
mg/mL) foszfat pufferben (PBS) dializaltam (0,1 M; pH 7,0; 0,006% LDAO), ezt kovetden 1
oran keresztiil ultrahanggal homogenizaltam (ELMA Transsonic 310; 35 kHz; 70 W; folyamatos
tizemmod). A szén nanocsoveket az EDC és NHS oldattal (100 pL, 0,125 M) két 6ran keresztiil
kevertettem, ezt kdvetden dializalassal tavolitottam el a felesleges aktivaloszert (PBS 0,1 M; pH
7,0; 0,006% LDAO). A reakcidcentrumot hozzdadva (50 pL, ¢ = 65 uM) egy ¢éjszakan at
kevertettem a mintat. A nem kot6dott reakcidcentrumot ultracentrifugalassal tavolitottam el a
keletkezett komplextél (4 °C, 15 perc, 135000 x g). A kialakitott komplex felépitésének

sematikus rajza a 6. abran lathato.

A moddszer nem csak oldatfiazisban, hanem hasonlé moddon, feliileten is elvégezhetd.
Ebben az esetben a dializacios 1épések egyszerl pufferrel, majd desztillalt vizzel torténd mosasra

egyszertisdodnek.



RC rogzitése vezeté polimeren keresztiil

Vezetd polimeren keresztiili kotéshez PTAA (poli(3-tiofén ecetsav)) vezetd polimert
hasznaltam, mint kdtdszert és mint az elektronok vezetését segitd vezetd anyagot egyarant. Mivel
ebben az esetben a PTAA rendelkezik a kotés kialakitasahoz sziikséges karboxilcsoporttal, a szén
nanocsdvek amincsoporttal valdé funkcionalizalasa szlikséges. A kotés kialakitdsdhoz 1 mg/mL
PTAA (0,1 M PBS, pH 8,0) és 0,14 mg/mL amincsoporttal funkcionalizalt MWCNT oldatot
Osszekevertem, majd 2 6ran keresztiil kevertettem szobahdémérsékleten. A kialakult komplexet a
feleslegben 1évd polimertdl ultracentrifugalassal tavolitottam el (20 perc, 130000 g), melyet PBS-
ben szuszpendaltam vissza. Ehhez a szuszpenzidhoz adtam hozza az RC-ot (65 uM
torzsoldatbol), majd a mintat Gjra kevertettem két o6ran keresztil a RC degradalodasanak
minimalizélasa érdekében, 4 °C-on. Végiil a MWCNT/PTAA/RC komplex elvalasztisa a nem
kotott RC-tol szintén ultracentrifugalassal tortént (20 perc, 130000 g).

RC vezet6 polimer rétegstruktiraban

A fehérje és a szervetlen hordoz6 kozotti elektromos kapcesolat jellegének jobb megértése
érdekében egy kételektrodos rendszert dolgoztam ki. A méréseket jelen esetben is leszaritott
mintakon végeztem. Elektrodként ITO-t és eziistot alkalmaztam, melyek koze két vezetd polimer
réteget vittem fel. Az egyik réteget PEDOT:PSS (poli(3,4-ctiléndietoxitiofén):polisztirén-
szulfonat), a masikat P3HT (poli-3-hexiltiofén) alkotta. A RC kompozit érzékenyitéként keriilt a
rendszerbe. A PEDOT:PSS réteget elektrokémiai polimerizacidval vittem fel az ITO feliiletére. A
levalasztas vizes kozegben zajlott (EDOT 9,8 mM; PSS 165 uM). A ciklikus voltammetria
mérések soran a kezdd €s végpotencial (-0,5 V és 1,1V) kozott S0 mV/perc pasztazasi sebességet
alkalmaztam (8. &bra). A rétegvastagsdgot a ciklusok szdmaval allitottam be (kb. 200 nm). A
P3HT-bAl szalas strukturat alakitottam ki az MWOCNT feliiletén. Ehhez a mar elézetesen
kémiailag polimerizalt P3HT-t kloroform/anizol 9:1 aranyt elegyében oldottam fel, majd ehhez
az oldathoz adtam hozza az MWCNT-t. A szén nanocsdvek diszpergalasa 70 °C-0S
ultrahangfiirdoben tortént 30 percen keresztiil folyamatos ultrahangozéssal (35 kHz, 70 W), majd

az ultrahangozott szuszpenzidt jeges flirdében hiitottem le. Ezen gyors lehiilési folyamat soran



alakult ki a megfelel6 szalas szerkezet [Liu és mtsai., 2009]. Ezt kdvetéen porlasztasos eljarassal

vittem fel a mar kialakitott PEDOT:PSS rétegre, melyre zar6 rétegként egy eziist katod keriilt.

Példa egyéb fehérje alkalmazasara: Tormaperoxidaz enzim

A bemutatott preparativ és az altalam hasznalt karakterizalasi eljarasok egyéb fehérjékre
is alkalmazhatoak. Jelen esetben ezt egy tormaperoxiddz enzim (HRP) péld4jdn mutatom be,

melyet EDC/NHS modszerrel rogzitettem MWCNT feliiletére, az alabbi protokoll szerint.

A prepardlds soran a karboxilcsoporttal funkcionalt szén nanocsoévet (500 pL, 0,14
mg/mL) foszfat pufferben dializaltam (0,1 M; pH 7,0; 0,006% LDAO), melyet ezt kovetden 1
oran keresztiil ultrahanggal homogenizaltam (ELMA Transsonic 310; 35 kHz; 70 W; folyamatos
iizemmod). A szén nanocsdveket az EDC és NHS oldattal (100 puL; 0,125 M) két 6ran keresztiil
kevertettem, ezt kdvetden dializalassal tavolitottam el a felesleges aktivaloszert (PBS 0,1 M; pH
7,0; 0,006% LDAO). A HRP enzimet hozzaadva (1 mg/mL, Sigma Aldrich) egy éjszakan at
kevertettem. A nem kotodott tormaperoxidaz enzimet ultracentrifugdléssal tavolitottam el a

keletkezett komplextdl (4 °C, 15 perc, 135000 % g).

Vizsgalati modszerek

Atomi eré mikroszkopia

Az elkészitett kompozitok szerkezetének vizsgalatara kiilonb6zo képalkotasi modszereket
alkalmaztam, melyek koziil egyik az atomi er6 mikroszkopia. A felvételekhez egy Molecular
Force Probe 3D (Asylum Research, Santa Barbara, CA, USA) AFM késziiléket hasznaltam,
amely egy Asylum MFP-3D fej segitségével miikodott. A felvételek tapogaté modban Olympus

AC160 AFM tii alkalmazasaval szaraz koriilmények kozott késziiltek.



Transzmisszios elektronmikroszkopia

A mintdk szerkezetét transzmisszios elektronmikroszkopiaval (TEM) is vizsgéaltam. A
mérésekhez egy FEI Technai G2 20 X-TWIN tipust késziiléket hasznaltam. A TEM vizsgalatok
informacioval szolgalnak az MWCNT szerkezetérdl is, igy a dopolas szerkezetre gyakorolt
hatdsa is tanulméanyozhatdé. A méréshez a mintat abszolut etanolban diszpergaltam ultrahang
segitségével (Transsonic T570/H, 35 kHz, 320 W), ezt kovetden csOppentettem fel egy
szénbevonatos Cu TEM gridre (200 Mesh).

Spektroszkopiai

A RC fehérje jellemz6 abszorpcids spektrummal bir a lathatdo és a kozeli infravords
tartomanyban, igy egyensulyi spektroszkopiai mérésekkel a reakciocentrum jelenléte ¢és
koncentracidja is meghatarozhatd. Az egyensulyi spektroszkopiai mérésekhez egy UNICAM
UV4 tipusu kétsugaras késziiléket hasznaltam. A fényszoras minimalizaldsanak érdekében kozeli

mintatart6 helyzetet alkalmaztam.

Fénygerjesztést kovetden a reakcidcentrumban lezajlé folyamatok szintén kovethetdek
kinetikai spektroszkopiai modszerekkel, igy a folyamatok dinamikaja is tanulméanyozhato.
Meéréseimhez egy sajat épitésii kinetikai spektrofotométert hasznaltam, melynek a sematikus rajza
a 10. abran szerepel. Ezzel a morszerrel a P/P* primer elektrondonor bakterioklorofill dimer (P)
redoxvaltozasa (860 nm), valamint a bakteriofeofitin (Bfeo) elektrokromikus eltolodédsa (771 nm)

is kovethetd, mely a Qa Qg és QaQg" allapotok kozatti elektronatmenetet jellemzi.

Ellenallasmérés

A mintak ellenallas valtozasanak mérését egy Keithley 2400s tipusu multiméterrel 7 digit
feloldassal végeztem, 4 pontos elrendezésben. A késziiléket szamitogép segitségével USB porton

keresztiil vezéreltem, egy erre a célra altalam készitett LabVIEW program segitségével. A mérés



soran a fénnyel valo gerjesztést egy 250W teljesitményli wolframszalas izzolampa fénye
szolgaltatta, melyb6l egy 400 nm levagasi frekvenciaji alulatereszté sziird segitségével

valasztottam ki megfeleld gerjesztd fényt.

Elektrokémiai mérések

A RC aktivitdsat az eldallitott kompozitokban spektroszkopiai mérések mellet
elektrokémiai mérésekkel is igazoltam. A mérések haromelektrédos elrendezésben torténtek.
Munkaelektrédként ITO-val boritott tivegelektrodot hasznaltam. Ennek eldnye, hogy a lathato
tartomanyban igen joO transzmisszioval rendelkezik, igy a fénnyel valo gerjesztés kdnnyen
megoldhato, emellett a vezetési tulajdonsagai is megfeleléek maradnak elektrodként vald
alkalmazasra. Az elkészitett kompozitokat minden esetben kémiai kotéssel rogzitettem a
munkaelektrod felszinére kizarva annak a lehetOségét, hogy a kompozit vizes kornyezetben
leoldddjon az elektrodfelszinr6l. A rendszerben ellenelektrodként platinat, mig referenciaként
Ag/AgCl elektrodot hasznaltam. Az elektrokémiai mérések sordn a munkaelektrod feliilete

minden esetben 1 cm? volt.

Szénizotop-tartalom meghatarozasa

C14 izotop méréséhez el@szor a minta széntartalmanak feltarasara volt sziikség, amelyet
egy zart csoves €getéses eljarassal értiink el. A mintat és az oxidaloszerként hasznalt MnO,-ot
egy kvarccsébe mértem. Amennyiben a minta vizet is tartalmazott azt fagyasztva szaritassal
tavolitottam el. A minta tomegét ebben az esetben a kvarccsd és a fagyasztva szaritast kdvetd
tomeg kiilonbségeként hatdroztam meg. A bemérést kovetden a csében 1évé nyomast <5107
mbar-ra csokkentettem, majd leforrasztottam. A mintat a leforrasztott cs6ben, egy kemencében
550 °C-on 48 oran keresztiil égettem el. A keletkezett CO,-ot az esetlegesen képzddott egyéb
gazoktol egy kriotechnikai csapda segitségével valasztottam el. A CO, mennyiségét jol definialt
térfogaton egy precizids nyomasszenzor segitségével hatdroztam meg [Janovics 2016]. A szén
kitermelésének hatasfoka a keletkezett CO, mennyiségének segitségével szamithato. A kinyert

tisztitott CO, grafitta alakitasa cink felhasznéalasaval szintén zart csoves eljarassal zajlott [Rinyu



¢és mtsai. 2013, Orsovszki és Rinyu 2015]. Kevesebb mint 100 ug szén esetén mikro gafitizacios

eljaras sziikséges [Rinyu és mtsai.. 2015].

A szénizotop mérésekhez egy MICADAS tipusu tomegspektrométert alkalmaztunk
[Synal és mtsai. 2004, Synal és mtsai. 2007, Molnar és mtsai. 2013]. A méréseket az MTA
Atommagkutato intézetében Debrecenben végeztem. Az eldkezelés és égetés soran a legnagyobb
koriiltekintés mellett is lehetdség van arra, hogy a mintaba radioaktiv szén izotop keriiljon a
jelenkori 1égkdrben eléforduld szénforrasbol. Ennek kdvetése érdekében jol definidlt szénizotdp
tartalmu standardokon (IAEA C7 and C8, [Le Clercq és mtsai. 1998]) is végrehajtottuk a
kezeléseket ¢s a mérés soran ezeket referenciaként alkalmaztuk. A kiértékelés sordn a BATS

AMS szoftvert hasznaltuk [Wacker és mtsai. 2010].

Stabilizotop-mérések

PISXP tipusti izotoparanyt

A stabilizotop megahtarozasokhoz egy Thermo Finnigan Delta
mérd spektofotométert alkalmaztam, mely egy Fisons NA1500 NCS elemanalizatorhoz
csatlakozott. Ez az eljaras a minta gyors elégetésén alapul, mely sordn mind a szerves, mind a
szervetlen komponensek égéstermékekké alakulnak. A keletkezett gazok elvalasztasa egy
kromatografids oszlop segitségével torténik, a detektalast egy tomegspektrométer végzi [Major és
mtsai. 2017]. Az eredményeket az alabbi formalizmussal adjuk meg 6 (%o) = (Rminta/ Rreferencia-1)
* 1000, ahol R *C/**C, vagy a N/*N aranyt jeloli a minta és a referenciaként alkalmazott

standard esetén. A mérés bizonytalansaga 0.2%o 83C és £0.3%0 5N esetén.

Kéntartalom-mérése

A kéntartalom méréséhez a szén nanocsd mintdk feltdrdsa egy Mars 5 tipusu
mikrohulldmu feltard segitségével tortént. A feltards sordn a minta 50 mg-jat 2 ml 67%-0S
salétromsavval egy teflonbombéba helyezziik, melyet mikrohulldm alkalmazasaval (800W) 200
°C-ra hevitiink. A folyamat 20 percet vesz igénybe, majd tovabbi 30 percig tartjuk a megadott

homérsékleten a rendszert. Ezt kdvetden a mintat ultratiszta viz segitségével 50 ml-re higitjuk.



A kéntartalom meghatarozasat egy Agilent 8800 ICP-QQQ-MS tomegspektrométerrel
elemeztik MS/MS modban. A kéntartalom meghatarozasa 48 tomeg/toltés hanyadost elem

tomegeltolddas mérésén alapszik, az alabbi egyenlet szerint:

328+ + 3202 - 328160+ + 160

Eredmények és tézispontok

1. Indium o6n oxid feliletén raszaritassal rogzitettem Rhodobacter sphaeroides
biborbaktériumbol  preparalt  fotoszintetikus  reakciécentrum  fehérjét  (RC).
Spektroszkopiai mérések segitségével megallapitottam, hogy a fehérje ezen kornyezetben
akar szaraz koriilmények kozott is aktiv marad. Fénnyel valo gerjesztés esetén az ITO/RC
komplex ellenallasa lecsokken, melyet a két anyag kozti elektrontranszferrel
magyaraztam. A mérés érzékenysége igen jonak mondhatd, néhany pM RC is mérhetd
ellenallas valtozast eredményez. [Szabé és mtsai., Materials Science and Engineering
C, 2012]

2. ITO és eziist elektrodok kozé helyezett poli-3-hexiltiofénbol (P3HT) és poli(3,4-
etiléndietoxitiofén):polisztirén-szulfonatbol (PEDOT:PSS) készitett optoelektronikai
eszkoz reakciocentrum fehérjével érzékenyithetd, mely szaraz koriilmények kozott
fénygerjesztés hatasdra megnovekedett fotodramot mutat. Szelektiv (a fehérjére jellemzd)
fénnyel valo gerjesztéssel igazoltam, hogy a ndvekmény a reakciocentrum érzékenyitd

hatasabol szarmazik. [Szabé és mtsai., Phys. Status Solidi B, 2015]

3. ITO feliiletre tobbfali szén-nanocsoveken keresztiil rogzitett reakcidcentrumfehérje
elektrokémiai cellaban fotodramot termel, mely elérheti az 1 pA nagysagot is. A
rendszerhez adott akceptor tipusi mediator (UQ-0) haromszorosara noveli a keletkezd

fotodram nagysagat. A celldban alkalmazott pufferoldatban a sé jelenléte lassitja a



fotodram felfutasat, tovabba az ionerdsség befolyasolja a donoroldal redoxmediatorokkal

valo hozzaférhetdségét. [Szabé és mtsai., Phys. Status Solidi B, 2015]

Reakciocentrum fehérje sikeresen rogzithetd tobbfalu szénnanocsdvek feliiletére
politiofén ecetsav (PTAA) vezeté polimer segitségével. Megallapitottam, hogy a
MWCNT/PTAA/RC komplexet ITO elektrod feliiletére helyezve elektrokémiai celldban
fénygerjesztés hatdsara a rendszer fotodramot termel, melyet a hozzdadott mediator
jelentds mértékben befolydsol. A keletkezd fotodram kozel egy nagysagrenddel nagyobb
(7 nA), mint a kiilonb6z6 nem vezetd kotészerek alkalmazasaval kapott aram, mivel a
PTAA a rendszerben nem csak a kotdszer szerepét latja el, hanem eldsegiti az elektronok
elektrodhoz jutasat is. [Szabé és mtsai., Phys. Status Solidi B, 2012; Szab6 és mtsai.,

Nanoscale Research Letters, 2015]

Szén nanocsovekbdl és reakcidcentrum fehérjébdl készitett komplexek Osszetételét
vizsgaltam izotopanalitikai mddszerek segitségével. Megallapitottam, hogy a modszer
segitségével pontos kvantitativ informacié nyerhetd az 0Osszetételrél. EDC-NHS
aktivaloszerrel kialakitott kompozit esetén a RC/MWCNT ardnya 53 m/m%-nak adddott.

[Szabé és mtsai., Radiocarbon, 2018]

Tormaperoxidaz enzimbdl (HRP) és szén nanocsdvekbdl eldallitott kompozit dsszetétele
YC izotopmérés segitségével meghatarozhato, melynek segitségével az enzim specifikus
enzimaktivitasa megadhat6. A HRP/MWCNT arany 72 m/m%-nak adodott. [Magyar és
mtsai., Journal of Nanomaterials, 2016]
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